WO2016010361A1 - Switched reluctance motor - Google Patents
Switched reluctance motor Download PDFInfo
- Publication number
- WO2016010361A1 WO2016010361A1 PCT/KR2015/007345 KR2015007345W WO2016010361A1 WO 2016010361 A1 WO2016010361 A1 WO 2016010361A1 KR 2015007345 W KR2015007345 W KR 2015007345W WO 2016010361 A1 WO2016010361 A1 WO 2016010361A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- pole
- stator
- poles
- convex
- Prior art date
Links
- 230000005284 excitation Effects 0.000 claims abstract description 121
- 230000005291 magnetic effect Effects 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 22
- 238000004804 winding Methods 0.000 claims description 3
- 239000011295 pitch Substances 0.000 description 38
- 230000004907 flux Effects 0.000 description 23
- 230000007423 decrease Effects 0.000 description 18
- 239000003990 capacitor Substances 0.000 description 11
- 230000005611 electricity Effects 0.000 description 11
- 239000011800 void material Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 239000011162 core material Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000013016 damping Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 229910000976 Electrical steel Inorganic materials 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K19/00—Synchronous motors or generators
- H02K19/02—Synchronous motors
- H02K19/10—Synchronous motors for multi-phase current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K19/00—Synchronous motors or generators
- H02K19/02—Synchronous motors
- H02K19/04—Synchronous motors for single-phase current
- H02K19/06—Motors having windings on the stator and a variable-reluctance soft-iron rotor without windings, e.g. inductor motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K19/00—Synchronous motors or generators
- H02K19/16—Synchronous generators
- H02K19/18—Synchronous generators having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar generators
- H02K19/20—Synchronous generators having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar generators with variable-reluctance soft-iron rotors without winding
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K19/00—Synchronous motors or generators
- H02K19/16—Synchronous generators
- H02K19/22—Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators
- H02K19/24—Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators with variable-reluctance soft-iron rotors without winding
Definitions
- the present invention consists of a stator pole and a rotor pole facing the stator pole, which are excited by an excitation coil, each having a two-stage diameter by a step, thereby reducing torque ripple and vibration noise and improving torque efficiency.
- a switched reluctance motor To a switched reluctance motor.
- Switched Reluctance Motor has a simple structure that does not need brush by winding the excitation coil only on the stator and the rotor by iron core without any excitation means (excitation coil or permanent magnet). . Accordingly, switched reluctance motors are easy to manufacture, robust, relatively reliable compared to other motors, and excellent in price competitiveness, and thus are of interest in various applications.
- FIG. 1 is a cross-sectional view of a conventional single phase switched reluctance motor.
- a typical conventional single phase switched reluctance motor is opposed to each other with a constant air gap in the basic structure of a general motor in which a rotor can be freely rotated inside a stator.
- the salient poles 11 and 21 are formed on the stator 20 and the rotor 10 to have a double salient pole structure.
- the excitation coil 22 is wound around the protrusion 12 of the stator 20.
- FIG. 2 Inductance and torque formed according to the rotation angle (rotation position) of the rotor in the single-phase switched reluctance motor configured as described above are shown in FIG. 2.
- the inductance for the counterclockwise rotation angle of the rotor starts to increase at the rotation angle ⁇ s at the time when the rotor salient pole 11 and the stator salient pole 21 start to face each other and the rotor starts to increase.
- the maximum Lmax is obtained at a time point ⁇ 1 to ⁇ 2 at which the salient poles 11 and the stator salient poles 21 are aligned, and then gradually decrease to decrease between the rotor salient poles 11 and the stator salient poles 21.
- the inductance is maximized at, the inductance is almost uniform up to the predetermined forward and backward rotation angles ⁇ 1 and ⁇ 2 based on the rotation angles to be aligned, and thus the alignment positions are represented by the intervals ⁇ 1 to ⁇ 2.
- the sections ⁇ 1 to ⁇ 2 arranged in this manner are referred to as starting dead points.
- the positive torque Tmax is generated in the sections ⁇ s to ⁇ 1 where the inductance increases, and the negative torque (-Tmax) occurs in the sections ⁇ 2 to ⁇ 3 where the inductance decreases. That is, when the stator poles are excited, the rotor receives a reluctance torque in the direction of increasing inductance and rotates to reach a position where the stator poles and the rotor poles are aligned.
- the negative torque occurs afterwards, so that the voltage applied to the excitation coil is cut off before the alignment position ( ⁇ 1 ⁇ ⁇ 2) and the next reluctance increase period ( ⁇ s ⁇ ⁇ 1) or before the excitation coil.
- the voltage is applied to make the one-way rotational torque continuous.
- an encoder for detecting the rotational position of the rotor is installed, and the energization section ( ⁇ on- ⁇ off) corresponding to the section ( ⁇ s ⁇ ⁇ 1) where the inductance increases )
- a power supply means having a switching element for energizing or interrupting the voltage in the excitation coil 22 it is possible to construct a switched reluctance motor in which the rotor rotates in one direction by the constant torque.
- the excitation conduction section ⁇ on- ⁇ off for applying a voltage to the excitation coil takes into account the magnitude of the inductance L of the excitation coil 22 and the decay time of the magnetic induction current of the excitation coil 22 generated when the excitation voltage is turned off. To correspond to the position of the inductance increasing section ⁇ s to ⁇ 1 according to the control range of the rated torque.
- the core including dolgeuk to flow through the rotor dolgeuk amount is large magnetic flux is not saturated in order to increase the space factor of the slot increasing the maximum inductance, in general, polar firing angle ( ⁇ of the rotor dolgeuk (11) r, The arc angle is designed to be larger than the polar angle ⁇ s of the stator protrusion 21.
- the switched reluctance motor rotates by generating a positive torque only in the inductance increase period ( ⁇ s ⁇ ⁇ 1) and generates a negative torque after the alignment position ( ⁇ 1 ⁇ ⁇ 2).
- Ripple and mechanical vibration noise are generated. That is, when looking at the current waveform shown in FIG. 2, as the voltage is initially applied to the excitation coil, a current is initially increased and then a flat-topped phase current flows. , Cogging and torque shock occurs in the section where the current is rapidly increased and the section is sharply demagnetized. As a result, the noise becomes louder and the unnecessary power loss becomes larger, resulting in lower efficiency.
- Korean Patent Laid-Open Publication No. 10-2014-0073395 proposes a design criterion of the polar angle ( ⁇ r , ⁇ s ) for the rotor protrusion and the stator protrusion.
- the inductance increase section ( ⁇ s ⁇ ) is used because the portion formed lower by the step or the portion in which the through hole is formed approaches the stator pole. Only at the moment of entering or ending ⁇ 1), the torque fluctuation still occurs largely by only partially reducing the torque fluctuation amount.
- the switched reluctance motor of the outer rotor method is structurally different from the inner rotor method since the salient pole excited by the excitation coil is formed on the inner stator.
- Korean Patent Laid-Open Publication No. 10-2012-0134984 there have been studies to reduce the core loss caused by the short magnetic flux path and to improve the torque characteristics.
- no prior art literature or known art has been searched for magnetic reluctance and inductance combinations and polar angles of double stepped salient poles to reduce torque ripple and maximize torque.
- the present inventors have filed a patent application as a Korean patent application No. 10-2013-0112470 by inventing an outer ring rotor that reduces torque ripple and maximizes torque, and in the present invention, the motor comprising the stator and the outer ring rotor for improved performance It starts.
- Patent Document 1 KR 10-0677285 A 2007.01.26.
- Patent Document 2 KR 10-2014-0073395 A 2014.06.16.
- Patent Document 3 KR 10-2012-0134984 A1 2012.12.12.
- an object of the present invention is to smoothly change the inductance and minimize the protrusion of the protrusion to reduce mechanical magnetic vibration and rotational torque ripple due to discontinuous torque changes and impacts, to minimize the non-excitation section and to increase the effective torque effective angle as much as possible. It is to provide a switched reluctance motor of the outer ring rotor type.
- the inner surface of the rotor (100) forming a magnetic circuit (magnetic circuit) between the plurality of rotor poles 110 formed in the radially equidistant along the circumferential direction; It is fixed to the inside of the rotor, winding the excitation coil 214 to a plurality of stator poles 210 formed in the circumferential direction on the outer surface to form a magnetic path between each other, at least a pair of stator poles 210 is air gap Stators 200 aligned at the same time one by one on different rotor poles 110 with the gaps therebetween; A rotation position sensor 300 for detecting a rotation position of the rotor 100; In the switched reluctance motor comprising a; and a controller 400 for applying a voltage to the excitation coil 214 in the excitation conduction period ( ⁇ on- ⁇ off) preset to correspond to the inductance increase interval to generate a positive torque,
- the rotor poles 110 and the stator poles 210 are divided into convex poles 111 and 211 and concave poles 112 and 211 having different heights, respectively, having steps 113 and 213 formed therebetween, and aligned with each other.
- the excitation conduction section is set to correspond to an inductance increase section formed between the stator convex pole 111 and the stator convex pole 211, and a voltage is applied to the excitation coil 214 in the set excitation conduction section ⁇ on- ⁇ off.
- the rotor 100 includes a pitch hole 120 having a groove shape at a boundary between the rotor poles 110 so that the plurality of rotor poles 110 are formed by being separated by the pitch hole 120. It features.
- stator convex pole 211 begins to face the rotor convex pole 111 of any one of the rotor poles 110 and the area of the facing surface increases, the stator concave pole 212 becomes a pitch hole ( The area of the surface facing the rotor convex pole 111 of the other rotor pole 110 adjacent to the boundary 120 is reduced.
- Steps 113 and 213 of the rotor pole 110 and the stator pole 210 are characterized by being inclined downward from the convex poles 111 and 211 toward the concave poles 112 and 211, respectively.
- Steps 113 and 213 of the rotor pole 110 and the stator pole 210 are formed in the center of the rotor pole 110 and the stator pole 210, respectively.
- the circumferential width of the inlet of the pitch hole 120 is the same as the transverse width of the step 213 of the stator pole 210.
- Steps 113 and 213 of the rotor pole 110 and the stator pole 210 are 1 to 5 times larger than the gap G1 when the rotor convex pole 111 and the stator convex pole 211 are aligned. It is done.
- the inclination angle of the steps 113 and 213 is characterized in that 30 ⁇ 60 °.
- stator poles 210 provided in pairs are simultaneously aligned with different rotor poles 110, and the controller 400 simultaneously excites each stator pole 210 excitation coil 214, thereby providing a single phase switched release. It is characterized by operating as a traction motor.
- the number of the rotor poles 110 of the rotor 100 is 2n + 2, n is a natural number, the stator 200 is aligned to the rotor poles 110 at the same time Steps of two rotor poles 110 having 2n stator poles 210 and not aligned with the stator poles 210 when the stator poles 210 are aligned with the rotor poles 110. 113 and two moving poles 220 facing one by one and the starting pole exciting coil 221 is wound.
- the controller 400 has a rotor in the energizing section ( ⁇ on- ⁇ off) when the motor is started.
- the motor is applied to the stator pole excitation coil in accordance with the excitation conduction section ( ⁇ on- ⁇ off) detected by the rotation position sensor 300, and the rotor is started when the motor is started.
- Female rotor during repeated operation and the operation of the stator pole woman to woman, depending on the group donggeuk call is characterized in that the retry the start-up period at the time be in conduction ( ⁇ on- ⁇ off).
- the rotor 100 is provided with a permanent magnet 130 that is mounted to each of the two rotor concave poles 112 of the plurality of rotor concave poles when k is a natural number.
- the permanent magnet 130 is mounted to the rotor concave pole 112 to be biased in the pitch hole 120, k permanent magnets 130 and the remaining k permanent magnets 130 to the inside with different polarities It is characterized in that it is mounted facing.
- the permanent magnet 130 is characterized in that it is mounted in close contact with the circumferential side of the rotor convex pole 111 across the inlet of the pitch hole (120).
- the permanent magnet 130 is formed in an arc shape having a polar angle ( ⁇ m ) of 1/5 times to 2/3 times the polar angle ( ⁇ rc ) of the rotor concave pole 112 to concave the outer surface of the rotor. It is characterized in that it is mounted in close contact with the pole 112 and to maintain the void (G1).
- the controller 400 applies a voltage to the stator pole exciting coil according to the energizing section ⁇ on- ⁇ off sensed by the rotation position sensor 300 when the rotor is in the energizing section ⁇ on- ⁇ off when the motor is started. If the rotor is not in the energizing section ( ⁇ on- ⁇ off) when the motor is started and the motor is started, it repeats the operation of exciting the starting pole according to the starting signal of the PWM waveform output from the microprocessor. It is characterized in that it starts when the self is in the excitation energization section ( ⁇ on- ⁇ off).
- the present invention constituted as described above comprises a stator pole and a rotor pole facing the stator pole, which are excited by the excitation coil, each having a two-stage diameter by a step, and the convex pole of the stator pole and the convex pole of the rotor pole.
- the increase in inductance formed between the poles with a positive slope not only excites the stator poles corresponding to the intervals, but also smoothes the inductance due to the magnetic reluctance damping effect through the gap between the stator concave pole and the rotor convex pole.
- Torque torque by reducing torque ripple, minimizing protrusion of rotor protrusions to reduce vibration width, allowing concave poles to absorb the mechanical vibration of protrusions as much as possible, and generating reluctance torque with poles that maximize magnetic polar angle.
- FIG. 1 is a cross-sectional view of a conventional single phase switched reluctance motor.
- FIG. 2 is a graph illustrating a time chart showing variation of inductance, current, and torque in accordance with a rotor rotation angle of a conventional single-phase switched reluctance motor.
- FIG. 3 is a cross-sectional view of a part in which a stator and a rotor are coupled in a switched reluctance motor according to a first embodiment of the present invention
- FIG. 4 is an exploded cross-sectional view of the stator and the rotor.
- FIG. 5 is a configuration diagram of a switched reluctance motor according to a first embodiment of the present invention, which is shown in a top view to show the installation position of the rotation position sensor 300;
- FIG. 6 is a cross-sectional view showing the arrangement of the poles according to the rotation angle variation of the rotor.
- FIG. 9 is a flowchart illustrating a start method by the control of the controller 400.
- FIG. 10 is a cross-sectional view of a coupling between a stator and a rotor in a switched reluctance motor according to a second embodiment of the present invention.
- FIG. 11 is a cross sectional view of a combination of a stator and a rotor in a switched reluctance motor according to a third embodiment of the present invention.
- FIG. 12 is a cross-sectional view of the stator and the rotor separated in the third embodiment of the present invention.
- FIG. 13 is a top view showing an arrangement state between a stator convex pole and a permanent magnet according to a rotor position and an arrangement state between the rotation position sensor 300 and the reflector 310 in the third embodiment of the present invention.
- FIG 14 is a graph showing the current waveform of the excitation coil in the switched reluctance motor according to the present invention.
- Alignment is a state in which the centers of the faces of the rotor and the stator's poles (even convex or concave poles) coincide with each other to maximize the area of the opposite face.
- the state where the center of the rotor pole is located in ⁇ 1 to ⁇ 2) is set to be aligned.
- the range of rotation angles in the aligned state is referred to as alignment rotation angles ⁇ 1 to ⁇ 2.
- Unaligned is the state where the poles of the rotor and stator (even convex or concave) do not coincide with each other, the pole center of the stator faces the center of the boundary between the rotor poles, and the misalignment between the convex poles.
- the state means a state in which the convex pole center of the rotor faces the concave pole center of the stator.
- the inductance increasing period ⁇ s to ⁇ 1 is a rotation angle section of the rotor from the time when the stator convex pole and the rotor convex pole start to face each other and are aligned, and the inductance slope is positive ( Appears as a +) interval. Therefore, in this section, the magnetic resistance between the stator convex pole and the rotor convex pole gradually decreases as the rotor rotates, and when the stator pole is excited with the excitation coil, the inductance gradually increases to generate static torque.
- the magnetoresistance between the stator convex and the rotor concave, the magnetoresistance between the stator and the rotor convex, and the magnetoresistance between the stator and the rotor concave, respectively, decrease as they go from alignment to alignment. .
- the inductance reduction section ⁇ 2 to ⁇ 3 is a rotation angle section in which the inductance decreases when the rotor rotation angle is changed after the alignment rotation angle ⁇ 1 to ⁇ 2. Negative torque in the direction of rotation is generated. In order to drive the rotation of the rotor, the voltage is not applied to the excitation coil in the inductance reduction section like the alignment rotation angle.
- the inductance increase start point ⁇ s is a rotation angle at which the inductance increase periods ⁇ s to ⁇ 1 start, and is a time point at which the stator convex pole and the rotor convex pole start to face each other.
- the inductance increase end point ⁇ 1 is a rotation angle at which the inductance increase periods ⁇ s to ⁇ 1 end, and corresponds to a position immediately before alignment.
- the turn-on rotation angle ⁇ on is a rotation angle starting to supply electricity to the excitation coil, but may be adjusted to the inductance increase starting point ⁇ s but is generally set to be ahead of the inductance increase starting point ⁇ s to maximize the effective torque angle. . Therefore, in general, when the current flowing through the excitation coil at a predetermined voltage is sufficiently increased, the current does not increase any more in the inductance increase period and a flat-topped phase current flows to be balanced. However, the turn-on rotation angle ⁇ on is set in a range such that the initial current does not excessively increase even if it is set before the inductance increase start point ⁇ s or the rotor protrusion is not affected by the reverse reluctance torque of the previous stator protrusion. . If the turn-on rotation angle ⁇ on is behind the inductance increase section, the torque can be reduced and the speed can be controlled.
- the turn-off rotation angle [theta] off is a time point at which electricity supplied to the excitation coil is cut off in accordance with the inductance increase end point [theta] 1.
- the turn-off rotation angle [theta] off is set before the inductance increase end point [theta] 1.
- This turn-off rotation angle is generally determined by the rotor position detection encoder in order to cause the magnetic induction electricity accumulated in the excitation coil to be dissipated at least before the end of the alignment rotation angles ⁇ 1 to ⁇ 2 so that the reverse torque is not affected. Otherwise, it is set programmatically.
- the excitation conduction section ( ⁇ on- ⁇ off) is a rotation angle range for supplying electricity by applying a voltage to the excitation coil, and may be the same as the inductance increasing section ⁇ s to ⁇ 1, but as described above, in general, A flat-topped phase current is allowed to flow and it is slightly different from the inductance increase period ( ⁇ s ⁇ ⁇ 1) in consideration of the demagnetization characteristics of the excitation coil.
- the actual excitation energization section may be defined as a section that is set in advance or programmatically to correspond to the inductance increase section to generate the positive torque.
- the magnetic flux path is a closed circuit in which the magnetic flux flux circulates between the stator and the rotor with a gap between them.
- the magnetic flux path is also used as a term for a part of a closed path.
- magnetic flux paths between different stator poles formed by iron cores and magnetic flux paths between different rotor poles constitute a circumferential path that is connected to each other by voids.
- 3 to 9 are diagrams for explaining a switched reluctance motor according to a first embodiment of the present invention.
- FIG. 3 is a cross-sectional view of a portion where the stator 200 and the rotor 100 are coupled
- FIG. 4 is an exploded cross-sectional view of the stator 200 and the rotor 100
- FIG. 5 is switched according to an embodiment of the present invention.
- the top view is shown to show the installation position of the rotation position sensor 300.
- FIG. 6 is a cross-sectional view showing the arrangement of the poles according to the rotation angle variation of the rotor 100
- Figure 7 is a graph of the inductance according to the rotation angle variation of the rotor.
- a switched reluctance motor includes a rotor 100, a stator 200, a rotation position sensor 300, and a controller 400. It consists of a single-phase switched reluctance motor with outer ring type, one-phase electric power and having an outer rotor type.
- the rotor 100 is configured in a ring shape with an empty inside, and is capable of rotating about a linear axis of rotation passing through the center 230 of the stator 200, and based on the center of the stator 200. It has an inner surface for drawing a circle.
- a plurality of rotor poles 110 are disposed on the inner surface of the rotor 100 at equal radial angles along the circumferential direction, and pitch holes 120 having grooves are formed at the boundary between the rotor poles 110. ), The plurality of rotor poles 110 can be divided by the pitch holes 120.
- the rotor 100 may be composed of a ferromagnetic material assembled by stacking at least one or more electrical steel sheets, like a rotor of a general motor, for example, consisting of pure iron or silicon steel sheet or pure iron or silicon steel sheet It can consist of an alloy. Accordingly, the magnetic flux passage between the rotor poles 110 is formed by bypassing the pitch hole 120 to the outside. Of course, there is also a magnetic flux path passing through the pitch hole 120 between the rotor poles 110 adjacent to each other with the pitch hole 120 as a boundary, but the air layer by the pitch hole 120 has a relatively high magnetic resistance. As such, it can be seen that the magnetic flux passage is formed through a body made of ferromagnetic material.
- each rotor pole 110 is divided into a rotor convex pole 111 and a rotor concave pole 112 having different heights by forming a step 113 on an inner surface thereof. That is, the rotor convex pole 111 and the rotor concave pole 112 are formed on concentric circles with different radii relative to the stator center 230, so that the inner surface of the rotor 100 is convex along the circumferential direction.
- the poles 111 and the rotor concave poles 112 are alternately arranged.
- the pitch hole 120 formed between the adjacent rotor poles 110 forms a boundary between the rotor concave pole 112 of one rotor pole and the rotor convex pole of the other rotor pole.
- the inductance fluctuation with the stator convex pole 211 to be described later becomes apparent in the pitch hole 120. That is, the inductance fluctuation is made larger than when the pitch hole 120 is not provided, thereby increasing the reluctance torque.
- the rotor 100 since the rotor 100 has a four-pole structure, four rotor poles 110 are disposed at equal intervals along the circumferential direction, and four pitch holes 120 are also formed at equal intervals.
- the arc angle ⁇ r of the rotor pole 110 is slightly smaller than 2 ⁇ / 4 by the circumferential width D1 of the inlet of the pitch hole 120.
- the step 113 is formed at the center of the inner surface of the rotor pole 110, thereby dividing the rotor pole 110 into the rotor convex pole 111 and the rotor concave pole 112.
- the rotor 100 may be equipped with a flywheel (flywhee) for reducing the load torque ripple by increasing the rotational inertia or increase the weight for increasing the inertia of the outer ring rotor itself.
- flywheel flywheel
- the stator 200 is fixedly installed in the rotor 100 and has a plurality of stator poles 210 disposed along the circumferential direction on an outer surface facing the inner surface of the rotor 100.
- the stator pole 210 is formed to protrude radially from the center of the rotor 100 on the rotation axis line as a reference point, between the inner surface and the air gap of the rotor 100.
- the outer surface facing to the center draws an arc with respect to the center.
- the stator 200 is a component that is fixedly installed so as not to rotate. Since the magnetic core of the stator has a magnetic flux passage and a volume such that the magnetic core does not saturate at the energetic output, the hole 230 is formed on the center corresponding to the volume more than necessary. It forms and fixed so that it may not rotate using this hole 230. FIG.
- stator poles 210 are excited by the excitation coil 214 is wound to supply electricity to the excitation coil 214, it becomes magnetic, it is arranged in pairs stator poles 210 belonging to the same pair each other
- the other rotor poles 110 are aligned at the same time one by one. Accordingly, at least one pair of stator poles 210 is provided in the stator 200, and only one pair of stator poles 210 is provided in the motor shown in FIGS. 3 to 5. At this time, since the stator pole 210 has a symmetrical structure with respect to the center 230, a rotation angle difference of 180 ° occurs between the stator poles 210.
- the stator includes poles 210 and 220 arranged at equal radial angles (equal intervals in the circumferential direction) as many as the number of the rotor poles 110, but the center point is located along the rotation axis of the rotor.
- the stator 200 has a conventional motor core material and a laminated structure like the rotor 100 to form a magnetic flux path between the stator poles 210 and a magnetic flux path between the moving poles 220.
- stator poles 210 arranged in pairs are simultaneously misaligned even when they are simultaneously aligned and unaligned with the rotor poles 110.
- the voltage is applied at the same time when the voltage is applied to the excitation coil 214 wound on each stator pole (210).
- the moving poles 220 provided in pairs are steps of two rotor poles 110 that are left unaligned with the stator poles 210 when the stator poles 210 are aligned with the rotor poles 110. Face one-on-one with (113) one by one.
- the stator pole 210 is divided into a stator convex pole 211 and a stator concave pole 212 having different heights, and the step 213 is a stator pole ( It is formed in the middle of the 210 is divided into a stator convex pole 211 and a stator concave pole (212).
- the step 213 of the stator pole 210 has the same direction as the rotor pole 110 step 113 when the stator pole 110 is aligned with the rotor pole 110.
- the rotor convex pole 111 and the stator concave pole 212 face each other with the gap between them, and the rotor concave pole 112 and the stator convex pole 211 face each other.
- the polar angle ⁇ s of the stator pole 210 is the same as the polar angle ⁇ r of the rotor pole 110, but the Slightly larger than the polar angle ⁇ r , a portion of the rotor convex 111 faces or at least closes to the stator convex pole 211 when aligning the rotor pole 110 to the stator pole 210. In this case, even in an aligned state, the stator poles 210 can be excited to start a motor.
- the movable pole 220 has a polar angle smaller than the polar angle ⁇ s of the stator pole 210 without forming a step, and when the stator pole 210 is aligned with the rotor pole 110, It has a polar angle that can face a portion of the rotor convex pole 111 and a portion of the rotor concave pole 112 that follow the step 113 of the opposite rotor pole 110.
- the starting pole 220 formed as described above generates a reluctance torque to be aligned with the rotor convex pole 111 when excited by the starting pole exciting coil 221.
- Steps 113 and 213 formed in the rotor pole 110 and the stator pole 210 and the pitch holes 120 formed in the rotor pole 110 will be described in more detail with reference to FIG. 4. .
- the height H of the step 113 of the rotor pole 110 and the height h of the step 213 of the stator pole 210 are the rotor convex pole 111 and the stator convex pole. It was set to 1 to 5 times the air gap when (211) was aligned. This is due to the influence of the stator concave pole 212 and the two-stage structure facing the stator pole 210 when the electricity is supplied to the excitation coil 214 of the stator pole 210 like the stator convex pole 211. This is to reduce the torque ripple while generating sufficient torque reflecting the influence of the rotor pole (110). This will be described below with reference to FIGS. 6 and 7.
