+

WO2016002730A1 - 光学表示デバイスの検査方法および光学部材のパターン認識方法 - Google Patents

光学表示デバイスの検査方法および光学部材のパターン認識方法 Download PDF

Info

Publication number
WO2016002730A1
WO2016002730A1 PCT/JP2015/068726 JP2015068726W WO2016002730A1 WO 2016002730 A1 WO2016002730 A1 WO 2016002730A1 JP 2015068726 W JP2015068726 W JP 2015068726W WO 2016002730 A1 WO2016002730 A1 WO 2016002730A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
boundary
display device
regions
detected
Prior art date
Application number
PCT/JP2015/068726
Other languages
English (en)
French (fr)
Inventor
廷槐 陳
伸彦 西原
大充 田中
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201580033255.0A priority Critical patent/CN106462008A/zh
Publication of WO2016002730A1 publication Critical patent/WO2016002730A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to an optical display device inspection method and an optical member pattern recognition method.
  • a polarizer layer is disposed on the display surface side of the liquid crystal panel, and a patterned retardation layer is disposed further on the viewing side thereof.
  • a polarizing film is disposed on the backlight side of the liquid crystal panel.
  • the polarizer layer is a layer having an optical function of absorbing the polarization component of the vibration plane parallel to the absorption axis of the polarizer layer and transmitting the polarization component of the orthogonal vibration plane among the light incident from the liquid crystal panel side. .
  • the transmitted light immediately after passing through the polarizer layer is linearly polarized light.
  • the patterned retardation layer is usually formed on a substrate film.
  • the patterned retardation layer includes a first region and a second region.
  • the first region and the second region are each formed in a band shape, and are alternately arranged corresponding to the pixel arrangement of the liquid crystal panel formed in a matrix.
  • FIG. 10 is a plan view for explaining alignment between the liquid crystal panel P and the patterned retardation layer 3 in the 3D liquid crystal display device.
  • the red pixels R, the green pixels G, and the blue pixels B are periodically arranged along the long side (the horizontal direction of the liquid crystal panel P in FIG. 10: the horizontal width direction).
  • a large number of pixels R, G, and B of each color are arranged in the left-right direction to form a pixel column L, and the pixel column L is above and below the display area of the liquid crystal panel P (the vertical direction of the liquid crystal panel P in FIG. 10). Many are arranged across.
  • the patterned retardation layer 3 has a plurality of first regions 3R and a plurality of second regions 3L extending along the long sides of the patterned retardation layer 3 (left and right in FIG. 10: horizontal width direction). is doing.
  • a large number of first regions 3R and second regions 3L are arranged in the vertical direction (vertical direction in FIG. 10) corresponding to each pixel column L of the liquid crystal panel P.
  • the first region 3R is arranged on the viewing side of the pixel column L that displays the right-eye image
  • the second region 3L is arranged on the viewing side of the pixel column L that displays the left-eye image.
  • the first region 3R and the second region 3L have different phase difference directions, and the right-eye image and the left-eye image are displayed on the viewer side in different polarization states (for example, patents). Reference 1).
  • the patterned retardation layer 3 is bonded to the liquid crystal panel P so that the boundary line K between the first region 3R and the second region 3L is located between the pixel columns L, and the liquid crystal panel P is used.
  • An FPR 3D liquid crystal display device is configured.
  • the user views the display image through so-called polarized glasses equipped with optical elements having different optical characteristics between the right-eye lens and the left-eye lens.
  • Each image for the left eye is selectively visually recognized. Accordingly, the user can recognize a stereoscopic image obtained by fusing the images of both eyes.
  • the first region of the patterned retardation layer and the pixel column of the liquid crystal panel, or the second region and the pixel column are accurately associated with each other,
  • An optical member including the optical retardation layer and the polarizer layer is bonded to the liquid crystal panel.
  • both the first region and the second region of the patterned retardation layer overlap one pixel row, the right-eye image that should be recognized only by the right eye is also recognized by the left eye. In other words, so-called crosstalk occurs, and the image quality of the stereoscopic display image may be deteriorated.
  • the inspection method used so far for a normal liquid crystal display device that does not perform stereoscopic display is used to inspect the bonding state of the liquid crystal panel and the optical member. I was going. Specifically, with respect to the liquid crystal panel, the alignment mark or the black matrix is used as a reference, and the optical member is used as a reference with the end of the optical member as a reference. Manufacturing inspection was performed by confirming the relative position in a plane.
  • each pixel column overlaps the first region and the second region on a one-to-one basis.
  • each pixel column overlaps the first region and the second region on a one-to-one basis. If not, crosstalk occurs and it is determined that the product is defective.
  • such a defective product cannot be detected, and it is difficult to ensure the quality of the stereoscopic display image.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an inspection method for an optical display device capable of performing a reliable quality inspection. It is another object of the present invention to provide a pattern recognition method for an optical member that can accurately recognize the boundary between the first region and the second region of the patterned retardation layer.
  • one embodiment of the present invention is an inspection method for an optical display device in which an optical member including a retardation layer and an optical display component having a plurality of pixel columns are bonded.
  • the retardation layer extends in a band shape in one direction, a plurality of first regions that change incident linearly polarized light into a first polarization state, and extends in a band shape in the same direction as the extending direction of the first region.
  • a plurality of second regions that change the incident linearly polarized light into a second polarization state, wherein the plurality of first regions and the plurality of second regions are the first region and the second region.
  • the pixel columns are alternately arranged in a direction intersecting with the extending direction of the first pixel region in a region between the boundary between the adjacent first pixel region and the adjacent pixel column.
  • Measuring process for measuring distance in plan view of the reference line set along It provides a test method of an optical display device having, a determination step of performing quality determination of the optical display device based on the distance.
  • the measurement step and the determination step may be performed in the center of the display area of the optical display component.
  • the measurement step and the determination step may be performed in the peripheral portion of the optical member in the extending direction.
  • the measurement step and the determination step may be performed in the peripheral portion of the optical member in the intersecting direction.
  • the boundary between the first region and the second region detected in the peripheral portion of the optical member in the intersecting direction prior to the measurement step, the boundary between the first region and the second region detected in the peripheral portion of the optical member in the intersecting direction, and the position Based on the design value of the phase difference layer, the position of the boundary separated from the boundary detected in the peripheral portion is estimated, and the first region and the second region closest to the estimated boundary position are It is also possible to use a method for detecting the boundary.
  • the coordinates of the end portions of a plurality of pixels included in the pixel column are detected at the side portions facing each other in the adjacent pixel columns, and for each pixel column, A straight line corresponding to the side portion may be approximated based on the plurality of detected coordinates, and the reference line may be set between two obtained approximate lines.
  • the coordinates of the end portions of a plurality of pixels are detected on one side of the two adjacent pixel columns on the side facing the other pixel column.
  • a straight line corresponding to the side portion may be approximated based on the plurality of detected coordinates, and the reference line may be set based on the obtained approximate line and a design value of the optical display component.
  • a linear detection region is set across the adjacent first region and the second region, and the first region and the first region are arranged along the detection region. It is good also as a method of detecting the brightness with two areas at a plurality of points and detecting the boundary based on the detected brightness of the plurality of points.
  • a plurality of the boundaries may be detected in the plurality of detection regions, and a straight line corresponding to the boundaries may be approximated based on the detected coordinates of the plurality of boundaries.
  • Another embodiment of the present invention is a pattern recognition method for an optical member including a retardation layer, wherein the retardation layer extends in a band shape in one direction and changes incident linearly polarized light into a first polarization state.
  • the plurality of first regions and the plurality of second regions are alternately arranged in a direction intersecting with the extending direction of the first region and the second region, and the optical member in the intersecting direction is arranged.
  • the first region in the center of the optical member in the intersecting direction and the Approximate the position of the boundary with the second area, before the estimated It provides a pattern recognition method of an optical member having a step of detecting a boundary between nearest the first region and the second region to the position of the boundary.
  • an inspection method for an optical display device capable of highly reliable quality inspection.
  • a pattern recognition method for an optical member that can accurately recognize the boundary between the first region and the second region of the patterned retardation layer.
  • FIGS. 1 to 4A and 4B are explanatory views showing a display device (optical display device) 100 inspected by the optical display device inspection method of the present embodiment.
  • FIG. 1 is a plan view showing a schematic configuration of the display device 100.
  • FIG. 2 is a cross-sectional view of the display device 100 taken along line II-II in FIG.
