+

WO2016052487A1 - Inductance measurement device and inductance measurement method - Google Patents

Inductance measurement device and inductance measurement method Download PDF

Info

Publication number
WO2016052487A1
WO2016052487A1 PCT/JP2015/077467 JP2015077467W WO2016052487A1 WO 2016052487 A1 WO2016052487 A1 WO 2016052487A1 JP 2015077467 W JP2015077467 W JP 2015077467W WO 2016052487 A1 WO2016052487 A1 WO 2016052487A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage means
inductance
coil
current
Prior art date
Application number
PCT/JP2015/077467
Other languages
French (fr)
Japanese (ja)
Inventor
祥吾 神戸
夏比古 森
島津 英一郎
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015189873A external-priority patent/JP2016075673A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016052487A1 publication Critical patent/WO2016052487A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties

Definitions

  • the present invention relates to an inductance measuring apparatus and an inductance measuring method.
  • an inductor for example, an inductor, a transformer, an antenna (bar antenna), a choke coil, a filter, a sensor, etc.
  • the present invention relates to a technique applied as a detection device.
  • an inductor which is one of the passive elements, is important not to be magnetically saturated by an applied current, and thus is evaluated by an inductance value and a rate of change of the inductance value with respect to a bias current called DC superposition characteristics.
  • inductance and DC superposition characteristics are measured by the voltage / ammeter method according to JISC5321 and JISC62024-2 standards. In this standard, a DC current and an AC current are allowed to flow into the test coil and the phase of the current and voltage is detected, and an LCR meter is often used for measurement (Patent Document 1).
  • FIG. 6 is a circuit diagram showing an example of a DC superimposition characteristic measuring circuit according to JIS.
  • the inductance measuring device 50 includes an AC power source and a voltage / current phase detector.
  • the alternating current is superimposed to measure the inductance. Therefore, when measuring the direct current superposition characteristics, the direct current value is changed many times to change the inductance. It is necessary to make a measurement. Therefore, the measurement becomes complicated, and the power consumption required for the measurement and the accompanying heat generation increase.
  • An object of the present invention is to provide an inductance measuring apparatus and an inductance measuring method capable of improving safety, simplifying measurement, and reducing cost.
  • An inductance measuring apparatus is an inductance measuring apparatus for measuring the inductance of a coil-equivalent component to be measured,
  • a measurement circuit in which power storage means is connected in series to the coil equivalent part can be connected to a power source such as a direct current power source that applies a charge to the power storage means,
  • a first switching state in which a connection state is established between the power storage means and the power supply, a disconnection state is provided between the coil equivalent component and the power storage means, and a disconnection state is provided between the power storage means and the power supply.
  • a switch that can be switched to a second switching state in which a current is passed from the power storage means to the coil equivalent part, with the coil equivalent part and the power storage means connected.
  • a voltage detection unit for detecting the voltage and current of the coil equivalent component and the rate of change per unit time thereof is provided.
  • the switch by setting the switch to the first switching state, a current flows from the power source to the power storage means, and charges are stored in the power storage means. Thereafter, the switch is set to the second switching state. That is, the storage unit and the power source are disconnected, and the coil equivalent component and the storage unit are connected. As a result, the electric charge stored in the power storage means is released to the coil equivalent parts, and a large current flows through these coil equivalent parts for a short time.
  • the voltage detection means detects the voltage, current, and rate of change per unit time of the coil-equivalent component (the voltage, current, and rate of change per unit time may be collectively referred to as “voltage, etc.”). To do.
  • the voltage detection means for example, an oscilloscope is applied.
  • the measurer can confirm from the voltage detected by the voltage detection means that the inductor is not magnetically saturated even when a desired large current is applied to the coil equivalent component. Therefore, the inductance change rate with respect to the current change similar to the so-called DC superposition characteristic can be evaluated by one measurement using the inductance of the coil equivalent part and the current changing from the non-energized state to the large current.
  • the power required for measurement is much higher than in the prior art. It can be made small and almost no heat is generated. Therefore, it is possible to measure the inductance at a large current and the rate of change of the inductance with respect to the current change with high accuracy without being affected by heat generation with a very small and simple device. Since it is not necessary to flow a large DC current stably as in the conventional DC superimposition measurement, the safety can be improved, and the inductance change rate with respect to the inductance and current change can be measured in a short time. Simplification can be achieved. In addition, since a heat generation measure is not required and the amount of electric power necessary for measurement can be limited in advance, the incidental equipment can be simplified and an inductance measuring device can be constructed at low cost.
  • Inductance calculation means may be provided for calculating the inductance of the coil-equivalent component according to a predetermined standard from the voltage and current of the coil-equivalent component detected by the voltage detection means and the rate of change per unit time thereof.
  • the defined standard is defined by the result of a test or simulation, for example. In this case, the inductance of the coil equivalent component can be obtained more easily than in the prior art.
  • the power storage means may be a capacitor.
  • a commercially available capacitor having a desired storage capacity can be easily obtained, and the cost can be reduced.
  • An inductance measuring method of the present invention is an inductance measuring method for measuring the inductance of a coil-equivalent component to be measured, Constructing a measurement circuit in which power storage means is connected in series to the coil equivalent parts, and connecting the measurement circuit to a power source such as a direct current power source that applies a charge to the power storage means, A power storage process in which the power storage means and the power source are connected, and the coil equivalent part and the power storage means are disconnected. After the power storage process, a discharge process in which a current is passed from the power storage means to the coil equivalent part in a disconnected state between the power storage means and the power source and a connection state between the coil equivalent part and the power storage means. , A detecting process for detecting the voltage and current of the coil-equivalent component and the rate of change per unit time thereof.
  • the power storage means and the power source are connected and the coil equivalent part and the power storage means are disconnected, so that a current flows from the power source to the power storage means and flows to the power storage means. Stores charge. Thereafter, in the discharging process, the power storage means and the power source are disconnected, and the coil equivalent component and the power storage means are connected, and a current flows from the power storage means to the coil equivalent component. As a result, the electric charge stored in the power storage means is released to the coil equivalent part, and a large current flows through the coil equivalent part for a short time. In the detection process, the voltage and current of the coil-equivalent parts and the rate of change per unit time are detected.
  • the coil equivalent component is not magnetically saturated even when a desired large current is applied to the coil equivalent component. Therefore, it is possible to evaluate the rate of change of the inductance with respect to the current change, similar to the inductance of the coil-equivalent component and the so-called DC superposition characteristics.
  • FIG. 1 is a circuit diagram of an inductance measuring apparatus according to an embodiment of the present invention. Since the actual inductor L has a resistance component and the circuit itself also has a resistance component, these resistance components are represented as R. It is a figure which shows the state which switched the switch of the inductance measuring apparatus. It is a figure which shows the state which switched the switch of the inductance measuring apparatus. It is a figure which shows the change rate of the inductance with respect to the electric current change of the small amorphous coil detected with the inductance measuring apparatus. It is a flowchart which shows the inductance measuring method which concerns on embodiment of this invention in steps. It is a circuit diagram of the inductance measuring apparatus which concerns on other embodiment of this invention. It is a circuit diagram which shows the example of a DC superimposition characteristic measurement circuit by a prior art. It is a figure which shows the example when magnetic saturation generate
  • FIG. 1 is a circuit diagram of an inductance measuring apparatus.
  • the inductance measuring device is a device that measures the inductance of the coil equivalent part 1 to be measured.
  • the resistor 3 collectively represents the resistances of the inductor and the circuit.
  • the coil equivalent component 1 is an electrical component having an inductance such as an electromagnetic inductor, and includes an inductor, a transformer, a reactor, an antenna (bar antenna), a choke coil, a filter, a sensor, and the like, but is not limited thereto. Is not to be done.
  • a measuring circuit in which the coil equivalent part 1 and the power storage means 2 are connected in series is constructed and can be connected to a DC power supply 4 that applies electric charge to the power storage means 2.
  • a capacitor having a desired capacitance for example, 10,000 thousand ⁇ Farad
  • the DC power source 4 is connected to the measurement circuit.
  • an AC power source may be used, and power may be converted into DC by a converter circuit (not shown).
