WO2016016805A1 - Construction génétique destinée à la transformation de souches de levure - Google Patents
Construction génétique destinée à la transformation de souches de levure Download PDFInfo
- Publication number
- WO2016016805A1 WO2016016805A1 PCT/IB2015/055692 IB2015055692W WO2016016805A1 WO 2016016805 A1 WO2016016805 A1 WO 2016016805A1 IB 2015055692 W IB2015055692 W IB 2015055692W WO 2016016805 A1 WO2016016805 A1 WO 2016016805A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- seq
- sequence
- gene construct
- transformation
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 85
- 240000004808 Saccharomyces cerevisiae Species 0.000 title claims abstract description 58
- 230000009466 transformation Effects 0.000 title claims abstract description 35
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 claims abstract description 54
- 241001300475 Rhodosporidiobolus azoricus Species 0.000 claims abstract description 36
- 229940035893 uracil Drugs 0.000 claims abstract description 27
- 239000013598 vector Substances 0.000 claims abstract description 7
- 101150044776 URA5 gene Proteins 0.000 claims description 39
- 239000013612 plasmid Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 11
- 108700007698 Genetic Terminator Regions Proteins 0.000 claims description 10
- 239000002773 nucleotide Substances 0.000 claims description 8
- 125000003729 nucleotide group Chemical group 0.000 claims description 8
- 210000005253 yeast cell Anatomy 0.000 claims description 8
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 6
- 230000001131 transforming effect Effects 0.000 claims description 5
- 239000003242 anti bacterial agent Substances 0.000 claims description 3
- 229940088710 antibiotic agent Drugs 0.000 claims description 2
- 239000013604 expression vector Substances 0.000 claims description 2
- 230000002068 genetic effect Effects 0.000 claims description 2
- 229920001184 polypeptide Polymers 0.000 claims description 2
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 238000011426 transformation method Methods 0.000 abstract description 2
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 49
- 210000004027 cell Anatomy 0.000 description 22
- 108020004414 DNA Proteins 0.000 description 13
- 230000014509 gene expression Effects 0.000 description 12
- 241000223252 Rhodotorula Species 0.000 description 11
- 239000002609 medium Substances 0.000 description 11
- 101100246753 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) pyrF gene Proteins 0.000 description 10
- 101150050575 URA3 gene Proteins 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- 239000012634 fragment Substances 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 241000233866 Fungi Species 0.000 description 6
- 229910009891 LiAc Inorganic materials 0.000 description 6
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 6
- 241000894007 species Species 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 4
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 229920001817 Agar Polymers 0.000 description 3
- 201000007336 Cryptococcosis Diseases 0.000 description 3
- 241000221204 Cryptococcus neoformans Species 0.000 description 3
- 241001465328 Eremothecium gossypii Species 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- KYOBSHFOBAOFBF-UHFFFAOYSA-N UMP Natural products OC1C(O)C(COP(O)(O)=O)OC1N1C(=O)NC(=O)C=C1C(O)=O KYOBSHFOBAOFBF-UHFFFAOYSA-N 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- KYOBSHFOBAOFBF-XVFCMESISA-N orotidine 5'-phosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1C(O)=O KYOBSHFOBAOFBF-XVFCMESISA-N 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- SEHFUALWMUWDKS-UHFFFAOYSA-N 5-fluoroorotic acid Chemical compound OC(=O)C=1NC(=O)NC(=O)C=1F SEHFUALWMUWDKS-UHFFFAOYSA-N 0.000 description 2
- 241000235349 Ascomycota Species 0.000 description 2
- 241000221198 Basidiomycota Species 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- 241001522864 Cryptococcus gattii VGI Species 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 108091029865 Exogenous DNA Proteins 0.000 description 2
- 101100355080 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) ura-5 gene Proteins 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108010055012 Orotidine-5'-phosphate decarboxylase Proteins 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 2
- 241000221523 Rhodotorula toruloides Species 0.000 description 2
- 101150078565 TEF gene Proteins 0.000 description 2
- DJJCXFVJDGTHFX-UHFFFAOYSA-N Uridinemonophosphate Natural products OC1C(O)C(COP(O)(O)=O)OC1N1C(=O)NC(=O)C=C1 DJJCXFVJDGTHFX-UHFFFAOYSA-N 0.000 description 2
- 244000301083 Ustilago maydis Species 0.000 description 2
- 235000015919 Ustilago maydis Nutrition 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000003225 biodiesel Substances 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- DJJCXFVJDGTHFX-ZAKLUEHWSA-N uridine-5'-monophosphate Chemical compound O[C@@H]1[C@@H](O)[C@H](COP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 DJJCXFVJDGTHFX-ZAKLUEHWSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 239000007222 ypd medium Substances 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- XTFIVUDBNACUBN-UHFFFAOYSA-N 1,3,5-trinitro-1,3,5-triazinane Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)C1 XTFIVUDBNACUBN-UHFFFAOYSA-N 0.000 description 1
