+

WO2016035665A1 - 車両の横滑り防止制御装置 - Google Patents

車両の横滑り防止制御装置 Download PDF

Info

Publication number
WO2016035665A1
WO2016035665A1 PCT/JP2015/074183 JP2015074183W WO2016035665A1 WO 2016035665 A1 WO2016035665 A1 WO 2016035665A1 JP 2015074183 W JP2015074183 W JP 2015074183W WO 2016035665 A1 WO2016035665 A1 WO 2016035665A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
braking
control device
driving force
prevention control
Prior art date
Application number
PCT/JP2015/074183
Other languages
English (en)
French (fr)
Other versions
WO2016035665A8 (ja
Inventor
智洋 水貝
Original Assignee
Ntn株式会社
智洋 水貝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 智洋 水貝 filed Critical Ntn株式会社
Priority to EP15838207.7A priority Critical patent/EP3190000B1/en
Priority to CN201580046548.2A priority patent/CN106794777B/zh
Publication of WO2016035665A1 publication Critical patent/WO2016035665A1/ja
Priority to US15/445,086 priority patent/US10093308B2/en
Publication of WO2016035665A8 publication Critical patent/WO2016035665A8/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/30ESP control system
    • B60T2270/303Stability control with active acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems
    • B60W2510/207Oversteer or understeer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/02Control of vehicle driving stability
    • B60Y2300/045Improving turning performance, e.g. agility of a vehicle in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/60Control of electric machines, e.g. problems related to electric motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/89Repartition of braking force, e.g. friction braking versus regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle skid prevention control device for improving turning performance and stabilizing vehicle behavior in a turning limit region, and more particularly to an in-wheel motor vehicle skid prevention control device.
  • a skid prevention control device Electric Stability Control, abbreviated as ESC
  • ESC Electronic Stability Control
  • the skid control device controls the vehicle so that it follows the trajectory of the ideal turning state by applying braking force to the wheel to be controlled to prevent the vehicle from becoming oversteered or understeered.
  • driving force distribution control has been proposed in which the ratio of the driving force distributed to the pair of left and right driving wheels is changed to control the yaw moment.
  • a deviation between the standard yaw rate obtained based on the vehicle speed and the steering angle and the actual yaw rate detected by the yaw rate sensor is calculated, and the driving force distribution device and the skid prevention device according to the deviation are calculated.
  • a device that controls the operation is known (for example, Patent Document 2).
  • the skid prevention control device that applies braking force to the wheel to be controlled can generate a large yaw moment, but on the other hand, the vehicle body deceleration occurs during its operation, which makes the driver feel uncomfortable. There is a problem to give. Furthermore, when a friction brake is used to generate a braking force, the kinetic energy of the vehicle is dissipated as thermal energy, leading to a deterioration in power consumption (power consumption).
  • the threshold value of the condition for taking a skid prevention measure is set low, deceleration occurs and the driving performance deteriorates even under a relatively low risk of skidding.
  • the threshold value is set to be high in order to improve the running performance, there is a problem that the means for preventing skidding does not operate unless the risk of skidding is significantly increased.
  • the vehicle body deceleration does not occur during operation, so the driver feels less uncomfortable, and the driving force distribution according to the ground load of the pair of left and right driving wheels is possible. Can be generated automatically.
  • the driving force is allocated to the end, if the vehicle is not a vehicle having a driving motor independently for each wheel, such as a so-called in-wheel motor type vehicle, the driving force for each wheel is arbitrarily set. It is difficult to do.
  • the object of the present invention is to improve the motor performance and the limit performance (performance in the turning limit region) without causing the driver to feel uncomfortable and operating the skid prevention control in a situation where the risk of skidding is relatively low.
  • An object of the present invention is to provide a vehicle skid prevention control device that can be realized.
  • a vehicle skid prevention control device prevents skidding of a vehicle 100 that includes a plurality of wheels including at least a pair of left and right drive wheels 1, 1 (2, 2).
  • Prevention control device 5 The vehicle 100 is Motors 3 and 3 for individually driving the pair of left and right drive wheels 1 and 1 (2, 2), respectively, and motors 3 and 3 respectively corresponding to the drive wheels 1 and 1 (2, 2); Detecting means 30 for detecting at least one defined vehicle behavior; A friction brake 4 for applying a braking force by friction to each of the plurality of wheels 1 and 2;
  • the skid prevention control device 5 is Information indicating vehicle behavior is acquired from the detection means 30, and whether the vehicle 100 is in an unstable state or in a state of reduced stability before reaching the unstable state from the acquired information indicating the vehicle behavior.
  • Stability determination means 20 for determining whether or not When it is determined by the stability determining means 20 that the vehicle 100 is in the unstable state or the reduced stability state, one of the left and right pair of driving wheels 1, 1 (2, 2) is driven. In contrast to (2), a braking force is applied by one or both of the regenerative brake of the motor 3 and the friction brake 4 corresponding to the drive wheel 1 (2), and the other drive wheel 1 (2) And braking / driving force control means 21 for adding driving force to the motor 3.
  • the information indicating the vehicle behavior is, for example, a yaw rate, a skid angle, a vehicle speed, and / or a lateral acceleration. These are selected and used according to the type of skid state.
  • the unstable state is a state where the vehicle is oversteered or understeered.
  • the oversteer state refers to a state in which the rear wheel 2 exceeds the maximum frictional force that the grounding frictional force of the rear wheel 2 can generate and the rear wheel 2 causes a side slip.
  • the understeer state is a state where the maximum frictional force that can generate the ground frictional force of the front wheel 1 is exceeded and the front wheel 1 causes a side slip.
  • the stability reduction state is a state before the vehicle reaches the unstable state, and is a state when a value of information indicating a predetermined vehicle behavior is equal to or greater than a threshold value.
  • the threshold value is determined by the result of a test or simulation, for example.
  • the detection means 11 to 14 acquire, for example, information corresponding to the vehicle behavior corresponding to each time.
  • the stability determination means 20 determines whether or not the vehicle is in an unstable state or a reduced stability state from the information indicating the vehicle behavior.
  • the braking / driving force control means 21 does not apply the braking / driving force when the vehicle is not in an unstable state or in a reduced stability state.
  • the upper control means 7 of the control means 6 including the skid prevention control device gives a torque command value corresponding to the operation amount of the accelerator operation means 9 or the like to the control means 6, and the control means 6 Normal control for driving 3 is performed.
  • the braking / driving force control means 21 applies a braking force to the one driving wheel 1 (2) by the regenerative brake or the friction brake 4 of the motor 3 when the vehicle is in an unstable state or a reduced stability state. At the same time, the braking / driving force control means 21 applies a driving force for preventing skidding determined to the motor 3 of the other driving wheel 1 (2). Unlike the conventional technology in which only the braking force is applied to the wheel to be controlled because the braking force and the driving force are added in this way, the vehicle body does not decelerate and the skid does not give the driver a sense of incongruity. Prevention control can be activated.
  • this skid prevention control can be activated from a state of low stability where the risk of skidding is relatively low, so that safety is improved without degrading the motion performance of the vehicle. Further, since the magnitude (absolute value) of braking / driving force per wheel can be reduced as compared with the case where braking force is applied only to the driving wheel 1, the tire load factor is equalized and the vehicle is stable. Improves. Further, in an unstable state and a state of high skid, for example, deceleration is generated while generating a yaw moment, so that the turning center of the vehicle can be brought forward, and the course tracing performance is improved.
  • the braking force is applied using the regenerative brake of the motor 3, the kinetic energy of the vehicle can be converted into electric energy and used. Therefore, the braking force is applied using only the friction brake 4. In comparison, the deterioration of electricity consumption can be reduced.
  • Determining that the stability determining means 20 is in the unstable state or the reduced stability state includes determining that the vehicle is in an understeer state, and the stability determining means 20 causes the vehicle to be understeered.
  • the braking / driving force control means 21 of the pair of left and right driving wheels 2 and 2 that are the pair of left and right rear wheels is a turning traveling inner wheel ("rear inner wheel”) on the curved traveling route.
  • a braking force may be applied to 2 and a driving force may be applied to the turning outer wheel (referred to as “rear outer wheel”) 2 on the curved traveling path of the pair of left and right driving wheels.
  • the stability determination means 20 determines that the vehicle is in an understeer state
  • the braking / driving force control means 21 tentatively commands the braking force of the rear inner wheel 2 and the driving force of the rear outer wheel 2 that have the same absolute value. Determine the value.
  • the stability determination means 20 has a skid degree calculation unit 24 for calculating the degree of skid.
