+

WO2016067843A1 - Composition de liant pour électrode négative de batterie secondaire au lithium-ion, composition de bouillie pour électrode négative de batterie secondaire au lithium-ion, électrode négative de batterie secondaire au lithium-ion, et batterie secondaire au lithium-ion la comprenant - Google Patents

Composition de liant pour électrode négative de batterie secondaire au lithium-ion, composition de bouillie pour électrode négative de batterie secondaire au lithium-ion, électrode négative de batterie secondaire au lithium-ion, et batterie secondaire au lithium-ion la comprenant Download PDF

Info

Publication number
WO2016067843A1
WO2016067843A1 PCT/JP2015/078238 JP2015078238W WO2016067843A1 WO 2016067843 A1 WO2016067843 A1 WO 2016067843A1 JP 2015078238 W JP2015078238 W JP 2015078238W WO 2016067843 A1 WO2016067843 A1 WO 2016067843A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
lithium ion
ion secondary
binder composition
Prior art date
Application number
PCT/JP2015/078238
Other languages
English (en)
Japanese (ja)
Inventor
真明 衣川
俊充 田中
有紀 太田
俊相 趙
奥野 壮敏
岩崎 秀治
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201580059082.XA priority Critical patent/CN107112541A/zh
Priority to JP2016556462A priority patent/JPWO2016067843A1/ja
Publication of WO2016067843A1 publication Critical patent/WO2016067843A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a negative electrode of a lithium ion secondary battery, a slurry composition for a negative electrode of a lithium ion secondary battery using the binder composition, a negative electrode of a lithium ion secondary battery, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are frequently used as secondary batteries used for the power sources of these portable terminals. Since portable terminals are required to have more comfortable portability, miniaturization, thinning, weight reduction, and high performance have rapidly progressed, and have come to be used in various places. This trend continues today, and batteries used in mobile terminals are further required to be smaller, thinner, lighter, and higher in performance.
  • Lithium ion secondary batteries have a positive electrode and a negative electrode installed via a separator, and lithium such as LiPF 6 , LiBF 4 LiTFSI (lithium (bistrifluoromethylsulfonylimide)), LiFSI (lithium (bisfluorosulfonylimide)). It has a structure in which a salt is stored in a container together with an electrolytic solution in which a salt is dissolved in an organic liquid such as ethylene carbonate.
  • the negative electrode and the positive electrode are usually an electrode slurry obtained by dissolving or dispersing a binder and a thickener in water and mixing this with an active material and, if necessary, a conductivity-imparting agent (hereinafter simply referred to as a slurry). Is applied to the current collector, and water is dried to form a mixed layer. More specifically, for example, the negative electrode is made of a carbonaceous material that can store and release lithium ions, which is an active material, and acetylene black, which is a conductivity-imparting agent, if necessary. They are bound together by a binder for battery electrodes.
  • LiCoO 2 that is an active material, and if necessary, the same conductivity-imparting agent as that for the negative electrode were bonded to a current collector such as aluminum using a binder for a secondary battery electrode. Is.
  • diene rubbers such as styrene-butadiene rubber and acrylics such as polyacrylic acid have been used as binders for aqueous media (for example, Patent Documents 1 and 2).
  • the thickener include methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropoxycellulose, carboxymethylcellulose sodium salt (CMC-Na), sodium polyacrylate, etc.
  • CMC-Na is often used.
  • diene rubbers such as styrene-butadiene rubber have low adhesion to metal collectors such as copper, and there is a problem that the amount used cannot be reduced to increase the adhesion between the collector and the electrode material. . Therefore, recently, demands for extending the usage time of mobile terminals and shortening the charging time have increased, and it has become an obstacle especially as the urgent need is to increase the battery capacity and improve the charging speed (rate characteristics). Yes.
  • Battery capacity is strongly influenced by the amount of active material, and rate characteristics are affected by the ease of electron movement.
  • it is effective to suppress the amount of binder and thickener, but if the amount of binder and thickener is decreased, the binding of the active material is impaired. So there is a limit to weight loss.
  • the binder and thickener are non-conductive and prevent the movement of electrons. Therefore, if an attempt is made to improve the rate characteristics by increasing the conductivity-imparting agent, the amount of active material used is limited accordingly, and therefore it is difficult to improve the battery capacity. Thus, it has been difficult to achieve both high battery capacity and improved rate characteristics.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to achieve both high battery capacity and improved rate characteristics without impairing the binding properties of the negative electrode binder.
  • the present inventors have used a copolymer obtained by polymerizing a specific monomer as a salt that can be dissolved in a solvent, as a binder for a negative electrode slurry.
  • the present invention has been completed by finding that the above-mentioned object is achieved and further studying based on this finding.
  • the binder composition for a negative electrode of a lithium ion secondary battery according to one aspect of the present invention (hereinafter also simply referred to as a binder composition) is an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and a maleic acid. It contains a neutralized salt of a polymer.
  • the present invention it is possible to obtain a binder composition for a negative electrode of a lithium ion secondary battery having excellent binding properties, and further using it, the resistance of the lithium ion secondary electrode can be reduced, and the battery It is possible to achieve both higher capacity and improved rate characteristics.
  • the binder composition for a negative electrode of a lithium ion secondary battery of the present embodiment is a binder composition for a negative electrode of a lithium ion secondary battery (hereinafter also simply referred to as a binder composition) in which an ⁇ -olefin and maleic acid are copolymerized. It contains a neutralized salt of an ⁇ -olefin-maleic acid copolymer.
  • an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and maleic acid is composed of a unit (A) based on ⁇ -olefin and a unit (B) based on maleic acid,
  • a linear random copolymer having a weight average molecular weight of 1,000 to 200,000 is preferable.
  • the unit (A) based on ⁇ -olefins is represented by the general formula —CH 2 CR 1 R 2 — (wherein R 1 and R 2 may be the same or different from each other, hydrogen Represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group, or an ether group.