- RNBMPPYRHNWTMA-UAKXSSHOSA-N 5-fluorouridine 5'-monophosphate Chemical compound O1[C@H](COP(O)(O)=O)[C@@H](O)[C@@H](O)[C@@H]1N1C(=O)NC(=O)C(F)=C1 RNBMPPYRHNWTMA-UAKXSSHOSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108090000489 Carboxy-Lyases Proteins 0.000 description 1
- 102000004031 Carboxy-Lyases Human genes 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 241001291474 Malassezia globosa Species 0.000 description 1
- 241001181530 Melampsora larici-populina Species 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 102100037214 Orotidine 5'-phosphate decarboxylase Human genes 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 241000864269 Penicillium nalgiovense Species 0.000 description 1
- 241000222393 Phanerochaete chrysosporium Species 0.000 description 1
- 102000009097 Phosphorylases Human genes 0.000 description 1
- 108010073135 Phosphorylases Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241001157811 Pucciniomycotina Species 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 240000003793 Rhizophora mangle Species 0.000 description 1
- 241000223253 Rhodotorula glutinis Species 0.000 description 1
- 241001149408 Rhodotorula graminis Species 0.000 description 1
- 241000007100 Rhodotorula kratochvilovae Species 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241000235004 Saccharomycopsis fibuligera Species 0.000 description 1
- 241001360382 Sporobolomyces sp. (in: Microbotryomycetes) Species 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 241000235015 Yarrowia lipolytica Species 0.000 description 1
- -1 about 43 μΐ Chemical compound 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012978 lignocellulosic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 238000002887 multiple sequence alignment Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- FKCRAVPPBFWEJD-XVFCMESISA-N orotidine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1C(O)=O FKCRAVPPBFWEJD-XVFCMESISA-N 0.000 description 1
- FKCRAVPPBFWEJD-UHFFFAOYSA-N orotidine Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1C(O)=O FKCRAVPPBFWEJD-UHFFFAOYSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 239000007320 rich medium Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 101150065190 term gene Proteins 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
- C12N15/815—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
Definitions
- the present invention relates to a gene construct based on auxotrophy for uracil suitable for the transformation of yeasts of the species Rhodosporidium azoricum.
- the invention also relates to a vector containing said gene construct, a yeast of the species Rhodosporidium azoricum transformed with said gene construct and a transformation method.
- yeasts belonging to the group of ascomycetes have been widely studied and characterized.
- auxotrophic mutants represent a simple system for having available selective markers in DNA transformation with genes of interest.
- the enzyme orotidine-5' -monophosphate (OMP) decarboxylase normally encoded by the gene URA3 converts OMP to uridine-5'- monophosphate (UMP) in the last passage of the biosynthetic pathway of pyrimidine, essential for the synthesis of DNA and RNA.
- OMP uridine-5'- monophosphate
- UMP uridine-5'- monophosphate
- URA3 uridine-5'- monophosphate
- Basidiomycetae yeasts such as, for example, Cryptococcus neoformans, Cryptococcus gattii,
- URA5 mutants are obtained. With respect to the species belonging to the Rhodosporidium genus, URA5 mutants have only been described for the species R. kratochvilovae (in Abbott EP Ianiri G, Castoria R, Idnurm A. 2013. Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts. Applied Microbiology and Biotechnology 97(1) :283-295) .
- 5'-FOA is employed, which is a compound used for the selection of uracil auxotroph strains, as it generates mutations in the URA3 and URA5 genes in yeasts commonly studied such as S. cerevisiae and in other yeasts and fungi (see articles cited above) .
- International patent application WO2009126890 describes recombinant oleaginous fungi for the biological production of carotenoids and/or retinoic acid
- US patent application US20100305341 describes recombinant oleaginous fungi for the biological production of sterols.
- Basidiomycetae yeasts those belonging to the Rhodosporidium species are of particular interest as they are known oleaginous capable of accumulating lipids even naturally, so that, when cultivated under particular favourable conditions, they can increase the conversion of carbon sources into fatty acids and triglycerides (as described in literature in M. Khot, S. Kamat, S. Zinjarde, A. Pant, B. Chopade and A. RaviKumar. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential for biodiesel. Microbial Cell Factories 2012, 11:71. and G. Katre, C. Joshi, M. Khot, S. Zinjarde, A. Ravikumar.
- yeasts of the Rhodosporidium genus can be improved by acting on specific biosynthetic pathways. This can be obtained by genetic engineering, wherein fragments of exogenous DNA encoding, for example, enzymatic or regulatory activities of interest, are inserted in the genome of the target microorganism by gene recombination.
- DNA fragments of one species may not be functional in another nearby species, thus indicating the need for specific molecular tools. See for example Applied Microbiology and Biotechnology 97 ( 1 ) : 283-295 (mentioned above) , in which DNA fragments of Basidiomycetous Rhodotorula sloffiae have proved not to be functional in the phylogenetically close yeast Rhodotorula glutinis .
