+

WO2016017812A1 - Magnetic disk-use glass substrate manufacturing method and magnetic disk manufacturing method - Google Patents

Magnetic disk-use glass substrate manufacturing method and magnetic disk manufacturing method Download PDF

Info

Publication number
WO2016017812A1
WO2016017812A1 PCT/JP2015/071854 JP2015071854W WO2016017812A1 WO 2016017812 A1 WO2016017812 A1 WO 2016017812A1 JP 2015071854 W JP2015071854 W JP 2015071854W WO 2016017812 A1 WO2016017812 A1 WO 2016017812A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
magnetic disk
polishing
organic particles
particles
Prior art date
Application number
PCT/JP2015/071854
Other languages
French (fr)
Japanese (ja)
Inventor
俵 義浩
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201580039998.9A priority Critical patent/CN106537505B/en
Priority to JP2016538469A priority patent/JP6282741B2/en
Priority to SG11201610744YA priority patent/SG11201610744YA/en
Publication of WO2016017812A1 publication Critical patent/WO2016017812A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a method for manufacturing a glass substrate for a magnetic disk used for a magnetic disk mounted as an information recording medium of a magnetic recording device such as a hard disk drive (hereinafter abbreviated as “HDD”), and a method for manufacturing a magnetic disk. .
  • a hard disk drive hereinafter abbreviated as “HDD”
  • a magnetic disk as one of information recording media mounted on a magnetic recording apparatus such as an HDD.
  • a magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and an aluminum substrate has been conventionally used as the substrate.
  • the ratio of the glass substrate capable of narrowing the distance between the magnetic head and the magnetic disk as compared with the aluminum substrate is gradually increasing.
  • the surface of the glass substrate is polished with high accuracy so as to increase the recording density so that the flying height of the magnetic head can be reduced as much as possible.
  • HDDs high recording capacity and lower prices. In order to achieve this, it is necessary to further improve the quality and cost of glass substrates for magnetic disks. It is coming.
  • a conventional glass substrate polishing method is performed using a polishing pad of a polisher such as polyurethane while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica.
  • a glass substrate having high smoothness can be obtained by polishing using, for example, a cerium oxide-based abrasive and then finishing polishing (mirror polishing) using colloidal silica abrasive grains.
  • the influence of the substrate on the reliability of the HDD becomes large for the following reason.
  • the flying height of the magnetic head (the gap between the magnetic head and the surface of the medium (magnetic disk)) is greatly reduced (lower flying height).
  • the distance between the magnetic head and the magnetic layer of the medium is reduced, so that signals can be written to smaller areas and signals of smaller magnetic particles can be picked up, achieving higher recording density. can do.
  • DFH Dynamic Flying Height
  • This does not reduce the flying height of the slider, but uses the thermal expansion of a heating part such as a heater built in the vicinity of the recording / reproducing element part of the magnetic head, so that only the recording / reproducing element part protrudes toward the medium surface. This is a (closer) function. Under such circumstances, in order to realize a low flying height of the magnetic head, further smoothness of the glass substrate surface is required.
  • the abrasive grains are interposed between the glass surface and the polishing pad, but since the polishing pad is pressed against the glass surface with a predetermined load, minute abrasive grains sink into the polishing pad. Therefore, it is presumed that the amount of protrusion contributing to polishing is reduced and the grinding amount is remarkably reduced, so that the effect of reducing the surface roughness due to polishing cannot be exhibited.
  • cleaning is performed for the purpose of removing the abrasive grains adhering to the glass surface.
  • alkali cleaning is usually performed. Since the alkali component has an etching effect on glass, an increase in the roughness of the glass substrate surface after cleaning has been conventionally confirmed.
  • colloidal silica has the same degree of hardness as glass. Therefore, in polishing using colloidal silica as abrasive grains, a non-uniform work-affected layer is formed on the glass surface. The action is also considered to be involved in the increase in the roughness of the glass surface. For example, it is possible to suppress the formation of a non-uniform work-affected layer by making the abrasive grains finer, but as described above, if the abrasive grains are made finer, the effect of reducing the surface roughness by polishing cannot be obtained. .
  • the generation of scratches is suppressed by using composite particles (heteroaggregates) of organic particles and inorganic particles having a size equal to or larger than that of the organic particles as abrasive grains. It is disclosed.
  • inorganic particles such as silica particles substantially exhibit a grinding action on glass, and polishing is performed using such abrasive grains. Even if processing is performed, it is difficult to fundamentally solve the conventional problems.
  • next-generation substrates for 750 gigabyte magnetic disks
  • further improvement of the substrate surface roughness from the current product is required, for example, the surface roughness Ra is 0.1 nm or less. Therefore, there is a limit to the conventional roughness improving method, and it is difficult to develop the next generation substrate as described above.
  • the present invention has been made to solve such a conventional problem, and its purpose is to reduce the surface roughness of the main surface of the glass substrate as compared with the present, and to greatly reduce surface defects. It is providing the manufacturing method of the glass substrate for magnetic discs which can be manufactured, and the manufacturing method of a magnetic disc using the glass substrate obtained by this manufacturing method.
  • the present inventor reduced the surface roughness of the glass substrate in the polishing step and obtained the surface of the glass substrate in the cleaning step after polishing in order to obtain a glass substrate having a surface roughness further reduced than the current level.
  • a method of not increasing the roughness was studied.
  • it was surprisingly found that the above-mentioned problem of reducing the surface roughness can be solved by using organic particles as abrasive grains.
  • polishing is considered to proceed without forming a non-uniform work-affected layer on the glass surface in the polishing step under load.
  • the roughness of the glass substrate surface after polishing can be reduced, and the increase in the roughness of the glass substrate surface after cleaning can be suppressed by selecting a cleaning liquid that does not have an etching action on the glass. It has been found that, for example, the surface roughness Ra required for the generation substrate can be 0.1 nm or less.
  • the present inventor can significantly reduce the number of foreign matter adhesion defects on the surface of the glass substrate by classifying the organic particles used as abrasive grains. As a result, the next generation substrate is required. It has been found that low surface roughness and low surface defects can be realized at a high level.
  • the present inventor has completed the present invention. That is, the present invention has the following configuration in order to achieve the above object.
  • (Configuration 1) A method for producing a glass substrate for a magnetic disk, comprising a treatment for reducing the roughness of the main surface of a glass substrate using a treatment liquid containing organic particles as abrasive grains, and foreign matter on the surface of the glass substrate after the treatment
  • (Configuration 2) The method for producing a glass substrate for a magnetic disk according to Configuration 1, wherein the organic particles are classified so as to reduce the number of particles having a particle size of 3 ⁇ m or less.
  • (Configuration 3) 3. The method for producing a glass substrate for a magnetic disk according to Configuration 2, wherein the number of particles having a particle size of 3 ⁇ m or less contained in the organic particles is classified so as to be 5% or less in the number particle size distribution. .
  • (Configuration 4) The method for producing a glass substrate for a magnetic disk according to any one of Structures 1 to 3, wherein the classified organic particles have an average particle diameter in the range of 5 to 30 ⁇ m.
  • (Configuration 5) The method of manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 4, wherein the organic particles are made of a styrene resin, an acrylic resin, or a urethane resin.
  • the surface roughness of the main surface of the glass substrate can be further reduced compared to the current surface by performing the processing of the main surface of the glass substrate using a treatment liquid containing classified organic particles as abrasive grains.
  • a high-quality glass substrate for a magnetic disk that can greatly reduce foreign matter adhesion defects on the glass substrate surface.
  • the above configuration of the present invention makes it possible to manufacture a high-quality magnetic disk glass substrate suitable for manufacturing a magnetic disk having a higher recording density than ever before, for example, exceeding 750 gigabytes. It is. Further, by using the glass substrate for magnetic disk obtained by the present invention, it is possible to manufacture a magnetic disk having a higher recording density than ever before, for example, exceeding 750 gigabytes.
  • a glass substrate for a magnetic disk is usually manufactured through a grinding process, a shape processing process, an end surface polishing process, a main surface polishing process, a chemical strengthening process, and the like.
  • a disk-shaped glass substrate (glass disk) is molded from molten glass by direct pressing.
  • a glass substrate may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method.
  • the main surface of the molded glass substrate is ground for improving dimensional accuracy and shape accuracy.
  • a main surface of the glass substrate is ground using a hard abrasive such as diamond, usually using a double-side grinding machine.
  • a hard abrasive such as diamond
  • a mirror polishing process is performed to obtain a highly accurate flat surface.
  • a mirror polishing method for a glass substrate has been performed using a polishing pad such as polyurethane foam while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica. .
  • a magnetic head having the above-described DFH control function is employed.
  • a treatment liquid containing organic particles as abrasive grains is used.
  • organic particles are included as abrasive grains. It is. That is, by using organic particles having lower hardness and elasticity than glass as abrasive grains, polishing is considered to proceed without forming a non-uniform work-affected layer on the glass surface in the polishing process under load. The roughness of the subsequent glass substrate surface can be reduced.
  • the glass substrate after cleaning An increase in surface roughness can be suppressed.
  • the surface roughness of the glass substrate surface is required for the next generation substrate, for example, arithmetic average
  • the roughness Ra can be reduced to 0.1 nm or less, and a high-quality glass substrate for a magnetic disk can be manufactured. Therefore, when manufacturing a magnetic disk having a higher recording density than ever, such as exceeding 750 gigabytes, a suitable high-quality glass substrate for a magnetic disk is manufactured in order to achieve a lower flying height than before. It is possible.
  • the treatment liquid (polishing liquid) applied to the polishing treatment is a combination of a polishing material (abrasive grains) and water as a solvent, and further includes a pH adjuster for adjusting the pH of the treatment liquid and other additives. It is contained as needed.
  • the treatment liquid contains organic particles as abrasive grains. These organic particles are particles made of a resin having lower hardness than glass and having elasticity.
  • the material is preferably made of an acrylic resin such as polymethyl methacrylate (PMMA), a urethane resin, or a resin material such as a styrene resin.
  • the acrylic resin may be a homopolymer containing only an acrylic monomer component, or a copolymer of an acrylic monomer component (main component) and another type of monomer component.
  • the urethane resin may be a homopolymer of only the urethane monomer component, or may be a copolymer of a urethane monomer component (main component) and another type of monomer component.
  • the styrenic resin may be a homopolymer of only a styrene monomer component or a copolymer of a styrene monomer component (main component) and another type of monomer component.
  • an acrylic resin or a urethane resin from the viewpoint of good dispersibility in water and easy slurry formation.
  • organic particles made of the above acrylic resin not only a resin material made of a single acrylic monomer component but also organic particles made of a copolymer resin material containing a plurality of different acrylic monomer components can be used. .
  • the organic particles contained in the treatment liquid as abrasive grains are classified.
  • Commercially available organic particles for example, acrylic resin particles such as PMMA
  • organic particles include uncrosslinked or low-crosslinked fine resin particles that are inevitably generated by the production method. These can be said to be immature organic particles that could not be grown to the original resin particles.
  • the present inventors have found that it is important to classify organic particles used as abrasive grains. That is, by removing as much as possible the specific particle size portion contained in the organic particles, and using the organic particles thus classified as abrasive grains, the low surface roughness of the glass substrate after processing is reduced.
  • the present inventor conducted a detailed investigation on foreign matters on the substrate surface after polishing with organic particles using a scanning electron microscope (SEM), an energy dispersive X-ray analyzer (EDS), etc. I have determined that particles are the main cause. Furthermore, it has been found that the particle diameter of these fine resin particles is approximately 3 ⁇ m or less. That is, it has been found for the first time that the number of foreign matter adhesion defects on the glass substrate surface after polishing with organic particles can be greatly reduced by removing particles having a size of 3 ⁇ m or less.
  • SEM scanning electron microscope
  • EDS energy dispersive X-ray analyzer
  • the surface roughness of the main surface of the glass substrate is further reduced compared to the current surface by performing a polishing process on the main surface of the glass substrate using a treatment liquid containing classified organic particles as abrasive grains.
  • foreign matter adhesion defects on the surface of the glass substrate can be greatly reduced.
  • low surface roughness and low surface defects can be realized at a high level required for the next generation substrate. It is possible to manufacture quality glass substrates for magnetic disks.
  • the present inventor it is desirable to classify so as to reduce the number of particles having a particle size of 3 ⁇ m or less contained in the organic particles. As a result, it is possible to sufficiently remove the fine resin particles contained in the organic particles that are not crosslinked or have a low degree of crosslinking. Further, according to further studies by the present inventor, more specific conditions for sufficiently obtaining the effect of greatly reducing the number of foreign matter adhesion defects on the glass substrate surface after the treatment are included in the organic particles. When the number of particles having a particle size of 3 ⁇ m or less is accumulated in the number particle size distribution, it is preferably classified to be 5% or less, more preferably 3% or less, and 2% or less. Even more desirable.
  • the number of particles having a particle size in the range of 0 to 3 ⁇ m is preferably 5% or less of the total number of particles.
  • the number particle size distribution is a relationship in which the horizontal axis indicates the particle diameter ( ⁇ m) and the vertical axis indicates the number (%).
  • the classification method is not particularly limited, and for example, a commercially available powder classifier can be used.
  • a commercially available classifier classifiers such as a swirling airflow type, a Coanda airflow type, and a swivel screen type are known.
  • classification is preferably performed so as to reduce the number of particles having a particle size of 3 ⁇ m or less contained in the organic particles, so it is desirable to appropriately set the classification conditions. Further, the classification is not limited to once, and may be repeated a plurality of times so that the preferable classification is performed.
  • organic particles since it is necessary to have low friction in order to rotate the platen under a load, it is preferably substantially spherical, and resin beads having a uniform particle size are desirable.
  • organic particles having a substantially spherical shape and a uniform particle diameter can be obtained by the above classification.
  • the average particle diameter of the classified organic particles is preferably in the range of 5 to 30 ⁇ m, more preferably 10 to 30 ⁇ m.
  • the average particle size is less than 5 ⁇ m, it becomes difficult to obtain processability for smoothing the substrate surface with respect to glass. In addition to the influence of the particle size itself, this is presumed to be because the shape of the organic particles tends not to be spherical.
  • the average particle size exceeds 30 ⁇ m, the viscosity of the treatment liquid increases and it becomes difficult to obtain processability for smoothing the good substrate surface.
  • the average particle size of the organic particles means that when the cumulative curve is obtained by setting the total volume of the powder population in the particle size distribution measured by the light scattering method as 100%, the cumulative curve is 50%. (Referred to as “cumulative average particle diameter (50% diameter)”, hereinafter abbreviated as “D50”). Specifically, the cumulative average particle size is a value obtained using a particle size / particle size distribution measuring apparatus.
  • the concentration of the organic particles in the treatment liquid is not particularly limited, but can be in the range of 0.1 to 5% by weight from the viewpoint of the substrate surface quality after treatment and the processing rate. In particular, the range of 1 to 3% by weight is preferable.
  • the treatment liquid containing organic particles used in the present invention is at least one additive selected from a material that exhibits a lubricating effect and a material that exhibits a moisturizing effect, from the viewpoint of reducing scratches due to adhesion of the resin by drying. It may contain.
  • additives include glycols (ethylene glycol, propylene glycol, hexylene glycol, etc.), amines (monoethanolamine, diethanolamine, triethanolamine, isopropanolamine, etc.), carboxylic acid, mineral oil, water-soluble Oily emulsion, polyethyleneimine, boric acid, amide, triazines, benzothiazole, benzotriazole, ethers, and the like.
  • the addition amount of the additive is not particularly limited, but is preferably in the range of 0.01 to 1% by weight from the viewpoint of workability.
  • the treatment liquid is used as, for example, a polishing liquid.
  • the polishing method is not particularly limited, but, for example, as in the prior art, the glass substrate and the polishing pad are brought into contact, The surface of the glass substrate may be polished into a mirror surface by relatively moving the polishing pad and the glass substrate while supplying a treatment liquid containing organic particles as abrasive grains.
  • the polishing pad for example, the same one as a polishing pad made of foamed polyurethane, which is applied in a mirror polishing process using conventional colloidal silica abrasive grains, can be applied.
  • the hardness of the polishing pad is not limited to that of silica abrasive grains. This is because the resin abrasive grains themselves have pad cushioning properties. Therefore, in the mirror polishing process using the organic particle abrasive grains of the present invention, a polishing pad harder than, for example, a foamed polyurethane polishing pad applied in the conventional mirror polishing process using colloidal silica abrasive grains is applied. It is also possible. Use of a hard polishing pad is advantageous because the waviness of the substrate surface can be reduced.
  • the hardness of the polishing pad is preferably 70 to 90 in terms of Asker C hardness, and more preferably 80 to 90. Furthermore, a suede-type foamed polyurethane polishing pad is more preferable because the generation of fine scratches can be reduced.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a planetary gear type double-side polishing apparatus that can be used in a mirror polishing process of a glass substrate.
  • the double-side polishing apparatus shown in FIG. 1 meshes with the sun gear 2, the internal gear 3 arranged concentrically on the outer side, the sun gear 2 and the internal gear 3, and the sun gear 2 and the internal gear 3.
  • An upper surface plate 5 and a lower surface plate 6 on which a carrier 4 that revolves and rotates according to rotation, and a polishing pad 7 that can hold the workpiece 1 held by the carrier 4 are attached, and an upper surface plate
  • a processing liquid supply unit (not shown) for supplying a processing liquid (polishing liquid) is provided between 5 and the lower surface plate 6.
