+

WO2016032408A1 - Procédé de charge de batteries à haut rendement et dispositif à panneau solaire utilisant une technique de surveillance de puissance maximale - Google Patents

Procédé de charge de batteries à haut rendement et dispositif à panneau solaire utilisant une technique de surveillance de puissance maximale Download PDF

Info

Publication number
WO2016032408A1
WO2016032408A1 PCT/TR2015/000059 TR2015000059W WO2016032408A1 WO 2016032408 A1 WO2016032408 A1 WO 2016032408A1 TR 2015000059 W TR2015000059 W TR 2015000059W WO 2016032408 A1 WO2016032408 A1 WO 2016032408A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
value
variable
voltage
tbit
Prior art date
Application number
PCT/TR2015/000059
Other languages
English (en)
Inventor
Fehmi KAYA
Alpaslan YIGIT
Erdinc YALVAC
Yunus SENER
Original Assignee
Aselsan Elektronik Sanayi Ve Ticaret Anonim Şirketi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aselsan Elektronik Sanayi Ve Ticaret Anonim Şirketi filed Critical Aselsan Elektronik Sanayi Ve Ticaret Anonim Şirketi
Publication of WO2016032408A1 publication Critical patent/WO2016032408A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • Solar panel is an energy source comprising a plurality of solar cells which are used for absorbing solar energy thereon.
  • current voltage (1-V) and power curve graph of the solar panel in Figure 1 it is shown that current and voltage at which maximum power is generated at the outlet of the solar panel at a certain lighting and temperature is defined. Maximum power is obtained by working the solar panel in the said current and voltage value.
  • I-V curve shows current-voltage curve of the solar panel. The voltage decreases while the current is decreasing, and the voltage is increasing while the current is decreasing.
  • the P curve present in the same figure shows the power curve which is the multiplication of current and voltage values in 1-V curve. Power also increases up to a certain point while the current is increasing, and then it decreases.
  • the current value at the place where the panel outlet power is maximum is called as Im (I maximum power), and the voltage value is called as V m p (V maximum power).
  • Figure 8 is the circuit diagram of DAC R-2R step structure.
  • FIG. 9 is the circuit diagram of battery current detector
  • Figure 19 is sub steps of step of monitoring sudden power change, and approximating maximum power point according to power difference obtained in a predetermined number of iterations.
  • Figure 24 is the sub steps of step of preventing the batteries from being over charged above their normal values.
  • Figure 25 is the circuit diagram of the simulated circuit.
  • the capacitor at pin no "1" (TMR) of LT4356-3 integrate adjusts the turning off time. This level is 500us for 6.3 A, 200us for 6.5A, and 60us for 10A.
  • Pin no "10" (FLT) of the said integrate is drawn to the ground in case of an error, and this information is read by the microprocessor (4).
  • There is an open collector transistor is present at pin no " ⁇ ' (EN) of the said integrate.
  • TR103 transistor remains drawn to the ground after it is turned on completely, and it shows high impedance after it is turned on completely. This pin is connected to RUN pin of the converter (5). By this means, the converter (5) is prevented from operating until the output of the protection circuit (2) is fixed.
  • Pins no " 14" (AOUT) and " 16" (IN+) of the said integrate are used for detecting high voltage and turn off the output.
  • a comparator is provided on IN+ pin.
  • a circuit diagram of a microprocessor (4) used in the charging device (1) is used in Figure 1 1.
  • a dsPIC30F6014 integrate is used in order to monitor the maximum power of the solar panel, limit the output current according to the type of the battery, control the temperature of the device, run the LEDs showing the charging state such that user interface will be generated.
  • the microprocessor (4) has 16 channel ADC (Analogue Digital Converter) structure. Nine of these channels are used.
  • the part shown as ADC in Figure 1 1 1 shows the used pins of the microprocessor (4). Six of them are used for detecting ADC input output current and voltages, two of them are used for detecting temperature, one of them is used for detecting the type of the batter ⁇ ' which is charged.
  • the charging device (1 ) can charge two four cell Li -I on/Polymer or one four channel Li-Ion/Polymer batteries.
  • the information what type of battery is connected goes to the microprocessor (4) according to the battery which is connected to the connector of the charging device (1 ).
  • the voltage value read from the "RB10" (CONTROL) pin given in Figure 1 1 enables to detect what type of battery is connected according to the resistance value connected to the battery connector. If the said resistance is connected to the ground, the maximum charging current is adjusted as 2A, 1A for each cell. In case resistance is not connected, the maximum charging current is adjusted as 4A, 3A for each cell.
  • the microprocessor (4) enables to adjust maximum charging current by receiving battery type information.
  • the software operating the charging method (100) inside the microprocessor (4) is developed by using "FLOWCODE” program. This program creates "hex” file from the flowchart.
  • the flowchart of the inventive charging method (100) is shown in Figure 13.
  • next step of charging period (100) it is controlled whether the battery is connected (103).
  • This method step is shown in Figure 16.
