+

WO2016048184A1 - Moteur à combustion interne et procédé de fonctionnement - Google Patents

Moteur à combustion interne et procédé de fonctionnement Download PDF

Info

Publication number
WO2016048184A1
WO2016048184A1 PCT/RU2014/000720 RU2014000720W WO2016048184A1 WO 2016048184 A1 WO2016048184 A1 WO 2016048184A1 RU 2014000720 W RU2014000720 W RU 2014000720W WO 2016048184 A1 WO2016048184 A1 WO 2016048184A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion
engine
working fluid
combustion chamber
compression
Prior art date
Application number
PCT/RU2014/000720
Other languages
English (en)
Russian (ru)
Inventor
Борис Львович ЕГОРОВ
Original Assignee
Борис Львович ЕГОРОВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Борис Львович ЕГОРОВ filed Critical Борис Львович ЕГОРОВ
Priority to PCT/RU2014/000720 priority Critical patent/WO2016048184A1/fr
Publication of WO2016048184A1 publication Critical patent/WO2016048184A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G3/00Combustion-product positive-displacement engine plants
    • F02G3/02Combustion-product positive-displacement engine plants with reciprocating-piston engines

Definitions

  • the invention relates to internal combustion engines.
  • Two-stroke internal combustion engines are known from the history of engine building, in which a design with separate cylinders for compression and expansion of the working fluid and a separate combustion chamber in communication with
  • This method of operation of an internal combustion engine is noticeably inferior to
  • This method also provides for adiabatic compression and combustion of fuel at a constant volume. In this case, combustion is carried out for a certain period of time before the piston of the expansion cylinder arrives at top dead center. Thus, it is expected to achieve a more complete combustion of the fuel and the effective response of thermal energy.
  • This method has the same disadvantages as the above structures, namely: the need to heat the working fluid to high temperatures after adiabatic compression to perform useful work, increase the non-insulated surfaces heated by the working fluid due to a separate combustion chamber with a valve system, problems with manufacturing and provision reliability of heat-stressed parts.
  • thermodynamic cycle with heat removal in the process of compression of the working fluid and variable, depending on the rotation frequency and operating mode of the engine, the process of supplying thermal energy and initial expansion of the working fluid.
  • the technical result of this method is to reduce the temperature at the end of the compression process and the average temperature of the working fluid when expanded with
  • a decrease in the process temperature with a simultaneous increase in the charge density is achieved by using isothermal compression in a cycle with heat removal during the compression process.
  • isothermal compression is carried out in a compressor with efficient internal cooling, such as in a liquid-cooled screw compressor with a compression polytropic close to 1.1.
  • efficient internal cooling such as in a liquid-cooled screw compressor with a compression polytropic close to 1.1.
  • the most optimal are the degrees of pressure increase during isothermal compression from 14 and above.
  • Compressed air is introduced into the combustion chamber after the process of inlet of the working fluid into the expansion unit and closing of the intake valve
  • the compressor is switched to idle mode or to the mode of minimum performance, and compressed air from the pneumatic accumulator is let through the pressure regulator into the combustion chamber.
  • the pneumatic accumulator is closed by means of a shut-off valve.
  • the supply of thermal energy is carried out inside the combustion chamber after the intake of compressed air and closing the inlet valve of the combustion chamber by continuously or periodically interrupted fuel supply with an excess of oxygen.
  • Ignition of the fuel is carried out from glow plugs or ignition and from the surfaces of the parts of the chamber.
  • Improving fuel efficiency compared to internal combustion engines used can be realized, first of all, due to a significant improvement in torque characteristics in the entire range of operation. Improving the torque characteristics is achieved by using a thermodynamic cycle with variable, depending on the operating mode and engine speed, the processes of supplying thermal energy and the initial expansion of the working fluid.
  • the initial fuel injection is carried out at any operating conditions with a constant volume in the amount necessary to raise the temperature to 500-700 ° C.
  • heat energy is supplied at a constant volume until a temperature of 1000-1300 ° C is reached, and then heat is supplied at a constant pressure or constant temperature depending on the load and the power used.
  • the expansion process takes place first at constant pressure or constant temperature and then adiabatically without supply of heat.