  • the workpiece 1 held by the carrier 4, that is, the glass substrate is sandwiched between the upper surface plate 5 and the lower surface plate 6, and the upper and lower surface plates 5, 6 are polished.
  • the carrier 4 rotates and revolves according to the rotation of the sun gear 2 and the internal gear 3. The upper and lower surfaces of the workpiece 1 are polished.
  • the applied load is preferably in the range of 50 gf / cm 2 or more and 200 gf / cm 2 or less.
  • the surface roughness can be further reduced by polishing the main surface of the glass substrate with the processing surface pressure within the above range using the treatment liquid containing the abrasive grains of the organic particles of the present invention.
  • the mirror polishing process of the main surface of the glass substrate is a polishing process (first polishing process) for removing scratches and distortion remaining in the grinding process, while maintaining the flat surface obtained in this polishing process, Generally, it is performed through two steps of a finish polishing step (second polishing step) that finishes the surface roughness of the glass substrate main surface into a smooth mirror surface.
  • second polishing step finishes the surface roughness of the glass substrate main surface into a smooth mirror surface.
  • treatment final finish polishing treatment
  • a treatment liquid using the organic particles of the present invention as abrasive grains is applied.
  • the conventional finish polishing step is usually performed using colloidal silica abrasive grains having an average particle diameter of about 10 to 40 nm. After this, a treatment liquid using the organic particles of the present invention as abrasive grains was applied. By performing the treatment (final finish polishing treatment), it is possible to further reduce the surface roughness. As described above, it is difficult to further reduce the surface roughness even if the final finish polishing is performed using colloidal silica abrasive grains that are finer or larger than the above particle size range.
  • the main surface of the glass substrate using a treatment liquid containing organic particles of the present invention as abrasive grains Is preferably mirror-polished.
  • the main surface of the glass substrate having a work-affected layer is preferably subjected to mirror polishing using a treatment liquid containing the organic particles of the present invention as abrasive grains.
  • the roughness of the main surface of the glass substrate before the mirror polishing using the treatment liquid containing the organic particles of the present invention as abrasive grains is such that the arithmetic average roughness Ra is 0.3 nm or less, more preferably 0.2 nm. Is preferred. By doing so, it is possible to further reduce the substrate surface roughness by polishing treatment using the organic particles of the present invention as abrasive grains, for example, Ra can be finished to 0.2 nm or less, more preferably 0.1 nm or less. is there.
  • the roughness Ra of the main surface of the substrate before the polishing treatment with organic particles is larger than 0.3 nm, it may take a long time to sufficiently reduce the roughness. This is presumably because the hardness of the organic particles is lower than that of the glass substrate.
  • cleaning is performed for the purpose of removing abrasive grains adhering to the glass substrate surface. It is preferable to clean the glass substrate with a system cleaner.
  • the organic cleaning agent can dissolve (or swell) and remove organic particles that are abrasive grains, while having no etching or leaching action on glass. That is, since it is possible to perform cleaning by selecting a cleaning solution that does not have an etching action or a leaching action on the glass, it is possible to suppress an increase in the roughness of the glass substrate surface after the cleaning.
  • the ultra-low roughness (high smoothness) obtained by the mirror polishing process using organic particles as abrasive grains can be maintained as it is after cleaning.
  • the surface roughness of the main surface of the glass substrate can be further reduced as compared with the current level, and thus a high-quality glass substrate can be produced.
  • an organic cleaning agent such as an organic solvent or an amine compound is preferable.
  • the organic solvent include aromatic hydrocarbons such as toluene, xylene, and styrene, chlorinated aromatic hydrocarbons such as chlorobenzene and orthochlorobenzene, dichloromethane, trichloromethane, tetrachloromethane, and 1,2-dichloroethane.
  • Examples of the amine compound include ethylenediamine, diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, pentaethylenehexamine, 2-[(2-aminoethyl) amino] ethanol, 2- [methyl [2- ( Dimethylamino) ethyl] amino] ethanol, 2,2 '-(ethylenebisimino) bisethanol, N- (2-hydroxyethyl) -N'-(2-aminoethyl) ethylenediamine, 2,2 '-(2- Aminoethylimino) diethanol, N1, N4-bis (hydroxyethyl) diethylenetriamine, N1, N7-bis (hydroxyethyl) diethylenetriamine, 1,3-diamino-2-propanol, piperazine, 1-methylpiperazine, 3- (1- Piperazinyl) -1-amine, 1- (2-aminoethyl) piperazine, 4-methylpiperazine-1-amine, 1-piperazinemethanamine
  • the present inventor used a treatment liquid containing organic particles as abrasive grains, and after polishing the main surface of the glass substrate, the organic adhered to the glass substrate surface. It has been found that it is particularly suitable to use an organic solvent that can swell the particles or part thereof. Here, swelling is a phenomenon in which organic particles swell by absorbing an organic solvent.
  • the part of the organic particles is excluded from a part of the organic particles formed, for example, when the organic particles are broken during the polishing process, or from the crosslinked body when the organic particles are crosslinked into a spherical shape. It means a part of organic particles adhering to the glass substrate surface.
  • the present inventor found that the ratio of the solubility parameter (SP value) of the organic solvent to the solubility parameter (SP value) of the monomer component of the resin constituting the organic particles is the detergency of the organic solvent. It has been found that it is preferable to select an organic solvent in which the ratio is within a specific range from the viewpoint of improving the detergency of organic particles.
  • solubility parameter (SP value) of the monomer component of the resin constituting the organic particles is SP1
  • solubility parameter (SP value) of the organic solvent is SP2
  • SP2 / SP1 is 0.9 to 1.1. It is preferable to select an organic solvent that falls within the above range, and to perform a treatment in which the selected organic solvent is brought into contact with the glass substrate surface after the polishing treatment.
  • the present inventor also has a correlation with the detergency of the organic solvent with respect to the ratio of the molecular weight of the organic solvent to the molecular weight of the monomer component of the resin constituting the organic particles, and the ratio is within a specific range. It has been found that selecting an organic solvent is preferable from the viewpoint of improving the cleaning properties of organic particles.
  • the organic solvent is selected so that MW2 / MW1 is in the range of 0.5 to 1.5.
  • the above SP2 / SP1 is in the range of 0.9 to 1.1, and the above MW2 / MW1 is in the range of 0.5 to 1.5.
  • an organic solvent is selected.
  • the organic particle is a copolymer resin material containing a plurality of monomer components, an organic solvent that satisfies the above relationship can be selected for any of the monomer components.
  • an aluminosilicate glass containing SiO 2 as a main component and further containing alumina as the glass (glass type) constituting the glass substrate.
  • a glass substrate using such glass can be finished to a smooth mirror surface by mirror polishing the surface, and the strength after processing is good. Further, the strength can be further increased by chemical strengthening.
  • the glass may be crystallized glass or amorphous glass. By using amorphous glass, the surface roughness of the main surface when the glass substrate is used can be further reduced.
  • an aluminosilicate glass SiO 2 is 58 wt% to 75 wt%, Al 2 O 3 is 5 wt% to 23 wt%, Li 2 O is 3 wt% to 10 wt%, Na 2
  • An aluminosilicate glass containing O as a main component in an amount of 4 wt% or more and 13 wt% or less can be used.
  • the alkaline earth metal oxide is 5% by weight or more
  • SiO 2 is 62% by weight or more and 75% by weight or less
  • Al 2 O 3 is 5% by weight or more and 15% by weight or less
  • Li 2 O is added.
  • amorphous aluminosilicate glass containing no phosphorus oxide having a weight ratio of 0.5 to 2.0 and a weight ratio of Al 2 O 3 / ZrO 2 of 0.4 to 2.5 can be obtained.
  • heat resistance may be required as a characteristic of a next-generation substrate (for example, a substrate used for a magnetic disk applied to a heat-assisted magnetic recording method).
  • a next-generation substrate for example, a substrate used for a magnetic disk applied to a heat-assisted magnetic recording method.
  • an alkaline earth metal oxide is 5% by weight or more, and the following is expressed in mol%, SiO 2 is 50 to 75%, Al 2 O 3 is 0 to 6%, BaO 0-2%, Li 2 O 0-3%, ZnO 0-5%, Na 2 O and K 2 O in total 3-15%, MgO, CaO, SrO and BaO in total 14 to 35%, ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 in total 2 to 9%, A glass having a ratio [(MgO + CaO) / (MgO + CaO
  • the surface of the glass substrate after the final finish polishing treatment using organic particles has an arithmetic average surface roughness Ra of 0.2 nm or less, more preferably 0.1 nm or less, and particularly preferably 0.06 nm or less. It is preferable to be a mirror surface. Furthermore, it is preferable that the mirror surface has a maximum peak height Rp of 2.0 nm or less, more preferably 1.0 nm or less.
  • Ra and Rp refer to roughness based on Japanese Industrial Standard (JIS) B0601.
  • the surface roughness is practically the surface roughness obtained by measuring the range of 1 ⁇ m ⁇ 1 ⁇ m with a resolution of 256 ⁇ 256 pixels using an atomic force microscope (AFM). Preferred above.
  • chemical strengthening treatment can be performed before or after the mirror polishing process.
  • a method of chemical strengthening treatment for example, a low-temperature ion exchange method in which ion exchange is performed in a temperature range that does not exceed the temperature of the glass transition point, for example, a temperature of 300 degrees Celsius or more and 400 degrees Celsius or less is preferable.
  • the chemical strengthening treatment is a process in which a molten chemical strengthening salt is brought into contact with a glass substrate, whereby an alkali metal element having a relatively large atomic radius in the chemical strengthening salt and a relatively small atomic radius in the glass substrate.
  • the chemically strengthened glass substrate is excellent in impact resistance, it is particularly preferable for mounting on a HDD for mobile use, for example.
  • alkali metal nitric acid such as potassium nitrate or sodium nitrate can be preferably used.
  • the surface roughness of the main surface of the glass substrate is further reduced by reducing the surface roughness of the glass substrate by using, for example, mirror polishing of the glass substrate using the treatment liquid containing the organic particles of the present invention as abrasive grains.
  • the treatment using the organic particles of the present invention is a treatment for reducing the roughness of the main surface of the glass substrate.
  • the foreign particle adhesion defect of the glass substrate surface after a process can be reduced significantly by this organic particle being classify
  • the surface roughness of the main surface of the glass substrate can be further reduced compared to the current surface by processing the main surface of the glass substrate using a treatment liquid containing classified organic particles as abrasive grains.
  • a treatment liquid containing classified organic particles as abrasive grains it is possible to manufacture a high-quality glass substrate for a magnetic disk that can greatly reduce foreign matter adhesion defects on the surface of the glass substrate.
  • the glass substrate for a magnetic disk manufactured by the present invention is suitable for a glass substrate used for a magnetic disk mounted on an HDD including a DFH type magnetic head capable of realizing an ultra-low flying height.
  • the present invention also provides a method for manufacturing a magnetic disk using the above glass substrate for a magnetic disk.
  • the magnetic disk is manufactured by forming at least a magnetic layer (magnetic recording layer) on the glass substrate for magnetic disk according to the present invention.
  • a material for the magnetic layer a hexagonal CoCrPt-based or CoPt-based ferromagnetic alloy having a large anisotropic magnetic field can be used.
  • a method of forming the magnetic layer it is preferable to use a method of forming a magnetic layer on a glass substrate by a sputtering method, for example, a DC magnetron sputtering method.
  • a protective layer and a lubricating layer may be formed in this order on the magnetic layer.
  • the protective layer an amorphous hydrogenated carbon-based protective layer is suitable.
  • the protective layer can be formed by a plasma CVD method.
  • a lubricant having a functional group at the end of the main chain of the perfluoropolyether compound can be used.
  • the lubricating layer can be applied and formed by a dip method.
  • the glass substrate having ultra-smoothness and low surface defects obtained by the present invention By using the glass substrate having ultra-smoothness and low surface defects obtained by the present invention, even when recording / reproducing is performed with a DFH head, problems such as recording / reproducing errors and head crashes do not occur and the reliability is high.
  • a magnetic disk can be obtained. Therefore, it is suitable for manufacturing a magnetic disk with a higher recording density than ever before, for example, exceeding the next generation, for example, 750 gigabytes.
  • Examples 1 to 3 Comparative Example 1
  • a glass substrate made of disc-shaped aluminosilicate glass having a diameter of 66 mm ⁇ and a thickness of 1.0 mm was obtained from molten glass by direct pressing using an upper die, a lower die, and a barrel die.
  • a glass substrate may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method.
  • the main surface polishing step was performed using a double-side polishing apparatus as shown in FIG.
  • a double-side polishing machine a glass substrate held by a carrier is closely attached between an upper and lower polishing surface plate to which a polishing pad is attached, and this carrier is engaged with a sun gear (sun gear) and an internal gear (internal gear).
  • the glass substrate is sandwiched between upper and lower surface plates.
  • a polishing liquid is supplied and rotated between the polishing pad and the polishing surface of the glass substrate, whereby the glass substrate revolves while rotating on the surface plate to simultaneously polish both surfaces.
  • a polishing process was performed using a hard polisher (hard urethane foam) as a polisher.
  • cerium oxide was dispersed as an abrasive.
  • the glass substrate after the polishing step was washed and dried.
  • Main surface final finish polishing step Polishing the abrasive particles adjusted to pH 2 to 10 by adding 1% by weight of organic particles made from PMMA resin (acrylic resin) with an average particle size of 19 ⁇ m (after classification) to water. A liquid was used. The organic particles are classified using a swirling airflow classifier so that the number of particles having a particle size of 3 ⁇ m or less contained in the organic particles is 5% or less in the number particle size distribution. The polishing method was performed in the same manner as the above-described finish polishing step. The glass substrate after the final finish polishing step was washed and dried. As a cleaning method after the final finish polishing, isopropyl alcohol having a water content of 1.0% by weight or less was used for the cleaning liquid, and cleaning was performed by applying ultrasonic waves while the glass substrate was immersed in the cleaning liquid.
  • PMMA resin acrylic resin
  • Ra The surface roughness (Ra) of the main surface of the glass substrate for magnetic disk after washing was measured with an atomic force microscope (AFM), and as a result, Ra was reduced to 0.1 nm or less.
  • AFM atomic force microscope
  • the number of foreign matter adhesion defects on the main surface of the glass substrate after cleaning was counted from an image in the range of 10 ⁇ m ⁇ 10 ⁇ m of AFM, and the results are shown in Table 1.
  • Example 2 the final finish polishing in the same manner as in Example 1 above, except that the abrasive grains used in the main surface final finish polishing step were changed to organic particles made from styrene resin having an average particle size of 19 ⁇ m (after classification), Washing was performed to obtain a glass substrate for magnetic disk (Example 2). Further, the final finish polishing in the same manner as in Example 1 above, except that the abrasive grains used in the main surface final finish polishing step were changed to organic particles made from urethane resin having an average particle size of 19 ⁇ m (after classification). Washing was performed to obtain a glass substrate for magnetic disk (Example 3).
  • the organic particles used in Examples 2 and 3 were both swirling air classifiers, and the number of particles having a particle size of 3 ⁇ m or less contained in the organic particles was 5 in the number particle size distribution. It is classified so that it becomes less than%.
  • the final finish polishing and cleaning are performed in the same manner as in Example 1 except that the abrasive used in the main surface final finish polishing step is changed to organic particles made of PMMA resin having an average particle diameter of 19 ⁇ m as a raw material.
  • a glass substrate for magnetic disk (Comparative Example 1) was obtained.
  • the said organic particle used what was not classifying like Example 1.
  • FIG. The number of particles having a particle size of 3 ⁇ m or less contained in the organic particles was about 10% in the number particle size distribution.
  • Example 4 to 7 Regarding the organic particles used in Example 1, the classification rate in the number particle size distribution of the number of particles having a particle size of 3 ⁇ m or less contained in the organic particles was variously changed as shown in Table 2. Except that the abrasive grains used in the main surface final finish polishing step of Example 1 were changed to these organic particles, final finish polishing and cleaning were performed in the same manner as in Example 1 to obtain a glass substrate for a magnetic disk ( Examples 4 to 7) were obtained. For the magnetic disk glass substrates obtained in Examples 4 to 7, the optical surface inspection apparatus OSA was used to count the number of foreign matter adhesion defects on the cleaned glass substrate main surface (the entire substrate surface). The results are summarized in Table 2 below.
  • the number of particles having a particle size of 3 ⁇ m or less contained in the organic particles is The number of foreign matter adhesion defects on the surface of the glass substrate after processing can be significantly reduced by using as the abrasive grains those classified so as to be 5% or less in the number particle size distribution. More preferably, it is 3% or less, and further preferably 2% or less.
  • Example 1 the final finish polishing and cleaning were performed under the same conditions as in Example 1 except that the average particle diameter of the organic particles was set to 5 ⁇ m, 10 ⁇ m, and 30 ⁇ m to obtain glass substrates for magnetic disks (Examples 8 and 9). , 10).
  • the classification rate in the number particle size distribution of the number of particles having a particle size of 3 ⁇ m or less contained in these organic particles was 5% or less.
  • the number of foreign matter adhesion defects was evaluated in the same manner as in Example 1 for the obtained glass substrates of Examples 8, 9, and 10, they were 1, 0, and 0, respectively.
  • Example 2 the final finish polishing was performed under the same conditions as in Example 1 except that organic particles classified so that the number of particles having a particle size of 2 ⁇ m or less contained in the organic particles was 5% or less in the number particle size distribution were used. Then, a glass substrate for magnetic disk was obtained (Reference Example 1). Further, the final finish polishing is performed under the same conditions as in Example 1 except that organic particles classified so that the number of particles having a particle size of 1 ⁇ m or less contained in the organic particles is 5% or less in the number particle size distribution are used. The glass substrate for magnetic disk was obtained (Reference Example 2).
  • the following film forming steps were applied to the magnetic disk glass substrates obtained in Example 1 to obtain magnetic disks for perpendicular magnetic recording. That is, an adhesion layer made of a Ti-based alloy thin film, a soft magnetic layer made of a CoTaZr alloy thin film, an underlayer made of a Ru thin film, a perpendicular magnetic recording layer made of a CoCrPt alloy, a carbon protective layer, and a lubricating layer are sequentially formed on the glass substrate. A film was formed.
  • the protective layer is for preventing the magnetic recording layer from deteriorating due to contact with the magnetic head, and is made of hydrogenated carbon, and provides wear resistance.
  • the lubricating layer was formed by dipping a liquid lubricant of alcohol-modified perfluoropolyether. As a result of performing a glide characteristic test on the obtained magnetic disk using a DFH head, a head crash did not occur and good results were obtained.