- the height H of the step 113 of the rotor pole 110 and the height h of the step 213 of the stator pole 210 may have different values, but may have the same value. have.
- the step 113 of the rotor pole 110 is formed to be inclined downward from the rotor convex pole 111 toward the rotor concave pole 112, and the step 213 of the stator pole 210 is also stator convex pole. It is formed inclined downward toward the stator concave pole 212 at (211).
- the downward inclination-angle R at this time was 30 degrees-60 degrees.
- the stator convex pole 211 and the rotor convex pole 111 may not only cause reverse torque at the turn-on rotation angle ⁇ s but also increase windage loss. Is preferred.
- the inclination angle R of the step 113 of the rotor pole 110 and the inclination angle r of the step 213 of the stator pole 210 are the same, so that the stator pole 210 of the stator pole 210 is the same. It is good to make parallel between the steps (113, 213) when aligning.
- the circumferential width D1 of the inlet of the pitch hole 120 is relatively small compared to the rotor convex pole 111 and the rotor concave pole 112. Accordingly, when the stator convex pole 211 begins to face the rotor convex pole 111 of any one rotor pole 110, the stator concave pole 212 is adjacent to the pitch hole 120 bordering. It is switched to an unaligned state in a state aligned with the rotor convex pole 111 of the other rotor pole (110).
- stator concave pole 212 becomes a pitch hole.
- the area of the surface facing the rotor convex pole 111 of the other rotor pole 110 adjacent to 120 is reduced.
- stator convex pole 211 when the stator convex pole 211 is aligned with the rotor convex pole 111 of any one rotor pole 110, the step 213 of the stator pole 210 faces the pitch hole 120.
- the stator concave pole 212 is aligned with the rotor concave pole 112 of the other rotor pole 110 adjacent to the pitch hole 120.
- the circumferential width D1 of the inlet of the pitch hole 120 is the circumferential width D of the step 113 of the rotor pole 110, and the step of the rotor pole 110 ( The circumferential width D of 113 is also set to the circumferential width d of the step 213 of the stator pole 210.
- stator convex pole 211 and the stator concave pole 212 are simultaneously excited by the excitation coil. Accordingly, while the magnetoresistance between the stator convex pole 211 and the rotor convex pole 111 gradually decreases, the magnetoresistance through the stator concave pole 212 gradually increases, so that the variation in the magnetic resistance decreases. As a result, torque ripple can be reduced.
- FIG. 6A illustrates a state in which the rotor 100 is at a turn-on rotation angle ⁇ s. That is, it is a state at which the rotor convex pole 111 starts to face the stator convex pole 211.
- Figure 6 (b) is a state of widening the area of the facing surfaces between the rotating rotor from the start point increase inductance ( ⁇ s) rotor convex pole 111 and the stator projection poles 211. That is, it is in the inductance increase period (theta) s-(theta) 1.
- 6C shows a state in which the rotor convex pole 111 is aligned with the stator convex pole 211 by further rotating the rotor. That is, this is a state when the rotor is placed at the alignment rotation angles ⁇ 1 to ⁇ 2.
- FIG. 6 (d) illustrates a point in which the rotor is rotated in the state where the rotor convex pole 111 and the stator convex pole 211 are aligned to be switched to an unaligned state. That is, it is in the state in which the inductance reduction periods ⁇ 2 to ⁇ 3 are present.
- FIG. 6 shows the first gap G1 when the stator convex pole 211 faces the rotor convex pole 111, and when the stator convex pole 211 faces the rotor concave pole 111.
- the third void G3 and the stator recess 212 when the second void G2 and the stator recess 212 face the rotor convex 111 may face the rotor recess 112.
- the fourth void G4 of the poem is also shown.
- the inductance waveform formed between the stator convex pole 211 and the rotor convex pole 111 is shown at the inductance increase starting point ⁇ s as shown in FIG.
- the lowest point L12 is maintained until the inductance increase start point ⁇ s, and then the same waveform is periodically repeated.
- the repetition period is 90 ° because the rotor is a 4-pole structure.
- the maximum point L11 depends on the size of the first gap G1
- the lowest point L12 is the second gap ( Depends on the size of G2). That is, the amplitude of the inductance waveform represented by the difference between the maximum point and the lowest point is determined by the height H of the step 113 of the rotor pole 110.
- the rotor pole 110 Since the height H of the step 113 is 1 to 5 times the first gap G1, the amplitude is relatively small compared with the prior art.
- stator concave pole 212 having the rotor pole 110 having a cross section having a two-stage diameter and simultaneously excited with the stator convex pole 211.
- the area of the facing surface between the stator concave pole 212 and the rotor convex pole 111 increases as the facing surface between the rotor convex pole 111 and the stator convex pole 211 increases.
- the lowest point L22 is reduced, and the facing surface between the rotor convex pole 111 and the stator convex pole 211 decreases. It increases as it becomes, and becomes the maximum point L21 when the rotor convex pole 111 and the stator convex pole 211 are disaligned.
- the maximum point L21 is influenced by the third gap G3 when the stator concave pole 212 is aligned with the rotor convex pole 111.
- the lowest point L22 is influenced by the fourth void G4 when the stator recess 212 is aligned with the rotor recess 111.
- the third void G3 is larger than the first void G1 by the height h of the step 213 of the stator pole 210
- the fourth void G4 is also larger than the second void G1. It is as large as the height h of the step 213 of 210.
- the inductance waveform of the stator concave pole 212 is 180 ° out of phase with the inductance waveform of the stator convex pole 211 (electrical angle because it is a four-pole structure). 45 ° phase difference), and the maximum point L21 and the lowest point L22 are relatively smaller than the maximum point L11 and the lowest point L12 of the inductance by the stator convex pole 211, respectively.
- the inductance waveform formed between the stator pole 210 and the rotor pole 110 is characterized by the inductance caused by the stator convex pole 211 shown in FIG. 7 (a) and the stator concave pole shown in FIG. 7 (b). It appears as shown in Fig. 7 (c) by the synthesis of inductance by 212).
- the motor according to the present invention has a higher torque effective area ratio compared to the non-excited energizing section as shown in Fig. 7 (d) has better torque performance than the conventional single-phase switched reluctance motor (Fig. 2), mechanically stable, ripple This gives less torque.
- the switched reluctance motor relieves the instantaneous inrush current (Rush current) when the stator pole 210 is excited by the exciting coil 214 at the turn-on rotation angle ( ⁇ s), and switching during driving of the motor.
- ush current instantaneous inrush current
- ⁇ s turn-on rotation angle
- the switched reluctance motor relieves the instantaneous inrush current (Rush current) when the stator pole 210 is excited by the exciting coil 214 at the turn-on rotation angle ( ⁇ s), and switching during driving of the motor.
- ⁇ s turn-on rotation angle
- the stator and the rotor which are configured and coupled as described above, rotate the rotor by the rotation position sensor 300 and the controller 400.
- the rotation position sensor 300 detects the rotation position of the rotor 100.
- the rotational position of the rotor 100 to sense here is the excitation conduction section ( ⁇ on- ⁇ off) Turn-on rotation angle? On and turn-off rotation angle? Off.
- the turn-on rotation angle ⁇ on is set before the inductance increase starting point ⁇ s so that the current sufficiently increases when the voltage is applied to the excitation coil and then enters the inductance increase section, but excessive inrush current occurs or reverse torque is generated.
- the turn-off rotation angle ⁇ off is set within the inductance increase period ⁇ s to ⁇ 1 so that the magnetic induction power of the excitation coil is reversed after the voltage application is turned off. ( ⁇ 2) to be sufficiently destroyed before.
- the rotation position sensor 300 may employ various methods mentioned in the prior art, and in the exemplary embodiment of the present invention, the rotation position sensor 300 may be configured as an optical sensor having a light emitting part and a light receiving part. It was installed on the top of the convex pole 211, and a reflecting plate 310 for reflecting the light of the light emitting unit to be detected by the light receiving unit was installed on the top of the rotor convex pole 111.
- the rotation position sensor 300 may be installed on any one of the plurality of stator convex poles 211, and the reflector 310 is provided on the rotor 100.
- the rotation position sensor 300 may be installed on any one of the plurality of stator convex poles 211, and the reflector 310 is provided on the rotor 100.
- the direction of rotation of the rotor is determined, and when the rotor is rotated in the determined rotation direction, the reflector plate 310 is set in accordance with a preset energizing period ⁇ on- ⁇ off corresponding to the inductance increase period ⁇ s to ⁇ 1. Install it. Accordingly, the rotation position sensor 300 generates the first signal at the turn-on rotation angle ⁇ on and generates the second signal at the turn-off rotation angle ⁇ off.
- the rotation position sensor 300 is installed at the stator convex pole 211, and is installed at the end of the portion that starts to face the rotor convex pole 111.
- the reflector plate 310 is elongated in an arc shape having a rotation angle range of the excitation conduction section ⁇ on- ⁇ off, and is installed at the rotor convex pole 111 so as to correspond to the excitation conduction section ⁇ on- ⁇ off.
- the excitation conduction period ⁇ on- ⁇ off is the same as the inductance increase period ⁇ s to ⁇ 1.
- the reflector plate ( 310 is slightly biased towards pitch hole 120.
- the rotation position sensor 300 installed as described above is configured to generate a 'Low' signal when detecting light reflected by the reflector, and to generate a 'High' signal when no light is detected. Accordingly, the first signal is generated to switch from 'High' to 'Low' at the time of entering the excitation energization section ⁇ on- ⁇ off, and at the time of exiting the excitation energization section ⁇ on- ⁇ off, Generates a second signal to switch to the high ', and transmits it to the controller (400).
- the controller 400 detects the excitation conduction section ⁇ on- ⁇ off set in advance to correspond to the inductance increase period ⁇ s ⁇ 1 as the first signal and the second signal of the rotation position sensor 300, and energizes the excitation.
- the driving voltage of the pulse waveform which supplies electricity to the excitation coil 214 only in the interval ⁇ on- ⁇ off is applied to the excitation coil 214. Accordingly, the rotor rotates in one direction with the rotational force by the reluctance torque.
- the controller 400 sets the starting voltage of the pulse waveform to the starting pole excitation coil 221. Or the stator pole excitation coil 214, the above driving voltage is applied to the excitation coil 214 when it becomes a position where rotational drive is possible.
- the controller 400 is connected to a capacitor (C) and a capacitor (C) connected to the capacitor (C) to receive and charge the DC electricity from the outside through the stator through the switching elements (Q1, Q2)
- Asymmetric converter 440 which is supplied to the pole excitation coil 214, is connected in parallel with the capacitor C to supply electricity stored in the capacitor C to the starting pole excitation coil 221 through the switching element Q3.
- the first gate driving circuit 420 and the microprocessor 410 which turn on the switching elements Q1 and Q2 of the asymmetric converter 440 according to the single switching circuit 450 and the excitation signal of the microprocessor 410.
- the resistor R0 is connected between the second gate driving circuit 430 for turning on the switching element Q3 of the single switching circuit 450 and the negative terminal of the capacitor C and the ground according to the start signal of the single switching circuit 450. And converts and amplifies the voltage across the resistor R0 into a current value and inputs the result to the microprocessor 410.
- the control circuit 460 performs the start control operation and the drive control operation according to the rotational position of the rotor detected by the rotation position sensor 300, and ideally controls the motor according to the current value detected by the current detection circuit 460. And a microprocessor 410 for performing a protection control operation.
- the microprocessor 410 transmits a drive signal or a start signal for applying a voltage to the stator pole excitation coil to the first gate driving circuit 420 when performing the start control operation and the drive control operation.
- a start signal for applying a voltage to the coil is output and transmitted to the second gate driving circuit 430.
- the drive signal is a pulse waveform signal that applies a voltage to the stator pole exciting coil in accordance with the excitation conduction section ⁇ on- ⁇ off to rotate the motor at a rated speed.
- the start signal is a pulse width modulation (PWM) waveform which has a very short period compared to the pulse waveform of the drive signal and has a predetermined length, and is applied to the stator pole exciting coil or the starting pole exciting coil when starting the motor. do.
- PWM pulse width modulation
- the microprocessor 410 may enable the rotor at a speed specified by the user, for this purpose, the microprocessor 410 excites a pulse width modulation (PWM) signal corresponding to the specified speed It can be applied to the energization section ( ⁇ on- ⁇ off).
- PWM pulse width modulation
- the drive signal or start signal for applying a voltage to the stator pole excitation coil 214 is asymmetrical by amplifying the first gate drive circuit 420.
- a single switching circuit 450 is applied to the gates of the switching elements Q1 and Q2 of the converter 440 and amplified by the second driving circuit 420 to a start signal to be applied to the starting pole exciting coil 221. Is applied to the gate of the switching element Q3.
- the asymmetric converter 440 is connected to both ends of the stator pole excitation coil 214 switching elements (Q1, Q2) to connect the stator pole excitation coil 214 in parallel to the capacitor (C) by turning on (turn on) And a reflux diode D1 which demagnetizes the electric energy accumulated in the stator pole excitation coil 214 at the turn-off of the switching elements Q1 and Q2 to the capacitor C. D2) is included, for example, since the technology disclosed by the Patent No. 10-0991923, detailed description thereof will be omitted.
- the switching elements Q1 and Q2 are configured as a power electronic device that performs a high-speed switching operation according to a driving signal or a start signal applied through a gate, for example, a field effective transistor (FET) or an IGBT (insulated). gate bipolar mode transistor).
- FET field effective transistor
- IGBT insulated. gate bipolar mode transistor
- the single switching circuit 450 connects one end of the starting pole excitation coil 221 to the (+) end of the capacitor C and the other end to the (-) end of the capacitor C through the switching element Q3.
- the excitation of the starter pole coil 221 by the turn-on of the switching element (Q3) and comprises a freewheeling diode (D3, freewheeling diode) connected in parallel to the starter pole coil (221).
- the switching element Q3 may be configured of a field effective transistor (FET) or an insulated gate bipolar mode transistor (IGBT) that performs high-speed switching by a start signal.
- a start control operation by the microprocessor 410 will be described with reference to FIG. 9.
- FIG. 9 is a flowchart illustrating a start method by the control of the controller 400.
- the controller 400 detects a rotor position (S10), a starting attempt step (S20), a driving determination step (S30), and a rotor position adjusting step when a rotationally stopped rotor is rotationally started.
- the motor is driven in accordance with the starting method (S40).
- the rotor position detecting step S10 is a step of detecting the rotor position through the rotation position sensor 300.
- the start attempt step (S20) is a stator pole when the rotor position to be determined based on the signal received from the rotor position sensor 300 is in the energizing period ( ⁇ on- ⁇ off), the voltage waveform corresponding to the drive signal This step is applied to the female coil.
- the excitation current conduction section ⁇ on- ⁇ off is the same as the inductance increasing section ⁇ s to ⁇ 1, so that the drive is performed when the rotational position of the rotor is in the inductance increasing section ⁇ s to ⁇ 1.
- a voltage is applied to the stator pole exciting coil.
- the driving determination step (S30) detects whether the rotor rotates after the start attempt step (S20) by the rotation position sensor 300 and rotates to continuously apply a drive signal thereafter to drive the motor, if not rotated It is the step that goes to the electronic position adjusting step (S40). Here, it is determined whether to rotate by determining whether a motor driving operation of exciting the stator pole is normally performed according to the energizing section ⁇ on- ⁇ off sensed by the rotation position sensor 300.
- the rotor position adjusting step (S40) is a case where the rotor position detected in the rotor position detecting step (S10) is not in the excitation conduction section ( ⁇ on- ⁇ off) or when it is crossed in the driving determination step (S30), Exciting the starting pole or the rotor pole in accordance with the start signal to change the position of the rotation angle of the rotor and proceeds to the rotor position detection step (S10).
- the start signal is a signal that enables the rotor to be changed by changing a predetermined rotation angle position, and thus can be a PWM signal having a length of 1 sec or less, for example.
- the rotor position adjustment step (S40) as described above after exciting the start pole exciting step (S41), the start pole 220 to change the position of the rotation angle of the rotor by exciting the start pole 220 according to the start signal
- the rotor position is detected through the rotational position sensor 300 to check whether the rotor position is in the energizing section ⁇ on- ⁇ off, and if it is in the exciting energizing section ⁇ on- ⁇ off, the process proceeds to the starting attempt step S20.
- the controller 400 is configured to the stator pole excitation coil in accordance with the excitation conduction section ⁇ on- ⁇ off detected by the rotation position sensor 300 when the rotor is in the excitation conduction section ⁇ on- ⁇ off when the motor is started.
- the starting pole is excited in accordance with the starting signal of the PWM waveform. The operation is retried when the rotor is in the exciting energization section ( ⁇ on- ⁇ off) during the repeating operation and the excitation of the stator poles.
- the moving pole 220 stops after being rotated by a predetermined angle in the counterclockwise direction by the excitation of the moving pole 220, and thus the probability of entering the excitation conduction section ⁇ on- ⁇ off is high.
- the rotation angle position of the rotor is in the energization period ⁇ on- ⁇ off, but close to the alignment rotation angles ⁇ 1 to ⁇ 2, the starting of the motor may fail. However, even if the start fails, since the start pole 220 facing the pitch hole 120 is excited by the start signal, the rotation angle can be adjusted by rotating the rotor.
- the rotation angle of the rotor enters the excitation conduction section ⁇ on- ⁇ off, and the starting pole 220 faces the middle of the rotor concave pole 112, so that the starting pole It is difficult to generate rotational force with the excitation of 220, and instead, the excitation of the stator pole 210 has a high probability that the rotation angle position of the rotor enters the excitation conduction section ⁇ on- ⁇ off.
- FIG. 10 is a cross-sectional view of a portion of a switched reluctance motor according to a second embodiment of the present invention in which a 12-pole rotor is coupled to a 10-pole stator in an outer ring type.
- the outer ring rotor type, the pole is arranged in a single phase structure, and includes a moving pole.
- a plurality of twelve rotor poles 110 having the same polar angle are disposed at equal intervals along the circumferential direction of the inner circumferential surface on the inner circumferential surface of the rotor 100, and pitches between adjacent rotor poles 110.
- the hole 120 is formed.
- 12 poles are disposed on the outer circumferential surface of the stator 200 at equal intervals along the circumferential direction in the same manner as the number of the rotor poles 110, so that 12 poles are simultaneously aligned when the rotor poles 110 are aligned.
- the 12 poles are unaligned at the same time.
- the pair of symmetrical with respect to the center of rotation among the 12 poles of the stator 200 is configured as the moving pole 220 and the remaining 10 poles are configured as the stator pole 210.
- the ten stator poles 210 are respectively wound with excitation coils 214 so that they can be simultaneously excited or elementd.
- a reflecting plate 310 is installed at an upper end of the rotor convex pole 111 of each rotor pole 110 so as to fit the excitation conduction section ⁇ on- ⁇ off, and a plurality of stator poles 210 are provided.
- Rotational position sensor 300 is installed on any one of the stator pole top.
- stator pole As described above, even when the rotor 100 is rotated by combining the stator 200 having the 10 pole stator pole 210 with the rotor 100 having the 12 pole rotor pole 110, the stator pole ( The polar angle of 210 may be the same as the polar angle of the rotor pole 110, whereby the spacing between the stator poles 210 is also adjacent to the starting pole 220. It can be reduced by the circumferential width of the pitch hole 120.
- the embodiment shown in FIG. 10 generates reluctance torque by using the entire inner circumferential surface of the rotor pole 110 as compared with the embodiment shown in FIGS.
- the torque can be increased by that much.
- controller 400 shown in FIG. 8 can be included to start the motor according to the starting method shown in FIG.
- FIGS. 11 to 13 are diagrams for explaining a switched reluctance motor according to a third embodiment of the present invention.
- a coupled state of the stator 200 and the rotor 100 is illustrated in cross-sectional view.
- Fig. 12 the separated state of the stator and the rotor is shown in cross section.
- FIG. 13 is a top view illustrating an arrangement state between the stator convex pole and the permanent magnet according to the position of the rotor, and an arrangement state between the rotation position sensor 300 and the reflector 310.
- the rotor 100 is bisected into the rotor convex pole 111 and the rotor concave pole 112 having different inner diameters by the step 113 similarly to the first embodiment.
- a plurality of rotor poles 110 are provided at equal intervals along the circumferential direction on the inner surface to be distinguished by the pitch holes 120.
- the rotor poles 110 are provided in pairs, so if n is a natural number, it is 2n.
- stator 200 does not include the starter pole 220 provided in the first embodiment, and instead, the stator pole 110 is formed at the position where the starter pole 220 was formed, and thus, the rotor 100.
- stator poles 210 are provided on the outer surface at equal intervals along the circumferential direction, in the same number as the number of the rotor poles 110). Accordingly, when the rotor 100 rotates, all the rotor poles 110 are simultaneously aligned or unaligned at the same time with the stator poles 210 without missing any one.
- each stator pole 210 has a two-stage diameter by the step 213, it is divided into a stator convex pole 211 and a stator concave pole 212 having different outer diameters, so that the rotor pole 110 ),
- the rotor convex pole 111 and the stator concave pole 212 face each other, and the rotor concave pole 112 and the stator convex pole 211 face each other.
- the third embodiment of the present invention does not have to include the single switching circuit 450 when the controller 400 is configured, and the processor for the starting method described with reference to FIG. 9 is a microprocessor. It may not be mounted at 410.
- the third embodiment of the present invention mounts the permanent magnet 130 to the rotor concave pole 112 to position the rotor 100 that has stopped rotating at the rotatable angle, thereby providing a microprocessor 410. Is activated by applying a voltage to the excitation coil 214 according to the rotor rotation angle detected by the rotation position sensor 300.
- the permanent magnets 130 are mounted in one pair in close contact with the rotor concave poles 112 at different positions, and the polarities toward the inside where the stator 200 is installed are different from each other. That is, one permanent magnet 130 has an N pole toward the inside and the other permanent magnet 130 has an S pole toward the inside.
- the permanent magnets that make up a pair of two can be provided and mounted in a plurality of pairs. That is, when the number of the rotor poles 110 is 2n and k is a natural number less than or equal to n, one of the 2k rotor recesses 112 among the 2n rotor recesses 112 is provided.
- the permanent magnets 130 are mounted in close contact. At this time, the k permanent magnets 130 are directed to the N pole inward, the remaining k permanent magnets 130 are directed to the S pole inward. At this time, the permanent magnet with the N pole facing inward and the permanent magnet with the S pole facing inward may be disposed to face the rotation axis.
- Each permanent magnet 130 is formed in an arc shape having a polar angle ⁇ m that is relatively smaller than the polar angle ⁇ rc of the rotor concave pole 112, and the outer surface of the permanent magnet 130 has a rotor concave pole 112. At the time of mounting in close contact with the pitch), it is mounted to the pitch hole 120. Accordingly, the permanent magnet 130 is spaced apart from the step 113 on one side of the mounted rotor concave pole (112).
- the permanent magnet 130 is in close contact with the circumferential side 111a of the rotor convex pole 111 across the opening inlet 120a of the pitch hole 120.
- the pair of permanent magnets having the N pole facing inward and the permanent magnet 130 having the S pole facing inward are separated from the step 113 on one side in the rotor concave pole 112, and the pitch hole on the other side is provided.
- the magnetic force flux of 130 passes through the stator 200 in a path of decreasing the magnetic resistance and is directed to the permanent magnet on the opposite side.
- the permanent magnets 130 mounted on the rotor receive magnetic reluctance torque to align with the stator convex poles 211 having a smaller pore when they face each other and a shorter magnetic circuit than the stator concave poles 212. Ensure that the rotor is always aligned to the activatable position.
- the permanent magnet 130 is used for the purpose of aligning the rotor to the startable position in the torque-free state, so that the stator convex pole 211 excited by the excitation coil 214 to drive the motor
- a magnet with a very small magnetic force relative to the magnetic force it does not act as a reverse torque or resistance that prevents smooth rotation during the starting and operation of the rotor.
- the rotor 100 reduces the speed until the inertia force is exhausted and then aligns with the permanent magnet 130, even after the motor stops, the permanent magnet 130 is stator even if vibration caused by external shock occurs.
- the reluctance torque to be aligned with the convex pole 211 is generated, so that the entire surface of the permanent magnet 130 is connected to the stator convex pole 211 as illustrated in FIGS. 13A, 13B, and 13C. It is in a facing state.
- stator convex pole 211 is at a rotation angle starting to face the rotor convex pole 211 as shown in FIG. 13 (b) or at least the stator convex as shown in FIG. 13 (c).
- pole 211 pole firing angle ( ⁇ m) Since one pole face by a firing angle and the rotor projection poles 211 subtracts the, woman the stator projection poles 211 energizing interval ( ⁇ on- of permanent magnets 130 on the firing angle of a pole The rotor can be rotated by exciting it with [theta] off).
- the front surface of the permanent magnet 130 is connected to the stator concave pole 212 as shown in FIGS. 13E, 13F, and 13G. It can be face to face.
- the reflector plate 310 installed in accordance with the excitation conduction period ( ⁇ on- ⁇ off) set to correspond to the inductance increase interval to generate the positive torque is not in the state facing the rotation position sensor 300, the stator pole 210 Excitation) reverses by but torque.
- the controller 400 is moved to the rotation position sensor 300.
- the drive is controlled by applying a voltage to the stator pole exciting coil in accordance with the sensing energizing section ( ⁇ on- ⁇ off).
- the controller 400 applies a voltage to the excitation coil in accordance with the start signal of the PWM waveform as in the first embodiment, thereby predetermining the rotor.
- the rotating operation at an angle is repeated until the rotor is in the excitation conduction section ⁇ on- ⁇ off, and when the rotor is in the excitation conduction section ⁇ on- ⁇ off, drive control is performed according to a drive signal thereafter.
- the polar angle ⁇ m of the permanent magnet 130 is preferably 1/5 to 2/3 times the rotor concave pole polar angle ⁇ rc as expressed by Equation 1 below.
- the stator convex pole 211 is rotated with the stator convex pole 211 in the situation shown in FIG. 13 (b) when the starting rotational force at the moment of starting cannot be obtained close to the alignment rotation angles ⁇ 1 to ⁇ 2 between the electron convex poles 111 and is larger than 2/3 times the rotor concave pole polar angle ⁇ rc .
- the rotor convex 111 may not reach the position where it starts to face the stator convex pole 211. Therefore, it is good to set it as the range represented by said Formula (1).
