WO2016052369A1 - 積層フィルムおよびフレキシブル電子デバイス - Google Patents
積層フィルムおよびフレキシブル電子デバイス Download PDFInfo
- Publication number
- WO2016052369A1 WO2016052369A1 PCT/JP2015/077240 JP2015077240W WO2016052369A1 WO 2016052369 A1 WO2016052369 A1 WO 2016052369A1 JP 2015077240 W JP2015077240 W JP 2015077240W WO 2016052369 A1 WO2016052369 A1 WO 2016052369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- ratio
- film layer
- organic layer
- distribution curve
- Prior art date
Links
- 239000010408 film Substances 0.000 claims abstract description 223
- 239000010410 layer Substances 0.000 claims abstract description 173
- 239000010409 thin film Substances 0.000 claims abstract description 167
- 239000012044 organic layer Substances 0.000 claims abstract description 102
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 81
- 238000009826 distribution Methods 0.000 claims abstract description 72
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 61
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 36
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000001301 oxygen Substances 0.000 claims abstract description 32
- 239000004925 Acrylic resin Substances 0.000 claims abstract description 31
- 239000010703 silicon Substances 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims description 50
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 25
- 150000001721 carbon Chemical group 0.000 claims description 19
- 125000004432 carbon atom Chemical group C* 0.000 claims description 17
- 239000000945 filler Substances 0.000 claims description 15
- 150000003961 organosilicon compounds Chemical class 0.000 claims description 15
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 14
- 238000004566 IR spectroscopy Methods 0.000 claims description 8
- 239000007789 gas Substances 0.000 abstract description 78
- 230000004888 barrier function Effects 0.000 abstract description 20
- 239000000463 material Substances 0.000 description 45
- 238000000034 method Methods 0.000 description 40
- 238000005259 measurement Methods 0.000 description 20
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 15
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 13
- 239000012495 reaction gas Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000010521 absorption reaction Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 208000028659 discharge Diseases 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 12
- 238000002834 transmittance Methods 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000005452 bending Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000000691 measurement method Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229910001882 dioxygen Inorganic materials 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000000862 absorption spectrum Methods 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000002985 plastic film Substances 0.000 description 4
- 229920006255 plastic film Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001678 elastic recoil detection analysis Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- KWEKXPWNFQBJAY-UHFFFAOYSA-N (dimethyl-$l^{3}-silanyl)oxy-dimethylsilicon Chemical compound C[Si](C)O[Si](C)C KWEKXPWNFQBJAY-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 208000023514 Barrett esophagus Diseases 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910018540 Si C Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 229910002808 Si–O–Si Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- OBOXTJCIIVUZEN-UHFFFAOYSA-N [C].[O] Chemical compound [C].[O] OBOXTJCIIVUZEN-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- JZLWSRCQCPAUDP-UHFFFAOYSA-N 1,3,5-triazine-2,4,6-triamine;urea Chemical compound NC(N)=O.NC1=NC(N)=NC(N)=N1 JZLWSRCQCPAUDP-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- FIOCEWASVZHBTK-UHFFFAOYSA-N 2-[2-(2-oxo-2-phenylacetyl)oxyethoxy]ethyl 2-oxo-2-phenylacetate Chemical compound C=1C=CC=CC=1C(=O)C(=O)OCCOCCOC(=O)C(=O)C1=CC=CC=C1 FIOCEWASVZHBTK-UHFFFAOYSA-N 0.000 description 1
- RIWRBSMFKVOJMN-UHFFFAOYSA-N 2-methyl-1-phenylpropan-2-ol Chemical compound CC(C)(O)CC1=CC=CC=C1 RIWRBSMFKVOJMN-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- GSNUFIFRDBKVIE-UHFFFAOYSA-N DMF Natural products CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- AHVYPIQETPWLSZ-UHFFFAOYSA-N N-methyl-pyrrolidine Natural products CN1CC=CC1 AHVYPIQETPWLSZ-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 241000656145 Thyrsites atun Species 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- UBHZUDXTHNMNLD-UHFFFAOYSA-N dimethylsilane Chemical compound C[SiH2]C UBHZUDXTHNMNLD-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- GCSJLQSCSDMKTP-UHFFFAOYSA-N ethenyl(trimethyl)silane Chemical compound C[Si](C)(C)C=C GCSJLQSCSDMKTP-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- NEXSMEBSBIABKL-UHFFFAOYSA-N hexamethyldisilane Chemical compound C[Si](C)(C)[Si](C)(C)C NEXSMEBSBIABKL-UHFFFAOYSA-N 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- PARWUHTVGZSQPD-UHFFFAOYSA-N phenylsilane Chemical compound [SiH3]C1=CC=CC=C1 PARWUHTVGZSQPD-UHFFFAOYSA-N 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000734 polysilsesquioxane polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000036544 posture Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- UIDUKLCLJMXFEO-UHFFFAOYSA-N propylsilane Chemical compound CCC[SiH3] UIDUKLCLJMXFEO-UHFFFAOYSA-N 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/42—Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/16—Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/281—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0008—Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/73—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/72—Investigating presence of flaws
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1637—Details related to the display arrangement, including those related to the mounting of the display in the housing
- G06F1/1652—Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
Definitions
- the present invention relates to a laminated film and a flexible electronic device.
- a laminated film in which a thin film layer is formed (laminated) on the surface of a base material in order to impart functionality to the film-like base material is known.
- a laminated film provided with a gas barrier property by forming a thin film layer on a plastic film is suitable for filling and packaging articles such as foods and drinks, cosmetics, and detergents.
- plastic film substrates are being adopted in order to eliminate the drawbacks of glass substrates that are heavy, hard, and fragile.
- gas barrier properties are inferior to those of glass substrates, and when a plastic film substrate is used for a liquid crystal display element, water vapor may enter the device and display defects may occur.
- the gas barrier laminated film described in Patent Document 1 has a problem that the adhesive force at the interface between the organic layer and the thin film layer is not always sufficient in a use environment at a high temperature and is easily peeled off. It was.
- This invention is made
- a flexible substrate an organic layer provided in contact with at least one surface of the substrate, and a thin film layer provided in contact with the organic layer,
- the organic layer contains an acrylate resin;
- the thin film layer contains silicon atoms, oxygen atoms and carbon atoms;
- the distance from the surface of the thin film layer in the film thickness direction of the thin film layer, and the ratio of the number of silicon atoms to the total number of silicon atoms, oxygen atoms and carbon atoms contained in the thin film layer at the point located at the distance In silicon distribution curve, oxygen distribution curve, and carbon distribution curve showing the relationship between silicon atom ratio), oxygen atom ratio (oxygen atom ratio), and carbon atom ratio (carbon atom ratio), respectively.
- the weight W 1 of the acrylate resin component relative to the weight W 0 excluding the filler component contained in the organic layer is expressed as a weight ratio W 1 / W 0 from the total weight of the organic layer.
- W 1 / W 0 from the total weight of the organic layer.
- the weight W 2 of the organosilicon compound component is expressed by the weight ratio W 2 / W 0 with respect to the weight W 0 excluding the filler component contained in the organic layer from the total weight of the organic layer. In this case, it is preferable to be in the range of the following formula (3). W 2 / W 0 ⁇ 0.10 (3)
- the laminated film of the present invention has a peak intensity (I 1 ) existing at 950 to 1050 cm ⁇ 1 and a peak intensity (1240 to 1290 cm ⁇ 1 ) when infrared spectroscopy is performed on the surface of the thin film layer (
- the intensity ratio with I 2 ) is preferably in the range of the following formula (4). 0.01 ⁇ I 2 / I 1 ⁇ 0.05 (4)
- the laminated film of the present invention has a peak intensity (I 1 ) existing at 950 to 1050 cm ⁇ 1 and a peak intensity (at 770 to 830 cm ⁇ 1 ) when infrared spectroscopic measurement is performed on the surface of the thin film layer.
- the intensity ratio with I 3 ) is preferably in the range of the following formula (5). 0.25 ⁇ I 3 / I 1 ⁇ 0.50 (5)
- the laminated film of the present invention when subjected to infrared spectroscopy to the thin layer surface, 770 to a peak intensity existing in 830 cm -1 and (I 3), the peak intensity existing in the 870 - 910 cm -1 (
- the intensity ratio with I 4 ) is preferably in the range of the following formula (6). 0.70 ⁇ I 4 / I 3 ⁇ 1.00 (6)
- the thin film layer is preferably formed by a plasma CVD method.
- the present invention also provides a flexible electronic device using a laminated film as a substrate.
- the laminated film of the present invention can be used as a substrate for flexible electronic devices and is industrially useful.
- FIG. 2 is a graph showing a silicon distribution curve, an oxygen distribution curve, a nitrogen distribution curve, and a carbon distribution curve of a thin film layer in the laminated film 1 obtained in Example 1.
- FIG. It is a graph which shows the silicon distribution curve, oxygen distribution curve, nitrogen distribution curve, and carbon distribution curve of the thin film layer in the laminated film 6 obtained in Comparative Example 3.
- the laminated film of the present invention has a flexible substrate, an organic layer provided in contact with at least one surface of the substrate, and a thin film layer provided in contact with the organic layer, and the thin film layer Contains a silicon atom, an oxygen atom and a carbon atom, and the organic layer contains an acrylate resin.
- the laminated film of the present invention has a distance from the surface of the thin film layer in the film thickness direction of the thin film layer, and the total number of silicon atoms, oxygen atoms and carbon atoms contained in the thin film layer at the points located at the distance.
- Silicon distribution curve showing the relationship between the ratio of the number of silicon atoms to silicon (ratio of silicon atoms), the ratio of oxygen atoms (ratio of oxygen atoms), and the ratio of carbon atoms (ratio of carbon atoms), oxygen In the distribution curve and the carbon distribution curve, all of the following conditions (i) to (iii) are satisfied.
- the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the following formula (1) in a region of 90% or more in the film thickness direction of the thin film layer:
- the carbon distribution curve has at least one extreme value;
- the absolute value of the difference between the maximum value and the minimum value of the carbon atom ratio in the carbon distribution curve is 0.05 or more.
- “the absolute value of the difference between the maximum value and the minimum value of the carbon atom ratio is 0.05 or more” means that the difference is 5% or more in terms of percentage. To do.
- the laminated film is a film in which one organic layer is formed on one surface of two surfaces of a flexible substrate, and a thin film layer is further formed on the organic layer.
- the laminated film may have an organic layer and a thin film layer formed not only on one surface of the flexible substrate but also on the other surface.
- a layer means what was made by the single manufacturing method.
- the organic layer is formed by a method including the following step (1).
- the organic substance contains an acrylate monomer or an acrylate oligomer, it is preferable to further include the step (2).
- the coating film obtained in the step (1) can be an organic layer
- the cured film obtained in the step (2) can be an organic layer.
- the flexible substrate is in the form of a film or a sheet, and examples of the material include a resin or a composite material containing a resin.
- the resin include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), acrylic acid ester, methacrylic acid ester, polycarbonate (PC), polyarylate, polyethylene (PE), polypropylene ( PP), cyclic polyolefin (COP, COC), polyamide, aromatic polyamide, polystyrene, polyvinyl alcohol, saponified ethylene-vinyl acetate copolymer, polyacrylonitrile, polyacetal, polyimide, polyetherimide, polyamideimide, polyethersulfide (PES), polyether ether ketone and the like.