  • the ⁇ -olefin used in the present embodiment is a linear or branched olefin having a carbon-carbon unsaturated double bond at the ⁇ -position. In particular, olefins having 2 to 12 carbon atoms, particularly 2 to 8 carbon atoms are preferred.
  • Representative examples that can be used include ethylene, propylene, n-butylene, isobutylene, n-pentene, isoprene, 2-methyl-1-butene, 3-methyl-1-butene, n-hexene, 2-methyl- 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-ethyl-1-butene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethylbutadiene, 2,5 -Pentadiene, 1,4-hexadiene, 2,2,4-trimethyl-1-pentene, methyl vinyl ether, styrene and the like.
  • isobutylene is particularly preferable from the viewpoints of availability, polysynthesis, and product stability.
  • the isobutylene includes a mixture containing isobutylene as a main component, for example, a BB fraction (C4 fraction).
  • BB fraction C4 fraction
  • These olefins may be used alone or in combination of two or more.
  • maleic anhydride maleic acid, maleic acid monoester (for example, methyl maleate, ethyl maleate, propyl maleate, phenyl maleate, etc.), maleic acid, as the unit (B) based on maleic acids
  • Maleic anhydride derivatives such as diesters (eg dimethyl maleate, diethyl maleate, dipropyl maleate, diphenyl maleate etc.), maleic imides or N-substituted derivatives thereof (eg maleic imide, N-methylmaleimide, N N-substituted alkylmaleimides such as ethylmaleimide, N-propylmaleimide, Nn-butylmaleimide, Nt-butylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-ethyl Phenyl male N-substituted alkylphenylmaleimide such as imide, or N-substi
  • the content ratio of each structural unit in the copolymer of the present embodiment is preferably such that (A) / (B) is in the range of 1/1 to 1/3 in terms of molar ratio. This is because the advantages of hydrophilicity, water solubility, and affinity for metals and ions as a high molecular weight substance that dissolves in water can be obtained. Particularly, it is desirable that the molar ratio of (A) / (B) is 1/1 or a value close thereto, in which case the unit based on ⁇ -olefin, that is, —CH 2 CR 1 R 2 — A copolymer having a structure in which the units shown and units based on maleic acids are alternately repeated is obtained.
  • the mixing ratio of ⁇ -olefins and maleic acids to obtain the copolymer of the present embodiment varies depending on the composition of the target copolymer, but ⁇ -olefin having 1 to 3 times the number of moles of maleic acids.
  • Use of olefin is effective for increasing the reaction rate of maleic acids.
  • the method for producing the copolymer of the present embodiment is not particularly limited, and for example, the copolymer can be obtained by radical polymerization.
  • the polymerization catalyst used is an azo catalyst such as azobisisobutyronitrile, 1,1-azobiscyclohexane-1-carbonitrile, or an organic peroxide catalyst such as benzoyl peroxide or dicumyl peroxide. preferable.
  • the amount of the polymerization catalyst used is required to be in the range of 0.1 to 5 mol%, preferably 0.5 to 3 mol% with respect to maleic acids.
  • As a method for adding the polymerization catalyst and the monomer they may be added all at the beginning of the polymerization, but it is desirable to add them sequentially as the polymerization proceeds.
  • the molecular weight can be appropriately adjusted mainly depending on the monomer concentration, the amount of catalyst used, and the polymerization temperature.
  • a nitrogen compound such as ammonium acetate or urea, or a mercaptan
  • the polymerization temperature is preferably in the range of 40 ° C. to 150 ° C., particularly 60 ° C. to 120 ° C. If the polymerization temperature is too high, the resulting copolymer tends to be in the form of blocks and the polymerization pressure may be significantly increased. is there.
  • the polymerization time is usually 1 to 24 hours, preferably 2 to 10 hours.
  • the amount of the polymerization solvent used is desirably adjusted so that the concentration of the obtained copolymer is 5 to 40% by weight, preferably 10 to 30% by weight.
  • the copolymer of the present embodiment usually has a weight average molecular weight of 1,000 to 500,000.
  • a more preferred weight average molecular weight is 5,000 to 450,000.
  • the weight average molecular weight of the copolymer of this embodiment is less than 1,000, the crystallinity is high and the adhesive strength between particles may be low.
  • it exceeds 500,000 the solubility in water or a solvent becomes small, and it may precipitate easily.
  • the weight average molecular weight of the copolymer of the present embodiment can be measured by, for example, a light scattering method or a viscosity method.
  • the copolymer of this embodiment has an intrinsic viscosity in the range of 0.05 to 1.5.
  • the copolymer of the present embodiment is usually obtained in the form of a powder having about 16 to 60 mesh grains.
  • the neutralized salt of the copolymer is a neutralized product in which active hydrogen of carbonyl acid generated from maleic acid reacts with a basic substance to form a salt.
  • a basic substance containing a monovalent metal and / or ammonia is used as the basic substance from the viewpoint of binding properties as a binder. Is preferably used.
  • the degree of neutralization is not particularly limited, but when used as a binder, considering the reactivity with the electrolytic solution, it is usually 0.5 to 1 mol per carboxylic acid produced from maleic acids. It is preferable to use those neutralized in the range of 1 mol, more preferably in the range of 0.6 to 1 mol. Such a neutralization degree has the advantage of low acidity and suppression of electrolyte decomposition.
  • the degree of neutralization can be determined by a method such as titration with a base, an infrared spectrum, or an NMR spectrum.
  • titration with a base can be performed.
  • the specific titration method is not particularly limited, but it can be dissolved in water with little impurities such as ion-exchanged water, and a basic substance such as lithium hydroxide, sodium hydroxide, potassium hydroxide, It can be carried out by neutralization.
  • the indicator for the neutralization point is not particularly limited, but an indicator such as phenylphthalein whose pH is indicated by a base can be used.