- the permanent magnet 130 is made of a material having a high magnetic resistance because it crosses the open inlet of the pitch hole 120, the path through the permanent magnet 130 during the magnetic flux flux of the excited stator pole 210 It is good to lower the amount of magnetic flux to form.
- the permanent magnet 130 may be composed of a non-metal magnet, such as a rubber magnet, a ferrite magnet, a plastic magnet or an organic material magnet.
- a non-metal magnet such as a rubber magnet, a ferrite magnet, a plastic magnet or an organic material magnet.
- it since it may be damaged by the heat generated by the motor, it is good to use a magnet having high magnetic resistance while having heat resistance if possible.
- the groove is formed in the rotor concave electrode 112 to fix the permanent magnet 130 into the groove. Or may be fixed using a pitch hole.
- FIG. 14 is a graph showing the detected data after detecting the current flowing through the excitation coil with an oscilloscope in a state in which a switched reluctance motor according to the present invention is actually manufactured and driven.
- the present invention is made of a gentle curve when applying a voltage to the exciting coil, the present invention can significantly reduce the torque and cogging impact noise compared to the prior art, such as the current waveform shown in FIG. have.
- the present invention has the effect of suppressing the magnetic induction residual electricity in the excitation coil after the turn-off rotation angle ⁇ off due to the self-mechanical structures of the concave and convex poles of the salient poles. It takes a shorter time to return to the device, and the effect of reducing vibration noise and efficiency decrease due to the reverse torque generated at the turn-off rotation angle ⁇ off can be obtained.
- Reference numeral 110 rotor pole 111: rotor convex pole 112: rotor concave pole
- stator pole 211 stator convex pole 212: stator concave pole
- step 214 driving theater female coil
- rotor position detection sensor 310 encoding sensor plate (reflection plate)
- microprocessor 420 first gate driving circuit
- second gate driving circuit 440 asymmetric converter
- ⁇ r rotor pole polar angle
- ⁇ s stator pole polar angle
- ⁇ rc rotor concave polar angle
- ⁇ m permanent magnet polar angle
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Synchronous Machinery (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
The present invention relates to an outer race rotor-type switched reluctance motor having high torque efficiency, wherein torque ripple and vibrational noise are reduced by respectively configuring a stator pole that is excited at an excitation coil and a rotor pole that faces the stator pole as poles having two-step diameters by means of steps.
Description
본 발명은 여자코일에 여자되는 고정자 극 및 고정자 극과 마주하는 회전자 극을 각각 단차에 의해 2단 직경을 갖는 극으로 구성하여서, 토크 리플과 진동 소음을 줄이고, 토크 효율을 높인 외륜 회전자 타입의 스위치드 릴럭턴스 모터에 관한 것이다.The present invention consists of a stator pole and a rotor pole facing the stator pole, which are excited by an excitation coil, each having a two-stage diameter by a step, thereby reducing torque ripple and vibration noise and improving torque efficiency. To a switched reluctance motor.
스위치드 릴럭턴스 모터(SRM : Switched Reluctance Motor)는 고정자에만 여자코일을 권선하고 회전자를 어떠한 여자수단(여자코일 또는 영구자석)도 없이 철심으로만 구성하여 브러시(Brush)가 필요 없는 간단한 구조를 갖는다. 이에 따라, 스위치드 릴럭턴스 모터는 제작하기 쉽고, 견고하여 다른 모터에 비해 상대적으로 신뢰성이 높고, 가격 경쟁력이 우수하여서, 다양한 응용분야에서 관심을 갖는 모터이다.Switched Reluctance Motor (SRM) has a simple structure that does not need brush by winding the excitation coil only on the stator and the rotor by iron core without any excitation means (excitation coil or permanent magnet). . Accordingly, switched reluctance motors are easy to manufacture, robust, relatively reliable compared to other motors, and excellent in price competitiveness, and thus are of interest in various applications.
도 1은 종래의 단상 스위치드 릴럭턴스 모터의 단면도이다.1 is a cross-sectional view of a conventional single phase switched reluctance motor.
도 1에 도시한 바와 같이, 전형적인 종래의 단상 스위치드 릴럭턴스 모터는 고정자의 내부에 회전자를 자유 회전할 수 있게 배치한 일반적인 모터의 기본 구조에서, 일정한 공극(air gap)을 사이에 두고 상호 대향하는 돌극(11, 21)을 고정자(20)와 회전자(10)에 각각 형성하여 이중 돌극 구조를 갖는다. 여기서, 고정자(20)의 돌극(12)에 여자코일(22)이 권선되어 있다.As shown in Fig. 1, a typical conventional single phase switched reluctance motor is opposed to each other with a constant air gap in the basic structure of a general motor in which a rotor can be freely rotated inside a stator. The salient poles 11 and 21 are formed on the stator 20 and the rotor 10 to have a double salient pole structure. Here, the excitation coil 22 is wound around the protrusion 12 of the stator 20.
이와 같이 구성되는 단상 스위치드 릴럭턴스 모터에서 회전자의 회전각(회전 위치)에 따라 형성되는 인덕턴스(Inductance) 및 토크(Torque)는 도 2에 도시한 바와 같이 나타난다.Inductance and torque formed according to the rotation angle (rotation position) of the rotor in the single-phase switched reluctance motor configured as described above are shown in FIG. 2.
도 2를 참조하면, 회전자의 반시계 방향 회전각에 대한 인덕턴스는 회전자 돌극(11)과 고정자 돌극(21)이 상호 대향하기 시작하는 시점의 회전각(θs)에서 증가하기 시작하여 회전자 돌극(11)과 고정자 돌극(21)이 정렬(align)되는 시점(θ1~θ2)에 최대(Lmax)가 되고, 이후 점차 감소하기 시작하여 회전자 돌극(11)과 고정자 돌극(21) 사이의 상호 대향하는 면이 사라진 시점의 회전각(θ3)에서 최소(Lmin)가 되며, 이후 회전자 돌극(11)과 고정자 돌극(21)이 상호 대향하기 시작하는 시점의 회전각(θs)에서 회전각에 따라 증가한 후 감소하게 된다. 여기서, 회전자 돌극(11)과 고정자 돌극(21)이 정확하게 정렬(align)되는 시점의 회전각, 즉, 회전자 돌극(11)의 중심과 고정자 돌극(21)의 중심이 서로 일치하는 회전각에서 인덕턴스가 최대가 되지만, 정렬되는 회전각을 기준으로 소정의 전후 회전각(θ1, θ2)까지는 인덕턴스가 거의 균일하므로 정렬 위치를 구간(θ1~θ2)으로 표시한다. 이와 같이 정렬된 구간(θ1~θ2)을 기동 사점(Dead Point)이라고 한다.Referring to FIG. 2, the inductance for the counterclockwise rotation angle of the rotor starts to increase at the rotation angle θs at the time when the rotor salient pole 11 and the stator salient pole 21 start to face each other and the rotor starts to increase. The maximum Lmax is obtained at a time point θ1 to θ2 at which the salient poles 11 and the stator salient poles 21 are aligned, and then gradually decrease to decrease between the rotor salient poles 11 and the stator salient poles 21. It becomes the minimum (Lmin) at the rotation angle (θ3) when the mutually opposing surfaces disappear, and then the rotation angle at the rotation angle (θs) at the time when the rotor salient pole 11 and the stator salient pole 21 start to face each other. As it increases, it decreases. Here, the rotation angle when the rotor salient pole 11 and the stator salient pole 21 are correctly aligned, that is, the angle of rotation of the center of the rotor salient pole 11 and the center of the stator salient pole 21 coincides with each other. Although the inductance is maximized at, the inductance is almost uniform up to the predetermined forward and backward rotation angles θ1 and θ2 based on the rotation angles to be aligned, and thus the alignment positions are represented by the intervals θ1 to θ2. The sections θ1 to θ2 arranged in this manner are referred to as starting dead points.
여기서, 여자코일에 전압을 인가하면 인덕턴스가 증가하는 구간(θs~θ1)에는 정토크(Tmax)가 발생하고, 인덕턴스가 감소하는 구간(θ2~θ3)에는 부토크(-Tmax)가 발생한다. 즉, 고정자의 돌극을 여자하면, 회전자는 인덕턴스가 증가하는 방향으로 릴럭턴스 토크(Reluctance Torque)를 받게 되어 회전하고, 고정자 돌극과 회전자 돌극이 정렬(align)되는 위치에 이르게 된다. 회전자가 정렬 위치(θ1~θ2)에 이르게 되면 이후 부토크가 발생하므로 정렬 위치(θ1~θ2) 이전에 여자코일의 전압 인가를 차단하고 다음 릴럭턴스 증가 구간(θs~θ1) 또는 그 전에 여자코일에 전압을 인가하여 일 방향 회전 토크가 연속되게 한다.Here, when a voltage is applied to the excitation coil, the positive torque Tmax is generated in the sections θs to θ1 where the inductance increases, and the negative torque (-Tmax) occurs in the sections θ2 to θ3 where the inductance decreases. That is, when the stator poles are excited, the rotor receives a reluctance torque in the direction of increasing inductance and rotates to reach a position where the stator poles and the rotor poles are aligned. When the rotor reaches the alignment position (θ1 ~ θ2), the negative torque occurs afterwards, so that the voltage applied to the excitation coil is cut off before the alignment position (θ1 ~ θ2) and the next reluctance increase period (θs ~ θ1) or before the excitation coil. The voltage is applied to make the one-way rotational torque continuous.
이와 같은 회전자의 회전각에 따른 인덕턴스 및 토크의 특성에 따라, 회전자의 회전 위치를 감지하는 인코더를 설치하고, 인덕턴스가 증가하는 구간(θs~θ1)에 대응되는 여자 통전구간(θon-θoff)을 설정하고 여자코일(22)에 전압을 통전 또는 차단하는 스위칭 소자를 구비한 전력공급수단을 설치함으로써, 회전자가 정토크에 의해 일방향으로 회전하는 스위치드 릴럭턴스 모터를 구성할 수 있다. 여기서, 여자코일에 전압을 인가하는 여자 통전구간(θon-θoff)은 여자 코일(22)의 인덕턴스(L) 크기와 여자 전압 오프시 발생하는 여자코일(22)의 자기유도 전류의 소멸 시간을 고려하여 정격 토크의 제어 범위에 따라 인덕턴스 증가 구간(θs~θ1)의 위치에 대응되게 설정된다.According to the characteristics of the inductance and torque according to the rotation angle of the rotor, an encoder for detecting the rotational position of the rotor is installed, and the energization section (θon-θoff) corresponding to the section (θs ~ θ1) where the inductance increases ) And a power supply means having a switching element for energizing or interrupting the voltage in the excitation coil 22, it is possible to construct a switched reluctance motor in which the rotor rotates in one direction by the constant torque. Here, the excitation conduction section θon-θoff for applying a voltage to the excitation coil takes into account the magnitude of the inductance L of the excitation coil 22 and the decay time of the magnetic induction current of the excitation coil 22 generated when the excitation voltage is turned off. To correspond to the position of the inductance increasing section θs to θ1 according to the control range of the rated torque.
한편, 정지한 모터를 기동할 시에 회전자가 기동 사점(θ1~θ2)에 있으면 기동이 안되므로, 별도의 기동수단을 이용하여 회전자를 기동 가능한 회전각으로 조정한 후 여자코일을 여자하여 기동한다. On the other hand, if the rotor is at the starting dead point (θ1 to θ2) when starting the stopped motor, starting is not possible. Therefore, after the rotor is adjusted to the rotational angle that can be started using a separate starting means, the excitation coil is excited and started. .
또한, 돌극을 포함한 코어가 포화되지 않고 많은 자속량이 회전자 돌극을 통해 흐르도록 하여 최대 인덕턴스를 크게 하고, 슬롯의 점적률을 높이기 위해서, 일반적으로 회전자 돌극(11)의 극호각(βr, arc angle)을 고정자 돌극(21)의 극호각(βs)보다 크게 설계한다.In addition, the core including dolgeuk to flow through the rotor dolgeuk amount is large magnetic flux is not saturated in order to increase the space factor of the slot increasing the maximum inductance, in general, polar firing angle (β of the rotor dolgeuk (11) r, The arc angle is designed to be larger than the polar angle β s of the stator protrusion 21.
그렇지만, 스위치드 릴럭턴스 모터는 인덕턴스 증가 구간(θs~θ1)에만 정 토크를 발생시켜 회전하고 정렬 위치(θ1~θ2) 이후부터는 부 토크가 발생하므로 여자 전압을 차단해야하기 때문에 급격한 자기적 변화로 토크 리플과 기계적 진동 소음이 발생한다. 즉, 도 2에 도시한 전류 파형을 살펴보면 여자코일에 전압을 인가함에 따라 초기에 전류가 증가한 후 정상 평형 전류(Flat-Topped Phase Current)가 흐르고 이후 전압 인가를 중지하면 전류가 급격히 감소하여 소자되므로, 전류가 급격히 증가하는 구간과 급격히 소자되는 구간에서 코깅 및 토크 충격이 발생한다. 결국, 소음이 커지고 불필요한 전력 손실이 커져 효율도 저하된다. However, the switched reluctance motor rotates by generating a positive torque only in the inductance increase period (θs ~ θ1) and generates a negative torque after the alignment position (θ1 ~ θ2). Ripple and mechanical vibration noise are generated. That is, when looking at the current waveform shown in FIG. 2, as the voltage is initially applied to the excitation coil, a current is initially increased and then a flat-topped phase current flows. , Cogging and torque shock occurs in the section where the current is rapidly increased and the section is sharply demagnetized. As a result, the noise becomes louder and the unnecessary power loss becomes larger, resulting in lower efficiency.
이러한 토크 리플 및 소음은 복잡한 구조의 다상 설계로 일부 해소할 수 있지만, 특히, 종래 단상 스위치드 릴럭턴스 모터에서는 간격이 넓은 비 여자구간 대비 짧은 토크 발생 여자구간의 회전자와 고정자의 쌍 돌극 구조상 불연속적인 토크 변화로 진동 및 소음이 크게 발생한다.This torque ripple and noise can be partially solved by a complex multiphase design, but especially in conventional single-phase switched reluctance motors, the rotor and stator bipolar structure of the rotor and stator has a discontinuous structure. Vibration and noise are greatly generated by torque change.
이러한 토크 리플을 줄이기 위해서, 공개특허 제10-2014-0073395호는 회전자 돌극과 고정자 돌극에 대한 극호각(βr, βs)의 설계기준을 제시하였다.In order to reduce such torque ripple, Korean Patent Laid-Open Publication No. 10-2014-0073395 proposes a design criterion of the polar angle (β r , β s ) for the rotor protrusion and the stator protrusion.
또한, 회전자 돌극의 선단부에 단차부를 형성하여 기동문제를 일부 해소할 수 있고, 등록특허 제10-0677285호에 따르면 회전자 돌극의 선단부 가장자리에 축선 방향을 따라 관통공을 형성하여서 기동 안정성을 향상시키고 소음도 저감할 수 있는 방법을 제공하였다.In addition, it is possible to solve the starting problem by forming a stepped portion at the distal end of the rotor protrusion, and according to the Patent No. 10-0677285 to improve the starting stability by forming a through hole along the axial direction in the edge of the rotor protrusion It also provides a way to reduce noise.
하지만, 회전자 돌극을 고정자 돌극의 극호각보다 상대적으로 크게 형성하여서, 단차에 의해 낮게 형성된 부분 또는 관통공이 형성된 부분이 고정자 돌극에 근접함에 따라 나타나는 인덕턴스의 영향을 이용하는 것이므로, 인덕턴스 증가 구간(θs~θ1)에 진입하는 순간 또는 끝나는 순간에서만 토크 변동량을 일부 줄이는 것에 불과하여 여전히 토크 리플이 크게 발생한다.However, since the rotor protrusion is formed relatively larger than the polar angle of the stator protrusion, the inductance increase section (θs ~) is used because the portion formed lower by the step or the portion in which the through hole is formed approaches the stator pole. Only at the moment of entering or ending θ1), the torque fluctuation still occurs largely by only partially reducing the torque fluctuation amount.
한편, 외륜 회전자(Outer Rotor) 방식의 스위치드 릴럭턴스 모터는 여자코일에 의해 여자되는 돌극이 내측의 고정자에 형성되므로, 내륜 회전자(Inner Rotor) 방식과 구조적으로 상이하다. 공개특허 제10-2012-0134984호에 개시한 바와 같이 짧은 자속 경로에 의한 코어 손실을 줄이고 토크 특성을 향상시키는 연구가 있었다. 하지만, 토크 리플을 줄이고 토크를 최대화하기 위한 2중 단차 돌극의 자기 릴럭턴스와 인덕턴스 조합 및 극호각에 대한 선행기술 문헌이나 공지기술은 검색되지 않았다. On the other hand, the switched reluctance motor of the outer rotor method is structurally different from the inner rotor method since the salient pole excited by the excitation coil is formed on the inner stator. As disclosed in Korean Patent Laid-Open Publication No. 10-2012-0134984, there have been studies to reduce the core loss caused by the short magnetic flux path and to improve the torque characteristics. However, no prior art literature or known art has been searched for magnetic reluctance and inductance combinations and polar angles of double stepped salient poles to reduce torque ripple and maximize torque.
이에, 본 발명자는 토크 리플을 줄이고 토크를 최대화하는 외륜 회전자를 창안하여 한국 출원번호 제10-2013-0112470호로 특허출원하였으며, 본 발명에서는 보다 향상된 성능을 위해 고정자와 외륜 회전자를 구성한 모터를 개시한다.Accordingly, the present inventors have filed a patent application as a Korean patent application No. 10-2013-0112470 by inventing an outer ring rotor that reduces torque ripple and maximizes torque, and in the present invention, the motor comprising the stator and the outer ring rotor for improved performance It starts.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) KR 10-0677285 A 2007.01.26.(Patent Document 1) KR 10-0677285 A 2007.01.26.
(특허문헌 2) KR 10-2014-0073395 A 2014.06.16.(Patent Document 2) KR 10-2014-0073395 A 2014.06.16.
(특허문헌 3) KR 10-2012-0134984 A1 2012.12.12.(Patent Document 3) KR 10-2012-0134984 A1 2012.12.12.
따라서, 본 발명의 목적은 인덕턴스를 완만하게 변화시키고 돌극 돌출을 최소화하여 불연속적인 토크 변화와 충격에 의한 기계적 자기진동과 회전토크 리플을 줄이고, 비 여자구간을 최소화하며 정토크 유효각을 최대한 증대시킨 외륜 회전자 방식의 스위치드 릴럭턴스 모터를 제공하는 것이다.Accordingly, an object of the present invention is to smoothly change the inductance and minimize the protrusion of the protrusion to reduce mechanical magnetic vibration and rotational torque ripple due to discontinuous torque changes and impacts, to minimize the non-excitation section and to increase the effective torque effective angle as much as possible. It is to provide a switched reluctance motor of the outer ring rotor type.
상기 목적을 달성하기 위해 본 발명은, 내면에 원주방향을 따라 등 방사각으로 형성한 복수의 회전자 극(110) 간에 자로(magnetic circuit)를 형성하는 회전자(100); 회전자의 내부에 고정 설치되며, 외면에 원주방향을 따라 형성하여 상호 간에 자로를 형성하는 복수의 고정자 극(210)에 여자코일(214)을 권선하고, 적어도 한쌍의 고정자 극(210)이 공극을 사이에 두고 서로 다른 회전자 극(110)에 하나씩 동시에 정렬(align)되는 고정자(200); 회전자(100)의 회전 위치를 감지하는 회전 위치 센서(300); 및 정토크를 발생시키기 위해 인덕턴스 증가 구간에 대응되게 미리 설정한 여자 통전구간(θon-θoff)에 여자코일(214)에 전압을 인가하는 컨트롤러(400);를 포함하는 스위치드 릴럭턴스 모터에 있어서, In order to achieve the above object, the present invention, the inner surface of the rotor (100) forming a magnetic circuit (magnetic circuit) between the plurality of rotor poles 110 formed in the radially equidistant along the circumferential direction; It is fixed to the inside of the rotor, winding the excitation coil 214 to a plurality of stator poles 210 formed in the circumferential direction on the outer surface to form a magnetic path between each other, at least a pair of stator poles 210 is air gap Stators 200 aligned at the same time one by one on different rotor poles 110 with the gaps therebetween; A rotation position sensor 300 for detecting a rotation position of the rotor 100; In the switched reluctance motor comprising a; and a controller 400 for applying a voltage to the excitation coil 214 in the excitation conduction period (θon-θoff) preset to correspond to the inductance increase interval to generate a positive torque,
상기 회전자 극(110) 및 고정자 극(210)은 각각 단차(113, 213)가 형성되어 높이가 상이한 볼록극(111, 211)과 오목극(112, 211)으로 양분되되, 상호 정렬(align)될 시에 회전자 볼록극(111)과 고정자 오목극(212)이 마주하고 회전자 오목극(112)과 고정자 볼록극(211)이 마주하며, 상기 컨트롤러(400)는 회전자 볼록극(111)과 고정자 볼록극(211) 간에 형성되는 인덕턴스 증가 구간에 대응되도록 상기 여자 통전구간이 설정되어 설정된 여자 통전구간(θon-θoff)에 여자코일(214)에 전압을 인가함을 특징으로 한다.The rotor poles 110 and the stator poles 210 are divided into convex poles 111 and 211 and concave poles 112 and 211 having different heights, respectively, having steps 113 and 213 formed therebetween, and aligned with each other. When the rotor convex pole 111 and the stator concave pole 212 face each other, the rotor concave pole 112 and the stator convex pole 211 face each other, and the controller 400 includes the rotor convex pole ( The excitation conduction section is set to correspond to an inductance increase section formed between the stator convex pole 111 and the stator convex pole 211, and a voltage is applied to the excitation coil 214 in the set excitation conduction section θon-θoff.
상기 회전자(100)는 회전자 극(110) 간의 경계에 요홈 형상의 피치홀(120)을 구비하여, 복수의 회전자 극(110)이 피치 홀(120)에 의해 구분되어 형성되게 함을 특징으로 한다.The rotor 100 includes a pitch hole 120 having a groove shape at a boundary between the rotor poles 110 so that the plurality of rotor poles 110 are formed by being separated by the pitch hole 120. It features.
고정자 볼록극(211)이 어느 하나의 회전자 극(110)의 회전자 볼록극(111)과 마주하기 시작하여 마주하는 면의 면적이 증가할 시에, 고정자 오목극(212)은 피치 홀(120)을 경계로 인접하는 다른 하나의 회전자 극(110)의 회전자 볼록극(111)과 마주하는 면의 면적이 감소하게 됨을 특징으로 한다.When the stator convex pole 211 begins to face the rotor convex pole 111 of any one of the rotor poles 110 and the area of the facing surface increases, the stator concave pole 212 becomes a pitch hole ( The area of the surface facing the rotor convex pole 111 of the other rotor pole 110 adjacent to the boundary 120 is reduced.
회전자 극(110) 및 고정자 극(210)의 단차(113, 213)는 각각 볼록극(111, 211)에서 오목극(112, 211)을 향해 하향 경사지게 형성됨을 특징으로 한다. Steps 113 and 213 of the rotor pole 110 and the stator pole 210 are characterized by being inclined downward from the convex poles 111 and 211 toward the concave poles 112 and 211, respectively.
회전자 극(110) 및 고정자 극(210)의 단차(113, 213)는 각각 회전자 극(110) 및 고정자 극(210)의 중심에 형성됨을 특징으로 한다. Steps 113 and 213 of the rotor pole 110 and the stator pole 210 are formed in the center of the rotor pole 110 and the stator pole 210, respectively.
상기 피치 홀(120)의 입구의 원주 방향 폭은 고정자 극(210)의 단차(213)의 횡방향 폭과 동일함을 특징으로 한다.The circumferential width of the inlet of the pitch hole 120 is the same as the transverse width of the step 213 of the stator pole 210.
회전자 극(110) 및 고정자 극(210)의 단차(113, 213)는 회전자 볼록극(111)과 고정자 볼록극(211)이 정렬될 시의 공극(G1)의 1~5배임을 특징으로 한다. Steps 113 and 213 of the rotor pole 110 and the stator pole 210 are 1 to 5 times larger than the gap G1 when the rotor convex pole 111 and the stator convex pole 211 are aligned. It is done.
상기 단차(113, 213)의 경사각은 30~60°임을 특징으로 한다.The inclination angle of the steps 113 and 213 is characterized in that 30 ~ 60 °.
쌍으로 구비되는 고정자 극(210)은 각각 서로 다른 회전자 극(110)에 동시 정렬되고, 상기 컨트롤러(400)는 각각의 고정자 극(210) 여자코일(214)을 동시에 여자하여서, 단상 스위치드 릴릭턴스 모터로 동작함을 특징으로 한다.The stator poles 210 provided in pairs are simultaneously aligned with different rotor poles 110, and the controller 400 simultaneously excites each stator pole 210 excitation coil 214, thereby providing a single phase switched release. It is characterized by operating as a traction motor.
본 발명의 일실시 형태에서는, 상기 회전자(100)의 회전자 극(110)의 개수는 2n+2개이고, n은 자연수이며, 상기 고정자(200)는 회전자 극(110)에 동시 정렬되는 2n개의 고정자 극(210)을 구비하고, 고정자 극(210)이 회전자 극(110)에 정렬될 시에, 고정자 극(210)에 정렬되지 아니하는 2개의 회전자 극(110)의 단차(113)와 하나씩 마주하고 기동극 여자코일(221)이 권선되는 2개의 기동극(220)을 구비하며, 상기 컨트롤러(400)는 모터를 기동할 시에 회전자가 여자 통전구간(θon-θoff)에 있으면 회전 위치 센서(300)로 감지하는 여자 통전구간(θon-θoff)에 맞춰 고정자 극 여자코일에 전압을 인가하여 기동을 시도하고, 모터를 기동할 시에 회전자가 여자 통전구간(θon-θoff)에 있지 아니하거나 또는 기동 시도가 실패할 시에, 마이크로프로세서에서 출력하는 PWM 파형을 이루는 기동 신호에 따라 기동극을 여자하는 동작과 고정자 극을 여자하는 동작을 반복하는 중에 회전자가 여자 통전구간(θon-θoff)에 있게 될 시에 기동을 재시도함을 특징으로 한다.In one embodiment of the present invention, the number of the rotor poles 110 of the rotor 100 is 2n + 2, n is a natural number, the stator 200 is aligned to the rotor poles 110 at the same time Steps of two rotor poles 110 having 2n stator poles 210 and not aligned with the stator poles 210 when the stator poles 210 are aligned with the rotor poles 110. 113 and two moving poles 220 facing one by one and the starting pole exciting coil 221 is wound. The controller 400 has a rotor in the energizing section (θon-θoff) when the motor is started. If so, the motor is applied to the stator pole excitation coil in accordance with the excitation conduction section (θon-θoff) detected by the rotation position sensor 300, and the rotor is started when the motor is started. Start of the PWM waveform output by the microprocessor when not in the start or when the start attempt fails. Female rotor during repeated operation and the operation of the stator pole woman to woman, depending on the group donggeuk call is characterized in that the retry the start-up period at the time be in conduction (θon-θoff).