- a molecular marker containing the sequence of the marker gene URA5 encoding the orotidine monop osp ate phosphorylase enzyme (OMPPase) and including the promoter and terminator sequences, and an uracil auxotroph strain wherein the URA5 gene has a mutation that makes the enzyme inactive, and which therefore makes the microorganism unable to autonomously reproduce itself without uracil.
- URA5 encoding the orotidine monop osp ate phosphorylase enzyme (OMPPase) and including the promoter and terminator sequences
- OMPPase monop osp ate phosphorylase enzyme
- the Applicants have now found a gene construct based on auxotrophy for uracil suitable for the transformation of yeasts of the species Rhodosporidium azoricum auxotrophic for uracil.
- yeasts belonging to the species Rhodosporidium azoricum are not only oleaginous but also have other advantages.
- yeasts are capable of utilizing sugars with five carbon atoms and fermentative set-ups have been advantageously developed that allow high concentrations of biomass production.
- a first aspect of the present invention therefore relates to a gene construct having the characteristics according to claim 1.
- the invention relates to a method for transforming yeast cells of the species Rhodosporidium azoricum auxotrophic for uracil, wherein said method is effected according to claim 14.
- the invention relates to a transformation vector as described in claim 15.
- the invention relates to a yeast cell of Rhodosporidium azoricum transformed as described in claim 16.
- the invention relates to a yeast cell of Rhodosporidium azoricum as described in claim 17.
- the expression gene construct refers to a polynucleotide which contains information necessary for the transformation and expression of at least one desired characteristic in the target organism.
- said polynucleotide is a DNA fragment.
- This definition also comprises, moreover, the expressions "expression cassette” and "transformation cassette”.
- An object of the present invention relates to a gene construct comprising a sequence encoding the URA5 gene for the transformation of yeast strains of the species Rhodosporidium azoricum auxotrophic for uracil.
- the gene construct of the present invention comprises the sequence of the URA5 gene of 696 base pairs with identification number 1 (SEQ ID NO: 1), which was obtained from the genome of Rhodosporidium azoricum by direct sequencing, following amplification of the corresponding fragment by PCR and identified thanks to the construction of degenerated promoters (primers) on the sequences of the URA5 genes of similar yeasts present in public databases.
- Said sequence of the promoter is preferably the sequence with identification number 2 (SEQ ID NO: 2), of 995 base pairs.
- Said terminator sequence is preferably the sequence with identification number 3 (SEQ ID NO: 3) of 415 base pairs.
- the promoter and terminator sequences were also amplified from the regions adjacent to the gene URA5 in the genome of Rhodosporidium azoricum.
- the gene construct of the present invention comprises the sequence with identification number 4 (SEQ ID NO: 4), wherein the sequence of the URA 5 gene has 770 base pairs, as it also comprises the intron of SEQ ID NO: 5 (see also the explanation of figure 2) .
- the sequence of the URA5 gene of the gene construct encodes a polypeptide with an amino acid sequence with identification number 6 (SEQ ID NO: 6) .
- any promoter/terminator pair of constitutive (autologous) genes of Rhodosporidium can be used: according to a preferred aspect, the promoter of the (autologous) phosphoglycerate kinase (PGK) gene with the sequence having identification number 7 (SEQ ID NO: 7) , is used.
- PGK phosphoglycerate kinase
- the promoter of the (heterologous ) TEF gene of Ashbya gossypii (Ji, L., Z.- D. Jiang, Y. Liu, C. M. J. Koh and L.-H. Zhang. 2010
- a simplified and efficient method for transformation and gene tagging of Ustilago maydis using frozen cells. Fungal Genetics and Biology, 47:279-287.) with the sequence having identification number 8 (SEQ ID NO: 8) can be used.
- the terminator of the (autologous) gene of phosphoglycerate kinase (PGK) with the sequence having identification number 9 (SEQ ID NO: 9) or the terminator of the (heterologous) TEF gene of Ashbya gossypii with identification number 10 (SEQ ID NO: 10), can be used as terminators.
- promoter, URA 5 gene and terminator constructs are those having identification number SEQ ID NO: 11, wherein the promoter and the terminator respectively have SEQ ID NO: 7 and SEQ ID NO: 9 (autologous), or having identification number SEQ ID NO: 12, wherein the promoter and the terminator respectively have SEQ ID NO: 8 and SEQ ID NO: 10
- promoter- URA5 gene sequence-terminator therefore represents a molecular tool which, if inserted in a transformation vector, allows the transfer and expression of exogenous DNA in a target organism auxotrophic for uracil, relying on a selective system capable of verifying its correct integration, i.e. a selection marker, in this case URA5, whose gene sequence has been obtained from the genome of Rhodosporidium azoricum by means of PCR amplification.
- said organisms are yeasts of the genus Rhodosporidium, preferably Rhodosporidium azoricum.
- this gene expression construct can be used for the transformation of a strain of Rhodosporidium azoricum, or more generally a strain of the genus Rhodosporidium, which is auxotrophic for uracil, i.e. having the URA5 gene inactivated.