  • the side slip degree calculation unit 24 determines a target deceleration according to the side slip degree, and adds a deceleration force corresponding to the target deceleration to the provisional braking / driving force command values for the rear outer wheel 2 and the rear inner wheel 2.
  • the degree of side slip may be calculated from the magnitude of the deviation (side slip angle deviation) by comparing the standard side slip angle calculated based on the vehicle model from the steering angle, the vehicle speed, and the like with the actual side slip angle. Since the sign of the side slip angle differs depending on the turning direction, the turning direction is taken into account when calculating the degree of side slip.
  • the relationship between the size of the skid angle deviation and the degree of skidding is determined by the results of experiments and simulations.
  • the target deceleration may be set to zero when the side slip is relatively small, and may be set larger as the side slip becomes larger.
  • the detection means includes a vehicle speed detection means 12 for detecting a vehicle speed, a steering angle sensor 11 for detecting a steering angle, and a yaw rate sensor 13 for detecting a yaw rate.
  • the stability determination means 20 is the vehicle speed detection means 12.
  • a yaw rate deviation which is a deviation between a standard yaw rate obtained based on the detected vehicle speed and the steering angle detected by the steering angle sensor 11 and the yaw rate detected by the yaw rate sensor 13 is calculated, and the braking / driving force control means 21 may determine the magnitude of the braking force and the driving force to be applied according to the yaw rate deviation.
  • Determining that the stability determining means 20 is in the unstable state or the reduced stability state includes determining that the vehicle is in an oversteer state, and the stability determining means 20 causes the vehicle to be
  • the braking / driving force control means 21 out of the pair of left and right driving wheels 1 and 1 that are the pair of left and right front wheels 1 A braking force may be applied to 1 and a driving force may be applied to a turning traveling inner wheel (referred to as a “front inner wheel”) 1 on a curved traveling route, among the pair of left and right driving wheels.
  • the braking / driving force control means 21 applies the driving force to the front inner wheel 1 and the braking force to the front outer wheel 1, which have the same absolute value, so as to achieve the target yaw moment by the motor 3. .
  • an outward yaw moment is generated, and the oversteer tendency can be reduced.
  • no deceleration occurs, so even if the threshold value for the condition for preventing skid in the skid control is set low, the driver does not feel uncomfortable. In addition, the motion performance of the vehicle does not deteriorate.
  • the side slip degree calculating unit 24 determines the target deceleration force degree according to the degree of side slip, and braking / driving the front outer wheel 1 and the front inner wheel 1.
  • a deceleration force corresponding to the target deceleration force degree may be added to the force command value.
  • the braking / driving force distributor 26 adds the braking force according to the degree of side slip as described above, so that deceleration occurs, so that the turning center can be brought forward, and the course tracing performance is improved.
  • the detection means includes a vehicle speed detection means 12 for detecting a vehicle speed, a lateral acceleration sensor 14 for detecting a lateral acceleration, and a yaw rate sensor 13 for detecting a yaw rate.
  • the stability determination means 20 is the vehicle speed detection means 12.
  • Side slip angle change which is a deviation between the threshold value of the side slip angle d ⁇ / dt determined based on the detected vehicle speed, the lateral acceleration detected by the lateral acceleration sensor 14, and the yaw rate detected by the yaw rate sensor 13, and the threshold value.
  • the braking / driving force control means 21 may determine the braking force and the magnitude of the driving force to be added according to the skid angle change rate deviation.
  • the threshold value is determined by, for example, results of experiments or simulations.
  • the braking / driving force control means 21 applies a braking force and a driving force having the same absolute value to each other as the pair of left and right drives. You may add to each driving wheel of a wheel, respectively. In this case, since the absolute value of the braking / driving force per wheel can be reduced compared with the case where braking force is applied to only one wheel, the tire load factor is equalized and the vehicle stability is improved. .
  • the braking / driving force control means 21 may apply the braking force by the regenerative torque of the motor 3 corresponding to the wheel to which the braking force is applied.
  • the driving force and the braking force are not generated by separate actuators such as the driving force distribution device and the mechanical brake, but the driving force and the braking force are added by the motor 3. There is no risk of making the driver feel uncomfortable. Further, when the braking force is applied by the regenerative torque of the motor 3, the kinetic energy of the vehicle can be converted into electric energy and used. Therefore, compared with the case where only the friction brake 4 is used, the power consumption is deteriorated. Can be reduced.
  • the braking / driving force control means 21 is Braking force determination means 26a for determining whether or not the target braking force exceeds the maximum possible braking force of the motor 3, When it is determined by the braking force determination means 26a that the target braking force exceeds the maximum braking force that can be generated by the motor 3, the excess braking force is applied to the wheel to which the braking force is added.
  • a braking force deficiency adding means 26b applied by the friction brake 4 may be provided. In this case, since the braking force by the motor 3 can be used to the maximum, the power consumption can be improved compared to adding the braking force using only the friction brake 4.
  • FIG. 1 is a diagram schematically illustrating a system configuration of a skid prevention control device for a vehicle according to a first embodiment of the present invention in a plan view. It is sectional drawing of the in-wheel motor drive device of the vehicle of FIG.
  • FIG. 2 is a control block diagram of the skid prevention control device of FIG. 1.
  • FIG. 1 is a diagram schematically showing a system configuration of the vehicle skid prevention control device 5 in a plan view.
  • the skid prevention control device 5 is a device that prevents a skid of the vehicle.
  • the vehicle 100 is a vehicle on which the skid prevention control device 5 is mounted, and a pair of left and right front wheels 1, 1 and rear wheels 2, 2 are individually driven by corresponding motors 3. It is an independent drive car.
  • Each motor 3 is constituted by an in-wheel motor drive device IWM described later.
  • the pair of left and right front wheels 1 and 1 can be steered by a steering mechanism (not shown) and are steered by a steering wheel via the steering mechanism.
  • the vehicle includes a friction brake 4 that applies a braking force by friction to the wheels 1 and 2.
  • a friction brake 4 for example, a hydraulic or electric mechanical brake is employed.
  • the vehicle control system includes an ECU 6 including an ESC 5, an upper ECU 7 that is a higher-level control means than the ECU 6, and an inverter device 8.
  • the ECU 6 and the host ECU 7 are each configured by a computer, a program executed by the computer, various electronic circuits, and the like.
  • the host ECU 7 is, for example, an electric control unit that performs cooperative control and overall control of the entire vehicle, and is provided with torque distribution means 7a.
  • An acceleration command from the accelerator operation unit 9 and a deceleration command from the brake operation unit 10 are input to the torque distribution unit 7a.
  • the torque distribution means 7 a distributes a braking / driving command corresponding to the difference between the acceleration command and the deceleration command to each motor 3 via the ECU 6 and each inverter device 8.
  • the braking / driving command is, for example, a torque command.
  • the inverter device 8 includes a power circuit unit 8a provided for each motor 3, and a motor control unit 8b for controlling the power circuit unit 8a.
  • Each power circuit unit 8a can be controlled independently so that the motor torque is different from each other.
  • the motor control unit 8b has a function of outputting information such as detection values and control values related to the in-wheel motor drive device IWM to the ECU 6, for example.
  • the motor control unit 8b also converts it into a current command according to the braking / driving torque command value given from the ECU 6, and gives the current command to the PWM driver of the power circuit unit 8a.
  • the detection means includes a steering angle sensor 11 that detects a steering angle, a vehicle speed detection means 12 that detects a vehicle speed, a yaw rate sensor 13 that detects a yaw rate, and a lateral acceleration sensor 14 that measures a lateral acceleration.
  • FIG. 2 is a cross-sectional view of the in-wheel motor drive device IWM.
  • Each in-wheel motor drive device IWM has the motor 3, the reduction gear 15, and the wheel bearing 16, respectively, These are arrange
  • the rotation of the motor 3 is transmitted to the drive wheel 1 (2) via the speed reducer 15 and the wheel bearing 16.
  • a brake rotor 17 is fixed to the flange portion of the hub wheel 16a of the wheel bearing 16, and the brake rotor 17 rotates integrally with the drive wheel 1 (2).
  • the motor 3 is, for example, an embedded magnet type synchronous motor in which a permanent magnet is built in the core portion of the rotor 3a.
  • the motor 3 is a motor in which a radial gap is provided between a stator 3 b fixed to the housing 18 and a rotor 3 a attached to the rotation output shaft 19.
  • FIG. 3 is a control block diagram of the skid prevention control device 5.
  • the skid prevention control device 5 includes a stability determination unit 20 and a braking / driving force control unit 21. That is, the stability determination means 20 and the braking / driving force control means 21 are provided in the ESC 5.
  • the stability determination unit 20 acquires information indicating at least one predetermined vehicle behavior from the detection unit 30, and from the acquired information indicating the vehicle behavior before the vehicle reaches an unstable state or an unstable state. It is determined whether or not the stability is lowered.
