+

WO2016038968A1 - Moisture curable urethane composition and covering material - Google Patents

Moisture curable urethane composition and covering material Download PDF

Info

Publication number
WO2016038968A1
WO2016038968A1 PCT/JP2015/067995 JP2015067995W WO2016038968A1 WO 2016038968 A1 WO2016038968 A1 WO 2016038968A1 JP 2015067995 W JP2015067995 W JP 2015067995W WO 2016038968 A1 WO2016038968 A1 WO 2016038968A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
mass
curable urethane
urethane composition
urethane
Prior art date
Application number
PCT/JP2015/067995
Other languages
French (fr)
Japanese (ja)
Inventor
勝也 船ヶ山
西村 紀夫
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2015551651A priority Critical patent/JP5904313B1/en
Priority to KR1020177006003A priority patent/KR20170053621A/en
Publication of WO2016038968A1 publication Critical patent/WO2016038968A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/089Reaction retarding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/302Water
    • C08G18/307Atmospheric humidity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers

Definitions

  • the present invention relates to a moisture curable urethane composition useful as a waterproof material.
  • a two-component fast-curing polyurethane is disclosed (for example, see Patent Document 1).
  • the fast-curing polyurethane is instantly cured by spray coating, so that large-area construction is easy, but there is a problem that handling is poor due to the need for large-scale machine operation and the fact that the reaction is too fast. Therefore, material development without these problems is desired.
  • the problem to be solved by the present invention is a high-strength type at a test temperature of 23 ° C. (hereinafter referred to as “the strength of urethane rubber-based tensile performance” in “Table 1 Performance of waterproof coating film for roof” in JIS A6021: 2011 It is to provide a material that satisfies the standard of “high-strength type standard”), has excellent storage stability, and can be easily applied with a covering material such as a waterproofing material without operation by a large machine. .
  • the present invention relates to a urethane prepolymer (A) having an isocyanate group obtained by reacting a polytetramethylene glycol (a-1), a chain extender (a-2) and a polyisocyanate (a-3), a polyol ( a urethane compound (B) having an oxazolidine group obtained by reacting b-1), polyisocyanate (b-2) and N-2-hydroxyalkyloxazolidine (b-3), and an acid catalyst (C).
  • the present invention provides a moisture-curable urethane composition characterized by containing, and a coating material characterized by being moisture-cured.
  • the moisture-curable urethane composition of the present invention is excellent in storage stability, can easily produce a coating film by glazing or the like, and can be applied without using a large machine.
  • the cured product obtained by moisture-curing the moisture-curable urethane composition of the present invention satisfies the high-strength form standard, and thus is extremely excellent in high strength, and also at low and high temperatures. It has excellent tensile performance and low shrinkage. Therefore, the moisture-curable urethane composition of the present invention can be suitably used as a civil engineering-related coating material, and can be particularly suitably used as a waterproof material.
  • the moisture curable urethane composition of the present invention is a urethane prepolymer having an isocyanate group obtained by reacting polytetramethylene glycol (a-1), a chain extender (a-2) and a polyisocyanate (a-3).
  • Polymer (A) urethane compound (B) having an oxazolidine group obtained by reacting polyol (b-1), polyisocyanate (b-2) and N-2-hydroxyalkyloxazolidine (b-3), and
  • the acid catalyst (C) is contained as an essential component.
  • polytetramethylene glycol (a-1) As a polyol used as a raw material for the urethane prepolymer (A).
  • polytetramethylene glycol (a-1) When other polyols are used in place of the polytetramethylene glycol (a-1), the high-strength form standard (coexistence of high strength and high elongation) cannot be satisfied, and the storage stability is poor. There is a problem to become.
  • a polyol having a high mechanical strength such as a polyester polyol or a polycarbonate polyol.
  • the number average molecular weight of the polytetramethylene glycol (a-1) is preferably in the range of 500 to 5,000, more preferably in the range of 800 to 3,000, from the viewpoint of tensile strength and tensile elongation.
  • the number average molecular weight of the polytetramethylene glycol (a-1) is a value obtained by measurement under the following conditions by gel permeation chromatography (GPC) method.
  • Measuring device High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were connected in series. "TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000” (7.8 mm ID x 30 cm) x 1 "TSKgel G3000” (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID ⁇ 30 cm) ⁇ 1 detector: RI (differential refractometer) Column temperature: 40 ° C Eluent: Tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection amount: 100 ⁇ L (tetrahydrofuran solution with a sample concentration of 0.4 mass%) Standard sample: A calibration curve was prepared using the following standard polystyrene.
  • polystyrene resin As the polyol used as a raw material for the urethane prepolymer (A), other polyols may be used in combination with the polytetramethylene glycol (a-1) as necessary.
  • polyether polyols other than the polytetramethylene glycol (a-1) examples include polyether polyols other than the polytetramethylene glycol (a-1), polyester polyols, polycarbonate polyols, polyacrylic polyols, dimer polyols, polybutadiene polyols, and the like. These polyols may be used alone or in combination of two or more.
  • the amount of the polytetramethylene glycol (a-1) used is preferably 50% by mass or more in the polyol used as a raw material for the urethane prepolymer (A) from the viewpoint of tensile strength and tensile elongation. More preferably, it is at least mass%.
  • the chain extender (a-2) is an essential component for obtaining a moisture-curable urethane composition that satisfies the high-strength form standard and is excellent in storage stability.
  • the use of the chain extender (a-2) increases the urethane group concentration and forms a sea-island structure in the polyurethane to obtain a cured product having high mechanical strength. It has been.
  • a urethane prepolymer (A) is obtained, and further combined with a urethane compound (B) having an oxazolidine group, which will be described later, satisfies the high-strength form standard,
  • a moisture-curing urethane composition having excellent storage stability was obtained, and in other embodiments, it was very difficult to satisfy the high strength form standard.
  • chain extender (a-2) examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, , 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,5-hexanediol, 1,6-hexanediol, 2, 5-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 2-methyl -1,3-propanediol, neopentyl glycol
  • the number average molecular weight of the chain extender (a-2) is preferably in the range of 50 to 450 from the viewpoint of mechanical strength.
  • the number average molecular weight of the chain extender (a-2) is a value obtained by measurement in the same manner as the number average molecular weight of the polytetramethylene glycol (a-1).
  • polyisocyanate (a-3) examples include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, carbodiimidized diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, naphthalene diisocyanate, phenylene diisocyanate, and xylylene diisocyanate; Aliphatic or alicyclic polyisocyanates such as diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and cyclohexane diisocyanate can be used.
  • aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, carbodiimidized diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, naphthalene di
  • polyisocyanates may be used alone or in combination of two or more.
  • polyisocyanates selected from the group consisting of tolylene diisocyanate, isophorone diisocyanate, and diphenylmethane diisocyanate from the viewpoint that the high strength and storage stability can be further improved.
  • the molar ratio between the hydroxyl groups of the polyol (a-1) and the chain extender (a-2) and the isocyanate groups of the polyisocyanate (a-3) is as follows.
  • (NCO / OH) is preferably in the range of 1.1 to 2, more preferably in the range of 1.2 to 1.5, and the polyol (a-1), the extender (a-2), and the poly It is preferable to use a method of reacting isocyanate (a-3) from the viewpoint that the high strength and storage stability can be further improved.
  • the urethane prepolymer (A) has an isocyanate group, and as its isocyanate group content (hereinafter abbreviated as “NCO%”), high strength and storage stability can be further improved.
  • the range is preferably 2 to 5% by mass, and more preferably 2.5 to 3.5% by mass.
  • a technique for improving the high strength a technique for increasing the isocyanate group content of the urethane prepolymer is generally used, but the isocyanate group has an oxazolidine group possessed by the urethane compound (B) described later due to its high activity. It has been found that the ring-opening action is strong, and the reaction proceeds in the composition system before use, and the storage stability tends to deteriorate.
  • the weight average molecular weight of the urethane prepolymer (A) is preferably in the range of 1,000 to 20,000 from the viewpoint of further improving the curing rate, adhesiveness, high strength and storage stability. A range of 4,000 to 8,000 is more preferable.
  • the weight average molecular weight of the urethane prepolymer (A) is a value obtained by measurement in the same manner as the number average molecular weight of the polytetramethylene glycol (a-1).
  • Examples of the polyol (b-1) used as a raw material for the urethane compound (B) having the oxazolidine group include polyether polyol, polyester polyol, polycarbonate polyol, polyacryl polyol, dimer diol, polybutadiene polyol, and the like. it can. These polyols may be used alone or in combination of two or more. Among these, it is preferable to use a polyether polyol from the viewpoint that workability and flexibility can be further improved.
  • first polyether polyol examples include polyoxyethylene polyol, polyoxypropylene polyol, polyoxytetramethylene polyol, polyoxyethylene polyoxypropylene polyol, polyoxyethylene polyoxytetramethylene polyol, and polyoxypropylene polyoxytetramethylene polyol. Etc. can be used. These polyether polyols may be used alone or in combination of two or more.
  • the number average molecular weight of the polyol (b-1) is preferably in the range of 500 to 5,000, more preferably in the range of 800 to 3,000, from the viewpoint that workability and flexibility can be further improved.
  • the number average molecular weight of the polyol (b-1) is a value obtained by measurement in the same manner as the number average molecular weight of the polytetramethylene glycol (a-1).
  • polyisocyanate (b-2) used as a raw material for the urethane compound (B) having the oxazolidine group the same polyisocyanate (a-2) can be used.
  • N-2-hydroxyalkyloxazolidine (b-3) for example, one obtained by reacting an aldehyde compound with a dihydroxyalkylamine compound can be used.
  • aldehyde compound for example, formaldehyde, acetaldehyde, propyl aldehyde, butyraldehyde, benzaldehyde or the like can be used. These compounds may be used alone or in combination of two or more.
  • dihydroxyalkylamine compound for example, diethanolamine, dipropanolamine and the like can be used. These compounds may be used alone or in combination of two or more.
  • the urethane compound (B) is obtained by reacting the polyol (b-1), the polyisocyanate (b-2) and the N-2-hydroxyalkyloxazolidine (b-3) by a known method,
  • the number of oxazolidine groups is preferably in the range of 1 to 4, and more preferably in the range of 1 to 3, from the viewpoints of tensile performance at low and high temperatures and workability.
  • the number average molecular weight of the urethane compound (B) is preferably in the range of 500 to 15,000 from the viewpoint of further improving the adhesion to the substrate and the curing rate.
  • the number average molecular weight of the urethane compound (B) is a value measured in the same manner as the polytetramethylene glycol (a-1).
  • the urethane compound (B) is used in an amount that can further improve the tensile performance at low temperatures and high temperatures, the curing rate, the adhesion to the substrate, the high strength, and the storage stability.
  • the range is preferably 10 to 100 parts by mass, more preferably 30 to 50 parts by mass with respect to 100 parts by mass of the polymer (A).
  • the acid catalyst (C) promotes dissociation of the oxazolidine group of the urethane compound (B).
  • sulfuric acid, hydrochloric acid, phosphoric acid, carbonic acid, alkylbenzenesulfonic acid, benzoic acid, salicylic acid, formic acid, acetic acid, Organic acids or inorganic acids such as maleic acid and fumaric acid; salts thereof and the like can be used.
  • These acid catalysts may be used alone or in combination of two or more. Among these, it is preferable to use one or more acid catalysts selected from the group consisting of phosphoric acid, salicylic acid and phosphate from the viewpoint of further improving the curability.
  • the amount of the acid catalyst (C) used is preferably in the range of 0.01 to 1 part by mass with respect to 100 parts by mass of the urethane compound (B) from the viewpoint of curability.
  • the moisture curable urethane composition of the present invention contains the urethane prepolymer (A), the urethane compound (B), and the acid catalyst (C) as essential components.
  • the additive may be contained.
  • additives examples include organic solvents, plasticizers, fillers, pigments, thixotropic agents, process oils, UV inhibitors, reinforcing materials, aggregates, curing accelerators, flame retardants, and the like. it can. These additives may be used alone or in combination of two or more.
  • organic solvent for example, xylene, toluene, methyl ethyl ketone, ethyl acetate, methyl isobutyl ketone and the like can be used. These organic solvents may be used alone or in combination of two or more.
  • the amount of the organic solvent used is preferably in the range of 0.5 to 10% by mass in the moisture curable urethane composition.
  • plasticizer examples include 2-ethylhexyl phthalate, dibutyl phthalate, dioctyl phthalate, diundecyl phthalate, dilauryl phthalate, butyl benzyl phthalate, diisodecyl phthalate, dibutyl adipate, dioctyl adipate, diisononyl adipate, diisononyl adipate, dioctyl azelate, Dioctyl sebacate, trioctyl phosphate, triphenyl phosphate and the like can be used. These plasticizers may be used alone or in combination of two or more. When the plasticizer is used, the amount used is preferably in the range of 1 to 10% by mass in the moisture curable urethane composition.
  • filler for example, calcium carbonate, calcium oxide, clay, talc, titanium oxide, aluminum sulfate, kaolin, clay, glass balloon and the like can be used. These fillers may be used alone or in combination of two or more. When the filler is used, the amount used is preferably in the range of 1 to 40% by mass in the moisture-curable urethane composition.
  • the moisture-curable urethane composition of the present invention is excellent in storage stability, can easily produce a coating film by glazing or the like, and can be applied without using a large machine.
  • the cured product obtained by moisture-curing the moisture-curable urethane composition of the present invention satisfies the high-strength form standard, and thus is extremely excellent in high strength, and also at low and high temperatures. It has excellent tensile properties and low shrinkage. Therefore, the moisture-curable urethane composition of the present invention can be suitably used as a civil engineering-related coating material, and can be particularly suitably used as a waterproof material.
  • an inorganic base material such as concrete, asphalt or mortar; metal, wood, fabric, plastic, etc. Can be used.
  • the thickness at the time of application is appropriately determined according to the application, but is in the range of 0.1 to 10 mm, for example.
  • the moisture curable urethane composition is cured by moisture to obtain a cured product.
  • Examples of the moisture curing method include a method of curing for 5 to 10 days under conditions of 25 ° C. and 50% humidity.
  • the cured product obtained by the above method satisfies the high strength form standard, that is, the tensile strength at a test temperature of 23 ° C. is 10 N / mm 2 or more, and the elongation at break at a temperature of 23 ° C. is 200. % Or more.
  • cured material obtained by the said method is 300% or more of the elongation rate between grips (temperature at the time of a test of 23 degreeC) at the time of a fracture
  • Examples 1 to 4 A predetermined amount of urethane prepolymer (A) and urethane compound (B) in a sealed mixing container, 400 parts by weight of calcium carbonate (“NS-200” manufactured by Nitto Flour Chemical Co., Ltd.) dried in advance, and 50 parts by weight of 2-ethylhexyl phthalate Then, 50 parts by mass of xylene and 0.4 parts by mass of salicylic acid were uniformly mixed to obtain a moisture curable urethane composition.
  • the recipes and test results are shown in Tables 1-2.
  • Examples 1 to 4 which are the moisture curable urethane composition of the present invention satisfy the standard of the high strength type standard and are excellent in storage stability.
  • Comparative Examples 1 and 2 are embodiments in which polypropylene chain is used as the main component of the polyol instead of polytetramethylene glycol (a-1) without using the chain extender (a-2).
  • Comparative Example 2 having a high NCO% also had poor storage stability.
  • Comparative Examples 3 and 4 are embodiments in which the chain extender (a-2) is not used, but none of them can satisfy the standard of the high strength type standard, and Comparative Example 4 having a high NCO% also has storage stability. It was bad.
  • Comparative Example 5 is an embodiment in which polypropylene glycol was used instead of polytetramethylene glycol (a-1), but the standard of the high strength form standard could not be satisfied.
  • Comparative Example 8 is an embodiment in which polyester polyol is used instead of polytetramethylene glycol (a-1), but the standard of the high strength form standard could not be satisfied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention addresses the problem of providing a material: that satisfies the standard for a test temperature 23°C high strength form prescribed for urethane rubber tensile performance in JIS A6021: 2011 "Table 1 - Performance of Roof Coating Film Waterproofing Material"; that has excellent storage stability; and with which a covering material such as a waterproofing material can be easily formed without performing operations using large machinery. Provided is a moisture-curable urethane composition characterized in comprising: an isocyanate group-containing urethane prepolymer (A) obtained by reacting a polytetramethyleneglycol (a-1), a chain extender (a-2), and a polyisocyanate (a-3); an oxazolidine group-containing urethane compound (B) obtained by reacting a polyol (b-1), a polyisocyanate (b-2) and a N-2-hydroxyalkyl oxazolidine (b-3); and an acid catalyst (C).