- the gene construct of the present invention is included in an expression vector, preferably a plasmid.
- vectors can be used for effecting the transformation with the gene construct of the invention.
- said construct can be inserted into different types of bacterial plasmids well-known in the art, such as, for example, the commercially available plasmids TOPO, pUC18, pJET1.2, pSP72 and those of the pGEM family, so as to be able to easily manipulate the construct and obtain a sufficient quantity for the transformation of yeast cells.
- the cassette can then be excised from the plasmid or the plasmid can be simply linearized to facilitate its recombination in the genome of the target yeast.
- a further object of the present invention relates to a method for the transformation of yeast cells of the species Rhodosporidium azoricum auxotrophic for uracil and selection of the transformants comprising: - transforming yeast cells with the gene construct as defined in the present invention;
- the minimal medium mainly used for the culture of yeasts comprises glucose from 5 to 50 g/1, preferably 20 g/1, YNB (Yeast Nitrogen Base) W/O amino acid from 3.35 to 13.4 g/1, preferably 6.7 g/1.
- the minimal medium preferably envisages the addition of agar 20 g/1 (from 15 to 30 g/1) .
- a further object relates to a transformation vector comprising the gene construct as defined in the present invention .
- Another object of the present invention relates to a yeast transformed with the gene construct as defined above, said yeast belonging to the species Rhodosporidium azoricum and being auxotrophic for uracil.
- the strain belonging to the species Rhodosporidium azoricum uracil auxotroph was deposited under the Budapest Treaty at the Leibniz-Institut DSMZ
- said gene construct also comprises at least one nucleotide sequence and/or gene of interest to be transferred into the genome of target yeasts.
- the at least one nucleotide sequence and/or gene of interest to be transferred into the genome of target yeasts through the construct of the invention encodes resistance to antibiotics.
- figure 1 shows:
- figure 1A gene construct of the invention comprising a gene of interest to be transferred into the genome of target yeasts;
- figure IB gene construct of figure 1A inserted in a bacterial plasmid
- figure 1C gene construct of the invention comprising two genes of interest to be transferred into the genome of target yeasts;
- FIG. 2 shows the nucleotide sequence of the URA5 gene of Rhodosporidium azoricum.
- the start (ATG) and stop (TAG) codons of the transcript are shown, whereas an intron (non-encoding area situated inside the gene, with sequence SEQ ID NO: 5) , is shown in light grey.
- the URA5 gene inserted in the gene construct of the invention corresponds to the underlined nucleotide sequence (SEQ ID NO: 1, without intron) .
- the region upstream of the underlined part is the promoter with SEQ ID NO: 2 and the region downstream of the underlined part is the terminator with SEQ ID NO: 3.
- FIG. 4 shows examples of mutations in the URA5 gene that can lead to uracil auxotrophy Nucleotide sequences of the URA5 gene of Rhodosporidium azoricum are shown: the wild-type
- mutant strain (SEQ ID NO: 13) is that from which the mutants are obtained (therefore its sequence encodes a functional enzyme) , whereas the sequences called "mutant U24" (SEQ ID NO: 14) and “mutant U27” (SEQ ID NO: 15) are those relating to the gene not functioning in different mutants indicated as an example (in U24 see residue nr. 420; in U27 see residue nr. 614) .
- the mutant U27 is that used in the strain deposited with number DSM 28738 on May 6, 2014, at the Leibniz- Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), InhoffenstraBe 7 B 38124 Braunschweig (Germany) .
- the sequence called “consensus” is automatically generated by the program used for the alignment (MultAlin software, “Multiple sequence alignment with hierarchical clustering” F. CORPET, 1988, Nucl . Acids Res., 16 (22), 10881-10890) : in fact it creates this sequence "consensus” which indicates the "common” base in all the aligned sequences, whereas it inserts a dot where there are modifications.
- the first step of the strategy used for the sequencing of the gene URA5 of Rhodosporidium azoricum consisted in the search for regions having a high homology among the protein sequences of URA5 deriving from yeasts, close from a phylogenetic point of view ⁇ Malassezia globosa, Cryptococcus gattii, Melampsora larici-populina) , whose sequences were present in public databases.
- the conserved regions among the different sequences compared were thus identified and degenerated primers were then constructed (following the method proposed by Rose, T.M., E.R. Schultz, J.G. Henikoff, S. Pietrokovski , CM. McCallum and S. Henikoff. 1998. Consensus-degenerate hybrid oligonucleotide primer for amplification of distantly- related sequences. Nucleic Acids Research, 26(7) :1628- 1635) .
- mutants were obtained with the URA5 gene non-functional.
- the yeast Rhodosporidium azoricum was grown in a rich medium
- the uracil auxotroph mutants were transformed with the constructed cassette.