  • the display device 100 of this embodiment is an FPR 3D liquid crystal display device.
  • the display device 100 includes a liquid crystal panel (optical display component) P, a polarizing film F ⁇ b> 11, and an optical member 1.
  • the liquid crystal panel P includes a first substrate P1 having a rectangular shape in a plan view, and a relatively small rectangular shape arranged to face the first substrate P1. And a liquid crystal layer P3 sealed between the first substrate P1 and the second substrate P2.
  • the liquid crystal panel P has a rectangular shape that conforms to the outer shape of the first substrate P1 in a plan view, and a region that falls inside the outer periphery of the liquid crystal layer P3 in a plan view is a display region P4.
  • Alignment marks Am for positioning are provided at the four corners of the liquid crystal panel P in plan view.
  • FIG. 1 shows that the alignment marks Am are provided at all four corners, for example, a total of three alignment marks may be provided at three of the four corners, and a total of 2 may be provided at diagonal positions of the four corners. Two alignment marks may be provided.
  • a polarizing film F11 is bonded on the backlight side of the liquid crystal panel P.
  • the polarizing film F11 is bonded to the liquid crystal panel P via an adhesive layer (not shown).
  • the polarizing film F11 has an optical function of absorbing the polarization component of the vibration plane parallel to the absorption axis and transmitting the polarization component of the vibration plane orthogonal to the incident light.
  • the transmitted light immediately after passing through the polarizing film F11 is linearly polarized light.
  • the optical member 1 is bonded to the display surface side of the liquid crystal panel P.
  • the optical member 1 has a polarizer layer 2 and a patterned retardation layer (retardation layer) 3, and is bonded to the liquid crystal panel P so that the polarizer layer 2 side faces the liquid crystal panel P.
  • the polarizer layer 2 and the patterned retardation layer 3 constituting the optical member 1 can be manufactured by a conventionally known manufacturing method.
  • the polarizer layer 2 has an optical function of absorbing the polarization component of the vibration plane parallel to the absorption axis and transmitting the polarization component of the vibration plane orthogonal to the light incident from the liquid crystal panel P side.
  • the transmitted light immediately after passing through the polarizer layer 2 is linearly polarized light.
  • the polarizing film F11 and the optical member 1 are bonded to the liquid crystal panel P so that the polarizing film F11 and the polarizer layer 2 of the optical member 1 are in a crossed Nicols arrangement.
  • FIG. 3 is a schematic plan view of the patterned retardation layer 3 of the optical member 1 in plan view.
  • the patterned retardation layer 3 has a plurality of first regions 3R and a plurality of second regions 3L.
  • the patterned retardation layer 3 is a member having a rectangular shape in plan view.
  • region 3R changes the linearly polarized light inject
  • the second region 3L changes the linearly polarized light emitted through the polarizer layer 2 to, for example, left-handed circularly polarized light (second polarization state).
  • the first region 3R and the second region 3L are formed in a strip shape extending in the longitudinal direction of the patterned retardation layer 3, and in a direction crossing the extending direction of the first region 3R and the second region 3L. Alternatingly arranged.
  • the widths of the first region 3R and the second region 3L are set according to the size of the pixels of the liquid crystal panel P to be bonded, and are, for example, about 400 ⁇ m to 500 ⁇ m.
  • the extending directions of the first region 3R and the second region 3L in the patterned retardation layer 3 are defined as the “longitudinal direction” of the patterned retardation layer 3, the first region 3R, and the second region 3L.
  • the arrangement direction may be referred to as the “width direction” of the patterned retardation layer 3. That is, the above “longitudinal direction” corresponds to the “extending direction” in the present invention, and the “width direction” corresponds to the “crossing direction” in the present invention.
  • the patterned retardation layer 3 has an “extra region” that protrudes from the overlapping portion with the display region P4 in the width direction of the display device 100 when the display device 100 overlaps the display region P4 of the liquid crystal panel P in a planar manner. Thus, it is formed larger than the display area P4 in plan view.
  • the first region 3R and the second region 3L are provided not only in a portion overlapping the display region P4 but also in a surplus region.
  • “the patterned retardation layer (retardation layer) 3 and the display area P4 of the liquid crystal panel (optical display component) P overlap in a plane” described in the present invention means, for example, as shown in FIG.
  • a case where another layer (polarizer layer 2) is interposed between the patterned retardation layer 3 and the liquid crystal panel P is also included.
  • FIG. 4A and 4B are schematic plan views focusing on the positional relationship between the display region P4 of the display device 100 and the optical member 1.
  • FIG. 4A is an overall view
  • FIG. 4B is a partially enlarged view.
  • the position and coordinates may be indicated using a screen coordinate system having the origin at the upper left of the display surface area when the display surface area is viewed in plan.
  • the horizontal direction of the display area P4 is the X-axis direction
  • the vertical direction of the display area P4 is the Y-axis direction.
  • the direction from left to right is the positive direction
  • the direction from top to bottom is the positive direction.
  • a plurality of red pixels R, green pixels G, and blue pixels B are periodically arranged in the display region P4 to form a pixel row L.
  • Each pixel column is arranged in the Y-axis direction of the display area P4.
  • the first pixel column counted from the origin is denoted by symbol L1
  • the second pixel column is denoted by symbol L2
  • the 2n-th pixel column is denoted by symbol L2n in order. It is shown that 2n pixel columns L are included in the display area P4.
  • the image for the right eye and the image for the left eye are each displayed using n columns of pixels.
  • each pixel column L is designed such that the first region 3R or the second region 3L overlaps in a one-to-one plane.
  • a boundary line BL between the first region 3R and the second region 3L overlaps an inter-pixel region between two adjacent pixel columns L.
  • FIG. 4B shows that a grid-like light shielding member (black matrix) BM is provided in the inter-pixel region.
  • a protective film (not shown) may be bonded to the surface of the optical member 1 on the patterned retardation layer 3 side.
  • the protective film is a transparent resin film that protects the surface of the optical member 1, and is provided so as to be peelable from the optical member 1.
  • the liquid crystal panel P to which the polarizing film F11 and the optical member 1 are bonded becomes the display device 100 by further incorporating a drive circuit, a backlight unit, and the like (not shown).
  • the driving method of the liquid crystal panel P is known in this field such as TN (TwistedistNematic), STN (SuperTwisted Nematic), VA (Vertical Alignment), IPS (In-Plane Switching), OCB (Optically Compensated Bend).
  • TN TransmissionistNematic
  • STN SuperTwisted Nematic
  • VA Very Alignment
  • IPS In-Plane Switching
  • OCB Optically Compensated Bend
  • the display device 100 inspected by the optical device inspection method of the present embodiment has the above-described configuration.
  • FIG. 5A and FIG. 5B to FIG. 9 are explanatory diagrams of the inspection method for the optical display device of this embodiment.
  • the boundary between the first region 3R and the second region 3L of the optical member is detected, and the detected boundary is used as a reference on the optical member side.
  • a reference line serving as a reference on the liquid crystal panel side is set in an inter-pixel region between adjacent pixel rows L of the liquid crystal panel.
  • the distance between the reference on the optical member side and the reference on the liquid crystal panel side is measured (measuring process), and based on the measured distance, the first region 3R of the optical member, the pixel column of the liquid crystal panel, and the second region 3L And whether or not the pixel columns of the liquid crystal panel are bonded in good correspondence with each other (determination step), and the optical display device is inspected.
  • the optical display device inspection method of the present embodiment may include a step of detecting a boundary between the first region 3R and the second region 3L by the following method.
  • the detection of the boundary between the first region 3R and the second region 3L is performed based on an image captured with respect to the display device 100.
  • the captured image at this time includes both the optical member 1 and the liquid crystal panel P, but only the optical member 1 is shown in FIGS. 5A and 5B for convenience of explanation.
  • an area including a boundary between the first area 3R and the second area 3L, which is a detection target, is imaged by an imaging device (not shown).
  • an imaging device not shown.
  • imaging is performed from the same side as the imaging device. Irradiate light to the area.
  • a linear detection area DA is set across the adjacent first area 3R and second area 3L.
  • the first area 3R and the second area 3L appear to have different colors and brightness, so that the first area 3R and the second area 3L can be distinguished.
  • the brightness of the first region 3R and the second region 3L is detected at a plurality of points along the detection region DA in the captured image.
  • Lightness detection may be performed continuously at a plurality of points along the detection area DA, or may be performed discretely at a plurality of points.
  • FIG. 5A shows that brightness is continuously detected at a plurality of points along the detection area DA in the direction indicated by the arrow in the detection area DA.
  • the boundary point BP may be a point detected according to a predetermined determination method in a range where the lightness is a and b, not a point where the lightness is an intermediate value between a and b.
  • the captured image may be represented in gray scale, and the boundary point BP between the first region 3R and the second region 3L may be detected for the gray scale image by the above method.
  • the boundary may be detected by binarizing the captured image with a predetermined brightness as a threshold without detecting the brightness at a plurality of points.
  • the boundary point BP detected in this way corresponds to the boundary between the first region 3R and the second region 3L in the present invention.
  • a plurality of boundary points BP are detected in a plurality of detection areas DA, and the boundary between the first area 3R and the second area 3L is determined based on the coordinates of the detected plurality of boundary points BP.