Description

湿気硬化型ウレタン組成物及び被覆材Moisture-curing urethane composition and coating material
 本発明は、防水材として有用な湿気硬化型ウレタン組成物に関する。 The present invention relates to a moisture curable urethane composition useful as a waterproof material.
 近年、ウレタン系材料の高耐久化を目的として、防水材や補強材用樹脂に対する高強度化・高靭性化のニーズが高まっている。特に、防水材ではJISA6021に「高強度形」の規格が制定されたこともあり、産業界ではこの規格を満たす材料開発が盛んに行われている。 In recent years, there has been a growing need for higher strength and toughness for waterproofing and reinforcing resin for the purpose of improving durability of urethane materials. In particular, as a waterproof material, a standard of “high-strength type” has been established in JIS A6021, and the industry is actively developing materials that satisfy this standard.
 前記高強度規格を満たす材料としては、例えば、2液系の速硬化型ポリウレタンが開示されている(例えば、特許文献1を参照。)。前記速硬化型ポリウレタンはスプレー塗布により瞬間硬化するため大面積の施工が容易であるが、大型機械操作が必要である点及び反応が速すぎる点により取扱い性が悪いとの問題点があった。従って、これらの問題のない材料開発が望まれている。 As a material satisfying the high-strength standard, for example, a two-component fast-curing polyurethane is disclosed (for example, see Patent Document 1). The fast-curing polyurethane is instantly cured by spray coating, so that large-area construction is easy, but there is a problem that handling is poor due to the need for large-scale machine operation and the fact that the reaction is too fast. Therefore, material development without these problems is desired.
特開2007-113249号公報JP 2007-113249 A
 本発明が解決しようとする課題は、JISA6021:2011の「表1-屋根用塗膜防水材の性能」中のウレタンゴム系引張性能に規定する試験時温度23℃の高強度形(以下、「高強度形規格」と略記する。)の基準を満たし、かつ、貯蔵安定性に優れ、大型機械による操作を行わなくても簡便に防水材等の被覆材が施工できる材料を提供することである。 The problem to be solved by the present invention is a high-strength type at a test temperature of 23 ° C. (hereinafter referred to as “the strength of urethane rubber-based tensile performance” in “Table 1 Performance of waterproof coating film for roof” in JIS A6021: 2011 It is to provide a material that satisfies the standard of “high-strength type standard”), has excellent storage stability, and can be easily applied with a covering material such as a waterproofing material without operation by a large machine. .
 本発明は、ポリテトラメチレングリコール(a-1)と鎖伸長剤(a-2)とポリイソシアネート(a-3)とを反応させて得られるイソシアネート基を有するウレタンプレポリマー(A)、ポリオール(b-1)とポリイソシアネート(b-2)とN-2-ヒドロキシアルキルオキサゾリジン(b-3)とを反応させて得られるオキサゾリジン基を有するウレタン化合物(B)、及び、酸触媒(C)を含有することを特徴とする湿気硬化型ウレタン組成物、及び、それを湿気硬化して得られたことを特徴とする被覆材を提供するものである。 The present invention relates to a urethane prepolymer (A) having an isocyanate group obtained by reacting a polytetramethylene glycol (a-1), a chain extender (a-2) and a polyisocyanate (a-3), a polyol ( a urethane compound (B) having an oxazolidine group obtained by reacting b-1), polyisocyanate (b-2) and N-2-hydroxyalkyloxazolidine (b-3), and an acid catalyst (C). The present invention provides a moisture-curable urethane composition characterized by containing, and a coating material characterized by being moisture-cured.
 本発明の湿気硬化型ウレタン組成物は貯蔵安定性に優れ、鏝塗り等によっても簡便に塗膜を作製でき、大型機械によらなくても施工が可能なものである。また、本発明の湿気硬化型ウレタン組成物を湿気硬化させて得られる硬化物は、高強度形規格を満たすものであるため、高強度性に極めて優れるものであり、また低温時及び高温時でも優れた引張性能を有し、収縮率も少ないものである。従って、本発明の湿気硬化型ウレタン組成物は、土木建築関連の被覆材として好適に使用することができ、防水材として特に好適に使用することができる。 The moisture-curable urethane composition of the present invention is excellent in storage stability, can easily produce a coating film by glazing or the like, and can be applied without using a large machine. In addition, the cured product obtained by moisture-curing the moisture-curable urethane composition of the present invention satisfies the high-strength form standard, and thus is extremely excellent in high strength, and also at low and high temperatures. It has excellent tensile performance and low shrinkage. Therefore, the moisture-curable urethane composition of the present invention can be suitably used as a civil engineering-related coating material, and can be particularly suitably used as a waterproof material.
 本発明の湿気硬化型ウレタン組成物は、ポリテトラメチレングリコール(a-1)と鎖伸長剤(a-2)とポリイソシアネート(a-3)とを反応させて得られるイソシアネート基を有するウレタンプレポリマー(A)、ポリオール(b-1)とポリイソシアネート(b-2)とN-2-ヒドロキシアルキルオキサゾリジン(b-3)とを反応させて得られるオキサゾリジン基を有するウレタン化合物(B)、及び、酸触媒(C)を必須成分として含有するものである。 The moisture curable urethane composition of the present invention is a urethane prepolymer having an isocyanate group obtained by reacting polytetramethylene glycol (a-1), a chain extender (a-2) and a polyisocyanate (a-3). Polymer (A), urethane compound (B) having an oxazolidine group obtained by reacting polyol (b-1), polyisocyanate (b-2) and N-2-hydroxyalkyloxazolidine (b-3), and The acid catalyst (C) is contained as an essential component.
 前記ウレタンプレポリマー(A)の原料として用いるポリオールとしては、ポリテトラメチレングリコール(a-1)を用いることが必須である。前記ポリテトラメチレングリコール(a-1)の代わりに他のポリオールを用いた場合には、高強度形規格(高強度と高伸度の両立)を満たすことができない問題や、貯蔵安定性が不良になる問題がある。通常、強度の高い硬化物を得る場合には、ポリエステルポリオールやポリカーボネートポリオールのような機械的強度の高いポリオールを用いることが一般的であるが、高強度形規格の基準は非常にハードルが高く、これらのポリオールで鋭意検討を行ったものの、前記基準を満たすことができなかった。本発明のように、機械的強度の劣るポリテトラメチレングリコール(a-1)を用いることにより前記基準を満たすことができたのは非常に驚きであった。 It is essential to use polytetramethylene glycol (a-1) as a polyol used as a raw material for the urethane prepolymer (A). When other polyols are used in place of the polytetramethylene glycol (a-1), the high-strength form standard (coexistence of high strength and high elongation) cannot be satisfied, and the storage stability is poor. There is a problem to become. Usually, when obtaining a cured product having high strength, it is common to use a polyol having a high mechanical strength such as a polyester polyol or a polycarbonate polyol. Although diligent studies were conducted with these polyols, the above-mentioned criteria could not be satisfied. It was very surprising that the above criteria could be satisfied by using polytetramethylene glycol (a-1) having poor mechanical strength as in the present invention.
 前記ポリテトラメチレングリコール(a-1)の数平均分子量としては、引張強度及び引張伸度の点から、500~5,000の範囲が好ましく、800~3,000の範囲がより好ましい。なお、前記ポリテトラメチレングリコール(a-1)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により、下記の条件で測定して得られた値を示す。 The number average molecular weight of the polytetramethylene glycol (a-1) is preferably in the range of 500 to 5,000, more preferably in the range of 800 to 3,000, from the viewpoint of tensile strength and tensile elongation. The number average molecular weight of the polytetramethylene glycol (a-1) is a value obtained by measurement under the following conditions by gel permeation chromatography (GPC) method.
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 0.4 mass%)
Standard sample: A calibration curve was prepared using the following standard polystyrene.
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Standard polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation
 前記ウレタンプレポリマー(A)の原料として用いるポリオールとしては、必要に応じて前記ポリテトラメチレングリコール(a-1)と共にその他のポリオールを併用してもよい。 As the polyol used as a raw material for the urethane prepolymer (A), other polyols may be used in combination with the polytetramethylene glycol (a-1) as necessary.
 前記その他のポリオールとしては、例えば、前記ポリテトラメチレングリコール(a-1)以外のポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリアクリルポリオール、ダイマーポリオール、ポリブタジエンポリオール等を用いることができる。これらのポリオールは単独で用いても2種以上を併用してもよい。 Examples of the other polyols include polyether polyols other than the polytetramethylene glycol (a-1), polyester polyols, polycarbonate polyols, polyacrylic polyols, dimer polyols, polybutadiene polyols, and the like. These polyols may be used alone or in combination of two or more.