- PET polyethylene terephthalate
- PBT polybutylene terephthalate
- PEN polyethylene naphthalate
- acrylic acid ester methacrylic acid ester
- the composite material containing a resin examples include a silicone resin substrate such as polydimethylsiloxane, an organic-inorganic hybrid resin substrate such as polysilsesquioxane, a glass composite substrate, and a glass epoxy substrate.
- the material of the flexible substrate may be only one type or two or more types.
- the material of the flexible base material is PET, PBT, PEN, cyclic polyolefin, polyimide, aromatic polyamide, glass composite substrate or glass from the viewpoint of high transparency and heat resistance and low coefficient of thermal expansion.
- Epoxy substrates are preferred.
- the flexible base material is colorless and transparent from the viewpoint that light can be transmitted and absorbed. More specifically, the total light transmittance is preferably 80% or more, and more preferably 85% or more. Further, the haze value is preferably 5% or less, more preferably 3% or less, and further preferably 1% or less.
- the flexible base material is preferably insulative from the viewpoint that it can be used as a base material for an electronic device or an energy device, and an electrical resistivity is preferably 10 6 ⁇ cm or more.
- the thickness of the flexible substrate can be appropriately set in consideration of the production of a stable laminated film.
- the thickness is preferably 5 to 500 ⁇ m, more preferably 10 to 200 ⁇ m, and still more preferably 50 to 100 ⁇ m.
- the surface of the flexible substrate has a surface such as corona treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, and easy adhesion treatment as necessary to increase the adhesion with the organic layer. Processing may be performed. As a specific method of such surface treatment, a conventionally known method can be appropriately used.
- any of a spin coating method, a spray coating method, a blade coating method, a dip coating method, a roller coating method, a wet coating method using a land coating method, or a dry coating method such as a vapor deposition method can be used. Can also be used.
- the organic substance When applying the organic substance, the organic substance may be dissolved in a solvent.
- the solvent include apolar solvents such as xylene, hexane, and cyclohexane, aprotic polar solvents such as toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, DMAc, DMF, ⁇ -butyrolactone, NMP, and DMSO, methanol, ethanol, and isopropanol.
- protic polar solvents such as diacetone alcohol and water, and halogen solvents such as chloroform, dichloromethane and carbon tetrachloride.
- the organic layer of the laminated film of the present invention contains an acrylate resin.
- the acrylate resin is preferably a photocurable resin.
- the photocurable resin is a resin that starts to be polymerized by ultraviolet rays, electron beams, or the like and cures.
- the organic layer may contain a resin other than an acrylate resin to the extent that the effect is not impaired.
- a resin other than an acrylate resin include polyester resins, isocyanate resins, ethylene vinyl alcohol resins, vinyl-modified resins, epoxy resins, phenol resins, urea melamine resins, styrene resins, and alkyl titanates. These include one or more. But you can.
- the acrylate resin it is preferable to use a resin containing a structural unit derived from an acrylic monomer having a (meth) acryloyl group as a main component.
- the “main component” means that the content of the component is 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more with respect to the mass of all components of the organic layer.
- the acrylate resin include acrylate resin, urethane acrylate resin, polyester acrylate resin, epoxy acrylate resin, and polyol acrylate resin.
- the acrylate resin is preferably an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, or an ultraviolet curable polyol acrylate resin.
- (meth) acryloyl means acrylate or methacrylate.
- the temperature at which the elastic modulus of the organic layer surface decreases by 50% or more is preferably 150 ° C. or higher. .
- the organic substance may contain an inorganic oxide filler for the purpose of increasing the surface hardness or controlling the refractive index.
- an inorganic oxide filler for the purpose of increasing the surface hardness or controlling the refractive index.
- Specific examples include silica, zirconia, titania, alumina, and the like, and these may include one or more.
- the organic substance may contain a photopolymerization initiator for the purpose of facilitating the initiation of photopolymerization.
- a photopolymerization initiator include benzophenone and derivatives thereof, benzyldimethyl ketals, ⁇ -hydroxyalkylphenones, hydroxyketones, aminoalkylphenones and the like.
- Irgacure series for example, Irgacure 651, Irgacure 754, Irgacure 184, etc.
- Darocure series for example, Darocur TPO, commercially available from Ciba Specialty Chemicals
- Darocur 1173 for example, Darocur 1173, etc.
- Quantacure PDO for example, Ezacure series (eg, Ezacure TZM, Ezacure TZT, etc.) commercially available from Sartomer, Inc.
- Ezacure series eg, Ezacure TZM, Ezacure TZT, etc.
- the organic matter may contain additives other than the acrylate resin and the filler and the photopolymerization initiator to the extent that the performance of the laminated film of the present invention is not impaired.
- additives include a leveling agent, a viscosity modifier, an antioxidant, a bluing agent, a dye, UVA, and an antiblocking agent.
- the organic layer of the present invention preferably in the range of 0.60 ⁇ W 1 / W 0 ⁇ 1.00, 0.60 ⁇ W 1 / W 0 ⁇ 0.99 is more preferable, 0.70 ⁇ W 1 / W 0 ⁇ 0.98 is more preferable, and 0.80 ⁇ W 1 / W 0 ⁇ 0.97 is more preferable. .
- the organic layer may be derived from a silane coupling agent as a surfactant and may contain an organosilicon compound.
- the organic layer of the present invention preferably has a range of W 2 / W 0 ⁇ 0.10, and W 2 / W 0 ⁇ 0.08 from the viewpoint of high adhesion to the thin film layer and improved surface smoothness. Is more preferable, and a range of W 2 / W 0 ⁇ 0.05 is more preferable.
- the thickness of the organic layer is preferably 500 nm to 5 ⁇ m, more preferably 1 ⁇ m to 3 ⁇ m, from the viewpoint of uniformity of the organic layer thickness and reducing defects such as cracks.
- the organic layer of the present invention preferably has an average surface roughness on the side in contact with the thin film layer of 0.1 to 5.0 nm. Thereby, the thin film layer becomes denser.
- the average surface roughness can be measured using an atomic force microscope (AFM), and at this time, it is preferably measured in a 1 ⁇ m square field of view.
- the organic layer of the present invention is disposed as an intermediate layer between the base material and the thin film layer.
- the organic layer may be a uniform layer that fills the entire intermediate layer, or there may be another intermediate layer between the organic layer and the substrate.
- the organic layer preferably has a heat resistance of 150 ° C. or higher from the viewpoint of withstanding the temperature received during the formation of the thin film layer. If it is 160 degreeC or more, it is more preferable, if it is 170 degreeC or more, it is more preferable, and if it is 180 degreeC or more, it is especially preferable.
- the heat resistance here refers to a temperature at which good heat resistance is obtained when the following method is employed. ⁇ Evaluation of heat resistance of organic layer> A laminate sample is produced by using two films each having an organic layer formed on a flexible substrate and superposing the surfaces of the organic layers.
- the obtained laminate sample was sandwiched between glass plates from both sides and heated at a predetermined temperature for 2 hours, and then the two overlapped films were peeled off at the interface between the organic layers. Perform heat resistance evaluation. Evaluation criteria: -Heat resistance failure: Does not peel off due to sticking, or peels off when there is resistance. -Good heat resistance: peels off without change (resistance or appearance).
- ⁇ Step (2)> Examples of the method for curing the organic layer obtained in ⁇ Step (1)> include light irradiation.
- the irradiation light is usually preferably ultraviolet rays from a mercury lamp or an LED lamp. Since acrylate and methacrylate are subject to polymerization inhibition by oxygen in the air, it is preferable to lower the oxygen concentration or oxygen partial pressure during polymerization.
- the oxygen concentration at the time of polymerization is lowered by a nitrogen substitution method, the oxygen concentration is preferably 2% or less, more preferably 0.5% or less.
- the organic layer may be subjected to a liquid cleaning treatment for cleaning the surface on the thin film layer forming side.
- a liquid cleaning process include a pure water cleaning process, an ultrapure water cleaning process, an ultrasonic water cleaning process, a scrub cleaning process, a rinse cleaning process, and a two-fluid rinsing process.
- the organic layer is preferably subjected to a surface activation treatment for cleaning the surface on the thin film layer forming side because adhesion with the thin film layer is improved.
- a surface activation treatment for cleaning the surface on the thin film layer forming side because adhesion with the thin film layer is improved.
- Examples of such surface activation treatment include corona treatment, vacuum plasma treatment, atmospheric pressure plasma treatment, UV ozone treatment, vacuum ultraviolet excimer lamp treatment, flame treatment and the like.
- the thin film layer is highly dense and contains silicon atoms, oxygen atoms and carbon atoms from the viewpoint of reducing defects such as fine voids and cracks.
- the thin film layer is preferably composed mainly of a compound represented by the general formula SiO ⁇ C ⁇ .
- “main component” means that the content of the component is 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more with respect to the mass of all components of the material.
- ⁇ is selected from positive numbers less than 2
- ⁇ is selected from positive numbers less than 2.
- One or more of ⁇ and ⁇ in the above general formula may be a constant value or may vary in the thickness direction of the thin film layer.
- the thin film layer contains an element other than silicon atom, oxygen atom and carbon atom, for example, one or more atoms of hydrogen atom, nitrogen atom, boron atom, aluminum atom, phosphorus atom, sulfur atom, fluorine atom and chlorine atom. You may contain.
- the compound represented by the general formula SiO ⁇ C ⁇ H ⁇ is preferably the main component.
- “main component” means that the content of the component is 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more with respect to the mass of all components of the material.
- ⁇ is selected from a positive number less than 2
- ⁇ is a positive number less than 2
- ⁇ is selected from a positive number less than 6.
- One or more of ⁇ , ⁇ and ⁇ in the above general formula may be a constant value or may vary in the thickness direction of the thin film layer.
- the thin film layer is high in density when the average atomic ratio of silicon atoms (Si) and carbon atoms (C) in the thin film layer is expressed by C / Si, and has few defects such as fine voids and cracks. Therefore, it is preferably in the range of 0.10 ⁇ C / Si ⁇ 0.50, more preferably in the range of 0.15 ⁇ C / Si ⁇ 0.45, and 0.20 ⁇ C / Si ⁇ 0. More preferably in the range of .40, particularly preferably in the range of 0.25 ⁇ C / Si ⁇ 0.35.
- the thin film layer has a high density when the average atomic number ratio of silicon atoms (Si) and oxygen atoms (O) in the thin film layer is expressed by O / Si, such as fine voids and cracks.
- the range is preferably 1.50 ⁇ O / Si ⁇ 1.90, more preferably 1.55 ⁇ O / Si ⁇ 1.85, and 1.60 ⁇ O /.
- the range is more preferably in the range of Si ⁇ 1.80, and particularly preferably in the range of 1.65 ⁇ O / Si ⁇ 1.75.
- the average atomic number ratios C / Si and O / Si were measured for depth profiles by X-ray photoelectron spectroscopy (XPS) under the following conditions, and obtained silicon atoms, nitrogen atoms, oxygen atoms and carbon atoms. It can be calculated after obtaining the average atomic concentration of each atom in the thickness direction from each distribution curve.
- XPS X-ray photoelectron spectroscopy
- Etching ion species Argon (Ar + ) Etching rate (converted to SiO 2 thermal oxide film): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
- X-ray photoelectron spectrometer Model name “VG Theta Probe” manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval
- the thin film layer has an intensity ratio between a peak intensity (I 1 ) existing at 950 to 1050 cm ⁇ 1 and a peak intensity (I 2 ) existing at 1240 to 1290 cm ⁇ 1 when the surface of the thin film layer is measured by infrared spectroscopy.