  • the stability determination unit 20 includes a standard yaw rate calculation unit 22, a controller 23, a standard side slip angle calculation unit 29, a skid degree calculator 24, and a stability determination unit 25.
  • the reference yaw rate calculation unit 22 uses the vehicle model to calculate the following reference yaw rate from the vehicle speed V detected by the vehicle speed detection means 12 and the steering angle ⁇ h detected by the steering angle sensor 11. Obtain ⁇ ref .
  • the deviation calculation unit 31 calculates a deviation (yaw rate deviation) ⁇ between the standard yaw rate ⁇ ref thus obtained and the actual yaw rate ⁇ detected by the yaw rate sensor 13.
  • the side slip angle change rate d ⁇ / dt is calculated from the following equation, and the deviation (side slip angle change rate deviation) ⁇ (d ⁇ / dt) from a preset threshold value is calculated.
  • the deviation calculation unit 31 calculates.
  • the controller 23 determines the target yaw moment M t based on the yaw rate deviation ⁇ or the side slip angle change rate deviation ⁇ (d ⁇ / dt).
  • yaw rate feedback control will be described.
  • K p K I ⁇ + K D ( ⁇ (n ⁇ 1) ⁇ (n))
  • K p , K I , and K D are gain constants for proportional calculation, integral calculation, and differential calculation, respectively.
  • the stability determination unit 25 determines whether the vehicle is in an oversteer state or an understeer state from information indicating vehicle behavior such as yaw rate ⁇ , yaw rate deviation ⁇ , vehicle speed V, and lateral acceleration. For example, when the absolute value of the actual yaw rate is smaller than the absolute value of the reference yaw rate, the stability determiner 25 determines that the vehicle is in an understeer state. The stability determiner 25 determines that the vehicle is in an oversteer state when, for example, the side slip change rate d ⁇ / dt is greater than a preset threshold value.
  • the braking / driving force control unit 21 determines that the vehicle is in an unstable state or a reduced stability state by the stability determination unit 20 (for example, it is determined that the vehicle is in an oversteer state or an understeer state).
  • the stability determination unit 20 determines that the vehicle is in an oversteer state or an understeer state.
  • either the regenerative brake of the motor 3 or the friction brake 4 corresponding to the drive wheel 1 (2) A braking force is applied by one or both.
  • the braking / driving force control means 21 applies a driving force to the motor 3 of the other driving wheel 1 (2).
  • the stability determiner 25 determines that the vehicle is in an understeer state
  • the braking / driving force distributors 26 are mutually connected in order to add braking force to the rear inner wheel 2 and driving force to the rear outer wheel 2 (see FIG. 5B).
  • a provisional braking / driving force command value of the braking force of the rear inner wheel 2 and the driving force of the rear outer wheel 2 having the same absolute value is obtained.
  • the side slip degree calculator 24 calculates the side slip degree.
  • the braking / driving force distributor 26 determines a target deceleration according to the degree of the side slip, and adds a deceleration force corresponding to the target deceleration to the provisional braking / driving force command values for the rear outer wheel 2 and the rear inner wheel 2.
  • the braking / driving force distributor 26 includes a braking force determination unit 26a and a braking force deficient addition unit 26b.
  • the braking force determination unit 26 a determines whether or not the target command braking torque (target braking force) exceeds the maximum outputtable torque (maximum possible braking force) of the motor 3.
  • the maximum output torque is determined by the rated output of the motor 3, for example.
  • the braking force deficient addition means 26b rubs the excess braking force against the wheel 1 (2) to which the braking force is added. It is added by the type brake 4.
  • deceleration occurs, but the vehicle can be stabilized by deceleration.
  • the side slip degree calculator 24 obtains a standard side slip angle ⁇ ref using a vehicle model from the vehicle speed V detected by the vehicle speed detecting means 12 and the steering angle ⁇ h detected by the steering angle sensor 11.
  • a deviation (side slip angle deviation) ⁇ between the standard side slip angle ⁇ ref thus obtained and the actual side slip angle ⁇ detected by the side slip angle sensor 13 is calculated.
  • the relationship between the magnitude of the deviation and the degree of skidding is determined by the results of experiments and simulations.
  • the actual side slip angle ⁇ may be estimated by integrating the side slip angle change rate d ⁇ / dt.
  • the degree of skidding is calculated as described above from the size of the skidding angle, for example.
  • the target deceleration may be set to zero when the degree of side slip is relatively small, and may be set larger as the degree of side slip increases.
  • the vehicle does not decelerate in a state where the degree of skidding is relatively low, the driver does not feel uncomfortable and the vehicle performance does not deteriorate.
  • the degree of side slip is high, deceleration occurs, so that the turning center of the vehicle can be brought forward, and the course tracing performance is improved.
  • the conventional skid prevention control using only the braking force of the rear inner wheel cannot generate a large braking force and may not generate a sufficient yaw moment.
  • the driving force of the rear outer wheel 2 is also used in this control, a sufficient yaw moment can be generated reliably.
  • the stability determiner 25 determines that the vehicle is in an oversteer state
  • the braking / driving force distributor 26 in the braking / driving force control means 21 is set to the target yaw moment by the in-wheel motor driving device IWM.
  • a driving force is applied to the front inner wheel 1 and the braking force is applied to the front outer wheel 1 having the same absolute value and different signs (see FIG. 5A).
  • an outward yaw moment A1 (see FIG. 5A) is generated in the vehicle, and the oversteer tendency can be reduced.
  • the threshold value of the condition for taking a skid prevention measure in the skid prevention control is set low, the driver does not feel uncomfortable and the motor performance does not deteriorate.
  • the target deceleration force degree is determined according to the degree of side slip and the braking / driving force of the front outer wheel 1 and the front inner wheel 1 as in the case of understeer.
  • a deceleration force corresponding to the target deceleration force degree may be added to the command value.
  • the braking / driving force distributor 26 adds the braking force according to the degree of side slip as described above, so that deceleration occurs, so that the turning center can be brought forward, and the course tracing performance is improved.
  • the driving force and braking force are generated by the in-wheel motor drive unit IWM rather than the separate actuators such as the drive force distribution device and mechanical brake, which makes the driver feel uncomfortable when switching between the driving force and the braking force. There is no risk of giving. Further, when the braking force is applied by the regenerative torque of the motor 3, the kinetic energy of the vehicle can be converted into electric energy and used. Therefore, compared with the case where only the friction brake 4 is used, the power consumption is deteriorated. Can be reduced.
  • the braking / driving force control means 21 includes a DYC control unit as represented by the following equation: The sum of weighted values of the driving force command value T DYC by 28 DYC control and the braking / driving force command value T ESC by side slip prevention control is added to the braking / driving torque command value, and the in-wheel motor drive device IWM is added.
  • the braking / driving torque command value TIWM is set.
  • T IWM (1- ⁇ ) T DYC + ⁇ T ESC
  • is a weighting coefficient.
  • the braking / driving torque command value is a value calculated according to the operation amount of the accelerator operation means 9 or the brake operation means 10.
  • FIG. 4 is a diagram showing the relationship between the vehicle stability and the weighting coefficient ⁇ of this skid prevention control device.
  • the driving force command value T DYC and the braking / driving force command value T ESC are weighted only in the driving force command value by DYC control in a region where the vehicle stability is high, and as the stability decreases, the driving force command value of the DYC Decrease the ratio and increase the ratio of braking / driving force command value for skid prevention control.
  • the braking / driving torque command value T IWM is input to the anti-lock brake system (abbreviation: ABS) and traction control system (abbreviation: TCS) controller 27 in the inverter device 8.
  • ABS anti-lock brake system
  • TCS traction control system
  • the ABS / TCS controller 27 performs anti-lock brake control and traction control, and prevents the wheels 1 and 2 from being locked or spun by the braking / driving torque by the side slip prevention control.
  • a two-wheel independent drive vehicle that independently drives a pair of left and right two wheels may be applied.
  • an oversteer tendency can be reduced in a front-wheel drive vehicle that independently drives a pair of left and right front wheels.
  • a rear wheel drive vehicle that independently drives the left and right pair of rear wheels, the understeer tendency can be reduced.
  • a cycloid reducer, a planetary reducer, a two-axis parallel reducer, and other reducers can be applied, and even a so-called direct motor type that does not employ a reducer. Good.
  • the force distributor 26 is preferably realized by a processor executing a software program. However, when realized by a combination of an adder, a subtractor, a differentiator, an integrator, and / or a comparator, these may be realized by hardware.
  • the present invention is not limited to the above embodiment, and various additions, changes, or deletions are possible without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 運転者に違和感を与えることなく、横滑りのおそれが比較的低い領域から横滑り防止制御を作動させ、運動性能と限界性能の向上を図ることができる車両の横滑り防止制御装置を提供する。この横滑り防止制御装置は、駆動左右一対の輪をそれぞれ個別に駆動する左右のモータと、各輪の摩擦式ブレーキとを備えた車両の横滑りを防止する。車両挙動を示す情報を検出手段から取得し、車両挙動を示す情報から、車両が不安定状態またはこの不安定状態に至る前の安定性低下状態にあるか判定する安定性判定手段(20)を設ける。不安定状態または安定性低下状態にあると判定されたとき、一方の駆動輪に対応するモータの回生ブレーキおよび摩擦式ブレーキのいずれか一方または両方により制動力を付加すると共に、他方の駆動輪のモータに駆動力を付加する制駆動力制御手段(21)をさらに設ける。