본 발명의 일실시 형태에서는, 상기 회전자(100)는 k를 자연수라고 할 시에 복수의 회전자 오목극 중에 2k개의 회전자 오목극(112)에 각각 하나씩 장착하는 영구자석(130)을 구비하되, 상기 영구자석(130)은 피치홀(120)에 치우치게 회전자 오목극(112)에 장착되고, k개의 영구자석(130)과 나머지 k개의 영구자석(130)이 서로 다른 극성으로 내부를 향하게 장착됨을 특징으로 한다.In one embodiment of the present invention, the rotor 100 is provided with a permanent magnet 130 that is mounted to each of the two rotor concave poles 112 of the plurality of rotor concave poles when k is a natural number. However, the permanent magnet 130 is mounted to the rotor concave pole 112 to be biased in the pitch hole 120, k permanent magnets 130 and the remaining k permanent magnets 130 to the inside with different polarities It is characterized in that it is mounted facing.
상기 영구자석(130)은 피치홀(120)의 입구를 가로질러 회전자 볼록극(111)의 원주방향 측면에 밀착되게 장착됨을 특징으로 한다.The permanent magnet 130 is characterized in that it is mounted in close contact with the circumferential side of the rotor convex pole 111 across the inlet of the pitch hole (120).
상기 영구자석(130)은 회전자 오목극(112)의 극호각(βrc)의 1/5배 내지 2/3배의 극호각(βm)을 갖는 원호 형상으로 형성되어 외면을 회전자 오목극(112)에 밀착되게 장착되게 하고 공극(G1)을 유지하게 함을 특징으로 한다.The permanent magnet 130 is formed in an arc shape having a polar angle (β m ) of 1/5 times to 2/3 times the polar angle (β rc ) of the rotor concave pole 112 to concave the outer surface of the rotor. It is characterized in that it is mounted in close contact with the pole 112 and to maintain the void (G1).
상기 컨트롤러(400)는 모터를 기동할 시에 회전자가 여자 통전구간(θon-θoff)에 있으면 회전 위치 센서(300)로 감지하는 여자 통전구간(θon-θoff)에 맞춰 고정자 극 여자코일에 전압을 인가하여 기동을 시도하고, 모터를 기동할 시에 회전자가 여자 통전구간(θon-θoff)에 있지 아니하면 마이크로프로세서에서 출력하는 PWM 파형을 이루는 기동 신호에 따라 기동극을 여자하는 동작을 반복하여 회전자가 여자 통전구간(θon-θoff)에 있게 될 시에 기동함을 특징으로 한다.The controller 400 applies a voltage to the stator pole exciting coil according to the energizing section θon-θoff sensed by the rotation position sensor 300 when the rotor is in the energizing section θon-θoff when the motor is started. If the rotor is not in the energizing section (θon-θoff) when the motor is started and the motor is started, it repeats the operation of exciting the starting pole according to the starting signal of the PWM waveform output from the microprocessor. It is characterized in that it starts when the self is in the excitation energization section (θon-θoff).
상기와 같이 구성되는 본 발명은 여자코일에 여자되는 고정자 극 및 고정자 극과 마주하는 회전자 극을 각각 단차에 의해 2단 직경을 갖는 극으로 구성하고, 고정자 극의 볼록극과 회전자 극의 볼록극 간에 형성되는 인덕턴스가 양(+)의 기울기로 증가는 구간에 대응되게 맞춰 고정자 극을 여자할 뿐만 아니라 동시에 고정자 오목극과 회전자 볼록극 간의 공극을 통한 자기 릴럭턴스 댐핑효과로 인덕턴스를 완만하게 변화시켜 토크 리플을 줄이고, 회전자 돌극의 돌출을 최소화하여 진동폭을 저감시키고, 오목극으로 하여금 돌극의 기계적 진동을 최대한 흡수하게 하고, 자기 극호각을 최대화한 극으로 릴럭턴스 토크를 발생시켜 토크 퍼포먼스를 극대화하고, 고정자 여자코일의 여자를 통해 회전자를 회전시킬 시에 전체적인 스위칭 인덕턴스의 손실을 줄여 효율을 향상시킬 수 있다.The present invention constituted as described above comprises a stator pole and a rotor pole facing the stator pole, which are excited by the excitation coil, each having a two-stage diameter by a step, and the convex pole of the stator pole and the convex pole of the rotor pole. The increase in inductance formed between the poles with a positive slope not only excites the stator poles corresponding to the intervals, but also smoothes the inductance due to the magnetic reluctance damping effect through the gap between the stator concave pole and the rotor convex pole. Torque torque by reducing torque ripple, minimizing protrusion of rotor protrusions to reduce vibration width, allowing concave poles to absorb the mechanical vibration of protrusions as much as possible, and generating reluctance torque with poles that maximize magnetic polar angle. To reduce the overall switching inductance when rotating the rotor through the excitation of the stator excitation coil. It can improve the efficiency over.
도 1은 종래 단상 스위치드 릴럭턴스 모터의 단면도.1 is a cross-sectional view of a conventional single phase switched reluctance motor.
도 2는 종래 단상 스위치드 릴럭턴스 모터의 회전자 회전각에 따라 변동하는 인덕턴스(Inductance), 전류(Current) 및 토크(Torque)의 변동을 타임 차트로 도시한 그래프.FIG. 2 is a graph illustrating a time chart showing variation of inductance, current, and torque in accordance with a rotor rotation angle of a conventional single-phase switched reluctance motor. FIG.
도 3은 본 발명의 제1 실시예에 따른 스위치드 릴럭턴스 모터에 있어서, 고정자와 회전자가 결합된 부분의 단면도.3 is a cross-sectional view of a part in which a stator and a rotor are coupled in a switched reluctance motor according to a first embodiment of the present invention;
도 4는 고정자 및 회전자의 분리 단면도.4 is an exploded cross-sectional view of the stator and the rotor.
도 5는 본 발명의 제1 실시예에 따른 스위치드 릴럭턴스 모터의 구성도로서, 회전 위치 센서(300)의 설치위치를 보여주기 위해 상면도로 도시한 도면,5 is a configuration diagram of a switched reluctance motor according to a first embodiment of the present invention, which is shown in a top view to show the installation position of the rotation position sensor 300;
도 6은 회전자의 회전각 변동에 따른 극의 배치를 보여주는 단면도.6 is a cross-sectional view showing the arrangement of the poles according to the rotation angle variation of the rotor.
도 7은 회전자의 회전각 변동에 따른 인덕턴스와 토오크의 그래프.7 is a graph of inductance and torque according to the rotation angle of the rotor.
도 8은 컨트롤러(400)의 회로구성도.8 is a circuit diagram of the controller 400.
도 9는 컨트롤러(400)의 제어에 의한 기동 방법의 순서도.9 is a flowchart illustrating a start method by the control of the controller 400.
도 10은 본 발명의 제2 실시예에 따른 스위치드 릴럭턴스 모터에 있어서, 고정자와 회전자의 결합 단면도.10 is a cross-sectional view of a coupling between a stator and a rotor in a switched reluctance motor according to a second embodiment of the present invention.
도 11은 본 발명의 제3 실시예에 따른 스위치드 릴럭턴스 모터에 있어서, 고정자와 회전자의 결합 단면도.11 is a cross sectional view of a combination of a stator and a rotor in a switched reluctance motor according to a third embodiment of the present invention.
도 12는 본 발명의 제3 실시예에서, 고정자와 회전자의 분리된 상태 단면도.12 is a cross-sectional view of the stator and the rotor separated in the third embodiment of the present invention.
도 13은 본 발명의 제3 실시예에서, 회전자의 위치에 따른 고정자 볼록극과 영구자석 간의 배치 상태 및 회전 위치 센서(300)와 반사판(310) 간의 배치 상태를 보여주는 상면도.FIG. 13 is a top view showing an arrangement state between a stator convex pole and a permanent magnet according to a rotor position and an arrangement state between the rotation position sensor 300 and the reflector 310 in the third embodiment of the present invention.
도 14는 본 발명에 따른 스위치드 릴럭턴스 모터에 있어서 여자코일의 전류 파형을 도시한 그래프.14 is a graph showing the current waveform of the excitation coil in the switched reluctance motor according to the present invention.
본 발명의 실시예를 설명하기에 앞서서 용어를 정의한다.Prior to describing embodiments of the present invention, terms are defined.
정렬(align)은 회전자와 고정자의 극(볼록극 또는 오목극에도 해당됨) 중심이 서로 일치하여 마주하는 면의 면적이 최대가 된 상태이며, 실제로는 고정자 극의 중심에서 소정 범위의 회전각(θ1~θ2) 내에 회전자 극의 중심이 위치한 상태를 정렬된 상태로 한다. 그리고, 정렬된 상태의 회전각 범위를 정렬 회전각(θ1~θ2)이라고 한다.Alignment is a state in which the centers of the faces of the rotor and the stator's poles (even convex or concave poles) coincide with each other to maximize the area of the opposite face. The state where the center of the rotor pole is located in θ1 to θ2) is set to be aligned. The range of rotation angles in the aligned state is referred to as alignment rotation angles θ1 to θ2.
비정렬(unalign)은 회전자와 고정자의 극(볼록극 또는 오목극에도 해당됨) 중심이 서로 일치하지 아니하고, 회전자 극 간의 경계 중심에 고정자의 극 중심이 마주하는 상태이며, 볼록극 간의 비정렬 상태는 회전자의 볼록극 중심이 고정자의 오목극 중심과 마주한 상태를 의미한다.Unaligned is the state where the poles of the rotor and stator (even convex or concave) do not coincide with each other, the pole center of the stator faces the center of the boundary between the rotor poles, and the misalignment between the convex poles. The state means a state in which the convex pole center of the rotor faces the concave pole center of the stator.
인덕턴스 증가 구간(θs~θ1)은 본 발명의 실시예에 있어서, 고정자 볼록극과 회전자 볼록극이 상호 대향하기 시작하는 시점부터 정렬되기 직전까지 회전자의 회전각 구간으로서, 인덕턴스 기울기가 양(+)인 구간으로 나타난다. 이에, 이 구간에서는 고정자 볼록극과 회전자 볼록극 간의 자기 저항이 회전자의 회전에 따라 점차 감소하고, 고정자 극을 여자코일로 여자할 시에 인덕턴스는 점차 증가하여 정토크가 발생한다. 마찬가지로, 고정자 볼록극과 회전자 오목극 간의 자기 저항, 고정자 오목극과 회전자 볼록극 간의 자기 저항, 및 고정자 오목극과 회전자 오목극 간의 자기 저항도 각각 비정렬 상태에서 정렬 상태로 갈수록 감소한다. The inductance increasing period θs to θ1 is a rotation angle section of the rotor from the time when the stator convex pole and the rotor convex pole start to face each other and are aligned, and the inductance slope is positive ( Appears as a +) interval. Therefore, in this section, the magnetic resistance between the stator convex pole and the rotor convex pole gradually decreases as the rotor rotates, and when the stator pole is excited with the excitation coil, the inductance gradually increases to generate static torque. Similarly, the magnetoresistance between the stator convex and the rotor concave, the magnetoresistance between the stator and the rotor convex, and the magnetoresistance between the stator and the rotor concave, respectively, decrease as they go from alignment to alignment. .
인덕턴스 감소 구간(θ2~θ3)은 정렬 회전각(θ1~θ2) 이후에 회전자의 회전각을 변경할 시에 인덕턴스가 감소하게 되는 회전각 구간으로서, 이때 여자코일에 전압을 인가하면 정토크와 반대되는 방향의 부토크가 발생한다. 회전자의 회전 구동을 위해서 인덕턴스 감소 구간에는 정렬 회전각과 마찬가지로 여자코일에 전압을 인가하지 않는다.The inductance reduction section θ2 to θ3 is a rotation angle section in which the inductance decreases when the rotor rotation angle is changed after the alignment rotation angle θ1 to θ2. Negative torque in the direction of rotation is generated. In order to drive the rotation of the rotor, the voltage is not applied to the excitation coil in the inductance reduction section like the alignment rotation angle.
인덕턴스 증가 시작점(θs)은 인덕턴스 증가 구간(θs~θ1)이 시작하는 회전각으로서, 고정자 볼록극과 회전자 볼록극이 상호 대향하기 시작하는 시점이다. The inductance increase start point θs is a rotation angle at which the inductance increase periods θs to θ1 start, and is a time point at which the stator convex pole and the rotor convex pole start to face each other.
인덕턴스 증가 종료점(θ1)은 인덕턴스 증가 구간(θs~θ1)이 끝나는 회전각으로서, 정렬되기 직전의 위치에 해당된다.The inductance increase end point θ1 is a rotation angle at which the inductance increase periods θs to θ1 end, and corresponds to a position immediately before alignment.
턴온 회전각(θon)은 여자코일에 전기를 공급하기 시작하는 회전각으로서, 인덕턴스 증가 시작점(θs)에 맞출 수도 있지만 유효 토크각을 최대화하기 위해서 일반적으로 인덕턴스 증가 시작점(θs)보다 앞서도록 설정한다. 이에, 일반적으로 소정의 전압에서 여자코일에 흐르는 전류가 충분히 증가하면 인덕턴스 증가 구간에서 더이상 전류가 상승하지 못하고 평형을 이루는 정상 평형 전류(Flat-Topped Phase Current)가 흐르게 된다. 그런데, 턴온 회전각(θon)은 인덕턴스 증가 시작점(θs)보다 앞서게 설정하더라도 초기 전류가 과도하게 상승하지 않게 하거나 또는 회전자 돌극이 이전 고정자 돌극의 역 릴럭턴스 토크에 영향받지 않게 하는 범위로 설정한다. 턴온 회전각(θon)을 인덕턴스 증가 구간 뒤로 하게 되면 토크를 감소시키고 속도를 제어할 수 있다.The turn-on rotation angle θon is a rotation angle starting to supply electricity to the excitation coil, but may be adjusted to the inductance increase starting point θs but is generally set to be ahead of the inductance increase starting point θs to maximize the effective torque angle. . Therefore, in general, when the current flowing through the excitation coil at a predetermined voltage is sufficiently increased, the current does not increase any more in the inductance increase period and a flat-topped phase current flows to be balanced. However, the turn-on rotation angle θon is set in a range such that the initial current does not excessively increase even if it is set before the inductance increase start point θ s or the rotor protrusion is not affected by the reverse reluctance torque of the previous stator protrusion. . If the turn-on rotation angle θon is behind the inductance increase section, the torque can be reduced and the speed can be controlled.
턴오프 회전각(θoff)은 인덕턴스 증가 종료점(θ1)에 맞추어 여자코일에 공급하던 전기를 끊는 시점이며, 일반적으로 인덕턴스 증가 종료점(θ1)의 이전에 맞춘다. 이러한 턴오프 회전각은 일반적으로 여자코일에 축적된 자기유도 전기가 적어도 정렬 회전각(θ1~θ2)의 끝나는 시점 이전에 소멸되게 하여 역토크 영향을 받지 않게 하기 위해서 회전자 위치 검출 인코더에 의하거나 아니면 프로그램적으로 설정된다.The turn-off rotation angle [theta] off is a time point at which electricity supplied to the excitation coil is cut off in accordance with the inductance increase end point [theta] 1. In general, the turn-off rotation angle [theta] off is set before the inductance increase end point [theta] 1. This turn-off rotation angle is generally determined by the rotor position detection encoder in order to cause the magnetic induction electricity accumulated in the excitation coil to be dissipated at least before the end of the alignment rotation angles θ1 to θ2 so that the reverse torque is not affected. Otherwise, it is set programmatically.
여자 통전구간(θon-θoff)은 여자코일에 전압을 인가하여 전기를 공급하는 회전각 범위로서, 인덕턴스 증가 구간(θs~θ1)과 동일하게 할 수도 있으나, 상기한 바와 같이 일반적으로 인덕턴스 증가 구간에 정상 평형 전류(Flat-Topped Phase Current)를 흐르게 하고 여자코일의 소자(消磁, demagnetization) 특성을 고려하여 인덕턴스 증가 구간(θs~θ1)과는 약간 차이 나게 한다. 즉, 실질적인 여자 통전구간은 정토크를 발생시키기 위해 인덕턴스 증가 구간에 대응되게 미리 또는 프로그램적으로 설정한 구간으로 정의할 수 있다.The excitation conduction section (θon-θoff) is a rotation angle range for supplying electricity by applying a voltage to the excitation coil, and may be the same as the inductance increasing section θs to θ1, but as described above, in general, A flat-topped phase current is allowed to flow and it is slightly different from the inductance increase period (θs ~ θ1) in consideration of the demagnetization characteristics of the excitation coil. In other words, the actual excitation energization section may be defined as a section that is set in advance or programmatically to correspond to the inductance increase section to generate the positive torque.
자속 통로는 자기력선속이 공극을 사이에 두고 고정자와 회전자 간을 일주하는 닫힌 회로이며, 본 발명에서는 폐경로의 일부분을 나타내는 용어로도 사용한다. 예를 들면, 철심에 의해 형성되는 서로 다른 고정자 극 간의 자속 통로와 서로 다른 회전자 극 간의 자속 통로가 공극에 의해 서로 이어져 일주하는 폐경로를 구성한다고 설명한다. 누설자속이 지나가는 자속 통로도 존재하지만 대부분의 자기력선속이 지나는 경로를 지칭한다.The magnetic flux path is a closed circuit in which the magnetic flux flux circulates between the stator and the rotor with a gap between them. In the present invention, the magnetic flux path is also used as a term for a part of a closed path. For example, it will be explained that magnetic flux paths between different stator poles formed by iron cores and magnetic flux paths between different rotor poles constitute a circumferential path that is connected to each other by voids. There is also a magnetic flux path through which leakage magnetic flux passes, but it refers to a path through which most magnetic flux fluxes pass.
이하, 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 당해 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명한다. Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described to be easily carried out by those of ordinary skill in the art.
도 3 내지 도 9는 본 발명의 제1 실시예에 따른 스위치드 릴럭턴스 모터를 설명하기 위한 도면이다.3 to 9 are diagrams for explaining a switched reluctance motor according to a first embodiment of the present invention.
도 3은 고정자(200)와 회전자(100)가 결합된 부분의 단면도이고, 도 4는 고정자(200) 및 회전자(100)의 분리 단면도이며, 도 5는 본 발명의 실시예에 따른 스위치드 릴럭턴스 모터의 구성도로서 회전 위치 센서(300)의 설치위치를 보여주기 위해 상면도로 도시한 도면이다.3 is a cross-sectional view of a portion where the stator 200 and the rotor 100 are coupled, FIG. 4 is an exploded cross-sectional view of the stator 200 and the rotor 100, and FIG. 5 is switched according to an embodiment of the present invention. As a configuration diagram of the reluctance motor, the top view is shown to show the installation position of the rotation position sensor 300.
도 6은 회전자(100)의 회전각 변동에 따른 극의 배치를 보여주는 단면도이고, 도 7은 회전자의 회전각 변동에 따른 인덕턴스의 그래프이다.6 is a cross-sectional view showing the arrangement of the poles according to the rotation angle variation of the rotor 100, Figure 7 is a graph of the inductance according to the rotation angle variation of the rotor.
먼저, 도 5를 참조하면, 본 발명의 실시예에 따른 스위치드 릴럭턴스 모터는 회전자(100), 고정자(200), 회전 위치 센서(300) 및 컨트롤러(400)를 포함하여 구성되며, 회전자가 외륜형이고 1상 전기를 공급받으며 외륜 회전자(outer rotor) 타입을 갖는 단상 스위치드 릴럭턴스 모터로 구성된다. First, referring to FIG. 5, a switched reluctance motor according to an embodiment of the present invention includes a rotor 100, a stator 200, a rotation position sensor 300, and a controller 400. It consists of a single-phase switched reluctance motor with outer ring type, one-phase electric power and having an outer rotor type.
상기 회전자(100)는 내부가 비어있는 링 형상으로 구성되며 고정자(200)의 중심(230)을 지나는 선상의 회전축을 중심으로 회전할 수 있게 되어 있고, 고정자(200)의 중심을 기준으로 하는 원을 그리는 내면을 구비한다. 그리고, 상기 회전자(100)의 내면에는 원주방향을 따라 등 방사각으로 배치된 복수의 회전자 극(110)이 형성되어 있고, 회전자 극(110) 간의 경계에 요홈 형상의 피치 홀(120)을 구비하여서, 복수의 회전자 극(110)을 피치 홀(120)에 의해 구분할 수 있다.The rotor 100 is configured in a ring shape with an empty inside, and is capable of rotating about a linear axis of rotation passing through the center 230 of the stator 200, and based on the center of the stator 200. It has an inner surface for drawing a circle. In addition, a plurality of rotor poles 110 are disposed on the inner surface of the rotor 100 at equal radial angles along the circumferential direction, and pitch holes 120 having grooves are formed at the boundary between the rotor poles 110. ), The plurality of rotor poles 110 can be divided by the pitch holes 120.
여기서, 상기 회전자(100)은 일반적인 모터의 회전자처럼 적어도 한 장 이상의 전기 강판을 적층하여 조립한 강자성체로 구성할 수 있고, 예를 들어 순철 또는 규소강판으로 구성하거나 아니면 순철 또는 규소강판을 포함한 합금으로 구성할 수 있다. 이에 따라, 회전자 극(110) 간의 자속 통로가 피치 홀(120)를 외측으로 우회하여 형성된다. 물론, 피치 홀(120)을 경계로 상호 인접하는 회전자 극(110) 간에 피치 홀(120)을 통과하는 자속 통로도 존재하지만, 피치 홀(120)에 의한 공기층은 자기저항이 상대적으로 매우 크므로, 강자성체로 구성된 몸체를 통해서 자속 통로가 형성되는 것으로 볼 수 있다.Here, the rotor 100 may be composed of a ferromagnetic material assembled by stacking at least one or more electrical steel sheets, like a rotor of a general motor, for example, consisting of pure iron or silicon steel sheet or pure iron or silicon steel sheet It can consist of an alloy. Accordingly, the magnetic flux passage between the rotor poles 110 is formed by bypassing the pitch hole 120 to the outside. Of course, there is also a magnetic flux path passing through the pitch hole 120 between the rotor poles 110 adjacent to each other with the pitch hole 120 as a boundary, but the air layer by the pitch hole 120 has a relatively high magnetic resistance. As such, it can be seen that the magnetic flux passage is formed through a body made of ferromagnetic material.
본 발명에 따르면, 각각의 회전자 극(110)은 내면에 단차(113)가 형성되어 높이가 다른 회전자 볼록극(111)과 회전자 오목극(112)으로 양분된다. 즉, 고정자 중심(230)을 기준으로 반경이 상이한 동심원 상에 회전자 볼록극(111)과 회전자 오목극(112)이 형성되어서, 회전자(100)의 내면은 원주방향을 따라 회전자 볼록극(111)과 회전자 오목극(112)이 서로 번갈아가며 배치된다.According to the present invention, each rotor pole 110 is divided into a rotor convex pole 111 and a rotor concave pole 112 having different heights by forming a step 113 on an inner surface thereof. That is, the rotor convex pole 111 and the rotor concave pole 112 are formed on concentric circles with different radii relative to the stator center 230, so that the inner surface of the rotor 100 is convex along the circumferential direction. The poles 111 and the rotor concave poles 112 are alternately arranged.
이때, 인접하는 회전자 극(110)의 사이에 형성되는 피치 홀(120)은 어느 한쪽 회전자 극의 회전자 오목극(112)과 다른 한쪽 회전자 극의 회전자 볼록극 사이의 경계를 이루어서, 회전자(100)의 회전시에 후술하는 고정자 볼록극(211)과의 인덕턴스 변동이 피치 홀(120)에서 뚜렸하게 나타나게 한다. 즉, 피치 홀(120)을 설치하지 않는 경우보다 인덕턴스 변동을 크게 하여서, 릴럭턴스 토크를 증대시킨다.At this time, the pitch hole 120 formed between the adjacent rotor poles 110 forms a boundary between the rotor concave pole 112 of one rotor pole and the rotor convex pole of the other rotor pole. When the rotor 100 rotates, the inductance fluctuation with the stator convex pole 211 to be described later becomes apparent in the pitch hole 120. That is, the inductance fluctuation is made larger than when the pitch hole 120 is not provided, thereby increasing the reluctance torque.
본 발명의 실시예에서는 회전자(100)가 4극 구조이므로, 4개의 회전자 극(110)이 원주방향을 따라 등간격으로 배치되고, 4개의 피치 홀(120)도 등간격으로 조성되며, 회전자 극(110)의 극호각(arc angle, βr)은 피치 홀(120)의 입구의 원주 방향 폭(D1)에 의해서 2π/4보다 약간 작게 된다. 그리고, 상기 단차(113)가 회전자 극(110)의 내면 중심에 형성되어서, 회전자 극(110)을 회전자 볼록극(111)과 회전자 오목극(112)으로 이등분한다.In the embodiment of the present invention, since the rotor 100 has a four-pole structure, four rotor poles 110 are disposed at equal intervals along the circumferential direction, and four pitch holes 120 are also formed at equal intervals. The arc angle β r of the rotor pole 110 is slightly smaller than 2π / 4 by the circumferential width D1 of the inlet of the pitch hole 120. In addition, the step 113 is formed at the center of the inner surface of the rotor pole 110, thereby dividing the rotor pole 110 into the rotor convex pole 111 and the rotor concave pole 112.