  • This method step is comprised of a loop, and in order that this loop can continue, first it is queried whether the voltage of the batteries being charged is lower than a predetermined level (401). If the voltage of the batteries is not lower than 1 1 .5V, this step is stopped (402). If the voltage of the batteries is lower than 11.5V, the second LED of the LEDs used in the invention is turned off, the information that the battery is not connected to the charging device (1) is shown (403). Then, "tbit" variable is reset (404). Each interval of the said "tbit” variable corresponds to nearly 20mA.
  • next step it is queried whether "NOBATTERYcounter” variable is lower than a certain level (426). If “NOBATTERYcounter” variable the value of which is increased “ ⁇ ' more in each loop has reached “60" or the battery is connected to the charging device (1), the loop ends. If the value of "NOBATTERYcounter” variable is lower than “60”. it is waited for a predetermined time (for example 1 second) (427), current and voltages are read (428), and "NOBATTERYcounter” variable is increased “1” more (429). By means of this method, it is enabled that the converter (5) is turned off while the batteries are not connected and it is waited for 60 seconds.
  • a predetermined time for example 1 second
  • first decreasing level is adjusted according to the value of "tbit” variable. For this it is queried whether the value of "tbit” variable is higher than a predetermined level (706). If “tbit” variable is higher than "100”, the value of this variable is decreased “10” less (707). If “tbit” variable is less than "100”, it is queried whether the value of "tbit” variable is between "100” and "50” (708).
  • step 103) and (107) amongst the steps of the charging method (100) it is approached to the maximum power point partially, however full operating point (operating point at maximum power) cannot be found since "tbit" variable is increased and decreased so many times in the said steps.
  • step of finding maximum power point by using previous and present values of power and current (109) it is enabled to approach maximum power point more sensitively since "tbit" variable is increased and decreased one by one, and the solar panel is enabled to find its maximum power ( Figure 20).
  • first new and previous power values are compared (901), and then ; 'XOR Function * ' is applied with "DECIDE" variable.
  • step (901) the voltage of the solar panel is also controlled and charging current is decreased if this current is less than 10V.
  • step of controlling current value (905) if less current than the current limit determined according to battery type passes, the current is increased (906), if more current than the current limit passes, the current is decreased.
  • currentcounter variable is increased "1 " more 897) and it is queried whether the value of currentcounter is more than two (908). If the current value is more than the limit in three consecutive steps, "tbit" value is decreased (909) and currentcounter variable is reset (910). Therefore in step (901 ), the output current is enabled to be below the determined limit as well as the maximum power point is being monitored. Then, the voltage of the solar panel is compared with the battery voltages (91 1 ).
  • next step it is queried whether the value of 2 nd bit of "tbit” variable is "1" (1 104). If the value of 2 nd bit of "tbit” variable is "1 ", D12 pin is made “1 “ (1 105); if it is not D12 pin is made “0” (1106).
  • next step it is queried whether the value of 6 ,h bit of "tbit” variable is "1" (1116). If the value of 6 th bit of "tbit” variable is "1”, D14 pin is made “1” (1 117); if it is not, D14 pin is made “0” (1 1 18).
  • next step of charging method (100) it is waited for the current coming to the desired level after the charging current value is adjusted (1 12).
  • the waiting time here is preferably 200ms, the purpose of waiting process is that the adjusted charging current, thus the input current, becomes stable.
  • next step of charging method (100) it is controlled whether the batteries are full by controlling the voltage and charging current of the batteries ( 1 13), therefore it is controlled whether charging process is controlled.
  • the sub steps of this method are shown in Figure 22.
  • step (1307) The subs steps of step of controlling whether charging process is completed mentioned in step (1307) are shown in Figure 23.
  • first voltage and currents are read (1311), and the total of battery currents is recorded to a temporary variable (TEMPCURRENT). (1312).
  • TEMPCURRENT a temporary variable
  • tbit a temporary variable
  • charging current is increases when the value of "tbit” variable is increased, it means that charging process is not completed and it is exited from this macro. If charging current does not increase even though “tbit” value is increased, it means that charging process is completed and LED1 is turned off and charging complete information is sent to the user (1318). Then the value of "tbit” variable is reset (1319), the value of the sais “tbit” variable is transferred to DAC and charging current is reset (1320). Then, “chargingcounter” variable is reset (1321 ). The said “chargingcounter” valuable is used to determine the maximum loop number of a loop to be gotten into after this step. In this loop, first it is queried whether the value of "chargingcounter” variable is higher than a predetermined level (1322).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