  • a corresponding straight line (boundary line BL) may be obtained by approximation.
  • a conventionally known statistical method can be used. For example, an approximation method for obtaining a regression line (approximate line) using the least square method for the coordinates of a plurality of boundary points BP can be given.
  • FIG. 6A and 6B are explanatory diagrams illustrating an example of a method for setting a reference line between the pixel columns L.
  • FIG. The optical display device inspection method of the present embodiment may include a step of setting a reference line between adjacent pixel rows L by the following method.
  • the reference line is set based on an image captured for the display device 100.
  • the captured image at this time includes both the optical member 1 and the liquid crystal panel P, but only the liquid crystal panel P is shown in FIGS. 6A and 6B for convenience of explanation.
  • the coordinates of the ends of a plurality of pixels R, G, and B included in the pixel column are detected based on the image captured for the pixel column L.
  • the end portion on the side facing the pixel column Lb is indicated by reference numeral E1.
  • an end portion on the side facing the pixel column La is indicated by a symbol E2.
  • a conventionally known statistical method can be used. For example, an approximation method for obtaining a regression line (approximate line) using the least square method for the coordinates of the plurality of end portions E1 can be given.
  • an approximation method for obtaining a regression line (approximate line) using the least square method for the coordinates of the plurality of end portions E1 can be given.
  • any two points for example, the plurality of end portions E1 from which the coordinates are detected (for example, , Two points at both ends), and a straight line connecting the two points may be used as the approximate line AL1.
  • a reference line is set between the two approximate lines AL1 and AL2 obtained.
  • the reference line is preferably set at an intermediate position between the approximate lines AL1 and AL2, but may be shifted from the intermediate position to either of the approximate lines AL1 and AL2.
  • the distance between the approximate lines AL1 and AL2 obtained from the approximate lines AL1 and AL2 is W
  • the reference line FL is located at an intermediate position between the approximate lines AL1 and AL2 (position at a distance W / 2 from the approximate line AL1). Is shown as setting.
  • the reference line is located at a position ⁇ / 2 from the approximate line AL1 in the Y direction.
  • FL may be set.
  • the boundary (boundary point BP or boundary line BL) between the first region 3R and the second region 3L detected by the method illustrated in FIGS. 5A and 5B from the captured image, and the method illustrated in FIGS. 6A and 6B. Measure the distance from the reference line FL set in. In the following description, the boundary line BL between the first region 3R and the second region 3L is obtained.
  • the boundary line BL of the optical member 1 and the reference line FL of the liquid crystal panel P are obtained in an overlapping manner. Therefore, the distance D between the boundary line BL and the reference line FL in plan view can be obtained based on the image.
  • the “distance D” refers to the reference line FL from a plurality of arbitrary points on the boundary line BL. This is the average value of the distance from the intersection of the vertical line and the reference line FL to the above-mentioned arbitrary point when the vertical line is drawn.
  • the “distance D” refers to the perpendicular and the reference when the perpendicular from the boundary point BP to the reference line FL is drawn. It refers to the distance from the intersection with the line FL to the boundary point BP.
  • the quality of the display device 100 is determined based on the obtained distance. Specifically, a numerical range of distance that can be determined as non-defective is set in advance, and if the measured value of distance is within the set numerical range, it is non-defective if the measured value is larger than the set numerical range. judge.
  • the quality determination by the above-described element technology is performed at the center of the display region P4 of the liquid crystal panel P.
  • the first region 3R and the second region 3L are 1 for the pixel column in the center of the display region (for example, the nth pixel column Ln and the (n + 1) th pixel column L (n + 1)). It is necessary to determine whether it is well bonded by corresponding to one.
  • the region overlapping the nth pixel column Ln surely has a pattern corresponding to the first pixel column (for example, the first pixel column). There is no guarantee that the pattern is the nth pattern (second region 3L) counted from the region 3R).
  • the optical member pattern recognition method described below recognizes the nth second region 3L and the (n + 1) th first region 3R corresponding to the center of the display region P4, and the second region 3L The boundary with the first region 3R is detected by the above-described method.
  • FIG. 8 is an explanatory diagram showing a pattern recognition method for an optical member according to this embodiment.
  • the boundary between the first region 3R and the second region 3L is detected at the periphery of the optical member 1 in the width direction.
  • the boundary detection method at this time the above-described method can be used.
  • the above-mentioned “peripheral portion” may be a portion that overlaps the display region P4 in the optical member 1 in a plane, and overlaps in a surplus region DM that is outside the display region P4 in the optical member 1 in a plane. It may be a part. That is, the boundary to be detected may be a boundary between the first region 3R that overlaps the first pixel column L1 and the second region 3L that overlaps the second pixel column L2, but is outside the display region P4. It may be a boundary between the first region 3R and the second region 3L arranged in the surplus region DM.
  • FIG. 8 shows that the boundary line BLx between the first region 3R and the second region 3L is detected in the surplus region DM.
  • the n-th second area 3L spaced from the boundary line BLx, the (n + 1) -th Approximate the position of the boundary with one region 3R. That is, from the design value of the width of the first region 3R and the design value of the width of the second region 3L, the nth second region 3L with reference to the boundary line BLx and the (n + 1) th first region 3R Approximate the boundary location.
  • the approximate position CP is shown as the approximate position.
  • the boundary between the first region 3R and the second region 3L and closest to the approximate point CP is defined as the boundary between the nth second region 3L and the (n + 1) th first region 3R, and Detect boundaries with the method.
  • FIG. 8 shows that the boundary line BL1 is detected.
  • FIG. 9 is an explanatory diagram illustrating an inspection method for an optical display device according to the present embodiment.
  • the pixels are arranged in the area between the adjacent pixel columns Ln and L (n + 1).
  • the inspection method of the present embodiment by inspecting the bonding accuracy at the center of the display area (first determination area AR1), an inspection that can determine a display device with a high degree of user satisfaction as a non-defective product can do.
  • a second reference line that is set along the pixel column in a region between the adjacent pixel column Ln and the pixel column L (n + 1). Display based on the measurement process for measuring the distance in plan view of the reference line FL2 and the boundary (boundary line BL2) detected as the boundary between the first area 3R and the second area 3L, and the distance measured in the measurement process It is good also as having the determination process which performs the quality determination of the apparatus 100.
  • the shrinkage in the width direction of the optical member 1 can be confirmed by using the pass / fail determination result in the first determination area AR1 and the pass / fail determination result in the second determination area AR2. That is, when the display device 100 determined to be non-defective in the first determination area AR1 is determined to be defective in the second determination area AR2, it is determined as defective in the second determination area AR2 due to contraction in the width direction of the optical member 1. It can be estimated that the quality has been determined, and the quality of the optical member 1 and the method of handling the optical member 1 can be reviewed.
  • the third determination region AR3 that is the peripheral portion in the width direction of the optical member 1, between two adjacent pixel columns (in FIG. 9, the pixel columns L1 and L2 or the pixel columns L (2n ⁇ 1) and L2n). Measure the distance in plan view between the reference line FL3, which is a reference line set along the pixel column, and the boundary (boundary line BL3) detected as the boundary between the first region 3R and the second region 3L. It is good also as having the measurement process to perform and the determination process of performing quality determination of the display apparatus 100 based on the distance measured at the 3rd measurement process.
  • the optical member for the liquid crystal panel P can be obtained by comparing the pass / fail determination result in the first determination area AR1 and the pass / fail determination result in the third determination area AR3, or by comparing the pass / fail determination results in the third determination areas AR3 at both ends in the longitudinal direction.
  • the inclination of 1 can be confirmed. Thereby, the review of the bonding method of optical member 1 and liquid crystal panel P can also be aimed at.
  • the measurement step and the determination step may be performed in at least one of the first determination region, the second determination region, and the third determination region. This is preferably performed in two of the second determination region and the third determination region, and more preferably performed in all of the first determination region, the second determination region, and the third determination region.
  • the inspection method of the optical display device having the above-described configuration a highly reliable quality inspection is possible. Moreover, according to the pattern recognition method of the optical member having the above-described configuration, the boundary between the first region and the second region of the patterned retardation layer can be accurately recognized.
  • the inspection method of the optical display device and the pattern recognition method of the optical member according to the present invention it is possible to provide an inspection method of the optical display device capable of highly reliable quality inspection, and a patterned retardation layer It is possible to provide a pattern recognition method for an optical member capable of accurately recognizing the boundary between the first region and the second region.
  • SYMBOLS 1 Optical member, 3 ... Patterned phase difference layer (retardation layer), 3L ... 2nd area