한편, 하기에서 도 7(c)을 먼저 참조하면, 단상 구조의 모터에 의해 인덕턴스 증가 구간이 간헐적으로 나타나므로, 정토크 구간도 간헐적으로 발생하여 정토크 구간 간의 사이는 비여자 통전구간이 되어 토크가 발생하지 아니한다. 이에, 상기 회전자(100)는 회전 관성력을 높여 부하 토크 리플을 줄이기 위한 플라이휠(flywhee)을 장착하거나 또는 외륜 회전자 자체의 관성력을 높이기 위한 중량을 크게 하는 것이 좋다.On the other hand, referring to Figure 7 (c) below, since the inductance increase interval is intermittently appeared by the motor of the single-phase structure, the constant torque section is also intermittently generated between the non-excited conduction section torque Should not occur. Thus, the rotor 100 may be equipped with a flywheel (flywhee) for reducing the load torque ripple by increasing the rotational inertia or increase the weight for increasing the inertia of the outer ring rotor itself.
상기 고정자(200)는 상기 회전자(100)의 내부에 고정 설치되며, 상기 회전자(100)의 내면과 마주하는 외면에 원주방향을 따라 배치되는 복수의 고정자 극(210)을 구비한다. 본 발명의 실시예에서 고정자 극(210)은 회전자(100)의 회전축 선상에 있는 중심을 기준점으로 하여 방사상으로 돌출되게 형성되되, 상기 회전자(100)의 내면과 공극(air gap)을 사이에 두고 마주하는 외면이 중심을 기준으로 하는 원호를 그리게 한다. The stator 200 is fixedly installed in the rotor 100 and has a plurality of stator poles 210 disposed along the circumferential direction on an outer surface facing the inner surface of the rotor 100. In the exemplary embodiment of the present invention, the stator pole 210 is formed to protrude radially from the center of the rotor 100 on the rotation axis line as a reference point, between the inner surface and the air gap of the rotor 100. The outer surface facing to the center draws an arc with respect to the center.
고정자(200)는 회전하지 않도록 고정설치되는 구성요소로서, 고정자의 자기코어가 정력 출력에서 자속 포화되지 않을 정도의 자속 통로와 부피를 갖추면 되므로, 필요 이상의 부피에 해당되는 중심부위에 구멍(230)을 형성하고, 이 구멍(230)을 이용하여 회전하지 않도록 고정설치한다.The stator 200 is a component that is fixedly installed so as not to rotate. Since the magnetic core of the stator has a magnetic flux passage and a volume such that the magnetic core does not saturate at the energetic output, the hole 230 is formed on the center corresponding to the volume more than necessary. It forms and fixed so that it may not rotate using this hole 230. FIG.
그리고, 고정자 극(210)은 여자코일(214)이 권선되어 있어서 여자코일(214)에 전기를 공급함에 따라 여자되어 자성을 띄게 되며, 쌍으로 배치되어 동일한 쌍에 속하는 고정자 극(210)이 서로 다른 회전자 극(110)에 하나씩 동시에 정렬(align)된다. 따라서, 적어도 한쌍의 고정자 극(210)이 상기 고정자(200)에 구비되며, 도 3 내지 도 5에 도시한 모터에는 1쌍의 고정자 극(210)만 구비되어 있다. 이때, 고정자 극(210)은 중심(230)을 기준으로 대칭구조를 갖게 되므로, 고정자 극(210) 간에 180°의 회전각 차이가 난다. In addition, the stator poles 210 are excited by the excitation coil 214 is wound to supply electricity to the excitation coil 214, it becomes magnetic, it is arranged in pairs stator poles 210 belonging to the same pair each other The other rotor poles 110 are aligned at the same time one by one. Accordingly, at least one pair of stator poles 210 is provided in the stator 200, and only one pair of stator poles 210 is provided in the motor shown in FIGS. 3 to 5. At this time, since the stator pole 210 has a symmetrical structure with respect to the center 230, a rotation angle difference of 180 ° occurs between the stator poles 210.
본 발명의 실시예에 따르면, 고정자는 회전자 극(110)의 개수만큼 등 방사각(원주방향으로 등간격)으로 배치한 극(210, 220)을 구비하되, 회전자의 회전축 선상에 있는 중심점(230)을 기준으로 대칭인 한쌍의 극을 기동극 여자코일(221)을 권선한 기동극(220)으로 사용하고, 나머지 극을 상기한 고정자 극(210)으로 사용한다. 따라서, n을 자연수라 하고 고정자 극(210)의 개수를 2n이라 하면, 회전자 극(110)의 개수는 2n+2가 된다. 도 3 내지 도 5에 도시한 바에 따르면 n=1이고, 고정자 극(210)은 2x1=2개이며, 회전자 극(110)은 2x1+2=4개이다.According to an embodiment of the present invention, the stator includes poles 210 and 220 arranged at equal radial angles (equal intervals in the circumferential direction) as many as the number of the rotor poles 110, but the center point is located along the rotation axis of the rotor. A pair of poles symmetrical with reference to 230 is used as the starting pole 220 wound around the moving pole excitation coil 221, and the remaining pole is used as the stator pole 210 described above. Therefore, if n is a natural number and the number of stator poles 210 is 2n, the number of rotor poles 110 becomes 2n + 2. 3 to 5, n = 1, the number of stator poles 210 is 2x1 = 2, and the number of rotor poles 110 is 2x1 + 2 = 4.
그리고, 고정자(200)는 회전자(100)처럼 통상의 모터 코어 재질 및 적층구조를 갖게 되어서, 고정자 극(210) 간에 자속 통로를 형성하고, 기동극(220) 간에도 자속 통로를 형성한다.The stator 200 has a conventional motor core material and a laminated structure like the rotor 100 to form a magnetic flux path between the stator poles 210 and a magnetic flux path between the moving poles 220.
본 발명의 실시예에 따르면, 단상 스위치드 릴럭턴스 모터로 구성되므로, 쌍으로 배치되는 모든 고정자 극(210)이 회전자 극(110)에 하나씩 동시 정렬되고 비정렬될 시에도 동시에 비정렬된다. 또한, 각각의 고정자 극(210)에 권선된 여자코일(214)에 전압을 인가할 시에도 동시에 전압을 인가한다.According to an embodiment of the present invention, since it consists of a single-phase switched reluctance motor, all stator poles 210 arranged in pairs are simultaneously misaligned even when they are simultaneously aligned and unaligned with the rotor poles 110. In addition, the voltage is applied at the same time when the voltage is applied to the excitation coil 214 wound on each stator pole (210).
여기서, 쌍으로 구비되는 기동극(220)은 고정자 극(210)이 회전자 극(110)에 정렬될 시에, 고정자 극(210)에 정렬되지 아니하고 남는 2개의 회전자 극(110)의 단차(113)와 하나씩 일대일로 대향한다.Here, the moving poles 220 provided in pairs are steps of two rotor poles 110 that are left unaligned with the stator poles 210 when the stator poles 210 are aligned with the rotor poles 110. Face one-on-one with (113) one by one.
상기 고정자 극(210)은 회전자 극(110)과 마찬가지로 단차(213)가 형성되어 높이가 다른 고정자 볼록극(211)과 고정자 오목극(212)으로 양분되며, 단차(213)가 고정자 극(210)의 중간에 형성되어 고정자 볼록극(211)과 고정자 오목극(212)으로 이등분된다. 이때, 고정자 극(210)의 단차(213)는 고정자 극(110)이 회전자 극(110)에 정렬될 시에 단차(213)의 형성방향이 회전자 극(110) 단차(113)과 동일하여서, 공극을 사이에 두고 회전자 볼록극(111)과 고정자 오목극(212)이 마주하고 회전자 오목극(112)과 고정자 볼록극(211)이 마주하게 한다.Like the rotor pole 110, the stator pole 210 is divided into a stator convex pole 211 and a stator concave pole 212 having different heights, and the step 213 is a stator pole ( It is formed in the middle of the 210 is divided into a stator convex pole 211 and a stator concave pole (212). At this time, the step 213 of the stator pole 210 has the same direction as the rotor pole 110 step 113 when the stator pole 110 is aligned with the rotor pole 110. Thus, the rotor convex pole 111 and the stator concave pole 212 face each other with the gap between them, and the rotor concave pole 112 and the stator convex pole 211 face each other.
도 3 및 도 4에 도시한 실시예에 따르면, 고정자 극(210)의 극호각(βs)이 회전자 극(110)의 극호각(βr)과 동일하지만, 회전자 극(110)의 극호각(βr)보다 약간 크게 하여서, 회전자 극(110)을 고정자 극(210)에 정렬할 시에 회전자 볼록극(111)의 일부가 고정자 볼록극(211)과 마주하거나 아니면 적어도 근접하게 할 수 있으며, 이 경우에는 정렬 상태에서도 고정자 극(210)을 여자하여 모터를 기동시킬 수 있는 상태가 된다.According to the embodiment shown in FIGS. 3 and 4, the polar angle β s of the stator pole 210 is the same as the polar angle β r of the rotor pole 110, but the Slightly larger than the polar angle β r , a portion of the rotor convex 111 faces or at least closes to the stator convex pole 211 when aligning the rotor pole 110 to the stator pole 210. In this case, even in an aligned state, the stator poles 210 can be excited to start a motor.
상기 기동극(220)은 단차가 형성되지 아니하고 고정자 극(210)의 극호각(βs)보다는 작은 극호각을 갖추되, 고정자 극(210)이 회전자 극(110)에 정렬될 시에, 마주하는 회전자 극(110)의 단차(113)에 이어지는 회전자 볼록극(111)의 일부 및 회전자 오목극(112)의 일부와 마주할 수 있는 극호각을 갖춘다. 이와 같이 형성되는 기동극(220)은 기동극 여자코일(221)로 여자될 시에 회전자 볼록극(111)과 정렬하려는 릴럭턴스 토크를 발생시킨다.The movable pole 220 has a polar angle smaller than the polar angle β s of the stator pole 210 without forming a step, and when the stator pole 210 is aligned with the rotor pole 110, It has a polar angle that can face a portion of the rotor convex pole 111 and a portion of the rotor concave pole 112 that follow the step 113 of the opposite rotor pole 110. The starting pole 220 formed as described above generates a reluctance torque to be aligned with the rotor convex pole 111 when excited by the starting pole exciting coil 221.
상기 회전자 극(110)과 고정자 극(210)에 형성한 단차(113, 213) 및 상기 회전자 극(110)에 형성한 피치 홀(120)에 대해서 도 4를 참조하여 더욱 상세하게 설명한다. Steps 113 and 213 formed in the rotor pole 110 and the stator pole 210 and the pitch holes 120 formed in the rotor pole 110 will be described in more detail with reference to FIG. 4. .
본 발명의 실시예에서는 회전자 극(110)의 단차(113)의 높이(H) 및 고정자 극(210)의 단차(213)의 높이(h)는 회전자 볼록극(111)과 고정자 볼록극(211)이 정렬될 시의 공극(air gap)의 1~5배로 하였다. 이는, 고정자 극(210)의 여자코일(214)에 전기를 공급할 시에 고정자 볼록극(211)과 마찬가지로 여자되는 고정자 오목극(212)의 영향 및 고정자 극(210)과 마주하는 2단 구조의 회전자 극(110)의 영향을 반영하여 충분한 토크를 발생시키면서 토크 리플을 줄이기 위함이다. 이에 대해서는 하기에서 도 6 및 도 7을 참조하여 설명한다.In the embodiment of the present invention, the height H of the step 113 of the rotor pole 110 and the height h of the step 213 of the stator pole 210 are the rotor convex pole 111 and the stator convex pole. It was set to 1 to 5 times the air gap when (211) was aligned. This is due to the influence of the stator concave pole 212 and the two-stage structure facing the stator pole 210 when the electricity is supplied to the excitation coil 214 of the stator pole 210 like the stator convex pole 211. This is to reduce the torque ripple while generating sufficient torque reflecting the influence of the rotor pole (110). This will be described below with reference to FIGS. 6 and 7.
여기서, 회전자 극(110)의 단차(113)의 높이(H) 및 고정자 극(210)의 단차(213)의 높이(h)는 서로 상이한 값을 갖게 하여도 되지만, 동일한 값을 갖게 할 수도 있다.Here, the height H of the step 113 of the rotor pole 110 and the height h of the step 213 of the stator pole 210 may have different values, but may have the same value. have.
그리고, 회전자 극(110)의 단차(113)는 회전자 볼록극(111)에서 회전자 오목극(112)을 향해 하향 경사지게 형성되고, 고정자 극(210)의 단차(213)도 고정자 볼록극(211)에서 고정자 오목극(212)을 향해 하향 경사지게 형성된다. 본 발명의 실시예에서는 이때의 하향 경사각(R)을 30°~60°으로 하였다. 하향 경사각(R)이 30°보다 작을 경우, 단차(113, 213)의 원주방향 폭(D, d)이 지나치게 커져서 볼록극(111, 211)과 오목극(112, 113)의 면적이 줄어들고, 하향 경사각(R)이 60°보다 클 경우, 고정자 볼록극(211)과 회전자 볼록극(111)이 턴온 회전각(θs)에서 역토크의 우려가 있을 뿐만 아니라 풍손도 증가하므로, 상기한 각도가 바람직하다. In addition, the step 113 of the rotor pole 110 is formed to be inclined downward from the rotor convex pole 111 toward the rotor concave pole 112, and the step 213 of the stator pole 210 is also stator convex pole. It is formed inclined downward toward the stator concave pole 212 at (211). In the Example of this invention, the downward inclination-angle R at this time was 30 degrees-60 degrees. When the downward inclination angle R is smaller than 30 °, the circumferential widths D and d of the steps 113 and 213 become too large to reduce the areas of the convex poles 111 and 211 and the concave poles 112 and 113, When the downward inclination angle R is larger than 60 °, the stator convex pole 211 and the rotor convex pole 111 may not only cause reverse torque at the turn-on rotation angle θs but also increase windage loss. Is preferred.
그리고, 회전자 극(110)의 단차(113)의 경사각(R)과 고정자 극(210)의 단차(213)의 경사각(r)을 동일하게 하여서, 회전자 극(110)을 고정자 극(210)에 정렬할 시에 단차(113, 213) 간에 평행을 이루게 하는 것이 좋다.The inclination angle R of the step 113 of the rotor pole 110 and the inclination angle r of the step 213 of the stator pole 210 are the same, so that the stator pole 210 of the stator pole 210 is the same. It is good to make parallel between the steps (113, 213) when aligning.
상기 피치 홀(120)의 입구의 원주방향 폭(D1)은 회전자 볼록극(111) 및 회전자 오목극(112)에 비해 상대적으로 매우 작게 형성한다. 이에 따라, 고정자 볼록극(211)이 어느 하나의 회전자 극(110)의 회전자 볼록극(111)과 마주하기 시작할 시에, 고정자 오목극(212)이 피치 홀(120)을 경계로 인접하는 다른 하나의 회전자 극(110)의 회전자 볼록극(111)과 정렬된 상태에서 비정렬된 상태로 전환된다.The circumferential width D1 of the inlet of the pitch hole 120 is relatively small compared to the rotor convex pole 111 and the rotor concave pole 112. Accordingly, when the stator convex pole 211 begins to face the rotor convex pole 111 of any one rotor pole 110, the stator concave pole 212 is adjacent to the pitch hole 120 bordering. It is switched to an unaligned state in a state aligned with the rotor convex pole 111 of the other rotor pole (110).
결국, 고정자 볼록극(211)이 어느 하나의 회전자 극(110)의 회전자 볼록극(111)과 정렬하기 위해 마주하는 면의 면적이 증가할 시에, 고정자 오목극(212)이 피치 홀(120)을 경계로 인접하는 다른 하나의 회전자 극(110)의 회전자 볼록극(111)과 마주하는 면의 면적은 감소하게 된다.As a result, when the area of the face facing the stator convex pole 211 to align with the rotor convex pole 111 of any one of the rotor poles 110 increases, the stator concave pole 212 becomes a pitch hole. The area of the surface facing the rotor convex pole 111 of the other rotor pole 110 adjacent to 120 is reduced.
그리고, 고정자 볼록극(211)이 어느 하나의 회전자 극(110)의 회전자 볼록극(111)에 정렬될 시에, 고정자 극(210)의 단차(213)가 피치 홀(120)과 마주하고, 고정자 오목극(212)은 피치 홀(120)을 경계로 인접하는 다른 하나의 회전자 극(110)의 회전자 오목극(112)에 정렬된다.Then, when the stator convex pole 211 is aligned with the rotor convex pole 111 of any one rotor pole 110, the step 213 of the stator pole 210 faces the pitch hole 120. The stator concave pole 212 is aligned with the rotor concave pole 112 of the other rotor pole 110 adjacent to the pitch hole 120.
바람직하게는 상기 피치 홀(120)의 입구의 원주방향 폭(D1)은 회전자 극(110)의 단차(113)의 원주방향 폭(D)으로 하는 것이고, 회전자 극(110)의 단차(113)의 원주방향 폭(D)도 고정자 극(210)의 단차(213)의 원주방향 폭(d)으로 하는 것이다.Preferably, the circumferential width D1 of the inlet of the pitch hole 120 is the circumferential width D of the step 113 of the rotor pole 110, and the step of the rotor pole 110 ( The circumferential width D of 113 is also set to the circumferential width d of the step 213 of the stator pole 210.
이와 같이 회전자(100) 및 고정자(200)를 구성함으로써, 여자코일에 의해 고정자 볼록극(211)과 고정자 오목극(212)이 동시에 여자된다. 이에 따라, 고정자 볼록극(211)과 회전자 볼록극(111) 간의 자기 저항이 점차 감소하는 중에, 고정자 오목극(212)을 통한 자기 저항은 점차 증가하여서, 자기 저항의 변동 폭이 감소한다. 결국, 토크 리플을 줄일 수 있다.By configuring the rotor 100 and the stator 200 in this manner, the stator convex pole 211 and the stator concave pole 212 are simultaneously excited by the excitation coil. Accordingly, while the magnetoresistance between the stator convex pole 211 and the rotor convex pole 111 gradually decreases, the magnetoresistance through the stator concave pole 212 gradually increases, so that the variation in the magnetic resistance decreases. As a result, torque ripple can be reduced.
도 6 및 도 7을 참조하여 상세하게 설명한다.It demonstrates in detail with reference to FIG. 6 and FIG.
도 6(a)는 회전자(100)가 턴온 회전각(θs)의 위치에 있는 상태이다. 즉, 회전자 볼록극(111)이 고정자 볼록극(211)과 마주하기 시작하는 시점의 상태이다.FIG. 6A illustrates a state in which the rotor 100 is at a turn-on rotation angle θs. That is, it is a state at which the rotor convex pole 111 starts to face the stator convex pole 211.
도 6(b)는 인덕턴스 증가 시작점(θs)에서 회전자를 회전시켜 회전자 볼록극(111)과 고정자 볼록극(211) 간의 마주하는 면의 면적을 넓히는 중의 상태이다. 즉, 인덕턴스 증가 구간(θs~θ1) 내에 있는 상태이다.Figure 6 (b) is a state of widening the area of the facing surfaces between the rotating rotor from the start point increase inductance (θs) rotor convex pole 111 and the stator projection poles 211. That is, it is in the inductance increase period (theta) s-(theta) 1.
도 6(c)는 회전자를 더욱 회전시켜 회전자 볼록극(111)을 고정자 볼록극(211)에 정렬시킨 상태이다. 즉, 회전자가 정렬 회전각(θ1~θ2)에 놓였을 때의 상태이다.6C shows a state in which the rotor convex pole 111 is aligned with the stator convex pole 211 by further rotating the rotor. That is, this is a state when the rotor is placed at the alignment rotation angles θ1 to θ2.
도 6(d)은 회전자 볼록극(111)과 고정자 볼록극(211)이 정렬된 상태에서 회전자를 회전시켜 비정렬(unalign) 상태로 전환되는 시점이다. 즉, 인덕턴스 감소 구간(θ2~θ3)에 놓인 상태이다.FIG. 6 (d) illustrates a point in which the rotor is rotated in the state where the rotor convex pole 111 and the stator convex pole 211 are aligned to be switched to an unaligned state. That is, it is in the state in which the inductance reduction periods θ2 to θ3 are present.
또한, 도 6은 고정자 볼록극(211)이 회전자 볼록극(111)과 마주할 시의 제1 공극(G1), 고정자 볼록극(211)이 회전자 오목극(111)과 마주할 시의 제2 공극(G2), 고정자 오목극(212)이 회전자 볼록극(111)과 마주할 시의 제3 공극(G3) 및 고정자 오목극(212)이 회전자 오목극(112)과 마주할 시의 제4 공극(G4)도 보여준다.6 shows the first gap G1 when the stator convex pole 211 faces the rotor convex pole 111, and when the stator convex pole 211 faces the rotor concave pole 111. The third void G3 and the stator recess 212 when the second void G2 and the stator recess 212 face the rotor convex 111 may face the rotor recess 112. The fourth void G4 of the poem is also shown.
이와 같이 회전자를 반시계방향으로 회전시킴에 따라 고정자 볼록극(211)과 회전자 볼록극(111) 간에 형성되는 인덕턴스 파형은 도 7(a)에 도시한 바와 같이 인덕턴스 증가 시작점(θs)에서 시작하여 인덕턴스 증가 구간(θs-θ1) 동안 양(+)의 기울기로 증가하고, 정렬 회전각(θ1-θ2)에서 최대점(L11)으로 정체되고, 이후, 비정렬 상태로 전환되는 중에 부(-)의 기울기로 감소하여 비정렬 상태에서 최저점(L12)에 이른다. 그리고, 고정자 볼록극(211)과 회전자 볼록극(111)이 비정렬된 상태에서 인덕턴스 증가 시작점(θs)까지는 최저점(L12)을 유지하며, 이후 동일한 파형이 주기적으로 반복된다. 반복 주기는 회전자가 4극 구조이므로 전기각은 90°이다.As the rotor is rotated in the counterclockwise direction, the inductance waveform formed between the stator convex pole 211 and the rotor convex pole 111 is shown at the inductance increase starting point θ s as shown in FIG. Starting with an inclination of positive (+) during the inductance increasing period θs-θ1, stagnating to the maximum point L11 at the alignment rotation angle θ1-θ2, and then being negative during the transition to the unaligned state. It decreases with the slope of-) and reaches the lowest point (L12) in the unaligned state. In addition, while the stator convex pole 211 and the rotor convex pole 111 are in an unaligned state, the lowest point L12 is maintained until the inductance increase start point θ s, and then the same waveform is periodically repeated. The repetition period is 90 ° because the rotor is a 4-pole structure.
여기서, 고정자 볼록극(211)과 회전자 볼록극(111) 간에 형성되는 인덕턴스에 있어서, 최대점(L11)은 제1 공극(G1)의 크기에 좌우되고, 최저점(L12)은 제2 공극(G2)의 크기에 좌우된다. 즉, 최대점과 최저점의 차이로 나타나는 인덕턴스 파형의 진폭은 회전자 극(110)의 단차(113)의 높이(H)에 의해서 결정되며, 본 발명의 실시예에 따르면, 회전자 극(110)의 단차(113)의 높이(H)를 제1 공극(G1)의 1~5배로 하므로, 진폭이 종래기술에 비해 상대적으로 작다.Here, in the inductance formed between the stator convex pole 211 and the rotor convex pole 111, the maximum point L11 depends on the size of the first gap G1, and the lowest point L12 is the second gap ( Depends on the size of G2). That is, the amplitude of the inductance waveform represented by the difference between the maximum point and the lowest point is determined by the height H of the step 113 of the rotor pole 110. According to an embodiment of the present invention, the rotor pole 110 Since the height H of the step 113 is 1 to 5 times the first gap G1, the amplitude is relatively small compared with the prior art.
아울러, 본 발명에 따르면 회전자 극(110)이 2단 직경의 단면을 갖추어 상기 고정자 볼록극(211)과 동시에 여자되는 고정자 오목극(212)이 존재한다. In addition, according to the present invention, there is a stator concave pole 212 having the rotor pole 110 having a cross section having a two-stage diameter and simultaneously excited with the stator convex pole 211.
도 6을 다시 참조하면, 고정자 오목극(212)과 회전자 볼록극(111) 간의 마주하는 면의 면적은 회전자 볼록극(111)과 고정자 볼록극(211) 간의 마주하는 면이 증가하면 할수록 감소하고, 회전자 볼록극(111)과 고정자 볼록극(211)이 상호 정렬될 시에 최저점(L22)이 되며, 회전자 볼록극(111)과 고정자 볼록극(211) 간의 마주하는 면이 감소하면 할수록 증가하여서, 회전자 볼록극(111)과 고정자 볼록극(211)이 비정렬될 시에 최대점(L21)이 된다. Referring back to FIG. 6, the area of the facing surface between the stator concave pole 212 and the rotor convex pole 111 increases as the facing surface between the rotor convex pole 111 and the stator convex pole 211 increases. When the rotor convex pole 111 and the stator convex pole 211 are aligned with each other, the lowest point L22 is reduced, and the facing surface between the rotor convex pole 111 and the stator convex pole 211 decreases. It increases as it becomes, and becomes the maximum point L21 when the rotor convex pole 111 and the stator convex pole 211 are disaligned.
여기서, 고정자 오목극(212)에 의한 인덕턴스 파형에 있어서, 최대점(L21)은 고정자 오목극(212)이 회전자 볼록극(111)에 정렬될 시의 제3 공극(G3)에 의해 좌우되고, 최저점(L22)은 고정자 오목극(212)이 회전자 오목극(111)에 정렬될 시의 제4 공극(G4)에 의해 좌우된다. 이때, 제3 공극(G3)은 제1 공극(G1)보다 고정자 극(210)의 단차(213)의 높이(h)만큼 크고, 제4 공극(G4)도 제2 공극(G1)보다 고정자 극(210)의 단차(213)의 높이(h)만큼 크다.Here, in the inductance waveform by the stator concave pole 212, the maximum point L21 is influenced by the third gap G3 when the stator concave pole 212 is aligned with the rotor convex pole 111. , The lowest point L22 is influenced by the fourth void G4 when the stator recess 212 is aligned with the rotor recess 111. At this time, the third void G3 is larger than the first void G1 by the height h of the step 213 of the stator pole 210, and the fourth void G4 is also larger than the second void G1. It is as large as the height h of the step 213 of 210.