- the protocol envisaged the collection of a culture of exponentially growing cells at about 1-4 x 10 7 cells ml -1 in YPD medium (100 ml), by centrifuging for 5 minutes at 4, 000 rpm. The pellet was washed with 10 ml of buffer LiAc/TE (0.1 M Lithium acetate, 10 mM Tris-HCl, 1 mM EDTA, pH 8) and gently re-suspended in LiAc/TE at a final concentration of 1-4 x 10 9 cells ml -1 .
- buffer LiAc/TE 0.1 M Lithium acetate, 10 mM Tris-HCl, 1 mM EDTA, pH 8
- test-tube 100 ⁇ of cell suspension were prepared in a sterile eppendorf test-tube for each transformation treatment, to which the DNA was added in a volume of 10 ⁇ .
- the test-tube was gently shaken and incubated at room temperature for 5 minutes.
- 280 ⁇ of PEG 4000 50% in LiAc/TE were added to each test-tube
- test-tubes were inverted 5-6 times to guarantee a complete mixing and then incubated at 30 °C for 45 min.; 1/10 of the volume of dimethylsulfoxide
- DMSO methyl methacrylate
- the cells were subjected to thermal "shock" at 42°C for 5 minutes and then immediately re-immersed in ice, in order to stimulate the DNA insertion.
- the cells were then washed with water 3-5 times to eliminate the residues, subjecting the cells to centrifuges of 15 seconds at 13,000 rpm, to isolate the pellet.
- the cells were then plated on a minimal medium, with no uracil, so as to only allow the growth of the cells transformed and which had therefore acquired a functional copy of the URA5 gene .
- Rhodosporidium azoricum which, after transformation, showed a growth capability on plates of minimal medium, were analyzed to verify the real insertion of the wild-type URA5 gene in the genome and that it was not a reversion of the phenotype, an event that can occur spontaneously, even if rarely.
- a PCR reaction was then carried out, using a pair of primers capable of revealing the presence of URA5 fused to the plasmid TOPO TA used as cloning vector.
- This PCR revealed the presence of the hexogen gene in all the clones obtained from the transformation of two different ura ⁇ strains, thus demonstrating the functioning of the gene construct object of the invention .
- the expression of the gene for resistance to the antibiotic geneticin (commonly known as G418, from the name of the commercial product) was chosen, already successfully used in basidiomycete yeasts (Hua, J., J. D. Meyer and J. K. Lodge. 2000. Development of positive selectable markers for the fungal pathogen Cryptococcus neoformans. Clinical and Diagnostic Laboratory Immunology, 7: 125-128) and to which Rhodosporidium azoricum is sensitive.
- Yeast 10, 1793-1808 which contains the gene encoding an amyloglycoside phosphotransferase isolated from the bacterial transposon Tn903 r flanked by the promoter and terminator sequences of the gene TEE of Ashbya gossypii (SEQ ID NO: 8 and SEQ ID NO: 10, respectively), also already successfully tested in other basidiomycete yeasts (Ji, L., Z.-D. Jiang, Y. Liu, C. M. J. Koh and L.-H. Zhang. 2010 A simplified and efficient method for transformation and gene tagging of Ustilago maydis using frozen cells. Fungal Genetics and Biology, 47:279-287) .
- the KANMX4 module was amplified by PCR using the primers KANf 5'-ATTGGATCCGATATCAAGCTTGCCTCG-3' and KANr 5'-ATAGGATCCCACTGGATGGCGGCGTTA-3', which, in addition to the sequence homologous to the module, contain restriction sites recognized by the enzyme BamHI .
- the fragment obtained was purified from enzymes and salts present in the PCR reaction, then digested with the restriction enzyme BamHI, so as to generate, at the ends, single strand sequences.
- the plasmid TOPO TA was also digested with the same enzyme, in which the gene URA5 of Rhodosporidium azoricum had been previously inserted (see Example 1) and the two fragments were then ligated to obtain a plasmid containing, in sequence, the gene URA5 and the module KANMX5, and the ligation mixture was transformed into E. coli, made competent for the transformation.
- the transformants obtained were verified by means of a PCR carried out directly on the colonies, with the primers KANf and KANr .
- a clone containing the module ⁇ 4 correctly inserted was then grown overnight in a liquid medium with ampicillin and the plasmid was extracted the next day by using a column having a high affinity for DNA (Pure Yield plasmid MiniPrep system, Promega) .
- the plasmid was then cut with the restriction enzyme Spel (which linearizes the same plasmid) to allow its integration in the receiving genome.
- the uracil auxotroph mutants were then transformed with the gene construct thus constructed.
- the protocol envisaged the collection of a culture of exponentially growing cells at about 1-4 x 10 7 cells ml -1 in YPD medium (100 ml), by centrifuging for 5 minutes at 4,000 rpm. The pellet was washed with 10 ml of buffer LiAc/TE (0.1 M Lithium acetate, 10 mM Tris-HCl, 1 mM EDTA, pH 8) and gently re-suspended in LiAc/TE to a final concentration of 1-4 x 10 9 cells ml -1 .