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polarising Elements (AREA)

Abstract

本発明の光学表示デバイスの検査方法は、位相差層を備える光学部材と、複数の画素列を有する光学表示部品と、が貼合した光学表示デバイスの検査方法であって、パターン化位相差層(3)は、帯状の複数の第1領域(3R)と、帯状の複数の第2領域(3L)と、を有し、複数の第1領域(3R)および複数の第2領域(3L)が、第1領域(3R)および第2領域(3L)の延在方向と交差する方向に交互に配置されており、第1領域(3R)と第2領域(3L)との間で検出される境界線(BL)と、隣り合う画素列の間の領域で画素列に沿って設定する基準線(FL)と、の平面視における距離(D)を測定する測定工程と、距離(D)に基づいて光学表示デバイスの良否判定を行う判定工程と、を有する。

Description

光学表示デバイスの検査方法および光学部材のパターン認識方法
 本発明は、光学表示デバイスの検査方法および光学部材のパターン認識方法に関するものである。
本出願は、2014年7月1日に日本に出願された特願2014-135741号に基づき、優先権を主張し、その内容をここに援用する。
 近年、FPR(Film Patterned Retarder)方式と称されるパッシブ方式の3D(3Dimension)液晶表示装置が開発されている。
 この方式の3D液晶表示装置(表示装置)では、例えば、液晶パネルの表示面側に偏光子層が配置され、その更に視認側にパターン化位相差層が配置される。また、液晶パネルのバックライト側には偏光フィルムが配置される。
 偏光子層は、液晶パネル側から入射する光のうち、偏光子層の吸収軸に平行な振動面の偏光成分を吸収し、直交する振動面の偏光成分を透過する光学機能を有する層である。偏光子層を透過した直後の透過光は、直線偏光光である。
 パターン化位相差層は、通常、基材フィルム上に形成されている。パターン化位相差層は、第1領域と第2領域とを備えている。第1領域と第2領域とは、それぞれ帯状に形成されており、マトリクス状に形成された液晶パネルの画素配列に対応して、交互に配列されている。
 図10は、3D液晶表示装置における液晶パネルPとパターン化位相差層3との位置合わせを説明するための平面図である。
 図10に示すように、液晶パネルPでは、長辺(図10中における液晶パネルPの左右方向:横幅方向)に沿って、赤色画素R、緑色画素G、青色画素Bが周期的に並んで配置されている。そして、各色の画素R,G,Bが左右方向に沿って多数並んで画素列Lとなり、この画素列Lが液晶パネルPの表示領域の上下(図10中における液晶パネルPの縦方向)に渡って多数配列されている。
 一方、パターン化位相差層3は、パターン化位相差層3の長辺(図10中における左右:横幅方向)に沿って延在する複数の第1領域3Rおよび複数の第2領域3Lを有している。第1領域3Rおよび第2領域3Lは、液晶パネルPの各画素列Lに対応して上下(図10中における縦方向)に渡って多数配列されている。例えば、右眼用画像を表示する画素列Lの視認側に第1領域3Rが配置され、左眼用画像を表示する画素列Lの視認側には第2領域3Lが配置される。第1領域3Rと第2領域3Lとでは、位相差の方向が異なっており、右眼用画像と左眼用画像とでは、互いに異なる偏光状態となって視認側に表示される(例えば、特許文献1参照)。
 パターン化位相差層3は、第1領域3Rと第2領域3Lとの境界線Kが各画素列Lの間に位置するように液晶パネルPに対して貼合され、液晶パネルPを用いたFPR方式の3D液晶表示装置を構成している。
 使用者は、右眼用レンズと左眼用レンズとで光学特性が異なる光学素子を備えた、いわゆる偏光眼鏡を介して表示画像を見ることで、右眼では右眼用画像を、左眼では左眼用画像をそれぞれ選択的に視認する。これにより使用者は、両眼の像を融合した立体画像を認識することができる。
特開2012-212033号公報
 上述のようなFPR方式の3D液晶表示装置の製造にあたっては、パターン化位相差層の第1領域と液晶パネルの画素列、または第2領域と画素列、を、それぞれ正確に対応させて、パターン化位相差層と偏光子層とを含む光学部材を液晶パネルに貼合する。その際、1つの画素列に対し、パターン化位相差層の第1領域および第2領域の両方が重なってしまうと、本来は右眼のみで認識されるべき右眼用画像が左眼でも認識されてしまう、いわゆるクロストークが生じ、立体表示画像の画質を低下させるおそれがある。
 製造された3D液晶表示装置の検査について、これまでは、立体表示を行わない通常の液晶表示装置に対して行っている検査方法を流用し、液晶パネルと光学部材との貼り合わせ状態の検査を行っていた。具体的には、液晶パネルについてはアライメントマークやブラックマトリクスを基準とし、光学部材については光学部材の端部を基準として、各基準同士の相対位置を確認することで、液晶パネルと光学部材との平面的な相対位置を確認して製造検査を行っていた。
 しかし、上記のような従来の検査方法を流用した方法では、各画素列と、第1領域および第2領域とが1対1で重なっているか否かの検査ができなかった。例えば、液晶パネルと光学部材とが、一見、設計通りに貼合されているような3D液晶表示装置であっても、各画素列と、第1領域および第2領域とが1対1で重なっていない場合には、クロストークが生じて不良品と判断される。ところが、上記のような従来の検査方法では、このような不良品は検出できず、立体表示画像の画質を担保することが困難であった。
 本発明はこのような事情に鑑みてなされたものであって、信頼性の高い品質検査が可能な光学表示デバイスの検査方法を提供することを目的とする。また、パターン化位相差層の第1領域と第2領域との境界を精度良く認識可能な光学部材のパターン認識方法を提供することを、あわせて目的とする。
 上記の課題を解決するため、本発明の一態様は、位相差層を備える光学部材と、複数の画素列を有する光学表示部品と、が貼合した光学表示デバイスの検査方法であって、前記位相差層は、一方向に帯状に延在し、入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、前記第1領域の延在方向と同方向に帯状に延在し、入射する直線偏光を第2の偏光状態に変化させる複数の第2領域と、を有し、前記複数の第1領域および前記複数の第2領域が、前記第1領域および前記第2領域の延在方向と交差する方向に交互に配置されており、隣接する前記第1領域と前記第2領域との間で検出される境界と、隣り合う前記画素列の間の領域で前記画素列に沿って設定する基準線と、の平面視における距離を測定する測定工程と、前記距離に基づいて前記光学表示デバイスの良否判定を行う判定工程と、を有する光学表示デバイスの検査方法を提供する。
 上記構成を備える本発明の一態様においては、前記光学表示部品の表示領域の中央において、前記測定工程と前記判定工程とを行う方法としてもよい。
 上記構成を備える本発明の一態様においては、前記延在方向における前記光学部材の周辺部において、前記測定工程と前記判定工程とを行う方法としてもよい。
 上記構成を備える本発明の一態様においては、前記交差する方向における前記光学部材の周辺部において、前記測定工程と前記判定工程とを行う方法としてもよい。
 上記構成を備える本発明の一態様においては、前記測定工程に先立って、前記交差する方向における前記光学部材の周辺部において検出された前記第1領域と前記第2領域との境界と、前記位相差層の設計値と、に基づいて、前記周辺部において検出された前記境界から離間した境界の位置を概算し、前記概算された境界の位置に最も近い前記第1領域と前記第2領域との境界を検出する方法としてもよい。
 上記構成を備える本発明の一態様においては、隣り合う前記画素列において互いに対向する側部にて、前記画素列に含まれる複数の画素の端部の座標を検出し、前記画素列ごとに、検出した複数の前記座標に基づいて前記側部に対応する直線を近似し、得られた2つの近似線の間において、前記基準線を設定する方法としてもよい。