- Is preferably in the range of the following formula (4). 0.01 ⁇ I 2 / I 1 ⁇ 0.05 (4)
- the peak intensity ratio I 2 / I 1 calculated from the infrared spectroscopic measurement is considered to represent the relative ratio of bonded Si—CH 3 to bonded Si—O—Si in the thin film layer.
- the laminated film satisfying the formula (4) has a high density and tends to have excellent gas barrier properties and excellent impact resistance from the viewpoint of reducing defects such as fine voids and cracks.
- the range of the peak intensity ratio I 2 / I 1 the range of 0.01 ⁇ I 2 / I 1 ⁇ 0.05 is preferable from the viewpoint of maintaining high density of the laminated film, and 0.02 ⁇ I 2 / A range of I 1 ⁇ 0.04 is more preferred.
- the infrared spectroscopic measurement of the thin film layer of the laminated film can be measured with a Fourier transform infrared spectrophotometer (FT / IR-460Plus, manufactured by JASCO Corporation) equipped with an ATR attachment (PIKE MIRacle) using a germanium crystal as a prism. .
- FT / IR-460Plus manufactured by JASCO Corporation
- ATR attachment PIKE MIRacle
- the thin film layer has an intensity ratio between a peak intensity (I 1 ) existing at 950 to 1050 cm ⁇ 1 and a peak intensity (I 3 ) existing at 770 to 830 cm ⁇ 1 when the surface of the thin film layer is measured by infrared spectroscopy.
- Is preferably in the range of the following formula (5). 0.25 ⁇ I 3 / I 1 ⁇ 0.50 (5)
- the peak intensity ratio I 3 / I 1 calculated from the infrared spectroscopic measurement is considered to represent a relative ratio of bonded Si—C or Si—O to bonded Si—O—Si in the thin film layer.
- the laminated film satisfying the formula (5) is considered to have excellent flex resistance and excellent impact resistance since carbon is introduced while maintaining high density.
- the range of the peak intensity ratio I 3 / I 1 With respect to the range of the peak intensity ratio I 3 / I 1 , the range of 0.25 ⁇ I 3 / I 1 ⁇ 0.50 is preferable from the viewpoint of maintaining the balance between the denseness and the bending resistance of the laminated film, and 0.30. A range of ⁇ I 3 / I 1 ⁇ 0.45 is more preferable.
- the thin film layer when the thin film layer surface was measured infrared spectroscopy, the intensity ratio of the peaks present in the 770 ⁇ 830 cm -1 intensity (I 3), a peak exists in the 870 ⁇ 910 cm -1 strength (I 4) Is preferably in the range of the following formula (6). 0.70 ⁇ I 4 / I 3 ⁇ 1.00 (6)
- the peak intensity ratio I 4 / I 3 calculated from the infrared spectroscopic measurement is considered to represent the ratio of peaks derived from bonded Si—C in the thin film layer.
- the laminated film satisfying the formula (6) is considered to have excellent flex resistance and excellent impact resistance since carbon is introduced while maintaining high density.
- the range of the peak intensity ratio I 4 / I 3 With respect to the range of the peak intensity ratio I 4 / I 3 , the range of 0.70 ⁇ I 4 / I 3 ⁇ 1.00 is preferable from the viewpoint of maintaining the balance between the denseness and the bending resistance of the laminated film, and 0.80. The range of ⁇ I 4 / I 3 ⁇ 0.95 is more preferable.
- the thin film layer is preferably formed by a plasma chemical vapor deposition method (plasma CVD method) as described later.
- plasma CVD method plasma chemical vapor deposition method
- the thin film layer is preferably formed using glow discharge plasma.
- the thickness of the thin film layer is preferably 5 to 3000 nm from the viewpoint of making it difficult to break when the laminated film is bent. Further, when the thin film layer is formed by plasma CVD using glow discharge plasma as will be described later, the thin film layer is formed while discharging through the base material, and the thickness is more preferably 10 to 2000 nm. 100 to 1000 nm is more preferable.
- the thin film layer included in the laminated film used in the present embodiment preferably has a high average density of 1.8 g / cm 3 or more.
- the “average density” of the thin film layer in this specification is the number of silicon atoms, the number of carbon atoms, the number of oxygen atoms, and the hydrogen forward scattering method (Rutherford Backscattering Spectrometry: RBS) Calculate the weight of the thin film layer in the measurement range from the number of hydrogen atoms obtained by Hydrogen Forward Scattering Spectrometry (HFS), and divide by the volume of the thin film layer in the measurement range (product of ion beam irradiation area and film thickness). Is required.
- the laminated film has a high density and a structure with few defects such as fine voids and cracks.
- the thin film layer is composed of silicon atoms, oxygen atoms, carbon atoms and hydrogen atoms, the average density of the thin film layer is preferably less than 2.22 g / cm 3 .
- the laminated film of the present invention preferably has a total light transmittance of 80% or more, more preferably 85% or more, from the viewpoint of high transparency.
- the total light transmittance can be measured by a direct reading haze computer (model HGM-2DP) manufactured by Suga Test Instruments.
- a curve indicating the relationship between the distance from the surface of the thin film layer in the film thickness direction of the thin film layer and the atomic ratio of silicon atoms at each distance is referred to as a silicon distribution curve.
- the said thin film layer surface refers to the surface used as the surface of the said laminated
- a curve indicating the relationship between the distance from the surface of the thin film layer in the film thickness direction and the atomic ratio of oxygen atoms at each distance is referred to as an oxygen distribution curve.
- a curve indicating the relationship between the distance from the surface of the thin film layer in the film thickness direction and the atomic ratio of carbon atoms at each distance is referred to as a carbon distribution curve.
- the atomic ratio of silicon atoms, the atomic ratio of oxygen atoms, and the atomic ratio of carbon atoms mean the ratio of the number of atoms.
- the silicon distribution curve, oxygen distribution curve and carbon distribution curve of the thin film layer satisfy the following conditions (i) to (iii).
- the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the following formula (1) in a region of 90% or more in the film thickness direction of the first thin film layer.
- the carbon distribution curve has at least one extreme value, and (iii) the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 0.05 or more.
- the carbon distribution curve of the thin film layer is preferably substantially continuous.
- the carbon distribution curve being substantially continuous means that the carbon distribution curve does not include a portion where the carbon atomic ratio changes discontinuously. Specifically, when the distance from the surface of the thin film layer in the film thickness direction is x [nm] and the atomic ratio of carbon is C, it is preferable that the following formula is satisfied.
- the carbon distribution curve of the thin film layer has at least one extreme value.
- the extreme value here is the maximum value or the minimum value of the atomic ratio of each element with respect to the distance from the surface of the thin film layer in the film thickness direction.
- the extreme value is the atomic ratio at which the atomic ratio of the element changes from increasing to decreasing or the atomic ratio of the element changes from decreasing to increasing when the distance from the surface of the thin film layer in the film thickness direction is changed. Is the value of The extreme value can be obtained based on atomic ratios measured at a plurality of measurement positions in the film thickness direction, for example.
- the measurement position of the atomic ratio is set such that the interval in the film thickness direction is, for example, 20 nm or less.
- the measurement results at three or more different measurement positions are compared for a discrete data group including the measurement results at each measurement position. It can be obtained by finding the position where it starts or the position where it starts increasing from the decrease.
- the position indicating the extreme value can also be obtained, for example, by differentiating the approximate curve obtained from the discrete data group.
- the interval in which the atomic ratio monotonously increases or decreases from the position showing the extreme value is, for example, 20 nm or more
- the absolute value of the difference is, for example, 0.03 or more.
- the increase amount of the gas permeability after bending with respect to the gas permeability before bending satisfies the above condition. Less compared to the case without it. That is, by satisfying the above conditions, an effect of suppressing a decrease in gas barrier properties due to bending can be obtained.
- the amount of increase is smaller than when the number of extreme values of the carbon distribution curve is one.
- the increase amount is less than that in the case where the number of extreme values of the carbon distribution curve is two.
- the carbon distribution curve has two or more extreme values
- the distance from the surface of the thin film layer in the film thickness direction at the position showing the first extreme value, and the second extreme value adjacent to the first extreme value is preferably in the range of 1 nm to 200 nm, and more preferably in the range of 1 nm to 100 nm.
- the absolute value of the difference between the maximum value and the minimum value of the carbon atomic ratio in the carbon distribution curve of the thin film layer is 0.05 or more.
- the amount of increase in the gas permeability after bending with respect to the gas permeability before bending is less than that in the case where the condition is not satisfied. That is, by satisfying the above conditions, an effect of suppressing a decrease in gas barrier properties due to bending can be obtained.
- the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon is 0.06 or more, the above effect is enhanced, and when it is 0.07 or more, the above effect is further enhanced.
- the gas barrier property of the thin film layer tends to improve as the absolute value of the difference between the maximum value and the minimum value of the silicon atomic ratio in the silicon distribution curve decreases.
- the absolute value is preferably less than 0.05 (less than 5 at%), more preferably less than 0.04 (less than 4 at%), and less than 0.03 (3 at%). Is more preferable.
- the total atomic ratio is preferably less than 0.05, more preferably less than 0.04, and particularly preferably less than 0.03.
- the gas barrier property of the thin film layer can be made uniform and improved.
- a substantially uniform composition means that in the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve, the number of extreme values existing in each film thickness direction at any two points on the surface of the thin film layer is as follows. The absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in each carbon distribution curve is the same or within 0.05.
- the thin film layer formed so as to satisfy the conditions can exhibit gas barrier properties required for a flexible electronic device using an organic EL element, for example.
- the laminated film of the present invention can be produced by forming the thin film layer on the organic layer by using a known vacuum film forming method such as a plasma CVD method using glow discharge plasma. Since the generated plasma is a high-density and low-temperature plasma, it is suitable and preferable for forming a dense thin film on a flexible substrate having low heat resistance as used in the present invention.
- the thin film layer is formed (deposited) by plasma CVD
- plasma is generated by disposing a flexible base material on a pair of deposition electrodes and discharging between the pair of deposition electrodes. It is preferable to form by CVD method.
- the pair of film forming electrodes may have a parallel plate shape or a roll shape. Further, when discharging between the pair of film forming rolls in this way, it is preferable to reverse the polarities of the pair of film forming rolls alternately.
- An apparatus that can be used for manufacturing a laminated film by such a plasma CVD method is an apparatus that includes at least a pair of film forming rolls and a plasma power source and is configured to discharge between the pair of film forming rolls. Preferably there is.
- a feed roll, a transport roll, a film forming roll, a transport roll, and a winding roll are sequentially formed from the film forming upstream side (the upstream side in the substrate transport direction).
- Examples include a take-up roll, a gas supply pipe, a power source for plasma generation, and a magnetic field generator.
- at least the film forming roll, the gas supply pipe, and the magnetic field generator are disposed in a vacuum chamber when the thin film layer is formed, and the vacuum chamber is connected to a vacuum pump. The pressure inside the vacuum chamber is adjusted by the operation of the vacuum pump.
- the film forming apparatus preferably includes a pair of film forming rolls as film forming rolls, and further preferably includes a transport roll between these film forming rolls. And it is preferable that a magnetic field generator is disposed inside these film forming rolls, and these magnetic field generating apparatuses are mounted so that their postures do not change with the rotation of the film forming rolls.