  • the amount of the basic substance containing monovalent metal and / or ammonia is not particularly limited and is appropriately selected depending on the purpose of use and the like, but usually in the maleic acid copolymer.
  • the amount is 0.1 to 2 moles per mole of maleic acid unit.
  • the amount of the basic substance containing a monovalent metal is 0.6 to 2.0 mol, preferably 0.7 to 2 mol per mol of maleic acid unit in the maleic acid copolymer. Then, a water-soluble copolymer salt with little residual alkali can be obtained.
  • the reaction of the ⁇ -olefin-maleic acid copolymer with the basic substance containing monovalent metal and / or ammonia can be carried out according to a conventional method, but is carried out in the presence of water, and the ⁇ -olefin-maleic acid is obtained.
  • a method for obtaining a neutralized copolymer as an aqueous solution is simple and preferable.
  • Examples of basic substances containing monovalent metals that can be used in the present embodiment include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkali metals such as sodium carbonate and potassium carbonate. Carbonates of alkali metals such as sodium acetate and potassium acetate; phosphates of alkali metals such as trisodium phosphate, and the like.
  • ammonia, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferable.
  • ammonia or lithium hydroxide as a binder for a lithium ion secondary battery.
  • the basic substance containing monovalent metal and / or ammonia may be used alone or in combination of two or more.
  • a neutralized product of an ⁇ -olefin-maleic acid copolymer using a basic substance containing an alkali metal hydroxide such as sodium hydroxide as long as the battery performance is not adversely affected. May be prepared.
  • the ring-opening rate of the copolymer represents the hydrolysis rate of the site of maleic anhydride that polymerizes with ⁇ -olefins when maleic anhydride is used as the maleic acid.
  • a preferable ring opening rate is 60 to 100%, more preferably 70% to 100%, and still more preferably 80 to 100%. If the ring-opening rate is too low, the structural freedom of the copolymer becomes small and the stretchability becomes poor, so that the force for adhering the electrode material particles to be bonded may be small, which is not preferable. Furthermore, there is a possibility that problems such as low affinity for water and poor solubility may occur.
  • the ring-opening rate can be determined, for example, by measuring the hydrogen at the ⁇ -position of the maleic acid opened by 1H-NMR with reference to the hydrogen at the ⁇ -position of maleic anhydride.
  • the ratio of the carbonyl group derived from the carbonyl group and the ring-opened maleic anhydride can also be determined by IR measurement.
  • the neutralized salt of the copolymer means that the active hydrogen of the carbonyl acid generated by the ring opening of maleic anhydride is a basic substance as described above. It forms a salt by forming a salt.
  • the degree of neutralization in this case is not particularly limited. However, when used as a binder, in consideration of reactivity with the electrolytic solution, usually with respect to 1 mol of carbonyl acid generated by ring opening, It is preferable to use those neutralized in the range of 0.5 to 1 mol, more preferably in the range of 0.6 to 1 mol. Such a neutralization degree has the advantage of low acidity and suppression of electrolyte decomposition.
  • the degree of neutralization of the copolymer when maleic anhydride is used can be measured by the same method as described above.
  • the binder composition of the present embodiment contains polyethers, polyamines, polyvinyl alcohols, pyrrolidones, maleic acids, and the like that can impart viscosity, toughness, adhesion, and the like to the binder composition. Also good. These may be contained singly or in combination of two or more.
  • the mass reduction rate at 150 ° C. is preferably less than 7%. If the mass reduction rate is 7% or more, there is a possibility that the capacity is reduced by heat generated when charging and discharging are repeated.
  • the lithium ion secondary battery negative electrode binder composition of the present embodiment usually contains a negative electrode active material and a solvent in addition to the above-described ⁇ -olefin-maleic acid copolymer, and further contains a negative electrode active material and a solvent. It is used as a composition (hereinafter also simply referred to as a negative electrode slurry composition).
  • the lithium ion secondary battery negative electrode is formed by binding a current collector to a mixed layer containing at least the lithium ion secondary battery negative electrode binder composition of the present embodiment and the negative electrode active material.
  • This negative electrode can be formed by applying the above slurry composition for a lithium ion secondary battery negative electrode to a current collector and then removing the solvent by a method such as drying. If necessary, a thickener, a conductivity-imparting agent, and the like can be added to the mixed layer (that is, the negative electrode slurry composition).
  • the amount of the neutralized salt of ⁇ -olefin-maleic acid copolymer used is usually 0.1 to 4 parts by weight, preferably 100 parts by weight of the negative electrode active material. Is 0.3 to 3 parts by weight, more preferably 0.5 to 2 parts by weight. If the amount of the copolymer is too small, the viscosity of the slurry for secondary battery negative electrode may be too low and the thickness of the mixed layer may be reduced. Conversely, if the amount of the copolymer is excessive, the discharge capacity may be reduced. There is sex.
  • the amount of the solvent in the negative electrode slurry composition is usually 40 to 130 parts by weight, preferably 70 to 150 parts by weight with respect to 100 parts by weight of the negative electrode active material.
  • Examples of the solvent in the negative electrode slurry composition of the present embodiment include water, alcohols such as methanol, ethanol, propanol, and 2-propanol, cyclic ethers such as tetrahydrofuran and 1,4-dioxane, N, N-dimethyl, and the like.
  • Examples include amides such as formamide and N, N-dimethylacetamide, cyclic amides such as N-methylpyrrolidone and N-ethylpyrrolidone, and sulfoxides such as dimethylsulfoxide. In these, use of water is preferable from a viewpoint of safety.
  • the organic solvent described below may be used in combination within a range of preferably 20% by weight or less of the total solvent.
  • Such an organic solvent preferably has a boiling point at normal pressure of 100 ° C. or higher and 300 ° C. or lower, for example, hydrocarbons such as n-dodecane; alcohols such as 2-ethyl-1-hexanol and 1-nonanol.