  • the inductance measuring device includes two switches SW 1 and SW 2, a voltage measuring means 5, an inductance calculating means 6, and a diode 7.
  • the two switches SW1 and SW2 are connected in series.
  • One switch SW1 is connected between the positive terminal of the DC power source 4 and the power storage means 2, and the other switch SW2 is connected between the power storage means 2 and the coil equivalent component 1.
  • These two switches SW1 and SW2 are configured to be switchable between a first switching state and a second switching state.
  • the switches SW1 and SW2 used in this measurement circuit for example, manual switches, bipolar transistors, FETs, thyristors, etc. are applied.
  • the switch SW1 in the first switching state, the switch SW1 is turned on to connect the power storage means 2 and the DC power supply 4, and the switch SW2 is turned off to turn the coil equivalent component 1 and the power storage means 2 Is in a disconnected state.
  • the power storage means 2 is charged, and charges are accumulated so as to obtain a predetermined capacitor voltage.
  • the state is switched to the second switching state shown in FIG. 2B.
  • the switch SW1 is turned off to cut off the power supply from the DC power supply 4, and the switch SW2 is turned on to connect the coil equivalent component 1 and the power storage means 2 to each other.
  • the measurement circuit becomes an RLC circuit, and a current flows through the coil equivalent part 1.
  • the current waveform of the measurement circuit is particularly a vibration type because a large current change is given to the coil equivalent part 1 and the first 1/4 cycle of the current waveform in the vibration type of the RLC circuit is preferable. It is preferable to measure from the current value.
  • this measurement circuit becomes a vibration phenomenon, the following equation (1) must be satisfied.
  • the diode 7 that prevents the charge from flowing in the reverse direction of the power storage means 2 due to the vibration phenomenon of the RLC circuit is inserted in the measurement circuit.
  • the current flowing through the coil equivalent component 1 can be controlled only for the half period of the oscillating current, so that a shorter time of current application can be realized and the influence of heat generation etc. can be eliminated. obtain.
  • the voltage detection means 5 shown in FIG. 1 detects the voltage and current of the coil equivalent part 1 and the rate of change per unit time thereof.
  • the energization time to the coil equivalent component 1 is as follows. Can be measured in an extremely short time of several seconds or less.
  • the voltage detection means 5 for example, a differential voltage probe, a current probe, an oscilloscope or the like is applied. Sampling by a measuring instrument such as an oscilloscope is preferably 500 kS / sec or more.
  • the inductance calculating means 6 calculates the inductance of the coil equivalent part 1 from the voltage etc. of the coil equivalent part 1 detected by the voltage etc. detection means 5 using the equations (2), (3) and (4) described later. .
  • the inductance calculation means 6 is electrically connected directly to the voltage detection means 5, but is not limited to this example.
  • the inductance calculation means 6 is provided independently of the measurement circuit, and data such as the voltage detected by the voltage detection means 5 is recorded in a recording means (not shown).
  • the inductance calculating means 6 may calculate the inductance of the coil equivalent component 1 from data such as voltage recorded in the recording means.
  • the inductance calculating means 6 is a predetermined conversion function or arithmetic function stored in an LUT (Look Up Table) realized by software or hardware, or a library of software (Library), or an equivalent thereof.
  • Hardware circuit that can receive the voltage value, current value, and their fluctuation values detected by the voltage detection means 5 and calculate and output the inductance of the coil equivalent component 1 Or it consists of software functions.
  • a procedure from measurement to calculation of inductance is shown (second switching state). 1. Measure the DC resistance of the coil. 2. The coil voltage and current are measured using a measurement circuit. 3. Since the DC resistance component is included in the measured voltage between the coils, it is decomposed as shown in Equation (4), the voltage drop corresponding to the DC resistance r is removed, and the coil voltage of the inductance component is calculated. 4). In the second switching state, the relationship of Expression (3) is established, and the inductance value at each current is calculated using the voltage calculated in 3 and Expression (2).
  • C Capacitance of power storage means (capacitor) used in the measurement circuit
  • L Temporary initial inductance value
  • R Total resistance of the measurement circuit
  • r DC resistance of coil
  • FIG. 3 is a diagram showing the rate of change of the inductance with respect to the current change of the cored coil using the amorphous magnet, detected by this inductance measuring apparatus.
  • the change (rate) in inductance when these magnetizing forces are large is output in the form of a change in current waveform to the display unit (not shown) of the voltage detection means 5 (FIG. 1).
  • the rate of change of current per unit time is represented by the slope of the current in unit time output to the display unit.
  • the measurer can confirm from the rate of change of these inductances that the current is not saturated (ie, the current does not rise steeply) even when a desired large current is applied to the coil equivalent component 1 (FIG. 1). .
  • FIG. 7 is a diagram when the coil is magnetically saturated, detected by the method of the present invention as a reference example.
  • FIG. 7 when a current of 60 A was applied to the coil equivalent component, the coil equivalent component was magnetically saturated, and the current value increased rapidly because the impedance of the coil equivalent component suddenly decreased. From this, according to the apparatus and method of the present invention, it can be confirmed very simply whether or not the inductor can be used without causing magnetic saturation in the current range to be used.
  • FIG. 4 is a flowchart showing step by step the inductance measurement method according to the embodiment.
  • the switches SW1 and SW2 are turned OFF and the measurement circuit including the power storage means 2 is opened from the DC power supply 4.
  • the switch SW1 is turned on to connect the power storage means 2 and the DC power supply 4, and the switch SW2 is turned off to disconnect the coil equivalent part 1 and the power storage means 2 from each other.
  • Step S1 Power storage process
  • the switch SW1 When a predetermined amount of electric charge has accumulated in the power storage means 2, the switch SW1 is turned off to cut off the power supply from the DC power supply 4, and the switch SW2 is turned on to bring the coil equivalent part 1 and the power storage means 2 into a connected state. .
  • the measurement circuit becomes an RLC circuit, and a current flows through the coil equivalent part 1 (step S2: discharge process).
  • the voltage detection means 5 detects the voltage and current of the coil equivalent component 1 and the rate of change per unit time (step S3: detection process). Using this detection result, the inductance calculating means 6 calculates the inductance.
  • the electric charge stored in the power storage means 2 can be released to evaluate the inductance of the coil equivalent part 1 and the rate of change of the inductance with respect to the current change.
  • Electric power can be made very small, and almost no heat is generated. Therefore, it is possible to measure the inductance at a large current and the rate of change of the inductance with respect to the current change with high accuracy without being affected by heat generation with a very small and simple device. Since it is not necessary to flow a large DC current stably as in the conventional DC superimposition measurement, the safety can be improved, and the inductance change rate with respect to the inductance and current change can be measured in a short time. Simplification can be achieved.
  • the inductance measuring apparatus can be constructed at a low cost.
  • the energization / shut-off operation of the switch used in the measurement circuit is preferably performed using a so-called switching element in order to ensure stability and improve work efficiency, and a bipolar transistor, FET, or thyristor may be used as the switching element.
  • a thyristor is suitable for a large current.
  • FIG. 5 is a circuit diagram of an inductance measuring apparatus according to another embodiment.
  • the function of the two switches SW1 and SW2 shown in the embodiment of FIG. 1 is integrated into one switching element SWa.
  • the operation of the MOSFET 8 is linked to the operation of the switching element SWa, and the operation of the switching element SWa includes the operation of the MOSFET 8.
  • the “switch” in the present invention includes the switching element SWa and the MOSFET 8. Since the two switches SW1 and SW2 are combined into one using the switching element SWa as described above, the operation of the measurer can be simplified.
  • noise due to chattering may occur. However, the generation of noise can be prevented by using the switching element SWa as described above.
  • the battery means may be a battery.
  • a neutral position other than ON and OFF may exist by a single pole double throw switch or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Provided are an inductance measurement device and inductance measurement method that make it possible to enhance safety, simplify measurement, and reduce cost. This inductance measurement device measures the inductance of a coil-equivalent part (1) that is an object of measurement. A measurement circuit is constructed in which a power storage means (2) is connected in series to the coil-equivalent part (1), and the measurement circuit is made to be capable of being connected to a DC power supply or other power supply (4) for applying an electric charge to the power storage means (2). The device is provided with switches (SW1, SW2) that make it possible to switch between a switching state in which the power storage means (2) and power supply (4) are connected and the coil-equivalent part (1) and power storage means (2) are disconnected and a switching state in which the power storage means (2) and power supply (4) are disconnected, the coil-equivalent part (1) and power storage means (2) are connected, and current is made to flow from the power storage means (2) to the coil-equivalent part (1), and the like. The device is provided with a means (5) for detecting voltage, and the like, for detecting the voltage and current of the coil-equivalent part (1) and the rate of change per unit time of the same.