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

The present invention provides a magnetic disk-use glass substrate manufacturing method by which the surface roughness of a glass substrate main surface can be reduced even more than by existing methods, and by which surface defects can also be greatly reduced. This magnetic disk-use glass substrate manufacturing method includes processing for reducing the roughness of the main surface of the glass substrate by using a processing liquid which contains, as an abrasive, organic particles comprising, for example, styrene resin, acrylic resin, or urethane resin. In order to reduce foreign-matter adherence defects on the glass substrate surface which was subjected to the abovementioned processing, the organic particles are classified so as to reduce, for example, the number of the particles having a diameter of 3μm or less, such particles included in the organic particles.

Description

磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
 本発明は、ハードディスクドライブ(以下、「HDD」と略称する。)等の磁気記録装置の情報記録媒体として搭載される磁気ディスクに用いられる磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法に関する。 The present invention relates to a method for manufacturing a glass substrate for a magnetic disk used for a magnetic disk mounted as an information recording medium of a magnetic recording device such as a hard disk drive (hereinafter abbreviated as “HDD”), and a method for manufacturing a magnetic disk. .
 HDD等の磁気記録装置に搭載される情報記録媒体の一つとして磁気ディスクがある。磁気ディスクは、基板上に磁性層等の薄膜を形成して構成されたものであり、その基板として従来はアルミ基板が用いられてきた。しかし、最近では、高記録密度化の追求に呼応して、アルミ基板と比べて磁気ヘッドと磁気ディスクとの間隔をより狭くすることが可能なガラス基板の占める比率が次第に高くなってきている。また、ガラス基板表面は磁気ヘッドの浮上高さを極力下げることができるように、高精度に研磨して高記録密度化を実現している。近年、HDDの更なる大記録容量化、低価格化の要求は増すばかりであり、これを実現するためには、磁気ディスク用ガラス基板においても更なる高品質化、低コスト化が必要になってきている。 There is a magnetic disk as one of information recording media mounted on a magnetic recording apparatus such as an HDD. A magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and an aluminum substrate has been conventionally used as the substrate. However, recently, in response to the pursuit of higher recording density, the ratio of the glass substrate capable of narrowing the distance between the magnetic head and the magnetic disk as compared with the aluminum substrate is gradually increasing. Further, the surface of the glass substrate is polished with high accuracy so as to increase the recording density so that the flying height of the magnetic head can be reduced as much as possible. In recent years, there has been an increasing demand for HDDs with higher recording capacity and lower prices. In order to achieve this, it is necessary to further improve the quality and cost of glass substrates for magnetic disks. It is coming.
 上述したように高記録密度化にとって必要な低フライングハイト(浮上量)化のために磁気ディスク表面の高い平滑性は必要不可欠である。磁気ディスク表面の高い平滑性を得るためには、結局、高い平滑性の基板表面が求められるため、高精度にガラス基板表面を研磨する必要がある。
 従来のガラス基板の研磨方法は、酸化セリウムやコロイダルシリカ等の金属酸化物の研磨材を含有するスラリー(研磨液)を供給しながら、ポリウレタン等のポリシャの研磨パッドを用いて行っている。高い平滑性を有するガラス基板は、たとえば酸化セリウム系研磨材を用いて研磨した後、さらにコロイダルシリカ砥粒を用いた仕上げ研磨(鏡面研磨)によって得ることが可能である。
As described above, high smoothness on the surface of the magnetic disk is indispensable for reducing the flying height (flying height) necessary for increasing the recording density. In order to obtain a high smoothness on the surface of the magnetic disk, a substrate surface with a high smoothness is required in the end. Therefore, it is necessary to polish the glass substrate surface with high accuracy.
A conventional glass substrate polishing method is performed using a polishing pad of a polisher such as polyurethane while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica. A glass substrate having high smoothness can be obtained by polishing using, for example, a cerium oxide-based abrasive and then finishing polishing (mirror polishing) using colloidal silica abrasive grains.
特開2011-136402号公報JP 2011-136402 A
 現在のHDDにおいては、例えば2.5インチ型(直径65mm)の磁気ディスクにディスク1枚あたり320ギガバイト程度の情報を収納することが可能になっているが、更なる高記録密度化、例えば750ギガバイト、更には1テラバイトの実現が要求されるようになってきている。このような近年のHDDの大容量化の要求に伴い、基板表面品質の向上の要求は今まで以上に厳しいものとなってきている。上記のような例えば750ギガバイトの磁気ディスク向けの次世代基板においては、HDDの信頼性に与える基板の影響が大きくなるので、基板表面の粗さについても現行品からの更なる改善が求められる。 In current HDDs, for example, it is possible to store about 320 gigabytes of information per disk on a 2.5 inch type (65 mm diameter) magnetic disk. However, even higher recording density such as 750 is possible. The realization of a gigabyte or even 1 terabyte is being demanded. With the recent demand for larger capacity of HDDs, the demand for improvement of the substrate surface quality has become more severe than ever. In the next generation substrate for a magnetic disk of, for example, 750 gigabytes as described above, since the influence of the substrate on the reliability of the HDD is increased, further improvement of the substrate surface roughness from the current product is required.
 次世代基板においてはHDDの信頼性に与える基板の影響が大きくなるのは以下のような理由による。
 磁気ヘッドの浮上量(磁気ヘッドと媒体(磁気ディスク)表面との間隙)の大幅な低下(低浮上量化)が挙げられる。こうすることで、磁気ヘッドと媒体の磁性層との距離が近づくため、より小さい領域に信号を書き込むことや、より小さい磁性粒子の信号を拾うことができるようになり、高記録密度化を達成することができる。近年、DFH(Dynamic Flying Height)制御という機能が磁気ヘッドに搭載されている。これは、スライダーの浮上量を下げるのではなく、磁気ヘッドの記録再生素子部近傍に内蔵したヒーター等の加熱部の熱膨張を利用して、記録再生素子部のみを媒体表面方向に向けて突き出す(近づける)機能である。このような状況下で、磁気ヘッドの低浮上量化を実現するためには、ガラス基板表面のよりいっそうの平滑性が必要となってくる。
In the next generation substrate, the influence of the substrate on the reliability of the HDD becomes large for the following reason.
For example, the flying height of the magnetic head (the gap between the magnetic head and the surface of the medium (magnetic disk)) is greatly reduced (lower flying height). By doing this, the distance between the magnetic head and the magnetic layer of the medium is reduced, so that signals can be written to smaller areas and signals of smaller magnetic particles can be picked up, achieving higher recording density. can do. In recent years, a function called DFH (Dynamic Flying Height) control is mounted on a magnetic head. This does not reduce the flying height of the slider, but uses the thermal expansion of a heating part such as a heater built in the vicinity of the recording / reproducing element part of the magnetic head, so that only the recording / reproducing element part protrudes toward the medium surface. This is a (closer) function. Under such circumstances, in order to realize a low flying height of the magnetic head, further smoothness of the glass substrate surface is required.
 ところで、従来技術では、ガラス基板主表面の粗さを低減させる方法として、研磨工程に使用する研磨砥粒の粒径を微細化する方法がよく知られている。
 しかしながら、本発明者の検討によると、例えば従来の仕上げ研磨に使用するコロイダルシリカ砥粒の場合、例えば平均粒子径10nm以下のものを使用しても研磨後のガラス表面の粗さの低下傾向が見られなくなった。研磨時、研磨砥粒はガラス表面と研磨パッドの間に介在しているが、研磨パッドは所定の荷重によりガラス表面に圧接しているため、微小の砥粒は研磨パッドの内部に沈み込んでしまい、研磨に寄与する突出量が減少し、研削量が著しく低下することにより、研磨による表面粗さの低減効果が発揮できなくなったのではないかと推測される。
By the way, in the prior art, as a method of reducing the roughness of the main surface of the glass substrate, a method of refining the grain size of the abrasive grains used in the polishing step is well known.
However, according to the study of the present inventor, for example, in the case of colloidal silica abrasive grains used for conventional finish polishing, for example, even if one having an average particle diameter of 10 nm or less is used, the roughness of the glass surface after polishing tends to decrease. I can no longer see it. During polishing, the abrasive grains are interposed between the glass surface and the polishing pad, but since the polishing pad is pressed against the glass surface with a predetermined load, minute abrasive grains sink into the polishing pad. Therefore, it is presumed that the amount of protrusion contributing to polishing is reduced and the grinding amount is remarkably reduced, so that the effect of reducing the surface roughness due to polishing cannot be exhibited.
 また、研磨後は、ガラス表面に付着した砥粒の除去を目的とした洗浄が行われるが、コロイダルシリカなどの無機砥粒を除去するための洗浄では、通常アルカリ洗浄が行われる。アルカリ成分はガラスに対してエッチング効果を持つため、洗浄後のガラス基板表面の粗さの上昇が従来より確認されている。 In addition, after the polishing, cleaning is performed for the purpose of removing the abrasive grains adhering to the glass surface. In the cleaning for removing inorganic abrasive grains such as colloidal silica, alkali cleaning is usually performed. Since the alkali component has an etching effect on glass, an increase in the roughness of the glass substrate surface after cleaning has been conventionally confirmed.
 特にコロイダルシリカはガラスと同程度の硬度を有するため、コロイダルシリカを砥粒とする研磨加工においては、ガラス表面に不均一な加工変質層が形成されるため、この加工変質層に対するアルカリ成分のエッチング作用もガラス表面の粗さの上昇に関与していると考えられる。たとえば砥粒を微細化することで不均一な加工変質層の形成を抑えることは可能であるが、上記のとおり、砥粒を微細化していくと研磨による表面粗さの低減効果も得られなくなる。 In particular, colloidal silica has the same degree of hardness as glass. Therefore, in polishing using colloidal silica as abrasive grains, a non-uniform work-affected layer is formed on the glass surface. The action is also considered to be involved in the increase in the roughness of the glass surface. For example, it is possible to suppress the formation of a non-uniform work-affected layer by making the abrasive grains finer, but as described above, if the abrasive grains are made finer, the effect of reducing the surface roughness by polishing cannot be obtained. .
 なお、上記特許文献1には、有機粒子と該有機粒子と同等以上の大きさの無機粒子との複合粒子(ヘテロ凝集体)を研磨砥粒として用いることで、スクラッチ発生が抑制されることが開示されている。
 しかし、上記特許文献1に開示された研磨砥粒においては、例えばシリカ粒子等の無機粒子が実質的にはガラスに対する研削作用を発揮するものと考えられ、このような研磨砥粒を用いて研磨加工を行っても、従来の問題を根本的に解決することは困難である。
In the above-mentioned Patent Document 1, the generation of scratches is suppressed by using composite particles (heteroaggregates) of organic particles and inorganic particles having a size equal to or larger than that of the organic particles as abrasive grains. It is disclosed.
However, in the abrasive grains disclosed in the above-mentioned Patent Document 1, it is considered that inorganic particles such as silica particles substantially exhibit a grinding action on glass, and polishing is performed using such abrasive grains. Even if processing is performed, it is difficult to fundamentally solve the conventional problems.
 要するに、例えば750ギガバイトの磁気ディスク向けの次世代基板の製造を目指す場合、基板表面の粗さについても現行品からの更なる改善が求められ、例えば表面粗さRaが0.1nm以下であることが要求されるとすると、従来技術による粗さ改善方法では限界があり、上記のような次世代基板の開発は到底困難である。 In short, for example, when aiming to manufacture next-generation substrates for 750 gigabyte magnetic disks, further improvement of the substrate surface roughness from the current product is required, for example, the surface roughness Ra is 0.1 nm or less. Therefore, there is a limit to the conventional roughness improving method, and it is difficult to develop the next generation substrate as described above.
 また、次世代基板に要求されるのは低表面粗さだけではなく、低表面欠陥であることも厳しく要求されている。表面欠陥の低減は、一見、研磨後の洗浄によって解決できるようにも思われるが、研磨後にガラス表面に付着したコロイダルシリカなどの無機砥粒を十分に除去するためには、通常、強いアルカリ洗浄条件を適用する必要があり、このような洗浄条件を適用した場合、上記のとおり、洗浄後のガラス基板表面の粗さが上昇してしまうという問題が発生する。つまり、従来技術の適用では、次世代基板に要求される高いレベルの表面品質要求を満足するような低表面粗さと低表面欠陥の両方の課題を同時に解決することは困難であった。 Also, not only low surface roughness but also low surface defects are required strictly for next-generation substrates. Although it seems that the reduction of surface defects can be solved by cleaning after polishing, in order to sufficiently remove inorganic abrasive grains such as colloidal silica adhering to the glass surface after polishing, it is usually strong alkaline cleaning. It is necessary to apply conditions, and when such cleaning conditions are applied, there arises a problem that the roughness of the glass substrate surface after cleaning increases as described above. In other words, with the application of the prior art, it has been difficult to simultaneously solve the problems of both low surface roughness and low surface defects that satisfy the high level surface quality requirements required for next generation substrates.
 そこで、本発明はこのような従来の課題を解決すべくなされたものであって、その目的は、ガラス基板主表面の表面粗さを現行よりも低減でき、なお且つ表面欠陥についても大幅に低減できる磁気ディスク用ガラス基板の製造方法、およびかかる製造方法により得られたガラス基板を用いる磁気ディスクの製造方法を提供することである。 Therefore, the present invention has been made to solve such a conventional problem, and its purpose is to reduce the surface roughness of the main surface of the glass substrate as compared with the present, and to greatly reduce surface defects. It is providing the manufacturing method of the glass substrate for magnetic discs which can be manufactured, and the manufacturing method of a magnetic disc using the glass substrate obtained by this manufacturing method.
 そこで、本発明者は、表面粗さを現行よりもさらに低減させたガラス基板を得るために、研磨工程にてガラス基板の表面粗さを低減させ、かつ研磨後の洗浄工程ではガラス基板の表面粗さを上昇させない方法を検討した。その検討の結果、意外にも、有機粒子を砥粒として用いることにより上記の表面粗さ低減の課題を解決できることを見出した。 Therefore, the present inventor reduced the surface roughness of the glass substrate in the polishing step and obtained the surface of the glass substrate in the cleaning step after polishing in order to obtain a glass substrate having a surface roughness further reduced than the current level. A method of not increasing the roughness was studied. As a result of the investigation, it was surprisingly found that the above-mentioned problem of reducing the surface roughness can be solved by using organic particles as abrasive grains.
 すなわち、ガラスよりも低硬度の有機粒子を研磨砥粒として用いる処理を施すことにより、荷重下における研磨工程ではガラス表面に不均一な加工変質層を形成させることなく研磨が進行すると考えられるため、研磨後のガラス基板表面の粗さを低減させることができ、しかもガラスに対するエッチング作用を持たない洗浄液の選定により洗浄後のガラス基板表面の粗さの上昇を抑制することができ、その結果、次世代基板に要求される例えば表面粗さRaが0.1nm以下とすることも達成可能であることを見出した。 That is, by applying a treatment using organic particles having a hardness lower than that of glass as polishing abrasive grains, polishing is considered to proceed without forming a non-uniform work-affected layer on the glass surface in the polishing step under load. The roughness of the glass substrate surface after polishing can be reduced, and the increase in the roughness of the glass substrate surface after cleaning can be suppressed by selecting a cleaning liquid that does not have an etching action on the glass. It has been found that, for example, the surface roughness Ra required for the generation substrate can be 0.1 nm or less.
 そして、本発明者は、さらなる検討の結果、砥粒として用いる上記有機粒子を分級することにより、ガラス基板表面の異物付着欠陥数を大幅に低減でき、結果的に、次世代基板に要求される高いレベルで低表面粗さ及び低表面欠陥を実現できることを見出した。 As a result of further studies, the present inventor can significantly reduce the number of foreign matter adhesion defects on the surface of the glass substrate by classifying the organic particles used as abrasive grains. As a result, the next generation substrate is required. It has been found that low surface roughness and low surface defects can be realized at a high level.
 本発明者は、上記知見に基づき、本発明を完成させるに至った。
 すなわち、本発明は上記目的を達成するために、以下の構成を有する。
(構成1)
 磁気ディスク用ガラス基板の製造方法であって、有機粒子を砥粒として含む処理液を用いて、ガラス基板の主表面の粗さを低減させる処理を含み、前記処理後の前記ガラス基板表面の異物付着欠陥を低減させるべく、前記有機粒子は分級されていることを特徴とする磁気ディスク用ガラス基板の製造方法。
Based on the above findings, the present inventor has completed the present invention.
That is, the present invention has the following configuration in order to achieve the above object.
(Configuration 1)
A method for producing a glass substrate for a magnetic disk, comprising a treatment for reducing the roughness of the main surface of a glass substrate using a treatment liquid containing organic particles as abrasive grains, and foreign matter on the surface of the glass substrate after the treatment A method for producing a glass substrate for a magnetic disk, wherein the organic particles are classified to reduce adhesion defects.
(構成2)
 前記有機粒子に含まれている粒径3μm以下の粒子数を減少させるように分級されていることを特徴とする構成1に記載の磁気ディスク用ガラス基板の製造方法。
(構成3)
 前記有機粒子に含まれている粒径3μm以下の粒子数を、個数粒度分布において5%以下となるように分級されていることを特徴とする構成2に記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 2)
2. The method for producing a glass substrate for a magnetic disk according to Configuration 1, wherein the organic particles are classified so as to reduce the number of particles having a particle size of 3 μm or less.
(Configuration 3)
3. The method for producing a glass substrate for a magnetic disk according to Configuration 2, wherein the number of particles having a particle size of 3 μm or less contained in the organic particles is classified so as to be 5% or less in the number particle size distribution. .
(構成4)
 分級された前記有機粒子の平均粒径は、5~30μmの範囲であることを特徴とする構成1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成5)
 前記有機粒子は、スチレン系樹脂、アクリル系樹脂またはウレタン系樹脂からなることを特徴とする構成1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 4)
4. The method for producing a glass substrate for a magnetic disk according to any one of Structures 1 to 3, wherein the classified organic particles have an average particle diameter in the range of 5 to 30 μm.
(Configuration 5)
5. The method of manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 4, wherein the organic particles are made of a styrene resin, an acrylic resin, or a urethane resin.
(構成6)
 前記処理後に、前記ガラス基板表面を洗浄後の基板表面粗さが上昇しないような条件で洗浄処理することを特徴とする構成1乃至5のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成7)