 前記ポリテトラメチレングリコール(a-1)の使用量としては、引張強度及び引張伸度の点から、前記ウレタンプレポリマー(A)の原料として用いるポリオール中50質量%以上であることが好ましく、80質量%以上であることがより好ましい。 The amount of the polytetramethylene glycol (a-1) used is preferably 50% by mass or more in the polyol used as a raw material for the urethane prepolymer (A) from the viewpoint of tensile strength and tensile elongation. More preferably, it is at least mass%.
 前記鎖伸長剤(a-2)は、高強度形規格を満たし、かつ貯蔵安定性に優れる湿気硬化型ウレタン組成物を得る上で必須の成分である。なお、鎖伸長剤(a-2)を用いることにより、ウレタン基濃度が増加しポリウレタンに海島構造を形成させることで機械的強度の高い硬化物が得られることはポリウレタンの技術分野においては広く知られている。しかしながら、前記ポリテトラメチレングリコール(a-1)と組合せ用いてウレタンプレポリマー(A)を得、更に後述するオキサゾリジン基を有するウレタン化合物(B)と組合せることにより、高強度形規格を満たし、かつ貯蔵安定性に優れる湿気硬化型ウレタン組成物が得られることが分かり、これ以外の態様では高強度形規格を満たすことは非常に困難であった。 The chain extender (a-2) is an essential component for obtaining a moisture-curable urethane composition that satisfies the high-strength form standard and is excellent in storage stability. In addition, it is widely known in the technical field of polyurethane that the use of the chain extender (a-2) increases the urethane group concentration and forms a sea-island structure in the polyurethane to obtain a cured product having high mechanical strength. It has been. However, by using in combination with the polytetramethylene glycol (a-1), a urethane prepolymer (A) is obtained, and further combined with a urethane compound (B) having an oxazolidine group, which will be described later, satisfies the high-strength form standard, In addition, it was found that a moisture-curing urethane composition having excellent storage stability was obtained, and in other embodiments, it was very difficult to satisfy the high strength form standard.
 前記鎖伸長剤(a-2)としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、1,5-ヘキサンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、2-ブチル-2-エチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、グリセリン、トリメチロ-ルプロパン、ジトリメチロールプロパン、トリメチロールプロパン、ペンタエリスリトール等の脂肪族ポリオール;1,4-シクロヘキサンジメタノール、水添ビスフェノールA等の脂環式ポリオール;ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物、ビスフェノールS、ビスフェノールSのアルキレンオキサイド付加物等の芳香族ポリオールなどを用いることができる。これらの鎖伸長剤は単独で用いても2種以上を併用してもよい。これらの中でも、高強度性及び貯蔵安定性をより一層向上できる点から、ジプロピレングリコール及び/又はプロピレングリコールを用いることが好ましい。 Examples of the chain extender (a-2) include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, , 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,5-hexanediol, 1,6-hexanediol, 2, 5-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 2-methyl -1,3-propanediol, neopentyl glycol, 2-buty -2-ethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, glycerin, trimethylolpropane Aliphatic polyols such as ditrimethylolpropane, trimethylolpropane and pentaerythritol; alicyclic polyols such as 1,4-cyclohexanedimethanol and hydrogenated bisphenol A; bisphenol A, alkylene oxide adducts of bisphenol A, bisphenol S, An aromatic polyol such as an alkylene oxide adduct of bisphenol S can be used. These chain extenders may be used alone or in combination of two or more. Among these, it is preferable to use dipropylene glycol and / or propylene glycol from the viewpoint that the high strength property and the storage stability can be further improved.
 前記鎖伸長剤(a-2)の数平均分子量は、機械的強度の点から、50~450の範囲であることが好ましい。なお、前記鎖伸長剤(a-2)の数平均分子量は、前記ポリテトラメチレングリコール(a-1)の数平均分子量と同様に測定して得られた値を示す。 The number average molecular weight of the chain extender (a-2) is preferably in the range of 50 to 450 from the viewpoint of mechanical strength. The number average molecular weight of the chain extender (a-2) is a value obtained by measurement in the same manner as the number average molecular weight of the polytetramethylene glycol (a-1).
 前記ポリイソシアネート(a-3)としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、カルボジイミド化ジフェニルメタンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、ナフタレンジイソシアネート、フェニレンジイソシアネート、キシリレンジイソシアネート等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート、シクロヘキサンジイソシアネート等の脂肪族又は脂環式ポリイソシアネートなどを用いることができる。これらのポリイソシアネートは単独で用いても2種以上を併用してもよい。これらの中でも、高強度性及び貯蔵安定性をより一層向上できる点から、トリレンジイソシアネート、イソホロンジイソシアネート及びジフェニルメタンジイソシアネートからなる群より選ばれる1種以上のポリイソシアネートを用いることがより好ましい。 Examples of the polyisocyanate (a-3) include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, carbodiimidized diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, naphthalene diisocyanate, phenylene diisocyanate, and xylylene diisocyanate; Aliphatic or alicyclic polyisocyanates such as diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and cyclohexane diisocyanate can be used. These polyisocyanates may be used alone or in combination of two or more. Among these, it is more preferable to use one or more polyisocyanates selected from the group consisting of tolylene diisocyanate, isophorone diisocyanate, and diphenylmethane diisocyanate from the viewpoint that the high strength and storage stability can be further improved.
 前記ウレタンプレポリマー(A)の製造方法としては、前記ポリオール(a-1)及び前記鎖伸長剤(a-2)が有する水酸基と前記ポリイソシアネート(a-3)が有するイソシアネート基とのモル比(NCO/OH)が、好ましくは1.1~2の範囲、より好ましくは1.2~1.5の範囲で、前記ポリオール(a-1)、前記伸長剤(a-2)及び前記ポリイソシアネート(a-3)を反応させる方法を使用することが高強度性及び貯蔵安定性をより一層向上できる点から好ましい。 As a method for producing the urethane prepolymer (A), the molar ratio between the hydroxyl groups of the polyol (a-1) and the chain extender (a-2) and the isocyanate groups of the polyisocyanate (a-3) is as follows. (NCO / OH) is preferably in the range of 1.1 to 2, more preferably in the range of 1.2 to 1.5, and the polyol (a-1), the extender (a-2), and the poly It is preferable to use a method of reacting isocyanate (a-3) from the viewpoint that the high strength and storage stability can be further improved.
 前記ウレタンプレポリマー(A)はイソシアネート基を有するものであり、そのイソシアネート基含有率(以下、「NCO%」と略記する。)としては、高強度性及び貯蔵安定性をより一層向上できる点から、2~5質量%の範囲であることが好ましく、2.5~3.5質量%の範囲がより好ましい。なお、高強度性を向上する手法としては、ウレタンプレポリマーのイソシアネート基含有率を高める手法が一般的であるが、イソシアネート基は自身の高活性により後述するウレタン化合物(B)の有するオキサゾリジン基を開環させる作用が強く、使用前に組成物系中で反応が進行してしまい貯蔵安定性が悪化する傾向があることが分かった。 The urethane prepolymer (A) has an isocyanate group, and as its isocyanate group content (hereinafter abbreviated as “NCO%”), high strength and storage stability can be further improved. The range is preferably 2 to 5% by mass, and more preferably 2.5 to 3.5% by mass. In addition, as a technique for improving the high strength, a technique for increasing the isocyanate group content of the urethane prepolymer is generally used, but the isocyanate group has an oxazolidine group possessed by the urethane compound (B) described later due to its high activity. It has been found that the ring-opening action is strong, and the reaction proceeds in the composition system before use, and the storage stability tends to deteriorate.
 前記ウレタンプレポリマー(A)の重量平均分子量としては、硬化速度、接着性、高強度性及び貯蔵安定性をより一層向上できる点から、1,000~20,000の範囲であることが好ましく、4,000~8,000の範囲がより好ましい。なお、前記ウレタンプレポリマー(A)の重量平均分子量は、前記ポリテトラメチレングリコール(a-1)の数平均分子量と同様に測定して得られた値を示す。 The weight average molecular weight of the urethane prepolymer (A) is preferably in the range of 1,000 to 20,000 from the viewpoint of further improving the curing rate, adhesiveness, high strength and storage stability. A range of 4,000 to 8,000 is more preferable. The weight average molecular weight of the urethane prepolymer (A) is a value obtained by measurement in the same manner as the number average molecular weight of the polytetramethylene glycol (a-1).
 前記オキサゾリジン基を有するウレタン化合物(B)の原料として用いる前記ポリオール(b-1)としては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリアクリルポリオール、ダイマージオール、ポリブタジエンポリオール等を用いることができる。これらのポリオールは単独で用いても2種以上を併用してもよい。これらの中でも、作業性及び柔軟性をより一層向上できる点から、ポリエーテルポリオールを用いることが好ましい。 Examples of the polyol (b-1) used as a raw material for the urethane compound (B) having the oxazolidine group include polyether polyol, polyester polyol, polycarbonate polyol, polyacryl polyol, dimer diol, polybutadiene polyol, and the like. it can. These polyols may be used alone or in combination of two or more. Among these, it is preferable to use a polyether polyol from the viewpoint that workability and flexibility can be further improved.