Description

インダクタンス測定装置およびインダクタンス測定方法Inductance measuring apparatus and inductance measuring method 関連出願Related applications
 本出願は、2014年10月2日出願の特願2014-203942および2015年9月28日出願の特願2015-189873の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2014-203942 filed on October 2, 2014 and Japanese Patent Application No. 2015-189873 filed on September 28, 2015, which is incorporated herein by reference in its entirety. Cited as what constitutes
 この発明は、インダクタンス測定装置およびインダクタンス測定方法に関し、例えば、インダクタ、トランス、アンテナ(バーアンテナ)、チョークコイル、フィルタ、センサ等の電気機器あるいは電子機器の省電力で安全性の高い大電流での検出機器として適用される技術に関する。 TECHNICAL FIELD The present invention relates to an inductance measuring apparatus and an inductance measuring method. For example, an inductor, a transformer, an antenna (bar antenna), a choke coil, a filter, a sensor, etc. The present invention relates to a technique applied as a detection device.
 近年、自動車を始め様々な機器において動力の電動化が進んできている。また自然エネルギーを利用した太陽光発電のような発電システムが大型化、大出力化している。このような機器の電気回路で用いられる電気部品に対しては、使用条件に合わせた大電流での特性評価が必要になる。 In recent years, various types of equipment, including automobiles, have been driven by motors. In addition, power generation systems such as solar power generation using natural energy are increasing in size and output. For electrical components used in the electrical circuit of such equipment, it is necessary to evaluate characteristics with a large current in accordance with the use conditions.
 例えば受動素子の一つであるインダクタは、印加電流によって磁気飽和しないことが重要であるため、インダクタンス値、および直流重畳特性と呼ばれるバイアス電流に対するインダクタンス値の変化率で評価される。通常、インダクタンスおよび直流重畳特性はJISC5321規格、JISC62024-2規格に準ずる電圧・電流計法で測定されている。この規格では供試コイルに直流電流と交流電流を流入させ、電流と電圧の位相を検波する方式をとっており、LCRメータを測定の際に用いていることが多い(特許文献1)。 For example, an inductor, which is one of the passive elements, is important not to be magnetically saturated by an applied current, and thus is evaluated by an inductance value and a rate of change of the inductance value with respect to a bias current called DC superposition characteristics. In general, inductance and DC superposition characteristics are measured by the voltage / ammeter method according to JISC5321 and JISC62024-2 standards. In this standard, a DC current and an AC current are allowed to flow into the test coil and the phase of the current and voltage is detected, and an LCR meter is often used for measurement (Patent Document 1).
特開2002-324716号公報JP 2002-324716 A
 JIS6024-2規格に準ずるインダクタンスおよび直流重畳特性の評価において、直流の大電流を安定して流すために大出力の直流電流源が必要であり、さらに交流を重畳させるための交流電流源も必要である。図6は、JISによる直流重畳特性測定回路例を示す回路図である。同図に示す供試コイルLxのインダクタンスおよび直流重畳特性を評価する。インダクタンス測定器50内には、交流電源および電圧、電流の位相検波装置が含まれている。 In the evaluation of inductance and DC superimposition characteristics according to JIS6024-2 standard, a large output DC current source is necessary to stably flow a large DC current, and an AC current source is also required to superimpose AC. is there. FIG. 6 is a circuit diagram showing an example of a DC superimposition characteristic measuring circuit according to JIS. The inductance and DC superposition characteristics of the test coil Lx shown in FIG. The inductance measuring device 50 includes an AC power source and a voltage / current phase detector.
 インダクタンスおよび直流重畳特性の測定中は、大電流を扱うため、測定対象となるコイル相当部品を含む測定回路全体での発熱量が大きくなる。大電流であるほど発熱が大きく、コイル相当部品の温度が上昇してしまう。したがって、発熱対策や絶縁性等の安全性を確保して大電流下での測定を実現するためには、測定装置自体が大型化する。またそのため、測定装置が非常に高価となる。 During measurement of the inductance and DC superposition characteristics, since a large current is handled, the amount of heat generated in the entire measurement circuit including the coil equivalent part to be measured becomes large. The larger the current, the greater the heat generated, and the temperature of the coil equivalent component will rise. Therefore, in order to ensure safety such as countermeasures against heat generation and insulation, and realize measurement under a large current, the measuring device itself becomes large. For this reason, the measuring apparatus becomes very expensive.
 従来の測定方法では、任意の直流電流を供試インダクタに印加後、交流電流を重畳させてインダクタンスを測定するため、直流重畳特性を測定する場合、何度も直流電流値を変更して、インダクタンス測定を行う必要がある。したがって、測定が煩雑になり、測定に要する消費電力、それに伴う発熱も大きくなる。 In the conventional measurement method, after applying an arbitrary direct current to the test inductor, the alternating current is superimposed to measure the inductance. Therefore, when measuring the direct current superposition characteristics, the direct current value is changed many times to change the inductance. It is necessary to make a measurement. Therefore, the measurement becomes complicated, and the power consumption required for the measurement and the accompanying heat generation increase.
 この発明の目的は、安全性の向上および測定の簡単化を図る、またコスト低減を図ることができるインダクタンス測定装置およびインダクタンス測定方法を提供することである。 An object of the present invention is to provide an inductance measuring apparatus and an inductance measuring method capable of improving safety, simplifying measurement, and reducing cost.
 この発明のインダクタンス測定装置は、測定対象となるコイル相当部品のインダクタンスを測定するインダクタンス測定装置であって、
 前記コイル相当部品に蓄電手段が直列接続された測定用回路を、前記蓄電手段に電荷を与える直流電源等の電源に接続可能とし、
 前記蓄電手段と前記電源との間を接続状態とし、前記コイル相当部品と前記蓄電手段との間を切断状態とする第1のスイッチング状態と、前記蓄電手段と前記電源との間を切断状態とし、前記コイル相当部品と前記蓄電手段との間を接続状態として前記蓄電手段から前記コイル相当部品に電流を流す第2のスイッチング状態とに切換可能なスイッチと、
 前記コイル相当部品の電圧、電流およびその単位時間当たりの変化率を検出する電圧等検出手段とを設けている。
An inductance measuring apparatus according to the present invention is an inductance measuring apparatus for measuring the inductance of a coil-equivalent component to be measured,
A measurement circuit in which power storage means is connected in series to the coil equivalent part can be connected to a power source such as a direct current power source that applies a charge to the power storage means,
A first switching state in which a connection state is established between the power storage means and the power supply, a disconnection state is provided between the coil equivalent component and the power storage means, and a disconnection state is provided between the power storage means and the power supply. A switch that can be switched to a second switching state in which a current is passed from the power storage means to the coil equivalent part, with the coil equivalent part and the power storage means connected.
A voltage detection unit for detecting the voltage and current of the coil equivalent component and the rate of change per unit time thereof is provided.
 この構成によると、スイッチを第1のスイッチング状態にすることで、電源から蓄電手段に電流が流れて蓄電手段に電荷を蓄える。その後、スイッチを第2のスイッチング状態にする。つまり蓄電手段と電源との間を切断状態とし、コイル相当部品と蓄電手段との間を接続状態とする。これにより蓄電手段に蓄えられた電荷がコイル相当部品に放出され、これらコイル相当部品に短時間だけ大電流が流れる。 According to this configuration, by setting the switch to the first switching state, a current flows from the power source to the power storage means, and charges are stored in the power storage means. Thereafter, the switch is set to the second switching state. That is, the storage unit and the power source are disconnected, and the coil equivalent component and the storage unit are connected. As a result, the electric charge stored in the power storage means is released to the coil equivalent parts, and a large current flows through these coil equivalent parts for a short time.
 電圧等検出手段は、コイル相当部品の電圧、電流およびその単位時間当たりの変化率(これら電圧、電流およびその単位時間当たりの変化率を総称して「電圧等」という場合がある。)を検出する。電圧等検出手段として、例えば、オシロスコープが適用される。測定者は、電圧等検出手段で検出される電圧等から、コイル相当部品に所望の大電流を与えてもインダクタが磁気飽和していないことを確認することができる。よって、コイル相当部品のインダクタンスおよび無通電状態から大電流まで変化する電流を用いた1回の測定で、所謂直流重畳特性に類似の電流変化に対するインダクタンスの変化率を評価し得る。 The voltage detection means detects the voltage, current, and rate of change per unit time of the coil-equivalent component (the voltage, current, and rate of change per unit time may be collectively referred to as “voltage, etc.”). To do. As the voltage detection means, for example, an oscilloscope is applied. The measurer can confirm from the voltage detected by the voltage detection means that the inductor is not magnetically saturated even when a desired large current is applied to the coil equivalent component. Therefore, the inductance change rate with respect to the current change similar to the so-called DC superposition characteristic can be evaluated by one measurement using the inductance of the coil equivalent part and the current changing from the non-energized state to the large current.