La présente invention concerne un dispositif de charge (1) permettant de réduire de temps de charge des batteries en utilisant une technique de surveillance de puissance maximale et le panneau solaire à haut rendement, et qui est essentiellement caractérisé par au moins un circuit de protection (2) qui assure une protection contre une connexion inversée d'un courant d'entrée à haute tension, au moins un circuit intermédiaire (3) qui permet de lire le courant prélevé à la sortie du circuit de protection (2) et la tension générée et comprend un circuit de filtrage, au moins un microprocesseur (4), au moins un convertisseur (5) qui est conçu pour ajuster le niveau de courant de charge et pour charger les batteries, au moins une diode active (6) qui empêche la batterie/les batteries à charger de se décharger en sens inverse, au moins un convertisseur à 5V (7) qui convertit la tension variable provenant du panneau solaire en un niveau de tension, de 5V, et un procédé (100).
PCT/TR2015/000059 2014-08-28 2015-02-20 Procédé de charge de batteries à haut rendement et dispositif à panneau solaire utilisant une technique de surveillance de puissance maximale WO2016032408A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TR2014/10120A TR201410120A2 (tr) 2014-08-28 2014-08-28 Maksimum güç izleme tekniği kullanılarak güneş paneli ile yüksek verimli pil şarj yöntemi ve cihazı.
TR2014/10120 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016032408A1 true WO2016032408A1 (fr) 2016-03-03

Family

ID=52824532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2015/000059 WO2016032408A1 (fr) 2014-08-28 2015-02-20 Procédé de charge de batteries à haut rendement et dispositif à panneau solaire utilisant une technique de surveillance de puissance maximale

Country Status (3)