- buffer LiAc/TE 0.1 M Lithium acetate, 10 mM Tris-HCl, 1 mM EDTA, pH 8
- 100 ⁇ of cell suspension were prepared in a sterile eppendorf test-tube for each transformation treatment, to which the DNA was added in a volume of 10 ⁇ .
- the test-tube was gently shaken and incubated at room temperature for 5 minutes.
- 280 ⁇ of PEG 4000 50% in LiAc/TE were added to each test-tube (eppendorf) .
- the test-tubes were inverted 5-6 times to guarantee a complete mixing and then incubated at 30°C for 45 min.; 1/10 of the volume of dimethylsulfoxide (DMSO) , i.e. about 43 ⁇ , were added to each aliquot.
- DMSO dimethylsulfoxide
- the cells were subjected to thermal "shock" at 42 °C for 5 minutes and then immediately re-immersed in ice, in order to stimulate the DNA insertion.
- the cells were then washed with water 3-5 times to eliminate the residues, subjecting the cells to centrifuges of 15 seconds at 13, 000 rpm, to isolate the pellet.
- the cells were then plated on a minimal medium, containing no uracil, so as to only allow the growth of the cells transformed and which had therefore acquired a functional copy of the URA5 gene.
- Rhodosporidium azoricum which, after transformation, showed a growth capability on plates of minimal medium, were analyzed to verify the real insertion of the wild-type URA5 gene and KANMX4 in the genome by means of a PCR with the pairs of primers URA5_f and URA5_r and KANf and KA r .
- the clones obtained were parallely plated on plates containing the antibiotic geneticin (glucose 20 g/1, yeast extract 10 g/1, peptone 20 g/1, agarose 20 g/1, G418 100 mg/1) to verify the effective expression of the gene of interest inserted in the gene construct, demonstrating the correct functioning of the gene construct object of the invention.
- the antibiotic geneticin glucose 20 g/1, yeast extract 10 g/1, peptone 20 g/1, agarose 20 g/1, G418 100 mg/1
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mycology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
La présente invention concerne une construction génétique basée sur l'auxotrophie à l'uracile qui convient pour la transformation de levures de l'espèce Rhodosporidium
azoricum. L'invention concerne également un vecteur contenant ladite construction génétique, une levure de l'espèce Rhodosporidium azoricum transformée avec ladite construction génétique et un procédé de transformation.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMI2014A001419 | 2014-08-01 | ||
ITMI20141419 | 2014-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016016805A1 true WO2016016805A1 (fr) | 2016-02-04 |
Family
ID=51628383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2015/055692 WO2016016805A1 (fr) | 2014-08-01 | 2015-07-28 | Construction génétique destinée à la transformation de souches de levure |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016016805A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116287388A (zh) * | 2023-02-17 | 2023-06-23 | 首都医科大学附属北京世纪坛医院 | 一种隐球菌的鉴定方法、引物对及试剂盒 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007099230A2 (fr) * | 2006-03-01 | 2007-09-07 | V. Mane Fils | Systeme d ' expression chez la levure pour la production de molecules aromatiques |
WO2009126890A2 (fr) | 2008-04-10 | 2009-10-15 | Microbia, Inc. | Production de caroténoïdes dans une levure et des champignons oléagineux |
US20100305341A1 (en) | 2006-09-28 | 2010-12-02 | Microbia Precision Engineering | Production of sterols in oleaginous yeast and fungi |
CN102268432A (zh) * | 2010-06-02 | 2011-12-07 | 中国科学院大连化学物理研究所 | 乳清酸磷酸核糖转移酶启动子及应用和构建体与载体 |
WO2012097091A2 (fr) | 2011-01-12 | 2012-07-19 | Verdezyne, Inc. | Micro-organismes génétiquement modifiés présentant une activité de fermentation accrue |
-
2015
- 2015-07-28 WO PCT/IB2015/055692 patent/WO2016016805A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007099230A2 (fr) * | 2006-03-01 | 2007-09-07 | V. Mane Fils | Systeme d ' expression chez la levure pour la production de molecules aromatiques |
US20100305341A1 (en) | 2006-09-28 | 2010-12-02 | Microbia Precision Engineering | Production of sterols in oleaginous yeast and fungi |