 このように、蓄電手段に予め蓄えた電荷を放出してコイル相当部品のインダクタンスおよび電流変化に対するインダクタンスの変化率を1回の通電により評価し得るため、従来技術よりも測定に必要な電力を非常に小さくでき、発熱もほとんど発生しない。このことから、非常に小さく簡素な装置で大電流でのインダクタンスおよび電流変化に対するインダクタンスの変化率を、発熱の影響を受けずに高精度に測定可能になる。従来の直流重畳測定のような直流の大電流を安定して流す必要がなくなるため、安全性の向上を図り、短時間でインダクタンスおよび電流変化に対するインダクタンスの変化率を測定することができ、測定の簡単化を図ることができる。また発熱対策が不要となり、予め測定に必要な電力量も制限出来る機構のため、付帯設備が簡略化できインダクタンス測定装置を低コストで構築することが可能となる。 In this way, since the charge stored in advance in the power storage means can be released to evaluate the inductance change rate relative to the inductance of the coil-equivalent component and the current by a single energization, the power required for measurement is much higher than in the prior art. It can be made small and almost no heat is generated. Therefore, it is possible to measure the inductance at a large current and the rate of change of the inductance with respect to the current change with high accuracy without being affected by heat generation with a very small and simple device. Since it is not necessary to flow a large DC current stably as in the conventional DC superimposition measurement, the safety can be improved, and the inductance change rate with respect to the inductance and current change can be measured in a short time. Simplification can be achieved. In addition, since a heat generation measure is not required and the amount of electric power necessary for measurement can be limited in advance, the incidental equipment can be simplified and an inductance measuring device can be constructed at low cost.
 前記電圧等検出手段で検出した前記コイル相当部品の電圧、電流およびその単位時間当たりの変化率から、定められた基準に従って、前記コイル相当部品のインダクタンスを算出するインダクタンス算出手段を設けても良い。前記定められた基準は、例えば、試験やシミュレーション等の結果により定められる。この場合、コイル相当部品のインダクタンスを従来技術よりも簡単に求めることができる。 Inductance calculation means may be provided for calculating the inductance of the coil-equivalent component according to a predetermined standard from the voltage and current of the coil-equivalent component detected by the voltage detection means and the rate of change per unit time thereof. The defined standard is defined by the result of a test or simulation, for example. In this case, the inductance of the coil equivalent component can be obtained more easily than in the prior art.
 前記蓄電手段はコンデンサであっても良い。この場合、所望の蓄電容量を有する市販のコンデンサを容易に入手することができ、コスト低減を図れる。 The power storage means may be a capacitor. In this case, a commercially available capacitor having a desired storage capacity can be easily obtained, and the cost can be reduced.
 この発明のインダクタンス測定方法は、測定対象となるコイル相当部品のインダクタンスを測定するインダクタンス測定方法であって、
 前記コイル相当部品に蓄電手段を直列接続した測定用回路を構築して、前記蓄電手段に電荷を与える直流電源等の電源に該測定用回路を接続し、
 前記蓄電手段と前記電源との間を接続状態とし、前記コイル相当部品と前記蓄電手段との間を切断状態とする蓄電過程と、
 前記蓄電過程の後、前記蓄電手段と前記電源との間を切断状態とし、前記コイル相当部品と前記蓄電手段との間を接続状態として前記蓄電手段から前記コイル相当部品に電流を流す放電過程と、
 前記コイル相当部品の電圧、電流およびその単位時間当たりの変化率を検出する検出過程とを有する。
An inductance measuring method of the present invention is an inductance measuring method for measuring the inductance of a coil-equivalent component to be measured,
Constructing a measurement circuit in which power storage means is connected in series to the coil equivalent parts, and connecting the measurement circuit to a power source such as a direct current power source that applies a charge to the power storage means,
A power storage process in which the power storage means and the power source are connected, and the coil equivalent part and the power storage means are disconnected.
After the power storage process, a discharge process in which a current is passed from the power storage means to the coil equivalent part in a disconnected state between the power storage means and the power source and a connection state between the coil equivalent part and the power storage means. ,
A detecting process for detecting the voltage and current of the coil-equivalent component and the rate of change per unit time thereof.
 この構成によると、蓄電過程では、蓄電手段と電源との間を接続状態とし、コイル相当部品と蓄電手段との間を切断状態とすることで、電源から蓄電手段に電流が流れて蓄電手段に電荷を蓄える。この後、放電過程では、蓄電手段と電源との間を切断状態とし、コイル相当部品と蓄電手段との間を接続状態として蓄電手段からコイル相当部品に電流を流す。これにより蓄電手段に蓄えられた電荷がコイル相当部品に放出され、コイル相当部品に短時間だけ大電流が流れる。検出過程では、コイル相当部品の電圧、電流およびその単位時間当たりの変化率を検出する。電圧等から、コイル相当部品に所望の大電流を与えてもコイル相当部品が磁気飽和していないことを確認することができる。よって、コイル相当部品のインダクタンスおよび所謂直流重畳特性に類似の、電流変化に対するインダクタンスの変化率を評価し得る。 According to this configuration, in the power storage process, the power storage means and the power source are connected and the coil equivalent part and the power storage means are disconnected, so that a current flows from the power source to the power storage means and flows to the power storage means. Stores charge. Thereafter, in the discharging process, the power storage means and the power source are disconnected, and the coil equivalent component and the power storage means are connected, and a current flows from the power storage means to the coil equivalent component. As a result, the electric charge stored in the power storage means is released to the coil equivalent part, and a large current flows through the coil equivalent part for a short time. In the detection process, the voltage and current of the coil-equivalent parts and the rate of change per unit time are detected. It can be confirmed from the voltage or the like that the coil equivalent component is not magnetically saturated even when a desired large current is applied to the coil equivalent component. Therefore, it is possible to evaluate the rate of change of the inductance with respect to the current change, similar to the inductance of the coil-equivalent component and the so-called DC superposition characteristics.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The present invention will be understood more clearly from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
この発明の実施形態に係るインダクタンス測定装置の回路図である。実際のインダクタLは抵抗成分を有すること、また回路自体も抵抗成分を有することから、これらの抵抗成分をRとして表記した。1 is a circuit diagram of an inductance measuring apparatus according to an embodiment of the present invention. Since the actual inductor L has a resistance component and the circuit itself also has a resistance component, these resistance components are represented as R. 同インダクタンス測定装置のスイッチを切換えた状態を示す図である。It is a figure which shows the state which switched the switch of the inductance measuring apparatus. 同インダクタンス測定装置のスイッチを切換えた状態を示す図である。It is a figure which shows the state which switched the switch of the inductance measuring apparatus. 同インダクタンス測定装置で検出した小型アモルファスコイルの電流変化に対するインダクタンスの変化率を示す図である。It is a figure which shows the change rate of the inductance with respect to the electric current change of the small amorphous coil detected with the inductance measuring apparatus. この発明の実施形態に係るインダクタンス測定方法を段階的に示すフローチャートである。It is a flowchart which shows the inductance measuring method which concerns on embodiment of this invention in steps. この発明の他の実施形態に係るインダクタンス測定装置の回路図である。It is a circuit diagram of the inductance measuring apparatus which concerns on other embodiment of this invention. 従来技術による直流重畳特性測定回路例を示す回路図である。It is a circuit diagram which shows the example of a DC superimposition characteristic measurement circuit by a prior art. 参考例として本発明の方法で検出したコイルに磁気飽和が発生した場合の例示す図である。It is a figure which shows the example when magnetic saturation generate | occur | produces in the coil detected by the method of this invention as a reference example.
 この発明の実施形態に係るインダクタンス測定装置およびインダクタンス測定方法を図1ないし図4と共に説明する。図1は、インダクタンス測定装置の回路図である。インダクタンス測定装置は、測定対象となるコイル相当部品1のインダクタンスを測定する装置である。抵抗3はインダクタや回路の抵抗をまとめて表したものである。コイル相当部品1は、例えば、電磁誘導器のような、インダクタンスを有する電気部品であり、インダクタ、トランス、リアクトル、アンテナ(バーアンテナ)、チョークコイル、フィルタ、センサ等が挙げられるが、これらに限定されるものではない。 An inductance measuring apparatus and an inductance measuring method according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a circuit diagram of an inductance measuring apparatus. The inductance measuring device is a device that measures the inductance of the coil equivalent part 1 to be measured. The resistor 3 collectively represents the resistances of the inductor and the circuit. The coil equivalent component 1 is an electrical component having an inductance such as an electromagnetic inductor, and includes an inductor, a transformer, a reactor, an antenna (bar antenna), a choke coil, a filter, a sensor, and the like, but is not limited thereto. Is not to be done.