- the base material wound around the feed roll is transported from the feed roll to the upstream (upstream side) film forming roll via the most upstream transport roll.
- multilayer film in which the said thin film layer was formed in the surface of a base material are conveyed by the film-forming roll of a back
- the laminated film obtained by further forming a film and forming the thin film layer is transported from a subsequent film-forming roll to a take-up roll via a transport roll on the further downstream side (most downstream side). And wound on the winding roll.
- the pair of film forming rolls (the front stage and the rear stage) are disposed so as to face each other.
- the axes of these film forming rolls are substantially parallel, and the diameters of these film forming rolls are substantially the same.
- film formation is performed when the base material is conveyed on the former film forming roll and when the laminated film is conveyed on the latter film forming roll.
- the film forming apparatus for example, an apparatus described in JP 2011-73430 A is used.
- the film forming apparatus can generate plasma in a space between a pair of film forming rolls.
- the plasma generating power source is electrically connected to the electrodes in the film forming rolls, and these electrodes are arranged so as to sandwich the space.
- the film forming apparatus can generate plasma by the power supplied to the electrodes from a plasma generating power source.
- a known power source or the like can be used as appropriate, and examples thereof include an AC power source that can alternately invert the polarities of the two electrodes.
- the supplied power is set to 0.1 to 10 kW, for example, and the AC frequency is set to 50 Hz to 100 MHz, for example. From the viewpoint of increasing the decomposition efficiency of the source gas, an AC frequency set to 1 MHz to 100 MHz may be used.
- the magnetic field generator disposed inside the film forming roll may generate a magnetic field in the space, and may generate a magnetic field so that the magnetic flux density changes in the transport direction on the film forming roll.
- the gas supply pipe can supply a supply gas used for forming the thin film layer to the space.
- the supply gas includes a raw material gas for the thin film layer.
- the source gas supplied from the gas supply pipe is decomposed by the plasma generated in the space, and a film component of the thin film layer is generated.
- the film component of the thin film layer is deposited on the substrate or the laminated film being conveyed on a pair of film forming rolls.
- an organosilicon compound containing silicon can be used as the source gas.
- organosilicon compounds include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethyl
- examples thereof include silane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane.
- organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of the obtained thin film layer.
- these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
- the supply gas may contain a reaction gas in addition to the raw material gas.
- a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
- the reaction gas for forming the oxide include oxygen and ozone.
- the reaction gas for forming nitride include nitrogen and ammonia. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, the reaction gas for forming an oxide and the nitride are formed. Can be used in combination with a reactive gas for the purpose.
- the supply gas may contain at least one of a carrier gas and a discharge gas.
- a carrier gas a gas that promotes the supply of the source gas into the vacuum chamber can be appropriately selected and used.
- the discharge gas a gas that promotes generation of plasma discharge in a space can be appropriately selected and used.
- the carrier gas and the discharge gas include rare gases such as helium gas, argon gas, neon gas, and xenon gas; and hydrogen gas. Any of the carrier gas and the discharge gas can be used alone or in combination of two or more.
- the supply gas of this example contains hexamethyldisiloxane (organosilicon compound: HMDSO: (CH 3 ) 6 Si 2 O) as a raw material gas and oxygen (O 2 ) as a reaction gas.
- HMDSO organosilicon compound: HMDSO: (CH 3 ) 6 Si 2 O
- silicon dioxide is generated by a reaction represented by the following formula (A). (CH 3 ) 6 Si 2 O + 12O 2 ⁇ 6CO 2 + 9H 2 O + 2SiO 2 (A)
- the ratio of the amount of the reaction gas to the amount of the source gas in the supply gas becomes excessively higher than, for example, the stoichiometrically necessary ratio (stoichiometry ratio) for completely reacting the source gas. It is set not to pass.
- the amount of oxygen stoichiometrically required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. That is, when the supply gas contains 12 moles or more of oxygen with respect to 1 mole of hexamethyldisiloxane, theoretically, a uniform silicon dioxide film is formed as a thin film layer.
- a part of the supplied reaction gas may not contribute to the reaction.
- a gas containing the reaction gas is usually supplied at a ratio higher than the stoichiometric ratio.
- the molar ratio (hereinafter referred to as “effective ratio”) of the reaction gas that can actually react the raw material gas to the raw material gas can be examined by experiments or the like.
- the molar amount (flow rate) of oxygen is set to 20 times the effective amount (flow rate) of hexamethyldisiloxane as a raw material (effective ratio is 20) or more. There is also.
- the ratio of the amount of the reaction gas to the amount of the raw material gas in the supply gas may be less than the effective ratio (for example, 20), may be less than the stoichiometric ratio (for example, 12), or the stoichiometric ratio.
- a lower value for example, 10) may be used.
- the reaction conditions are set so that the reaction gas is insufficient so that the raw material gas cannot be completely reacted, the carbon atoms and hydrogen atoms in the hexamethyldisiloxane that have not been completely oxidized are converted into the thin film layer. Captured inside.
- the thin film layer can be formed so as to satisfy a predetermined condition by appropriately adjusting one or more parameters such as the diameter and the conveyance speed of the substrate.
- One or more of the parameters may change temporally within a period in which the base material passes through the film formation area facing the space, or may change spatially within the film formation area. .
- the electric power supplied to the electrode can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, and the like, and can be set to 0.1 to 10 kW, for example.
- the power is 0.1 kW or more, the effect of suppressing the generation of particles is enhanced.
- the electric power is 10 kW or less, the effect of suppressing wrinkles and damage on the flexible base material due to the heat received from the electrodes is enhanced.
- the pressure (degree of vacuum) in the vacuum chamber is installed in the exhaust port and can be adjusted as appropriate according to the type of source gas. For example, it can be set to 0.1 Pa to 50 Pa, but is 0.2 Pa to 10 Pa. If it is preferably, it is preferably 0.3 Pa to 5 Pa, more preferably 0.4 Pa to 2 Pa, and particularly preferably 0.5 Pa to 1.5 Pa. If the pressure is higher than this range, a colorless and transparent thin film layer can be obtained because damage to the base material is suppressed during the formation of the thin film layer, but on the other hand, the density of the thin film layer is lowered and the barrier property is lowered. . Further, when the pressure is lower than this range, the base material is damaged during the formation of the thin film layer.
- the conveyance speed (line speed) of the flexible base material can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but when the base material is brought into contact with the transport roll as described above. It is preferable that it is the same as the conveyance speed of a base material.
- the thin film layer is preferably formed by a continuous film forming process, and more preferably, the thin film layer is continuously formed thereon while continuously conveying a long base material.
- the feed roll and the take-up roll are reversed, and the base material is conveyed in the opposite direction.
- the laminated film according to the present invention is formed of a colorless, transparent, and high optical property thin film on a thin film layer having high adhesion to a base material, so that optical properties, gas barrier properties, flex resistance and Provided is a laminated film that can achieve both adhesion and has excellent adhesion and impact resistance when another layer is provided on the thin film layer.
- the laminated film of the present invention can be used for packaging of food, industrial goods, pharmaceuticals, etc. that require gas barrier properties, and is preferably used as a flexible substrate for electronic devices such as liquid crystal display elements, solar cells, or organic EL. .
- an element may be directly formed on the said laminated
- cellophane tape manufactured by Nichiban Corporation, cello tape ( (Registered trademark) No. 405 (industrial use, adhesive strength: 3.93 N / 10 mm) is strongly pressed and the end of the tape is peeled off at an angle of 60 °. Evaluated. In the measurement methods of adhesion measurement (i) and adhesion measurement (ii), the number of the 25 grids where peeling was not observed visually was counted and expressed as a percentage.
- the total light transmittance of the laminated film was measured by a direct reading haze computer (model HGM-2DP) manufactured by Suga Test Instruments Co., Ltd. After measuring the background in the absence of a sample, the laminated film was set on a sample holder and measured, and the total light transmittance was determined.
- the gas barrier property of the laminated film was measured by a calcium corrosion method (method described in JP-A-2005-283561) under the conditions of a temperature of 40 ° C. and a humidity of 90% RH, and the water vapor permeability of the laminated film was determined.
- a thin film layer was formed on a flexible base material, and a step difference between the non-deposition part and the film formation part was measured using a surf coder ET200 manufactured by Kosaka Laboratory, and the film thickness (T) of the thin film layer was obtained.
- Example 1 A biaxially stretched polyethylene terephthalate film (manufactured by Teijin DuPont Films, Inc., Q65HA, thickness 100 ⁇ m, double-sided easy adhesion treatment) is used as a base material. Toa Gosei Co., Ltd., trade name: Aronix UV-3701) was applied by wet coating method, dried at 80 ° C. for 1 minute, and then irradiated with ultraviolet light under the condition of an integrated light quantity of 30 mJ / cm 2 (USHIO INC.) And an organic layer having a thickness of 2 ⁇ m was formed.
- the ratio W 1 / W 0 between the weight W 1 of the acrylate resin component contained in the obtained organic layer and the weight W 0 of the organic layer is 0.8, and the weight of the organosilicon compound component contained in the organic layer
- the ratio W 2 / W 0 between W 2 and the weight W 0 of the organic layer was 0.
- the base material (thickness 102 ⁇ m, width 700 mm) coated with the organic layer was mounted on a delivery roll in a vacuum chamber.
- a thin film layer was formed on the organic layer while the substrate was transported at a constant speed of 0.6 m / min.
- plasma is generated between electrodes composed of a pair of film forming rolls, and the base material is conveyed while being in close contact with the electrode surface, and the thin film layer is formed on the base material. Is formed.
- the electrode composed of the pair of film forming rolls has a magnet disposed inside the electrode so that the magnetic flux density is high on the surface of the electrode and the base material, and the plasma is dense on the electrode and the base material when plasma is generated.
- the thin film layer is formed by introducing 100 sccm of hexamethyldisiloxane gas (Standard Cubic Centimeter per Minute, 0 ° C., 1 atm standard) and 900 sccm of oxygen gas into the space between the electrodes that form the deposition zone, In the meantime, AC power of 1.6 kW and a frequency of 70 kHz was supplied and discharged to generate plasma. Next, after adjusting the exhaust amount so that the pressure around the exhaust port in the vacuum chamber was 1.0 Pa, a thin film layer was formed on the transport substrate by the plasma CVD method. The laminated film 1 thus obtained was subjected to the above-described adhesion measuring methods (i) and (ii).
- the thickness of the thin film layer of the obtained laminated film 1 was 700 nm, the total light transmittance was 87%, and the water vapor transmission rate was 3 ⁇ 10 ⁇ 5 g / m 2 / day.
- the silicon distribution curve, oxygen distribution curve, nitrogen distribution curve, and carbon distribution curve of the thin film layer in the obtained laminated film 1 are shown in FIG.
- a cyclic cycloolefin film manufactured by ZEON Corporation, ZEONOR ZF16, thickness 100 ⁇ m, width 700 mm
- ZEONOR ZF16 thickness 100 ⁇ m, width 700 mm
- a thin film layer was formed by the above operation to obtain a laminated film 1 ′.
- the thickness and configuration of the thin film layer in the obtained laminated film 1 ′ were the same as those of the laminated film 1. Infrared spectroscopic measurement was performed on the obtained laminated film 1 ′.