이에 따라, 도 7(b)에 도시한 바와 같이 고정자 오목극(212)에 의한 인덕턴스 파형은 고정자 볼록극(211)에 의한 인덕턴스 파형과 전기각으로 180°위상차(기계적 각도로 보면 4극 구조이므로 45°위상차)를 갖고, 최대점(L21) 및 최저점(L22)이 각각 고정자 볼록극(211)에 의한 인덕턴스의 최대점(L11) 및 최저점(L12)보다 상대적으로 작다.Accordingly, as shown in FIG. 7B, the inductance waveform of the stator concave pole 212 is 180 ° out of phase with the inductance waveform of the stator convex pole 211 (electrical angle because it is a four-pole structure). 45 ° phase difference), and the maximum point L21 and the lowest point L22 are relatively smaller than the maximum point L11 and the lowest point L12 of the inductance by the stator convex pole 211, respectively.
결국, 고정자 극(210)과 회전자 극(110) 간에 형성되는 인덕턴스 파형은 도 7(a)에 도시한 고정자 볼록극(211)에 의한 인덕턴스와 도 7(b)에 도시한 고정자 오목극(212)에 의한 인덕턴스의 합성에 의해서 도 7(c)에 도시한 바와 같이 나타난다.As a result, the inductance waveform formed between the stator pole 210 and the rotor pole 110 is characterized by the inductance caused by the stator convex pole 211 shown in FIG. 7 (a) and the stator concave pole shown in FIG. 7 (b). It appears as shown in Fig. 7 (c) by the synthesis of inductance by 212).
즉, 합성된 인덕턴스 파형은 고정자 오목극(212)에 의한 인덕턴스를 반영하기 이전과 대조하면, 고정자 오목극(212)이 회전자 볼록극(111)과 상호작용하여 댐핑(damping) 역할을 하므로, 최대점(Lmax)는 미약하게 감소하고, 최저점(Lmin)은 최대점(Lmax)의 감소폭보다 상대적으로 크게 증가한다. 한편, 본 발명에 따른 모터는 도 7(d)와 같이 비여자 통전구간 대비 정토크 유효 면적율이 높아 종래의 단상 스위치드 릴럭턴스 모터(도 2)보다 토크 퍼포먼스가 뛰어나고, 기구적으로 안정적이며, 리플이 적은 토크를 제공한다.That is, in contrast to the synthesized inductance waveform before reflecting the inductance caused by the stator concave pole 212, since the stator concave pole 212 interacts with the rotor convex pole 111 to act as a damping (damping), The maximum point Lmax decreases slightly, and the minimum point Lmin increases relatively larger than the decrease of the maximum point Lmax. On the other hand, the motor according to the present invention has a higher torque effective area ratio compared to the non-excited energizing section as shown in Fig. 7 (d) has better torque performance than the conventional single-phase switched reluctance motor (Fig. 2), mechanically stable, ripple This gives less torque.
또한, 본 발명에 따른 스위치드 릴럭턴스 모터는 턴온 회전각(θs)에서 여자 코일(214)로 고정자 극(210)을 여자할 시에 순간 돌입전류(Rush current)를 완화시키고, 모터의 구동 중에 스위칭 인덕턴스 손실을 줄여 효율을 향상시킬 뿐만 아니라, 자기적 릴럭턴스 토크 충격을 줄여 토크 리플과 소음을 줄인다. 즉, 정토크로 돌입할 시에 전기적 및 자기-기계적 충격을 완화한다. In addition, the switched reluctance motor according to the present invention relieves the instantaneous inrush current (Rush current) when the stator pole 210 is excited by the exciting coil 214 at the turn-on rotation angle (θs), and switching during driving of the motor. In addition to improving efficiency by reducing inductance losses, it also reduces torque ripple and noise by reducing magnetic reluctance torque shock. That is, the electric and magneto-mechanical shocks are alleviated when the vehicle enters the positive torque.
상기와 같이 구성되어 결합되는 고정자 및 회전자는 회전 위치 센서(300) 및 컨트롤러(400)에 의해서 회전자를 회전 구동시킨다.The stator and the rotor, which are configured and coupled as described above, rotate the rotor by the rotation position sensor 300 and the controller 400.
상기 회전 위치 센서(300)는 회전자(100)의 회전 위치를 감지한다.The rotation position sensor 300 detects the rotation position of the rotor 100.
여기서 감지하는 회전자(100)의 회전 위치는 여자 통전구간(θon-θoff)을 얻기 위한 턴온 회전각(θon)과 턴오프 회전각(θoff)이다. 일반적으로, 턴온 회전각(θon)은 여자코일에 전압을 인가할 시에 전류를 충분히 상승시킨 후 인덕턴스 증가 구간에 돌입하도록 인덕턴스 증가 시작점(θs)보다 앞에 설정하되 과도한 돌입 전류가 발생하거나 역토크가 발생하지는 않는 회전각으로 설정하고, 턴오프 회전각(θoff)은 인덕턴스 증가 구간(θs~θ1) 내에 설정하여서 전압 인가를 종료(off)한 후 여자코일의 자기 유도전력이 역토크가 발생하는 지점(θ2) 이전에 충분히 소멸되게 한다. The rotational position of the rotor 100 to sense here is the excitation conduction section (θon-θoff) Turn-on rotation angle? On and turn-off rotation angle? Off. Generally, the turn-on rotation angle θon is set before the inductance increase starting point θs so that the current sufficiently increases when the voltage is applied to the excitation coil and then enters the inductance increase section, but excessive inrush current occurs or reverse torque is generated. The turn-off rotation angle θoff is set within the inductance increase period θ s to θ 1 so that the magnetic induction power of the excitation coil is reversed after the voltage application is turned off. (θ2) to be sufficiently destroyed before.
이러한 회전 위치 센서(300)는 종래기술에서 언급한 다양한 방식을 채용할 수 있으며, 본 발명의 실시예에서는 예시적으로 상기 회전 위치 센서(300)를 발광부와 수광부를 갖는 광센서로 구성하여 고정자 볼록극(211)의 상부에 설치하고, 발광부의 빛을 반사하여 수광부에서 감지하게 하는 반사판(310)을 회전자 볼록극(111)의 상부에 설치하였다. The rotation position sensor 300 may employ various methods mentioned in the prior art, and in the exemplary embodiment of the present invention, the rotation position sensor 300 may be configured as an optical sensor having a light emitting part and a light receiving part. It was installed on the top of the convex pole 211, and a reflecting plate 310 for reflecting the light of the light emitting unit to be detected by the light receiving unit was installed on the top of the rotor convex pole 111.
여기서, 본 발명처럼 단상 스위치드 릴럭턴스 모터로 구성하는 경우, 회전 위치 센서(300)는 복수 고정자 볼록극(211) 중에 어느 하나에 설치하면 되고, 반사판(310)은 회전자(100)에 구비된 모든 회전자 볼록극(111)에 하나씩 설치하여야 한다. Here, in the case of configuring a single-phase switched reluctance motor as in the present invention, the rotation position sensor 300 may be installed on any one of the plurality of stator convex poles 211, and the reflector 310 is provided on the rotor 100. One should be installed in every rotor convex pole 111.
그리고, 회전자의 회전방향을 결정하고, 결정한 회전방향으로 회전자를 회전시킬 시에 인덕턴스 증가 구간(θs~θ1)에 대응되게 미리 설정한 여자 통전구간(θon-θoff)에 맞춰 반사판(310)을 설치한다. 이에 따라, 회전 위치 센서(300)가 턴온 회전각(θon)에서 제1 신호를 발생시키고, 턴오프 회전각(θoff)에서 제2 신호를 발생시키게 한다. Then, the direction of rotation of the rotor is determined, and when the rotor is rotated in the determined rotation direction, the reflector plate 310 is set in accordance with a preset energizing period θon-θoff corresponding to the inductance increase period θs to θ1. Install it. Accordingly, the rotation position sensor 300 generates the first signal at the turn-on rotation angle θon and generates the second signal at the turn-off rotation angle θoff.
예시적으로, 본 발명의 실시예에서 상기 회전 위치 센서(300)는 고정자 볼록극(211)에 설치되되, 회전자 볼록극(111)과 마주하기 시작하는 부위의 끝단에 설치된다. 그리고, 상기 반사판(310)은 여자 통전구간(θon-θoff)의 회전각 범위를 갖는 원호 형상으로 길게 형성되어 회전자 볼록극(111)에 여자 통전구간(θon-θoff)의 위치에 맞게 설치된다. 도면에는 여자 통전구간(θon-θoff)을 인덕턴스 증가 구간(θs~θ1)과 동일하게 하였으나, 상기한 바와 같이, 턴온 회전각(θon)을 인덕턴스 증가 시작점(θs)보다 앞서게 할 경우, 상기 반사판(310)은 피치 홀(120)을 향해 약간 치우치게 한다.For example, in the exemplary embodiment of the present invention, the rotation position sensor 300 is installed at the stator convex pole 211, and is installed at the end of the portion that starts to face the rotor convex pole 111. In addition, the reflector plate 310 is elongated in an arc shape having a rotation angle range of the excitation conduction section θon-θoff, and is installed at the rotor convex pole 111 so as to correspond to the excitation conduction section θon-θoff. . In the drawing, the excitation conduction period θon-θoff is the same as the inductance increase period θs to θ1. However, as described above, when the turn-on rotation angle θon is earlier than the inductance increase starting point θs, the reflector plate ( 310 is slightly biased towards pitch hole 120.
이와 같이 설치한 상기 회전 위치 센서(300)는 반사판에 반사되는 빛을 감지할 시에 'Low' 신호를 발생시키고, 빛을 감지하지 못할 시에 'High'신호를 발생시키게 구성된다. 이에 따라, 여자 통전구간(θon-θoff)에 돌입하는 시점에 'High'에서 'Low'로 전환하는 제1 신호를 생성하고, 여자 통전구간(θon-θoff)을 벗어날 시에 'Low'에서 'High'로 전환하는 제2 신호를 생성하여서, 컨트롤러(400)에 전달한다.The rotation position sensor 300 installed as described above is configured to generate a 'Low' signal when detecting light reflected by the reflector, and to generate a 'High' signal when no light is detected. Accordingly, the first signal is generated to switch from 'High' to 'Low' at the time of entering the excitation energization section θon-θoff, and at the time of exiting the excitation energization section θon-θoff, Generates a second signal to switch to the high ', and transmits it to the controller (400).
상기 컨트롤러(400)는 인덕턴스 증가 구간(θs~θ1)에 대응되게 미리 설정한 여자 통전구간(θon-θoff)을 상기 회전 위치 센서(300)의 제1 신호 및 제2 신호로 감지하여, 여자 통전구간(θon-θoff)에만 여자코일(214)에 전기를 공급하는 펄스 파형의 구동 전압을 여자코일(214)에 인가한다. 이에 따라, 회전자는 릴럭턴스 토크에 의한 회전력으로 일방향 회전한다.The controller 400 detects the excitation conduction section θon-θoff set in advance to correspond to the inductance increase period θs θ1 as the first signal and the second signal of the rotation position sensor 300, and energizes the excitation. The driving voltage of the pulse waveform which supplies electricity to the excitation coil 214 only in the interval θon-θoff is applied to the excitation coil 214. Accordingly, the rotor rotates in one direction with the rotational force by the reluctance torque.
또한, 상기 컨트롤러(400)는 회전 정지된 상태의 회전자를 회전 구동시키려 할 시에 회전자의 회전 위치가 회전 구동할 수 없는 위치에 있는 경우, 펄스 파형의 기동 전압을 기동극 여자코일(221) 또는 고정자 극 여자코일(214)에 인가하여서, 회전 구동이 가능한 위치로 될 때에 상기한 구동 전압을 여자코일(214)에 인가한다.In addition, when the controller 400 is in a position where the rotational position of the rotor cannot be rotated when the rotor 400 is to be driven to rotate in a state where the rotation is stopped, the controller 400 sets the starting voltage of the pulse waveform to the starting pole excitation coil 221. Or the stator pole excitation coil 214, the above driving voltage is applied to the excitation coil 214 when it becomes a position where rotational drive is possible.
도 8은 컨트롤러(400)의 회로구성도이다.8 is a circuit diagram of the controller 400.
상기 컨트롤러(400)는 외부로부터 직류(DC) 전기를 공급받아 충전하는 콘덴서(C), 콘덴서(C)에 병렬연결되어 콘덴서(C)에 축전된 전기를 스위칭소자(Q1, Q2)를 통해 고정자 극 여자코일(214)에 공급하여 여자하는 비대칭 컨버터(440), 콘덴서(C)에 병렬연결되어 콘덴서(C)에 축전된 전기를 스위칭소자(Q3)를 통해 기동극 여자코일(221)에 공급하여 여자하는 싱글 스위칭 회로(450), 마이크로프로세서(410)의 구동 신호에 따라 비대칭 컨버터(440)의 스위칭소자(Q1, Q2)를 턴온하는 제1 게이트 구동회로(420), 마이크로프로세서(410)의 기동 신호에 따라 싱글 스위칭 회로(450)의 스위칭소자(Q3)를 턴온하는 제2 게이트 구동회로(430), 콘덴서(C)의 (-)단과 접지(Ground) 사이에 저항(R0)이 연결되고 저항(R0)의 양단 전압을 전류값으로 변환 증폭하여 마이크로 프로세서(410)에 입력하는 전류 감지회로(460), 상기 회전 위치 센서(300)로 감지한 회전자의 회전 위치에 따라 기동 제어 동작 및 구동 제어 동작을 수행하고 전류 감지 회로(460)로 감지한 전류값에 따라 모터의 이상적인 제어와 보호 제어 동작을 수행하는 마이크로프로세서(410)를 포함한다.The controller 400 is connected to a capacitor (C) and a capacitor (C) connected to the capacitor (C) to receive and charge the DC electricity from the outside through the stator through the switching elements (Q1, Q2) Asymmetric converter 440, which is supplied to the pole excitation coil 214, is connected in parallel with the capacitor C to supply electricity stored in the capacitor C to the starting pole excitation coil 221 through the switching element Q3. The first gate driving circuit 420 and the microprocessor 410 which turn on the switching elements Q1 and Q2 of the asymmetric converter 440 according to the single switching circuit 450 and the excitation signal of the microprocessor 410. The resistor R0 is connected between the second gate driving circuit 430 for turning on the switching element Q3 of the single switching circuit 450 and the negative terminal of the capacitor C and the ground according to the start signal of the single switching circuit 450. And converts and amplifies the voltage across the resistor R0 into a current value and inputs the result to the microprocessor 410. The control circuit 460 performs the start control operation and the drive control operation according to the rotational position of the rotor detected by the rotation position sensor 300, and ideally controls the motor according to the current value detected by the current detection circuit 460. And a microprocessor 410 for performing a protection control operation.
상기 마이크로프로세서(410)는 기동 제어 동작 및 구동 제어 동작을 수행할 시에 고정자 극 여자코일에 전압을 인가하는 구동 신호 또는 기동 신호를 상기 제1 게이트 구동회로(420)에 전달하고, 기동극 여자코일에 전압을 인가하는 기동 신호를 출력하여 제2 게이트 구동회로(430)에 전달한다.The microprocessor 410 transmits a drive signal or a start signal for applying a voltage to the stator pole excitation coil to the first gate driving circuit 420 when performing the start control operation and the drive control operation. A start signal for applying a voltage to the coil is output and transmitted to the second gate driving circuit 430.
여기서, 구동 신호는 모터를 정격 속도로 회전시키기 위해 여자 통전구간(θon-θoff)에 맞춰 고정자 극 여자코일에 전압을 인가하는 펄스 파형의 신호이다. 기동 신호는 구동 신호의 펄스 파형에 비해 매우 짧은 주기를 갖고 파형의 길이도 미리 설정된 길이로 이루어지는 PWM(pulse width modulation) 파형으로 이루어져서 모터를 기동할 시에 고정자 극 여자코일 또는 기동극 여자코일에 인가된다.Here, the drive signal is a pulse waveform signal that applies a voltage to the stator pole exciting coil in accordance with the excitation conduction section θon-θoff to rotate the motor at a rated speed. The start signal is a pulse width modulation (PWM) waveform which has a very short period compared to the pulse waveform of the drive signal and has a predetermined length, and is applied to the stator pole exciting coil or the starting pole exciting coil when starting the motor. do.
한편, 상기 마이크로프로세서(410)는 사용자에 의해 지정되는 속도로 회전자를 시킬 수 있게 할 수 있으며, 이를 위해서, 상기 마이크로프로세서(410)는 지정된 속도에 대응되는 PWM(pulse width modulation) 신호를 여자 통전구간(θon-θoff)에 인가할 수 있다.On the other hand, the microprocessor 410 may enable the rotor at a speed specified by the user, for this purpose, the microprocessor 410 excites a pulse width modulation (PWM) signal corresponding to the specified speed It can be applied to the energization section (θon-θoff).
상기 마이크로프로세서(410)에서 출력하는 구동 신호 및 기동 신호는 미약하므로, 고정자 극 여자코일(214)에 전압을 인가하기 위한 구동 신호 또는 기동 신호를 상기 제1 게이트 구동회로(420)로 증폭하여 비대칭 컨버터(440)의 스위칭소자(Q1, Q2)의 게이트(gate)에 인가하고, 기동극 여자코일(221)에 인가할 기동 신호를 제2 구동회로(420)로 증폭하여 싱글 스위칭 회로(450)의 스위칭소자(Q3)의 게이트(gate)에 인가한다.Since the drive signal and the start signal output from the microprocessor 410 are weak, the drive signal or start signal for applying a voltage to the stator pole excitation coil 214 is asymmetrical by amplifying the first gate drive circuit 420. A single switching circuit 450 is applied to the gates of the switching elements Q1 and Q2 of the converter 440 and amplified by the second driving circuit 420 to a start signal to be applied to the starting pole exciting coil 221. Is applied to the gate of the switching element Q3.
상기 비대칭 컨버터(440)는 고정자 극 여자코일(214)의 양단에 연결되어 턴온(turn on)에 의해 고정자 극 여자코일(214)을 콘덴서(C)에 병렬로 연결하는 스위칭소자(Q1, Q2), 및 스위칭소자(Q1, Q2)의 턴오프(turn off) 시에 고정자 극 여자코일(214)에 축적된 전기 에너지를 콘덴서(C)에 반환하여 소자(消磁, demagnetization)하는 환류 다이오드(D1, D2)를 포함하여 구성되며, 예를 들어 등록특허 제10-0991923호에 의해 개시된 기술이므로 상세한 설명을 생략한다. 여기서, 스위칭소자(Q1, Q2)는 게이트(gate)를 통해 인가받는 구동신호 또는 기동신호에 따라 고속 스위칭 동작하는 전력전자 소자로 구성되며, 예를 들어, FET(Field Effective Transistor) 또는 IGBT(insulated gate bipolar mode transistor)로 구성할 수 있다.The asymmetric converter 440 is connected to both ends of the stator pole excitation coil 214 switching elements (Q1, Q2) to connect the stator pole excitation coil 214 in parallel to the capacitor (C) by turning on (turn on) And a reflux diode D1 which demagnetizes the electric energy accumulated in the stator pole excitation coil 214 at the turn-off of the switching elements Q1 and Q2 to the capacitor C. D2) is included, for example, since the technology disclosed by the Patent No. 10-0991923, detailed description thereof will be omitted. Here, the switching elements Q1 and Q2 are configured as a power electronic device that performs a high-speed switching operation according to a driving signal or a start signal applied through a gate, for example, a field effective transistor (FET) or an IGBT (insulated). gate bipolar mode transistor).
상기 싱글 스위칭 회로(450)는 기동극 여자코일(221)의 일단을 콘덴서(C)의 (+)단에 연결하고 타단을 스위칭소자(Q3)를 통해 콘덴서(C)의 (-)단에 연결하여 스위칭소자(Q3)의 턴온으로 기동극 여자코일(221)을 여자하게 구성되며, 기동극 여자코일(221)에 병렬연결되는 프리휠링 다이오드(D3, freewheeling diode)를 포함한다. 여기서, 스위칭소자(Q3)는 기동신호에 의해 고속 스위칭 동작하는 FET(Field Effective Transistor) 또는 IGBT(insulated gate bipolar mode transistor)로 구성할 수 있다.The single switching circuit 450 connects one end of the starting pole excitation coil 221 to the (+) end of the capacitor C and the other end to the (-) end of the capacitor C through the switching element Q3. The excitation of the starter pole coil 221 by the turn-on of the switching element (Q3), and comprises a freewheeling diode (D3, freewheeling diode) connected in parallel to the starter pole coil (221). Here, the switching element Q3 may be configured of a field effective transistor (FET) or an insulated gate bipolar mode transistor (IGBT) that performs high-speed switching by a start signal.
상기 마이크로 프로세서(410)에 의한 기동 제어 동작에 대해서는 도 9를 참조하여 설명한다.A start control operation by the microprocessor 410 will be described with reference to FIG. 9.
도 9는 컨트롤러(400)의 제어에 의한 기동 방법의 순서도이다.9 is a flowchart illustrating a start method by the control of the controller 400.
도 9를 참조하면, 컨트롤러(400)는 회전 정지된 회전자를 회전 기동할 시에 회전자 위치 검출단계(S10), 기동 시도단계(S20), 구동 결정단계(S30) 및 회전자 위치 조절단계(S40)를 포함하는 기동 방법에 따라 모터를 구동한다.Referring to FIG. 9, the controller 400 detects a rotor position (S10), a starting attempt step (S20), a driving determination step (S30), and a rotor position adjusting step when a rotationally stopped rotor is rotationally started. The motor is driven in accordance with the starting method (S40).
상기 회전자 위치 검출단계(S10)는 회전자 위치를 회전 위치 센서(300)를 통해 검출하는 단계이다.The rotor position detecting step S10 is a step of detecting the rotor position through the rotation position sensor 300.
상기 기동 시도단계(S20)는 회전자 위치 센서(300)로부터 전달받는 신호에 근거하여 파악하는 회전자 위치가 여자 통전구간(θon-θoff)에 있을 경우, 구동 신호에 대응되는 전압 파형을 고정자 극 여자코일에 인가하는 단계이다. 본 발명의 실시예에 첨부한 도면에서는 여자 통전구간(θon-θoff)이 인덕턴스 증가 구간(θs~θ1)과 동일하게 하였으므로, 회전자의 회전 위치가 인덕턴스 증가 구간(θs~θ1)에 있을 때에 구동 신호에 따라 고정자 극 여자코일에 전압이 인가된다.The start attempt step (S20) is a stator pole when the rotor position to be determined based on the signal received from the rotor position sensor 300 is in the energizing period (θon-θoff), the voltage waveform corresponding to the drive signal This step is applied to the female coil. In the drawings attached to the embodiment of the present invention, the excitation current conduction section θon-θoff is the same as the inductance increasing section θs to θ1, so that the drive is performed when the rotational position of the rotor is in the inductance increasing section θs to θ1. According to the signal, a voltage is applied to the stator pole exciting coil.
상기 구동 결정단계(S30)는 기동 시도단계(S20) 이후에 회전자가 회전하는지를 상기 회전 위치 센서(300)로 감지하여 회전하면 이후 구동 신호를 지속적으로 인가하여 모터를 구동하고, 회전하지 아니하면 회전자 위치 조절단계(S40)로 넘어가는 단계이다. 여기서, 상기 회전 위치 센서(300)로 감지하는 여자 통전구간(θon-θoff)에 맞춰 고정자 극을 여자하는 모터 구동 동작이 정상적으로 이루어지고 있는지를 판단하여 회전 여부를 결정한다.The driving determination step (S30) detects whether the rotor rotates after the start attempt step (S20) by the rotation position sensor 300 and rotates to continuously apply a drive signal thereafter to drive the motor, if not rotated It is the step that goes to the electronic position adjusting step (S40). Here, it is determined whether to rotate by determining whether a motor driving operation of exciting the stator pole is normally performed according to the energizing section θon-θoff sensed by the rotation position sensor 300.
상기 회전자 위치 조절단계(S40)는 상기 회전자 위치 검출단계(S10)에서 검출한 회전자 위치가 여자 통전구간(θon-θoff)에 있지 아니한 경우 또는 구동 결정단계(S30)에서 넘어온 경우에, 기동 신호에 따라 기동극 또는 회전자 극을 여자하여 회전자의 회전각 위치를 변경한 후 상기 회전자 위치 검출단계(S10)로 넘어가는 단계이다. The rotor position adjusting step (S40) is a case where the rotor position detected in the rotor position detecting step (S10) is not in the excitation conduction section (θon-θoff) or when it is crossed in the driving determination step (S30), Exciting the starting pole or the rotor pole in accordance with the start signal to change the position of the rotation angle of the rotor and proceeds to the rotor position detection step (S10).
여기서, 기동 신호는 회전자를 소정의 회전각 위치를 변경시켜 기동 가능하게 하는 신호이므로, 예를 들면 1sec 이하의 길이를 갖는 PWM 신호로 할 수 있다. 또한 기동 신호는 회전자 극의 극호각이 작을수록 위치 변경할 각을 작게 하여야 하고, 기동 신호의 인가를 중지하더라도 관성에 의해 회전자가 회전할 수 있으므로, 회전자 극의 개수 및 회전자의 관성력을 고려하여 기동 신호의 길이 및 PWM 신호의 폭(Pulse Width)을 결정하는 것이 좋다.Here, the start signal is a signal that enables the rotor to be changed by changing a predetermined rotation angle position, and thus can be a PWM signal having a length of 1 sec or less, for example. Also, the smaller the pole angle of the rotor pole, the smaller the repositioning angle, and the rotor can rotate by inertia even if the start signal is stopped. Therefore, the number of rotor poles and the inertia force of the rotor are considered. It is preferable to determine the length of the start signal and the pulse width of the PWM signal.
이와 같은 상기 회전자 위치 조절단계(S40)는 기동 신호에 따라 기동극(220)을 여자하여 회전자의 회전각 위치를 변경하는 기동극 여자단계(S41), 기동극(220)을 여자한 이후 회전자 위치를 회전 위치 센서(300)를 통해 검출하여 회전자 위치가 여자 통전구간(θon-θoff)에 있는지를 확인하여 여자 통전구간(θon-θoff)에 있으면 상기 기동 시도단계(S20)로 넘어가는 위치 확인단계(S42), 확인 단계(S42)의 확인 결과, 여자 통전구간(θon-θoff)에 있지 아니하면 기동 신호에 따라 고정자 극(210)을 여자한 후 상기 회전자 위치 검출단계(S10)로 넘어가는 고정자 극 여자단계(S43)를 포함한다.The rotor position adjustment step (S40) as described above after exciting the start pole exciting step (S41), the start pole 220 to change the position of the rotation angle of the rotor by exciting the start pole 220 according to the start signal The rotor position is detected through the rotational position sensor 300 to check whether the rotor position is in the energizing section θon-θoff, and if it is in the exciting energizing section θon-θoff, the process proceeds to the starting attempt step S20. If the position check step (S42), the confirmation step (S42), as a result of the check, if not in the energizing section (θon-θoff), after the stator pole 210 is excited in accordance with the start signal and the rotor position detection step (S10) It includes the stator pole excitation step (S43) to go to).