 このインダクタンス測定装置では、コイル相当部品1と蓄電手段2とを直列接続した測定用回路を構築し、蓄電手段2に電荷を与える直流電源4に接続可能としている。蓄電手段2としては、所望の静電容量(例えば、1万数千μファラッド)を有するコンデンサが適用される。なお、この実施形態では、測定用回路に直流電源4を接続しているが、この直流電源4に代えて交流電源を用い、不図示のコンバータ回路等で直流に電力変換しても良い。インダクタンス測定装置は、二つのスイッチSW1,SW2と、電圧等測定手段5と、インダクタンス算出手段6と、ダイオード7とを有する。 In this inductance measuring apparatus, a measuring circuit in which the coil equivalent part 1 and the power storage means 2 are connected in series is constructed and can be connected to a DC power supply 4 that applies electric charge to the power storage means 2. As the power storage means 2, a capacitor having a desired capacitance (for example, 10,000 thousand μFarad) is applied. In this embodiment, the DC power source 4 is connected to the measurement circuit. However, instead of the DC power source 4, an AC power source may be used, and power may be converted into DC by a converter circuit (not shown). The inductance measuring device includes two switches SW 1 and SW 2, a voltage measuring means 5, an inductance calculating means 6, and a diode 7.
 二つのスイッチSW1,SW2は直列接続の関係にある。一方のスイッチSW1は、直流電源4の正端子と蓄電手段2との間に接続され、他方のスイッチSW2は、蓄電手段2とコイル相当部品1との間に接続される。これら二つのスイッチSW1,SW2は、第1のスイッチング状態と第2のスイッチング状態とに切換可能に構成される。この測定用回路に用いるスイッチSW1,SW2としては、例えば、手動型の開閉器やバイポーラトランジスタ、FET、サイリスタ等が適用される。 The two switches SW1 and SW2 are connected in series. One switch SW1 is connected between the positive terminal of the DC power source 4 and the power storage means 2, and the other switch SW2 is connected between the power storage means 2 and the coil equivalent component 1. These two switches SW1 and SW2 are configured to be switchable between a first switching state and a second switching state. As the switches SW1 and SW2 used in this measurement circuit, for example, manual switches, bipolar transistors, FETs, thyristors, etc. are applied.
 図2Aに示すように、第1のスイッチング状態では、スイッチSW1をONにして蓄電手段2と直流電源4との間を接続状態とし、スイッチSW2をOFFにしてコイル相当部品1と蓄電手段2との間を切断状態とする。これにより蓄電手段2を充電し、所定のコンデンサ電圧になるように電荷を溜める。蓄電手段2に電荷が所定量溜まったら、図2Bに示す第2のスイッチング状態に切り換える。 As shown in FIG. 2A, in the first switching state, the switch SW1 is turned on to connect the power storage means 2 and the DC power supply 4, and the switch SW2 is turned off to turn the coil equivalent component 1 and the power storage means 2 Is in a disconnected state. As a result, the power storage means 2 is charged, and charges are accumulated so as to obtain a predetermined capacitor voltage. When a predetermined amount of electric charge has accumulated in the power storage means 2, the state is switched to the second switching state shown in FIG. 2B.
 この第2のスイッチング状態では、安全性確保のためスイッチSW1をOFFにして直流電源4からの電力供給を遮断し、スイッチSW2をONにしてコイル相当部品1と蓄電手段2との間を接続状態とする。これによりこの測定用回路はRLC回路となり電流がコイル相当部品1に流れる。この場合、この測定用回路の電流波形を特に振動型とすることが、大きな電流変化をコイル相当部品1に与えられることから好ましく、またRLC回路の振動型における電流波形の最初1/4周期の電流値から測定することが好ましい。また、この測定回路は振動現象となるために後述の式(1)を満たさなければならない。 In this second switching state, in order to ensure safety, the switch SW1 is turned off to cut off the power supply from the DC power supply 4, and the switch SW2 is turned on to connect the coil equivalent component 1 and the power storage means 2 to each other. And As a result, the measurement circuit becomes an RLC circuit, and a current flows through the coil equivalent part 1. In this case, it is preferable that the current waveform of the measurement circuit is particularly a vibration type because a large current change is given to the coil equivalent part 1 and the first 1/4 cycle of the current waveform in the vibration type of the RLC circuit is preferable. It is preferable to measure from the current value. In addition, since this measurement circuit becomes a vibration phenomenon, the following equation (1) must be satisfied.
 ところで蓄電手段は、大容量のものでは、接続する電極の正負が決まっていることが多く、この蓄電手段に逆方向に電力を印加すると異常となる場合がある。そこで本実施形態では、RLC回路の振動現象により蓄電手段2の逆方向に電荷が流れ込むことを防止するダイオード7を、測定用回路に挿入している。このダイオード7を測定用回路に挿入したことにより、コイル相当部品1に流れる電流を振動電流の半周期分のみに制御できることから、より短時間の電流印加を実現し、発熱等の影響を除去し得る。 By the way, in the case where the power storage means has a large capacity, the polarity of the electrode to be connected is often determined, and if power is applied to the power storage means in the reverse direction, it may become abnormal. Therefore, in this embodiment, the diode 7 that prevents the charge from flowing in the reverse direction of the power storage means 2 due to the vibration phenomenon of the RLC circuit is inserted in the measurement circuit. By inserting this diode 7 into the measurement circuit, the current flowing through the coil equivalent component 1 can be controlled only for the half period of the oscillating current, so that a shorter time of current application can be realized and the influence of heat generation etc. can be eliminated. obtain.
 図1に示す電圧等検出手段5は、コイル相当部品1の電圧、電流およびその単位時間当たりの変化率を検出する。前述のような蓄電手段2に溜まった電荷を放出する構成を用いること、および、十分な測定分解能を有する電流および電圧の電圧等検出手段5を利用することで、コイル相当部品1への通電時間を数sec以下の極短時間で測定可能とする。電圧等検出手段5としては、例えば、差動電圧プローブ、電流プローブ、オシロスコープ等を適用する。オシロスコープ等の測定器のサンプリングは、500kS/sec以上が好ましい。 The voltage detection means 5 shown in FIG. 1 detects the voltage and current of the coil equivalent part 1 and the rate of change per unit time thereof. By using the configuration for discharging the charge accumulated in the power storage means 2 as described above, and using the current and voltage detection means 5 having sufficient measurement resolution, the energization time to the coil equivalent component 1 is as follows. Can be measured in an extremely short time of several seconds or less. As the voltage detection means 5, for example, a differential voltage probe, a current probe, an oscilloscope or the like is applied. Sampling by a measuring instrument such as an oscilloscope is preferably 500 kS / sec or more.
 インダクタンス算出手段6は、電圧等検出手段5で検出したコイル相当部品1の電圧等から、後述の式(2)、(3)、(4)を用いて、コイル相当部品1のインダクタンスを算出する。このインダクタンス算出手段6は、電圧等検出手段5に電気的に直接接続されているが、この例に限定されるものではない。例えば、インダクタンス算出手段6を、測定用回路に対して独立に設け、電圧等検出手段5で検出した電圧等のデータを図示外の記録手段に記録しておく。インダクタンス算出手段6は前記記録手段に記録された電圧等のデータからコイル相当部品1のインダクタンスを算出しても良い。インダクタンス算出手段6は、具体的には、ソフトウエアやハードウエアで実現されたLUT(Look Up Table)、またはソフトウエアのライブラリ(Library)に収められた所定の変換関数や算術関数、またはそれに等価のハードウエア等を用いて、電圧等検出手段5で検出された電圧値、電流値およびそれらの変動値等の入力を受けて、コイル相当部品1のインダクタンスを演算して出力しうるハードウエア回路またはソフトウエア関数で構成されている。 The inductance calculating means 6 calculates the inductance of the coil equivalent part 1 from the voltage etc. of the coil equivalent part 1 detected by the voltage etc. detection means 5 using the equations (2), (3) and (4) described later. . The inductance calculation means 6 is electrically connected directly to the voltage detection means 5, but is not limited to this example. For example, the inductance calculation means 6 is provided independently of the measurement circuit, and data such as the voltage detected by the voltage detection means 5 is recorded in a recording means (not shown). The inductance calculating means 6 may calculate the inductance of the coil equivalent component 1 from data such as voltage recorded in the recording means. Specifically, the inductance calculating means 6 is a predetermined conversion function or arithmetic function stored in an LUT (Look Up Table) realized by software or hardware, or a library of software (Library), or an equivalent thereof. Hardware circuit that can receive the voltage value, current value, and their fluctuation values detected by the voltage detection means 5 and calculate and output the inductance of the coil equivalent component 1 Or it consists of software functions.
 測定からインダクタンスの算出までの手順を示す(第2のスイッチング状態)。
 1.コイルの直流抵抗の測定を行う。
 2.測定回路を用いてコイル電圧と電流を測定する。
 3.コイル間の測定電圧には直流抵抗成分が含まれることから式(4)のように分解し、直流抵抗r分の電圧降下分を取り除きインダクタンス成分のコイル電圧を算出する。
 4.第2のスイッチング状態は式(3)の関係が成り立っており、3で算出した電圧と式(2)を用いて、各電流時におけるインダクタンス値を算出する。
A procedure from measurement to calculation of inductance is shown (second switching state).
1. Measure the DC resistance of the coil.
2. The coil voltage and current are measured using a measurement circuit.
3. Since the DC resistance component is included in the measured voltage between the coils, it is decomposed as shown in Equation (4), the voltage drop corresponding to the DC resistance r is removed, and the coil voltage of the inductance component is calculated.
4). In the second switching state, the relationship of Expression (3) is established, and the inductance value at each current is calculated using the voltage calculated in 3 and Expression (2).