 前期ポリエーテルポリオールとしては、例えば、ポリオキシエチレンポリオール、ポリオキシプロピレンポリオール、ポリオキシテトラメチレンポリオール、ポリオキシエチレンポリオキシプロピレンポリオール、ポリオキシエチレンポリオキシテトラメチレンポリオール、ポリオキシプロピレンポリオキシテトラメチレンポリオール等を用いることができる。これらのポリエーテルポリオールは単独で用いても2種以上を併用してもよい。 Examples of the first polyether polyol include polyoxyethylene polyol, polyoxypropylene polyol, polyoxytetramethylene polyol, polyoxyethylene polyoxypropylene polyol, polyoxyethylene polyoxytetramethylene polyol, and polyoxypropylene polyoxytetramethylene polyol. Etc. can be used. These polyether polyols may be used alone or in combination of two or more.
 前記ポリオール(b-1)の数平均分子量としては、作業性及び柔軟性をより一層向上できる点から、500~5,000の範囲が好ましく、800~3,000の範囲がより好ましい。なお、前記ポリオール(b-1)の数平均分子量は、前記ポリテトラメチレングリコール(a-1)の数平均分子量と同様に測定して得られた値を示す。 The number average molecular weight of the polyol (b-1) is preferably in the range of 500 to 5,000, more preferably in the range of 800 to 3,000, from the viewpoint that workability and flexibility can be further improved. The number average molecular weight of the polyol (b-1) is a value obtained by measurement in the same manner as the number average molecular weight of the polytetramethylene glycol (a-1).
 前記オキサゾリジン基を有するウレタン化合物(B)の原料として用いる前記ポリイソシアネート(b-2)としては、前記ポリイソシアネート(a-2)と同様のものを用いることができる。 As the polyisocyanate (b-2) used as a raw material for the urethane compound (B) having the oxazolidine group, the same polyisocyanate (a-2) can be used.
 前記N-2-ヒドロキシアルキルオキサゾリジン(b-3)としては、例えば、アルデヒド化合物とジヒドロキシアルキルアミン化合物とを反応させて得られたものを用いることができる。 As the N-2-hydroxyalkyloxazolidine (b-3), for example, one obtained by reacting an aldehyde compound with a dihydroxyalkylamine compound can be used.
 前記アルデヒド化合物としては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、ベンズアルデヒド等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 As the aldehyde compound, for example, formaldehyde, acetaldehyde, propyl aldehyde, butyraldehyde, benzaldehyde or the like can be used. These compounds may be used alone or in combination of two or more.
 前記ジヒドロキシアルキルアミン化合物としては、例えば、ジエタノールアミン、ジプロパノールアミン等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 As the dihydroxyalkylamine compound, for example, diethanolamine, dipropanolamine and the like can be used. These compounds may be used alone or in combination of two or more.
 前記ウレタン化合物(B)は、前記ポリオール(b-1)、前記ポリイソシアネート(b-2)及び前記N-2-ヒドロキシアルキルオキサゾリジン(b-3)を公知の方法で反応させたものであり、そのオキサゾリジン基の数としては、低温時及び高温時の引張性能並びに作業性の点から、1~4の範囲であることが好ましく、1~3の範囲がより好ましい。 The urethane compound (B) is obtained by reacting the polyol (b-1), the polyisocyanate (b-2) and the N-2-hydroxyalkyloxazolidine (b-3) by a known method, The number of oxazolidine groups is preferably in the range of 1 to 4, and more preferably in the range of 1 to 3, from the viewpoints of tensile performance at low and high temperatures and workability.
 前記ウレタン化合物(B)の数平均分子量としては、基材への接着性及び硬化速度をより一層向上できる点から、500~15,000の範囲であることが好ましい。なお、前記ウレタン化合物(B)の数平均分子量は、前記ポリテトラメチレングリコール(a-1)と同様に測定した値を示す。 The number average molecular weight of the urethane compound (B) is preferably in the range of 500 to 15,000 from the viewpoint of further improving the adhesion to the substrate and the curing rate. The number average molecular weight of the urethane compound (B) is a value measured in the same manner as the polytetramethylene glycol (a-1).
 前記ウレタン化合物(B)の使用量としては、低温時及び高温時での引張性能、硬化速度、基材への接着性、高強度性並びに貯蔵安定性をより一層向上できる点から、前記ウレタンプレポリマー(A)100質量部に対して、10~100質量部の範囲であることが好ましく、30~50質量部の範囲がより好ましい。 The urethane compound (B) is used in an amount that can further improve the tensile performance at low temperatures and high temperatures, the curing rate, the adhesion to the substrate, the high strength, and the storage stability. The range is preferably 10 to 100 parts by mass, more preferably 30 to 50 parts by mass with respect to 100 parts by mass of the polymer (A).
 前記酸触媒(C)は、前記ウレタン化合物(B)が有するオキサゾリジン基の解離を促進するものであり、例えば、硫酸、塩酸、燐酸、炭酸、アルキルベンゼンスルホン酸、安息香酸、サリチル酸、蟻酸、酢酸、マレイン酸、フマル酸等の有機酸又は無機酸;それらの塩などを用いることができる。これらの酸触媒は単独で用いても2種以上を併用してもよい。これらの中でも、硬化性がより一層向上する点から、燐酸、サリチル酸及び燐酸塩からなる群より選ばれる1種以上の酸触媒を用いることが好ましい。 The acid catalyst (C) promotes dissociation of the oxazolidine group of the urethane compound (B). For example, sulfuric acid, hydrochloric acid, phosphoric acid, carbonic acid, alkylbenzenesulfonic acid, benzoic acid, salicylic acid, formic acid, acetic acid, Organic acids or inorganic acids such as maleic acid and fumaric acid; salts thereof and the like can be used. These acid catalysts may be used alone or in combination of two or more. Among these, it is preferable to use one or more acid catalysts selected from the group consisting of phosphoric acid, salicylic acid and phosphate from the viewpoint of further improving the curability.
 前記酸触媒(C)の使用量としては、硬化性の点から、前記ウレタン化合物(B)100質量部に対して、0.01~1質量部の範囲であることが好ましい。 The amount of the acid catalyst (C) used is preferably in the range of 0.01 to 1 part by mass with respect to 100 parts by mass of the urethane compound (B) from the viewpoint of curability.
 本発明の湿気硬化型ウレタン組成物は、前記ウレタンプレポリマー(A)、前記ウレタン化合物(B)、及び、前記酸触媒(C)を必須成分として含有するものであるが、必要に応じてその他の添加剤を含有してもよい。 The moisture curable urethane composition of the present invention contains the urethane prepolymer (A), the urethane compound (B), and the acid catalyst (C) as essential components. The additive may be contained.
 前記その他の添加剤としては、例えば、有機溶剤、可塑剤、充填剤、顔料、チキソ性付与剤、プロセスオイル、紫外線防止剤、補強材、骨材、硬化促進剤、難燃剤等を用いることができる。これらの添加剤は単独で用いても2種以上を併用してもよい。 Examples of the other additives include organic solvents, plasticizers, fillers, pigments, thixotropic agents, process oils, UV inhibitors, reinforcing materials, aggregates, curing accelerators, flame retardants, and the like. it can. These additives may be used alone or in combination of two or more.
 前記有機溶剤としては、例えば、キシレン、トルエン、メチルエチルケトン、酢酸エチル、メチルイソブチルケトン等を用いることができる。これらの有機溶剤は単独で用いても2種以上を併用してもよい。前記有機溶剤を用いる場合の使用量としては、湿気硬化型ウレタン組成物中0.5~10質量%の範囲であることが好ましい。 As the organic solvent, for example, xylene, toluene, methyl ethyl ketone, ethyl acetate, methyl isobutyl ketone and the like can be used. These organic solvents may be used alone or in combination of two or more. The amount of the organic solvent used is preferably in the range of 0.5 to 10% by mass in the moisture curable urethane composition.
 前記可塑剤としては、例えば、2-エチルヘキシルフタレート、ジブチルフタレート、ジオクチルフタレート、ジウンデシルフタレート、ジラウリルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジブチルアジペート、ジオクチルアジペート、ジイソノニルアジペート、ジイソノニルアジペート、ジオクチルアゼレート、ジオクチルセバケート、トリオクチルホスフェート、トリフェニルホスフェート等を用いることができる。これらの可塑剤は単独で用いても2種以上を併用してもよい。前記可塑剤を用いる場合の使用量としては、湿気硬化型ウレタン組成物中1~10質量%の範囲であることが好ましい。 Examples of the plasticizer include 2-ethylhexyl phthalate, dibutyl phthalate, dioctyl phthalate, diundecyl phthalate, dilauryl phthalate, butyl benzyl phthalate, diisodecyl phthalate, dibutyl adipate, dioctyl adipate, diisononyl adipate, diisononyl adipate, dioctyl azelate, Dioctyl sebacate, trioctyl phosphate, triphenyl phosphate and the like can be used. These plasticizers may be used alone or in combination of two or more. When the plasticizer is used, the amount used is preferably in the range of 1 to 10% by mass in the moisture curable urethane composition.