Country Link
SA (1) SA115360724B1 (fr)
TR (1) TR201410120A2 (fr)
WO (1) WO2016032408A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105652760A (zh) * 2016-03-08 2016-06-08 北京龙鼎源科技股份有限公司 单片机的电源保护系统及方法
CN106356978A (zh) * 2016-10-14 2017-01-25 武汉美格科技股份有限公司 一种智能太阳能充电器
CN109546708A (zh) * 2018-12-19 2019-03-29 合肥联宝信息技术有限公司 充电电路及其保护方法
CN111342785A (zh) * 2020-03-13 2020-06-26 北京星际荣耀空间科技有限公司 一种信号调理电路
CN112512162A (zh) * 2020-11-11 2021-03-16 合肥保利新能源科技有限公司 基于nb-iot通信的太阳能路灯的蓄电池监控控制器及方法
CN113225015A (zh) * 2021-05-18 2021-08-06 深圳市爱庞德新能源科技有限公司 一种提升太阳能板发电利用率的方法
CN113627724A (zh) * 2021-07-02 2021-11-09 江苏能电科技有限公司 电量合理分配的方法、装置、存储介质及太阳能路灯设备
CN113864133A (zh) * 2020-06-30 2021-12-31 北京金风科创风电设备有限公司 超级电容器的电容特性检测方法、装置以及变桨系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0260798A2 (fr) 1986-08-04 1988-03-23 Amoco Corporation Procédé de récupération de soufre en utilisant des absorbants d'oxydes métalliques
US5648731A (en) * 1993-05-11 1997-07-15 Trw Inc. Method of checking solar panel characteristics in an operating solar electrical system
WO2006002380A2 (fr) 2004-06-24 2006-01-05 Ambient Control Systems, Inc. Systemes et procedes de poursuite du pic d'energie d'un microcapteur photovoltaique
CN102638195A (zh) 2012-03-31 2012-08-15 东北大学 一种太阳能发电系统控制装置及方法
WO2013105008A2 (fr) 2012-01-11 2013-07-18 Koninklijke Philips N.V. Convertisseur d'énergie solaire et procédé de commande de conversion d'énergie solaire
WO2013163350A1 (fr) 2012-04-25 2013-10-31 Inovus Solar, Inc. Optimisation de la production d'énergie par un panneau photovoltaïque courbe
US20140176076A1 (en) * 2012-12-26 2014-06-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for charging the same
US8773077B1 (en) * 2010-03-05 2014-07-08 University Of Central Florida Research Foundation, Inc. Controllers for battery chargers and battery chargers therefrom

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0260798A2 (fr) 1986-08-04 1988-03-23 Amoco Corporation Procédé de récupération de soufre en utilisant des absorbants d'oxydes métalliques
US5648731A (en) * 1993-05-11 1997-07-15 Trw Inc. Method of checking solar panel characteristics in an operating solar electrical system
WO2006002380A2 (fr) 2004-06-24 2006-01-05 Ambient Control Systems, Inc. Systemes et procedes de poursuite du pic d'energie d'un microcapteur photovoltaique
US8773077B1 (en) * 2010-03-05 2014-07-08 University Of Central Florida Research Foundation, Inc. Controllers for battery chargers and battery chargers therefrom
WO2013105008A2 (fr) 2012-01-11 2013-07-18 Koninklijke Philips N.V. Convertisseur d'énergie solaire et procédé de commande de conversion d'énergie solaire
CN102638195A (zh) 2012-03-31 2012-08-15 东北大学 一种太阳能发电系统控制装置及方法
WO2013163350A1 (fr) 2012-04-25 2013-10-31 Inovus Solar, Inc. Optimisation de la production d'énergie par un panneau photovoltaïque courbe
US20140176076A1 (en) * 2012-12-26 2014-06-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for charging the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105652760A (zh) * 2016-03-08 2016-06-08 北京龙鼎源科技股份有限公司 单片机的电源保护系统及方法
CN106356978A (zh) * 2016-10-14 2017-01-25 武汉美格科技股份有限公司 一种智能太阳能充电器
CN106356978B (zh) * 2016-10-14 2023-12-29 武汉美格科技股份有限公司 一种智能太阳能充电器
CN109546708A (zh) * 2018-12-19 2019-03-29 合肥联宝信息技术有限公司 充电电路及其保护方法
CN109546708B (zh) * 2018-12-19 2024-02-27 合肥联宝信息技术有限公司 充电电路及其保护方法
CN111342785A (zh) * 2020-03-13 2020-06-26 北京星际荣耀空间科技有限公司 一种信号调理电路
CN111342785B (zh) * 2020-03-13 2024-05-24 北京星际荣耀空间科技股份有限公司 一种信号调理电路
CN113864133B (zh) * 2020-06-30 2022-11-15 北京金风科创风电设备有限公司 超级电容器的电容特性检测方法、装置以及变桨系统
CN113864133A (zh) * 2020-06-30 2021-12-31 北京金风科创风电设备有限公司 超级电容器的电容特性检测方法、装置以及变桨系统
CN112512162A (zh) * 2020-11-11 2021-03-16 合肥保利新能源科技有限公司 基于nb-iot通信的太阳能路灯的蓄电池监控控制器及方法
CN113225015B (zh) * 2021-05-18 2022-07-05 深圳市爱庞德新能源科技有限公司 一种提升太阳能板发电利用率的方法
CN113225015A (zh) * 2021-05-18 2021-08-06 深圳市爱庞德新能源科技有限公司 一种提升太阳能板发电利用率的方法
CN113627724A (zh) * 2021-07-02 2021-11-09 江苏能电科技有限公司 电量合理分配的方法、装置、存储介质及太阳能路灯设备
CN113627724B (zh) * 2021-07-02 2024-04-05 江苏能电科技有限公司 电量合理分配的方法、装置、存储介质及太阳能路灯设备