Description

車両の横滑り防止制御装置 関連出願
 本出願は、2014年9月1日出願の特願2014-177107の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。
 この発明は、旋回性能の向上と、旋回限界領域での車両挙動の安定化とを図る車両の横滑り防止制御装置に関し、特にインホイールモータ方式の車両の横滑り防止制御装置に関する。
 従来、車両の姿勢を制御する方法として、横滑り防止制御装置(Electronic Stability Control,略称:ESC)が知られている。横滑り防止制御装置は、車両がオーバーステア状態もしくはアンダーステア状態になることを防止すべく、制御対象輪に対して制動力を付加することで、車両が理想的な旋回状態の軌跡を辿るように制御する(例えば、特許文献1)。
 また、左右一対の駆動輪に配分する駆動力の比率を変化させてヨーモーメントを制御する駆動力配分制御が提案されている。
 上記の駆動力配分制御としては、車速および操舵角に基づいて求めた規範ヨーレートと、ヨーレートセンサで検出した実ヨーレートとの偏差を算出し、この偏差に応じて駆動力配分装置および横滑り防止装置の作動を制御するものが公知である(例えば、特許文献2)。
特開2011-162145号公報 特開平9-86378号公報
 制御対象輪に対してブレーキを利用して制動力を付加する横滑り防止制御装置は、大きいヨーモーメントを発生することが可能である反面、その作動時に車体減速度が発生して運転者に違和感を与える問題がある。さらに、制動力の発生に摩擦ブレーキを利用した場合、車両の運動エネルギーが熱エネルギーとして散逸してしまうため、電費(電力の消費)の悪化に繋がる。
 また、横滑りの防止措置を講じるための条件の閾値を低く設定すると、横滑りのおそれが比較的低い状況下でも減速度が発生して走行性能が低下する。一方、走行性能を向上させるべく前記閾値を高く設定すると、横滑りのおそれがかなり高くならないと、横滑り防止のための手段が作動しないという課題がある。
 前記駆動力配分制御では、作動時に車体減速度が発生しないので、運転者に与える違和感が小さく、また左右一対の駆動輪の接地荷重に応じた駆動力配分が可能であるため、ヨーモーメントを効率的に発生させることができる。
 しかし、あくまでも駆動力を配分するものであるため、車両が、いわゆるインホイールモータ方式の車両のような各輪独立に駆動モータを持つような車両でない場合は、各輪の駆動力を任意に設定することは困難である。
 この発明の目的は、運転者に違和感を与えることなく、かつ、横滑りのおそれが比較的低い状況で横滑り防止制御を作動させながらも、運動性能と限界性能(旋回限界領域における性能)の向上を図ることができる車両の横滑り防止制御装置を提供することである。
 以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。
 この発明の一構成に係る、車両の横滑り防止制御装置は、少なくとも左右一対の駆動輪1,1(2,2)を含む複数の車輪を備えた車両100の横滑りを防止する、車両100の横滑り防止制御装置5であって、
 前記車両100は、
  前記左右一対の駆動輪1,1(2,2)をそれぞれ個別に駆動するモータ3,3であって、前記駆動輪1,1(2,2)にそれぞれ対応するモータ3,3と、
  少なくとも1つの定められた車両挙動を検出する検出手段30と、
  前記複数の車輪1,2のそれぞれに対して摩擦による制動力を与える摩擦式ブレーキ4とを有し、
 当該横滑り防止制御装置5が、
 前記検出手段30から、車両挙動を示す情報を取得し、この取得した車両挙動を示す情報から、前記車両100が、不安定状態またはこの不安定状態に至る前の安定性低下状態にあるか否かを判定する安定性判定手段20と、
 この安定性判定手段20により前記車両100が前記不安定状態または安定性低下状態にあると判定されたとき、前記左右一対の駆動輪1,1(2,2)のうちの一方の駆動輪1(2)に対し、この駆動輪1(2)に対応するモータ3の回生ブレーキおよび前記摩擦式ブレーキ4のいずれか一方または両方により制動力を付加すると共に、他方の駆動輪1(2)のモータ3に駆動力を付加する制駆動力制御手段21とを備える。
 前記車両挙動を示す情報は、例えば、ヨーレート、横滑り角,車速、および/または横加速度である。これらは、横滑り状態の種類に応じて選択され用いられる。
 前記不安定状態は、車両がオーバーステアまたはアンダーステアにある状態である。前記オーバーステア状態とは、後輪2の接地摩擦力が発生できる最大摩擦力を超え、後輪2が横滑りを起こす状態を言う。前記アンダーステア状態とは、前輪1の接地摩擦力が発生できる最大摩擦力を超え、前輪1が横滑りを起こす状態を言う。
 前記安定性低下状態は、車両が前記不安定状態に至る前の状態のことであって、定められた車両挙動を示す情報の値が閾値以上のときの状態を言う。前記閾値は、例えば、試験やシミュレーション等の結果により定められる。
 この構成によると、車両の運転時に、検出手段11~14が、例えば常時にそれぞれの対応する、車両挙動を示す情報を取得する。安定性判定手段20は、この車両挙動を示す情報から、車両が不安定状態または安定性低下状態にあるか否かを判定する。制駆動力制御手段21は、車両が不安定状態または安定性低下状態にないときは制駆動力を付加しない。このとき、例えば、この横滑り防止制御装置を含む制御手段6の上位の制御手段7は、アクセル操作手段9等の操作量に応じたトルク指令値を制御手段6に与え、この制御手段6はモータ3を駆動する通常制御を行う。
 制駆動力制御手段21は、車両が不安定状態または安定性低下状態にあるとき、一方の駆動輪1(2)に対し、モータ3の回生ブレーキまたは摩擦式ブレーキ4により制動力を付加する。これと共に、制駆動力制御手段21は、他方の駆動輪1(2)のモータ3に定められた横滑り防止用の駆動力を付加する。このように制動力と駆動力とを付加するため、制御対象輪に対して制動力のみを付加する従来技術とは異なり、車体減速度が発生せず、運転者に違和感を与えることなく、横滑り防止制御を作動させることができる。
 そのため、横滑りのおそれが比較的低い安定性低下状態から、この横滑り防止制御を作動させることができるため、車両の運動性能を低下させることなく安全性が向上する。また、駆動輪1のみに制動力を付加する場合と比較して、1輪当たりの制駆動力の大きさ(絶対値)を小さくすることができるため、タイヤ負荷率が均等化され、車両安定性が向上する。さらに、不安定状態かつ横滑りの程度が大きい状態では、例えば、ヨーモーメントを発生しつつ減速度を発生させるため、車両の旋回中心を手前にすることができ、コーストレース性が向上する。
 モータ3の回生ブレーキを用いて制動力を付加する場合には、車両の運動エネルギーを電気エネルギーに変換して利用することができるため、摩擦式ブレーキ4のみを用いて制動力を付加する場合と比較して、電費の悪化を低減することができる。
 前記安定性判定手段20が、前記不安定状態または安定性低下状態にあると判定することが、前記車両がアンダーステア状態にあると判定することを含み、前記安定性判定手段20により前記車両がアンダーステア状態にあると判定されると、前記制駆動力制御手段21は、前記左右一対の後輪である左右一対の駆動輪2,2のうち、曲線走行経路の旋回走行内側輪(「後内輪」と称す)2に制動力を付加すると共に、前記左右一対の駆動輪のうち、曲線走行経路の旋回走行外側輪(「後外輪」と称す)2に駆動力を付加しても良い。
 前記安定性判定手段20により前記車両がアンダーステア状態にあると判定されると、制駆動力制御手段21が、互いに絶対値が等しい、後内輪2の制動力と後外輪2の駆動力の暫定指令値を定める。さらに、前記安定性判定手段20が、横滑り程度を算出する横滑り程度算出部24を有する。この横滑り程度算出部24は、この横滑り程度に応じて目標減速度を決定し、後外輪2と後内輪2の暫定制駆動力指令値にこの目標減速度に対応する減速力を加算する。横滑り程度は、操舵角、車速等から車両モデルに基づいて算出される規範横滑り角と実横滑り角とを比較し、その偏差(横滑り角偏差)の大きさから算出されてもよい。なお、横滑り角の符号は旋回方向により異なるため、横滑り程度の算出には旋回方向が考慮される。
 前記横滑り角偏差の大きさと横滑り程度との関係は、実験やシミュレーション等の結果により定められる。
 目標減速度は、横滑り程度が比較的小さいときは零とし、横滑り程度が大きくなるほど大きく設定されてもよい。これにより、横滑り程度が大きいときには,減速度が発生するため旋回中心を手前にすることができ、コーストレース性が向上する。
 前記検出手段が、車速を検出する車速検出手段12、操舵角を検出する操舵角センサ11、および、ヨーレートを検出するヨーレートセンサ13を含み、前記安定性判定手段20が、前記車速検出手段12で検出される車速および前記操舵角センサ11で検出される操舵角に基づいて求めた規範ヨーレートと、前記ヨーレートセンサ13で検出したヨーレートとの偏差であるヨーレート偏差を算出し、前記制駆動力制御手段21が、前記ヨーレート偏差に応じて付加すべき前記制動力および前記駆動力の大きさを決定しても良い。