WO2009126890A2 (fr) | 2008-04-10 | 2009-10-15 | Microbia, Inc. | Production de caroténoïdes dans une levure et des champignons oléagineux |
CN102268432A (zh) * | 2010-06-02 | 2011-12-07 | 中国科学院大连化学物理研究所 | 乳清酸磷酸核糖转移酶启动子及应用和构建体与载体 |
WO2012097091A2 (fr) | 2011-01-12 | 2012-07-19 | Verdezyne, Inc. | Micro-organismes génétiquement modifiés présentant une activité de fermentation accrue |
Non-Patent Citations (30)
Title |
---|
ABBOTT EP; IANIRI G; CASTORIA R; IDNURM A: "Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 97, no. 1, 2013, pages 283 - 295 |
ALANI E; CAO L; KLECKNER N: "A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains", GENETICS, vol. 116, 1987, pages 541 - 545 |
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 97, no. 1, pages 283 - 295 |
D. PAUL ET AL: "Genome Sequence of the Oleaginous Yeast Rhodotorula glutinis ATCC 204091", GENOME ANNOUNCEMENTS, vol. 2, no. 1, 13 February 2014 (2014-02-13), pages e00046 - 14, XP055179729, DOI: 10.1128/genomeA.00046-14 * |
DATABASE EMBL [online] 8 May 2008 (2008-05-08), "Sequence 9 from Patent WO2007099230.", XP002737883, retrieved from EBI accession no. EM_PAT:CS722264 Database accession no. CS722264 * |
DATABASE Geneseq [online] 15 November 2007 (2007-11-15), "A. gossypii TEF1 promoter.", XP002737882, retrieved from EBI accession no. GSN:AJF57792 Database accession no. AJF57792 * |
DATABASE Geneseq [online] 16 February 2012 (2012-02-16), "Rhodosporidium toruloides orotate phosphoribosyltransferase, SEQ ID 4.", XP002737879, retrieved from EBI accession no. GSP:AZR45893 Database accession no. AZR45893 * |
DATABASE UniProt [online] 19 October 2011 (2011-10-19), "SubName: Full=Orotate phosphoribosyltransferase {ECO:0000313|EMBL:EGU11490.1};", XP002737881, retrieved from EBI accession no. UNIPROT:G0T0R1 Database accession no. G0T0R1 * |
DATABASE UniProt [online] 29 May 2013 (2013-05-29), "SubName: Full=Orotate phosphoribosyltransferase {ECO:0000313|EMBL:EMS20161.1};", XP002737880, retrieved from EBI accession no. UNIPROT:M7WQ31 Database accession no. M7WQ31 * |
ERIKA P ABBOTT ET AL: "Overcoming recalcitrant transformation and gene manipulation inyeasts", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER, BERLIN, DE, vol. 97, no. 1, 14 November 2012 (2012-11-14), pages 283 - 295, XP035158278, ISSN: 1432-0614, DOI: 10.1007/S00253-012-4561-7 * |
F. CORPET: "Multiple sequence alignment with hierarchical clustering", NUCL. ACIDS RES., vol. 16, no. 22, 1988, pages 10881 - 10890 |
FIERRO F; LAICH F; GARCIA-RICO RO; MARTIN JF: "High efficiency transformation of Penicillium nalgiovense with integrative and autonomously replicating plasmids", INT J FOOD MICROBIOL, vol. 90, pages 237 - 248 |
G. KATRE; C. JOSHI; M. KHOT; S. ZINJARDE; A. RAVIKUMAR: "Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel", AMB EXPRESS, vol. 2, 2012, pages 36 |
GADANHO M ET AL: "Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: R. azoricum sp. nov", CANADIAN JOURNAL OF MICROBIOLOGY, NRC RESEARCH PRESS, CA, vol. 47, no. 3, 1 March 2001 (2001-03-01), pages 213 - 221, XP009183458, ISSN: 0008-4166 * |
GENE, vol. 263, 2001, pages 159 - 169 |
GIUSEPPE IANIRI ET AL: "Development of resources for the analysis of gene function in Pucciniomycotina red yeasts", FUNGAL GENETICS AND BIOLOGY, SAN DIEGO, CA, US, vol. 48, no. 7, 8 March 2011 (2011-03-08), pages 685 - 695, XP028214395, ISSN: 1087-1845, [retrieved on 20110312], DOI: 10.1016/J.FGB.2011.03.003 * |
GOOSEN T; BLOEMHEUVEL G; GYSLER C ET AL.: "Transformation of Aspergillus niger using the homologous orotidine-5'-phosphate-decarboxylase gene", CURR GENET, vol. 11, 1987, pages 499 - 503 |
HINNEN A.; HICKS J.B.; FINK G.R.: "Trasformation of Yeast", PROC. NATL. ACAD. SCI. U.S.A., vol. 75, no. 4, 1978, pages 1929 - 33 |
HUA, J.; J. D. MEYER; J. K. LODGE: "Development of positive selectable markers for the fungal pathogen Cryptococcus neoformans", CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY, vol. 7, 2000, pages 125 - 128 |
JI, L.; Z.-D. JIANG; Y. LIU; C. M. J. KOH; L.-H. ZHANG: "A simplified and efficient method for transformation and gene tagging of Ustilago maydis using frozen cells", FUNGAL GENETICS AND BIOLOGY, vol. 47, 2010, pages 279 - 287 |