- Example 2 Substrate / organic layer film 2 and laminated film in the same manner as in Example 1 except that an ultraviolet curable acrylate monomer liquid containing no filler was used in the organic coating liquid (trade name: LCH1559, manufactured by Toyo Ink Co., Ltd.). 2 was obtained.
- the ratio W 1 / W 0 between the weight W 1 of the acrylate resin component contained in the obtained organic layer and the weight W 0 of the organic layer is 0.6, and the weight of the organosilicon compound component contained in the organic layer
- the ratio W 2 / W 0 between W 2 and the weight W 0 of the organic layer was 0.
- the substrate / organic layer film 2 is confirmed to have heat resistance of 180 ° C.
- the rate of decrease in elastic modulus is 0% by the method of heat resistance evaluation 2. confirmed.
- the location which was not peeled respectively was 100%, and adhesiveness was favorable.
- the thickness of the thin film layer of the obtained laminated film 2 was 700 nm
- the total light transmittance was 87%
- the water vapor transmission rate was 4 ⁇ 10 ⁇ 5 g / m 2 / day.
- the obtained laminated film 7 has an oxygen atom ratio> (silicon atom ratio)> (carbon atom number) in a region of 90% or more in the film thickness direction of the thin film layer.
- the carbon distribution curve has one or more extreme values, and the absolute value of the difference between the maximum value and the minimum value of the carbon atom number ratio in the carbon distribution curve is 0.05 or more.
- Example 3 Substrate / organic layer film 3 in the same manner as in Example 1 except that an ultraviolet curable urethane acrylate monomer liquid containing no filler was used in the organic coating liquid (trade name: Beam Set 381 manufactured by Arakawa Chemical Co., Ltd.). And the laminated film 3 was obtained.
- the ratio W 1 / W 0 between the weight W 1 of the acrylate resin component contained in the obtained organic layer and the weight W 0 of the organic layer is 0.7, and the weight of the organosilicon compound component contained in the organic layer
- the ratio W 2 / W 0 between W 2 and the weight W 0 of the organic layer was 0.
- the rate of decrease in elastic modulus is 0% by the method of heat resistance evaluation 2. confirmed.
- the location which was not peeled respectively was 100%, and adhesiveness was favorable.
- the thickness of the thin film layer of the obtained laminated film 3 was 700 nm, the total light transmittance was 87%, and the water vapor transmission rate was 5 ⁇ 10 ⁇ 5 g / m 2 / day.
- the obtained laminated film 3 was (oxygen atomic ratio)> (silicon atomic ratio)> (carbon atoms) in a region of 90% or more in the film thickness direction of the thin film layer.
- the carbon distribution curve has one or more extreme values, and the absolute value of the difference between the maximum value and the minimum value of the carbon atom number ratio in the carbon distribution curve is 0.05 or more.
- the ratio W 1 / W 0 between the weight W 1 of the acrylate resin component contained in the obtained organic layer and the weight W 0 of the organic layer is 0, and the weight W 2 of the organosilicon compound component contained in the organic layer.
- the ratio W 2 / W 0 of the weight W 0 of the organic layer was 0.2.
- the obtained substrate / organic layer film 4 was confirmed to have heat resistance of 180 ° C. or higher. Further, a thin film layer was formed on the obtained base material / organic layer film 4 in the same manner as in Example 1 to obtain a laminated film 4.
- the unpeeled portion was 80%, and when the adhesion measurement method (ii) was carried out, it was peeled off. The part which is not 20%, and poor adhesion occurred.
- thermosetting epoxy resin solution containing a filler in the organic coating solution (trade name: Composeran 103D, manufactured by Arakawa Chemical Co., Ltd.) was used for curing at 150 ° C. for 1 hour, and an organic layer having a thickness of 2 ⁇ m was formed.
- the ratio W 1 / W 0 between the weight W 1 of the acrylate resin component contained in the obtained organic layer and the weight W 0 excluding the filler component contained in the organic layer is 0 and is contained in the organic layer.
- the ratio W 2 / W 0 between the weight W 2 of the organosilicon compound component and the weight W 0 excluding the filler component contained in the organic layer was 0.
- the obtained substrate / organic layer film 5 was confirmed to have heat resistance of 180 ° C. or higher. Further, a thin film layer was formed on the obtained substrate / organic layer film 5 in the same manner as in Example 1 to obtain a laminated film 5. On the other hand, in the obtained laminated film 5, when the above-mentioned adhesion measurement method (i) was carried out, the unpeeled portion was 100%, and when the adhesion measurement method (ii) was carried out, it was peeled off. The portion that was not present was 16%, and poor adhesion occurred.
- Example 3 A thin film layer was formed on the base material / organic layer film 1 obtained in Example 1 by inductively coupled plasma CVD using glow discharge plasma.
- the inductively coupled plasma CVD method is a method of generating plasma by forming an induction electric field by applying high-frequency power to the induction coil.
- the biaxially stretched polyethylene naphthalate film used for the base material had an asymmetric structure in which easy adhesion treatment was performed on one surface, and a thin film layer was formed on the surface not subjected to easy adhesion treatment.
- the non-peeled portion was 100% and the adhesion was good.
- the thickness of the thin film layer of the obtained laminated film 6 was 1000 nm, the total light transmittance was 90%, and the water vapor transmission rate was 1.3 g / m 2 / day.
- the silicon distribution curve, oxygen distribution curve, nitrogen distribution curve, and carbon distribution curve of the thin film layer in the obtained laminated film 6 are shown in FIG.
- Example 4 A laminated film 7 was produced in the same manner as in Example 1 except that 100 sccm of hexamethyldisiloxane gas (Standard Cubic Centimeter per Minute, 0 ° C., 1 atm standard) and 600 sccm of oxygen gas were introduced at the time of forming the thin film layer. .
- the thin film layer of the obtained laminated film 7 had a thickness of 700 nm, a total light transmittance of 89%, and a water vapor transmission rate of 4 ⁇ 10 ⁇ 5 g / m 2 / day.
- the unexfoliated portion was 100% and the adhesion was good.
- the obtained laminated film 7 has an oxygen atom ratio> (silicon atom ratio)> (carbon atom number) in a region of 90% or more in the film thickness direction of the thin film layer.
- the carbon distribution curve has one or more extreme values, and the absolute value of the difference between the maximum value and the minimum value of the carbon atom number ratio in the carbon distribution curve is 0.05 or more.
- Example 5 A laminated film 8 was produced in the same manner as in Example 1, except that 100 sccm of hexamethyldisiloxane gas (Standard Cubic Centimeter per Minute, 0 ° C., 1 atm standard) and 800 sccm of oxygen gas were introduced at the time of forming the thin film layer. .
- the thickness of the thin film layer of the obtained laminated film 8 was 700 nm, the total light transmittance was 88%, and the water vapor permeability was 1 ⁇ 10 ⁇ 5 g / m 2 / day.
- the unexfoliated portion was 100% and the adhesion was good.
- the obtained laminated film 8 has an oxygen atom ratio> (silicon atom ratio)> (carbon atom number) in a region of 90% or more in the film thickness direction of the thin film layer.
- the carbon distribution curve has one or more extreme values, and the absolute value of the difference between the maximum value and the minimum value of the carbon atom number ratio in the carbon distribution curve is 0.05 or more.
- Example 6 A laminated film 9 was prepared in the same manner as in Example 1 except that 100 sccm of hexamethyldisiloxane gas (Standard Cubic Centimeter per Minute, 0 ° C., 1 atm standard) and 2000 sccm of oxygen gas were introduced during the formation of the thin film layer. .
- the thickness of the thin film layer of the obtained laminated film 9 was 700 nm, the total light transmittance was 88%, and the water vapor transmission rate was 2 ⁇ 10 ⁇ 5 g / m 2 / day.
- the laminated film 9 was subjected to the above-described adhesion measuring methods (i) and (ii).
- the non-peeled portion was 100% and the adhesion was good.
- the obtained laminated film 9 is (atomic ratio of oxygen)> (atomic ratio of silicon)> (atomic ratio of carbon) in a region of 90% or more in the film thickness direction of the thin film layer.
- the carbon distribution curve has one or more extreme values, and the absolute value of the difference between the maximum value and the minimum value of the carbon atom number ratio in the carbon distribution curve is 0.05 or more.
- the laminated film according to the present invention was excellent in adhesiveness even in a use environment at a high temperature. Moreover, it has confirmed that the laminated film which concerns on this invention has high gas-barrier property and an optical characteristic.