 前記安定性判定手段20が、前記不安定状態または安定性低下状態にあると判定することが、前記車両がオーバーステア状態にあると判定することを含み、前記安定性判定手段20により前記車両がオーバーステア状態にあると判定されると、前記制駆動力制御手段21は、前記左右一対の前輪である左右一対の駆動輪1,1のうち、曲線走行経路の旋回走行外側輪(「前外輪」と称す)1に制動力を付加すると共に、前記左右一対の駆動輪のうち、曲線走行経路の旋回走行内側輪(「前内輪」と称す)1に駆動力を付加しても良い。
 オーバーステア状態にあるとき、制駆動力制御手段21は、モータ3によって、目標ヨーモーメントとなるように、互いに絶対値が等しい、前内輪1に駆動力、前外輪1に制動力をそれぞれ付加する。これにより、外向きのヨーモーメントが発生し、オーバーステア傾向を低減することができる。また制動力のみを付加する従来技術とは異なり、減速度が発生しないため、横滑り防止制御の横滑りの防止措置を講じるための条件の閾値を低く設定しても、運転者に違和感を与えることなく、車両の運動性能も低下することがない。
 なお、不安定状態でかつ横滑り程度が高い状態では、アンダーステア状態時と同様に、横滑り程度算出部24が、横滑り程度に応じて目標減速力度を決定し、前外輪1と前内輪1の制駆動力指令値にこの目標減速力度に対応する減速力を加算しても良い。制駆動力配分器26は、前記のように横滑り程度に応じた制動力を加算することで、減速度が発生するため旋回中心を手前にすることができ、コーストレース性が向上する。
 前記検出手段が、車速を検出する車速検出手段12、横加速度を検出する横加速度センサ14、および、ヨーレートを検出するヨーレートセンサ13を含み、前記安定性判定手段20が、前記車速検出手段12で検出される車速、前記横加速度センサ14で検出される横加速度、および、前記ヨーレートセンサ13で検出されるヨーレートに基づいて求めた横滑り角変化率dβ/dtと閾値との偏差である横滑り角変化率偏差を算出し、前記制駆動力制御手段21が、前記横滑り角変化率偏差に応じて付加すべき前記制動力および前記駆動力の大きさを決定しても良い。
 前記閾値は、例えば、実験やシミュレーションの結果により定められる。
 前記安定性判定手段20により前記車両がオーバーステア状態またはアンダーステア状態にあると判定されると、前記制駆動力制御手段21が、互いに絶対値の等しい制動力と駆動力とを前記左右一対の駆動輪の各駆動輪にそれぞれ付加しても良い。この場合、1輪のみに制動力を付加する場合と比較して、各輪当たりの制駆動力の絶対値を小さくすることができるため、タイヤ負荷率が均等化され、車両安定性が向上する。
 前記制駆動力制御手段21が、前記制動力を、その制動力が付加される車輪に対応する前記モータ3の回生トルクにより付加しても良い。例えば、駆動力配分装置と機械式ブレーキのような別々のアクチュエータで駆動力と制動力を発生させるのではなく、モータ3で駆動力と制動力を付加するため、駆動力と制動力の切り替え時に運転者に違和感を与えるおそれがない。またモータ3の回生トルクにより制動力を付加する場合は、車両の運動エネルギーを電気エネルギーに変換して利用することができるため、摩擦ブレーキ4のみを利用する場合と比較して、電費の悪化を低減することができる。
 制駆動力制御手段21が、
  目標制動力が、前記モータ3の発生可能最大制動力を超えるか否かを判定する制動力判定手段26aと、
  この制動力判定手段26aにより、目標制動力が前記モータ3の発生可能最大制動力を超えると判定されると、この超えた分の制動力を、その制動力が付加される車輪に対して前記摩擦式ブレーキ4で付加する制動力不足分付加手段26bとを有しても良い。この場合、モータ3による制動力を最大限用いることができるため、摩擦ブレーキ4のみを利用して制動力を付加するよりも、電費の向上を図ることができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る車両の、横滑り防止制御装置のシステム構成を平面視で概略示す図である。 図1の車両のインホイールモータ駆動装置の断面図である。 図1の横滑り防止制御装置の制御ブロック図である。 図1の横滑り防止制御装置の車両安定性と重み付けの係数との関係を示す図である。 図1の車両等のオーバーステア時の実車試験例を概略示す図である。 図1の車両等のアンダーステア時の実車試験例を概略示す図である。
 この発明の第1の実施形態に係る、車両の横滑り防止制御装置を図1ないし図5と共に説明する。
 図1は、この車両の横滑り防止制御装置5のシステム構成を平面視で概略的に示す図である。横滑り防止制御装置5は車両の横滑りを防止する装置である。この実施形態では、車両100は、横滑り防止制御装置5が搭載される車両であり、左右一対の前輪1,1および後輪2,2が、それぞれ対応するモータ3によって個別に駆動される4輪独立駆動車の自動車である。
 各モータ3は、後述のインホイールモータ駆動装置IWMによって構成される。左右一対の前輪1,1は、図示外の転舵機構により転舵可能であり、ハンドルにより前記転舵機構を介して操舵される。この車両は、各輪1,2に対して、摩擦による制動力をそれぞれ与える摩擦式ブレーキ4を備えている。この摩擦式ブレーキ4として、例えば、油圧または電動の機械式ブレーキが採用される。
 車両の制御系は、ESC5を含むECU6と、このECU6よりも上位の制御手段である上位ECU7と、インバータ装置8とを有する。ECU6および上位ECU7は、それぞれコンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。上位ECU7は、例えば、車両全体の協調制御、統括制御を行う電気制御ユニットであり、トルク分配手段7aが設けられている。このトルク分配手段7aには、アクセル操作手段9からの加速指令、およびブレーキ操作手段10からの減速指令が入力される。トルク分配手段7aは、前記加速指令と減速指令の差に応じた制駆動指令を、ECU6および各インバータ装置8を介して各モータ3に分配する。前記制駆動指令は、例えば、トルク指令である。
 インバータ装置8は、各モータ3に対して設けられたパワー回路部8aと、このパワー回路部8aを制御するモータコントロール部8bとを有する。各パワー回路部8aは、互いにモータトルクが異なるように独立して制御可能なものとされる。モータコントロール部8bは、例えば、インホイールモータ駆動装置IWMに関する各検出値や制御値等の各情報をECU6に出力する機能を有する。モータコントロール部8bは、また、ECU6から与えられる制駆動トルク指令値に従い、電流指令に変換して、パワー回路部8aのPWMドライバに電流指令を与える。
 この車両は、少なくとも1つの検出手段30を備える。この検出手段は、操舵角を検出する操舵角センサ11、車速を検出する車速検出手段12、ヨーレートを検出するヨーレートセンサ13、および横加速度を計測する横加速度センサ14を含む。
 図2は、インホイールモータ駆動装置IWMの断面図である。各インホイールモータ駆動装置IWMは、それぞれ、モータ3、減速機15、および車輪用軸受16を有し、これらの一部または全体が車輪内に配置される。モータ3の回転は、減速機15および車輪用軸受16を介して駆動輪1(2)に伝達される。車輪用軸受16のハブ輪16aのフランジ部にはブレーキロータ17が固定され、同ブレーキロータ17は駆動輪1(2)と一体に回転する。モータ3は、例えば、ロータ3aのコア部に永久磁石が内蔵された埋込磁石型同期モータである。このモータ3は、ハウジング18に固定したステータ3bと、回転出力軸19に取り付けたロータ3aとの間にラジアルギャップを設けたモータである。
 図3は、この横滑り防止制御装置5の制御ブロック図である。以後、図1も適宜参照しつつ説明する。図3には、ヨーレートフィードバック制御が示されている。この横滑り防止制御装置5は、安定性判定手段20と、制駆動力制御手段21とを有する。すなわち、これら安定性判定手段20、制駆動力制御手段21は、ESC5に設けられている。安定性判定手段20は、少なくとも1つの定められた車両挙動を示す情報を検出手段30から取得し、この取得した車両挙動を示す情報から、この車両が不安定状態または不安定状態に至る前の安定性低下状態にあるか否かを判定する。
 安定性判定手段20は、規範ヨーレート演算部22、制御器23、規範横滑り角演算部29、横滑り程度算出器24、および安定性判定器25を有する。図3のヨーレートフィードバック制御の場合、規範ヨーレート演算部22は、車速検出手段12で検出される車速Vおよび操舵角センサ11で検出される操舵角δから、車両モデルを用いて以下の規範ヨーレートγrefを求める。
Figure JPOXMLDOC01-appb-M000001
 このように求められた規範ヨーレートγrefと、ヨーレートセンサ13で検出した実ヨーレートγとの偏差(ヨーレート偏差)Δγを、偏差算出部31が算出する。