 前記充填剤としては、例えば、炭酸カルシウム、酸化カルシウム、クレー、タルク、酸化チタン、硫酸アルミニウム、カオリン、硅そう土、ガラスバルーン等を用いることができる。これらの充填剤は単独で用いても2種以上を併用してもよい。前記充填剤を用いる場合の使用量としては、湿気硬化型ウレタン組成物中1~40質量%の範囲であることが好ましい。 As the filler, for example, calcium carbonate, calcium oxide, clay, talc, titanium oxide, aluminum sulfate, kaolin, clay, glass balloon and the like can be used. These fillers may be used alone or in combination of two or more. When the filler is used, the amount used is preferably in the range of 1 to 40% by mass in the moisture-curable urethane composition.
 本発明の湿気硬化型ウレタン組成物は貯蔵安定性に優れ、鏝塗り等によっても簡便に塗膜を作製でき、大型機械によらなくても施工が可能なものである。また、本発明の湿気硬化型ウレタン組成物を湿気硬化させて得られる硬化物は、高強度形規格を満たすものであるため、高強度性に極めて優れるものであり、また低温時及び高温時でも優れた引張物性を有し、収縮率も少ないものである。従って、本発明の湿気硬化型ウレタン組成物は、土木建築関連の被覆材として好適に使用することができ、防水材として特に好適に使用することができる。 The moisture-curable urethane composition of the present invention is excellent in storage stability, can easily produce a coating film by glazing or the like, and can be applied without using a large machine. In addition, the cured product obtained by moisture-curing the moisture-curable urethane composition of the present invention satisfies the high-strength form standard, and thus is extremely excellent in high strength, and also at low and high temperatures. It has excellent tensile properties and low shrinkage. Therefore, the moisture-curable urethane composition of the present invention can be suitably used as a civil engineering-related coating material, and can be particularly suitably used as a waterproof material.
 本発明の湿気硬化型ウレタン組成物を土木建築関連の被覆材として用いる場合に塗布する基材(下地材)としては、コンクリート、アスファルト、モルタル等の無機質基材;金属、木材、布帛、プラスチックなどを用いることができる。また、塗布する際の厚さは、用途に応じて適宜決定されるが、例えば、0.1~10mmの範囲である。 As a base material (underlying material) to be applied when the moisture-curable urethane composition of the present invention is used as a civil engineering and building-related coating material, an inorganic base material such as concrete, asphalt or mortar; metal, wood, fabric, plastic, etc. Can be used. In addition, the thickness at the time of application is appropriately determined according to the application, but is in the range of 0.1 to 10 mm, for example.
 前記湿気硬化型ウレタン組成物は、湿気により硬化し硬化物を得る。前記湿気硬化させる方法としては、例えば、25℃、湿度50%の条件下で5~10日間養生させる方法が挙げられる。 The moisture curable urethane composition is cured by moisture to obtain a cured product. Examples of the moisture curing method include a method of curing for 5 to 10 days under conditions of 25 ° C. and 50% humidity.
 前記方法により得られる硬化物は、高強度形規格を満たすものであり、すなわち試験時温度23℃における引張り強さが10N/mm以上であり、かつ温度23℃における破断時の伸び率が200%以上である。また、前記方法により得られる硬化物は、JISA6021:2011に準拠して測定した破断時のつかみ間伸び率(試験時温度23℃)が、300%以上であることが好ましい。 The cured product obtained by the above method satisfies the high strength form standard, that is, the tensile strength at a test temperature of 23 ° C. is 10 N / mm 2 or more, and the elongation at break at a temperature of 23 ° C. is 200. % Or more. Moreover, it is preferable that the hardened | cured material obtained by the said method is 300% or more of the elongation rate between grips (temperature at the time of a test of 23 degreeC) at the time of a fracture | rupture measured based on JISA6021: 2011.
 以下、実施例を用いて、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
[合成例1]ウレタンプレポリマー(A-1)の合成
 ポリテトラメチレングリコール(数平均分子量;1,000、以下、「PTMG1000」と略記する。)1,000質量部、ジプロピレングリコール(以下、「DPG」と略記する。)を297質量部を混合し、そこへトリレンジイソシアネート(以下、「TDI」と略記する。)を661質量部加え、窒素気流下、90℃で8時間反応させ、NCO%;2.5質量%、重量平均分子量;6,080のウレタンプレポリマー(A-1)を得た。
[Synthesis Example 1] Synthesis of Urethane Prepolymer (A-1) Polytetramethylene glycol (number average molecular weight; 1,000, hereinafter abbreviated as “PTMG1000”) 1,000 parts by mass, dipropylene glycol (hereinafter, referred to as “PTMG1000”) 297 parts by mass of “DPG”) is mixed, 661 parts by mass of tolylene diisocyanate (hereinafter abbreviated as “TDI”) is added thereto, and the mixture is reacted at 90 ° C. for 8 hours under a nitrogen stream. A urethane prepolymer (A-1) having an NCO% of 2.5% by mass and a weight average molecular weight of 6,080 was obtained.
[合成例2]ウレタンプレポリマー(A-2)の合成
 PTMG1000を1,000質量部、DPGを201質量部を混合し、そこへTDIを557質量部加え、窒素気流下、90℃で8時間反応させ、NCO%;3.4質量%、重量平均分子量;5,200のウレタンプレポリマー(A-2)を得た。
[Synthesis Example 2] Synthesis of urethane prepolymer (A-2) 1,000 parts by mass of PTMG1000 and 201 parts by mass of DPG were mixed, 557 parts by mass of TDI was added thereto, and the mixture was added at 90 ° C. for 8 hours under a nitrogen stream. The reaction was performed to obtain a urethane prepolymer (A-2) having an NCO% of 3.4% by mass and a weight average molecular weight of 5,200.
[合成例3]ウレタンプレポリマー(A-3)の合成
 ポリテトラメチレングリコール(数平均分子量;2,000、以下、「PTMG2000」と略記する。)2,000質量部、DPGを282質量部を混合し、そこへTDIを685質量部加え、窒素気流下、90℃で8時間反応させ、NCO%;2.4質量%、重量平均分子量;8,190のウレタンプレポリマー(A-3)を得た。
[Synthesis Example 3] Synthesis of Urethane Prepolymer (A-3) Polytetramethylene glycol (number average molecular weight: 2,000, hereinafter abbreviated as “PTMG2000”) 2,000 parts by mass, DPG 282 parts by mass 685 parts by mass of TDI was added thereto, and the mixture was reacted at 90 ° C. for 8 hours under a nitrogen stream. A urethane prepolymer (A-3) having an NCO% of 2.4 mass% and a weight average molecular weight of 8,190 was obtained. Obtained.
[合成例4]ウレタンプレポリマー(A-4)の合成
 PTMG1000を1,000質量部、プロピレングリコール(以下、「PG」と略記する。)を114質量部を混合し、そこへTDIを557質量部加え、窒素気流下、90℃で8時間反応させ、NCO%;3.5質量%、重量平均分子量;4,155のウレタンプレポリマー(A-4)を得た。
[Synthesis Example 4] Synthesis of Urethane Prepolymer (A-4) 1,000 parts by mass of PTMG1000 and 114 parts by mass of propylene glycol (hereinafter abbreviated as “PG”) were mixed, and 557 parts by mass of TDI was mixed there. A urethane prepolymer (A-4) having an NCO% of 3.5% by mass and a weight average molecular weight of 4,155 was obtained under a nitrogen stream at 8O 0 C for 8 hours.
[合成例5]ウレタンプレポリマー(A-5)の合成
 ポリプロピレングリコール(数平均分子量;3,000、以下、「PPG3000」と略記する。)640質量部、ポリオキシプロピレングリセリルエーテル(日油株式会社製「ユニオールTG-3000」、以下、「TG-3000」と略記する。)60質量部を混合し、そこへTDIを88質量部加え、窒素気流下、90℃で8時間反応させ、NCO%;3.1質量%、重量平均分子量;5,120のウレタンプレポリマー(A-5)を得た。
[Synthesis Example 5] Synthesis of Urethane Prepolymer (A-5) Polypropylene glycol (number average molecular weight: 3,000, hereinafter abbreviated as “PPG3000”) 640 parts by mass, polyoxypropylene glyceryl ether (NOF CORPORATION) “Uniol TG-3000” (hereinafter abbreviated as “TG-3000”) 60 parts by mass were mixed, 88 parts by mass of TDI was added thereto, and the mixture was reacted at 90 ° C. for 8 hours under a nitrogen stream. A urethane prepolymer (A-5) having 3.1% by mass and a weight average molecular weight of 5,120 was obtained.
[合成例6]ウレタンプレポリマー(A-6)の合成
 ポリプロピレングリコール(数平均分子量;1,000、以下、「PPG1000」と略記する。)1,000質量部を容器に入れ、そこへTDIを392質量部加え、窒素気流下、90℃で8時間反応させ、NCO%;7.6質量%のウレタンプレポリマー(A-6)を得た。
[Synthesis Example 6] Synthesis of Urethane Prepolymer (A-6) Polypropylene glycol (number average molecular weight; 1,000, hereinafter abbreviated as “PPG1000”) 1,000 parts by mass are put in a container, and TDI is added thereto. 392 parts by mass was added and reacted at 90 ° C. for 8 hours under a nitrogen stream to obtain a urethane prepolymer (A-6) having an NCO%; 7.6% by mass.
[合成例7]ウレタンプレポリマー(A-7)の合成
 PTMG1000を1,000質量部を容器に入れ、そこへTDIを296質量部加え、窒素気流下、90℃で8時間反応させ、NCO%;4.5質量%、重量平均分子量;3,890のウレタンプレポリマー(A-7)を得た。
[Synthesis Example 7] Synthesis of urethane prepolymer (A-7) 1,000 parts by mass of PTMG1000 was put in a container, 296 parts by mass of TDI was added thereto, and the mixture was reacted at 90 ° C. for 8 hours under a nitrogen stream. A urethane prepolymer (A-7) of 4.5% by mass and a weight average molecular weight of 3,890 was obtained.
[合成例8]ウレタンプレポリマー(A-8)の合成
 PTMG1000を1,000質量部を容器に入れ、そこへTDIを392質量部加え、窒素気流下、90℃で8時間反応させ、NCO%;7.2質量%、重量平均分子量;2,120のウレタンプレポリマー(A-8)を得た。