 シリカ砥粒を研磨砥粒として含む研磨液を用いてガラス基板の主表面を研磨した後、前記有機粒子を砥粒として含む処理液を用いてガラス基板の主表面の粗さを低減させる処理を行うことを特徴とする構成1乃至6のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 6)
6. The method for manufacturing a glass substrate for a magnetic disk according to any one of Structures 1 to 5, wherein after the treatment, the surface of the glass substrate is subjected to a cleaning treatment under such a condition that the substrate surface roughness after the cleaning does not increase.
(Configuration 7)
After polishing the main surface of the glass substrate using a polishing liquid containing silica abrasive grains as polishing abrasive grains, a treatment for reducing the roughness of the main surface of the glass substrate using a processing liquid containing the organic particles as abrasive grains. The manufacturing method of the glass substrate for magnetic discs in any one of the structures 1 thru | or 6 characterized by performing.
(構成8)
 構成1乃至7のいずれかに記載の製造方法によって得られた磁気ディスク用ガラス基板上に、少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。
(Configuration 8)
A magnetic disk manufacturing method comprising forming at least a magnetic recording layer on a glass substrate for a magnetic disk obtained by the manufacturing method according to any one of Structures 1 to 7.
 本発明によれば、分級された有機粒子を砥粒として含む処理液を用いてガラス基板主表面の処理を行うことで、ガラス基板主表面の表面粗さを現行よりもさらに低減させることができ、なお且つガラス基板表面の異物付着欠陥についても大幅に低減できる高品質の磁気ディスク用ガラス基板を製造することが可能である。
 また、本発明の上記構成とすることで、例えば750ギガバイトを超えるような今まで以上に高記録密度の磁気ディスクを製造するのに好適な高品質の磁気ディスク用ガラス基板を製造することが可能である。
 また、本発明により得られる磁気ディスク用ガラス基板を用いることにより、例えば750ギガバイトを超えるような今まで以上に高記録密度の磁気ディスクを製造することが可能である。
According to the present invention, the surface roughness of the main surface of the glass substrate can be further reduced compared to the current surface by performing the processing of the main surface of the glass substrate using a treatment liquid containing classified organic particles as abrasive grains. In addition, it is possible to manufacture a high-quality glass substrate for a magnetic disk that can greatly reduce foreign matter adhesion defects on the glass substrate surface.
Further, the above configuration of the present invention makes it possible to manufacture a high-quality magnetic disk glass substrate suitable for manufacturing a magnetic disk having a higher recording density than ever before, for example, exceeding 750 gigabytes. It is.
Further, by using the glass substrate for magnetic disk obtained by the present invention, it is possible to manufacture a magnetic disk having a higher recording density than ever before, for example, exceeding 750 gigabytes.
両面研磨装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of a double-side polish apparatus.
 以下、本発明の実施の形態を詳述する。
 磁気ディスク用ガラス基板は、通常、研削工程、形状加工工程、端面研磨工程、主表面研磨工程、化学強化工程、等を経て製造される。
 この磁気ディスク用ガラス基板の製造は、まず、溶融ガラスからダイレクトプレスにより円盤状のガラス基板(ガラスディスク)を成型する。なお、このようなダイレクトプレス以外に、ダウンドロー法やフロート法で製造された板ガラスから所定の大きさに切り出してガラス基板を得てもよい。次に、この成型したガラス基板の主表面に対して寸法精度及び形状精度を向上させるための研削を行う。この研削工程は、通常両面研削装置を用い、ダイヤモンド等の硬質砥粒を用いてガラス基板主表面の研削を行う。こうしてガラス基板主表面を研削することにより、所定の板厚、平坦度に加工するとともに、所定の表面粗さを得る。
Hereinafter, embodiments of the present invention will be described in detail.
A glass substrate for a magnetic disk is usually manufactured through a grinding process, a shape processing process, an end surface polishing process, a main surface polishing process, a chemical strengthening process, and the like.
In manufacturing the magnetic disk glass substrate, first, a disk-shaped glass substrate (glass disk) is molded from molten glass by direct pressing. In addition to such a direct press, a glass substrate may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method. Next, the main surface of the molded glass substrate is ground for improving dimensional accuracy and shape accuracy. In this grinding step, a main surface of the glass substrate is ground using a hard abrasive such as diamond, usually using a double-side grinding machine. By grinding the main surface of the glass substrate in this way, a predetermined plate thickness and flatness are processed, and a predetermined surface roughness is obtained.
 この研削工程の終了後は、形状加工工程、端面研磨工程を経た後、高精度な平面を得るための鏡面研磨加工を行う。従来、ガラス基板の鏡面研磨方法としては、酸化セリウムやコロイダルシリカ等の金属酸化物の研磨材を含有するスラリー(研磨液)を供給しながら、発泡ポリウレタン等の研磨パッドを用いて行われていた。 After the grinding process is finished, after a shape processing process and an end surface polishing process, a mirror polishing process is performed to obtain a highly accurate flat surface. Conventionally, a mirror polishing method for a glass substrate has been performed using a polishing pad such as polyurethane foam while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica. .
 前にも説明したとおり、本発明者は、たとえば750ギガバイトを超えるような今まで以上に高記録密度の磁気ディスクを製造しようとした場合、例えば前述のDFH制御機能を備える磁気ヘッドを採用するなど更なる低浮上量化を実現する上で、阻害要因となり得る基板表面の粗さを現行品よりもさらに一段と低減させる必要があるが、そのためには、有機粒子を砥粒として含有する処理液を用いて、ガラス基板表面を処理(研磨処理)することが好適であることを見出した。 As described above, when the inventor intends to manufacture a magnetic disk having a higher recording density than ever before, for example, exceeding 750 gigabytes, for example, a magnetic head having the above-described DFH control function is employed. In order to achieve further lower flying height, it is necessary to further reduce the roughness of the substrate surface, which can be a hindrance factor, compared to the current product. To that end, a treatment liquid containing organic particles as abrasive grains is used. Thus, it has been found that it is preferable to treat (polishing) the surface of the glass substrate.
 本発明の一実施の形態は、たとえば磁気ディスクに用いられるガラス基板の主表面を研磨する研磨処理に適用される処理液(研磨液)組成として、有機粒子を砥粒として含有する構成としたものである。
 すなわち、ガラスよりも低硬度かつ弾性を有する有機粒子を砥粒として用いることにより、荷重下における研磨工程ではガラス表面に不均一な加工変質層を形成させることなく研磨が進行すると考えられるため、研磨後のガラス基板表面の粗さを低減させることができる。しかも、研磨後、ガラス基板表面に付着した砥粒を除去するための洗浄工程には、ガラスに対するエッチング作用を持たない洗浄液を選定して洗浄を行うことが可能であるため、洗浄後のガラス基板表面の粗さの上昇を抑制することができる。
In one embodiment of the present invention, for example, as a processing liquid (polishing liquid) composition applied to a polishing process for polishing a main surface of a glass substrate used for a magnetic disk, organic particles are included as abrasive grains. It is.
That is, by using organic particles having lower hardness and elasticity than glass as abrasive grains, polishing is considered to proceed without forming a non-uniform work-affected layer on the glass surface in the polishing process under load. The roughness of the subsequent glass substrate surface can be reduced. Moreover, since it is possible to perform cleaning by selecting a cleaning solution that does not have an etching action on the glass in the cleaning process for removing the abrasive grains adhering to the glass substrate surface after polishing, the glass substrate after cleaning An increase in surface roughness can be suppressed.
 そして、この本発明に係る有機粒子を砥粒として含有する処理液を使用してガラス基板の研磨処理を行うことにより、ガラス基板表面の表面粗さを、次世代基板に要求される例えば算術平均粗さRaが0.1nm以下に低減させることができ、高品質の磁気ディスク用ガラス基板を製造することが可能である。そのため、例えば750ギガバイトを超えるような今まで以上に高記録密度の磁気ディスクを製造する場合、今まで以上の低浮上量化を実現する上で、好適な高品質の磁気ディスク用ガラス基板を製造することが可能である。 And by carrying out the polishing treatment of the glass substrate using a treatment liquid containing the organic particles according to the present invention as abrasive grains, the surface roughness of the glass substrate surface is required for the next generation substrate, for example, arithmetic average The roughness Ra can be reduced to 0.1 nm or less, and a high-quality glass substrate for a magnetic disk can be manufactured. Therefore, when manufacturing a magnetic disk having a higher recording density than ever, such as exceeding 750 gigabytes, a suitable high-quality glass substrate for a magnetic disk is manufactured in order to achieve a lower flying height than before. It is possible.
 研磨処理に適用される処理液(研磨液)は、研磨材(砥粒)と溶媒である水の組合せであり、さらに処理液のpHを調整するためのpH調整剤や、その他の添加剤が必要に応じて含有されている。 The treatment liquid (polishing liquid) applied to the polishing treatment is a combination of a polishing material (abrasive grains) and water as a solvent, and further includes a pH adjuster for adjusting the pH of the treatment liquid and other additives. It is contained as needed.
 上記処理液(研磨液)には、有機粒子を砥粒として含有する。この有機粒子は、ガラスよりも低硬度であり、かつ、弾性を有する樹脂からなる粒子である。具体的には材質が、例えば、ポリメチルメタククリレート(PMMA)等のアクリル系樹脂またはウレタン系樹脂、あるいはスチレン系樹脂等の樹脂材料からなることが好ましい。アクリル系樹脂は、アクリルモノマー成分のみの単独重合体でも、あるいはアクリルモノマー成分(主成分)と他の種類のモノマー成分との共重合体でもよい。また、ウレタン系樹脂は、ウレタンモノマー成分のみの単独重合体でも、あるいはウレタンモノマー成分(主成分)と他の種類のモノマー成分との共重合体でもよい。また、スチレン系樹脂は、スチレンモノマー成分のみの単独重合体でも、あるいはスチレンモノマー成分(主成分)と他の種類のモノマー成分との共重合体でもよい。なかでも水への分散性が良好であり、スラリーとし易い点では、特にアクリル系樹脂またはウレタン系樹脂からなることが好ましい。また、上記のアクリル系樹脂からなる有機粒子の場合、単一のアクリルモノマー成分からなる樹脂材料だけでなく、複数の異なるアクリルモノマー成分を含む共重合体樹脂材料からなる有機粒子を用いることもできる。ウレタン系樹脂あるいはスチレン系樹脂からなる有機粒子の場合も同様である。 The treatment liquid (polishing liquid) contains organic particles as abrasive grains. These organic particles are particles made of a resin having lower hardness than glass and having elasticity. Specifically, the material is preferably made of an acrylic resin such as polymethyl methacrylate (PMMA), a urethane resin, or a resin material such as a styrene resin. The acrylic resin may be a homopolymer containing only an acrylic monomer component, or a copolymer of an acrylic monomer component (main component) and another type of monomer component. The urethane resin may be a homopolymer of only the urethane monomer component, or may be a copolymer of a urethane monomer component (main component) and another type of monomer component. The styrenic resin may be a homopolymer of only a styrene monomer component or a copolymer of a styrene monomer component (main component) and another type of monomer component. Especially, it is preferable to consist of an acrylic resin or a urethane resin from the viewpoint of good dispersibility in water and easy slurry formation. In addition, in the case of organic particles made of the above acrylic resin, not only a resin material made of a single acrylic monomer component but also organic particles made of a copolymer resin material containing a plurality of different acrylic monomer components can be used. . The same applies to organic particles made of urethane resin or styrene resin.
 本発明においては、上記構成1にあるように、処理液に砥粒として含まれる有機粒子は分級されていることが重要である。市販の有機粒子(例えばPMMA等のアクリル樹脂粒子など)は、その製法上、不可避的に発生する副生成物である未架橋あるいは架橋度の低い微小樹脂粒子が含まれている。これらは、本来の樹脂粒子にまで成長しきれなかった未熟な有機粒子ともいえる。本発明者は、鋭意検討の結果、砥粒として用いる有機粒子を分級することが重要であることを見出した。つまり、有機粒子に含まれている特定の粒径の部分を分級により出来るだけ除去し、このように分級された有機粒子を砥粒として用いることにより、処理後のガラス基板の低表面粗さを保持しつつ、ガラス基板表面の異物付着欠陥数を大幅に低減できることを見出した。有機粒子中のほぼ球形状の主成分粒子と比較して、上記の未架橋あるいは架橋度の低い微小樹脂粒子は、不定形で表面積が大きく、ガラス基板表面に付着しやすいものと推測される。
 本発明者は、有機粒子で研磨処理後の基板表面の異物について、走査型電子顕微鏡(SEM)やエネルギー分散型X線分析装置(EDS)等を用いて詳細に調査した結果、上記の微小樹脂粒子が主な原因であることを突き止めた。さらに、これらの微小樹脂粒子の粒径はほぼ3μm以下であることも突き止めた。すなわち、3μm以下のサイズの粒子を取り除くことで、有機粒子で研磨した後のガラス基板表面の異物付着欠陥数を大幅に低減できることを初めて見出した。
In the present invention, as in the configuration 1, it is important that the organic particles contained in the treatment liquid as abrasive grains are classified. Commercially available organic particles (for example, acrylic resin particles such as PMMA) include uncrosslinked or low-crosslinked fine resin particles that are inevitably generated by the production method. These can be said to be immature organic particles that could not be grown to the original resin particles. As a result of intensive studies, the present inventors have found that it is important to classify organic particles used as abrasive grains. That is, by removing as much as possible the specific particle size portion contained in the organic particles, and using the organic particles thus classified as abrasive grains, the low surface roughness of the glass substrate after processing is reduced. It has been found that the number of foreign matter adhesion defects on the surface of the glass substrate can be greatly reduced while being held. Compared with the substantially spherical main component particles in the organic particles, the above-mentioned non-crosslinked or low-crosslinked fine resin particles are presumed to be amorphous and have a large surface area and easily adhere to the glass substrate surface.
The present inventor conducted a detailed investigation on foreign matters on the substrate surface after polishing with organic particles using a scanning electron microscope (SEM), an energy dispersive X-ray analyzer (EDS), etc. I have determined that particles are the main cause. Furthermore, it has been found that the particle diameter of these fine resin particles is approximately 3 μm or less. That is, it has been found for the first time that the number of foreign matter adhesion defects on the glass substrate surface after polishing with organic particles can be greatly reduced by removing particles having a size of 3 μm or less.
 すなわち、本発明によれば、分級された有機粒子を砥粒として含む処理液を用いてガラス基板主表面の研磨処理を行うことで、ガラス基板主表面の表面粗さを現行よりもさらに低減させることができ、なお且つガラス基板表面の異物付着欠陥についても大幅に低減させることができ、結果的に、次世代基板に要求される高いレベルで低表面粗さ及び低表面欠陥を実現でき、高品質の磁気ディスク用ガラス基板を製造することが可能である。 That is, according to the present invention, the surface roughness of the main surface of the glass substrate is further reduced compared to the current surface by performing a polishing process on the main surface of the glass substrate using a treatment liquid containing classified organic particles as abrasive grains. In addition, foreign matter adhesion defects on the surface of the glass substrate can be greatly reduced. As a result, low surface roughness and low surface defects can be realized at a high level required for the next generation substrate. It is possible to manufacture quality glass substrates for magnetic disks.
 本発明者の検討によれば、有機粒子に含まれている粒径3μm以下の粒子数を減少させるように分級されていることが望ましい。これによって、有機粒子に含まれている未架橋あるいは架橋度の低い微小樹脂粒子を十分に除去することが可能である。
 また、本発明者の更なる検討によれば、処理後のガラス基板表面の異物付着欠陥数を大幅に低減できる効果が十分に得られるためのより具体的な条件としては、有機粒子に含まれている粒径3μm以下の粒子数を、個数粒度分布において累積したときに、5%以下となるように分級されていることが好ましく、3%以下とすることがさらに望ましく、2%以下とするとよりいっそう望ましい。すなわち、粒径が0~3μmの範囲の粒子の数が、全粒子の数の5%以下であることが好ましい。なお、上記個数粒度分布とは、横軸が粒子直径(μm)、縦軸が個数(%)で示される関係である。
According to the study of the present inventor, it is desirable to classify so as to reduce the number of particles having a particle size of 3 μm or less contained in the organic particles. As a result, it is possible to sufficiently remove the fine resin particles contained in the organic particles that are not crosslinked or have a low degree of crosslinking.
Further, according to further studies by the present inventor, more specific conditions for sufficiently obtaining the effect of greatly reducing the number of foreign matter adhesion defects on the glass substrate surface after the treatment are included in the organic particles. When the number of particles having a particle size of 3 μm or less is accumulated in the number particle size distribution, it is preferably classified to be 5% or less, more preferably 3% or less, and 2% or less. Even more desirable. That is, the number of particles having a particle size in the range of 0 to 3 μm is preferably 5% or less of the total number of particles. The number particle size distribution is a relationship in which the horizontal axis indicates the particle diameter (μm) and the vertical axis indicates the number (%).
 分級の方法は、特に制約は無く、たとえば市販の粉状体の分級機を用いることができる。市販の分級機としては、旋回気流式、コアンダ気流式、旋回スクリーン式などの分級機が知られている。本発明においては、有機粒子に含まれている粒径3μm以下の粒子数を減少させるように分級されることが好ましいため、分級時の条件は適宜設定することが望ましい。また、上記の好ましい分級が行われるように、分級は1回に限らず、複数回繰り返してもよい。 The classification method is not particularly limited, and for example, a commercially available powder classifier can be used. As a commercially available classifier, classifiers such as a swirling airflow type, a Coanda airflow type, and a swivel screen type are known. In the present invention, classification is preferably performed so as to reduce the number of particles having a particle size of 3 μm or less contained in the organic particles, so it is desirable to appropriately set the classification conditions. Further, the classification is not limited to once, and may be repeated a plurality of times so that the preferable classification is performed.
 有機粒子の形状としては、荷重下で定盤を回転させるためには低摩擦でなければならないので、ほぼ球形状であることが好ましく、粒径の揃った樹脂ビーズが望ましい。本発明では、上記の分級によって、このようなほぼ球形状で、粒径の揃った有機粒子を得ることができる。 As the shape of the organic particles, since it is necessary to have low friction in order to rotate the platen under a load, it is preferably substantially spherical, and resin beads having a uniform particle size are desirable. In the present invention, organic particles having a substantially spherical shape and a uniform particle diameter can be obtained by the above classification.
 本発明においては、分級された有機粒子の平均粒径は、5~30μm、より好ましくは10~30μmの範囲であることが好適である。平均粒径が5μm未満であると、ガラスに対する基板表面を平滑化する加工性が得難くなる。これは、粒子サイズ自体の影響の他、有機粒子の形が真球状でなくなりやすいためでもあると推察される。また、平均粒径が30μmを超えると、処理液の粘度が上がり良好な基板表面を平滑化する加工性が得難くなる。
 本発明においては、特に、表面粗さのいっそうの低減を図る観点から、平均粒径が10~20μmの範囲のものを使用するのが好ましい。