Also Published As

Publication number Publication date
SA115360724B1 (ar) 2018-04-15
TR201410120A2 (tr) 2016-03-21

Similar Documents

Publication Publication Date Title
WO2016032408A1 (fr) Procédé de charge de batteries à haut rendement et dispositif à panneau solaire utilisant une technique de surveillance de puissance maximale
US12255449B2 (en) System and method for interconnected elements of a power system
JP5557224B2 (ja) 電力変換器不良状態の検出のための装置
US8884465B2 (en) System and method for over-voltage protection in a photovoltaic system
US9929570B2 (en) Control apparatus to control discharge from battery units
US7391188B2 (en) Current prediction in a switching power supply
US9484802B2 (en) Soft-off control circuit, power converter and associated control method
US9059593B2 (en) Charge controlling system, charge controlling apparatus, charge controlling method and discharge controlling apparatus
US20080111517A1 (en) Charge Controller for DC-DC Power Conversion
US8421400B1 (en) Solar-powered battery charger and related system and method
EP1821386A2 (fr) Appareil de charge pour source d'alimentation de type stockage de condensateur et appareil de décharge pour source d'alimentation de type stockage de condensateur
US20170141725A1 (en) Systems And Methods For Controlling Maximum Power Point Tracking Controllers
EP2824533A2 (fr) Système photovoltaïque
CN101542883A (zh) 开关调节器及其操作控制方法
EP3823152A1 (fr) Système de conversion de puissance, circuit de conversion, procédé de conversion et programme
US9124191B2 (en) Power supply apparatus, power controlling system and starting method for electric apparatus
TWI488022B (zh) 可調整最大功率點追蹤控制器及其相關方法
US20130113416A1 (en) Charge/discharge controlling apparatus and charge/discharge controlling system
US8044533B2 (en) Solar module and method of controlling operation of a solar module
US11329488B2 (en) Power conversion system, method for controlling converter circuit, and program
KR101968154B1 (ko) 태양광 발전 시스템 및 그 제어 방법
US9257861B2 (en) Control apparatus and control method
KR102365558B1 (ko) Led 조명등의 잔광제거 장치와, 이를 구비한 led 조명등의 구동장치 및 led 조명장치
CN104854528A (zh) 用于控制最大功率点跟踪控制器的系统和方法
US7432687B2 (en) High efficiency switching power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15715872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15715872

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载