  • an exhaust valve opens
  • the working fluid should expand completely to the moment of release and the process of heat removal to the atmosphere should be isobaric, but in some cases, for reasons of expediency, for example, to reduce the size of the expansion cylinders, it can be changed to isochoric. At the same time, at small and medium capacities, the heat removal process will still remain isobaric.
  • FIG. 1 TS diagram (temperature-entropy diagram) of the theoretical engine cycle at the lowest revolutions
  • FIG. la PV- diagram pressure-volume diagram
  • FIG. 2 TS diagram (temperature-entropy diagram) of the average engine theoretical cycle
  • FIG. 2a PV-diagram (pressure-volume diagram) of the theoretical engine cycle at medium speed
  • FIG. 3 TS-diagram (temperature-entropy diagram) of the theoretical engine cycle at maximum speed
  • FIG. Behind the PV diagram (pressure-volume diagram) of the theoretical engine cycle at maximum speed
  • FIG. 4 Scheme of a device operating according to the specified method
  • the device contains the following main elements: a piston expansion unit 17 with an inlet valve 15, an exhaust valve 16 and an anti-vacuum valve 24, a combustion chamber 1, a screw compressor 12, an air accumulator 10, a radiator of a cooling system 14, a fan 13, a fuel pump 22, a fuel tank 23, electric starter 21.
  • valve 15 is closed, and the valve 4 is opened and the combustion chamber 1 is filled with compressed air.
  • valve 4 is closed and fuel is injected through the nozzle 2. Using the spark plug 3, the fuel is ignited and the fuel is burned. Until piston reaches 19 TDC
  • Vehicle engines are equipped with a pneumatic brake energy recovery system consisting of a receiver 10 (pneumatic accumulator), a pressure regulator 8 and a bypass valve 9.
  • a pneumatic brake energy recovery system consisting of a receiver 10 (pneumatic accumulator), a pressure regulator 8 and a bypass valve 9.
  • the shutoff valve 5 When the vehicle is braking, the shutoff valve 5 is closed, the non-return (anti-vacuum) valve 24 is forcibly opened and the fuel supply is stopped. Expansion unit 17 is put into idle mode. Compressor 12 continues to pump air. Using the bypass valve 9, the compressed flow is directed to the pneumatic accumulator 10. The compressor capacity is controlled by a valve 11 controlled by the vehicle’s brake pedal.
  • the compressor 12 When accelerating the vehicle, the compressor 12 is transferred. to idle or low power.
  • the pressure regulator 8 open and maintain in the main receiver 6 a predetermined pressure until the end of the acceleration mode.
  • thermodynamic cycle isothermal compression - isochoric heat supply - isothermal expansion - adiabatic expansion - isobaric heat removal.
  • Theoretical power 104 kW (maximum power at 5000 rpm)
  • Rotation speed 5000 rpm (83 rpm.)
  • V x 0.001m3 (intake air volume per cycle)
  • V 0.000087m3 (combustion chamber volume)
  • T 2 375K (102 ° C) (temperature of the fresh charge of compressed air)
  • T x 386K (113 ° C) (initial temperature of the working fluid during heat supply)
  • G 2 1930K (1657 ° C) (final temperature of the working fluid)
  • the expansion process is divided into 2 stages:
  • the drop in efficiency is more significant.
  • the drop in efficiency when operating at the lowest speeds can be compensated by a decrease in heat loss and an increase in torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

L'invention concerne un moteur à combustion interne et un procédé de fonctionnement caractérisés en ce que le cycle thermodynamique idéal du moteur comprend : une compression isotherme, un apport isochore de chaleur, une détente isotherme ou isobarique, une détente adiabatique, et une évacuation isobarique ou isochore de l'énergie thermique. La compression isotherme se fait dans un compresseur (12) avec refroidissement interne de l'air comprimé. L'air comprimé est envoyé dans une chambre de combustion (1) puis chauffé jusqu'à une température et une pression données. Le processus qui suit d'apport d'énergie thermique est modifié en fonction du mode de fonctionnement du moteur afin de générer un couple rotatif maximal dans le mode courant. Le milieu de travail chauffé est envoyé dans une installation de détente (17) via une soupape (15). Après le processus d'apport d'énergie thermique, on procède à une détente adiabatique du milieu de travail. Après la détente, le milieu de travail est poussé par un piston (19) à travers d'une soupape d'évacuation.
PCT/RU2014/000720 2014-09-25 2014-09-25 Moteur à combustion interne et procédé de fonctionnement WO2016048184A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2014/000720 WO2016048184A1 (fr) 2014-09-25 2014-09-25 Moteur à combustion interne et procédé de fonctionnement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2014/000720 WO2016048184A1 (fr) 2014-09-25 2014-09-25 Moteur à combustion interne et procédé de fonctionnement