  • Esters such as ⁇ -butyrolactone and methyl lactate; amides such as N-methylpyrrolidone, N, N-dimethylacetamide and dimethylformamide; and organic dispersion media such as sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane.
  • Examples of the negative electrode active material (sometimes abbreviated as active material) added to the negative electrode slurry composition of the present embodiment include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon.
  • Carbonaceous materials such as fibers; conductive polymers such as polyacene; lithium-based metals such as composite metal oxides represented by SiO x , SnO x , LiTiO x , other metal oxides, lithium metal, and lithium alloys; TiS 2 , metal compounds such as LiTiS 2 are exemplified.
  • a thickener can be further added to the negative electrode slurry composition as necessary.
  • the thickener that can be added is not particularly limited, and various alcohols, in particular, polyvinyl alcohol and modified products thereof, celluloses, starches, and other polysaccharides can be used.
  • the use amount of the thickener blended in the negative electrode slurry composition as necessary is 0.1 to 4 parts by weight, preferably 0.3 to 3 parts by weight, more preferably 0 to 100 parts by weight of the negative electrode active material. .5 to 2 parts by weight. If the thickener is too small, the viscosity of the secondary battery negative electrode slurry may be too low and the thickness of the mixed layer may be reduced. Conversely, if the thickener is excessively large, the discharge capacity may be reduced. .
  • examples of the conductivity-imparting agent blended into the negative electrode slurry composition as needed include metal powder, conductive polymer, and acetylene black.
  • the amount of the conductive agent used is usually 1 to 10 parts by weight, preferably 2 to 7 parts by weight, with respect to 100 parts by weight of the negative electrode active material.
  • the current collector used for the lithium ion secondary battery negative electrode of this embodiment is not particularly limited as long as it is made of a conductive material.
  • a conductive material For example, iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold Metal materials such as platinum can be used. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the shape of the current collector is not particularly limited, but usually it is preferably a sheet having a thickness of about 0.001 to 0.5 mm.
  • the method for applying the negative electrode slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, and a brush coating method.
  • the amount to be applied is not particularly limited, but the thickness of the mixed layer containing an active material, a conductivity-imparting agent, a binder and a thickener formed after removing the solvent or dispersion medium by a method such as drying is 0.005 to 5 mm. An amount of 0.01 to 2 mm is preferable.
  • the drying method of the solvent such as water contained in the negative electrode slurry composition is not particularly limited, and examples thereof include aeration drying with hot air, hot air, and low-humidity air; vacuum drying; irradiation radiation drying such as infrared rays, far infrared rays, and electron beams. Can be mentioned.
  • the drying conditions are preferably adjusted so that the solvent can be removed as soon as possible while the active material layer is cracked by stress concentration or the active material layer does not peel from the current collector.
  • the pressing method include a die press and a roll press.
  • the present invention includes a lithium secondary battery including the above-described negative electrode for a lithium ion secondary battery, a positive electrode, and an electrolytic solution.
  • a positive electrode normally used for a lithium ion secondary battery is used without any particular limitation.
  • the positive electrode active material TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O Transition metal oxides such as 13 and lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 are used.
  • the positive electrode active material is made of a conductivity-imparting agent similar to that of the negative electrode, and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinylidene fluoride.
  • a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinylidene fluoride.
  • an electrolytic solution in which an electrolyte is dissolved in a solvent is used.
  • the electrolyte solution may be liquid or gel as long as it is used for a normal lithium ion secondary battery, and an electrolyte solution that functions as a battery can be appropriately selected according to the type of the negative electrode active material and the positive electrode active material. That's fine.
  • lithium salt for example, also known lithium salt is any conventionally available, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10 LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N And lower aliphatic lithium carboxylates.
  • the solvent for dissolving such an electrolyte is not particularly limited. Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, and diethyl carbonate; lactones such as ⁇ -butyllactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, and 2-ethoxyethane.
  • Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; formic acid Organic acid esters such as methyl, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate; inorganic acid esters such as triethyl phosphate, dimethyl carbonate and diethyl carbonate Terigres; diglymes; triglymes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; sultones such as 1,3-propane sultone, 1,4-butane sultone, naphtha sultone, etc.
  • a gel electrolyte a nitrile polymer, an acrylic polymer, a fluorine polymer, an alkylene oxide polymer, or the like can be added as a gelling agent.
  • the method for producing the lithium ion secondary battery of the present embodiment is not particularly limited, and for example, the following production method is exemplified. That is, the negative electrode and the positive electrode are overlapped via a separator such as a polypropylene porous membrane, wound or folded according to the shape of the battery, put into a battery container, injected with an electrolyte, and sealed.
  • the shape of the battery may be any known coin type, button type, sheet type, cylindrical type, square type, flat type, and the like.
  • the lithium ion secondary battery of this embodiment is a battery that achieves both high capacity and improved rate characteristics, and is useful for various applications.
  • the battery is very useful as a battery used in a portable terminal that is required to be small, thin, light, and have high performance.
  • the binder composition for a negative electrode of a lithium ion secondary battery according to one aspect of the present invention (hereinafter also simply referred to as a binder composition) is an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and a maleic acid. It contains a neutralized salt of a polymer.
  • the degree of neutralization of the ⁇ -olefin-maleic acid copolymer with respect to the carboxylic acid generated from the maleic acid is 0.5 to 1, from the viewpoint of reactivity with the electrolytic solution. To preferred.
  • the constituent ratio of the ⁇ -olefin and the maleic acid in the ⁇ -olefin-maleic acid copolymer is 1: 1 to 1: 3.
  • reaction rate of maleic acids can be increased thereby, and the effects as described above can be obtained more reliably.
  • the maleic acid is preferably maleic anhydride. This is because it is advantageous in terms of availability, polymerization rate, and ease of molecular weight adjustment.