 上記構成を備える本発明の一態様においては、隣り合う2つの前記画素列のうち、一方の画素列について、他方の画素列に対向する側部にて複数の画素の端部の座標を検出し、検出した複数の前記座標に基づいて前記側部に対応する直線を近似し、得られた近似線と光学表示部品の設計値とに基づいて前記基準線を設定する方法としてもよい。
 上記構成を備える本発明の一態様においては、隣り合う前記第1領域と前記第2領域とにまたがって、直線状の検出領域を設定し、前記検出領域に沿って前記第1領域と前記第2領域との明度を複数点で検出し、検出した複数点の前記明度に基づいて前記境界を検出する方法としてもよい。
 上記構成を備える本発明の一態様においては、複数の前記検出領域において複数の前記境界を検出し、検出した複数の前記境界の座標に基づいて前記境界に対応する直線を近似する方法としてもよい。
 また、本発明の一態様は、位相差層を備える光学部材のパターン認識方法であって、前記位相差層は、一方向に帯状に延在し、入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、前記第1領域の延在方向と同方向に帯状に延在し、入射する直線偏光を第2の偏光状態に変化させる複数の第2領域と、を有し、前記複数の第1領域および前記複数の第2領域が、前記第1領域および前記第2領域の延在方向と交差する方向に交互に配置されており、前記交差する方向における前記光学部材の周辺部において検出された前記第1領域と前記第2領域との境界と、前記位相差層の設計値と、に基づいて、前記交差する方向における前記光学部材の中央における前記第1領域と前記第2領域との境界の位置を概算し、概算された前記境界の位置に最も近い前記第1領域と前記第2領域との境界を検出する工程を有する光学部材のパターン認識方法を提供する。
 本発明によれば、信頼性の高い品質検査が可能な光学表示デバイスの検査方法を提供することができる。また、パターン化位相差層の第1領域と第2領域との境界を精度良く認識可能な光学部材のパターン認識方法を提供することができる。
表示装置の概略構成を示す平面図である。 表示装置の概略構成を示す断面図である。 パターン化位相差層の平面模式図である。 表示装置の表示領域と光学部材との位置関係に着目した概略平面図である。 表示装置の表示領域と光学部材との位置関係に着目した概略平面図である。 本実施形態の光学デバイスの検査方法の説明図である。 本実施形態の光学デバイスの検査方法の説明図である。 本実施形態の光学デバイスの検査方法の説明図である。 本実施形態の光学デバイスの検査方法の説明図である。 本実施形態の光学デバイスの検査方法の説明図である。 本実施形態の光学デバイスの検査方法の説明図である。 本実施形態の光学デバイスの検査方法の説明図である。 3D液晶表示装置における液晶パネルとパターン化位相差層との位置合わせを説明するための平面図である。
 以下、図面を参照しながら、本実施形態に係る光学表示デバイスの検査方法および光学部材のパターン認識方法について説明する。なお、以下の説明で参照する全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
<光学表示デバイス>
 図1~図4A、図4Bは、本実施形態の光学表示デバイスの検査方法で検査する表示装置(光学表示デバイス)100を示す説明図である。
 図1は、表示装置100の概略構成を示す平面図である。図2は、図1の線分II-IIにおける表示装置100の断面図である。本実施形態の表示装置100は、FPR方式の3D液晶表示装置である。図1または図2に示すように、表示装置100は、液晶パネル(光学表示部品)Pと、偏光フィルムF11と、光学部材1とを有している。
 液晶パネルPは、図1及び図2に示すように、平面視で長方形状をなす第1の基板P1と、第1の基板P1に対向して配置される比較的小形の長方形状をなす第2の基板P2と、第1の基板P1と第2の基板P2との間に封入された液晶層P3とを備える。液晶パネルPは、平面視で第1の基板P1の外形状に沿う長方形状をなし、平面視で液晶層P3の外周の内側に収まる領域を表示領域P4とする。
 液晶パネルPの平面視における四隅には、位置決め用のアライメントマークAmが設けられている。図1では、四隅すべてにアライメントマークAmが設けられることとして示しているが、例えば、四隅のうち3つの隅に合計3つのアライメントマークを設けることとしてもよく、四隅の対角の位置に合計2つのアライメントマークを設けることとしてもよい。
 液晶パネルPのバックライト側には、偏光フィルムF11が貼合されている。偏光フィルムF11は、不図示の粘着剤層を介して液晶パネルPに貼合される。偏光フィルムF11は、入射する光のうち、吸収軸に平行な振動面の偏光成分を吸収し、直交する振動面の偏光成分を透過する光学機能を有する。偏光フィルムF11を透過した直後の透過光は、直線偏光光である。
 一方、この液晶パネルPの表示面側には、光学部材1が貼合されている。光学部材1は、偏光子層2とパターン化位相差層(位相差層)3とを有し、偏光子層2側が液晶パネルPに面するように液晶パネルPに貼合されている。光学部材1をなす偏光子層2およびパターン化位相差層3は、それぞれ従来公知の製造方法で製造することができる。
 偏光子層2は、液晶パネルP側から入射する光のうち、吸収軸に平行な振動面の偏光成分を吸収し、直交する振動面の偏光成分を透過する光学機能を有する。偏光子層2を透過した直後の透過光は、直線偏光光である。
 偏光フィルムF11および光学部材1は、偏光フィルムF11と、光学部材1の偏光子層2とがクロスニコル配置となるように液晶パネルPに貼合される。
 図3は、光学部材1が有するパターン化位相差層3の平面視における平面模式図である。パターン化位相差層3は、複数の第1領域3Rおよび複数の第2領域3Lを有している。また、パターン化位相差層3は、平面視矩形の部材である。
 第1領域3Rは、偏光子層2を介して射出される直線偏光を、例えば、右旋回の円偏光(第1の偏光状態)に変化させる。第2領域3Lは、偏光子層2を介して射出される直線偏光を、例えば、左旋回の円偏光(第2の偏光状態)に変化させる。
 第1領域3Rおよび第2領域3Lは、パターン化位相差層3の長手方向に帯状に延在して形成されており、第1領域3Rおよび第2領域3Lの延在方向と交差する方向に交互に配置されている。第1領域3Rおよび第2領域3Lの幅は、貼合する液晶パネルPの画素の大きさに応じて設定され、例えば、400μm~500μm程度である。
 以下の説明においては、パターン化位相差層3における第1領域3Rおよび第2領域3Lの延在方向を、パターン化位相差層3の「長手方向」、第1領域3Rおよび第2領域3Lの配列方向を、パターン化位相差層3の「幅方向」と称することがある。すなわち、上記の「長手方向」とは、本発明における「延在方向」に対応し、「幅方向」は、本発明における「交差する方向」に対応する。
 パターン化位相差層3は、表示装置100において、液晶パネルPの表示領域P4と平面的に重ねたとき、表示装置100の幅方向において表示領域P4との重なり部分からはみ出る「余剰領域」を有するように、平面視で表示領域P4よりも大きく形成されている。第1領域3Rおよび第2領域3Lは、表示領域P4と重なる部分のみならず、余剰領域にまで設けられている。ここで、本発明において述べる「パターン化位相差層(位相差層)3と液晶パネル(光学表示部品)Pの表示領域P4とが平面的に重なる」とは、例えば、図2に示すように、パターン化位相差層3と液晶パネルPとの間に、さらに別の層(偏光子層2)が介在される場合も含むものである。
図4Aおよび図4Bは、表示装置100の表示領域P4と、光学部材1との位置関係に着目した概略平面図である。図4Aは全体図であり、図4Bは部分拡大図である。
以下の説明においては、表示表域を平面視したときの表示表域の左上を原点とするスクリーン座標系を用いて、位置や座標を示すことがある。スクリーン座標系においては、表示領域P4の横方向がX軸方向であり、表示領域P4の縦方向がY軸方向である。X軸では、左から右に向いた方向が正方向であり、Y軸では、上から下に向いた方向が正方向である。