즉, 상기 컨트롤러(400)는 모터를 기동할 시에 회전자가 여자 통전구간(θon-θoff)에 있으면 회전 위치 센서(300)로 감지하는 여자 통전구간(θon-θoff)에 맞춰 고정자 극 여자코일에 전압을 인가하여 기동을 시도하고, 모터를 기동할 시에 회전자가 여자 통전구간(θon-θoff)에 있지 아니하거나 또는 기동 시도가 실패할 시에, PWM 파형을 이루는 기동 신호에 따라 기동극을 여자하는 동작과 고정자 극을 여자하는 동작을 반복하는 중에 회전자가 여자 통전구간(θon-θoff)에 있게 될 시에 기동을 재시도한다.That is, the controller 400 is configured to the stator pole excitation coil in accordance with the excitation conduction section θon-θoff detected by the rotation position sensor 300 when the rotor is in the excitation conduction section θon-θoff when the motor is started. When starting the motor by applying a voltage and starting the motor, when the rotor is not in the energizing section (θon-θoff) or when the starting attempt fails, the starting pole is excited in accordance with the starting signal of the PWM waveform. The operation is retried when the rotor is in the exciting energization section (θon-θoff) during the repeating operation and the excitation of the stator poles.
예를 들어 설명하면, 도 6(c)에 도시한 상태를 참조하면 고정자 볼록극(211)과 회전자 볼록극(111)이 정렬된 상태이므로 여자 통전구간(θon-θoff)에서 벗어나 있지만, 기동극(220)이 피치 홀(120)과 마주하므로, 기동극(220)의 여자에 의해 반시계방향으로 소정 각도 회전한 후 멈추므로, 여자 통전구간(θon-θoff)에 들어갈 확률이 높다.For example, referring to the state illustrated in FIG. 6C, since the stator convex pole 211 and the rotor convex pole 111 are aligned, they are out of the energization period θon-θoff, Since the copper pole 220 faces the pitch hole 120, the moving pole 220 stops after being rotated by a predetermined angle in the counterclockwise direction by the excitation of the moving pole 220, and thus the probability of entering the excitation conduction section θon-θoff is high.
만약, 회전자의 회전각 위치가 여자 통전구간(θon-θoff)에 있지만 정렬 회전각(θ1~θ2)에 근접한 상태라면, 모터의 기동이 실패할 수 있다. 그렇지만, 기동이 실패하더라도 피치 홀(120)에 근접하게 마주하는 기동극(220)을 기동 신호로 여자하게 되므로, 회전자를 회전시켜 회전각 위치를 조절할 수 있다.If the rotation angle position of the rotor is in the energization period θon-θoff, but close to the alignment rotation angles θ1 to θ2, the starting of the motor may fail. However, even if the start fails, since the start pole 220 facing the pitch hole 120 is excited by the start signal, the rotation angle can be adjusted by rotating the rotor.
또한, 도 6(b)를 참조하면 회전자의 회전각 위치가 여자 통전구간(θon-θoff)에 들어가 있고, 기동극(220)은 회전자 오목극(112)의 중간을 마주하므로, 기동극(220)의 여자로는 회전력을 발생시키기 어렵고, 대신에 고정자 극(210)의 여자에 의해서, 회전자의 회전각 위치가 여자 통전구간(θon-θoff)에 들어갈 확률이 높다. 이와 같은 알고리듬으로 첫 모터 시동시 회전자가 기동 불능위치에 있더라도 기동극과 고정자극의 상호 작용으로 회전자가 기동 가능 위치에 놓이게 하는 것이 가능하고, 원활한 기동을 하게 할 수 있는 것이다.In addition, referring to FIG. 6 (b), the rotation angle of the rotor enters the excitation conduction section θon-θoff, and the starting pole 220 faces the middle of the rotor concave pole 112, so that the starting pole It is difficult to generate rotational force with the excitation of 220, and instead, the excitation of the stator pole 210 has a high probability that the rotation angle position of the rotor enters the excitation conduction section θon-θoff. With this algorithm, even when the rotor is in the non-startable position when the first motor is started, it is possible to allow the rotor to be in the startable position by the interaction between the starting pole and the fixed pole, and smooth starting is possible.
도 10은 본 발명의 제2 실시예에 따른 스위치드 릴럭턴스 모터에 있어서, 10극 고정자에 12극 회전자를 외륜 타입으로 결합한 부분의 단면도이다.10 is a cross-sectional view of a portion of a switched reluctance motor according to a second embodiment of the present invention in which a 12-pole rotor is coupled to a 10-pole stator in an outer ring type.
상기 도 10을 참조하면, 외륜 회전자 타입이고, 단상 구조로 극이 배치되며, 기동극을 포함한다. Referring to FIG. 10, the outer ring rotor type, the pole is arranged in a single phase structure, and includes a moving pole.
이에, 회전자(100)의 내주면에는 동일한 극호각을 갖는 복수의 12개 회전자 극(110)이 내주면의 원주 방향을 따라 등간격으로 배치되고, 인접하는 회전자 극(110)의 사이에 피치 홀(120)이 형성된다.Accordingly, a plurality of twelve rotor poles 110 having the same polar angle are disposed at equal intervals along the circumferential direction of the inner circumferential surface on the inner circumferential surface of the rotor 100, and pitches between adjacent rotor poles 110. The hole 120 is formed.
그리고, 고정자(200)의 외주면에는 회전자 극(110)의 개수와 동일하게 12 개의 극이 원주 방향을 따라 등간격으로 배치되어서, 회전자 극(110)에 정렬될 시에 12개의 극이 동시에 정렬되고, 회전자 극(110)에 비정렬될 시에는 12개의 극이 동시에 비정렬된다. 여기서, 고정자(200)의 12개 극 중에 회전 중심을 기준으로 대칭되는 한쌍을 기동극(220)으로 구성하고 나머지 10개의 극을 고정자 극(210)으로 구성한다. 그리고, 10개의 고정자 극(210)에는 여자코일(214)이 각각 권선되어 동시에 여자되거나 소자되게 한다.In addition, 12 poles are disposed on the outer circumferential surface of the stator 200 at equal intervals along the circumferential direction in the same manner as the number of the rotor poles 110, so that 12 poles are simultaneously aligned when the rotor poles 110 are aligned. When aligned and unaligned to the rotor poles 110, the 12 poles are unaligned at the same time. Here, the pair of symmetrical with respect to the center of rotation among the 12 poles of the stator 200 is configured as the moving pole 220 and the remaining 10 poles are configured as the stator pole 210. The ten stator poles 210 are respectively wound with excitation coils 214 so that they can be simultaneously excited or elementd.
도 10에는 도시하지 아니하였지만, 각 회전자 극(110)의 회전자 볼록극(111)의 상단에는 반사판(310)이 여자 통전구간(θon-θoff)에 맞게 설치되고, 복수의 고정자 극(210) 중에 어느 하나의 고정자 극 상단에는 회전 위치 센서(300)가 설치된다.Although not shown in FIG. 10, a reflecting plate 310 is installed at an upper end of the rotor convex pole 111 of each rotor pole 110 so as to fit the excitation conduction section θon-θoff, and a plurality of stator poles 210 are provided. Rotational position sensor 300 is installed on any one of the stator pole top.
이와 같이 12극의 회전자 극(110)을 갖는 회전자(100)에 10극의 고정자 극(210)을 갖는 고정자(200)를 결합하여 회전자(100)를 회전시키게 구성하더라도, 고정자 극(210)의 극호각을 회전자 극(110)의 극호각과 동일하게 할 수 있고, 이에, 고정자 극(210) 간의 간격도 기동극(220)과 인접하는 것을 제외하고 회전자 극(110)의 피치 홀(120)의 원주 방향 폭만큼 줄일 수 있다.As described above, even when the rotor 100 is rotated by combining the stator 200 having the 10 pole stator pole 210 with the rotor 100 having the 12 pole rotor pole 110, the stator pole ( The polar angle of 210 may be the same as the polar angle of the rotor pole 110, whereby the spacing between the stator poles 210 is also adjacent to the starting pole 220. It can be reduced by the circumferential width of the pitch hole 120.
따라서, 도 10에 도시한 실시예는 도 3 내지 도 6에 도시한 실시예에 비해 실질적으로 회전자 극(110)의 내주면 전체를 이용하여 릴럭턴스 토크를 발생시키고, 퍼미언스를 증대시키므로, 그만큼 토크를 크게 할 수 있다.Accordingly, the embodiment shown in FIG. 10 generates reluctance torque by using the entire inner circumferential surface of the rotor pole 110 as compared with the embodiment shown in FIGS. The torque can be increased by that much.
도면에는 도시하지 아니하였지만, 본 발명의 제2 실시예에 있어서도, 도 8에 도시한 컨트롤러(400)를 포함하여서, 도 9에 도시한 기동방법에 따라 모터를 기동할 수 있다.Although not shown in the figure, in the second embodiment of the present invention, the controller 400 shown in FIG. 8 can be included to start the motor according to the starting method shown in FIG.
도 11 내지 도 13은 본 발명의 제3 실시예에 따른 스위치드 릴럭턴스 모터를 설명하기 위한 도면으로서, 도 11에는 고정자(200)와 회전자(100)의 결합된 상태를 단면도로 도시하고, 도 12에는 고정자와 회전자의 분리된 상태를 단면도로 도시하였다. 11 to 13 are diagrams for explaining a switched reluctance motor according to a third embodiment of the present invention. In FIG. 11, a coupled state of the stator 200 and the rotor 100 is illustrated in cross-sectional view. In Fig. 12, the separated state of the stator and the rotor is shown in cross section.
그리고, 도 13에는 회전자의 위치에 따른 고정자 볼록극과 영구자석 간의 배치 상태 및 회전 위치 센서(300)와 반사판(310) 간의 배치 상태를 보여주기 위해 상면도로 도시하였다.In addition, FIG. 13 is a top view illustrating an arrangement state between the stator convex pole and the permanent magnet according to the position of the rotor, and an arrangement state between the rotation position sensor 300 and the reflector 310.
도 11 및 도 12를 참조하면, 회전자(100)는 제1 실시예와 동일하게 단차(113)에 의해 서로 다른 내경을 갖는 회전자 볼록극(111)과 회전자 오목극(112)으로 양분되는 복수개의 회전자 극(110)을 피치 홀(120)에 의해 구분되도록 내면에 원주방향을 따라 등간격으로 구비한다. 여기서, 회전자 극(110)은 쌍으로 구비되므로, n을 자연수라고 한다면 2n개이다.11 and 12, the rotor 100 is bisected into the rotor convex pole 111 and the rotor concave pole 112 having different inner diameters by the step 113 similarly to the first embodiment. A plurality of rotor poles 110 are provided at equal intervals along the circumferential direction on the inner surface to be distinguished by the pitch holes 120. Here, the rotor poles 110 are provided in pairs, so if n is a natural number, it is 2n.
하지만, 고정자(200)는 제1 실시예에 구비하였던 기동극(220)을 구비하지 아니하며, 대신에, 기동극(220)이 형성되었던 위치에도 고정자 극(110)이 형성되어서, 회전자(100)의 회전자 극(110)의 개수와 동일하게 2n개의 고정자 극(210)을 외면에 원주방향을 따라 등간격으로 구비한다. 이에 따라, 회전자(100)가 회전할 시에 모든 회전자 극(110)에는 하나도 빠짐 없이 고정자 극(210)에 일대일로 동시 정렬되거나 동시에 비정렬된다.However, the stator 200 does not include the starter pole 220 provided in the first embodiment, and instead, the stator pole 110 is formed at the position where the starter pole 220 was formed, and thus, the rotor 100. 2n stator poles 210 are provided on the outer surface at equal intervals along the circumferential direction, in the same number as the number of the rotor poles 110). Accordingly, when the rotor 100 rotates, all the rotor poles 110 are simultaneously aligned or unaligned at the same time with the stator poles 210 without missing any one.
물론, 각각의 고정자 극(210)은 단차(213)에 의해서 2단 직경을 갖추므로, 서로 다른 외경을 갖는 고정자 볼록극(211)과 고정자 오목극(212)으로 양분되어서, 회전자 극(110)이 고정자 극(210)에 정렬될 시에 회전자 볼록극(111)과 고정자 오목극(212)이 마주하고 회전자 오목극(112)과 고정자 볼록극(211)이 마주한다.Of course, since each stator pole 210 has a two-stage diameter by the step 213, it is divided into a stator convex pole 211 and a stator concave pole 212 having different outer diameters, so that the rotor pole 110 ), The rotor convex pole 111 and the stator concave pole 212 face each other, and the rotor concave pole 112 and the stator convex pole 211 face each other.
이에 따라, 본 발명의 제3 실시예는 컨트롤러(400)를 구성할 시에 상기한 싱글 스위칭 회로(450)를 구비하지 아니하여도 되며, 도 9를 참조하여 설명한 기동방법을 위한 프로세서를 마이크로프로세서(410)에 탑재하지 아니하여도 된다.Accordingly, the third embodiment of the present invention does not have to include the single switching circuit 450 when the controller 400 is configured, and the processor for the starting method described with reference to FIG. 9 is a microprocessor. It may not be mounted at 410.
대신에, 본 발명의 제3 실시예는 회전 정지한 회전자(100)를 기동 가능한 회전각에 위치하게 하는 영구자석(130)을 회전자 오목극(112)에 장착하여서, 마이크로프로세서(410)가 회전 위치 센서(300)로 감지한 회전자 회전각에 따라 여자코일(214)에 전압을 인가하여 기동한다.Instead, the third embodiment of the present invention mounts the permanent magnet 130 to the rotor concave pole 112 to position the rotor 100 that has stopped rotating at the rotatable angle, thereby providing a microprocessor 410. Is activated by applying a voltage to the excitation coil 214 according to the rotor rotation angle detected by the rotation position sensor 300.
상기 영구자석(130)은 2개가 하나의 쌍을 이루어 서로 다른 위치의 회전자 오목극(112)에 하나씩 밀착되게 장착되되, 고정자(200)가 설치된 내부를 향하는 극성이 서로 상이하게 한다. 즉, 하나의 영구자석(130)은 N극이 내부를 향하고 다른 하나의 영구자석(130)은 S극이 내부를 향한다. The permanent magnets 130 are mounted in one pair in close contact with the rotor concave poles 112 at different positions, and the polarities toward the inside where the stator 200 is installed are different from each other. That is, one permanent magnet 130 has an N pole toward the inside and the other permanent magnet 130 has an S pole toward the inside.
그리고, 2개가 한쌍을 이루는 영구자석은 복수의 쌍으로 마련하여 장착할 수 있다. 즉, 회전자 극(110)의 개수가 2n이고, k를 n보다 작거나 같은 자연수라고 할 시에, 2n개의 회전자 오목극(112) 중에 2k개의 회전자 오목극(112)에 각각 하나의 영구자석(130)을 밀착되게 장착한다. 이때, k개의 영구자석(130)은 N극을 내부로 향하게 하고, 나머지 k개의 영구자석(130)은 S극을 내부로 향하게 한다. 이때, N극을 내부로 향하게 한 영구자석과 S극을 내부로 향하게 한 영구자석이 회전축을 중심으로 대향하게 배치하여도 된다.In addition, the permanent magnets that make up a pair of two can be provided and mounted in a plurality of pairs. That is, when the number of the rotor poles 110 is 2n and k is a natural number less than or equal to n, one of the 2k rotor recesses 112 among the 2n rotor recesses 112 is provided. The permanent magnets 130 are mounted in close contact. At this time, the k permanent magnets 130 are directed to the N pole inward, the remaining k permanent magnets 130 are directed to the S pole inward. At this time, the permanent magnet with the N pole facing inward and the permanent magnet with the S pole facing inward may be disposed to face the rotation axis.
그리고, 각각의 영구자석(130)은 회전자 오목극(112)의 극호각(βrc)보다 상대적으로 작은 극호각(βm)을 갖는 원호 형상으로 형성되고, 외면을 회전자 오목극(112)에 밀착되게 장착할 시에 피치홀(120)에 치우치게 장착한다. 이에 따라, 영구자석(130)은 장착된 회전자 오목극(112)의 일측에 있는 단차(113)와는 이격된다.Each permanent magnet 130 is formed in an arc shape having a polar angle β m that is relatively smaller than the polar angle β rc of the rotor concave pole 112, and the outer surface of the permanent magnet 130 has a rotor concave pole 112. At the time of mounting in close contact with the pitch), it is mounted to the pitch hole 120. Accordingly, the permanent magnet 130 is spaced apart from the step 113 on one side of the mounted rotor concave pole (112).
바람직하게는, 영구자석(130)이 피치홀(120)의 개구된 입구(120a)를 가로질러 회전자 볼록극(111)의 원주방향 측면(111a)에 밀착되게 하는 것이다.Preferably, the permanent magnet 130 is in close contact with the circumferential side 111a of the rotor convex pole 111 across the opening inlet 120a of the pitch hole 120.
이와 같이 N극을 내부로 향하게 한 영구자석과 S극을 내부로 향하게 한 영구자석(130)을 1쌍으로 하여 회전자 오목극(112)에서 일측의 단차(113)와는 이격되고 타측의 피치홀(120)의 입구를 가로질러 회전자 볼록극(111)의 원주방향 측면에 밀착되게 장착함으로써, 회전자 오목극(112)의 중심에서 피치홀(120)을 향해 치우친 지점을 중심점으로 하는 영구자석(130)의 자기력선속이 자기 저항이 작아지는 경로로 고정자(200)를 통과하여 반대측의 영구자석으로 향하게 된다. As described above, the pair of permanent magnets having the N pole facing inward and the permanent magnet 130 having the S pole facing inward are separated from the step 113 on one side in the rotor concave pole 112, and the pitch hole on the other side is provided. Permanent magnets centered on the point biased toward the pitch hole 120 at the center of the rotor concave pole 112 by being mounted in close contact with the circumferential side of the rotor convex pole 111 across the inlet of the 120. The magnetic force flux of 130 passes through the stator 200 in a path of decreasing the magnetic resistance and is directed to the permanent magnet on the opposite side.
이에 따라, 회전자에 장착한 영구자석(130)은 마주할 시의 공극이 고정자 오목극(212)에 비해 상대적으로 작고 자기회로가 짧은 고정자 볼록극(211)과 정렬하려는 자기 릴럭턴스 토크를 받아서, 회전자를 항상 기동 가능한 위치로 정렬되게 한다.Accordingly, the permanent magnets 130 mounted on the rotor receive magnetic reluctance torque to align with the stator convex poles 211 having a smaller pore when they face each other and a shorter magnetic circuit than the stator concave poles 212. Ensure that the rotor is always aligned to the activatable position.
여기서, 영구자석(130)은 토크 프리(free) 상태에서 회전자를 기동 가능한 위치로 정렬시키기 위한 목적으로 사용되므로, 모터를 구동하기 위해 여자코일(214)로 여자한 고정자 볼록극(211)의 자기력에 비해 상대적으로 매우 작은 자기력을 갖는 자석을 채용하여서 회전자의 기동 및 운전 중 원활한 회전을 방해할 정도의 역토오크나 저항으로 작용하지 않게 한다.Here, the permanent magnet 130 is used for the purpose of aligning the rotor to the startable position in the torque-free state, so that the stator convex pole 211 excited by the excitation coil 214 to drive the motor By employing a magnet with a very small magnetic force relative to the magnetic force, it does not act as a reverse torque or resistance that prevents smooth rotation during the starting and operation of the rotor.
그리고, 모터를 정지하기 위해 여자코일(214)를 소자시키면, 회전자와 고정자 사이에는 영구자석(130)에 의한 자기력선속만 남는다. 이에 따라, 회전자(100)가 관성력이 소진될 때까지 속도가 줄어든 후 영구자석(130)과 정렬하게 되고, 모터를 정지한 이후에 외부 충격에 의한 진동이 발생하더라도 영구자석(130)이 고정자 볼록극(211)과 정렬하려는 릴럭턴스 토크가 발생하여서, 도 13의 (a), (b), (c)에 예시한 바와 같이 영구자석(130)의 전체면이 고정자 볼록극(211)과 마주하는 상태로 된다. Then, when the excitation coil 214 is deactivated to stop the motor, only the magnetic force flux by the permanent magnet 130 remains between the rotor and the stator. Accordingly, the rotor 100 reduces the speed until the inertia force is exhausted and then aligns with the permanent magnet 130, even after the motor stops, the permanent magnet 130 is stator even if vibration caused by external shock occurs. The reluctance torque to be aligned with the convex pole 211 is generated, so that the entire surface of the permanent magnet 130 is connected to the stator convex pole 211 as illustrated in FIGS. 13A, 13B, and 13C. It is in a facing state.
이때에는, 고정자 볼록극(211)이 도 13(b)에 도시한 바와 같이 회전자 볼록극(211)과 마주하기 시작하는 회전각에 있거나 또는 도 13(c)에 도시한 바와 같이 적어도 고정자 볼록극(211)의 극호각에서 영구자석(130)의 극호각(βm)을 감산한 극호각만큼 회전자 볼록극(211)과 마주하므로, 고정자 볼록극(211)을 여자 통전구간(θon-θoff)에 맞춰 여자시켜 회전자를 회전시킬 수 있다.At this time, the stator convex pole 211 is at a rotation angle starting to face the rotor convex pole 211 as shown in FIG. 13 (b) or at least the stator convex as shown in FIG. 13 (c). pole 211 pole firing angle (β m) Since one pole face by a firing angle and the rotor projection poles 211 subtracts the, woman the stator projection poles 211 energizing interval (θon- of permanent magnets 130 on the firing angle of a pole The rotor can be rotated by exciting it with [theta] off).
그런데, 모터를 정지시키거나 또는 모터를 기동 대기시킨 상황에서, 도 13의 (e), (f), (g)에 도시한 바와 같이 영구자석(130)의 전면이 고정자 오목극(212)과 마주한 상태가 될 수 있다. 이때에는, 정토크를 발생시키기 위해 인덕턴스 증가 구간에 대응되게 설정된 여자 통전구간(θon-θoff)에 맞춰 설치한 반사판(310)이 회전 위치 센서(300)와 마주하지 아니한 상태이어서, 고정자 극(210)를 여자하면 부토크에 의해 역회전한다.By the way, in the situation where the motor is stopped or the motor is waiting to be started, the front surface of the permanent magnet 130 is connected to the stator concave pole 212 as shown in FIGS. 13E, 13F, and 13G. It can be face to face. At this time, the reflector plate 310 installed in accordance with the excitation conduction period (θon-θoff) set to correspond to the inductance increase interval to generate the positive torque is not in the state facing the rotation position sensor 300, the stator pole 210 Excitation) reverses by but torque.
이에, 본 발명의 제3 실시예에서 컨트롤러(400)는 모터를 기동할 시에 회전 위치 센서(300)로 감지한 회전자가 여자 통전구간(θon-θoff)에 있으면, 회전 위치 센서(300)로 감지하는 여자 통전구간(θon-θoff)에 맞춰 고정자 극 여자코일에 전압을 인가하여 구동 제어한다.Accordingly, in the third embodiment of the present invention, if the rotor sensed by the rotation position sensor 300 at the start of the motor is in the energizing period θon-θoff, the controller 400 is moved to the rotation position sensor 300. The drive is controlled by applying a voltage to the stator pole exciting coil in accordance with the sensing energizing section (θon-θoff).
또한, 컨트롤러(400)는 기동할 시에 회전자가 여자 통전구간(θon-θoff)에 있지 아니하면, 제1 실시예에서처럼 PWM 파형의 기동 신호에 따라 여자코일에 전압을 인가하여 회전자를 소정의 각도로 회전시키는 동작을 회전자가 여자 통전구간(θon-θoff)에 있게 될 때까지 반복하고, 회전자가 여자 통전구간(θon-θoff)에 있게 되면 이후 구동 신호에 따라 구동 제어한다.In addition, if the rotor 400 is not in the exciting energization section (θon-θoff) at the start-up, the controller 400 applies a voltage to the excitation coil in accordance with the start signal of the PWM waveform as in the first embodiment, thereby predetermining the rotor. The rotating operation at an angle is repeated until the rotor is in the excitation conduction section θon-θoff, and when the rotor is in the excitation conduction section θon-θoff, drive control is performed according to a drive signal thereafter.
한편, 영구자석(130)의 극호각(βm)은 아래의 수학식1로 표시한 바와 같이 회전자 오목극 극호각(βrc)의 1/5배 내지 2/3배로 하는 것이 좋다.On the other hand, the polar angle β m of the permanent magnet 130 is preferably 1/5 to 2/3 times the rotor concave pole polar angle β rc as expressed by Equation 1 below.
영구자석(130)의 극호각(βm)이 회전자 오목극 극호각(βrc)의 1/5배보다 작게 되면 도 13(c)의 상황에 놓일 시에 고정자 볼록극(211)과 회전자 볼록극(111) 간의 정렬 회전각(θ1~θ2)에 근접하여 기동 순간에 충분한 기동 회전력을 얻지 못하고, 회전자 오목극 극호각(βrc)의 2/3배보다 크면 도 13(b)의 상황에 놓일 시에 회전자 볼록극(111)이 고정자 볼록극(211)과 마주하기 시작하는 위치까지 도달하지 못할 수도 있다. 따라서, 상기 수학식 1로 표현한 범위로 하는 것이 좋다.If the polar angle β m of the permanent magnet 130 is smaller than 1/5 times that of the rotor concave polar angle β rc , the stator convex pole 211 is rotated with the stator convex pole 211 in the situation shown in FIG. 13 (b) when the starting rotational force at the moment of starting cannot be obtained close to the alignment rotation angles θ1 to θ2 between the electron convex poles 111 and is larger than 2/3 times the rotor concave pole polar angle β rc . When placed in the situation of the rotor convex 111 may not reach the position where it starts to face the stator convex pole 211. Therefore, it is good to set it as the range represented by said Formula (1).