 横滑り角変化率フィードバック制御を適用する場合は、次式より横滑り角の変化率dβ/dtを算出し、予め設定された閾値からの偏差(横滑り角変化率偏差)Δ(dβ/dt)を、偏差算出部31が算出する。
Figure JPOXMLDOC01-appb-M000002
 制御器23は、ヨーレート偏差Δγまたは横滑り角変化率偏差Δ(dβ/dt)に基づいて、目標ヨーモーメントMを決定する。以下では、ヨーレートフィードバック制御について説明する。
     M=KΔγ+KΣΔγ+K(Δγ(n-1)-Δγ(n))
ここで、K,K,Kはそれぞれ比例演算、積分演算、微分演算のゲイン定数である。
 安定性判定器25は、ヨーレートγ,ヨーレート偏差Δγ,車速V,横加速度等の車両挙動を示す情報から、車両が、オーバーステア状態にあるか、またはアンダーステア状態にあるかを判断する。安定性判定器25は、例えば、規範ヨーレートの絶対値よりも実ヨーレートの絶対値が小さい場合は車両がアンダーステア状態にあると判断する。安定性判定器25は、例えば、横滑りの変化率dβ/dtが、予め設定された閾値より大きい場合は車両がオーバーステア状態にあると判断する。
 制駆動力制御手段21は、安定性判定手段20により車両が不安定状態または安定性低下状態にあると判定された(例えば、オーバーステア状態にあるか、またはアンダーステア状態にあると判定された)とき、左右一対の駆動輪1,1(2,2)における一方の駆動輪1(2)に対し、この駆動輪1(2)に対応するモータ3の回生ブレーキおよび摩擦式ブレーキ4のいずれか一方または両方により制動力を付加する。これと共に制駆動力制御手段21は、他方の駆動輪1(2)のモータ3に駆動力を付加する。
 安定性判定器25が、車両がアンダーステア状態にあると判断した場合、後内輪2に制動力、後外輪2に駆動力を付加すべく(図5B参照)、制駆動力配分器26は、互いに絶対値が等しい、後内輪2の制動力と後外輪2の駆動力の暫定制駆動力指令値を求める。さらに、横滑り程度算出器24は横滑り程度を算出する。制駆動力配分器26は、前記横滑り程度に応じて目標減速度を決定し、後外輪2と後内輪2の暫定制駆動力指令値にこの目標減速度に対応する減速力を加算する。
 また制駆動力配分器26は、制動力判定手段26aと、制動力不足分付加手段26bとを有する。制動力判定手段26aは、目標となる指令制動トルク(目標制動力)が、モータ3の出力可能最大トルク(発生可能最大制動力)を超えるか否かを判定する。出力可能最大トルクは、例えば、モータ3の定格出力により定められる。制動力不足分付加手段26bは、前記指令制動トルクがモータ3の出力可能最大トルクを超える場合、その超えた分の制動力を、その制動力が付加される車輪1(2)に対して摩擦式ブレーキ4で付加する。大きなヨーモーメントが必要な場合は、減速度が生じてしまうが、減速により車両を安定させ得る。
 横滑り程度算出器24は、車速検出手段12で検出される車速Vおよび操舵角センサ11で検出される操舵角δから、車両モデルを用いて規範横滑り角βrefを求める。
Figure JPOXMLDOC01-appb-M000003
 このように求められた規範横滑り角βrefと、横滑り角センサ13で検出した実横滑り角βとの偏差(横滑り角偏差)Δβを算出する。前記偏差の大きさと横滑り程度との関係は、実験やシミュレーション等の結果により定められる。なお、実横滑り角βは、前記横滑り角変化率dβ/dtを積分して推定してよい。
 横滑り程度は、例えば、横滑り角の大きさから前述のように算出する。目標減速度は、横滑り程度が比較的小さいときは零とし、横滑り程度が大きくなるほど大きく設定されてもよい。
 後外輪2と後内輪2の暫定制駆動指令値に、横滑り程度に応じた減速力を加算することで、減速度が発生するため旋回中心を手前にすることができ、コーストレース性が向上する。
 さらに横滑り程度が比較的低い状態では、減速することがないため、運転者に違和感を与えることなく、車両の運動性能も低下することがない。一方、横滑り程度が高い状態では、減速度が生じるため、車両の旋回中心を手前にすることができ、コーストレース性が向上する。旋回時には旋回内輪の荷重は減少するため、従来の後内輪の制動力のみ使用する横滑り防止制御では、大きな制動力を発生できず、十分なヨーモーメントを発生できない場合がある。これに対して、本制御では後外輪2の駆動力も利用するため、十分なヨーモーメントを確実に発生させることができる。
 安定性判定器25で車両がオーバーステア状態にあると判断された場合、制駆動力制御手段21における制駆動力配分器26は、インホイールモータ駆動装置IWMによって、目標ヨーモーメントとなるように、互いに絶対値が等しく符号が異なる前内輪1に駆動力、前外輪1に制動力を付加する(図5A参照)。これにより、車両に外向きのヨーモーメントA1(図5A参照)が発生し、オーバーステア傾向を低減し得る。また、減速度が生じないため、横滑り防止制御の横滑りの防止措置を講じるための条件の閾値を低く設定しても、運転者に違和感を与えることなく、運動性能も低下することがない。
 なお、車両が、不安定状態でかつ横滑りの程度が大きい状態にある場合では,アンダーステア時と同様に、横滑り程度に応じて目標減速力度を決定し、前外輪1と前内輪1の制駆動力指令値にこの目標減速力度に対応する減速力を加算しても良い。制駆動力配分器26は、前記のように横滑り程度に応じた制動力を加算することで、減速度が発生するため旋回中心を手前にすることができ、コーストレース性が向上する。
 駆動力の発生と制動力の発生を、駆動力配分装置と機械式ブレーキのような別々のアクチュエータではなくインホイールモータ駆動装置IWMで行うため、駆動力と制動力の切り替え時に運転者に違和感を与えるおそれがない。またモータ3の回生トルクにより制動力を付加する場合は、車両の運動エネルギーを電気エネルギーに変換して利用することができるため、摩擦ブレーキ4のみを利用する場合と比較して、電費の悪化を低減することができる。
 また、車両安定性が高い通常域領域で、他の制御アルゴリズムによるダイレクトヨーモーメント(略称:DYC)制御を行う場合、制駆動力制御手段21は、次式に表されるように、DYC制御部28のDYC制御による駆動力指令値TDYCと、横滑り防止制御による制駆動力指令値TESCに、それぞれ重み付けしたものの和を取り、さらに制駆動トルク指令値に加算してインホイールモータ駆動装置IWMへの制駆動トルク指令値TIWMとする。
 TIWM=(1-α)TDYC+αTESC
 ここで、αは重み付けの係数である。
 前記制駆動トルク指令値は、アクセル操作手段9もしくはブレーキ操作手段10の操作量に応じて算出される値である。
 図4は、この横滑り防止制御装置の車両安定性と重み付けの係数αとの関係を示す図である。駆動力指令値TDYC、制駆動力指令値TESCに乗じる重み付けは、車両安定性が高い領域ではDYC制御による駆動力指令値のみとし、安定性が低下するに従って、DYCの駆動力指令値の割合を下げ、横滑り防止制御の制駆動力指令値の割合を上げる。
 これにより、DYC制御による駆動力と横滑り防止制御による制駆動力の指令値が干渉することなく、また連続的に変化させることができるため、運転者に違和感を与えるおそれがない。制駆動トルク指令値TIWMは、インバータ装置8におけるアンチロックブレーキシステム(略称:ABS),トラクションコントロールシステム(略称:TCS)コントローラ27に入力される。ABS,TCSコントローラ27は、アンチロックブレーキ制御とトラクション制御を行い、横滑り防止制御による制駆動トルクによって、車輪1,2がロック若しくはスピンすることを防止する。
 車両として、左右一対の2輪を独立して駆動する2輪独立駆動車を適用しても良い。この場合に、左右一対の前輪2輪を独立して駆動する前輪駆動車では、オーバーステア傾向を低減し得る。左右一対の後輪2輪を独立して駆動する後輪駆動車では、アンダーステア傾向を低減し得る。
 インホイールモータ駆動装置においては、サイクロイド式の減速機、遊星減速機、2軸並行減速機、その他の減速機を適用可能であり、また、減速機を採用しない、所謂ダイレクトモータタイプであってもよい。
 上記安定性判定手段20および制駆動力制御手段21の各部、すなわち、規範ヨーレート演算部22、安定性判定器25、制御器23、規範横滑り角演算部29および横滑り程度算出器24、ならびに制駆動力配分器26は、プロセッサがソフトウェアプログラムを実行することにより好ましくは実現される。ただし、加算器、減算器、微分器、積分器および/または比較器などの組合せで実現される場合、これらがハードウェアで実現されてもよい。
 本発明は、以上の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。
1…前輪(駆動輪)
2…後輪(駆動輪)
3…モータ
4…摩擦式ブレーキ
30(11,12,13,14)…検出手段
20…安定性判定手段
21…制駆動力制御手段