図4Aに示すように、表示装置100は、表示領域P4に複数の赤色画素R、緑色画素G、青色画素Bが周期的に並んで配置され、画素列Lを形成している。各画素列は、表示領域P4のY軸方向に配列している。図4Aでは、Y軸方向に配列する各画素列について、原点から数えて1番目の画素列を符号L1、2番目の画素列を符号L2として示し、順に2n番目の画素列を符号L2nとして示しており、表示領域P4に2n列の画素列Lが含まれることとして示している。表示装置100では、右眼用画像と左眼用画像とを、それぞれn列の画素列を用いて表示している。
図4Bに示すように、各画素列Lには、第1領域3Rまたは第2領域3Lが、1対1で、平面的に重なるように設計されている。第1領域3Rと第2領域3Lとの境界線BLは、隣り合う2つの画素列Lの間の画素間領域に重なっている。図4Bでは、画素間領域に格子状の遮光部材(ブラックマトリクス)BMが設けられていることとして示している。
図2にもどって、光学部材1のパターン化位相差層3側の表面には、不図示の保護フィルムが貼合されていることとしてもよい。保護フィルムは、光学部材1の表面を保護する透明樹脂フィルムであり、光学部材1に対して剥離自在に設けられるものである。
偏光フィルムF11および光学部材1が貼合された液晶パネルPは、さらに、不図示の駆動回路やバックライトユニットなどが組み込まれることによって、表示装置100となる。
液晶パネルPの駆動方式については、例えば、TN(Twisted Nematic)、STN(SuperTwisted Nematic)、VA(Vertical Alignment)、IPS(In-Plane Switching)、OCB(Optically Compensated Bend)など、この分野で知られている各種モードを採用することができる。中でも、IPS方式の液晶パネルPを好適に用いることができる。
本実施形態の光学デバイスの検査方法で検査する表示装置100は、以上のような構成となっている。
<光学表示デバイスの検査方法>
 図5A、図5B~図9は、本実施形態の光学表示デバイスの検査方法の説明図である。本実施形態においては、光学部材の第1領域3Rと第2領域3Lとの境界を検出し、検出した境界を光学部材側の基準とする。また、液晶パネルの隣り合う画素列Lの間の画素間領域において、液晶パネル側の基準となる基準線を設定する。これら光学部材側の基準と液晶パネル側の基準との距離を測定し(測定工程)、測定した距離に基づいて、光学部材の第1領域3Rと液晶パネルの画素列、および、第2領域3Lと液晶パネルの画素列とが、それぞれ良好に対応して貼合されているか否かの良否判定を行い(判定工程)、光学表示デバイスの検査を行う。
(第1領域と第2領域との境界の検出)
 図5Aおよび図5Bは、第1領域3Rと第2領域3Lとの境界の検出方法について一例を示す説明図である。本実施形態の光学表示デバイスの検査方法においては、下記方法による第1領域3Rと第2領域3Lとの境界を検出する工程を有することとしてもよい。
 第1領域3Rと第2領域3Lとの境界の検出は、表示装置100について撮像した画像に基づいて行う。この際の撮像画像には、光学部材1と液晶パネルPとの両方が含まれるが、図5Aおよび図5Bでは、説明の都合上、光学部材1のみ示している。
 まず、図5Aに示すように、まず、検出対象である第1領域3Rと第2領域3Lとの境界を含む領域を撮像装置(不図示)で撮像する。その際、第1領域3Rと第2領域3Lとの境界は、液晶パネルの遮光領域と平面的に重なっているため、撮像のための照明が必要であれば、撮像装置と同じ側から、撮像する領域に光を照射する。
 次いで、隣り合う第1領域3Rと第2領域3Lとにまたがって、直線状の検出領域DAを設定する。撮像した画像では、第1領域3Rと第2領域3Lとの色味や明るさが異なって見えるため、第1領域3Rと第2領域3Lとを区別することが可能である。
 次いで、撮像した画像において、検出領域DAに沿って第1領域3Rと第2領域3Lとの明度を複数点で検出する。明度の検出は、検出領域DAに沿って連続的に複数点で行ってもよく、離散的に複数点で行ってもよい。図5Aでは、検出領域DAに沿って、検出領域DA内に示した矢印方向で、連続的に複数点で明度の検出を行うこととして示している。
 図5Aのグラフに示すように、第1領域3Rの明度がaであり、第2領域3Lの明度がbである場合、撮像した画像の第1領域3Rと第2領域3Lとの境界近傍では、明度が徐々にaからbに変化することが考えられる。そのような場合、明度がaとbとの中間値を示す点((a+b)/2を示す点)を、第1領域3Rと第2領域3Lとの境界点BPとして検出することができる。
 もちろん、境界点BPは、明度がaとbとの中間値を示す点ではなく、明度がaとbとを示す範囲内において、予め定めた決定方法に従って検出した点としてもよい。
 また、撮像した画像をグレースケールで表し、このグレースケール画像について、上記方法で第1領域3Rと第2領域3Lとの境界点BPを検出することとしてもよい。
 また、撮像した画像について、明度を複数点で検出することなく、撮像した画像を所定の明度を閾値として二値化し、境界を検出してもよい。
 このようにして検出した境界点BPは、本発明における第1領域3Rと第2領域3Lとの境界に対応する。
 また、図5Bに示すように、複数の検出領域DAにおいて複数の境界点BPを検出し、検出した複数の境界点BPの座標に基づいて、第1領域3Rと第2領域3Lとの境界に対応する直線(境界線BL)を近似して求めることとしてもよい。この際の近似方法としては、通常知られた統計学的手法を用いることができる。例えば、複数の境界点BPの座標について、最小二乗法を用いた回帰直線(近似直線)を求める近似方法を挙げることができる。
(隣り合う画素列の間の基準線の設定)
 図6Aおよび図6Bは、画素列Lの間の基準線の設定方法について一例を示す説明図である。本実施形態の光学表示デバイスの検査方法においては、下記方法による隣り合う画素列Lの間の基準線を設定する工程を有することとしてもよい。
 基準線の設定は、表示装置100について撮像した画像に基づいて行う。この際の撮像画像には、光学部材1と液晶パネルPとの両方が含まれるが、図6Aおよび図6Bでは、説明の都合上、液晶パネルPのみ示している。
 例えば、図6Aに示すように、画素列Lについて撮像した画像に基づき、画素列に含まれる複数の画素R、G,Bの端部の座標を検出する。図6Aでは、画素列Laの画素において、画素列Lbと対向する側の端部を符号E1として示している。また、画素列Lbの画素において、画素列Laと対向する側の端部を符号E2として示している。検出する端部E1,E2は複数であればよい。
 次いで、検出された複数の端部E1の座標に基づいて、複数の端部E1に対応する(画素列の側部に対応する)直線を近似する。図6Aでは、このように求める近似線を符号AL1として示している。
 上記の近似方法としては、通常知られた統計学的手法を用いることができる。例えば、複数の端部E1の座標について、最小二乗法を用いた回帰直線(近似直線)を求める近似方法を挙げることができる。また、作業者が撮像画像を確認し、複数の端部E1が同一の直線上に配列すると判断できるような場合には、座標を検出した複数の端部E1の内、任意の2点(例えば、両端の2点)を選択し、この2点を結ぶ直線を近似線AL1としてもよい。
 また、同様の処理を複数の端部E2でも行い、近似線AL2を求める。
 次いで、得られた2つの近似線AL1,AL2の間において、基準線を設定する。基準線は、近似線AL1,AL2の中間位置に設定すると好ましいが、中間位置から近似線AL1,AL2のどちらかの側にずれていても構わない。図6Aでは、近似線AL1,AL2から求められる近似線AL1,AL2の間の距離がWであり、近似線AL1,AL2の中間位置(近似線AL1から距離W/2の位置)に基準線FLを設定することとして示している。
 または、図6Bに示すように、上述の方法にて近似線AL1のみ求め、Y方向の画素間の設計値がαである場合に、近似線AL1からY方向にα/2の位置に基準線FLを設定することとしてもよい。
(光学部材と光学表示部品との相対位置の測定)
 次いで、撮像画像から、図5Aおよび図5Bに示した方法で検出した第1領域3Rと第2領域3Lとの境界(境界点BPまたは境界線BL)と、図6Aおよび図6Bに示した方法で設定した基準線FLと、の距離を測定する。以下の説明では、第1領域3Rと第2領域3Lとの境界線BLを求めたこととして示している。