  • the ⁇ -olefin-maleic anhydride copolymer preferably has a ring opening rate of 60 to 100%.
  • the thickener has the advantage that it is not necessary to use a dispersant or the like.
  • a slurry composition for a negative electrode of a lithium ion secondary battery is characterized by including the binder composition, a negative electrode active material, and a solvent.
  • a lithium ion secondary battery negative electrode includes a current collector and a mixed layer containing at least the lithium ion secondary battery negative electrode binder composition and a negative electrode active material. It is characterized by becoming.
  • a lithium ion secondary battery according to still another aspect of the present invention is characterized by including the above lithium ion secondary battery negative electrode, a positive electrode, and an electrolytic solution.
  • Example 1 ⁇ Preparation of slurry for negative electrode>
  • a water-soluble ammonia-modified isobutene-maleic anhydride copolymer resin (weight average molecular weight 60000, ring opening rate 100%, neutralization degree 1 manufactured by Kuraray Co., Ltd.) was used to prepare a 10 wt% aqueous solution. Used.
  • the slurry for negative electrode is charged into a special container for 40 parts by weight of the 10 wt% aqueous solution (4 parts by weight as a solid content) with respect to 96 parts by weight of spherical graphite (CGB-10, manufactured by Nippon Graphite Industries) used as the negative electrode active material.
  • CGB-10 spherical graphite
  • an electrode coating slurry was prepared by adding water at the time of kneading and kneading again.
  • the composition ratio of the active material and the binder composition in the slurry was 96: 4 as a solid content.
  • the weight and thickness (active material layer thickness of about 40 ⁇ m, active material weight of about 10 mg) of the battery coated negative electrode obtained above were measured and transferred to a glove box (Miwa Seisakusho) under an argon gas atmosphere.
  • a metal lithium foil (thickness 0.2 mm, ⁇ 15 mm) was used as the positive electrode.
  • LiPF 6 lithium hexafluorophosphate
  • EC / DEC 1/1 vol%)
  • ⁇ Evaluation method charge / discharge characteristic test> With the produced coin battery, a charge / discharge test was performed using a commercially available charge / discharge tester (TOSCAT3100, manufactured by Toyo System). The coin battery is placed in a constant temperature bath at 25 ° C., and charging is performed at a constant current of 0.5 mA / cm 2 with respect to the amount of active material until it reaches 2 mV with respect to the lithium potential, and further 0.02 mA with respect to the lithium potential. The constant voltage charge of 2 mV was carried out up to the current of. The capacity at this time was defined as a charging capacity (mAh / g).
  • TOSCAT3100 commercially available charge / discharge tester
  • a constant current discharge of 0.5 mA / cm 2 was performed up to 1.5 V with respect to the lithium potential, and the capacity at this time was defined as a discharge capacity (mAh / g).
  • the difference between the initial discharge capacity and the charge capacity was taken as the irreversible capacity (mAh / g), and the percentage of the discharge capacity / charge capacity was taken as the charge / discharge efficiency (%).
  • the direct current resistance ( ⁇ ) of the coin battery a resistance value when a constant current of 0.5 mA was applied for 3 seconds before the start of charging was adopted.
  • the discharge capacity maintenance rate (%) of the coin battery was defined as the ratio of the 100th discharge capacity to the first discharge capacity using the charge / discharge conditions described above. The results are shown in Table 1 below.
  • Example 2 In order to reduce the amount of the binder composition added, a water-soluble ammonia-modified isobutene-maleic anhydride co-polymer is used as the binder composition with respect to 97 parts by weight of spherical graphite (CGB-10, manufactured by Nippon Graphite Industries) as the negative electrode active material.
  • CGB-10 spherical graphite
  • composition ratio of the active material and the binder composition in the slurry was 97: 3 as a solid content.
  • the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below.
  • a water-soluble ammonia-modified isobutene-maleic anhydride co-polymer is used as the binder composition with respect to 97 parts by weight of spherical graphite (CGB-10, manufactured by Nippon Graphite Industries) as the negative electrode active material.
  • CGB-10 spherical graphite
  • the composition ratio of the active material and the binder composition in the slurry was 97: 3 as a solid content.
  • the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, as in Example 1, the thermogravimetric measurement of the ammonia-modified isobutene-maleic anhydride copolymer resin was performed. The results are shown in Table 1 below.
  • the negative electrode active material is 95 parts by weight of natural graphite (DMGS, manufactured by BYD), and the binder composition is a water-soluble lithium-modified methyl vinyl ether-maleic anhydride copolymer resin (average molecular weight 630,000, ring opening rate 96%, Neutralization degree 0.5, Kuraray Co., Ltd.) 10 wt% aqueous solution 40 parts by weight (4 parts by weight as solid content), and 1 part by weight of Super-P (manufactured by Timcal) as a conductive auxiliary agent (conductivity imparting agent)
  • the negative electrode slurry used was prepared in the same manner as in Example 1 above.
  • the composition ratio of the active material, the conductive additive and the binder composition in the slurry was 95: 1: 4 as a solid content.
  • the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, in the same manner as in Example 1, thermogravimetric measurement of lithium-modified methyl vinyl ether-maleic anhydride copolymer resin was performed. The results are shown in Table 1 below.
  • the negative electrode active material is 95 parts by weight of natural graphite (DMGS, manufactured by BYD), and the binder composition is a water-soluble lithium-modified ethylene-maleic anhydride copolymer resin (average molecular weight average molecular weight 100,000 to 600,000, Ring ratio 96%, neutralization degree 0.5, manufactured by Kuraray Co., Ltd. 10 wt% aqueous solution 40 parts by weight (4 parts by weight as solid content), and Super-P (manufactured by Timcal Co., Ltd.) as a conductive aid (conducting agent)
  • a negative electrode slurry using 1 part by weight of) was prepared in the same manner as in Example 1.
  • the composition ratio of the active material, the conductive additive and the binder composition in the slurry was 95: 1: 4 as a solid content.