- the present invention can be used for a gas barrier film.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Plasma & Fusion (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Thermal Sciences (AREA)
- Nonlinear Science (AREA)
- Inorganic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Laminated Bodies (AREA)
- Signal Processing (AREA)
- Chemical Vapour Deposition (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
前記有機層がアクリレート樹脂を含有し、
前記薄膜層が珪素原子、酸素原子および炭素原子を含有し、
前記薄膜層の膜厚方向における、前記薄膜層の表面からの距離と、前記距離に位置する点の前記薄膜層に含まれる珪素原子、酸素原子および炭素原子の合計数に対する珪素原子数の比率(珪素の原子数比)、酸素原子数の比率(酸素の原子数比)、炭素原子数の比率(炭素の原子数比)との関係をそれぞれ示す珪素分布曲線、酸素分布曲線および炭素分布曲線において、下記の条件(i)~(iii):
(i)珪素の原子数比、酸素の原子数比および炭素の原子数比が、前記薄膜層の膜厚方向における90%以上の領域において、下記式(1)で表される条件を満たすこと、
酸素の原子数比>珪素の原子数比>炭素の原子数比 (1)
(ii)前記炭素分布曲線が少なくとも1つの極値を有すること、
(iii)前記炭素分布曲線における炭素の原子数比の最大値および最小値の差の絶対値が0.05以上であること
を全て満たすことを特徴とする積層フィルムを提供する。
0.60≦W1/W0≦1.00 (2)
W2/W0≦0.10 (3)
0.01≦I2/I1<0.05 (4)
0.25≦I3/I1≦0.50 (5)
0.70≦I4/I3<1.00 (6)
[積層フィルム]
本発明の積層フィルムは、可とう性基材と、前記基材の少なくとも片面に接して設けられた有機層と、前記有機層上に接して設けられた薄膜層とを有し、前記薄膜層が珪素原子、酸素原子および炭素原子を含有し、また、前記有機層がアクリレート樹脂を含有するものである。
本発明の積層フィルムは、前記薄膜層の膜厚方向における、前記薄膜層の表面からの距離と、前記距離に位置する点の前記薄膜層に含まれる珪素原子、酸素原子および炭素原子の合計数に対する珪素原子数の比率(珪素の原子数比)、酸素原子数の比率(酸素の原子数比)、炭素原子数の比率(炭素の原子数比)との関係をそれぞれ示す珪素分布曲線、酸素分布曲線および炭素分布曲線において、下記の条件(i)~(iii)のを全て満たす。
(i)珪素の原子数比、酸素の原子数比および炭素の原子数比が、前記薄膜層の膜厚方向における90%以上の領域において、下記式(1)を満たすこと、
酸素の原子数比>珪素の原子数比>炭素の原子数比 (1)
(ii)前記炭素分布曲線が少なくとも1つの極値を有すること、
(iii)前記炭素分布曲線における炭素の原子数比の最大値および最小値の差の絶対値が0.05以上であること。
ここで、条件(iii)における「炭素の原子数比の最大値および最小値の差の絶対値が0.05以上である」とは、百分率で表すと差が5%以上であることを意味する。
(1)アクリレート樹脂、アクリレートモノマーおよびアクリレートオリゴマーからなる群より選ばれる少なくとも1つの有機物を可とう性基材上に塗布して塗布膜を得る工程。
前記有機物がアクリレートモノマーまたはアクリレートオリゴマーを含む場合は、さらに工程(2)を含むことが好ましい。
(2)前記塗布膜を硬化させて硬化膜を得る工程。
工程(1)で得られる塗布膜を有機層とすることもできるし、工程(2)で得られる硬化膜を有機層とすることもできる。
前記可とう性基材は、フィルム状またはシート状であり、その材質の例としては、樹脂または樹脂を含む複合材が挙げられる。
前記樹脂の例としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、アクリル酸エステル、メタクリル酸エステル、ポリカーボネート(PC)、ポリアリレート、ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン(COP、COC)、ポリアミド、芳香族ポリアミド、ポリスチレン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体のケン化物、ポリアクリロニトリル、ポリアセタール、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルサルファイド(PES)、ポリエーテルエーテルケトン等が挙げられる。
樹脂を含む複合材の例としては、ポリジメチルシロキサン等のシリコーン樹脂基板、ポリシルセスキオキサン等の有機無機ハイブリッド樹脂基板、ガラスコンポジット基板、ガラスエポキシ基板などが挙げられる。
可とう性基材の材質は、1種のみでもよいし、2種以上でもよい。
これらの中でも、可とう性基材の材質は、透明性および耐熱性が高く、熱線膨張率が低いという観点から、PET、PBT、PEN、環状ポリオレフィン、ポリイミド、芳香族ポリアミド、ガラスコンポジット基板またはガラスエポキシ基板が好ましい。
0.60≦W1/W0≦1.00 (2)
W2/W0≦0.10 (3)
<有機層の耐熱性評価>
可とう性基材上に有機層を形成したフィルムを二枚用い、有機層表面同士を重ね合わせた積層体サンプルを作製する。得られた積層体サンプルを両側からガラス板で挟み、所定温度で2時間加熱した後に、重ね合わせた二枚のフィルムを有機層界面で剥離し、剥離の難易度ついて、下記基準に基づき有機層の耐熱評価を行う。
評価基準:
・耐熱性不良:貼り付いて剥がれない、または剥がす際に抵抗はあるが剥がれる。
・耐熱性良好:変化(抵抗や外観)なく、剥がれる。
<工程(1)>で得られた有機層を硬化させる方法としては、例えば、光照射が挙げられる。
さらに前記薄膜層は珪素原子、酸素原子および炭素原子以外の元素、例えば、水素原子、窒素原子、ホウ素原子、アルミニウム原子、リン原子、イオウ原子、フッ素原子および塩素原子のうちの一以上の原子を含有していてもよい。
また前記薄膜層は、薄膜層中においける珪素原子(Si)および酸素原子(O)の平均原子数比をO/Siで表した場合に、緻密性が高く、微細な空隙やクラック等の欠陥を少なくする観点で、1.50<O/Si<1.90の範囲にあると好ましく、1.55<O/Si<1.85の範囲にあるとより好ましく、1.60<O/Si<1.80の範囲にあるとさらに好ましく、1.65<O/Si<1.75の範囲にあると特に好ましい。
なお、前記平均原子数比C/SiおよびO/Siは、下記条件にてX線光電子分光法(XPS)でデプスプロファイル測定を行い、得られた珪素原子、窒素原子、酸素原子および炭素原子のそれぞれの分布曲線から、厚み方向におけるそれぞれの原子の平均原子濃度を求めた後、算出できる。
エッチングイオン種:アルゴン(Ar+)
エッチングレート(SiO2熱酸化膜換算値):0.05nm/sec
エッチング間隔(SiO2換算値):10nm
X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
照射X線:単結晶分光AlKα
X線のスポットおよびそのサイズ:800×400μmの楕円形
0.01≦I2/I1<0.05 (4)
赤外分光測定から算出したピーク強度比I2/I1は、前記薄膜層中の結合Si-O-Siに対する結合Si-CH3の相対的な割合を表すと考えられる。前記式(4)を満たす前記積層フィルムは、緻密性が高く、微細な空隙やクラック等の欠陥を少なくする観点から、ガスバリア性に優れ、かつ耐衝撃性に優れる傾向にある。ピーク強度比I2/I1の範囲について、前記積層フィルムの緻密性を高く保持する観点から、0.01≦I2/I1<0.05の範囲が好ましく、0.02≦I2/I1<0.04の範囲がより好ましい。
積層フィルムの薄膜層の赤外分光測定は、プリズムにゲルマニウム結晶を用いたATRアタッチメント(PIKE MIRacle)を備えたフーリエ変換型赤外分光光度計(日本分光製、FT/IR-460Plus)によって測定できる。
0.25≦I3/I1≦0.50 (5)
赤外分光測定から算出したピーク強度比I3/I1は、前記薄膜層中の結合Si-O-Siに対する結合Si-C又はSi-O等の相対的な割合を表すと考えられる。前記式(5)を満たす前記積層フィルムは、高い緻密性を保持しつつ、炭素が導入されることから耐屈曲性に優れ、かつ耐衝撃性に優れたものとなると考えられる。ピーク強度比I3/I1の範囲について、前記積層フィルムの緻密性と耐屈曲性のバランスを保つ観点から、0.25≦I3/I1≦0.50の範囲が好ましく、0.30≦I3/I1≦0.45の範囲がより好ましい。
0.70≦I4/I3<1.00 (6)
赤外分光測定から算出したピーク強度比I4/I3は、前記薄膜層中の結合Si-Cに由来するピークの比率を表すと考えられる。前記式(6)を満たす前記積層フィルムは、高い緻密性を保持しつつ、炭素が導入されることから耐屈曲性に優れ、かつ耐衝撃性に優れたものとなると考えられる。ピーク強度比I4/I3の範囲について、前記積層フィルムの緻密性と耐屈曲性のバランスを保つ観点から、0.70≦I4/I3<1.00の範囲が好ましく、0.80≦I4/I3<0.95の範囲がより好ましい。
(i)珪素の原子数比、酸素の原子数比および炭素の原子数比が、前記第1薄膜層の膜厚方向における90%以上の領域において、下記式(1)を満たす、
酸素の原子数比>珪素の原子数比>炭素の原子数比 (1)
(ii)前記炭素分布曲線が少なくとも1つの極値を有する、および
(iii)前記炭素分布曲線における炭素の原子数比の最大値および最小値の差の絶対値が0.05以上である。
|dC/dx|≦ 0.01
本発明の積層フィルムは、前記有機層上に、グロー放電プラズマを用いて、プラズマCVD法等の公知の真空成膜手法で前記薄膜層を形成することで製造できる。発生したプラズマは高密度かつ低温プラズマであることから、本発明で用いるような耐熱性の低い可とう性基材上に緻密な薄膜を形成する上で適しており、好ましい。
また、原料ガスとして、前記有機ケイ素化合物の他にモノシランを含有させ、形成するバリア膜のケイ素源として用いてもよい。
(CH3)6Si2O+12O2→6CO2+9H2O+2SiO2 (A)
可とう性基材の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、前記のように基材を搬送ロールに接触させるときの基材の搬送速度と同じであるのが好ましい。
なお、電子デバイスのフレキシブル基板として用いる場合、前記積層フィルム上に直接素子を形成してもよいし、また別の基板上に素子を形成した後に前記積層フィルムを上から重ね合せてもよい。
可とう性基材上に有機層を形成し、該フィルムを二枚用い、有機層表面同士を重ね合わせた積層体サンプルを作製した。得られた積層体サンプルを両側からガラス板で挟み、180℃で2時間加熱した後に、重ね合わせた二枚のフィルムを有機層界面で剥離し、剥離の難易度について、下記基準に基づき有機層の耐熱評価を行った。
(評価基準)
・耐熱性不良:貼り付いて剥がれない、または剥がす際に抵抗はあるが剥がれる。
・耐熱性良好:変化(抵抗や外観)なく、剥がれる。
可とう性基材上に有機層を形成し、積層体サンプルを作製した。得られた積層体サンプルについて、剛体振り子型物性試験器(エー・アンド・デイ社製、RPT-3000W)を用いて相対弾性率を測定した。昇温速度10℃/minで25℃から160℃まで昇温させて、25℃における弾性率に対する150℃における弾性率の低下率を算出した。
(i)JIS K5600に準拠し、試験面にカッターナイフを用いて、1mmの間隔で素地に達する6本の切り傷をつけ25個の碁盤目を作り、碁盤目部分にセロハンテープ(ニチバン株式会社製、セロテープ(登録商標)No.405(産業用)、粘着力:3.93N/10mm)を強く圧着させ、テープの端を60°の角度で引き剥がした結果の破断状況で有機層と薄膜層の密着性を評価した。
(ii)密着性測定(i)と同様に碁盤目を作り、100℃の熱水にサンプルを2時間浸漬し、乾かしてから、サンプルの碁盤目部分にセロハンテープ(ニチバン株式会社製、セロテープ(登録商標)No.405(産業用)、粘着力:3.93N/10mm)を強く圧着させ、テープの端を60°の角度で引き剥がした結果の破断状況で有機層と薄膜層の密着性を評価した。
密着性測定(i)および密着性測定(ii)の測定法において、25個の碁盤目のうち、目視で剥離が観察されなかった個数をカウントし、百分率で示した。
積層フィルムの全光線透過率は、スガ試験機社製の直読ヘーズコンピュータ(型式HGM-2DP)によって測定した。サンプルがない状態でバックグランド測定を行った後、積層フィルムをサンプルホルダーにセットして測定を行い、全光線透過率を求めた。
積層フィルムのガスバリア性は、温度40℃、湿度90%RHの条件において、カルシウム腐食法(特開2005-283561号公報に記載される方法)によって測定し、積層フィルムの水蒸気透過度を求めた。
可とう性基材上に薄膜層を形成し、小坂研究所製サーフコーダET200を用いて、無成膜部と成膜部の段差測定を行い、薄膜層の膜厚(T)を求めた。