KWON-CHUNG KJ; VARMA A; EDMAN JC; BENNETT JE: "Selection of ura5 and ura3 mutants from the two varieties of Cryptococcus neoformans on 5-fluoroorotic acid medium", JOURNAL OF MEDICAL AND VETERINARY MYCOLOGY, vol. 30, no. 1, 1992, pages 61 - 69 |
LI YH; ZHAO ZB; BAI FW ET AL.: "High density cultivation of the oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture", ENZYME MICROBIOL TECHNOL, vol. 41, 2007, pages 312 - 317 |
M. KHOT; S. KAMAT; S. ZINJARDE; A. PANT; B. CHOPADE; A. RAVIKUMAR: "Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential for biodiesel", MICROBIAL CELL FACTORIES, vol. 11, 2012, pages 71 |
NGAN WY; NGA BH; PRIDMORE D ET AL.: "Transformation of Endomyces fibuliger based on its gene for orotidine-5'-phosphate decarboxylase", GENE, vol. 254, 2000, pages 97 - 103 |
ROSE, T.M.; E.R. SCHULTZ; J.G. HENIKOFF; S. PIETROKOVSKI; C.M. MCCALLUM; S. HENIKOFF: "Consensus-degenerate hybrid oligonucleotide primer for amplification of distantly-related sequences", NUCLEIC ACIDS RESEARCH, vol. 26, no. 7, 1998, pages 1628 - 1635 |
WACH, A.; A. BRACHAT; R. POEHLMANN; P. PHILIPPSEN: "New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae", YEAST, vol. 10, 1994, pages 1793 - 1808 |
WU SG; HU C; JIN G ET AL.: "Phosphate-limitation mediated lipid production", BIORESOUR TECHNOL, vol. 101, 2010, pages 6124 - 6129 |
WU SG; ZHAO X; SHEN HW ET AL.: "Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions", BIORESOUR TECHNOL, vol. 102, 2011, pages 1803 - 1807 |
YANG F ET AL: "Identification of the orotidinE-5'-monophosphate decarboxylase gene of the oleaginous yeast Rhodosporidium toruloides", JOURNAL OF BIOTECHNOLOGY, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 136, 12 August 2008 (2008-08-12), pages S323, XP026830642, ISSN: 0168-1656, [retrieved on 20081001] * |
ZHIWEI ZHU ET AL: "A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides", NATURE COMMUNICATIONS, vol. 3, 9 October 2012 (2012-10-09), pages 1112, XP055178339, DOI: 10.1038/ncomms2112 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116287388A (zh) * | 2023-02-17 | 2023-06-23 | 首都医科大学附属北京世纪坛医院 | 一种隐球菌的鉴定方法、引物对及试剂盒 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1012298B1 (fr) | Souches de levures destinees a la production d'acide lactique | |
CN107828671B (zh) | 用于生产3-羟基丙酸的组合物和方法 | |
EP2576605B1 (fr) | Production de métabolites | |
US9862974B2 (en) | Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures | |
CN107406821B (zh) | 用于生产3-羟基丙酸的突变宿主细胞 | |
WO2011063350A2 (fr) | Procédés et compositions de production de squalène à l'aide de levure | |
US20160289690A1 (en) | Mortierella alpina recombinant gene expression system and construction method and use thereof | |
US10100334B2 (en) | Production of squalene using yeast | |
CN110651034A (zh) | 用于制备fdca的fdca-脱羧单加氧酶-缺陷的宿主细胞 | |
KR20200026261A (ko) | 엑토인-생산 효모 | |
KR20210144816A (ko) | 키메라 플라스미드 라이브러리의 구축 방법 | |
US20190136278A1 (en) | Mutant yeast strains with enhanced production of erythritol or erythrulose | |
JP2018157814A (ja) | シュードザイマ・アンタクティカの新規菌株 | |
KR101819189B1 (ko) | 아세토인 생산능을 갖는 유전적으로 조작된 효모 세포 및 그를 사용하여 아세토인을 생산하는 방법 | |
WO2016016805A1 (fr) | Construction génétique destinée à la transformation de souches de levure | |
JPWO2005085415A1 (ja) | 新規形質転換体およびそれを用いたポリエステルの製造方法 | |
Cernak et al. | Engineering Kluyveromyces marxianus as a robust synthetic biology platform host. mBio 9: e01410-18 | |
US10961549B2 (en) | Genes conferring tolerance to ethanol and high temperature for yeasts | |
CN105603035B (zh) | 为增加imp脱氢酶活性的假囊酵母属的遗传修饰 | |
KR20200023450A (ko) | 기능적 dna 서열의 안정화된 카피 수를 갖는 미생물 및 관련 방법 | |
KR20110118554A (ko) | 에탄올―저항성 효모 균주 및 이의 유전자 | |
KR101326583B1 (ko) | 고광학순도의 젖산 생산용 형질전환체 및 이를 이용한 젖산 생산 방법 | |
KR102782206B1 (ko) | 락트산 내성이 개선된 효모 및 이의 용도 | |
WO2024229191A1 (fr) | Levure génétiquement modifiée à production d'érythritol accrue | |
WO2024229192A1 (fr) | Levure génétiquement modifiée à production d'érythritol réduite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15762738 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15762738 Country of ref document: EP Kind code of ref document: A1 |