[Synthesis Example 8] Synthesis of Urethane Prepolymer (A-8) 1,000 parts by mass of PTMG1000 was put in a container, 392 parts by mass of TDI was added thereto, and reacted at 90 ° C. for 8 hours under a nitrogen stream. A urethane prepolymer (A-8) of 7.2% by mass and a weight average molecular weight of 2,120 was obtained.
[合成例9]ウレタンプレポリマー(A-9)の合成
 PPG1000を1,000質量部、DPGを167質量部を混合し、そこへTDIを664質量部加え、窒素気流下、90℃で8時間反応させ、NCO%;7.2質量%、重量平均分子量;2,685のウレタンプレポリマー(A-9)を得た。
[Synthesis Example 9] Synthesis of urethane prepolymer (A-9) 1,000 parts by mass of PPG1000 and 167 parts by mass of DPG were mixed, and 664 parts by mass of TDI was added thereto, and the mixture was added at 90 ° C. for 8 hours under a nitrogen stream. The reaction was performed to obtain a urethane prepolymer (A-9) having an NCO% of 7.2 mass% and a weight average molecular weight of 2,685.
[合成例10]ウレタンプレポリマー(A-10)の合成
 セバシン酸とビスフェノールAのエチレンオキサイド6モル付加物とを反応させて得られたポリエステルポリオール(数平均分子量;1,250、以下、「PEs-1」と略記する。)1,250質量部を容器に入れ、そこへTDIを331質量部加え、窒素気流下、90℃で8時間反応させ、NCO%;4.8質量%、重量平均分子量;3,505のウレタンプレポリマー(A-10)を得た。
[Synthesis Example 10] Synthesis of Urethane Prepolymer (A-10) Polyester polyol obtained by reacting sebacic acid with 6-mol adduct of bisphenol A with ethylene oxide (number average molecular weight; 1,250, hereinafter referred to as “PEs -1 ")) Put 1,250 parts by mass in a container, add 331 parts by mass of TDI, react under nitrogen flow at 90 ° C. for 8 hours, NCO%; 4.8% by mass, weight average A urethane prepolymer (A-10) having a molecular weight of 3,505 was obtained.
[合成例11]ウレタンプレポリマー(A-11)の合成
 ダイマー酸と2-メチルペンタンジオールとを反応させて得られたポリエステルポリオール(数平均分子量;2,000、以下、「PEs-2」と略記する。)2,000質量部を容器に入れ、そこへTDIを383質量部加え、窒素気流下、90℃で8時間反応させ、NCO%;4.2質量%、重量平均分子量;4,170のウレタンプレポリマー(A-11)を得た。
Synthesis Example 11 Synthesis of Urethane Prepolymer (A-11) Polyester polyol obtained by reacting dimer acid with 2-methylpentanediol (number average molecular weight; 2,000, hereinafter referred to as “PEs-2”) Abbreviated.) Put 2,000 parts by mass in a container, add 383 parts by mass of TDI, and react under nitrogen flow at 90 ° C. for 8 hours, NCO%; 4.2% by mass, weight average molecular weight; 170 urethane prepolymers (A-11) were obtained.
[合成例12]ウレタンプレポリマー(A-12)の合成
 PEs-1を1,250質量部、DPGを297質量部入れ混合し、そこへTDIを661質量部加え、窒素気流下、90℃で8時間反応させ、NCO%;2.2質量%、重量平均分子量;6,830のウレタンプレポリマー(A-12)を得た。
[Synthesis Example 12] Synthesis of urethane prepolymer (A-12) 1,250 parts by mass of PEs-1 and 297 parts by mass of DPG were mixed and mixed with 661 parts by mass of TDI. The reaction was performed for 8 hours to obtain a urethane prepolymer (A-12) having NCO%; 2.2% by mass and a weight average molecular weight of 6,830.
[合成例13]ウレタン化合物(B-1)の合成
 ポリオキシエチレンポリオキシプロピレングリコール(数平均分子量;1,000、オキシエチレン構造の含有量;20質量%、以下、「EOPO」と略記する。)を100質量部、TDIを80質量部を反応させ、NCO%;16.8質量%のウレタンプレポリマーを得た。次いで、キシレンを40質量部加えて撹拌しながら、N-2-イソプロピル-3-(2-ヒドロキシエチル)-1,3-オキサゾリジン(以下、「OXZ-1」と略記する。)を114.5質量部を発熱を抑えながらゆっくり滴下した。発熱が収まったのを確認した後、70℃にて8時間撹拌させ、オキサゾリジン基を有するウレタン化合物(B-1)を得た。
[Synthesis Example 13] Synthesis of Urethane Compound (B-1) Polyoxyethylene polyoxypropylene glycol (number average molecular weight; 1,000, content of oxyethylene structure; 20 mass%, hereinafter abbreviated as “EOPO”). ) And 80 parts by mass of TDI were reacted to obtain a urethane prepolymer of NCO%; 16.8% by mass. Next, while adding 40 parts by mass of xylene and stirring, 114.5 of N-2-isopropyl-3- (2-hydroxyethyl) -1,3-oxazolidine (hereinafter abbreviated as “OXZ-1”) is 114.5. The mass part was slowly dropped while suppressing heat generation. After confirming that the exotherm had subsided, the mixture was stirred at 70 ° C. for 8 hours to obtain a urethane compound (B-1) having an oxazolidine group.
[実施例1~4、比較例1~8]
 密閉した混合容器内で所定量のウレタンプレポリマー(A)とウレタン化合物(B)、更に予め乾燥した炭酸カルシウム(日東粉化製「NS-200」)400質量部、2-エチルヘキシルフタレート50質量部、キシレン50質量部、及び、サリチル酸0.4質量部を均一に混合して湿気硬化型ウレタン組成物を得た。配合表及び試験結果を表1~2に示す。
[Examples 1 to 4, Comparative Examples 1 to 8]
A predetermined amount of urethane prepolymer (A) and urethane compound (B) in a sealed mixing container, 400 parts by weight of calcium carbonate (“NS-200” manufactured by Nitto Flour Chemical Co., Ltd.) dried in advance, and 50 parts by weight of 2-ethylhexyl phthalate Then, 50 parts by mass of xylene and 0.4 parts by mass of salicylic acid were uniformly mixed to obtain a moisture curable urethane composition. The recipes and test results are shown in Tables 1-2.
[貯蔵安定性の評価方法]
 500g角缶に実施例及び比較例で得られた湿気硬化型ウレタン組成物を400g入れた後に、窒素を封入して密栓した状態で50℃にて1週間放置した。放置前後の粘度を測定し、粘度変化が2倍以下であるものを「T」、2倍を超えるものを「F」と評価した。
[Method for evaluating storage stability]
400 g of the moisture-curable urethane composition obtained in Examples and Comparative Examples was placed in a 500 g square can, and then left at 50 ° C. for 1 week in a state of being sealed with nitrogen and sealed. The viscosities before and after being allowed to stand were measured, and those having a viscosity change of 2 times or less were evaluated as “T”, and those exceeding 2 times were evaluated as “F”.
[引張性能試験方法]
 JISA6021:2011「6.6.1 23℃における引張性能試験」に準拠して引張試験を行い、引張強さ(N/mm)、破断時の伸び率(%)及び破断時のつかみ間の伸び率(%)を測定した。なお、引張強さが10N/mm以上であり、かつ破断時の伸び率が200%以上であるものは「T」、それ以外のものは「F」と評価した。
[Tensile performance test method]
JIS A6021: 2011 “6.6.1 Tensile performance test at 23 ° C.” is used to conduct a tensile test. Tensile strength (N / mm 2 ), elongation at break (%), and between grips at break The elongation (%) was measured. A sample having a tensile strength of 10 N / mm 2 or more and an elongation at break of 200% or more was evaluated as “T”, and other samples were evaluated as “F”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の湿気硬化型ウレタン組成物である実施例1~4は、高強度形規格の基準を満たし、かつ、貯蔵安定性にも優れることが分かった。 It was found that Examples 1 to 4 which are the moisture curable urethane composition of the present invention satisfy the standard of the high strength type standard and are excellent in storage stability.
 一方、比較例1及び2は、鎖伸長剤(a-2)を用いず、ポリテトラメチレングリコール(a-1)の代わりに、ポリプロピレングリコールをポリオールの主成分として用いた態様であるが、いずれも高強度形規格の基準を満たすことができず、NCO%の高い比較例2は貯蔵安定性も不良であった。 On the other hand, Comparative Examples 1 and 2 are embodiments in which polypropylene chain is used as the main component of the polyol instead of polytetramethylene glycol (a-1) without using the chain extender (a-2). However, Comparative Example 2 having a high NCO% also had poor storage stability.
 比較例3及び4は、鎖伸長剤(a-2)を用いない態様であるが、いずれも高強度形規格の基準を満たすことができず、NCO%の高い比較例4は貯蔵安定性も不良であった。 Comparative Examples 3 and 4 are embodiments in which the chain extender (a-2) is not used, but none of them can satisfy the standard of the high strength type standard, and Comparative Example 4 having a high NCO% also has storage stability. It was bad.
 比較例5は、ポリテトラメチレングリコール(a-1)の代わりに、ポリプロピレングリコールを用いた態様であるが、高強度形規格の基準を満たすことができなかった。 Comparative Example 5 is an embodiment in which polypropylene glycol was used instead of polytetramethylene glycol (a-1), but the standard of the high strength form standard could not be satisfied.
 比較例6及び7は、鎖伸長剤(a-2)を用いず、ポリテトラメチレングリコール(a-1)の代わりに、ポリエステルポリオールを用いた態様であるが、いずれも高強度形規格の基準を満たすことができなかった。 In Comparative Examples 6 and 7, the chain extender (a-2) was not used and a polyester polyol was used instead of the polytetramethylene glycol (a-1). Could not meet.
 比較例8は、ポリテトラメチレングリコール(a-1)の代わりに、ポリエステルポリオールを用いた態様であるが、高強度形規格の基準を満たすことができなかった。 Comparative Example 8 is an embodiment in which polyester polyol is used instead of polytetramethylene glycol (a-1), but the standard of the high strength form standard could not be satisfied.