In the present invention, the average particle diameter of the classified organic particles is preferably in the range of 5 to 30 μm, more preferably 10 to 30 μm. When the average particle size is less than 5 μm, it becomes difficult to obtain processability for smoothing the substrate surface with respect to glass. In addition to the influence of the particle size itself, this is presumed to be because the shape of the organic particles tends not to be spherical. On the other hand, if the average particle size exceeds 30 μm, the viscosity of the treatment liquid increases and it becomes difficult to obtain processability for smoothing the good substrate surface.
In the present invention, it is particularly preferable to use those having an average particle size in the range of 10 to 20 μm from the viewpoint of further reducing the surface roughness.
 なお、本発明において、上記有機粒子の平均粒径とは、光散乱法により測定された粒度分布における粉体の集団の全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒径(「累積平均粒子径(50%径)」と呼ぶ。以下「D50」と略記する。)を言う。累積平均粒子径は、具体的には、粒子径・粒度分布測定装置を用いて得られる値である。 In the present invention, the average particle size of the organic particles means that when the cumulative curve is obtained by setting the total volume of the powder population in the particle size distribution measured by the light scattering method as 100%, the cumulative curve is 50%. (Referred to as “cumulative average particle diameter (50% diameter)”, hereinafter abbreviated as “D50”). Specifically, the cumulative average particle size is a value obtained using a particle size / particle size distribution measuring apparatus.
 また、処理液中の有機粒子の濃度は、特に制約されないが、処理後の基板表面品質及び加工レートの観点からは、0.1~5重量%の範囲とすることができる。特に、1~3重量%の範囲が好適である。 The concentration of the organic particles in the treatment liquid is not particularly limited, but can be in the range of 0.1 to 5% by weight from the viewpoint of the substrate surface quality after treatment and the processing rate. In particular, the range of 1 to 3% by weight is preferable.
 また、本発明に使用する有機粒子を含有する処理液は、乾燥による樹脂の固着によるスクラッチ低減の観点から、潤滑効果を発揮する材料、保湿効果を発揮する材料から選ばれる少なくとも1種の添加剤を含有してもよい。 In addition, the treatment liquid containing organic particles used in the present invention is at least one additive selected from a material that exhibits a lubricating effect and a material that exhibits a moisturizing effect, from the viewpoint of reducing scratches due to adhesion of the resin by drying. It may contain.
 このような添加剤の具体例としては、グリコール類(エチレングリコール、プロピレングリコール、ヘキシレングリコールなど)、アミン類(モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、イソプロパノールアミンなど)、カルボン酸、鉱油、水溶性油エマルジョン、ポリエチレンイミン、ホウ酸、アミド、トリアジン類、ベンゾチアゾール、ベンゾトリアゾール、エーテル類、等が挙げられる。
 上記添加剤の添加量は、特に制約されないが、加工性の観点からは、0.01~1重量%の範囲とすることが好適である。
Specific examples of such additives include glycols (ethylene glycol, propylene glycol, hexylene glycol, etc.), amines (monoethanolamine, diethanolamine, triethanolamine, isopropanolamine, etc.), carboxylic acid, mineral oil, water-soluble Oily emulsion, polyethyleneimine, boric acid, amide, triazines, benzothiazole, benzotriazole, ethers, and the like.
The addition amount of the additive is not particularly limited, but is preferably in the range of 0.01 to 1% by weight from the viewpoint of workability.
 また、上記処理液は例えば研磨液として用いられるが、この場合は例えばpH=4~8に調整されたものが好適に用いられる。pHが4未満であると、樹脂砥粒への浸食が懸念される。また、pHが8を超えると、研磨後の洗浄性が低下し、異物欠陥が発生し易くなる。 Further, the treatment liquid is used as, for example, a polishing liquid. In this case, for example, a liquid adjusted to pH = 4 to 8 is preferably used. If the pH is less than 4, there is a concern about erosion of the resin abrasive grains. On the other hand, if the pH exceeds 8, the cleaning property after polishing is lowered and foreign matter defects are likely to occur.
 本発明の有機粒子を砥粒として含有する処理液を用いた例えば研磨処理において、研磨方法は特に限定されるものではないが、例えば、従来と同様に、ガラス基板と研磨パッドとを接触させ、有機粒子を砥粒として含む処理液を供給しながら、研磨パッドとガラス基板とを相対的に移動させて、ガラス基板の表面を鏡面状に研磨すればよい。研磨パッドとしては、従来のコロイダルシリカ砥粒を用いた鏡面研磨処理において適用されている例えば発泡ポリウレタンの研磨パッドと同様のものを適用することができる。但し、本発明の有機粒子の砥粒を用いた鏡面研磨処理においては、研磨パッドの硬さは、シリカ砥粒のように限定されない。これは、樹脂砥粒自体にパッドのクッション性があるためである。従って、本発明の有機粒子の砥粒を用いた鏡面研磨処理においては、従来のコロイダルシリカ砥粒を用いた鏡面研磨処理において適用されている例えば発泡ポリウレタンの研磨パッドよりも硬い研磨パッドを適用することも可能である。硬い研磨パッドを用いると基板面のうねりを低減できるため有利である。研磨パッドの硬度は、アスカーC硬度で70~90であることが好ましく、80~90であるとより好ましい。さらに、スエードタイプの発泡ポリウレタンの研磨パッドであると、微細なキズの発生を低減できるため、より好ましい。 For example, in the polishing process using the processing liquid containing the organic particles of the present invention as abrasive grains, the polishing method is not particularly limited, but, for example, as in the prior art, the glass substrate and the polishing pad are brought into contact, The surface of the glass substrate may be polished into a mirror surface by relatively moving the polishing pad and the glass substrate while supplying a treatment liquid containing organic particles as abrasive grains. As the polishing pad, for example, the same one as a polishing pad made of foamed polyurethane, which is applied in a mirror polishing process using conventional colloidal silica abrasive grains, can be applied. However, in the mirror polishing process using the abrasive grains of the organic particles of the present invention, the hardness of the polishing pad is not limited to that of silica abrasive grains. This is because the resin abrasive grains themselves have pad cushioning properties. Therefore, in the mirror polishing process using the organic particle abrasive grains of the present invention, a polishing pad harder than, for example, a foamed polyurethane polishing pad applied in the conventional mirror polishing process using colloidal silica abrasive grains is applied. It is also possible. Use of a hard polishing pad is advantageous because the waviness of the substrate surface can be reduced. The hardness of the polishing pad is preferably 70 to 90 in terms of Asker C hardness, and more preferably 80 to 90. Furthermore, a suede-type foamed polyurethane polishing pad is more preferable because the generation of fine scratches can be reduced.
 例えば図1は、ガラス基板の鏡面研磨工程に用いることができる遊星歯車方式の両面研磨装置の概略構成を示す縦断面図である。図1に示す両面研磨装置は、太陽歯車2と、その外方に同心円状に配置される内歯歯車3と、太陽歯車2及び内歯歯車3に噛み合い、太陽歯車2や内歯歯車3の回転に応じて公転及び自転するキャリア4と、このキャリア4に保持された被研磨加工物1を挟持可能な研磨パッド7がそれぞれ貼着された上定盤5及び下定盤6と、上定盤5と下定盤6との間に処理液(研磨液)を供給する処理液供給部(図示せず)とを備えている。 For example, FIG. 1 is a longitudinal sectional view showing a schematic configuration of a planetary gear type double-side polishing apparatus that can be used in a mirror polishing process of a glass substrate. The double-side polishing apparatus shown in FIG. 1 meshes with the sun gear 2, the internal gear 3 arranged concentrically on the outer side, the sun gear 2 and the internal gear 3, and the sun gear 2 and the internal gear 3. An upper surface plate 5 and a lower surface plate 6 on which a carrier 4 that revolves and rotates according to rotation, and a polishing pad 7 that can hold the workpiece 1 held by the carrier 4 are attached, and an upper surface plate A processing liquid supply unit (not shown) for supplying a processing liquid (polishing liquid) is provided between 5 and the lower surface plate 6.
 このような両面研磨装置によって、研磨加工時には、キャリア4に保持された被研磨加工物1、即ちガラス基板を上定盤5及び下定盤6とで挟持するとともに、上下定盤5,6の研磨パッド7と被研磨加工物1との間に本発明の有機粒子を砥粒として含む研磨液を供給しながら、太陽歯車2や内歯歯車3の回転に応じてキャリア4が公転及び自転しながら、被研磨加工物1の上下両面が研磨加工される。 By such a double-side polishing apparatus, during polishing, the workpiece 1 held by the carrier 4, that is, the glass substrate is sandwiched between the upper surface plate 5 and the lower surface plate 6, and the upper and lower surface plates 5, 6 are polished. While supplying the polishing liquid containing the organic particles of the present invention as abrasive grains between the pad 7 and the workpiece 1, the carrier 4 rotates and revolves according to the rotation of the sun gear 2 and the internal gear 3. The upper and lower surfaces of the workpiece 1 are polished.
 なお、加える荷重(加工面圧力)は、50gf/cm以上200gf/cm以下の範囲内が好適である。上記荷重が、50gf/cmよりも低いと、ガラス基板の加工性が低下するために好ましくない。また、200gf/cmよりも高い場合には、加工が不安定となるため好ましくない。
 そして、本発明の有機粒子の砥粒を含む処理液を用い、かつ、上記範囲内の加工面圧力でガラス基板の主表面を研磨することで、表面粗さをより一層低減できる。
The applied load (processed surface pressure) is preferably in the range of 50 gf / cm 2 or more and 200 gf / cm 2 or less. When the said load is lower than 50 gf / cm < 2 >, since the workability of a glass substrate falls, it is unpreferable. Moreover, when higher than 200 gf / cm < 2 >, since processing will become unstable, it is unpreferable.
The surface roughness can be further reduced by polishing the main surface of the glass substrate with the processing surface pressure within the above range using the treatment liquid containing the abrasive grains of the organic particles of the present invention.
 従来、ガラス基板主表面の鏡面研磨工程は、研削工程で残留した傷や歪みを除去するための研磨工程(第1研磨工程)と、この研磨工程で得られた平坦な表面を維持しつつ、ガラス基板主表面の表面粗さを平滑な鏡面に仕上げる仕上げ研磨工程(第2研磨工程)の2段階を経て行われることが一般的であるが、本発明においては、この仕上げ研磨工程の後に、本発明の有機粒子を砥粒とする処理液を適用した処理(最終仕上げ研磨処理)を行うことが好適である。 Conventionally, the mirror polishing process of the main surface of the glass substrate is a polishing process (first polishing process) for removing scratches and distortion remaining in the grinding process, while maintaining the flat surface obtained in this polishing process, Generally, it is performed through two steps of a finish polishing step (second polishing step) that finishes the surface roughness of the glass substrate main surface into a smooth mirror surface. In the present invention, after this finish polishing step, It is preferable to perform treatment (final finish polishing treatment) to which a treatment liquid using the organic particles of the present invention as abrasive grains is applied.
 上記従来の仕上げ研磨工程は、通常、平均粒径が10~40nm程度のコロイダルシリカ砥粒を用いて行われているが、この後に、本発明の有機粒子を砥粒とする処理液を適用した処理(最終仕上げ研磨処理)を行うことにより、表面粗さの更なる低減を図ることが可能である。前にも説明したように、仮に、上記粒径範囲よりも微細な又は大きなコロイダルシリカ砥粒を用いて最終仕上げ研磨を行っても表面粗さを更に低減させることは困難である。 The conventional finish polishing step is usually performed using colloidal silica abrasive grains having an average particle diameter of about 10 to 40 nm. After this, a treatment liquid using the organic particles of the present invention as abrasive grains was applied. By performing the treatment (final finish polishing treatment), it is possible to further reduce the surface roughness. As described above, it is difficult to further reduce the surface roughness even if the final finish polishing is performed using colloidal silica abrasive grains that are finer or larger than the above particle size range.
 以上のように、コロイダルシリカ砥粒を研磨砥粒として含む研磨液を用いてガラス基板の主表面を研磨した後、本発明の有機粒子を砥粒として含む処理液を用いてガラス基板の主表面を鏡面研磨処理することが好ましい。換言すれば、加工変質層を有するガラス基板の主表面に対して、本発明の有機粒子を砥粒として含む処理液を用いて鏡面研磨処理することが好ましい。 As described above, after polishing the main surface of the glass substrate using a polishing liquid containing colloidal silica abrasive grains as polishing abrasive grains, the main surface of the glass substrate using a treatment liquid containing organic particles of the present invention as abrasive grains Is preferably mirror-polished. In other words, the main surface of the glass substrate having a work-affected layer is preferably subjected to mirror polishing using a treatment liquid containing the organic particles of the present invention as abrasive grains.
 本発明の有機粒子を砥粒として含む処理液を用いて鏡面研磨処理する前のガラス基板主表面の粗さは、算術平均粗さRaが0.3nm以下、より好ましくは0.2nmであることが好ましい。こうすることで、本発明の有機粒子を砥粒とした研磨処理により、基板表面粗さをさらに低減させて、例えばRaが0.2nm以下、より好ましくは0.1nm以下に仕上ることが可能である。有機粒子による研磨処理前の基板主表面の粗さRaが0.3nmより大きい場合、粗さを十分に低減するまでに長時間を必要とする場合がある。これは、有機粒子の硬度がガラス基板より低いためと推察される。 The roughness of the main surface of the glass substrate before the mirror polishing using the treatment liquid containing the organic particles of the present invention as abrasive grains is such that the arithmetic average roughness Ra is 0.3 nm or less, more preferably 0.2 nm. Is preferred. By doing so, it is possible to further reduce the substrate surface roughness by polishing treatment using the organic particles of the present invention as abrasive grains, for example, Ra can be finished to 0.2 nm or less, more preferably 0.1 nm or less. is there. When the roughness Ra of the main surface of the substrate before the polishing treatment with organic particles is larger than 0.3 nm, it may take a long time to sufficiently reduce the roughness. This is presumably because the hardness of the organic particles is lower than that of the glass substrate.
 本発明による有機粒子を砥粒として含む処理液を用いてガラス基板の主表面を鏡面研磨処理した後、ガラス基板表面に付着した砥粒の除去を目的とした洗浄を行うが、この場合、有機系洗浄剤を用いてガラス基板を洗浄することが好適である。有機系洗浄剤は、砥粒である有機粒子を良好に溶解(乃至は膨潤)除去できる一方で、ガラスに対しては何らエッチング作用やリーチング作用を及ぼさない。つまり、ガラスに対するエッチング作用やリーチング作用を持たない洗浄液を選定して洗浄を行うことが可能であるため、洗浄後のガラス基板表面の粗さの上昇を抑制することができる。そのため、有機粒子を砥粒として適用した鏡面研磨処理によって得られた超低粗さ(高平滑性)を洗浄後もそのまま維持することができる。その結果、ガラス基板主表面の表面粗さを現行よりもさらに低減させることができ、これによって高品質のガラス基板を製造することが可能である。 After the main surface of the glass substrate is mirror-polished using a treatment liquid containing organic particles as abrasive grains according to the present invention, cleaning is performed for the purpose of removing abrasive grains adhering to the glass substrate surface. It is preferable to clean the glass substrate with a system cleaner. The organic cleaning agent can dissolve (or swell) and remove organic particles that are abrasive grains, while having no etching or leaching action on glass. That is, since it is possible to perform cleaning by selecting a cleaning solution that does not have an etching action or a leaching action on the glass, it is possible to suppress an increase in the roughness of the glass substrate surface after the cleaning. Therefore, the ultra-low roughness (high smoothness) obtained by the mirror polishing process using organic particles as abrasive grains can be maintained as it is after cleaning. As a result, the surface roughness of the main surface of the glass substrate can be further reduced as compared with the current level, and thus a high-quality glass substrate can be produced.
 本発明における有機粒子に対して好適な洗浄剤としては、有機溶剤、またはアミン化合物などの有機系洗浄剤が好適である。
 上記有機溶剤としては、例えば、トルエン、キシレン、スチレン等の芳香族炭化水素類、クロルベンゼン、オルトクロルベンゼン等の塩化芳香族炭化水素類、ジクロルメタン、トリクロルメタン、テトラクロルメタン、1,2-ジクロルエタン、1,1,1-トリクロルエタン、1,1,2,2-テトラクロルエタン、1,2-ジクロルエチレン、トリクロルエチレン、テトラクロルエチレン等の塩化脂肪族炭化水素類、メタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、イソペンチルアルコール等のアルコール類、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル等のエステル類、エチルエーテル、1,4-ジオキサン、テトラヒドロフラン等のエーテル類、アセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン等のケトン類、セロソルブ、メチルセロソルブ、ブチルセロソルブ、セロソルブアセテート等のセロソルブ類、シクロヘキサノン、メチルシクロヘキサノン、シクロヘキサノール、メチルシクロヘキサノール等の脂環式炭化水素類、ノルマルヘキサン等の脂肪族炭化水素類、クレゾール、二硫化炭素、N,N-ジメチルホルムアミド等が挙げられる。
As a cleaning agent suitable for the organic particles in the present invention, an organic cleaning agent such as an organic solvent or an amine compound is preferable.
Examples of the organic solvent include aromatic hydrocarbons such as toluene, xylene, and styrene, chlorinated aromatic hydrocarbons such as chlorobenzene and orthochlorobenzene, dichloromethane, trichloromethane, tetrachloromethane, and 1,2-dichloroethane. 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, 1,2-dichloroethylene, trichloroethylene, tetrachloroethylene and other chlorinated aliphatic hydrocarbons, methanol, isopropyl alcohol, Alcohols such as 1-butanol, 2-butanol, isobutyl alcohol, isopentyl alcohol, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, esters such as isopentyl acetate, ethyl ether, Ethers such as 1,4-dioxane and tetrahydrofuran Ketones such as acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, cellosolves such as cellosolve, methyl cellosolve, butyl cellosolve, cellosolve acetate, alicyclic hydrocarbons such as cyclohexanone, methylcyclohexanone, cyclohexanol, methylcyclohexanol, Examples thereof include aliphatic hydrocarbons such as normal hexane, cresol, carbon disulfide, N, N-dimethylformamide and the like.
 また、上記アミン化合物としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタアミン、ペンタエチレンヘキサアミン、2-[(2-アミノエチル)アミノ]エタノール、2-[メチル[2-(ジメチルアミノ)エチル]アミノ]エタノール、2,2’-(エチレンビスイミノ)ビスエタノール、N-(2-ヒドロキシエチル)-N’-(2-アミノエチル)エチレンジアミン、2,2’-(2-アミノエチルイミノ)ジエタノール、N1,N4-ビス(ヒドロキシエチル)ジエチレントリアミン、N1,N7-ビス(ヒドロキシエチル)ジエチレントリアミン、1,3-ジアミノ-2-プロパノール、ピペラジン、1-メチルピペラジン、3-(1-ピペラジニル)-1-アミン、1-(2-アミノエチル)ピペラジン、4-メチルピペラジン-1-アミン、1-ピペラジンメタンアミン、4-エチル-1-ピペラジンアミン、1-メチル-4-(2-アミノエチル)ピペラジン、1-(2-ヒドロキシエチル)ピペラジン等が挙げられる。 Examples of the amine compound include ethylenediamine, diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, pentaethylenehexamine, 2-[(2-aminoethyl) amino] ethanol, 2- [methyl [2- ( Dimethylamino) ethyl] amino] ethanol, 2,2 '-(ethylenebisimino) bisethanol, N- (2-hydroxyethyl) -N'-(2-aminoethyl) ethylenediamine, 2,2 '-(2- Aminoethylimino) diethanol, N1, N4-bis (hydroxyethyl) diethylenetriamine, N1, N7-bis (hydroxyethyl) diethylenetriamine, 1,3-diamino-2-propanol, piperazine, 1-methylpiperazine, 3- (1- Piperazinyl) -1-amine, 1- (2-aminoethyl) piperazine, 4-methylpiperazine-1-amine, 1-piperazinemethanamine, 4-ethyl-1-piperazine And 1-methyl-4- (2-aminoethyl) piperazine, 1- (2-hydroxyethyl) piperazine, and the like.