  • the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, in the same manner as in Example 1, thermogravimetric measurement of the lithium-modified ethylene-maleic anhydride copolymer resin was performed. The results are shown in Table 1 below.
  • the binder composition is a water-soluble lithium-modified styrene-maleic anhydride copolymer resin (average molecular weight average molecular weight 1,000 to 15,000, open) with respect to 95 parts by weight of natural graphite (DMGS, manufactured by BYD) as the negative electrode active material. Ring ratio 96%, neutralization degree 0.5, manufactured by Kuraray Co., Ltd. 10 wt% aqueous solution 40 parts by weight (4 parts by weight as solid content), and Super-P (manufactured by Timcal Co., Ltd.) as a conductive aid (conducting agent) A negative electrode slurry using 1 part by weight of) was prepared in the same manner as in Example 1.
  • the composition ratio of the active material, the conductive additive and the binder composition in the slurry was 95: 1: 4 as a solid content.
  • the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, in the same manner as in Example 1, thermogravimetric measurement of the lithium-modified styrene-maleic anhydride copolymer resin was performed. The results are shown in Table 1 below.
  • Example 1 A conventional aqueous negative electrode binder composition SBR emulsion aqueous solution (TRD2001, 48.3 wt%) and CMC-Na (cellogen BSH-6, 10 wt%) as a thickener were used in the same manner as in Example 1 above.
  • a slurry for negative electrode coating was prepared.
  • the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, the thermogravimetric measurement of CMC-Na was performed in the same manner as in Example 1. The results are shown in Table 1 below.
  • the present invention has wide industrial applicability in the technical field of secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention vise à obtenir à la fois une augmentation dans la capacité d'une batterie et une amélioration des caractéristiques de fréquence sans compromettre la propriété de liaison d'un liant d'électrode négative. La présente invention porte sur une composition de liant, pour une électrode négative de batterie secondaire au lithium-ion, contenant un sel neutralisé d'un copolymère α-oléfine-acide maléique obtenu par copolymérisation d'une α-oléfine et d'un acide maléique, et une électrode négative de batterie secondaire au lithium-ion et une batterie secondaire au lithium-ion utilisant la composition de liant.
PCT/JP2015/078238 2014-10-31 2015-10-05 Composition de liant pour électrode négative de batterie secondaire au lithium-ion, composition de bouillie pour électrode négative de batterie secondaire au lithium-ion, électrode négative de batterie secondaire au lithium-ion, et batterie secondaire au lithium-ion la comprenant WO2016067843A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580059082.XA CN107112541A (zh) 2014-10-31 2015-10-05 锂离子二次电池负极用粘合剂组合物、以及使用其的锂离子二次电池负极用浆料组合物、锂离子二次电池负极以及锂离子二次电池
JP2016556462A JPWO2016067843A1 (ja) 2014-10-31 2015-10-05 リチウムイオン二次電池負極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014222171 2014-10-31
JP2014-222171 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016067843A1 true WO2016067843A1 (fr) 2016-05-06

Family

ID=55857187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078238 WO2016067843A1 (fr) 2014-10-31 2015-10-05 Composition de liant pour électrode négative de batterie secondaire au lithium-ion, composition de bouillie pour électrode négative de batterie secondaire au lithium-ion, électrode négative de batterie secondaire au lithium-ion, et batterie secondaire au lithium-ion la comprenant

Country Status (4)

Country Link
JP (1) JPWO2016067843A1 (fr)
CN (1) CN107112541A (fr)
TW (1) TWI580102B (fr)
WO (1) WO2016067843A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158637A1 (fr) * 2015-03-30 2016-10-06 株式会社クラレ Composition de liant pour des électrodes de batterie à électrolyte non aqueux, composition de suspension pour des électrodes de batterie à électrolyte non aqueux l'utilisant, électrode négative d'une batterie à électrolyte non aqueux et batterie à électrolyte non aqueux
JP2016189253A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189252A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189254A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189251A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189257A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189255A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189256A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2018063799A (ja) * 2016-10-12 2018-04-19 株式会社クラレ 非水電解質電池電極用バインダー組成物、並びにそれを用いた非水電解質電池電極用スラリー組成物、非水電解質電池負極及び非水電解質電池
WO2018101134A1 (fr) * 2016-11-29 2018-06-07 株式会社クラレ Composition de liant pour électrode de batterie à électrolyte non aqueux ainsi qu'hydrogel ayant celle-ci pour matière première, composition de bouillie pour électrode de batterie à électrolyte non aqueux mettant en œuvre ladite composition, électrode négative de batterie à électrolyte non aqueux, et batterie à électrolyte non aqueux