二軸延伸ポリエチレンテレフタレートフィルム(帝人デュポンフィルム社製、Q65HA、厚み100μm、両面易接着処理)を基材として用い、前記基材の片面に有機塗布液としてフィラーを含まない紫外線硬化型アクリレートモノマー液(東亜合成(株)製、商品名:アロニックスUV-3701)をウェットコーティング法にて塗布し、80℃で1分間乾燥させた後、積算光量30mJ/cm2の条件で紫外線照射(ウシオ電機株式会社製、SP-9)し、厚み2μmの有機層を形成した。得られた有機層中に含まれるアクリレート樹脂成分の重量W1と、有機層の重量W0の比W1/W0は0.8であり、有機層中に含まれる有機珪素化合物成分の重量W2と、有機層の重量W0の比W2/W0は0であった。得られた基材/有機層フィルム1において、耐熱性評価1の手法により180℃以上の耐熱性を備えていることを確認し、耐熱性評価2の手法により弾性率の低下率が1%であることを確認した。
前記の有機層を塗布した基材(厚み102μm、幅700mm)を、真空チャンバー内の送り出しロールに装着した。真空チャンバー内を1×10-3Pa以下にした後、基材を0.6m/minの一定速度で搬送させながら前記有機層上に薄膜層の成膜を行った。
薄膜層を形成させるために用いたプラズマCVD装置においては、一対の成膜ロールからなる電極間でプラズマを発生させて、前記電極表面に密接しながら基材が搬送され、基材上に薄膜層が形成される。また、前記の一対の成膜ロールからなる電極は、磁束密度が電極および基材表面で高くなるように電極内部に磁石が配置されており、プラズマ発生時に電極および基材上でプラズマが高密度に拘束される。
薄膜層の成膜は、成膜ゾーンとなる電極間の空間に向けてヘキサメチルジシロキサンガスを100sccm(Standard Cubic Centimeter per Minute、0℃、1気圧基準)、酸素ガスを900sccm導入し、電極ロール間に1.6kW、周波数70kHzの交流電力を供給し、放電してプラズマを発生させた。次いで、真空チャンバー内の排気口周辺における圧力が1.0Paになるように排気量を調節した後、プラズマCVD法により搬送基材上に薄膜層を形成した。このようにして得られた積層フィルム1において、前記の密着性測定法(i)および(ii)を実施したところ、それぞれ剥離していない箇所は100%で密着性は良好だった。なお、得られた積層フィルム1の薄膜層の厚みは700nm、全光線透過率は87%、水蒸気透過度は3×10-5g/m2/dayであった。得られた積層フィルム1における薄膜層の珪素分布曲線、酸素分布曲線、窒素分布曲線、炭素分布曲線を図1に示す。
また、積層フィルム1の薄膜層のみの赤外分光測定を実施するために、環状シクロオレフィンフィルム(日本ゼオン社製、ゼオノアZF16、厚み100μm、幅700mm)を基材として用いた場合についても、同様の操作にて薄膜層を形成して積層フィルム1’を得た。なお、得られた積層フィルム1’における薄膜層の厚みおよび構成は積層フィルム1と同様であった。得られた積層フィルム1’について赤外分光測定を行った。
得られた赤外吸収スペクトルから、950~1050cm-1に存在するピーク強度(I1)と、1240~1290cm-1に存在するピーク強度(I2)との吸収強度比(I2/I1)を求めると、I2/I1=0.03であった。また、950~1050cm-1に存在するピーク強度(I1)と、770~830cm-1に存在するピーク強度(I3)との吸収強度比(I3/I1)を求めると、I3/I1=0.37であった。また、770~830cm-1に存在するピーク強度(I3)と、870~910cm-1に存在するピーク強度(I4)との吸収強度比(I4/I3)を求めると、I4/I3=0.91であった。
有機塗布液にフィラーを含まない紫外線硬化型アクリレートモノマー液(トーヨーインク(株)製、商品名:LCH1559)を用いた以外は実施例1と同様にして、基材/有機層フィルム2および積層フィルム2を得た。得られた有機層中に含まれるアクリレート樹脂成分の重量W1と、有機層の重量W0の比W1/W0は0.6であり、有機層中に含まれる有機珪素化合物成分の重量W2と、有機層の重量W0の比W2/W0は0であった。
基材/有機層フィルム2において、耐熱性評価1の手法により180℃以上の耐熱性を備えていることを確認し、耐熱性評価2の手法により弾性率の低下率が0%であることを確認した。また、得られた積層フィルム2において、前記の密着性測定法(i)および(ii)を実施したところ、それぞれ剥離していない箇所は100%で密着性は良好だった。
なお、得られた積層フィルム2の薄膜層の厚みは700nm、全光線透過率は87%、水蒸気透過度は4×10-5g/m2/dayであった。
得られた積層フィルム7は、実施例1と同様に、薄膜層の膜厚方向における90%以上の領域において、(酸素の原子数比)>(珪素の原子数比)>(炭素の原子数比)との順番であり、炭素分布曲線が1つ以上の極値を持ち、炭素分布曲線における炭素の原子数比の最大値および最小値の差の絶対値が0.05以上となる。
有機塗布液にフィラーを含まない紫外線硬化型ウレタンアクリレートモノマー液(荒川化学(株)製、商品名:ビームセット381)を用いた以外は実施例1と同様にして、基材/有機層フィルム3および積層フィルム3を得た。得られた有機層中に含まれるアクリレート樹脂成分の重量W1と、有機層の重量W0の比W1/W0は0.7であり、有機層中に含まれる有機珪素化合物成分の重量W2と、有機層の重量W0の比W2/W0は0であった。基材/有機層フィルム3において、耐熱性評価1の手法により180℃以上の耐熱性を備えていることを確認し、耐熱性評価2の手法により弾性率の低下率が0%であることを確認した。また、得られた積層フィルム3において、前記の密着性測定法(i)および(ii)を実施したところ、それぞれ剥離していない箇所は100%で密着性は良好だった。なお、得られた積層フィルム3の薄膜層の厚みは700nm、全光線透過率は87%、水蒸気透過度は5×10-5g/m2/dayであった。
得られた積層フィルム3は、実施例1と同様に、薄膜層の膜厚方向における90%以上の領域において、(酸素の原子数比)>(珪素の原子数比)>(炭素の原子数比)との順番であり、炭素分布曲線が1つ以上の極値を持ち、炭素分布曲線における炭素の原子数比の最大値および最小値の差の絶対値が0.05以上となる。
二軸延伸ポリエチレンテレフタレートフィルム(帝人デュポンフィルム社製、Q65HA、厚み100μm、両面易接着処理)を基材として用い、有機塗布液にフィラーを含まない熱硬化型シリコーン樹脂液(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、商品名:TSR144)を前記基材の片面にウェットコーティング法にて塗布し、100℃1時間で硬化させた後、厚み2μmの有機層を形成した。得られた有機層中に含まれるアクリレート樹脂成分の重量W1と、有機層の重量W0の比W1/W0は0であり、有機層中に含まれる有機珪素化合物成分の重量W2と、有機層の重量W0の比W2/W0は0.2であった。得られた基材/有機層フィルム4において、180℃以上の耐熱性を備えていることを確認した。さらに、得られた基材/有機層フィルム4上に、実施例1と同様にして薄膜層を形成し、積層フィルム4を得た。一方で、得られた積層フィルム4において、前記の密着性測定法(i)を実施したところ、剥離していない箇所は80%であり、密着性測定法(ii)を実施したところ、剥離していない箇所は20%であり、密着性不良が生じた。
有機塗布液にフィラーを含む熱硬化型エポキシ樹脂液(荒川化学(株)製、商品名:コンポセラン103D)を用い、150℃で1時間硬化させた後、厚み2μmの有機層を形成した。得られた有機層中に含まれるアクリレート樹脂成分の重量W1と、有機層中に含まれるフィラー成分を除いた重量W0の比W1/W0は0であり、有機層中に含まれる有機珪素化合物成分の重量W2と、有機層中に含まれるフィラー成分を除いた重量W0の比W2/W0は0であった。得られた基材/有機層フィルム5において、180℃以上の耐熱性を備えていることを確認した。さらに、得られた基材/有機層フィルム5上に、実施例1と同様にして薄膜層を形成し、積層フィルム5を得た。一方で、得られた積層フィルム5において、前記の密着性測定法(i)を実施したところ、剥離していない箇所は100%であり、密着性測定法(ii)を実施したところ、剥離していない箇所は16%であり、密着性不良が生じた。
実施例1で得られた基材/有機層フィルム1上に、グロー放電プラズマを用いた誘導結合プラズマCVD法により、薄膜層を形成した。誘導結合プラズマCVD法は前述のプラズマCVD法と違い、誘導コイルに対して高周波電力を印加することで誘導電界を形成し、プラズマを発生させる手法である。基材に用いた二軸延伸ポリエチレンナフタレートフィルムは片面に易接着処理を施した非対称構造をしており、易接着処理が施されていない面へ薄膜層の成膜を行った。成膜にあたって、成膜ゾーンにヘキサメチルジシロキサンガスを30sccm(Standard Cubic Centimeter per Minute、0℃、1気圧基準)、酸素ガスを150sccm、アルゴンガスを100sccm導入し、誘導コイルに0.9kW、周波数13.56kHzの電力を供給し、放電してプラズマを発生させた。次いで、真空チャンバー内の圧力が2.5Paになるように排気量を調節した後、誘導結合プラズマCVD法により搬送基材上に薄膜層を形成し、積層フィルム6を得た。このようにして得られた積層フィルム6において、前記の密着性測定法(i)および(ii)を実施したところ、剥離していない箇所は100%で密着性は良好だった。なお、得られた積層フィルム6の薄膜層の厚みは1000nm、全光線透過率は90%、水蒸気透過度は1.3g/m2/dayであった。得られた積層フィルム6における薄膜層の珪素分布曲線、酸素分布曲線、窒素分布曲線、炭素分布曲線を図2に示す。
薄膜層の成膜時にヘキサメチルジシロキサンガスを100sccm(Standard Cubic Centimeter per Minute、0℃、1気圧基準)、酸素ガスを600sccm導入した以外は、実施例1と同様にして積層フィルム7を作製した。なお、得られた積層フィルム7の薄膜層の厚みは700nm、全光線透過率は89%、水蒸気透過度は4×10-5g/m2/dayであった。積層フィルム7において、前記の密着性測定法(i)および(ii)を実施したところ、剥離していない箇所は100%で密着性は良好だった。
得られた赤外吸収スペクトルから、吸収強度比I2/I1=0.03であった。また、吸収強度比I3/I1=0.42であった。また、吸収強度比I4/I3=0.90であった。
得られた積層フィルム7は、実施例1と同様に、薄膜層の膜厚方向における90%以上の領域において、(酸素の原子数比)>(珪素の原子数比)>(炭素の原子数比)との順番であり、炭素分布曲線が1つ以上の極値を持ち、炭素分布曲線における炭素の原子数比の最大値および最小値の差の絶対値が0.05以上となる。
薄膜層の成膜時にヘキサメチルジシロキサンガスを100sccm(Standard Cubic Centimeter per Minute、0℃、1気圧基準)、酸素ガスを800sccm導入した以外は、実施例1と同様にして積層フィルム8を作製した。なお、得られた積層フィルム8の薄膜層の厚みは700nm、全光線透過率は88%、水蒸気透過度は1×10-5g/m2/dayであった。積層フィルム8において、前記の密着性測定法(i)および(ii)を実施したところ、剥離していない箇所は100%で密着性は良好だった。
得られた赤外吸収スペクトルから、吸収強度比I2/I1=0.03であった。また、吸収強度比I3/I1=0.39であった。また、吸収強度比I4/I3=0.90であった。
得られた積層フィルム8は、実施例1と同様に、薄膜層の膜厚方向における90%以上の領域において、(酸素の原子数比)>(珪素の原子数比)>(炭素の原子数比)との順番であり、炭素分布曲線が1つ以上の極値を持ち、炭素分布曲線における炭素の原子数比の最大値および最小値の差の絶対値が0.05以上となる。
薄膜層の成膜時にヘキサメチルジシロキサンガスを100sccm(Standard Cubic Centimeter per Minute、0℃、1気圧基準)、酸素ガスを2000sccm導入した以外は、実施例1と同様にして積層フィルム9を作製した。なお、得られた積層フィルム9の薄膜層の厚みは700nm、全光線透過率は88%、水蒸気透過度は2×10-5g/m2/dayであった。積層フィルム9において、前記の密着性測定法(i)および(ii)を実施したところ、剥離していない箇所は100%で密着性は良好だった。
得られた赤外吸収スペクトルから、吸収強度比I2/I1=0.03であった。また、吸収強度比I3/I1=0.29であった。また、吸収強度比I4/I3=0.84であった。
得られた積層フィルム9は、実施例1と同様に、薄膜層の膜厚方向における90%以上の領域において、(酸素の原子数比)>(珪素の原子数比)>(炭素の原子数比)との順番であり、炭素分布曲線が1つ以上の極値を持ち、炭素分布曲線における炭素の原子数比の最大値および最小値の差の絶対値が0.05以上となる。
Claims (8)
- 可とう性基材と、前記基材の少なくとも片面に接して設けられた有機層と、前記有機層上に接して設けられた薄膜層とを有し、
前記有機層がアクリレート樹脂を含有し、
前記薄膜層が珪素原子、酸素原子および炭素原子を含有し、
前記薄膜層の膜厚方向における、前記薄膜層の表面からの距離と、前記距離に位置する点の前記薄膜層に含まれる珪素原子、酸素原子および炭素原子の合計数に対する珪素原子数の比率(珪素の原子数比)、酸素原子数の比率(酸素の原子数比)、炭素原子数の比率(炭素の原子数比)との関係をそれぞれ示す珪素分布曲線、酸素分布曲線および炭素分布曲線において、下記の条件(i)~(iii):
(i)珪素の原子数比、酸素の原子数比および炭素の原子数比が、前記薄膜層の膜厚方向における90%以上の領域において、下記式(I)を満たすこと、
酸素の原子数比>珪素の原子数比>炭素の原子数比 (I)
(ii)前記炭素分布曲線が少なくとも1つの極値を有すること、
(iii)前記炭素分布曲線における炭素の原子数比の最大値および最小値の差の絶対値が0.05以上であること
を全て満たす積層フィルム。 - 前記有機層はフィラー成分を含んでいてもよく、前記有機層の全体重量から、前記有機層中に含まれるフィラー成分を除いた重量W0に対する、前記アクリレート樹脂成分の重量W1を重量比W1/W0で表した場合、下記式(2)の範囲にある請求項1に記載された積層フィルム。