 撮像画像では、図7に示すように、光学部材1の境界線BLと、液晶パネルPの基準線FLとが重なって求められる。そのため、画像に基づいて、平面視における境界線BLと基準線FLとの距離Dを求めることができる。
 ここで、第1領域3Rと第2領域3Lとの境界として境界線BLを求めている場合、「距離D」とは、境界線BL上の複数の任意点について、この任意点から基準線FLへの垂線を引いたときの、垂線と基準線FLとの交点から上記の任意点までの距離の平均値である。
 また、第1領域3Rと第2領域3Lとの境界として境界点BPを求めている場合、「距離D」とは、境界点BPから基準線FLへの垂線を引いたときの、垂線と基準線FLとの交点から境界点BPまでの距離のことを指す。
(良否判定)
 次いで、求めた距離に基づいて、表示装置100の良否判定を行う。具体的には、良品と判定できる距離の数値範囲を予め設定しておき、距離の測定値が設定した数値範囲以内であれば良品、設定した数値範囲よりも大きい測定値であれば不良品と判定する。
(光学部材のパターン認識方法)
 本実施形態の光学表示デバイスの検査方法では、上述した要素技術による良否判定を、液晶パネルPの表示領域P4の中央で行う。その際には、表示領域の中央の画素列(例えば、n番目の画素列Lnと、(n+1)番目の画素列L(n+1))について、第1領域3Rと第2領域3Lとが、1対1で対応して良好に貼合されているかを判定する必要がある。
 ここで、貼合不良や、光学部材の製造誤差・変形などを考慮すると、n番目の画素列Lnに重なっている領域が、確実に、1番目の画素列に対応するパターン(例えば、第1領域3R)から数えてn番目のパターン(第2領域3L)であるという保証はない。
 したがって、液晶パネルP側の基準を、n番目の画素列Lnと(n+1)番目の画素列L(n+1)との間の領域に設定する基準線とする場合には、これらの画素列に対応するn番目の第2領域3Lと(n+1)番目の第1領域3Rとを認識したうえで、光学部材1側の基準となるべき第1領域3Rと第2領域3Lとの境界を検出する必要がある。
 そこで、以下に示す光学部材のパターン認識方法により、表示領域P4の中央に対応する、n番目の第2領域3Lと(n+1)番目の第1領域3Rとを認識し、これら第2領域3Lと第1領域3Rとの間の境界を上述の方法で検出する。
 図8は、本実施形態の光学部材のパターン認識方法を示す説明図である。まず、幅方向における光学部材1の周辺部において、第1領域3Rと第2領域3Lとの境界を検出する。この際の境界の検出方法は、上述した方法を用いることができる。
 ここで、上記の「周辺部」とは、光学部材1において表示領域P4と平面的に重なる部分であってもよく、光学部材1において表示領域P4の外側である余剰領域DMに平面的に重なる部分であってもよい。すなわち、検出する境界は、1番目の画素列L1に重なる第1領域3Rと、2番目の画素列L2に重なる第2領域3Lとの境界であってもよいが、表示領域P4の外側である余剰領域DMに配置した第1領域3Rと第2領域3Lの境界であってもよい。図8では、余剰領域DMにおいて第1領域3Rと第2領域3Lの境界線BLxを検出することとして示している。
 次いで、余剰領域DMにて検出した境界線BLxと、パターン化位相差層3の設計値と、に基づいて、境界線BLxから離間したn番目の第2領域3Lと、(n+1)番目の第1領域3Rとの境界の位置を概算する。すなわち、第1領域3Rの幅の設計値および第2領域3Lの幅の設計値から、境界線BLxを基準としたn番目の第2領域3Lと、(n+1)番目の第1領域3Rとの境界の位置を概算する。図では、概算して求めた位置を概算点CPとして示している。
 次いで、第1領域3Rと第2領域3Lとの境界であって概算点CPに最も近い境界を、n番目の第2領域3Lと(n+1)番目の第1領域3Rとの境界とし、上述の方法で境界を検出する。図8では、境界線BL1を検出することとして示している。
 このような方法によれば、光学部材1の幅方向の任意の位置における境界を精度良く検出することが可能となる。
(光学表示デバイスの検査方法)
 図9は、本実施形態の光学表示デバイスの検査方法を示す説明図である。本実施形態の光学表示デバイスの検査方法においては、液晶パネルPの表示領域P4の中央である第1判定領域AR1において、隣り合う画素列Lnおよび画素列L(n+1)の間の領域で、画素列に沿って設定する基準線である基準線FL1と、第1領域3Rと第2領域3Lとの境界として検出する境界(境界線BL1)と、の平面視における距離を測定する測定工程と、測定した距離に基づいて表示装置100の良否判定を行う判定工程と、を有する。
 表示装置の使用者は、表示領域の中心近傍を最も注意深く観察するため、表示領域の中心においてクロストークが発生すると、使用者が気付きやすい。そのため、本実施形態の検査方法のように、表示領域の中心(第1判定領域AR1)において貼合精度を検査することにより、使用者の満足度の高い表示装置を良品として判定可能な検査とすることができる。
 また、光学部材1の長手方向の周辺部である第2判定領域AR2において、隣り合う画素列Lnおよび画素列L(n+1)の間の領域で画素列に沿って設定する基準線である第2基準線FL2と、第1領域3Rと第2領域3Lとの境界として検出する境界(境界線BL2)と、の平面視における距離を測定する測定工程と、測定工程で測定した距離に基づいて表示装置100の良否判定を行う判定する判定工程と、を有することとしてもよい。
 第1判定領域AR1における良否判定結果と、第2判定領域AR2における良否判定結果と、を用いることで、光学部材1の幅方向の収縮を確認することができる。すなわち、第1判定領域AR1において良品と判定された表示装置100が、第2判定領域AR2において不良品と判定された場合、光学部材1の幅方向の収縮により第2判定領域AR2では不良品と判定されたと推測し、光学部材1の品質の確認や光学部材1の取り扱い方法を見直しを図ることができる。
 また、光学部材1の幅方向の周辺部である第3判定領域AR3において、隣り合う2つの画素列(図9では、画素列L1,L2または画素列L(2n-1),L2n)の間の領域で、画素列に沿って設定する基準線である基準線FL3と、第1領域3Rと第2領域3Lとの境界として検出する境界(境界線BL3)と、の平面視における距離を測定する測定工程と、第3測定工程で測定した距離に基づいて表示装置100の良否判定を行う判定工程と、を有することとしてもよい。
 第1判定領域AR1における良否判定結果と、第3判定領域AR3における良否判定結果と、の比較、または長手方向の両端の第3判定領域AR3における良否判定結果の比較により、液晶パネルPに対する光学部材1の傾きの確認をすることができる。これにより、光学部材1と液晶パネルPとの貼合方法の見直しを図ることもできる。
 本実施形態の光学表示デバイスの検査方法は、測定工程および判定工程を、第1判定領域、第2判定領域および第3判定領域のうちの少なくとも1つの領域で行うとよく、第1判定領域、第2判定領域および第3判定領域のうちの2つの領域で行うと好ましく、第1判定領域、第2判定領域および第3判定領域のすべてで行うと、さらに好ましい。
 以上のような構成の光学表示デバイスの検査方法によれば、信頼性の高い品質検査が可能となる。また、以上のような構成の光学部材のパターン認識方法によれば、パターン化位相差層の第1領域と第2領域との境界を精度良く認識可能となる。
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
本発明に係る光学表示デバイスの検査方法および光学部材のパターン認識方法によれば、信頼性の高い品質検査が可能な光学表示デバイスの検査方法を提供することができ、また、パターン化位相差層の第1領域と第2領域との境界を精度良く認識可能な光学部材のパターン認識方法を提供することができる。
1…光学部材、3…パターン化位相差層(位相差層)、3L…第2領域、3R…第1領域、100…表示装置(光学表示デバイス)、AL1,AL2…近似線、BL,BL1,BL2,BL3…境界線(境界)、BP…境界点(境界)、DA…検出領域、E1,E2…端部、FL,FL1,FL2,FL3…基準線、D…距離、L…画素列、P…液晶パネル(光学表示部品)、P4…表示領域、R,G,B…画素