Claims (7)

  1. ポリテトラメチレングリコール(a-1)と鎖伸長剤(a-2)とポリイソシアネート(a-3)とを反応させて得られるイソシアネート基を有するウレタンプレポリマー(A)、ポリオール(b-1)とポリイソシアネート(b-2)とN-2-ヒドロキシアルキルオキサゾリジン(b-3)とを反応させて得られるオキサゾリジン基を有するウレタン化合物(B)、及び、酸触媒(C)を含有することを特徴とする湿気硬化型ウレタン組成物。 Urethane prepolymer (A) having an isocyanate group obtained by reacting polytetramethylene glycol (a-1), chain extender (a-2) and polyisocyanate (a-3), polyol (b-1) A urethane compound (B) having an oxazolidine group obtained by reacting polyisocyanate (b-2) with N-2-hydroxyalkyloxazolidine (b-3), and an acid catalyst (C). A moisture-curable urethane composition.
  2. 前記ウレタンプレポリマー(A)のイソシアネート基含有率が、2~5質量%の範囲である請求項1記載の湿気硬化型ウレタン組成物。 The moisture-curable urethane composition according to claim 1, wherein the urethane prepolymer (A) has an isocyanate group content of 2 to 5% by mass.
  3. 前記ウレタンプレポリマー(A)の重量平均分子量が、1,000~20,000の範囲である請求項1記載の湿気硬化型ウレタン組成物。 The moisture-curable urethane composition according to claim 1, wherein the urethane prepolymer (A) has a weight average molecular weight in the range of 1,000 to 20,000.
  4. 前記鎖伸長剤(a-2)が、ジプロピレングリコール及び/又はプロピレングリコールである請求項1記載の湿気硬化型ウレタン組成物。 The moisture-curable urethane composition according to claim 1, wherein the chain extender (a-2) is dipropylene glycol and / or propylene glycol.
  5. 前記ポリイソシアネート(a-3)が、トリレンジイソシアネート、イソホロンジイソシアネート及びジフェニルメタンジイソシアネートからなる群より選ばれる1種以上である請求項1記載の湿気硬化型ウレタン組成物。 The moisture-curable urethane composition according to claim 1, wherein the polyisocyanate (a-3) is at least one selected from the group consisting of tolylene diisocyanate, isophorone diisocyanate and diphenylmethane diisocyanate.
  6. 硬化物のJISA6021:2011に準拠して測定した引張強さ(試験時温度23℃)が10N/mm以上であり、かつ破断時の伸び率(試験時温度23℃)が200%以上である請求項1記載の湿気硬化型ウレタン組成物。 The tensile strength (test temperature 23 ° C.) measured in accordance with JIS A6021: 2011 of the cured product is 10 N / mm 2 or more, and the elongation at break (test temperature 23 ° C.) is 200% or more. The moisture-curable urethane composition according to claim 1.
  7. 請求項1~6のいずれか1項記載の湿気硬化型ウレタン組成物を湿気硬化して得られたことを特徴とする被覆材。 A coating material obtained by moisture-curing the moisture-curable urethane composition according to any one of claims 1 to 6.
PCT/JP2015/067995 2014-09-12 2015-06-23 Moisture curable urethane composition and covering material WO2016038968A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015551651A JP5904313B1 (en) 2014-09-12 2015-06-23 Moisture-curing urethane composition and coating material
KR1020177006003A KR20170053621A (en) 2014-09-12 2015-06-23 Moisture curable urethane composition and covering material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014186411 2014-09-12
JP2014-186411 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016038968A1 true WO2016038968A1 (en) 2016-03-17