 C:測定用回路に使用した蓄電手段(コンデンサ)の静電容量
 L:仮値の初期インダクタンス値  
 R:測定用回路の全体の抵抗  
 r:コイルの直流抵抗  
C: Capacitance of power storage means (capacitor) used in the measurement circuit L: Temporary initial inductance value
R: Total resistance of the measurement circuit
r: DC resistance of coil
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 図3は、このインダクタンス測定装置で検出した、アモルファス製磁子を用いた有芯コイルの電流変化に対するインダクタンスの変化率をそれぞれ示す図である。これらの磁化力が大きいときのインダクタンスの変化(率)が、電圧等検出手段5(図1)の表示部(図示せず)等に、電流波形の変化の形で出力される。電流の単位時間当たりの変化率は、前記表示部に出力された単位時間における電流の傾きで表される。測定者は、これらのインダクタンスの変化率から、コイル相当部品1(図1)に所望の大電流を与えても電流が飽和していない(すなわち電流が急峻に立ち上がっていない)ことを確認し得る。 FIG. 3 is a diagram showing the rate of change of the inductance with respect to the current change of the cored coil using the amorphous magnet, detected by this inductance measuring apparatus. The change (rate) in inductance when these magnetizing forces are large is output in the form of a change in current waveform to the display unit (not shown) of the voltage detection means 5 (FIG. 1). The rate of change of current per unit time is represented by the slope of the current in unit time output to the display unit. The measurer can confirm from the rate of change of these inductances that the current is not saturated (ie, the current does not rise steeply) even when a desired large current is applied to the coil equivalent component 1 (FIG. 1). .
 図7は、参考例として本発明の方法で検出した、コイルが磁気飽和を起こした際の図である。図7では、コイル相当部品に60Aの電流を与えたときコイル相当部品が磁気飽和し、コイル相当部品のインピーダンスが急激に小さくなったために電流値が急増した。このことから、本発明の装置および方法によれば、非常に簡便に、使用したい電流範囲でインダクタが磁気飽和を起こさず使用可能かどうかを確認することができる。 FIG. 7 is a diagram when the coil is magnetically saturated, detected by the method of the present invention as a reference example. In FIG. 7, when a current of 60 A was applied to the coil equivalent component, the coil equivalent component was magnetically saturated, and the current value increased rapidly because the impedance of the coil equivalent component suddenly decreased. From this, according to the apparatus and method of the present invention, it can be confirmed very simply whether or not the inductor can be used without causing magnetic saturation in the current range to be used.
 図4は、実施形態に係るインダクタンス測定方法を段階的に示すフローチャートである。以後、図1も参照しつつ説明する。本測定の際は、最初に、少なくともスイッチSW1、SW2をOFFにして、直流電源4から、蓄電手段2を含む測定用回路を開放しておくことが安全面上好ましい。本測定の開始後(スタート)、スイッチSW1をONにして蓄電手段2と直流電源4との間を接続状態とし、スイッチSW2をOFFにしてコイル相当部品1と蓄電手段2との間を切断状態とする(ステップS1:蓄電過程)。これにより蓄電手段2を充電し、所定のコンデンサ電圧になるように電荷を溜める。 FIG. 4 is a flowchart showing step by step the inductance measurement method according to the embodiment. Hereinafter, description will be made with reference to FIG. At the time of this measurement, it is preferable from the viewpoint of safety that first, at least the switches SW1 and SW2 are turned OFF and the measurement circuit including the power storage means 2 is opened from the DC power supply 4. After the start of this measurement (start), the switch SW1 is turned on to connect the power storage means 2 and the DC power supply 4, and the switch SW2 is turned off to disconnect the coil equivalent part 1 and the power storage means 2 from each other. (Step S1: Power storage process). As a result, the power storage means 2 is charged, and charges are accumulated so as to obtain a predetermined capacitor voltage.
 蓄電手段2に電荷が所定量溜まったら、スイッチSW1をOFFにして直流電源4からの電力供給を遮断し、スイッチSW2をONにしてコイル相当部品1と蓄電手段2との間を接続状態とする。これによりこの測定用回路はRLC回路となり電流がコイル相当部品1に流れる(ステップS2:放電過程)。電圧等検出手段5は、コイル相当部品1の電圧、電流およびその単位時間当たりの変化率を検出する(ステップS3:検出過程)。この検出結果を使用して、インダクタンス算出手段6がインダクタンスを算出する。 When a predetermined amount of electric charge has accumulated in the power storage means 2, the switch SW1 is turned off to cut off the power supply from the DC power supply 4, and the switch SW2 is turned on to bring the coil equivalent part 1 and the power storage means 2 into a connected state. . As a result, the measurement circuit becomes an RLC circuit, and a current flows through the coil equivalent part 1 (step S2: discharge process). The voltage detection means 5 detects the voltage and current of the coil equivalent component 1 and the rate of change per unit time (step S3: detection process). Using this detection result, the inductance calculating means 6 calculates the inductance.
 以上説明したインダクタンス測定装置によると、蓄電手段2に予め蓄えた電荷を放出してコイル相当部品1のインダクタンスおよび電流変化に対するインダクタンスの変化率を評価し得るため、従来技術よりも測定用回路に流れる電力を非常に小さくでき、発熱もほとんど発生しない。このことから、非常に小さく簡素な装置で大電流でのインダクタンスおよび電流変化に対するインダクタンスの変化率を、発熱の影響を受けずに高精度に測定可能になる。従来の直流重畳測定のような直流の大電流を安定して流す必要がなくなるため、安全性の向上を図り、短時間でインダクタンスおよび電流変化に対するインダクタンスの変化率を測定することができ、測定の簡単化を図ることができる。またインダクタンス測定装置を低コストで構築することが可能となる。 According to the inductance measuring apparatus described above, the electric charge stored in the power storage means 2 can be released to evaluate the inductance of the coil equivalent part 1 and the rate of change of the inductance with respect to the current change. Electric power can be made very small, and almost no heat is generated. Therefore, it is possible to measure the inductance at a large current and the rate of change of the inductance with respect to the current change with high accuracy without being affected by heat generation with a very small and simple device. Since it is not necessary to flow a large DC current stably as in the conventional DC superimposition measurement, the safety can be improved, and the inductance change rate with respect to the inductance and current change can be measured in a short time. Simplification can be achieved. In addition, the inductance measuring apparatus can be constructed at a low cost.
 他の実施形態について説明する。以下の説明においては、先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。 Other embodiments will be described. In the following description, the same reference numerals are given to the portions corresponding to the matters described in the preceding embodiment, and the overlapping description is omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.
 測定用回路に用いるスイッチの通電/遮断動作は、安定性の確保および作業効率向上のため、いわゆるスイッチング素子を用いて行うことが好ましく、このスイッチング素子としてバイポーラトランジスタ、FET、サイリスタを用いると良い。特に、大電流時にはサイリスタが適している。 The energization / shut-off operation of the switch used in the measurement circuit is preferably performed using a so-called switching element in order to ensure stability and improve work efficiency, and a bipolar transistor, FET, or thyristor may be used as the switching element. In particular, a thyristor is suitable for a large current.
 図5は、他の実施形態に係るインダクタンス測定装置の回路図である。この例では、MOSFET8を使用することで、図1の実施形態で示した二つのスイッチSW1,SW2の機能を一つのスイッチング素子SWaにまとめた回路としている。MOSFET8の動作は、スイッチング素子SWaの動作に連動し、このスイッチング素子SWaの動作はMOSFET8の動作を含む形となる。ここで本発明における「スイッチ」は、このスイッチング素子SWaとMOSFET8とを含む。このようにスイッチング素子SWaを用いて二つのスイッチSW1,SW2を一つにしたことから、測定者の動作を簡略化できる。また、アナログスイッチを用いた場合には、チャタリングによるノイズが発生する場合があるが、前記のようにスイッチング素子SWaを用いることで、ノイズの発生を防止できる。 FIG. 5 is a circuit diagram of an inductance measuring apparatus according to another embodiment. In this example, by using the MOSFET 8, the function of the two switches SW1 and SW2 shown in the embodiment of FIG. 1 is integrated into one switching element SWa. The operation of the MOSFET 8 is linked to the operation of the switching element SWa, and the operation of the switching element SWa includes the operation of the MOSFET 8. Here, the “switch” in the present invention includes the switching element SWa and the MOSFET 8. Since the two switches SW1 and SW2 are combined into one using the switching element SWa as described above, the operation of the measurer can be simplified. In addition, when an analog switch is used, noise due to chattering may occur. However, the generation of noise can be prevented by using the switching element SWa as described above.
 蓄電手段はバッテリであっても良い。スイッチのスイッチング状態は、1極複投形スイッチなどにより、ON、OFF以外の中立位置が存在しても良い。 The battery means may be a battery. As for the switching state of the switch, a neutral position other than ON and OFF may exist by a single pole double throw switch or the like.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
1…コイル相当部品
2…蓄電手段
3…抵抗
4…直流電源
5…電圧等検出手段
6…インダクタンス算出手段
SW1、SW2…スイッチ
DESCRIPTION OF SYMBOLS 1 ... Coil equivalent part 2 ... Power storage means 3 ... Resistance 4 ... DC power supply 5 ... Voltage etc. detection means 6 ... Inductance calculation means SW1, SW2 ... Switch