Claims (10)

  1.  位相差層を備える光学部材と、複数の画素列を有する光学表示部品と、が貼合した光学表示デバイスの検査方法であって、
     前記位相差層は、一方向に帯状に延在し、入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、前記第1領域の延在方向と同方向に帯状に延在し、入射する直線偏光を第2の偏光状態に変化させる複数の第2領域と、を有し、
     前記複数の第1領域および前記複数の第2領域が、前記第1領域および前記第2領域の延在方向と交差する方向に交互に配置されており、
     隣接する前記第1領域と前記第2領域との間で検出される境界と、隣り合う前記画素列の間の領域で前記画素列に沿って設定する基準線と、の平面視における距離を測定する測定工程と、
     前記距離に基づいて前記光学表示デバイスの良否判定を行う判定工程と、を有する光学表示デバイスの検査方法。
  2.  前記光学表示部品の表示領域の中央において、前記測定工程と前記判定工程とを行う請求項1に記載の光学表示デバイスの検査方法。
  3.  前記延在方向における前記光学部材の周辺部において、前記測定工程と前記判定工程とを行う請求項1または2に記載の光学表示デバイスの検査方法。
  4.  前記交差する方向における前記光学部材の周辺部において、前記測定工程と前記判定工程とを行う請求項1から3のいずれか1項に記載の光学表示デバイスの検査方法。
  5.  前記測定工程に先立って、前記交差する方向における前記光学部材の周辺部において検出された前記第1領域と前記第2領域との境界と、前記位相差層の設計値と、に基づいて、前記周辺部において検出された前記境界から離間した境界の位置を概算し、
     前記概算された境界の位置に最も近い前記第1領域と前記第2領域との境界を検出する請求項2または4に記載の光学表示デバイスの検査方法。
  6.  隣り合う前記画素列において互いに対向する側部にて、前記画素列に含まれる複数の画素の端部の座標を検出し、
     前記画素列ごとに、検出した複数の前記座標に基づいて前記側部に対応する直線を近似し、
     得られた2つの近似線の間において、前記基準線を設定する請求項1から5のいずれか1項に記載の光学表示デバイスの検査方法。
  7.  隣り合う2つの前記画素列のうち、一方の画素列について、他方の画素列に対向する側部にて複数の画素の端部の座標を検出し、
     検出した複数の前記座標に基づいて前記側部に対応する直線を近似し、
     得られた近似線と光学表示部品の設計値とに基づいて前記基準線を設定する請求項1から5のいずれか1項に記載の光学表示デバイスの検査方法。
  8.  隣り合う前記第1領域と前記第2領域とにまたがって、直線状の検出領域を設定し、
     前記検出領域に沿って前記第1領域と前記第2領域との明度を複数点で検出し、
     検出した複数点の前記明度に基づいて前記境界を検出する請求項1から7のいずれか1項に記載の光学表示デバイスの検査方法。
  9.  複数の前記検出領域において複数の前記境界を検出し、
     検出した複数の前記境界の座標に基づいて前記境界に対応する直線を近似する請求項8に記載の光学表示デバイスの検査方法。
  10.  位相差層を備える光学部材のパターン認識方法であって、
     前記位相差層は、一方向に帯状に延在し、入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、前記第1領域の延在方向と同方向に帯状に延在し、入射する直線偏光を第2の偏光状態に変化させる複数の第2領域と、を有し、
     前記複数の第1領域および前記複数の第2領域が、前記第1領域および前記第2領域の延在方向と交差する方向に交互に配置されており、
     前記交差する方向における前記光学部材の周辺部において検出された前記第1領域と前記第2領域との境界と、前記位相差層の設計値と、に基づいて、前記交差する方向における前記光学部材の中央における前記第1領域と前記第2領域との境界の位置を概算し、
     概算された前記境界の位置に最も近い前記第1領域と前記第2領域との境界を検出する工程を有する光学部材のパターン認識方法。
PCT/JP2015/068726 2014-07-01 2015-06-29 光学表示デバイスの検査方法および光学部材のパターン認識方法 WO2016002730A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580033255.0A CN106462008A (zh) 2014-07-01 2015-06-29 光学显示器件的检查方法以及光学构件的图案识别方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014135741A JP2016014714A (ja) 2014-07-01 2014-07-01 光学表示デバイスの検査方法および光学部材のパターン認識方法
JP2014-135741 2014-07-01

Publications (1)

Publication Number Publication Date
WO2016002730A1 true WO2016002730A1 (ja) 2016-01-07

Family

ID=55019262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068726 WO2016002730A1 (ja) 2014-07-01 2015-06-29 光学表示デバイスの検査方法および光学部材のパターン認識方法

Country Status (4)

Country Link
JP (1) JP2016014714A (ja)
CN (1) CN106462008A (ja)
TW (1) TW201606321A (ja)
WO (1) WO2016002730A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075773A (ja) * 2001-09-04 2003-03-12 Sony Corp 板状フィルター、表示装置、フィルターの位置合わせ方法、及びフィルターの位置合わせ装置
JP2013011800A (ja) * 2011-06-30 2013-01-17 Fujifilm Corp パターン位相差フィルム、その製造方法、光学積層体の製造方法、及び3d画像表示装置
JP2014089346A (ja) * 2012-10-30 2014-05-15 Dainippon Printing Co Ltd 位相差フィルム、及び位相差フィルムの製造方法
JP2014095775A (ja) * 2012-11-08 2014-05-22 V Technology Co Ltd 偏光フィルムの貼り合わせ位置検査装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101846552B1 (ko) * 2011-11-30 2018-04-09 엘지디스플레이 주식회사 표시패널과 필름 패턴 리타더의 미스 얼라인 검사 시스템 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075773A (ja) * 2001-09-04 2003-03-12 Sony Corp 板状フィルター、表示装置、フィルターの位置合わせ方法、及びフィルターの位置合わせ装置
JP2013011800A (ja) * 2011-06-30 2013-01-17 Fujifilm Corp パターン位相差フィルム、その製造方法、光学積層体の製造方法、及び3d画像表示装置
JP2014089346A (ja) * 2012-10-30 2014-05-15 Dainippon Printing Co Ltd 位相差フィルム、及び位相差フィルムの製造方法
JP2014095775A (ja) * 2012-11-08 2014-05-22 V Technology Co Ltd 偏光フィルムの貼り合わせ位置検査装置

Also Published As

Publication number Publication date
JP2016014714A (ja) 2016-01-28
CN106462008A (zh) 2017-02-22
TW201606321A (zh) 2016-02-16

Similar Documents

Publication Publication Date Title
KR101622865B1 (ko) 패턴 위상차 필터의 검사 장치 및 검사 방법
US9347769B2 (en) Method for aligning a phase retardation plate with a display panel
JP2007278857A (ja) ラビング角度測定装置、及び液晶表示装置並びに光学フィルムの製造方法
US8961731B2 (en) Manufacturing method of three-dimensional display device
KR20160056721A (ko) 실라인 검사용 측정마크를 가진 액정표시소자와 실라인 검사장치 및 측정방법
JP5106192B2 (ja) 三次元画像表示装置の製造装置、三次元画像表示装置の製造方法及びレンズ板
JP2010019987A (ja) 三次元画像表示装置の検査装置及び三次元画像表示装置の製造方法
US9778474B2 (en) Display panel and display apparatus
WO2016002730A1 (ja) 光学表示デバイスの検査方法および光学部材のパターン認識方法
TW201544850A (zh) 光學顯示裝置之製造方法
TW201534982A (zh) 光學顯示裝置之製造方法
JP2014095775A (ja) 偏光フィルムの貼り合わせ位置検査装置
JP6283528B2 (ja) 光学表示デバイスの製造方法
CN106030390A (zh) 光学显示设备的制造方法
JP5279477B2 (ja) タッチパネル及び取り付け方法
WO2016002726A1 (ja) 光学部材、光学表示デバイスの生産システム、光学表示デバイスの生産方法および原反ロール
JP2014098853A (ja) 偏光フィルムの貼り合わせ位置検査装置
US8384873B2 (en) Drill for repairing point defect in liquid crystal device and method of manufacturing liquid crystal device
KR101537656B1 (ko) 화상 표시 패널의 광학 특성 검사 방법 및 그 검사장치
WO2012056955A1 (ja) 表示装置
JP2007333956A (ja) 液晶表示パネルの検査方法及びそれに用いられる検査治具
JP2017215289A (ja) 結像光学素子の評価方法および結像光学素子の評価装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814078

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载