 本発明者は、上記のような有機系洗浄剤について更に検討した結果、有機粒子を砥粒として含む処理液を用いて、ガラス基板の主表面を研磨処理した後、ガラス基板表面に付着した有機粒子又はその一部を膨潤させ得る有機溶剤を用いることが特に好適であることを見出した。ここで、膨潤とは、有機粒子が有機溶剤を吸収して膨らむ現象のことである。また、上記の有機粒子の一部とは、例えば研磨処理時に有機系粒子が壊れるなどして形成された有機系粒子の一部や、有機系粒子を球形に架橋する際に架橋体から除外された未架橋体などであり、ガラス基板表面に付着した有機粒子の一部分という意味である。
 また、本発明者は、更に検討を続けた結果、有機粒子を構成する樹脂のモノマー成分の溶解度パラメータ(SP値)に対する有機溶剤の溶解度パラメータ(SP値)の比が、当該有機溶剤の洗浄性との相関関係があり、当該比が特定の範囲内にある有機溶剤を選択することが、有機粒子の洗浄性向上の観点から好適であることを見出した。
As a result of further examination of the organic cleaning agent as described above, the present inventor used a treatment liquid containing organic particles as abrasive grains, and after polishing the main surface of the glass substrate, the organic adhered to the glass substrate surface. It has been found that it is particularly suitable to use an organic solvent that can swell the particles or part thereof. Here, swelling is a phenomenon in which organic particles swell by absorbing an organic solvent. The part of the organic particles is excluded from a part of the organic particles formed, for example, when the organic particles are broken during the polishing process, or from the crosslinked body when the organic particles are crosslinked into a spherical shape. It means a part of organic particles adhering to the glass substrate surface.
Further, as a result of further investigations, the present inventor found that the ratio of the solubility parameter (SP value) of the organic solvent to the solubility parameter (SP value) of the monomer component of the resin constituting the organic particles is the detergency of the organic solvent. It has been found that it is preferable to select an organic solvent in which the ratio is within a specific range from the viewpoint of improving the detergency of organic particles.
 具体的には、有機粒子を構成する樹脂のモノマー成分の溶解度パラメータ(SP値)をSP1、有機溶剤の溶解度パラメータ(SP値)をSP2としたとき、SP2/SP1が0.9~1.1の範囲となるような有機溶剤を選択し、この選択した有機溶剤を研磨処理後のガラス基板表面に接触させる処理を行うことが好適である。 Specifically, when the solubility parameter (SP value) of the monomer component of the resin constituting the organic particles is SP1, and the solubility parameter (SP value) of the organic solvent is SP2, SP2 / SP1 is 0.9 to 1.1. It is preferable to select an organic solvent that falls within the above range, and to perform a treatment in which the selected organic solvent is brought into contact with the glass substrate surface after the polishing treatment.
 つまり、有機粒子を用いて研磨処理(特に最終仕上げ研磨)を行った後の洗浄方法としては、有機粒子を構成する樹脂のモノマー成分とSP値が比較的近い有機溶剤を用いた処理が最適である。有機粒子を構成する樹脂のモノマー成分とSP値が比較的近い有機溶剤を基板表面に接触させることで、基板表面に付着した有機粒子が良好に膨潤するので、基板との界面においてずれが生じるため、基板表面にたとえ強固に付着した有機粒子(又はその一部)であっても基板表面から剥がれやすくなる。
 なお、上記の溶解度パラメータ(Solubility Parameter 一般に「SP値」と呼ばれている)は、化学構造式に基づき算出することが可能であり、代表的な物質のSP値は「理科年表」等に掲載されている。
In other words, as a cleaning method after performing polishing processing (especially final finish polishing) using organic particles, processing using an organic solvent whose SP value is relatively close to the monomer component of the resin constituting the organic particles is optimal. is there. Since organic particles adhering to the substrate surface swell well by bringing the organic solvent having a relatively close SP value to the monomer component of the resin constituting the organic particles into contact with the substrate surface, a shift occurs at the interface with the substrate. Even organic particles (or a part thereof) firmly adhered to the substrate surface are easily peeled off from the substrate surface.
In addition, the solubility parameter (Solubility Parameter generally called “SP value”) can be calculated based on the chemical structural formula, and the SP value of typical substances can be found in “Science Chronology” etc. It is posted.
 また、本発明者は、有機粒子を構成する樹脂のモノマー成分の分子量に対する有機溶剤の分子量の比に関しても、当該有機溶剤の洗浄性との相関関係があり、当該比が特定の範囲内にある有機溶剤を選択することが、有機粒子の洗浄性向上の観点から好適であることを見出した。 In addition, the present inventor also has a correlation with the detergency of the organic solvent with respect to the ratio of the molecular weight of the organic solvent to the molecular weight of the monomer component of the resin constituting the organic particles, and the ratio is within a specific range. It has been found that selecting an organic solvent is preferable from the viewpoint of improving the cleaning properties of organic particles.
 具体的には、有機粒子を構成する樹脂のモノマー成分の分子量をMW1、有機溶剤の分子量をMW2としたとき、MW2/MW1が0.5~1.5の範囲となるような有機溶剤を選択し、この選択した有機溶剤を用いて研磨処理後のガラス基板表面に接触させる処理を行うことが好適である。 Specifically, when the molecular weight of the monomer component of the resin constituting the organic particles is MW1 and the molecular weight of the organic solvent is MW2, the organic solvent is selected so that MW2 / MW1 is in the range of 0.5 to 1.5. In addition, it is preferable to perform a process of bringing the selected organic solvent into contact with the surface of the glass substrate after the polishing process.
 したがって、本発明においては、上記のSP2/SP1が0.9~1.1の範囲内であって、なお且つ、上記のMW2/MW1が0.5~1.5の範囲内であるような有機溶剤を選択することが最も好適である。
 なお、有機粒子が複数のモノマー成分を含む共重合体樹脂材料である場合、いずれかのモノマー成分について、上記の関係を満たすような有機溶剤を選択することができる。
Therefore, in the present invention, the above SP2 / SP1 is in the range of 0.9 to 1.1, and the above MW2 / MW1 is in the range of 0.5 to 1.5. Most preferably, an organic solvent is selected.
In addition, when the organic particle is a copolymer resin material containing a plurality of monomer components, an organic solvent that satisfies the above relationship can be selected for any of the monomer components.
 本発明においては、ガラス基板を構成するガラス(の硝種)は、SiO2を主成分とし、さらにアルミナを含むアルミノシリケートガラスを用いることが好ましい。このようなガラスを用いたガラス基板は表面を鏡面研磨することにより平滑な鏡面に仕上げることができ、また加工後の強度が良好である。また、化学強化によってさらに強度を上げることもできる。
 また、上記ガラスは、結晶化ガラスであってもよく、アモルファスガラスであってもよい。アモルファスガラスとすることで、ガラス基板としたときの主表面の表面粗さをより一層下げることができる。
In the present invention, it is preferable to use an aluminosilicate glass containing SiO 2 as a main component and further containing alumina as the glass (glass type) constituting the glass substrate. A glass substrate using such glass can be finished to a smooth mirror surface by mirror polishing the surface, and the strength after processing is good. Further, the strength can be further increased by chemical strengthening.
The glass may be crystallized glass or amorphous glass. By using amorphous glass, the surface roughness of the main surface when the glass substrate is used can be further reduced.
 このようなアルミノシリケートガラスとしては、SiO2が58重量%以上75重量%以下、Al23が5重量%以上23重量%以下、Li2Oが3重量%以上10重量%以下、Na2Oが4重量%以上13重量%以下を主成分として含有するアルミノシリケートガラス(ただし、リン酸化物を含まないアルミノシリケートガラス)を用いることができる。さらに、例えば、アルカリ土類金属の酸化物が5重量%以上であって、SiO2 を62重量%以上75重量%以下、Al23 を5重量%以上15重量%以下、Li2Oを4重量%以上10重量%以下、Na2 Oを4重量%以上12重量%以下、ZrO2 を5.5重量%以上15重量%以下、主成分として含有するとともに、Na2O/ZrO2の重量比が0.5以上2.0以下、Al2 O3 /ZrO2 の重量比が0.4以上2.5以下であるリン酸化物を含まないアモルファスのアルミノシリケートガラスとすることができる。 As such an aluminosilicate glass, SiO 2 is 58 wt% to 75 wt%, Al 2 O 3 is 5 wt% to 23 wt%, Li 2 O is 3 wt% to 10 wt%, Na 2 An aluminosilicate glass containing O as a main component in an amount of 4 wt% or more and 13 wt% or less (however, an aluminosilicate glass containing no phosphorus oxide) can be used. Further, for example, the alkaline earth metal oxide is 5% by weight or more, SiO 2 is 62% by weight or more and 75% by weight or less, Al 2 O 3 is 5% by weight or more and 15% by weight or less, and Li 2 O is added. 4% by weight or more and 10% by weight or less, Na 2 O 4% by weight or more and 12% by weight or less, ZrO 2 5.5% by weight or more and 15% by weight or less as a main component, and Na 2 O / ZrO 2 An amorphous aluminosilicate glass containing no phosphorus oxide having a weight ratio of 0.5 to 2.0 and a weight ratio of Al 2 O 3 / ZrO 2 of 0.4 to 2.5 can be obtained.
 また、次世代基板(例えば熱アシスト磁気記録方式に適用される磁気ディスクに用いられる基板)の特性として耐熱性を求められる場合もある。この場合の耐熱性ガラスとしては、例えば、アルカリ土類金属の酸化物が5重量%以上であって、以下はモル%表示にて、SiOを50~75%、Alを0~6%、BaOを0~2%、LiOを0~3%、ZnOを0~5%、NaOおよびKOを合計で3~15%、MgO、CaO、SrOおよびBaOを合計で14~35%、ZrO、TiO、La、Y、Yb、Ta、NbおよびHfOを合計で2~9%、含み、モル比[(MgO+CaO)/(MgO+CaO+SrO+BaO)]が0.85~1の範囲であり、且つモル比[Al/(MgO+CaO)]が0~0.30の範囲であるガラスを好ましく用いることができる。 In addition, heat resistance may be required as a characteristic of a next-generation substrate (for example, a substrate used for a magnetic disk applied to a heat-assisted magnetic recording method). As the heat resistant glass in this case, for example, an alkaline earth metal oxide is 5% by weight or more, and the following is expressed in mol%, SiO 2 is 50 to 75%, Al 2 O 3 is 0 to 6%, BaO 0-2%, Li 2 O 0-3%, ZnO 0-5%, Na 2 O and K 2 O in total 3-15%, MgO, CaO, SrO and BaO in total 14 to 35%, ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 in total 2 to 9%, A glass having a ratio [(MgO + CaO) / (MgO + CaO + SrO + BaO)] in the range of 0.85 to 1 and a molar ratio [Al 2 O 3 / (MgO + CaO)] in the range of 0 to 0.30 is preferably used. it can.
 本発明においては、有機粒子を適用した上記最終仕上げ研磨処理後のガラス基板の表面は、算術平均表面粗さRaが0.2nm以下、より好ましくは0.1nm以下、特に好ましくは0.06nm以下である鏡面とされることが好ましい。更に、最大山高さRpが2.0nm以下、より好ましくは1.0nm以下である鏡面とされることが好ましい。なお、本発明においてRa、Rpというときは、日本工業規格(JIS)B0601に基づく粗さのことである。
 また、本発明において表面粗さは、原子間力顕微鏡(AFM)を用いて例えば1μm×1μmの範囲を256×256ピクセルの解像度で測定したときに得られる表面形状の表面粗さとすることが実用上好ましい。
In the present invention, the surface of the glass substrate after the final finish polishing treatment using organic particles has an arithmetic average surface roughness Ra of 0.2 nm or less, more preferably 0.1 nm or less, and particularly preferably 0.06 nm or less. It is preferable to be a mirror surface. Furthermore, it is preferable that the mirror surface has a maximum peak height Rp of 2.0 nm or less, more preferably 1.0 nm or less. In the present invention, Ra and Rp refer to roughness based on Japanese Industrial Standard (JIS) B0601.
In the present invention, the surface roughness is practically the surface roughness obtained by measuring the range of 1 μm × 1 μm with a resolution of 256 × 256 pixels using an atomic force microscope (AFM). Preferred above.
 本発明においては、たとえば鏡面研磨加工工程の前または後に、化学強化処理を施すことができる。化学強化処理の方法としては、例えば、ガラス転移点の温度を超えない温度領域、例えば摂氏300度以上400度以下の温度で、イオン交換を行う低温型イオン交換法などが好ましい。化学強化処理とは、溶融させた化学強化塩とガラス基板とを接触させることにより、化学強化塩中の相対的に大きな原子半径のアルカリ金属元素と、ガラス基板中の相対的に小さな原子半径のアルカリ金属元素とをイオン交換し、ガラス基板の表層に該イオン半径の大きなアルカリ金属元素を浸透させ、ガラス基板の表面に圧縮応力を生じさせる処理のことである。化学強化処理されたガラス基板は耐衝撃性に優れているので、例えばモバイル用途のHDDに搭載するのに特に好ましい。化学強化塩としては、硝酸カリウムや硝酸ナトリウムなどのアルカリ金属硝酸を好ましく用いることができる。 In the present invention, for example, chemical strengthening treatment can be performed before or after the mirror polishing process. As a method of chemical strengthening treatment, for example, a low-temperature ion exchange method in which ion exchange is performed in a temperature range that does not exceed the temperature of the glass transition point, for example, a temperature of 300 degrees Celsius or more and 400 degrees Celsius or less is preferable. The chemical strengthening treatment is a process in which a molten chemical strengthening salt is brought into contact with a glass substrate, whereby an alkali metal element having a relatively large atomic radius in the chemical strengthening salt and a relatively small atomic radius in the glass substrate. This is a treatment in which an alkali metal element is ion-exchanged, an alkali metal element having a large ion radius is permeated into the surface layer of the glass substrate, and compressive stress is generated on the surface of the glass substrate. Since the chemically strengthened glass substrate is excellent in impact resistance, it is particularly preferable for mounting on a HDD for mobile use, for example. As the chemical strengthening salt, alkali metal nitric acid such as potassium nitrate or sodium nitrate can be preferably used.
 以上詳細に説明したように、本発明の有機粒子を砥粒として含む処理液を用いて、ガラス基板を例えば鏡面研磨処理することにより、ガラス基板主表面の表面粗さを現行よりもさらに低減させることができる。本発明の有機粒子を適用した処理は、換言すれば、ガラス基板の主表面の粗さを低減させる処理である。そして、本発明においては、この有機粒子が所定に分級されていることにより、処理後のガラス基板表面の異物付着欠陥を大幅に低減させることができる。 As explained in detail above, the surface roughness of the main surface of the glass substrate is further reduced by reducing the surface roughness of the glass substrate by using, for example, mirror polishing of the glass substrate using the treatment liquid containing the organic particles of the present invention as abrasive grains. be able to. In other words, the treatment using the organic particles of the present invention is a treatment for reducing the roughness of the main surface of the glass substrate. And in this invention, the foreign particle adhesion defect of the glass substrate surface after a process can be reduced significantly by this organic particle being classify | determined predetermined.
 すなわち、本発明によれば、分級された有機粒子を砥粒として含む処理液を用いてガラス基板主表面の処理を行うことで、ガラス基板主表面の表面粗さを現行よりもさらに低減させることができ、なお且つガラス基板表面の異物付着欠陥についても大幅に低減できる高品質の磁気ディスク用ガラス基板を製造することが可能である。
 本発明によって製造される磁気ディスク用ガラス基板は、上述のとおり、超低浮上量を実現できるDFH型磁気ヘッドを備えるHDDに搭載される磁気ディスクに用いられるガラス基板に好適である。
That is, according to the present invention, the surface roughness of the main surface of the glass substrate can be further reduced compared to the current surface by processing the main surface of the glass substrate using a treatment liquid containing classified organic particles as abrasive grains. In addition, it is possible to manufacture a high-quality glass substrate for a magnetic disk that can greatly reduce foreign matter adhesion defects on the surface of the glass substrate.
As described above, the glass substrate for a magnetic disk manufactured by the present invention is suitable for a glass substrate used for a magnetic disk mounted on an HDD including a DFH type magnetic head capable of realizing an ultra-low flying height.
 また、本発明は、以上の磁気ディスク用ガラス基板を用いた磁気ディスクの製造方法についても提供するものである。磁気ディスクは、本発明による磁気ディスク用ガラス基板の上に少なくとも磁性層(磁気記録層)を形成して製造される。磁性層の材料としては、異方性磁界の大きな六方晶系であるCoCrPt系やCoPt系強磁性合金を用いることができる。磁性層の形成方法としてはスパッタリング法、例えばDCマグネトロンスパッタリング法によりガラス基板の上に磁性層を成膜する方法を用いることが好適である。 The present invention also provides a method for manufacturing a magnetic disk using the above glass substrate for a magnetic disk. The magnetic disk is manufactured by forming at least a magnetic layer (magnetic recording layer) on the glass substrate for magnetic disk according to the present invention. As a material for the magnetic layer, a hexagonal CoCrPt-based or CoPt-based ferromagnetic alloy having a large anisotropic magnetic field can be used. As a method of forming the magnetic layer, it is preferable to use a method of forming a magnetic layer on a glass substrate by a sputtering method, for example, a DC magnetron sputtering method.
 また、磁性層の上に、保護層、潤滑層をこの順に形成するとよい。保護層としてはアモルファスの水素化炭素系保護層が好適である。例えばプラズマCVD法により保護層を形成することができる。また、潤滑層としては、パーフルオロポリエーテル化合物の主鎖の末端に官能基を有する潤滑剤を用いることができる。潤滑層はディップ法により塗布形成することができる。 Also, a protective layer and a lubricating layer may be formed in this order on the magnetic layer. As the protective layer, an amorphous hydrogenated carbon-based protective layer is suitable. For example, the protective layer can be formed by a plasma CVD method. Further, as the lubricating layer, a lubricant having a functional group at the end of the main chain of the perfluoropolyether compound can be used. The lubricating layer can be applied and formed by a dip method.
 本発明によって得られる超平滑性及び低表面欠陥を備えたガラス基板を利用することにより、DFHヘッドによる記録再生を行っても、記録再生エラーやヘッドクラッシュ等の問題が起こらず、信頼性の高い磁気ディスクを得ることができる。それゆえ、次世代の例えば750ギガバイトを超えるような今まで以上に高記録密度の磁気ディスクを製造するのに好適である。 By using the glass substrate having ultra-smoothness and low surface defects obtained by the present invention, even when recording / reproducing is performed with a DFH head, problems such as recording / reproducing errors and head crashes do not occur and the reliability is high. A magnetic disk can be obtained. Therefore, it is suitable for manufacturing a magnetic disk with a higher recording density than ever before, for example, exceeding the next generation, for example, 750 gigabytes.
 以下に実施例を挙げて、本発明の実施の形態について具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1~3、比較例1)
 以下の(1)粗研削工程、(2)形状加工工程、(3)精研削工程、(4)端面研磨工程、(5)主表面研磨工程、(6)化学強化工程、(7)主表面仕上げ研磨工程、(8)主表面最終仕上げ研磨工程、を経て磁気ディスク用ガラス基板を製造した。
Hereinafter, embodiments of the present invention will be specifically described with reference to examples. In addition, this invention is not limited to a following example.
(Examples 1 to 3, Comparative Example 1)
The following (1) rough grinding step, (2) shape processing step, (3) fine grinding step, (4) end surface polishing step, (5) main surface polishing step, (6) chemical strengthening step, (7) main surface A glass substrate for a magnetic disk was manufactured through a final polishing step and (8) a main surface final final polishing step.
(1)粗研削工程
 まず、溶融ガラスから上型、下型、胴型を用いたダイレクトプレスにより直径66mmφ、厚さ1.0mmの円盤状のアルミノシリゲートガラスからなるガラス基板を得た。なお、このようなダイレクトプレス以外に、ダウンドロー法やフロート法で製造された板ガラスから所定の大きさに切り出してガラス基板を得てもよい。