WO2018131572A1 (fr) * 2017-01-16 2018-07-19 株式会社クラレ Agent d'épaississement/stabilisation pour électrode de batterie à électrolyte non aqueux, et composition de liant, composition de bouillie pour électrode de batterie à électrolyte non aqueux, électrode de batterie à électrolyte non aqueux ainsi que batterie à électrolyte non aqueux contenant cet agent d'épaississement/stabilisation
EP3336941A4 (fr) * 2015-08-10 2019-01-02 Kuraray Co., Ltd. Composition de liant pour batterie à électrolyte non aqueux, composition de bouillie pour batterie à électrolyte non aqueux mettant en uvre cette composition, électrode négative de batterie à électrolyte non aqueux, et batterie à électrolyte non aqueux
CN110785879A (zh) * 2017-06-07 2020-02-11 株式会社可乐丽 非水电解质电池用粘合剂组合物、以及使用其的非水电解质电池用粘合剂水溶液、非水电解质电池用浆料组合物、非水电解质电池用电极及非水电解质电池
CN113880976A (zh) * 2021-11-18 2022-01-04 中山大学 乙烯马来酸酐交替共聚物及其水解产物在制备硅负极电极材料中的应用
CN115513464A (zh) * 2022-10-14 2022-12-23 楚能新能源股份有限公司 一种水性粘结剂、制备方法及包含水性粘结剂的锂电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524670A (zh) * 2018-11-12 2019-03-26 溧阳中科海钠科技有限责任公司 一种二次电池正极浆料、正极极片和二次电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426564A1 (de) * 1994-07-27 1995-01-05 Basf Ag Verwendung eines Alkalisalzes eines aus iso-Buten und Maleinsäure in polymerisierter Form bestehenden Polymerisats als Additiv in mineralischen Bindebaustoffen
JPH1021924A (ja) * 1996-06-27 1998-01-23 Sanyo Electric Co Ltd 非水電解質電池
JP2005100661A (ja) * 2003-08-28 2005-04-14 Arakawa Chem Ind Co Ltd 二次電池電極用バインダー、二次電池電極用ペースト及び二次電池電極
JP2006161003A (ja) * 2004-12-10 2006-06-22 Daicel Chem Ind Ltd ビニルエーテル−無水マレイン酸系共重合体およびその開環率の制御方法
WO2006085416A1 (fr) * 2005-02-10 2006-08-17 Hitachi Chemical Company, Ltd. Émulsion de résine de liant pour l’électrode d’un dispositif d’énergie, électrode d’un dispositif d’énergie et dispositif d’énergie l’utilisant
JP2009110883A (ja) * 2007-10-31 2009-05-21 Mitsui Chemicals Inc 電気化学セル用バインダー
JP2010009940A (ja) * 2008-06-26 2010-01-14 Denso Corp 二次電池電極用バインダー、並びに該バインダーを用いた二次電池用電極及び非水電解液二次電池
WO2014057627A1 (fr) * 2012-10-12 2014-04-17 独立行政法人産業技術総合研究所 Liant à utiliser dans une électrode positive pour batterie secondaire au lithium-ion, électrode positive pour batterie secondaire au lithium-ion contenant ledit liant, batterie secondaire au lithium-ion utilisant ladite électrode positive, machinerie et appareil électriques

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426564A1 (de) * 1994-07-27 1995-01-05 Basf Ag Verwendung eines Alkalisalzes eines aus iso-Buten und Maleinsäure in polymerisierter Form bestehenden Polymerisats als Additiv in mineralischen Bindebaustoffen
JPH1021924A (ja) * 1996-06-27 1998-01-23 Sanyo Electric Co Ltd 非水電解質電池
JP2005100661A (ja) * 2003-08-28 2005-04-14 Arakawa Chem Ind Co Ltd 二次電池電極用バインダー、二次電池電極用ペースト及び二次電池電極
JP2006161003A (ja) * 2004-12-10 2006-06-22 Daicel Chem Ind Ltd ビニルエーテル−無水マレイン酸系共重合体およびその開環率の制御方法
WO2006085416A1 (fr) * 2005-02-10 2006-08-17 Hitachi Chemical Company, Ltd. Émulsion de résine de liant pour l’électrode d’un dispositif d’énergie, électrode d’un dispositif d’énergie et dispositif d’énergie l’utilisant
JP2009110883A (ja) * 2007-10-31 2009-05-21 Mitsui Chemicals Inc 電気化学セル用バインダー
JP2010009940A (ja) * 2008-06-26 2010-01-14 Denso Corp 二次電池電極用バインダー、並びに該バインダーを用いた二次電池用電極及び非水電解液二次電池
WO2014057627A1 (fr) * 2012-10-12 2014-04-17 独立行政法人産業技術総合研究所 Liant à utiliser dans une électrode positive pour batterie secondaire au lithium-ion, électrode positive pour batterie secondaire au lithium-ion contenant ledit liant, batterie secondaire au lithium-ion utilisant ladite électrode positive, machinerie et appareil électriques

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189255A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
WO2016158637A1 (fr) * 2015-03-30 2016-10-06 株式会社クラレ Composition de liant pour des électrodes de batterie à électrolyte non aqueux, composition de suspension pour des électrodes de batterie à électrolyte non aqueux l'utilisant, électrode négative d'une batterie à électrolyte non aqueux et batterie à électrolyte non aqueux
JP2016189252A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189254A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189251A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189257A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189256A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189253A (ja) * 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
US10720646B2 (en) 2015-08-10 2020-07-21 Kuraray Co., Ltd. Non aqueous electrolyte battery binder composition, and non aqueous electrolyte battery slurry composition, non aqueous electrolyte battery negative electrode, and non aqueous electrolyte battery using same
EP3336941A4 (fr) * 2015-08-10 2019-01-02 Kuraray Co., Ltd. Composition de liant pour batterie à électrolyte non aqueux, composition de bouillie pour batterie à électrolyte non aqueux mettant en uvre cette composition, électrode négative de batterie à électrolyte non aqueux, et batterie à électrolyte non aqueux