Claims (4)

  1.  測定対象となるコイル相当部品のインダクタンスを測定するインダクタンス測定装置であり、前記コイル相当部品に蓄電手段が直列接続された測定用回路を、前記蓄電手段に電荷を与える電源に接続可能としたインダクタンス測定装置であって、
     前記蓄電手段と前記電源との間を接続状態とし、前記コイル相当部品と前記蓄電手段との間を切断状態とする第1のスイッチング状態と、前記蓄電手段と前記電源との間を切断状態とし、前記コイル相当部品と前記蓄電手段との間を接続状態として前記蓄電手段から前記コイル相当部品に電流を流す第2のスイッチング状態とに切換可能なスイッチと、
     前記コイル相当部品の電圧、電流およびその単位時間当たりの変化率を検出する電圧等検出手段と、
    を設けたインダクタンス測定装置。
    An inductance measuring apparatus for measuring the inductance of a coil-equivalent component to be measured, wherein a measurement circuit in which a storage unit is connected in series to the coil-equivalent component can be connected to a power source that supplies a charge to the storage unit A device,
    A first switching state in which a connection state is established between the power storage means and the power supply, a disconnection state is provided between the coil equivalent component and the power storage means, and a disconnection state is provided between the power storage means and the power supply. A switch that can be switched to a second switching state in which a current is passed from the power storage means to the coil equivalent part, with the coil equivalent part and the power storage means connected.
    Voltage and current detection means for detecting the voltage and current of the coil equivalent parts and the rate of change per unit time thereof;
    An inductance measuring apparatus provided with
  2.  請求項1に記載のインダクタンス測定装置において、前記電圧等検出手段で検出した前記コイル相当部品の電圧、電流およびその単位時間当たりの変化率から、定められた基準に従って、前記コイル相当部品のインダクタンスを算出するインダクタンス算出手段を設けたことを特徴とするインダクタンス測定装置。 2. The inductance measuring apparatus according to claim 1, wherein the inductance of the coil equivalent component is determined according to a predetermined standard from the voltage and current of the coil equivalent component detected by the voltage detection means and the rate of change per unit time thereof. An inductance measuring apparatus comprising an inductance calculating means for calculating.
  3.  請求項1または請求項2に記載のインダクタンス測定装置において、前記蓄電手段はコンデンサであるインダクタンス測定装置。 3. The inductance measuring apparatus according to claim 1, wherein the power storage means is a capacitor.
  4.  測定対象となるコイル相当部品のインダクタンスを測定するインダクタンス測定方法であって、
     前記コイル相当部品に蓄電手段を直列接続した測定用回路を構築して、前記蓄電手段に電荷を与える電源に該測定用回路を接続し、
     前記蓄電手段と前記電源との間を接続状態とし、前記コイル相当部品と前記蓄電手段との間を切断状態とする蓄電過程と、
     前記蓄電過程の後、前記蓄電手段と前記電源との間を切断状態とし、前記コイル相当部品と前記蓄電手段との間を接続状態として前記蓄電手段から前記コイル相当部品に電流を流す放電過程と、
     前記コイル相当部品の電圧、電流およびその単位時間当たりの変化率を検出する検出過程と、
    を有するインダクタンス測定方法。
    An inductance measurement method for measuring the inductance of a coil-equivalent component to be measured,
    Constructing a measurement circuit in which power storage means is connected in series to the coil equivalent parts, and connecting the measurement circuit to a power source that applies a charge to the power storage means,
    A power storage process in which the power storage means and the power source are connected, and the coil equivalent part and the power storage means are disconnected.
    After the power storage process, a discharge process in which a current is passed from the power storage means to the coil equivalent part in a disconnected state between the power storage means and the power source and a connection state between the coil equivalent part and the power storage means. ,
    A detection process for detecting the voltage, current, and rate of change per unit time of the coil equivalent parts;
    An inductance measuring method having
PCT/JP2015/077467 2014-10-02 2015-09-29 Inductance measurement device and inductance measurement method WO2016052487A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014203942 2014-10-02
JP2014-203942 2014-10-02
JP2015-189873 2015-09-28
JP2015189873A JP2016075673A (en) 2014-10-02 2015-09-28 Inductance measurement device and inductance measurement method