(1) Coarse grinding step First, a glass substrate made of disc-shaped aluminosilicate glass having a diameter of 66 mmφ and a thickness of 1.0 mm was obtained from molten glass by direct pressing using an upper die, a lower die, and a barrel die. In addition to such a direct press, a glass substrate may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method.
 次いで、このガラス基板に寸法精度及び形状精度の向上させるため粗研削工程を行った。この粗研削工程は両面研削装置を用いて行った。
(2)形状加工工程
 次に、円筒状の砥石を用いてガラス基板の中央部分に孔を空けると共に、外周端面の研削をして直径を65mmφとした後、外周端面および内周端面に所定の面取り加工を施した。
(3)精研削工程
 この精研削工程は両面研削装置を用いた。
Next, a rough grinding process was performed on the glass substrate in order to improve dimensional accuracy and shape accuracy. This rough grinding process was performed using a double-side grinding machine.
(2) Shape processing step Next, a cylindrical grindstone is used to make a hole in the central portion of the glass substrate, and the outer peripheral end face is ground to a diameter of 65 mmφ. Chamfered.
(3) Precision grinding process This precision grinding process used the double-sided grinding apparatus.
(4)端面研磨工程
 次いで、ブラシ研磨により、ガラス基板を回転させながらガラス基板の端面(内周、外周)を研磨した。そして、上記端面研磨を終えたガラス基板の表面を洗浄した。
(4) End surface grinding | polishing process Next, the end surface (inner periphery, outer periphery) of the glass substrate was grind | polished by brush grinding | polishing, rotating a glass substrate. And the surface of the glass substrate which finished the said end surface grinding | polishing was wash | cleaned.
(5)主表面研磨工程
 次に、主表面研磨工程を前述の図1に示したような両面研磨装置を用いて行なった。両面研磨装置においては、研磨パッドが貼り付けられた上下研磨定盤の間にキャリアにより保持したガラス基板を密着させ、このキャリアを太陽歯車(サンギア)と内歯歯車(インターナルギア)とに噛合させ、上記ガラス基板を上下定盤によって挟圧する。その後、研磨パッドとガラス基板の研磨面との間に研磨液を供給して回転させることによって、ガラス基板が定盤上で自転しながら公転して両面を同時に研磨加工するものである。具体的には、ポリシャとして硬質ポリシャ(硬質発泡ウレタン)を用い、研磨工程を実施した。研磨液としては酸化セリウムを研磨剤として分散したものとした。上記研磨工程を終えたガラス基板を、洗浄し、乾燥した。
(5) Main surface polishing step Next, the main surface polishing step was performed using a double-side polishing apparatus as shown in FIG. In a double-side polishing machine, a glass substrate held by a carrier is closely attached between an upper and lower polishing surface plate to which a polishing pad is attached, and this carrier is engaged with a sun gear (sun gear) and an internal gear (internal gear). The glass substrate is sandwiched between upper and lower surface plates. Thereafter, a polishing liquid is supplied and rotated between the polishing pad and the polishing surface of the glass substrate, whereby the glass substrate revolves while rotating on the surface plate to simultaneously polish both surfaces. Specifically, a polishing process was performed using a hard polisher (hard urethane foam) as a polisher. As the polishing liquid, cerium oxide was dispersed as an abrasive. The glass substrate after the polishing step was washed and dried.
(6)化学強化工程
 次に、上記洗浄を終えたガラス基板に化学強化を施した。化学強化は硝酸カリウムと硝酸ナトリウムの混合した化学強化液を用意し、この化学強化溶液を380℃に加熱し、上記洗浄・乾燥済みのガラス基板を約4時間浸漬して化学強化処理を行なった。
(6) Chemical strengthening process Next, the glass substrate which finished the said washing | cleaning was chemically strengthened. For chemical strengthening, a chemical strengthening solution in which potassium nitrate and sodium nitrate were mixed was prepared, the chemical strengthening solution was heated to 380 ° C., and the cleaned and dried glass substrate was immersed for about 4 hours to perform chemical strengthening treatment.
(7)主表面仕上げ研磨工程
 次いで上記の主表面研磨工程で使用したものと同じ両面研磨装置を用い、ポリシャを軟質ポリシャ(スウェード)の研磨パッド(発泡ポリウレタン)に替えて仕上げ研磨工程を実施した。この仕上げ研磨工程は、上述した最初の研磨工程で得られた平坦な表面を維持しつつ、例えばガラス基板主表面の表面粗さをRaで0.3nm程度以下の平滑な鏡面に仕上げるための鏡面研磨加工である。研磨液としてはコロイダルシリカ(粒径(D50):18nm)を水に分散させたものを酸性に調整した。上記仕上げ研磨工程を終えたガラス基板を、洗浄し、乾燥した。
(7) Main surface finish polishing step Next, using the same double-side polishing apparatus as used in the above main surface polishing step, the polisher was replaced with a polishing pad (foamed polyurethane) of a soft polisher (suede), and a finish polishing step was performed. . This finish polishing step is a mirror surface for finishing the surface roughness of the glass substrate main surface to a smooth mirror surface with a Ra of about 0.3 nm or less while maintaining the flat surface obtained in the first polishing step described above. Polishing process. As the polishing liquid, colloidal silica (particle diameter (D50): 18 nm) dispersed in water was adjusted to be acidic. The glass substrate after the finish polishing step was washed and dried.
(8)主表面最終仕上げ研磨工程
 砥粒として平均粒径19μm(分級後)のPMMA樹脂(アクリル樹脂)を原料とした有機粒子を水に1重量%加え、pH2~10に調整したものを研磨液とした。上記有機粒子は、旋回気流式の分級機を用いて、有機粒子に含まれている粒径3μm以下の粒子数を、個数粒度分布において5%以下となるように分級されているものである。
 研磨方法は、上記の仕上げ研磨工程と同様にして行った。上記最終仕上げ研磨工程を終えたガラス基板を、洗浄し、乾燥した。
 この最終仕上げ研磨終了後の洗浄方法として、洗浄液に水分量1.0重量%以下のイソプロピルアルコールを使用し、洗浄液にガラス基板を浸漬させた状態で超音波を加えて洗浄を行った。
(8) Main surface final finish polishing step: Polishing the abrasive particles adjusted to pH 2 to 10 by adding 1% by weight of organic particles made from PMMA resin (acrylic resin) with an average particle size of 19 μm (after classification) to water. A liquid was used. The organic particles are classified using a swirling airflow classifier so that the number of particles having a particle size of 3 μm or less contained in the organic particles is 5% or less in the number particle size distribution.
The polishing method was performed in the same manner as the above-described finish polishing step. The glass substrate after the final finish polishing step was washed and dried.
As a cleaning method after the final finish polishing, isopropyl alcohol having a water content of 1.0% by weight or less was used for the cleaning liquid, and cleaning was performed by applying ultrasonic waves while the glass substrate was immersed in the cleaning liquid.
 洗浄後の磁気ディスク用ガラス基板について、主表面の表面粗さ(Ra)を原子間力顕微鏡(AFM)にて測定した結果、Ra=0.1nm以下に低減できていた。また、AFMの10μm×10μmの範囲の画像から、洗浄後のガラス基板主表面の異物付着欠陥数をカウントし、その結果について表1に示した。 The surface roughness (Ra) of the main surface of the glass substrate for magnetic disk after washing was measured with an atomic force microscope (AFM), and as a result, Ra was reduced to 0.1 nm or less. In addition, the number of foreign matter adhesion defects on the main surface of the glass substrate after cleaning was counted from an image in the range of 10 μm × 10 μm of AFM, and the results are shown in Table 1.
 また、上記主表面最終仕上げ研磨工程において使用する砥粒を平均粒径19μm(分級後)のスチレン樹脂を原料とした有機粒子に変更したこと以外は、上記実施例1と同様に最終仕上げ研磨、洗浄を行い、磁気ディスク用ガラス基板(実施例2)を得た。
 また、上記主表面最終仕上げ研磨工程において使用する砥粒を平均粒径19μm(分級後)のウレタン樹脂を原料とした有機粒子に変更したこと以外は、上記実施例1と同様に最終仕上げ研磨、洗浄を行い、磁気ディスク用ガラス基板(実施例3)を得た。
 なお、上記実施例2、実施例3に使用した有機粒子は、いずれも旋回気流式の分級機を用いて、有機粒子に含まれている粒径3μm以下の粒子数を、個数粒度分布において5%以下となるように分級されているものである。
 上記実施例2、実施例3により得られた磁気ディスク用ガラス基板についても、主表面の表面粗さ(Ra)を原子間力顕微鏡(AFM)にて測定した結果、Ra=0.1nm以下に低減できていた。
Also, the final finish polishing in the same manner as in Example 1 above, except that the abrasive grains used in the main surface final finish polishing step were changed to organic particles made from styrene resin having an average particle size of 19 μm (after classification), Washing was performed to obtain a glass substrate for magnetic disk (Example 2).
Further, the final finish polishing in the same manner as in Example 1 above, except that the abrasive grains used in the main surface final finish polishing step were changed to organic particles made from urethane resin having an average particle size of 19 μm (after classification). Washing was performed to obtain a glass substrate for magnetic disk (Example 3).
Note that the organic particles used in Examples 2 and 3 were both swirling air classifiers, and the number of particles having a particle size of 3 μm or less contained in the organic particles was 5 in the number particle size distribution. It is classified so that it becomes less than%.
As for the glass substrate for magnetic disk obtained in Example 2 and Example 3 as well, the surface roughness (Ra) of the main surface was measured with an atomic force microscope (AFM). As a result, Ra = 0.1 nm or less. It was reduced.
 また、上記主表面最終仕上げ研磨工程において使用する砥粒を平均粒径19μmのPMMA樹脂を原料とした有機粒子に変更したこと以外は、上記実施例1と同様に最終仕上げ研磨、洗浄を行い、磁気ディスク用ガラス基板(比較例1)を得た。なお、上記有機粒子は実施例1のような分級を行っていないものを使用した。有機粒子に含まれている粒径3μm以下の粒子数は、個数粒度分布において約10%であった。 In addition, the final finish polishing and cleaning are performed in the same manner as in Example 1 except that the abrasive used in the main surface final finish polishing step is changed to organic particles made of PMMA resin having an average particle diameter of 19 μm as a raw material. A glass substrate for magnetic disk (Comparative Example 1) was obtained. In addition, the said organic particle used what was not classifying like Example 1. FIG. The number of particles having a particle size of 3 μm or less contained in the organic particles was about 10% in the number particle size distribution.
 上記実施例2、3及び比較例1により得られた磁気ディスク用ガラス基板についても、上記と同様にして、洗浄後のガラス基板主表面の異物付着欠陥数をカウントし、その結果を実施例1とともに纏めて以下の表1に示した。 For the magnetic disk glass substrates obtained in Examples 2 and 3 and Comparative Example 1, the number of foreign matter adhesion defects on the main surface of the glass substrate after cleaning was counted in the same manner as described above. The results are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から明らかなように、有機粒子に含まれている粒径3μm以下の粒子数を減少させるように分級したものを砥粒として用いることにより、処理後のガラス基板表面の異物付着欠陥数を大幅に低減できる。
 なお、スチレン樹脂とウレタン樹脂の有機粒子にそれぞれ変更したほかは比較例1と同様の条件で最終仕上げ研磨、洗浄を行い、磁気ディスク用ガラス基板を得て(比較例2,3)、上記と同様に評価したところ、異物付着欠陥数は、それぞれ23、25カウントであった。すなわち、実施例2,3と比較例2,3との対比から、樹脂材料をスチレン樹脂又はウレタン樹脂に変更した場合であっても、アクリル樹脂と同様に分級の効果が得られることがわかった。
As is clear from the results in Table 1 above, foreign matter adhesion on the surface of the glass substrate after the treatment is achieved by using as the abrasive grains classified so as to reduce the number of particles having a particle size of 3 μm or less contained in the organic particles. The number of defects can be greatly reduced.
The final finish polishing and cleaning were performed under the same conditions as in Comparative Example 1 except that the organic particles were changed to styrene resin and urethane resin, respectively, to obtain a glass substrate for magnetic disk (Comparative Examples 2 and 3). When evaluated in the same manner, the number of foreign matter adhesion defects was 23 and 25, respectively. That is, from the comparison between Examples 2 and 3 and Comparative Examples 2 and 3, it was found that even when the resin material was changed to styrene resin or urethane resin, the classification effect was obtained in the same manner as acrylic resin. .
(実施例4~7)
 上記実施例1に使用した上記有機粒子について、有機粒子に含まれている粒径3μm以下の粒子数の個数粒度分布における分級率を表2に示すように種々変更した。
 上記実施例1の主表面最終仕上げ研磨工程において使用する砥粒をこれらの有機粒子にそれぞれ変更したこと以外は、上記実施例1と同様に最終仕上げ研磨、洗浄を行い、磁気ディスク用ガラス基板(実施例4~7)を得た。
 上記実施例4~7により得られた磁気ディスク用ガラス基板について、光学式の表面検査装置OSAを使用して、洗浄後のガラス基板主表面(基板全面)の異物付着欠陥数をカウントし、その結果を纏めて以下の表2に示した。
(Examples 4 to 7)
Regarding the organic particles used in Example 1, the classification rate in the number particle size distribution of the number of particles having a particle size of 3 μm or less contained in the organic particles was variously changed as shown in Table 2.
Except that the abrasive grains used in the main surface final finish polishing step of Example 1 were changed to these organic particles, final finish polishing and cleaning were performed in the same manner as in Example 1 to obtain a glass substrate for a magnetic disk ( Examples 4 to 7) were obtained.
For the magnetic disk glass substrates obtained in Examples 4 to 7, the optical surface inspection apparatus OSA was used to count the number of foreign matter adhesion defects on the cleaned glass substrate main surface (the entire substrate surface). The results are summarized in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 有機粒子に含まれている粒径3μm以下の粒子数の個数粒度分布における分級率を上記表2に示すように種々変更した結果、有機粒子に含まれている粒径3μm以下の粒子数を、個数粒度分布において特に5%以下となるように分級したものを砥粒として用いることにより、処理後のガラス基板表面の異物付着欠陥数を大幅に低減できる。より好ましくは、3%以下とすることであり、さらに好ましくは、2%以下とすることである。 As a result of variously changing the classification rate in the number particle size distribution of the number of particles having a particle size of 3 μm or less contained in the organic particles as shown in Table 2 above, the number of particles having a particle size of 3 μm or less contained in the organic particles is The number of foreign matter adhesion defects on the surface of the glass substrate after processing can be significantly reduced by using as the abrasive grains those classified so as to be 5% or less in the number particle size distribution. More preferably, it is 3% or less, and further preferably 2% or less.
 さらに、有機粒子の平均粒径を、5μm、10μm、30μmとしたこと以外は実施例1と同様の条件で最終仕上げ研磨、洗浄を行い、磁気ディスク用ガラス基板を得た(実施例8,9,10)。これらの有機粒子に含まれている粒径3μm以下の粒子数の個数粒度分布における分級率は、いずれも5%以下であった。得られた実施例8,9,10のガラス基板について実施例1と同様に異物付着欠陥数を評価したところ、それぞれ1個、0個、0個であった。 Further, the final finish polishing and cleaning were performed under the same conditions as in Example 1 except that the average particle diameter of the organic particles was set to 5 μm, 10 μm, and 30 μm to obtain glass substrates for magnetic disks (Examples 8 and 9). , 10). The classification rate in the number particle size distribution of the number of particles having a particle size of 3 μm or less contained in these organic particles was 5% or less. When the number of foreign matter adhesion defects was evaluated in the same manner as in Example 1 for the obtained glass substrates of Examples 8, 9, and 10, they were 1, 0, and 0, respectively.
 また、有機粒子に含まれている粒径2μm以下の粒子数を、個数粒度分布において5%以下となるように分級した有機粒子を用いたこと以外は実施例1と同様の条件で最終仕上げ研磨、洗浄を行い、磁気ディスク用ガラス基板を得た(参考例1)。さらに、有機粒子に含まれている粒径1μm以下の粒子数を、個数粒度分布において5%以下となるように分級した有機粒子を用いたこと以外は実施例1と同様の条件で最終仕上げ研磨、洗浄を行い、磁気ディスク用ガラス基板を得た(参考例2)。得られた参考例1,2のガラス基板について実施例1と同様に異物付着欠陥数を評価したところ、比較例1よりは若干改善されるものの、いずれも処理後のガラス基板表面の異物付着欠陥数を大幅に低減することは出来なかった。これは、基板表面の付着異物の大部分を占める粒径が3μm以下であって1μmあるいは2μmを超える大きさの微小樹脂粒子が残っているためであると推察される。要するに、処理後のガラス基板表面の異物付着欠陥数を大幅に低減するためには、有機粒子に含まれている粒径3μm以下の粒子数を減少させるように分級することが重要である。 Further, the final finish polishing was performed under the same conditions as in Example 1 except that organic particles classified so that the number of particles having a particle size of 2 μm or less contained in the organic particles was 5% or less in the number particle size distribution were used. Then, a glass substrate for magnetic disk was obtained (Reference Example 1). Further, the final finish polishing is performed under the same conditions as in Example 1 except that organic particles classified so that the number of particles having a particle size of 1 μm or less contained in the organic particles is 5% or less in the number particle size distribution are used. The glass substrate for magnetic disk was obtained (Reference Example 2). When the number of foreign matter adhesion defects was evaluated in the same manner as in Example 1 for the glass substrates of Reference Examples 1 and 2, the foreign matter adhesion defects on the surface of the glass substrate after treatment were both improved slightly compared to Comparative Example 1. The number could not be reduced significantly. This is presumed to be because fine resin particles having a particle size of 3 μm or less that occupies most of the adhered foreign substances on the substrate surface and having a size exceeding 1 μm or 2 μm remain. In short, in order to greatly reduce the number of foreign matter adhesion defects on the glass substrate surface after the treatment, it is important to classify so that the number of particles having a particle size of 3 μm or less contained in the organic particles is reduced.
(磁気ディスクの製造)
 上記実施例1で得られた磁気ディスク用ガラス基板にそれぞれ以下の成膜工程を施して、垂直磁気記録用磁気ディスクを得た。
 すなわち、上記ガラス基板上に、Ti系合金薄膜からなる付着層、CoTaZr合金薄膜からなる軟磁性層、Ru薄膜からなる下地層、CoCrPt合金からなる垂直磁気記録層、カーボン保護層、潤滑層を順次成膜した。保護層は、磁気記録層が磁気ヘッドとの接触によって劣化することを防止するためのもので、水素化カーボンからなり、耐磨耗性が得られる。また、潤滑層は、アルコール変性パーフルオロポリエーテルの液体潤滑剤をディップ法により形成した。
 得られた磁気ディスクについて、DFHヘッドを用いて、グライド特性試験を行った結果ヘッドクラッシュは起こらず良好な結果が得られた。
(Manufacture of magnetic disk)
The following film forming steps were applied to the magnetic disk glass substrates obtained in Example 1 to obtain magnetic disks for perpendicular magnetic recording.
That is, an adhesion layer made of a Ti-based alloy thin film, a soft magnetic layer made of a CoTaZr alloy thin film, an underlayer made of a Ru thin film, a perpendicular magnetic recording layer made of a CoCrPt alloy, a carbon protective layer, and a lubricating layer are sequentially formed on the glass substrate. A film was formed. The protective layer is for preventing the magnetic recording layer from deteriorating due to contact with the magnetic head, and is made of hydrogenated carbon, and provides wear resistance. The lubricating layer was formed by dipping a liquid lubricant of alcohol-modified perfluoropolyether.
As a result of performing a glide characteristic test on the obtained magnetic disk using a DFH head, a head crash did not occur and good results were obtained.
1 ガラス基板
2 太陽歯車
3 内歯歯車
4 キャリア
5 上定盤
6 下定盤
7 研磨パッド
 