0.60≦W1/W0≦1.00 (2) - 前記有機層の全体重量から、前記有機層中に含まれるフィラー成分を除いた重量W0に対する、有機珪素化合物成分の重量W2を重量比W2/W0で表した場合、下記式(3)の範囲にある請求項1または2に記載された積層フィルム。
W2/W0≦0.10 (3) - 前記薄膜層表面を赤外分光測定した場合、950~1050cm-1に存在するピーク強度(I1)と、1240~1290cm-1に存在するピーク強度(I2)との強度比が下記式(4)の範囲にある請求項1~3のいずれか一項に記載された積層フィルム。
0.01≦I2/I1<0.05 (4) - 前記薄膜層表面を赤外分光測定した場合、950~1050cm-1に存在するピーク強度(I1)と、770~830cm-1に存在するピーク強度(I3)との強度比が下記式(5)の範囲にある請求項1~4のいずれか一項に記載された積層フィルム。
0.25≦I3/I1≦0.50 (5) - 前記薄膜層表面を赤外分光測定した場合、770~830cm-1に存在するピーク強度(I3)と、870~910cm-1に存在するピーク強度(I4)との強度比が下記式(6)の範囲にある請求項1~5のいずれか一項に記載された積層フィルム。
0.70≦I4/I3<1.00 (6) - 前記薄膜層がプラズマCVD法により形成されたものである請求項1~6のいずれか一項に記載された積層フィルム。
- 請求項1~7のいずれか一項に記載された積層フィルムを基板として用いるフレキシブル電子デバイス。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580051842.2A CN106715116A (zh) | 2014-09-30 | 2015-09-28 | 层叠膜和挠性电子设备 |
US15/508,823 US10054487B2 (en) | 2014-09-30 | 2015-09-28 | Laminated film and flexible electronic device |
KR1020177007561A KR102401713B1 (ko) | 2014-09-30 | 2015-09-28 | 적층 필름 및 플렉시블 전자 디바이스 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014199906A JP6638182B2 (ja) | 2014-09-30 | 2014-09-30 | 積層フィルムおよびフレキシブル電子デバイス |
JP2014-199906 | 2014-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016052369A1 true WO2016052369A1 (ja) | 2016-04-07 |
Family
ID=55630405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/077240 WO2016052369A1 (ja) | 2014-09-30 | 2015-09-28 | 積層フィルムおよびフレキシブル電子デバイス |
Country Status (6)
Country | Link |
---|---|
US (1) | US10054487B2 (ja) |
JP (1) | JP6638182B2 (ja) |
KR (1) | KR102401713B1 (ja) |
CN (1) | CN106715116A (ja) |
TW (1) | TWI700192B (ja) |
WO (1) | WO2016052369A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018101084A1 (ja) * | 2016-11-29 | 2018-06-07 | 住友化学株式会社 | ガスバリア性フィルム及びフレキシブル電子デバイス |
US20200259118A1 (en) * | 2017-08-25 | 2020-08-13 | Sumitomo Chemical Company, Limited | Laminated film |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6998734B2 (ja) * | 2016-11-29 | 2022-01-18 | 住友化学株式会社 | 積層体及びこれを含むデバイス |
CN108632406B (zh) * | 2017-03-21 | 2021-03-09 | 研能科技股份有限公司 | 可携式电子装置 |
JP2019020448A (ja) * | 2017-07-11 | 2019-02-07 | 株式会社ジャパンディスプレイ | 表示装置 |
JP7114844B2 (ja) * | 2017-08-18 | 2022-08-09 | エルジー・ケム・リミテッド | 基板 |
JP7211740B2 (ja) * | 2017-09-13 | 2023-01-24 | 住友化学株式会社 | ガスバリア性フィルムおよびフレキシブル電子デバイス |
CN111902271A (zh) * | 2018-03-27 | 2020-11-06 | 住友化学株式会社 | 层叠膜 |
WO2020085248A1 (ja) | 2018-10-23 | 2020-04-30 | 住友化学株式会社 | 積層体、フレキシブル電子デバイスおよび積層体の製造方法 |
JP2021085760A (ja) * | 2019-11-28 | 2021-06-03 | 住友化学株式会社 | 光学フィルムの製造方法 |
US20230009077A1 (en) * | 2021-07-09 | 2023-01-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Contact structures in semiconductor devices |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013071390A (ja) * | 2011-09-29 | 2013-04-22 | Konica Minolta Advanced Layers Inc | バリアーフィルム及びバリアーフィルムの製造方法 |
WO2013146964A1 (ja) * | 2012-03-27 | 2013-10-03 | 住友化学株式会社 | 積層フィルム、有機エレクトロルミネッセンス装置、光電変換装置および液晶ディスプレイ |
JP2013226767A (ja) * | 2012-04-27 | 2013-11-07 | Dainippon Printing Co Ltd | ガスバリア性フィルムの製造方法 |
WO2014061627A1 (ja) * | 2012-10-19 | 2014-04-24 | コニカミノルタ株式会社 | ガスバリアーフィルム及びガスバリアーフィルムの製造方法 |
JP2014195953A (ja) * | 2013-03-29 | 2014-10-16 | 東京インキ株式会社 | ガスバリア性積層体 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4083564B2 (ja) | 2001-12-26 | 2008-04-30 | 住友ベークライト株式会社 | 有機層の形成方法及びガスバリア性プラスチックフィルム |
JP2006324406A (ja) | 2005-05-18 | 2006-11-30 | Sharp Corp | フレックスリジッド多層配線板 |
CN101579957A (zh) * | 2008-05-14 | 2009-11-18 | 拜耳材料科技贸易(上海)有限公司 | 一种复合材料及其制备方法和用途 |
CN102387920B (zh) | 2009-04-09 | 2015-01-07 | 住友化学株式会社 | 气体阻隔性层叠膜 |
JP5654245B2 (ja) | 2010-02-17 | 2015-01-14 | 富士フイルム株式会社 | バリア性積層体および太陽電池用保護シート |
WO2015186434A1 (ja) * | 2014-06-02 | 2015-12-10 | コニカミノルタ株式会社 | ガスバリアーフィルム |
-
2014
- 2014-09-30 JP JP2014199906A patent/JP6638182B2/ja not_active Expired - Fee Related
-
2015
- 2015-09-28 KR KR1020177007561A patent/KR102401713B1/ko active Active
- 2015-09-28 US US15/508,823 patent/US10054487B2/en active Active
- 2015-09-28 CN CN201580051842.2A patent/CN106715116A/zh active Pending
- 2015-09-28 WO PCT/JP2015/077240 patent/WO2016052369A1/ja active Application Filing
- 2015-09-30 TW TW104132346A patent/TWI700192B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013071390A (ja) * | 2011-09-29 | 2013-04-22 | Konica Minolta Advanced Layers Inc | バリアーフィルム及びバリアーフィルムの製造方法 |
WO2013146964A1 (ja) * | 2012-03-27 | 2013-10-03 | 住友化学株式会社 | 積層フィルム、有機エレクトロルミネッセンス装置、光電変換装置および液晶ディスプレイ |
JP2013226767A (ja) * | 2012-04-27 | 2013-11-07 | Dainippon Printing Co Ltd | ガスバリア性フィルムの製造方法 |
WO2014061627A1 (ja) * | 2012-10-19 | 2014-04-24 | コニカミノルタ株式会社 | ガスバリアーフィルム及びガスバリアーフィルムの製造方法 |
JP2014195953A (ja) * | 2013-03-29 | 2014-10-16 | 東京インキ株式会社 | ガスバリア性積層体 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018101084A1 (ja) * | 2016-11-29 | 2018-06-07 | 住友化学株式会社 | ガスバリア性フィルム及びフレキシブル電子デバイス |
CN109963711A (zh) * | 2016-11-29 | 2019-07-02 | 住友化学株式会社 | 气体阻隔性膜及柔性电子器件 |
US20200259118A1 (en) * | 2017-08-25 | 2020-08-13 | Sumitomo Chemical Company, Limited | Laminated film |
Also Published As
Publication number | Publication date |
---|---|
TW201620712A (zh) | 2016-06-16 |
KR20170063584A (ko) | 2017-06-08 |
JP6638182B2 (ja) | 2020-01-29 |
JP2016068383A (ja) | 2016-05-09 |
US10054487B2 (en) | 2018-08-21 |
KR102401713B1 (ko) | 2022-05-26 |
US20170268929A1 (en) | 2017-09-21 |
TWI700192B (zh) | 2020-08-01 |
CN106715116A (zh) | 2017-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6638182B2 (ja) | 積層フィルムおよびフレキシブル電子デバイス | |
JP6705170B2 (ja) | 積層フィルムおよびフレキシブル電子デバイス | |
JP6642003B2 (ja) | 積層フィルムおよびフレキシブル電子デバイス | |
WO2018123724A1 (ja) | ガスバリアー性フィルム及びガスバリアー性フィルムの製造方法 | |
KR102384767B1 (ko) | 적층 필름 및 플렉시블 전자 디바이스 | |
TWI745492B (zh) | 積層體及含有該積層體的裝置 | |
JP6983039B2 (ja) | ガスバリア性フィルム及びフレキシブル電子デバイス | |
JP2016055594A (ja) | ガスバリアー性フィルム、ガスバリアー性フィルムの製造方法及び電子デバイス | |
JP2018144283A (ja) | 機能性フィルム積層体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15846577 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15508823 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20177007561 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15846577 Country of ref document: EP Kind code of ref document: A1 |