Claims (10)

  1.  少なくとも左右一対の駆動輪を含む複数の車輪を備えた車両の横滑りを防止する、車両の横滑り防止制御装置であって、
     前記車両は、
      前記左右一対の駆動輪をそれぞれ個別に駆動するモータであって、前記駆動輪にそれぞれ対応するモータと、
      少なくとも1つの定められた車両挙動を検出する検出手段と、
      前記複数の車輪のそれぞれに対して摩擦による制動力を与える摩擦式ブレーキとを有し、
     当該横滑り防止制御装置が、
     前記検出手段から、車両挙動を示す情報を取得し、この取得した車両挙動を示す情報から、前記車両が、不安定状態またはこの不安定状態に至る前の安定性低下状態にあるか否かを判定する安定性判定手段と、
     この安定性判定手段により前記車両が前記不安定状態または安定性低下状態にあると判定されたとき、前記左右一対の駆動輪のうちの一方の駆動輪に対し、この駆動輪に対応するモータの回生ブレーキおよび前記摩擦式ブレーキのいずれか一方または両方により制動力を付加すると共に、他方の駆動輪のモータに駆動力を付加する制駆動力制御手段と、
    を備えた、車両の横滑り防止制御装置。
  2.  請求項1に記載の車両の横滑り防止制御装置において、前記左右一対の駆動輪が、前記複数の車輪のうちの左右一対の前輪を含み、前記安定性判定手段が、前記不安定状態または安定性低下状態にあると判定することが、前記車両がオーバーステア状態にあると判定することを含み、前記安定性判定手段により前記車両がオーバーステア状態にあると判定されると、前記制駆動力制御手段は、前記左右一対の前輪である左右一対の駆動輪のうち、曲線走行経路の旋回走行外側輪に制動力を付加すると共に、前記左右一対の駆動輪のうち、曲線走行経路の旋回走行内側輪に駆動力を付加する、車両の横滑り防止制御装置。
  3.  請求項2に記載の車両の横滑り防止制御装置において、前記検出手段が、車速を検出する車速検出手段、横加速度を検出する横加速度センサ、および、ヨーレートを検出するヨーレートセンサを含み、前記安定性判定手段が、前記車速検出手段で検出される車速、前記横加速度センサで検出される横加速度、および、前記ヨーレートセンサで検出されるヨーレートに基づいて求めた横滑り角変化率と閾値との偏差である横滑り角変化率偏差を算出し、前記制駆動力制御手段が、前記横滑り角変化率偏差に応じて付加すべき前記制動力および前記駆動力の大きさを決定する、車両の横滑り防止制御装置。
  4.  請求項2に記載の車両の横滑り防止制御装置において、前記検出手段が、車速を検出する車速検出手段、操舵角を検出する操舵角センサ、および、ヨーレートを検出するヨーレートセンサを含み、前記安定性判定手段が、前記車速検出手段で検出される車速および前記操舵角センサで検出される操舵角に基づいて求めた規範ヨーレートと、前記ヨーレートセンサで検出したヨーレートとの偏差であるヨーレート偏差を算出し、前記制駆動力制御手段が、前記ヨーレート偏差に応じて付加すべき前記制動力および前記駆動力の大きさを決定する、車両の横滑り防止制御装置。
  5.  請求項2に記載の車両の横滑り防止制御装置において、前記検出手段が、車速を検出する車速検出手段、横加速度を検出する横加速度センサ、操舵角を検出する操舵角センサ、および、ヨーレートを検出するヨーレートセンサを含み、前記安定性判定手段が、前記車速検出手段で検出される車速、前記横加速度センサで検出される横加速度、および、前記ヨーレートセンサで検出されるヨーレートに基づいて求めた横滑り角変化率と閾値との偏差である横滑り角変化率偏差を算出し、かつ、前記車速検出手段で検出される車速および前記操舵角センサで検出される操舵角に基づいて求めた規範ヨーレートと、前記ヨーレートセンサで検出したヨーレートとの偏差であるヨーレート偏差を算出し、前記制駆動力制御手段が、前記横滑り角変化率偏差と前記ヨーレート偏差のいずれか一方または両方に応じて付加すべき前記制動力および前記駆動力の大きさを決定する、車両の横滑り防止制御装置。
  6.  請求項1ないし請求項5のいずれか1項に記載の車両の横滑り防止制御装置において、前記左右一対の駆動輪が、前記複数の車輪のうちの左右一対の後輪を含み、前記安定性判定手段が、前記不安定状態または安定性低下状態にあると判定することが、前記車両がアンダーステア状態にあると判定することを含み、前記安定性判定手段により前記車両がアンダーステア状態にあると判定されると、前記制駆動力制御手段は、前記左右一対の後輪である左右一対の駆動輪のうち、曲線走行経路の旋回走行内側輪に制動力を付加すると共に、前記左右一対の駆動輪のうち、曲線走行経路の旋回走行外側輪に駆動力を付加する、車両の横滑り防止制御装置。
  7.  請求項2ないし請求項6のいずれか1項に記載の車両の横滑り防止制御装置において、前記安定性判定手段により前記車両がオーバーステア状態またはアンダーステア状態にあると判定されると、前記制駆動力制御手段が、互いに絶対値の等しい制動力と駆動力とを前記左右一対の駆動輪の各駆動輪にそれぞれ付加する、車両の横滑り防止制御装置。
  8.  請求項2ないし請求項7のいずれか1項に記載の車両の横滑り防止制御装置において、前記制駆動力制御手段が、前記制動力を、その制動力が付加される車輪に対応する前記モータの回生トルクにより付加する、車両の横滑り防止制御装置。
  9.  請求項8に記載の車両の横滑り防止制御装置において、前記制駆動力制御手段が、
      目標制動力が、前記モータの発生可能最大制動力を超えるか否かを判定する制動力判定手段と、
      この制動力判定手段により、目標制動力が前記モータの発生可能最大制動力を超えると判定されると、この超えた分の制動力を、その制動力が付加される車輪に対して前記摩擦式ブレーキで付加する制動力不足分付加手段とを有する、車両の横滑り防止制御装置。
  10.  請求項6に記載の車両の横滑り防止制御装置において、前記安定性判定手段により前記車両がアンダーステア状態またはオーバーステア状態にあると判定されると、前記制駆動力制御手段が、前記左右一対の駆動輪の各駆動輪それぞれに対して、互いに絶対値の等しい制動力と駆動力とを付加するものであり、
     前記安定性判定手段が、
      駆動輪の横滑り程度を算出する横滑り程度算出部を有し、
     前記制駆動力制御手段が、
      前記横滑り程度算出部で算出される横滑り程度が高くなるほど、前記駆動輪に付加する制動力と前記駆動輪に付加する駆動力とに、それぞれ制動力を加算し減速度を生じさせる制駆動力配分器を有する車両の横滑り防止制御装置。
PCT/JP2015/074183 2014-09-01 2015-08-27 車両の横滑り防止制御装置 WO2016035665A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15838207.7A EP3190000B1 (en) 2014-09-01 2015-08-27 Electronic stability control system for vehicle
CN201580046548.2A CN106794777B (zh) 2014-09-01 2015-08-27 防止车辆的横向滑移的控制装置
US15/445,086 US10093308B2 (en) 2014-09-01 2017-02-28 Electronic stability control system for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014177107A JP6472626B2 (ja) 2014-09-01 2014-09-01 車両の横滑り防止制御装置
JP2014-177107 2014-09-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/445,086 Continuation US10093308B2 (en) 2014-09-01 2017-02-28 Electronic stability control system for vehicle

Publications (2)

Publication Number Publication Date
WO2016035665A1 true WO2016035665A1 (ja) 2016-03-10
WO2016035665A8 WO2016035665A8 (ja) 2017-03-02

Family

ID=55439730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074183 WO2016035665A1 (ja) 2014-09-01 2015-08-27 車両の横滑り防止制御装置

Country Status (5)