Family

ID=55458731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067995 WO2016038968A1 (en) 2014-09-12 2015-06-23 Moisture curable urethane composition and covering material

Country Status (4)

Country Link
JP (1) JP5904313B1 (en)
KR (1) KR20170053621A (en)
TW (1) TW201615681A (en)
WO (1) WO2016038968A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113516A (en) * 2014-12-12 2016-06-23 Dic株式会社 Moisture-curable urethane composition and covering material
WO2023166782A1 (en) * 2022-03-03 2023-09-07 Dic株式会社 Moisture-curable polyurethane hot melt resin composition, adhesive and industrial belt
JP7598264B2 (en) 2021-03-02 2024-12-11 三井化学株式会社 Polyurethane Elastomer
JP7641341B2 (en) 2018-09-19 2025-03-07 保土谷化学工業株式会社 Set of base agent and hardener, waterproofing material, and application method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341601A (en) * 2020-11-27 2021-02-09 苏州非特兄弟新材料科技有限公司 Water removal agent and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141777A (en) * 1984-12-14 1986-06-28 Yokohama Rubber Co Ltd:The One-pack, moisture-curing adhesive
JP2003267983A (en) * 2002-03-15 2003-09-25 Yokohama Rubber Co Ltd:The Oxazolidine compound and curable resin composition
JP2005314681A (en) * 2004-03-31 2005-11-10 Hodogaya Chem Co Ltd 1-component moisture-cure polyurethane waterproof membrane
JP2008006042A (en) * 2006-06-29 2008-01-17 Cemedine Co Ltd One-liquid moisture-curable shoe repairing agent, and method of repairing shoe
JP2008179681A (en) * 2007-01-23 2008-08-07 Toho Chem Ind Co Ltd One-part water-stop agent
JP2008540747A (en) * 2005-05-13 2008-11-20 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Aqueous emulsions of α-silyl terminated polymers that are storage stable, preparation of the emulsions and use of the emulsions
JP2013173865A (en) * 2012-02-27 2013-09-05 Dic Corp Moisture-curable urethane coating material
JP2014111789A (en) * 2014-03-07 2014-06-19 Auto Kagaku Kogyo Kk Moisture-curable composition

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176212A (en) * 1978-01-25 1979-11-27 Design Cote Corporation Radiation and moisture curable compositions and method of use
JP2881091B2 (en) * 1993-04-09 1999-04-12 第一工業製薬株式会社 One-part urethane resin composition
AU695750B2 (en) * 1995-01-13 1998-08-20 Essex Specialty Products Inc. Two-part moisture curable polyurethane adhesive
JPH09278764A (en) * 1995-12-08 1997-10-28 Ube Ind Ltd N-phenylcarbamate compound, its manufacturing method and fungicide for agricultural and horticultural use
JP3772385B2 (en) * 1996-04-16 2006-05-10 大日本インキ化学工業株式会社 Two-component curable polyurethane resin composition and method for producing the same
JPH09286837A (en) * 1996-04-23 1997-11-04 Dainippon Ink & Chem Inc Moisture cross-linking type urethane hot melt composition
JPH1036481A (en) * 1996-07-23 1998-02-10 Dainippon Ink & Chem Inc One-part moisture-curable urethane composition and adhesive
US5929190A (en) * 1997-07-31 1999-07-27 Eastman Kodak Company (2-Cyanoacetamido) reactive polyurethanes
JP2000072839A (en) * 1998-06-19 2000-03-07 Takeda Chem Ind Ltd One-pack type thixotropic polyurethane resin composition
JP3608036B2 (en) * 1999-10-08 2005-01-05 大日本インキ化学工業株式会社 Moisture curable urethane resin composition and waterproof material
JP2001181367A (en) * 1999-12-24 2001-07-03 Dainippon Ink & Chem Inc One component room temperature curing type polyurethane resin composition and adhesive
JP5433952B2 (en) * 2008-02-01 2014-03-05 オート化学工業株式会社 Curable composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141777A (en) * 1984-12-14 1986-06-28 Yokohama Rubber Co Ltd:The One-pack, moisture-curing adhesive
JP2003267983A (en) * 2002-03-15 2003-09-25 Yokohama Rubber Co Ltd:The Oxazolidine compound and curable resin composition
JP2005314681A (en) * 2004-03-31 2005-11-10 Hodogaya Chem Co Ltd 1-component moisture-cure polyurethane waterproof membrane
JP2008540747A (en) * 2005-05-13 2008-11-20 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Aqueous emulsions of α-silyl terminated polymers that are storage stable, preparation of the emulsions and use of the emulsions
JP2008006042A (en) * 2006-06-29 2008-01-17 Cemedine Co Ltd One-liquid moisture-curable shoe repairing agent, and method of repairing shoe
JP2008179681A (en) * 2007-01-23 2008-08-07 Toho Chem Ind Co Ltd One-part water-stop agent
JP2013173865A (en) * 2012-02-27 2013-09-05 Dic Corp Moisture-curable urethane coating material
JP2014111789A (en) * 2014-03-07 2014-06-19 Auto Kagaku Kogyo Kk Moisture-curable composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113516A (en) * 2014-12-12 2016-06-23 Dic株式会社 Moisture-curable urethane composition and covering material
JP7641341B2 (en) 2018-09-19 2025-03-07 保土谷化学工業株式会社 Set of base agent and hardener, waterproofing material, and application method thereof
JP7598264B2 (en) 2021-03-02 2024-12-11 三井化学株式会社 Polyurethane Elastomer
WO2023166782A1 (en) * 2022-03-03 2023-09-07 Dic株式会社 Moisture-curable polyurethane hot melt resin composition, adhesive and industrial belt
JP7453634B2 (en) 2022-03-03 2024-03-21 Dic株式会社 Moisture-curable polyurethane hot melt resin compositions, adhesives, and industrial belts

Also Published As

Publication number Publication date
TW201615681A (en) 2016-05-01
KR20170053621A (en) 2017-05-16
JPWO2016038968A1 (en) 2017-04-27
JP5904313B1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5904313B1 (en) Moisture-curing urethane composition and coating material
EP3390479B1 (en) One-part polyurethane adhesive with high green strength
RU2671849C2 (en) Repair liquid for conveyor belts
JP5758498B2 (en) MDI-based linings and membranes derived from prepolymers with very low free monomeric isocyanates
JP2020503415A (en) Two-component polyurethane adhesive
KR101427122B1 (en) Coating material for hand application
JP2008285616A (en) One-package type moisture-curable polyurethane resin-based adhesive
JP2020055921A (en) Two-liquid curable adhesive composition
JP6492608B2 (en) Moisture-curing urethane composition and coating material
JP6213954B2 (en) Fast-curing, two-component, environmentally-friendly urethane waterproof material composition
JP2015067663A (en) Two-liquid type adhesive
WO2019240046A1 (en) Two-component urethane-based adhesive composition
JP2015117299A (en) Coating composition for two-liquid type polyurethane hand coating
JP2017052908A (en) Moisture curable urethane composition and coating material
JP6575811B2 (en) Moisture curable urethane composition and coating material
JP5906804B2 (en) Moisture curable urethane coating
CN104927742A (en) Polyurethane wood structure glue and preparation method thereof
JP6168376B2 (en) Moisture-curing urethane composition and coating material
JP4747585B2 (en) Two-component room temperature curable liquid urethane composition and adhesive material containing the same
JP2006199889A (en) Two-component room temperature curable liquid urethane composition
JP7469672B2 (en) Two-component curing adhesive composition
CN112898939B (en) Primer-free fast curing polyurethane compositions with low total VOC content
JP2021116390A (en) Moisture-curable reactive hot-melt composition
JP6575810B2 (en) Moisture curable urethane composition and coating material
JP3608036B2 (en) Moisture curable urethane resin composition and waterproof material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015551651

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177006003

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839894

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载