그런데, 상기 영구자석(130)은 피치 홀(120)의 개구된 입구를 가로지르므로 자기 저항이 큰 재질로 구성되어서, 여자된 고정자 극(210)의 자기력선속 중에 영구자석(130)을 통해 경로 형성하는 자기력선속의 양을 낮게 하는 것이 좋다. 이를 위해서, 상기 영구자석(130)은 고무자석, 훼라이트 자석(Ferrite Magnet), 플라스틱 자석 또는 유기물 자석을 예로 들 수 잇는 비금속 자석으로 구성하여도 된다. 그런데, 모터에서 발생하는 열에 의해 손상될 수도 있으므로, 가능하면 내열성을 가지면서 자기 저항이 큰 자석을 사용하는 것이 좋다.However, the permanent magnet 130 is made of a material having a high magnetic resistance because it crosses the open inlet of the pitch hole 120, the path through the permanent magnet 130 during the magnetic flux flux of the excited stator pole 210 It is good to lower the amount of magnetic flux to form. To this end, the permanent magnet 130 may be composed of a non-metal magnet, such as a rubber magnet, a ferrite magnet, a plastic magnet or an organic material magnet. However, since it may be damaged by the heat generated by the motor, it is good to use a magnet having high magnetic resistance while having heat resistance if possible.
또한, 도면에는 상기 영구자석(130)을 회전자 오목극(112)에 부착 또는 고정하는 것으로 도시하였으나, 회전자 오목극(112)에 홈을 형성하여 상기 영구자석(130)을 홈에 끼움 고정하거나 또는 피치 홀을 이용하여 고정되게 하여도 된다.In addition, although the permanent magnet 130 is shown as attached to or fixed to the rotor concave electrode 112 in the drawing, the groove is formed in the rotor concave electrode 112 to fix the permanent magnet 130 into the groove. Or may be fixed using a pitch hole.
도 14는 본 발명에 따른 스위치드 릴럭턴스 모터를 실제 제작하여 구동시킨 상태에서 여자 코일에 흐르는 전류를 오실로스코프로 검출한 후, 검출한 데이터를 그래프로 도시한 도면이다. 14 is a graph showing the detected data after detecting the current flowing through the excitation coil with an oscilloscope in a state in which a switched reluctance motor according to the present invention is actually manufactured and driven.
상기 도 14에 도시한 전류(current) 파형에 따르면, 회전 위치 센서(300)로 감지한 턴온 회전각(θon)에서 여자 코일에 전압을 인가할 시에 완만한 전류 증가(C1)를 보이고, PWM제어를 가미한 실제에 있어서는 지수함수의 곡선(C2) 형태로 증가한다. 이는, 도 7(b)에 도시한 바와 같이 여자 코일에 전압을 인가할 시에 고정자 볼록극(211)과 회전자 볼록극(111) 간의 인덕턴스가 증가(릴럭턴스는 최대에서 감소시작)하기 시작함과 동시에 정렬된 상태에 가까운 고정자 오목극(212)과 회전자 볼록극(111) 간의 공극(G3)의 인덕턴스가 서서히 감소(릴럭턴스는 최소에서 증가시작)하기 때문이다. 즉, 고정자 오목극(212)과 회전자 볼록극(111) 간의 인덕턴스가 댐핑(damping) 작용을 하여서, 초기에 전류가 완만하게 상승한다.According to the current waveform shown in FIG. 14, when the voltage is applied to the excitation coil at the turn-on rotation angle θon sensed by the rotation position sensor 300, a gentle current increase C1 is shown, and PWM In practice with control, it increases in the form of an exponential curve (C2). This is because, as shown in Fig. 7 (b), when the voltage is applied to the excitation coil, the inductance between the stator convex pole 211 and the rotor convex pole 111 starts to increase (the reluctance starts to decrease at the maximum). This is because the inductance of the gap G3 between the stator concave pole 212 and the rotor convex pole 111 near the aligned state gradually decreases (the reluctance starts increasing at the minimum). That is, the inductance between the stator concave pole 212 and the rotor convex pole 111 acts as a damping function, so that the current initially rises slowly.
따라서, 본 발명은 여자 코일에 전압을 인가할 시에 전류 파형이 완만한 곡선으로 이루어지므로, 도 2에 도시한 전류파형처럼 급격하게 증가하는 종래기술에 비해 토크 및 코깅 충격 소음을 현격하게 줄일 수 있다.Therefore, since the present invention is made of a gentle curve when applying a voltage to the exciting coil, the present invention can significantly reduce the torque and cogging impact noise compared to the prior art, such as the current waveform shown in FIG. have.
이후, 고정자 볼록극(211)과 회전자 볼록극(111) 간의 인덕턴스 증가 영향으로, 더 이상 전류가 증가하지 않고 정상 평형 전류(Flat-Topped Phase Current)에 이르게 되며, 이후, 턴오프 회전각(θoff)에 도달해서 여자 전압이 오프(off)되면 여자코일에서의 자기 유도 전류 발생이 볼록극과 오목극의 전체적인 인덕턴스 영향으로 θ2까지 완만하게 소멸되고(C4) 실제 제작품의 콘트롤에서와 같이 θ1 이전부터 PWM 파형으로 여자전압을 제어할 경우 더욱 완만하게 감소하고(C3)과 자기 유도 전력을 억제하게되는 것을 볼 수 있다.Subsequently, due to the increase in inductance between the stator convex pole 211 and the rotor convex pole 111, the current does not increase any more and reaches a flat-topped phase current, and thereafter, the turn-off rotation angle ( θoff) and the excitation voltage is off, the generation of magnetic induction current in the excitation coil is gently extinguished to θ2 due to the overall inductance effect of the convex and concave poles (C4) and before θ1 as in the control of actual product When the excitation voltage is controlled by the PWM waveform, it can be seen that it decreases more gently (C3) and suppresses the magnetic induction power.
그리고, 여자 코일에 인가한 전압을 턴오프 회전각(θoff)에서 중단하면, 여자 코일에 축적된 전기가 환류 다이오드를 통해 콘덴서에 충전되면서 소자(消磁, demagnetization)되는 데, 이때, 전류가 급격히 줄어든다(C3, C4). When the voltage applied to the excitation coil is stopped at the turn-off rotation angle θ off, the electricity accumulated in the excitation coil is charged to the capacitor through the reflux diode and demagnetized, and the current decreases rapidly. (C3, C4).
이와 같이 본 발명은 돌극의 오목극과 볼록극의 자기-기구적인 구조에 의해 턴오프 회전각(θoff) 이후에 여자코일에 자기 유도 잔류 전기를 억제시키는 효과를 가지며, 따라서, 축적된 전기를 콘덴서에 반환하여 소자시키는데 더 짧은 시간이 소요되며, 턴오프 회전각(θoff)에서 발생하는 역토크 발생에 의한 진동 소음과 효율 저하를 저감시키는 효과를 얻을 수 있다.As described above, the present invention has the effect of suppressing the magnetic induction residual electricity in the excitation coil after the turn-off rotation angle θoff due to the self-mechanical structures of the concave and convex poles of the salient poles. It takes a shorter time to return to the device, and the effect of reducing vibration noise and efficiency decrease due to the reverse torque generated at the turn-off rotation angle θ off can be obtained.
이상에서 본 발명의 기술적 사상을 예시하기 위해 구체적인 실시 예로 도시하고 설명하였으나, 본 발명은 상기와 같이 구체적인 실시 예와 동일한 구성 및 작용에만 국한되지 않고, 여러가지 변형이 본 발명의 범위를 벗어나지 않는 한도 내에서 실시될 수 있다. 따라서, 그와 같은 변형도 본 발명의 범위에 속하는 것으로 간주해야 하며, 본 발명의 범위는 후술하는 특허청구범위에 의해 결정되어야 한다.Although illustrated and described in the specific embodiments to illustrate the technical spirit of the present invention, the present invention is not limited to the same configuration and operation as the specific embodiment as described above, within the limits that various modifications do not depart from the scope of the invention It can be carried out in. Therefore, such modifications should also be regarded as belonging to the scope of the present invention, and the scope of the present invention should be determined by the claims below.
[부호의 설명][Description of the code]
100 : 회전자100: rotor
110 : 회전자 극 111 : 회전자 볼록극 112 : 회전자 오목극 Reference numeral 110: rotor pole 111: rotor convex pole 112: rotor concave pole
113 : 단차 113: step
120 : 피치 홀 120: pitch hole
130 : 영구자석 130: permanent magnet
200 : 고정자200: stator
210 : 고정자 극 211 : 고정자 볼록극 212 : 고정자 오목극 210: stator pole 211: stator convex pole 212: stator concave pole
213 : 단차 214 : 운전극 여자코일 213: step 214: driving theater female coil
220 : 기동극 221 : 기동극 여자코일 220: mobile play 221: mobile play excitation coil
300 : 회전자 위치검출 센서 310 : 인코딩 센서판(반사판)300: rotor position detection sensor 310: encoding sensor plate (reflection plate)
400 : 컨트롤러400: controller
410 : 마이크로프로세서 420 : 제1 게이트 구동회로 410: microprocessor 420: first gate driving circuit
430 : 제2 게이트 구동회로 440 : 비대칭 컨버터 430: second gate driving circuit 440: asymmetric converter
450 : 싱글 스위칭 회로 460 : 전류 감지회로 450: single switching circuit 460: current sensing circuit
βr : 회전자 극 극호각 βs : 고정자 극 극호각β r : rotor pole polar angle β s : stator pole polar angle
βrc : 회전자 오목극 극호각 βm : 영구자석 극호각β rc : rotor concave polar angle β m : permanent magnet polar angle
Claims (14)
- 내면에 원주방향을 따라 등 방사각으로 형성한 복수의 회전자 극 간에 자로를 형성하는 회전자; A rotor forming a magnetic path between the plurality of rotor poles formed at an equal radial angle along the circumferential direction on an inner surface thereof;회전자의 내부에 고정 설치되며, 외면에 원주방향을 따라 형성하여 상호 간에 자로를 형성하는 복수의 고정자 극에 여자코일을 권선하고, 적어도 한쌍의 고정자 극이 공극을 사이에 두고 서로 다른 회전자 극에 하나씩 동시에 정렬(align)되는 고정자; It is fixed to the inside of the rotor, is formed along the circumferential direction on the outer side of the winding of the excitation coil to a plurality of stator poles to form a magnetic path between each other, at least a pair of stator poles with a different gap between the rotor poles Stators aligned at the same time one by one;회전자의 회전 위치를 감지하는 회전 위치 센서; 및 A rotation position sensor for sensing a rotation position of the rotor; And정토크를 발생시키기 위해 인덕턴스 증가 구간에 대응되게 미리 설정한 여자 통전구간(θon-θoff)에 여자코일에 전압을 인가하는 컨트롤러;A controller for applying a voltage to the excitation coil in an excitation conduction section (θon-θoff) that is set in advance corresponding to the inductance increase section to generate a positive torque;를 포함하는 스위치드 릴럭턴스 모터에 있어서, In the switched reluctance motor comprising:상기 회전자 극 및 고정자 극은 각각 단차가 형성되어 높이가 상이한 볼록극과 오목극으로 양분되되, 상호 정렬(align)될 시에 회전자 볼록극과 고정자 오목극이 마주하고 회전자 오목극과 고정자 볼록극이 마주하며, The rotor pole and the stator pole are each divided into convex poles and concave poles having different heights, and when the rotor poles and stator poles face each other when aligned, the rotor concave poles and the stator poles face each other. Convex, facing,상기 컨트롤러는 회전자 볼록극과 고정자 볼록극 간에 형성되는 인덕턴스 증가 구간에 대응되도록 상기 여자 통전구간이 설정되어 설정된 여자 통전구간(θon-θoff)에 여자코일에 전압을 인가함을 특징으로 하는 스위치드 릴럭턴스 모터.The controller is a switched clock, characterized in that to apply a voltage to the excitation coil in the excitation conduction section (θon-θoff) is set to correspond to the inductance increase interval formed between the rotor convex pole and the stator convex pole Turns motor.
- 제 1항에 있어서,The method of claim 1,상기 회전자는 회전자 극 간의 경계에 요홈 형상의 피치홀을 구비하여, 복수의 회전자 극이 피치 홀에 의해 구분되어 형성되게 함을 특징으로 하는 스위치드 릴럭턴스 모터.The rotor has a pitch hole of the groove shape at the boundary between the rotor poles, so that a plurality of rotor poles are formed by being divided by a pitch hole.
- 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2,고정자 볼록극이 어느 하나의 회전자 극의 회전자 볼록극과 마주하기 시작하여 마주하는 면의 면적이 증가할 시에, When the stator convex pole begins to face the rotor convex pole of any one rotor pole and the area of the facing face increases,고정자 오목극은 피치 홀을 경계로 인접하는 다른 하나의 회전자 극의 회전자 볼록극과 마주하는 면의 면적이 감소하게 됨을 특징으로 하는 스위치드 릴럭턴스 모터.The stator concave pole is characterized in that the area of the surface facing the rotor convex pole of the other rotor pole adjacent to the pitch hole is reduced.
- 제 3항에 있어서,The method of claim 3, wherein회전자 극 및 고정자 극의 단차는 각각 볼록극에서 오목극을 향해 하향 경사지게 형성됨을 특징으로 하는 스위치드 릴럭턴스 모터.A stepped reluctance motor, characterized in that the steps of the rotor poles and stator poles are respectively inclined downward from the convex pole toward the concave pole.
- 제 3항에 있어서,The method of claim 3, wherein회전자 극 및 고정자 극의 단차는 각각 회전자 극 및 고정자 극의 중심에 형성됨을 특징으로 하는 스위치드 릴럭턴스 모터.Switched reluctance motor, characterized in that the step of the rotor pole and the stator pole is formed at the center of the rotor pole and the stator pole, respectively.
- 제 4항에 있어서,The method of claim 4, wherein상기 피치 홀의 입구의 원주 방향 폭은 고정자 극의 단차의 횡방향 폭과 동일함을 특징으로 하는 스위치드 릴럭턴스 모터.Switched reluctance motor, characterized in that the circumferential width of the inlet of the pitch hole is equal to the transverse width of the step of the stator pole.
- 제 3항에 있어서,The method of claim 3, wherein회전자 극 및 고정자 극의 단차는 회전자 볼록극과 고정자 볼록극이 정렬될 시의 공극(G1)의 1~5배임을 특징으로 하는 스위치드 릴럭턴스 모터.The step of the rotor poles and stator poles is a switched reluctance motor, characterized in that 1 to 5 times the gap (G1) when the rotor convex pole and the stator convex pole is aligned.
- 제 4항에 있어서,The method of claim 4, wherein상기 단차의 경사각은 30~60°임을 특징으로 하는 스위치드 릴럭턴스 모터.Switched reluctance motor, characterized in that the inclination angle of the step is 30 ~ 60 °.
- 제 3항에 있어서,The method of claim 3, wherein쌍으로 구비되는 고정자 극은 각각 서로 다른 회전자 극에 동시 정렬되고, 상기 컨트롤러는 각각의 고정자 극 여자코일을 동시에 여자하여서, 단상 스위치드 릴릭턴스 모터로 동작함을 특징으로 하는 스위치드 릴럭턴스 모터.The stator poles provided in pairs are simultaneously aligned with different rotor poles, and the controller simultaneously excites each stator pole excitation coil to operate as a single-phase switched reluctance motor.
- 제 9항에 있어서,The method of claim 9,상기 회전자의 회전자 극의 개수는 2n+2개이고, n은 자연수이며, The number of rotor poles of the rotor is 2n + 2, n is a natural number,상기 고정자는 회전자 극에 동시 정렬되는 2n개의 고정자 극을 구비하고, 고정자 극이 회전자 극에 정렬될 시에, 고정자 극에 정렬되지 아니하는 2개의 회전자 극의 단차와 하나씩 마주하고 기동극 여자코일이 권선되는 2개의 기동극을 구비하며, The stator has 2n stator poles which are simultaneously aligned with the rotor poles, and when the stator poles are aligned with the rotor poles, the moving poles face one by one with the steps of two rotor poles which are not aligned with the stator poles. It has two moving poles to which the excitation coil is wound.상기 컨트롤러는 모터를 기동할 시에 회전자가 여자 통전구간(θon-θoff)에 있으면 회전 위치 센서로 감지하는 여자 통전구간(θon-θoff)에 맞춰 고정자 극 여자코일에 전압을 인가하여 기동을 시도하고, 모터를 기동할 시에 회전자가 여자 통전구간(θon-θoff)에 있지 아니하거나 또는 기동 시도가 실패할 시에, 마이크로프로세서에서 출력하는 PWM 파형을 이루는 기동 신호에 따라 기동극을 여자하는 동작과 고정자 극을 여자하는 동작을 반복하는 중에 회전자가 여자 통전구간(θon-θoff)에 있게 될 시에 기동을 재시도함을 특징으로 하는 스위치드 릴럭턴스 모터.The controller attempts to start by applying a voltage to the stator pole excitation coil according to the excitation conduction section (θon-θoff) detected by the rotation position sensor if the rotor is in the excitation conduction section (θon-θoff) when starting the motor. When the rotor is not in the energizing section (θon-θoff) when starting the motor or when the starting attempt fails, the starting pole is excited according to the starting signal of the PWM waveform output from the microprocessor. A switched reluctance motor, characterized in that a start is retried when the rotor is in the energizing section (θon-θoff) while repeating the excitation of the stator poles.
- 제 3항에 있어서,The method of claim 3, wherein상기 회전자는 k를 자연수라고 할 시에 복수의 회전자 오목극 중에 2k개의 회전자 오목극에 각각 하나씩 장착하는 영구자석을 구비하되, The rotor is provided with a permanent magnet to be mounted to each of the rotor concave poles 2k of the plurality of rotor concave when k is a natural number,상기 영구자석은 피치홀에 치우치게 회전자 오목극에 장착되고, k개의 영구자석과 나머지 k개의 영구자석이 서로 다른 극성으로 내부를 향하게 장착됨을 특징으로 하는 스위치드 릴럭턴스 모터.The permanent magnet is mounted on the rotor concave to the pitch hole, k permanent magnets and the remaining k permanent magnets are mounted to the inside with different polarities facing the switch.
- 제 11항에 있어서,The method of claim 11,상기 영구자석은 피치홀의 입구를 가로질러 회전자 볼록극의 원주방향 측면에 밀착되게 장착됨을 특징으로 하는 스위치드 릴럭턴스 모터.The permanent magnet motor is characterized in that the permanent magnet is mounted in close contact with the circumferential side of the rotor convex pole across the inlet of the pitch hole.
- 제 12항에 있어서,The method of claim 12,상기 영구자석은 회전자 오목극의 극호각의 1/5배 내지 2/3배의 극호각을 갖는 원호 형상으로 형성되어 외면을 회전자 오목극에 밀착되게 장착되게 하고 공극(G1)을 유지하게 함을 특징으로 하는 스위치드 릴럭턴스 모터.The permanent magnet is formed in an arc shape having a polar angle of 1/5 times to 2/3 times the polar angle of the rotor concave pole so that the outer surface is mounted in close contact with the rotor concave pole and maintains the space G1. Switched reluctance motor, characterized in that.
- 제 12항에 있어서,The method of claim 12,상기 컨트롤러는 The controller모터를 기동할 시에 회전자가 여자 통전구간(θon-θoff)에 있으면 회전 위치 센서로 감지하는 여자 통전구간(θon-θoff)에 맞춰 고정자 극 여자코일에 전압을 인가하여 기동을 시도하고, 모터를 기동할 시에 회전자가 여자 통전구간(θon-θoff)에 있지 아니하면 마이크로프로세서에서 출력하는 PWM 파형을 이루는 기동 신호에 따라 기동극을 여자하는 동작을 반복하여 회전자가 여자 통전구간(θon-θoff)에 있게 될 시에 기동함을 특징으로 하는 스위치드 릴럭턴스 모터.If the rotor is in the energizing section (θon-θoff) when starting the motor, apply the voltage to the stator pole excitation coil according to the exciting energizing section (θon-θoff) detected by the rotation position sensor, and start the motor. If the rotor is not in the excitation energization section (θon-θoff) at the start-up, the rotor repeats the operation of exciting the pole according to the start signal of the PWM waveform output from the microprocessor. Switched reluctance motor, characterized in starting at the time of arrival.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0089815 | 2014-07-16 | ||
KR1020140089815A KR101644572B1 (en) | 2014-07-16 | 2014-07-16 | Switched reluctance motor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016010361A1 true WO2016010361A1 (en) | 2016-01-21 |
Family
ID=55078772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/007345 WO2016010361A1 (en) | 2014-07-16 | 2015-07-15 | Switched reluctance motor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101644572B1 (en) |
WO (1) | WO2016010361A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108199506A (en) * | 2018-02-05 | 2018-06-22 | 江蓝(深圳)新能源科技有限公司 | 6/8 pole switching reluctance motor |
CN117938018A (en) * | 2024-03-20 | 2024-04-26 | 深圳大学 | A motor attitude control method, device and equipment for an attitude adjustment platform |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11121663B2 (en) | 2016-11-11 | 2021-09-14 | Sn Innovation Co., Ltd. | 2-phase outer ring switched reluctance motor for low-speed and high-flow rate fan |
KR101916814B1 (en) * | 2016-11-11 | 2018-11-09 | 주식회사 에스엔이노베이션 | 2 phase External Rotor Switched Reluctance Motor for High Volume Low Speed Fan |
KR102036994B1 (en) * | 2018-04-23 | 2019-10-25 | 경성대학교 산학협력단 | 2-phase Switched Reluctance Motor with step stator structure |
CN110138128B (en) * | 2019-05-22 | 2021-12-07 | 溧阳市宏达电机有限公司 | Permanent magnet servo motor capable of precisely positioning and swinging and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0847224A (en) * | 1994-07-25 | 1996-02-16 | Emerson Electric Co | Single-phase changeover type reaction motor and its startingmethod |
KR100229963B1 (en) * | 1990-04-30 | 1999-11-15 | 그린 데니스 제이. | Hybrid Single Phase Variable Reluctance Motor |
JP2005020888A (en) * | 2003-06-26 | 2005-01-20 | Mitsuba Corp | Control method for rotating electric machine |
WO2005112226A1 (en) * | 2004-05-17 | 2005-11-24 | Fumito Komatsu | Four-pole synchronous motor |
KR20120134984A (en) * | 2011-06-02 | 2012-12-12 | 삼성전기주식회사 | Switched reluctance motor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61154467A (en) * | 1984-12-12 | 1986-07-14 | Secoh Giken Inc | 1-phase reluctance type motor |
KR20000012339A (en) * | 1999-11-27 | 2000-03-06 | 이석주 | Reluctance low volocity synchronous motor |
KR100677285B1 (en) | 2005-07-11 | 2007-02-02 | 엘지전자 주식회사 | Switched reluctance motor |
KR20140073395A (en) | 2012-12-06 | 2014-06-16 | 삼성전기주식회사 | Switched reluctance motor |
-
2014
- 2014-07-16 KR KR1020140089815A patent/KR101644572B1/en active Active
-
2015
- 2015-07-15 WO PCT/KR2015/007345 patent/WO2016010361A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100229963B1 (en) * | 1990-04-30 | 1999-11-15 | 그린 데니스 제이. | Hybrid Single Phase Variable Reluctance Motor |
JPH0847224A (en) * | 1994-07-25 | 1996-02-16 | Emerson Electric Co | Single-phase changeover type reaction motor and its startingmethod |
JP2005020888A (en) * | 2003-06-26 | 2005-01-20 | Mitsuba Corp | Control method for rotating electric machine |
WO2005112226A1 (en) * | 2004-05-17 | 2005-11-24 | Fumito Komatsu | Four-pole synchronous motor |
KR20120134984A (en) * | 2011-06-02 | 2012-12-12 | 삼성전기주식회사 | Switched reluctance motor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108199506A (en) * | 2018-02-05 | 2018-06-22 | 江蓝(深圳)新能源科技有限公司 | 6/8 pole switching reluctance motor |
CN108199506B (en) * | 2018-02-05 | 2023-08-25 | 江蓝(深圳)新能源科技有限公司 | 6/8 pole switch reluctance motor |
CN117938018A (en) * | 2024-03-20 | 2024-04-26 | 深圳大学 | A motor attitude control method, device and equipment for an attitude adjustment platform |
Also Published As
Publication number | Publication date |
---|---|
KR20160009774A (en) | 2016-01-27 |
KR101644572B1 (en) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016010361A1 (en) | Switched reluctance motor | |
JP3775189B2 (en) | Starter generator for internal combustion engines | |
US6424114B1 (en) | Synchronous motor | |
WO2013147550A1 (en) | Stator having three-line connection structure, bldc motor using same, and driving method therefor | |
KR101321307B1 (en) | Drive apparatus for switched reluctance motor and method thereof | |
WO2017003033A1 (en) | Outer wheel rotor type switched reluctance motor | |
WO2018147610A1 (en) | Stator and motor comprising same | |
KR960006216A (en) | Dynamo Electric Machinery and its starting method | |
WO2017176062A1 (en) | Slim-type stator, sensorless single-phase motor using same, and cooling fan | |
WO2017123013A1 (en) | Permanent magnet rotating device having minimized cogging torque, permanent magnet generator using same, and permanent magnet motor | |
WO2013085231A1 (en) | Rotor including permanent magnets having different thicknesses and motor including same | |
EP3711141A1 (en) | Motor | |
US20090115363A1 (en) | Electronic Commutator Circuits | |
WO2017204425A1 (en) | Permanent magnet electrical equipment having non-uniform magnetic pole length | |
US6665102B2 (en) | Galvanometer-type scanner | |
EP3475476A1 (en) | Washing machine | |
WO2014121466A1 (en) | Disk-type three-phase brushless permanent magnet direct current motor | |
WO2018021727A1 (en) | Washing machine | |
WO2021010635A1 (en) | 4-phase switched reluctance motor | |
JP3163285B2 (en) | Synchronous motor | |
WO2022260460A1 (en) | High efficiency motor | |
JP3050851B2 (en) | Synchronous motor | |
GB2031669A (en) | Circuits for brushless dc motors | |
WO2022211137A1 (en) | Reciprocating switched reluctance motor-driven engine | |
WO2024080774A1 (en) | Switched reluctance motor comprising permanent magnets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15821672 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.05.2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15821672 Country of ref document: EP Kind code of ref document: A1 |