Country Link
US (1) US10093308B2 (ja)
EP (1) EP3190000B1 (ja)
JP (1) JP6472626B2 (ja)
CN (1) CN106794777B (ja)
WO (1) WO2016035665A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10029679B2 (en) 2016-08-09 2018-07-24 Ford Global Technologies, Llc Controlling skidding vehicles
CN108430847A (zh) * 2016-09-07 2018-08-21 Ntn株式会社 车辆的转弯控制装置
JP2019116144A (ja) * 2017-12-27 2019-07-18 マツダ株式会社 車両の挙動制御装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108778825A (zh) * 2016-05-27 2018-11-09 本田技研工业株式会社 电动车辆
JP6764292B2 (ja) * 2016-09-16 2020-09-30 Ntn株式会社 滑り抑制制御装置
US10990102B2 (en) 2017-06-14 2021-04-27 Motional Ad Llc Adaptive dynamic model for automated vehicle
US10259495B2 (en) * 2017-06-16 2019-04-16 GM Global Technology Operations LLC Systems and methods for real-time steering response compensation in vehicles
KR20200019989A (ko) * 2017-07-27 2020-02-25 닛산 지도우샤 가부시키가이샤 운전 지원 방법 및 운전 지원 장치
CN107953801B (zh) * 2017-11-29 2018-12-07 吉林大学 一种全轮毂电机驱动车辆的驱动力控制方法
KR102384743B1 (ko) * 2018-01-09 2022-04-08 삼성전자주식회사 차량의 자율 주행을 위한 자율 주행 장치 및 그 제어 방법
JP7038971B2 (ja) * 2018-02-19 2022-03-22 マツダ株式会社 車両の制御方法、車両システム及び車両の制御装置
CN110871694B (zh) * 2018-08-30 2022-11-18 上海汽车集团股份有限公司 驱动桥、电驱动系统及其控制方法
JP7032275B2 (ja) * 2018-09-21 2022-03-08 トヨタ自動車株式会社 車両用制動制御装置
JP7056489B2 (ja) * 2018-09-25 2022-04-19 トヨタ自動車株式会社 車両の旋回挙動制御装置
CN110968088B (zh) * 2018-09-30 2023-09-12 百度(美国)有限责任公司 车辆控制参数的确定方法、装置、车载控制器和无人车
US11505176B2 (en) * 2020-06-30 2022-11-22 Rivian Ip Holdings, Llc Systems and methods for controlling torque induced yaw in a vehicle
WO2022026959A1 (en) * 2020-07-31 2022-02-03 Karma Automotive Llc Vehicle drive system
KR20220034976A (ko) * 2020-09-11 2022-03-21 현대자동차주식회사 차량 모터 제어 장치 및 그 방법
EP4240615A4 (en) 2020-11-09 2024-10-02 Zimeno, Inc. DBA Monarch Tractor Battery swap system
US11628827B2 (en) * 2021-01-19 2023-04-18 Denso Ten Limited Vehicle control device and control method
US11708060B2 (en) * 2021-02-02 2023-07-25 GM Global Technology Operations LLC Electrified powertrain with centralized power distribution strategy and decentralized inverters
US11745724B2 (en) * 2021-05-13 2023-09-05 Dana Belgium N.V. Diagnostic and control method for a vehicle system
CN113635889A (zh) * 2021-08-13 2021-11-12 的卢技术有限公司 基于四轮独立驱动电动汽车的车身稳定控制方法和系统
CN114954029A (zh) * 2021-08-25 2022-08-30 长城汽车股份有限公司 四轮驱动车辆的驱动控制方法、装置、车辆及存储介质
US11407298B1 (en) 2021-11-15 2022-08-09 Amos Power, Inc. Removable battery unit for an electric vehicle
US11364959B1 (en) 2021-12-27 2022-06-21 Amos Power, Inc. Modular robotic vehicle
USD1014569S1 (en) 2022-04-01 2024-02-13 Amos Power, Inc. Robotic vehicle
USD1014573S1 (en) 2022-04-01 2024-02-13 Amos Power, Inc. Removable track unit for a robotic vehicle
US11547035B1 (en) 2022-05-24 2023-01-10 Amos Power, Inc. Lift assist for an electrically driven hitch on an robotic vehicle
US20230391206A1 (en) * 2022-06-03 2023-12-07 Rivian Ip Holdings, Llc Motor torque-based vehicle roll stability
CN117002478B (zh) * 2023-08-14 2025-04-22 东风汽车集团股份有限公司 分布式驱动电动汽车的控制方法、控制器、系统及车辆
CN116729390B (zh) * 2023-08-15 2023-11-03 博世汽车部件(苏州)有限公司 车辆脱困辅助系统及其控制单元

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262806A (ja) * 1989-03-31 1990-10-25 Shikoku Sogo Kenkyusho:Kk 電気自動車
JP2005184971A (ja) * 2003-12-18 2005-07-07 Nissan Motor Co Ltd 電動車両のモータ出力制御装置
JP2006327335A (ja) * 2005-05-24 2006-12-07 Nissan Motor Co Ltd 車両のトルク配分制御装置
US20110307129A1 (en) * 2010-06-10 2011-12-15 Ford Global Technologies, Llc Vehicle steerability and stability control via independent wheel torque control
JP2014069766A (ja) * 2012-10-01 2014-04-21 Hitachi Automotive Systems Ltd 車両の運動制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465806A (en) 1989-03-31 1995-11-14 Kabushiki Kaisha Shikoku Sogo Kenkyujo Electric vehicle
US5222568A (en) 1989-03-31 1993-06-29 Kabushiki Kaisha Shikoku Sogo Kenkyujo Electric vehicle
JP3183124B2 (ja) 1995-09-28 2001-07-03 三菱自動車工業株式会社 車両の旋回挙動制御装置
US5927829A (en) * 1995-10-03 1999-07-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Brake apparatus for electric automobile utilizing regenerative braking
US6704622B2 (en) * 2001-12-28 2004-03-09 Visteon Global Technologies, Inc. Vehicle stability control
KR100684033B1 (ko) * 2002-02-23 2007-02-16 주식회사 만도 차량의 주행 안정성 제어방법
JP4186081B2 (ja) * 2005-02-02 2008-11-26 トヨタ自動車株式会社 車輌の制駆動力制御装置
JP5143103B2 (ja) * 2009-09-30 2013-02-13 日立オートモティブシステムズ株式会社 車両の運動制御装置
JP5394279B2 (ja) 2010-02-15 2014-01-22 本田技研工業株式会社 車両のヨーモーメント制御装置
US20120150376A1 (en) * 2010-12-14 2012-06-14 Amp Electric Vehicles Inc. Independent control of drive and non-drive wheels in electric vehicles
US8764126B2 (en) 2011-05-03 2014-07-01 Robert Bosch Gmbh Fuzzy logic based brake control
KR101936132B1 (ko) * 2012-05-25 2019-04-03 현대모비스 주식회사 바퀴제어 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262806A (ja) * 1989-03-31 1990-10-25 Shikoku Sogo Kenkyusho:Kk 電気自動車
JP2005184971A (ja) * 2003-12-18 2005-07-07 Nissan Motor Co Ltd 電動車両のモータ出力制御装置
JP2006327335A (ja) * 2005-05-24 2006-12-07 Nissan Motor Co Ltd 車両のトルク配分制御装置
US20110307129A1 (en) * 2010-06-10 2011-12-15 Ford Global Technologies, Llc Vehicle steerability and stability control via independent wheel torque control
JP2014069766A (ja) * 2012-10-01 2014-04-21 Hitachi Automotive Systems Ltd 車両の運動制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190000A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10029679B2 (en) 2016-08-09 2018-07-24 Ford Global Technologies, Llc Controlling skidding vehicles
CN108430847A (zh) * 2016-09-07 2018-08-21 Ntn株式会社 车辆的转弯控制装置
EP3511218A4 (en) * 2016-09-07 2020-04-22 NTN Corporation VEHICLE TURN CONTROL SYSTEM
US10940853B2 (en) 2016-09-07 2021-03-09 Ntn Corporation Vehicular turning control system
CN108430847B (zh) * 2016-09-07 2022-06-03 Ntn株式会社 车辆的转弯控制装置
JP2019116144A (ja) * 2017-12-27 2019-07-18 マツダ株式会社 車両の挙動制御装置

Also Published As

Publication number Publication date
JP6472626B2 (ja) 2019-02-20
WO2016035665A8 (ja) 2017-03-02
EP3190000A4 (en) 2018-05-02
JP2016052208A (ja) 2016-04-11
CN106794777A (zh) 2017-05-31
US20170166203A1 (en) 2017-06-15
US10093308B2 (en) 2018-10-09
EP3190000B1 (en) 2021-03-17
EP3190000A1 (en) 2017-07-12
CN106794777B (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
WO2016035665A1 (ja) 車両の横滑り防止制御装置
US10857995B2 (en) Vehicle attitude control device
EP3511218B1 (en) Vehicular turning control system
EP3050765B1 (en) Control device for electric vehicle
CN109070877B (zh) 车辆的转弯控制装置
JP6542017B2 (ja) 車両姿勢制御装置
JP6584779B2 (ja) 車両姿勢制御装置
CN107848527B (zh) 车辆转弯控制装置
US10933875B2 (en) Vehicle turning control device
WO2019059131A1 (ja) 車両制御装置
WO2016125686A1 (ja) 車両の制駆動トルク制御装置
CN107848426B (zh) 车轮独立驱动式车辆的驱动控制装置
JP6585446B2 (ja) 車両の制駆動力制御装置
JP6664885B2 (ja) 車両の制駆動トルク制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015838207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838207

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载