JP2018063799A (ja) * 2016-10-12 2018-04-19 株式会社クラレ 非水電解質電池電極用バインダー組成物、並びにそれを用いた非水電解質電池電極用スラリー組成物、非水電解質電池負極及び非水電解質電池
CN110024191A (zh) * 2016-11-29 2019-07-16 株式会社可乐丽 非水电解质电池电极用粘合剂组合物及以其作为原料的水凝胶、以及使用其的非水电解质电池电极用浆料组合物、非水电解质电池负极及非水电解质电池
WO2018101134A1 (fr) * 2016-11-29 2018-06-07 株式会社クラレ Composition de liant pour électrode de batterie à électrolyte non aqueux ainsi qu'hydrogel ayant celle-ci pour matière première, composition de bouillie pour électrode de batterie à électrolyte non aqueux mettant en œuvre ladite composition, électrode négative de batterie à électrolyte non aqueux, et batterie à électrolyte non aqueux
JPWO2018101134A1 (ja) * 2016-11-29 2019-10-24 株式会社クラレ 非水電解質電池電極用バインダー組成物およびそれを原料とするハイドロゲル、並びにそれを用いた非水電解質電池電極用スラリー組成物、非水電解質電池負極、及び非水電解質電池
WO2018131572A1 (fr) * 2017-01-16 2018-07-19 株式会社クラレ Agent d'épaississement/stabilisation pour électrode de batterie à électrolyte non aqueux, et composition de liant, composition de bouillie pour électrode de batterie à électrolyte non aqueux, électrode de batterie à électrolyte non aqueux ainsi que batterie à électrolyte non aqueux contenant cet agent d'épaississement/stabilisation
JPWO2018131572A1 (ja) * 2017-01-16 2019-11-07 株式会社クラレ 非水電解質電池電極用増粘安定剤、並びに、それを含むバインダー組成物、非水電解質電池電極用スラリー組成物、非水電解質電池電極及び非水電解質電池
CN110785879A (zh) * 2017-06-07 2020-02-11 株式会社可乐丽 非水电解质电池用粘合剂组合物、以及使用其的非水电解质电池用粘合剂水溶液、非水电解质电池用浆料组合物、非水电解质电池用电极及非水电解质电池
US11581543B2 (en) 2017-06-07 2023-02-14 Kuraray Co., Ltd. Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non aqueous electrolyte battery each utilizing same
CN113880976A (zh) * 2021-11-18 2022-01-04 中山大学 乙烯马来酸酐交替共聚物及其水解产物在制备硅负极电极材料中的应用
CN115513464A (zh) * 2022-10-14 2022-12-23 楚能新能源股份有限公司 一种水性粘结剂、制备方法及包含水性粘结剂的锂电池
CN115513464B (zh) * 2022-10-14 2023-04-14 楚能新能源股份有限公司 一种水性粘结剂、制备方法及包含水性粘结剂的锂电池

Also Published As

Publication number Publication date
JPWO2016067843A1 (ja) 2017-08-10
TW201633589A (zh) 2016-09-16
TWI580102B (zh) 2017-04-21
CN107112541A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2016067843A1 (fr) Composition de liant pour électrode négative de batterie secondaire au lithium-ion, composition de bouillie pour électrode négative de batterie secondaire au lithium-ion, électrode négative de batterie secondaire au lithium-ion, et batterie secondaire au lithium-ion la comprenant
JP6138383B1 (ja) 非水電解質電池用バインダー組成物、並びにそれを用いた非水電解質電池用スラリー組成物、非水電解質電池負極、及び非水電解質電池
WO2018131572A1 (fr) Agent d'épaississement/stabilisation pour électrode de batterie à électrolyte non aqueux, et composition de liant, composition de bouillie pour électrode de batterie à électrolyte non aqueux, électrode de batterie à électrolyte non aqueux ainsi que batterie à électrolyte non aqueux contenant cet agent d'épaississement/stabilisation
TWI833722B (zh) 非水電解質電池用黏合劑、使用其之黏合劑水溶液及漿體組成物、以及非水電解質電池用電極及非水電解質電池
JP2016189253A (ja) リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
WO2017022844A1 (fr) Composition de boue pour électrode de batterie à électrolyte non aqueux, et électrode positive de batterie à électrolyte non aqueux ainsi que batterie à électrolyte non aqueux l'utilisant
WO2018101134A1 (fr) Composition de liant pour électrode de batterie à électrolyte non aqueux ainsi qu'hydrogel ayant celle-ci pour matière première, composition de bouillie pour électrode de batterie à électrolyte non aqueux mettant en œuvre ladite composition, électrode négative de batterie à électrolyte non aqueux, et batterie à électrolyte non aqueux
JP2018063799A (ja) 非水電解質電池電極用バインダー組成物、並びにそれを用いた非水電解質電池電極用スラリー組成物、非水電解質電池負極及び非水電解質電池
JP2019071233A (ja) 非水電解質電池用バインダー組成物、並びにそれを用いた非水電解質電池用バインダー水溶液、非水電解質電池用スラリー組成物、非水電解質電池負極、及び非水電解質電池
JP2017069162A (ja) 非水電解質二次電池用バインダー組成物、並びにそれを用いた非水電解質二次電池用スラリー組成物、非水電解質二次電池負極、及び非水電解質二次電池
JP6138382B1 (ja) 非水電解質電池用バインダー組成物、並びにそれを用いた非水電解質電池用スラリー組成物、非水電解質電池負極、及び非水電解質電池
JP6856972B2 (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189252A (ja) リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189251A (ja) リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189255A (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
WO2016158637A1 (fr) Composition de liant pour des électrodes de batterie à électrolyte non aqueux, composition de suspension pour des électrodes de batterie à électrolyte non aqueux l'utilisant, électrode négative d'une batterie à électrolyte non aqueux et batterie à électrolyte non aqueux
JP6731723B2 (ja) 非水電解質電池用バインダー水溶液用組成物、並びに非水電解質電池用バインダー水溶液、非水電解質電池用スラリー組成物、非水電解質電池負極及び非水電解質電池
JP2018125094A (ja) 非水電解質電池電極用バインダー組成物、並びにそれを用いた非水電解質電池電極用スラリー組成物、非水電解質電池電極、及び非水電解質電池
TWI614936B (zh) 非水電解質電池負極用漿體組成物、以及使用其之非水電解質電池負極及非水電解質電池
WO2017022842A1 (fr) Composition de boue pour électrode de batterie à électrolyte non aqueux, et électrode négative de batterie à électrolyte non aqueux ainsi que batterie à électrolyte non aqueux l'utilisant
JP2017033904A (ja) 非水電解質電池電極用スラリー組成物、並びに、それを用いた非水電解質電池負極及び非水電解質電池
JP2016189254A (ja) リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP2016189256A (ja) リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854929

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载