Publications (1)

Publication Number Publication Date
WO2016052487A1 true WO2016052487A1 (en) 2016-04-07

Family

ID=55630514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077467 WO2016052487A1 (en) 2014-10-02 2015-09-29 Inductance measurement device and inductance measurement method

Country Status (1)

Country Link
WO (1) WO2016052487A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221068A1 (en) 2016-06-23 2017-12-28 Medicem Ophthalmic (Cy) Limited Light-adjustable hydrogel and bioanalogic intraocular lens
CN108469218A (en) * 2018-05-09 2018-08-31 广东工业大学 A kind of capacity based distance measuring method, system, device and readable storage medium storing program for executing
CN114200214A (en) * 2021-12-10 2022-03-18 福州大学 A high frequency inductance loss measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466878A (en) * 1990-07-06 1992-03-03 Yokogawa Hewlett Packard Ltd Apparatus and method for measuring electrostatic capacitance, resistance and inductance
JP2000097982A (en) * 1998-09-21 2000-04-07 Ikd:Kk Coil testing and evaluating device
JP2002324716A (en) * 2001-04-25 2002-11-08 Tdk Corp Device and method for measuring dc superimposing characteristic of inductor for choke coil
JP2006133094A (en) * 2004-11-08 2006-05-25 Fuji Electric Device Technology Co Ltd Impedance measurement method
JP2008070156A (en) * 2006-09-12 2008-03-27 Noboru Wakatsuki Method for measuring current dependance of inductance and electric circuit thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466878A (en) * 1990-07-06 1992-03-03 Yokogawa Hewlett Packard Ltd Apparatus and method for measuring electrostatic capacitance, resistance and inductance
JP2000097982A (en) * 1998-09-21 2000-04-07 Ikd:Kk Coil testing and evaluating device
JP2002324716A (en) * 2001-04-25 2002-11-08 Tdk Corp Device and method for measuring dc superimposing characteristic of inductor for choke coil
JP2006133094A (en) * 2004-11-08 2006-05-25 Fuji Electric Device Technology Co Ltd Impedance measurement method
JP2008070156A (en) * 2006-09-12 2008-03-27 Noboru Wakatsuki Method for measuring current dependance of inductance and electric circuit thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221068A1 (en) 2016-06-23 2017-12-28 Medicem Ophthalmic (Cy) Limited Light-adjustable hydrogel and bioanalogic intraocular lens
CN108469218A (en) * 2018-05-09 2018-08-31 广东工业大学 A kind of capacity based distance measuring method, system, device and readable storage medium storing program for executing
CN114200214A (en) * 2021-12-10 2022-03-18 福州大学 A high frequency inductance loss measurement method
CN114200214B (en) * 2021-12-10 2024-06-04 福州大学 High-frequency inductance loss measurement method

Similar Documents

Publication Publication Date Title
Ortiz et al. Flux balancing of isolation transformers and application of “the magnetic ear” for closed-loop volt–second compensation
US10823766B2 (en) Detector and a voltage converter
JP5625525B2 (en) Current detector
Ortiz et al. " Magnetic Ear"-based balancing of magnetic flux in high power medium frequency dual active bridge converter transformer cores
TWI634337B (en) Dc electric leakage detector, electric leakage detector
JP2014122879A (en) Current detector
WO2016052487A1 (en) Inductance measurement device and inductance measurement method
CN105531594A (en) Current detectors and power conversion devices
CN105097182A (en) Electromagnet drive device
KR20170090468A (en) Current detection device
JP2016188790A (en) Current detector
JP2007316042A (en) Direct current sensor and direct-current detector
JP6033569B2 (en) Current measurement method
JP2016075673A (en) Inductance measurement device and inductance measurement method
JP5702592B2 (en) Current detector
JP5516079B2 (en) Current detector
US8934210B1 (en) Demagnetization using a determined estimated magnetic state
CN110176853A (en) Current sense device and associated method
Ortiz et al. Application of the magnetic ear for flux balancing of a 160kW/20kHz DC-DC converter transformer
KR102080802B1 (en) Arrangement and method for measuring the voltage of a high-voltage inverter
JP2012182920A (en) Current sensor control device
JP2017199677A (en) Control circuit for electric leakage circuit breaker
JP2014137359A (en) Current sensor
Grainys et al. Single pulse calibration of magnetic field sensors using mobile 43 kJ facility
JP4925595B2 (en) AC impedance measuring apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846125

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载