1 Glass substrate 2 Sun gear 3 Internal gear 4 Carrier 5 Upper surface plate 6 Lower surface plate 7 Polishing pad

Claims (8)

  1.  磁気ディスク用ガラス基板の製造方法であって、
    有機粒子を砥粒として含む処理液を用いて、ガラス基板の主表面の粗さを低減させる処理を含み、
     前記処理後の前記ガラス基板表面の異物付着欠陥を低減させるべく、前記有機粒子は分級されていることを特徴とする磁気ディスク用ガラス基板の製造方法。
    A method of manufacturing a glass substrate for a magnetic disk,
    Using a treatment liquid containing organic particles as abrasive grains, including processing to reduce the roughness of the main surface of the glass substrate,
    The method for producing a glass substrate for a magnetic disk, wherein the organic particles are classified so as to reduce foreign matter adhesion defects on the surface of the glass substrate after the treatment.
  2.  前記有機粒子に含まれている粒径3μm以下の粒子数を減少させるように分級されていることを特徴とする請求項1に記載の磁気ディスク用ガラス基板の製造方法。 2. The method for producing a glass substrate for a magnetic disk according to claim 1, wherein the glass particles are classified so as to reduce the number of particles having a particle size of 3 μm or less contained in the organic particles.
  3.  前記有機粒子に含まれている粒径3μm以下の粒子数を、個数粒度分布において5%以下となるように分級されていることを特徴とする請求項2に記載の磁気ディスク用ガラス基板の製造方法。 3. The glass substrate for a magnetic disk according to claim 2, wherein the number of particles having a particle size of 3 μm or less contained in the organic particles is classified so as to be 5% or less in the number particle size distribution. Method.
  4.  分級された前記有機粒子の平均粒径は、5~30μmの範囲であることを特徴とする請求項1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 4. The method for producing a glass substrate for a magnetic disk according to claim 1, wherein the average particle diameter of the classified organic particles is in the range of 5 to 30 μm.
  5.  前記有機粒子は、スチレン系樹脂、アクリル系樹脂またはウレタン系樹脂からなることを特徴とする請求項1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 5. The method of manufacturing a glass substrate for a magnetic disk according to claim 1, wherein the organic particles are made of a styrene resin, an acrylic resin, or a urethane resin.
  6.  前記処理後に、前記ガラス基板表面を洗浄後の基板表面粗さが上昇しないような条件で洗浄処理することを特徴とする請求項1乃至5のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 6. The method of manufacturing a glass substrate for a magnetic disk according to claim 1, wherein after the treatment, the glass substrate surface is subjected to a washing treatment under conditions such that the substrate surface roughness after washing does not increase. .
  7.  シリカ砥粒を研磨砥粒として含む研磨液を用いてガラス基板の主表面を研磨した後、前記有機粒子を砥粒として含む処理液を用いてガラス基板の主表面の粗さを低減させる処理を行うことを特徴とする請求項1乃至6のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 After polishing the main surface of the glass substrate using a polishing liquid containing silica abrasive grains as polishing abrasive grains, a treatment for reducing the roughness of the main surface of the glass substrate using a processing liquid containing the organic particles as abrasive grains. The method for producing a glass substrate for a magnetic disk according to claim 1, wherein the method is performed.
  8.  請求項1乃至7のいずれかに記載の製造方法によって得られた磁気ディスク用ガラス基板上に、少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。
     
     
    A method for producing a magnetic disk, comprising forming at least a magnetic recording layer on a glass substrate for a magnetic disk obtained by the production method according to claim 1.

PCT/JP2015/071854 2014-07-31 2015-07-31 Magnetic disk-use glass substrate manufacturing method and magnetic disk manufacturing method WO2016017812A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580039998.9A CN106537505B (en) 2014-07-31 2015-07-31 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP2016538469A JP6282741B2 (en) 2014-07-31 2015-07-31 Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and processing liquid
SG11201610744YA SG11201610744YA (en) 2014-07-31 2015-07-31 Method for manufacturing magnetic-disk glass substrate and method for manufacturing magnetic disk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014157193 2014-07-31
JP2014-157193 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017812A1 true WO2016017812A1 (en) 2016-02-04

Family

ID=55217706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071854 WO2016017812A1 (en) 2014-07-31 2015-07-31 Magnetic disk-use glass substrate manufacturing method and magnetic disk manufacturing method

Country Status (5)

Country Link
JP (1) JP6282741B2 (en)
CN (1) CN106537505B (en)
MY (1) MY176437A (en)
SG (1) SG11201610744YA (en)
WO (1) WO2016017812A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201610744YA (en) * 2014-07-31 2017-02-27 Hoya Corp Method for manufacturing magnetic-disk glass substrate and method for manufacturing magnetic disk

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370158A (en) * 2001-06-15 2002-12-24 Nihon Micro Coating Co Ltd Polishing slurry used for applying texture processing on surface of glass substrate and method
JP2007005612A (en) * 2005-06-24 2007-01-11 Hitachi Chem Co Ltd Polishing pad, manufacturing method thereof, and polishing method of substrate
JP2011136402A (en) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd Polishing particle dispersion liquid comprising aggregate of organic particle and silica particle, and method for manufacturing the same
JP2012079370A (en) * 2010-09-30 2012-04-19 Konica Minolta Opto Inc Method of manufacturing glass substrate for magnetic information recording medium
JP2012129406A (en) * 2010-12-16 2012-07-05 Kuraray Co Ltd Chemical mechanical polishing method and slurry used therein

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101357328B1 (en) * 2009-11-12 2014-02-03 히타치가세이가부시끼가이샤 Chemical-mechanical polishing liquid, and semiconductor substrate manufacturing method and polishing method using said polishing liquid
MY155732A (en) * 2010-04-20 2015-11-17 Kao Corp Method for manufacturing an aluminosilicate glass substrate for hard disks
SG11201610744YA (en) * 2014-07-31 2017-02-27 Hoya Corp Method for manufacturing magnetic-disk glass substrate and method for manufacturing magnetic disk

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370158A (en) * 2001-06-15 2002-12-24 Nihon Micro Coating Co Ltd Polishing slurry used for applying texture processing on surface of glass substrate and method
JP2007005612A (en) * 2005-06-24 2007-01-11 Hitachi Chem Co Ltd Polishing pad, manufacturing method thereof, and polishing method of substrate
JP2011136402A (en) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd Polishing particle dispersion liquid comprising aggregate of organic particle and silica particle, and method for manufacturing the same
JP2012079370A (en) * 2010-09-30 2012-04-19 Konica Minolta Opto Inc Method of manufacturing glass substrate for magnetic information recording medium
JP2012129406A (en) * 2010-12-16 2012-07-05 Kuraray Co Ltd Chemical mechanical polishing method and slurry used therein

Also Published As

Publication number Publication date
CN106537505B (en) 2019-12-20
JPWO2016017812A1 (en) 2017-04-27
CN106537505A (en) 2017-03-22
JP6282741B2 (en) 2018-02-21
MY176437A (en) 2020-08-10
SG11201610744YA (en) 2017-02-27

Similar Documents

Publication Publication Date Title
JP6078942B2 (en) Glass substrate manufacturing method, magnetic disk manufacturing method, and polishing composition for glass substrate
JP5975654B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5142548B2 (en) Manufacturing method of glass substrate for magnetic disk and polishing pad
JP6243920B2 (en) Glass substrate manufacturing method and magnetic disk manufacturing method
JP5813628B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6467118B1 (en) Magnetic disk substrate and magnetic disk
WO2018182046A1 (en) Non-magnetic substrate for magnetic disk, and magnetic disk
JP6031593B2 (en) Method of manufacturing glass substrate for magnetic disk, method of manufacturing magnetic disk, and polishing pad
WO2012029857A1 (en) Method for producing glass substrate for magnetic disks, and method for producing magnetic disk
JP6282741B2 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and processing liquid
JP2006082138A (en) Method of manufacturing glass substrate for magnetic disk, and glass substrate for magnetic disk, as well as method of manufacturing magnetic disk, and magnetic disk
JP6420260B2 (en) Magnetic disk substrate manufacturing method and magnetic disk manufacturing method
JP5306759B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP6081580B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP4484162B2 (en) Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk
WO2014103284A1 (en) Method for producing glass substrate for information recording medium
JP2010108598A (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and magnetic disk
JP5704755B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2013080530A (en) Manufacturing method of glass substrate for magnetic disc and manufacturing method of magnetic disc
JP2011086371A (en) Manufacturing method of glass substrate for magnetic disk
JP2007115389A (en) Method of manufacturing magnetic disk glass substrate and method of manufacturing magnetic disk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827596

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载