Publications (1)

Publication Number Publication Date
WO2016048184A1 true WO2016048184A1 (fr) 2016-03-31

Family

ID=55581554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000720 WO2016048184A1 (fr) 2014-09-25 2014-09-25 Moteur à combustion interne et procédé de fonctionnement

Country Status (1)

Country Link
WO (1) WO2016048184A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035586A1 (fr) * 2016-08-26 2018-03-01 Associação Paranaense De Cultura - Apc Moteur thermique à cycle différentiel comprenant quatre processus isobares, quatre processus isochores avec régénérateur et un processus de contrôle pour le cycle thermodynamique du moteur thermique
PL421942A1 (pl) * 2017-06-19 2019-01-02 Politechnika Krakowska im. Tadeusza Kościuszki Silnik izochoryczny

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040400A (en) * 1975-09-02 1977-08-09 Karl Kiener Internal combustion process and engine
US5311739A (en) * 1992-02-28 1994-05-17 Clark Garry E External combustion engine
RU2178090C2 (ru) * 1996-04-15 2002-01-10 Ги Негр Способ эксплуатации двигателя внутреннего сгорания

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040400A (en) * 1975-09-02 1977-08-09 Karl Kiener Internal combustion process and engine
US5311739A (en) * 1992-02-28 1994-05-17 Clark Garry E External combustion engine
RU2178090C2 (ru) * 1996-04-15 2002-01-10 Ги Негр Способ эксплуатации двигателя внутреннего сгорания

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035586A1 (fr) * 2016-08-26 2018-03-01 Associação Paranaense De Cultura - Apc Moteur thermique à cycle différentiel comprenant quatre processus isobares, quatre processus isochores avec régénérateur et un processus de contrôle pour le cycle thermodynamique du moteur thermique
PL421942A1 (pl) * 2017-06-19 2019-01-02 Politechnika Krakowska im. Tadeusza Kościuszki Silnik izochoryczny

Similar Documents

Publication Publication Date Title
US8677953B2 (en) Split-cycle air-hybrid engine with air expander and firing mode
US20050274334A1 (en) Energy storing engine
US9074526B2 (en) Split cycle engine and method with increased power density
US20070022977A1 (en) Method and apparatus for operating an internal combustion engine
EP3114336B1 (fr) Moteur à combustion interne à quatre temps avec compression pré-refroidie à étages
US20080006032A1 (en) Engine
AU2006335254A2 (en) Split-cycle air hybrid engine
CN106304839B (zh) 带有预冷压缩的二冲程内燃机
CN101765706A (zh) 高效率内燃机
WO2016048184A1 (fr) Moteur à combustion interne et procédé de fonctionnement
WO2016114683A1 (fr) Moteur à combustion interne et procédé de fonctionnement
US20070277793A1 (en) Method for operating an internal combustion engine
GB2294501A (en) Compound expansion supercharged i.c. piston engine
RU2133354C1 (ru) Способ осуществления рабочих процессов в двигателях внутреннего сгорания
WO2017091098A1 (fr) Procédé de fonctionnement d'un moteur à combustion interne
US1212917A (en) Method of increasing the efficiency of internal-combustion motors.
RU2735973C1 (ru) Четырехтактный поршневой двигатель внутреннего сгорания с изобарным подводом и отводом теплоты
CN103410622A (zh) Kr汽油内燃发动机
RU2234615C2 (ru) Способ работы поршневого теплового двигателя казанцева
RU2407901C2 (ru) Способ пуска бинарного двс
EP1445445A2 (fr) Moteur à combustion interne avec chambre de mélange
CN103993954A (zh) Kr柴油内燃发动机
CN103696849A (zh) 冲压柴油内燃发动机
KR20100044746A (ko) 혼합기체압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902593

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载