WO2016047161A1 - Electrolytic device and electrolyzed water generation method - Google Patents
Electrolytic device and electrolyzed water generation method Download PDFInfo
- Publication number
- WO2016047161A1 WO2016047161A1 PCT/JP2015/054981 JP2015054981W WO2016047161A1 WO 2016047161 A1 WO2016047161 A1 WO 2016047161A1 JP 2015054981 W JP2015054981 W JP 2015054981W WO 2016047161 A1 WO2016047161 A1 WO 2016047161A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- chamber
- anode
- cathode
- supply
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 273
- 238000000034 method Methods 0.000 title claims description 10
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 37
- 238000007599 discharging Methods 0.000 claims abstract description 4
- 238000005868 electrolysis reaction Methods 0.000 claims description 61
- 239000012528 membrane Substances 0.000 claims description 23
- 230000035699 permeability Effects 0.000 claims description 15
- 230000002706 hydrostatic effect Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 4
- 230000003068 static effect Effects 0.000 abstract description 6
- 239000007788 liquid Substances 0.000 description 33
- 150000003839 salts Chemical class 0.000 description 22
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 20
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 12
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000002378 acidificating effect Effects 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- -1 Polytetrafluoroethylene Polymers 0.000 description 4
- 239000012266 salt solution Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000003014 ion exchange membrane Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000003011 anion exchange membrane Substances 0.000 description 2
- 238000005341 cation exchange Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/4618—Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/34—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
- C25B1/46—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/02—Diaphragms; Spacing elements characterised by shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4611—Fluid flow
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/03—Pressure
Definitions
- Embodiment described here is related with the electrolyzer and the electrolyzed water production
- an electrolyzed water generating apparatus having a three-chamber electrolytic cell has been used as an apparatus for generating alkaline ionized water, ozone water, hypochlorous acid water, or the like.
- the inside of the casing is divided into three chambers, an anode chamber, an intermediate chamber, and a cathode chamber, by a diaphragm composed of a cation exchange membrane and an anion exchange membrane.
- An anode and a cathode are respectively disposed in the anode chamber and the cathode chamber.
- salt water is flowed in the intermediate chamber, water is flowed in the left and right cathode chambers and the anode chamber, and the salt water in the intermediate chamber is electrolyzed with the cathode and the anode, thereby being generated in the anode chamber.
- Hypochlorous acid water is generated from chlorine gas, and sodium hydroxide water is generated in the cathode chamber.
- the produced hypochlorous acid water is used as sterilizing / disinfecting water, and sodium hydroxide water is used as washing water.
- Documents related to the above-described technology are shown below, the entire contents of which are incorporated herein by reference.
- the anion exchange membrane that partitions the intermediate chamber and the anode chamber is poor in durability to chlorine gas and acid alkali generated at the anode.
- the electrode, the ion exchange membrane, and the like are caused by a difference in water pressure between the anode chamber and / or the cathode chamber and the intermediate chamber generated when water and an electrolyte solution are supplied to the electrolytic cell. There is a case where a gap is generated between the two and the electrolytic characteristics fluctuate.
- the problem dealt with by this embodiment is to provide an electrolyzing device or an electrolyzed water generating method for improving durability or electrolysis efficiency.
- the electrolysis device is opposed to the first diaphragm that is divided into an intermediate chamber and an anode chamber through which the electrolyte solution flows, the second diaphragm that is divided into the intermediate chamber and the cathode chamber, and the first diaphragm.
- An electrolytic cell comprising an anode provided in the anode chamber and a cathode provided in the cathode chamber facing the second diaphragm; and supplying water to the anode chamber and the cathode chamber; A water supply unit that intermittently varies a supply and discharge amount of water to at least one of the anode chamber and the cathode chamber; an electrolyte solution supply unit that supplies and discharges an electrolyte solution to and from the intermediate chamber; and the anode chamber and the A control unit that applies a voltage to the anode and the cathode to electrolyze the electrolyte solution in a state where the supply / discharge amount of water is small or is still water in at least one of the cathode chambers.
- FIG. 1 is a schematic configuration diagram of an electrolysis apparatus according to the first embodiment.
- FIG. 2 is a schematic configuration diagram of an electrolysis apparatus according to the second embodiment.
- FIG. 3 is a schematic configuration diagram of an electrolysis apparatus according to the third embodiment.
- FIG. 4 is a schematic configuration diagram of an electrolysis apparatus according to the fourth embodiment.
- FIG. 1 is a diagram schematically showing the overall configuration of the electrolysis apparatus 1 according to the first embodiment.
- the electrolysis apparatus 1 includes a three-chamber type electrolytic cell 10.
- the electrolytic cell 10 includes, for example, a substantially rectangular box-shaped casing.
- the inside of the casing is divided into an intermediate chamber 18a and an anode chamber 18b and a cathode chamber 18c located on both sides of the intermediate chamber 18a by the first diaphragm 17a and the second diaphragm 17b.
- the 1st diaphragm 17a and the 2nd diaphragm 17b are each comprised with the porous film of the same specification.
- An anode 15a is provided in the anode chamber 18b close to the first diaphragm 17a
- a cathode 15b is provided in the cathode chamber 18c close to the second diaphragm 17b.
- the intermediate chamber 18a has a first inflow port 14a into which the electrolyte solution flows and a first outflow port 14b through which the electrolyte solution that has flowed through the intermediate chamber 18a is discharged.
- the anode chamber 18b has a second inlet 12a through which electrolytic water flows and a second outlet 12b through which the electrolytic water that has flowed through the anode chamber 18b is discharged.
- the cathode chamber 18c has a third inlet 16a through which electrolytic water flows and a third outlet 16b through which the electrolytic water that has flowed through the cathode chamber 18c is discharged.
- the capacities of the anode chamber 18b and the cathode chamber 18c are both 500 cc. Generally, when the capacity of the anode chamber 18b and the cathode chamber 18c is 200 cc or more, the cycle of the intermittent operation described below is not shortened, and the control becomes easy.
- the porous membranes constituting the first diaphragm 17a and the second diaphragm 17b basically have no ion selective permeability but are resistant to chlorine gas, such as oxide ceramic, PVDF (polyvinylidenedifluoride) resin, PTFE. (Polytetrafluoroethylene) resin can be selected.
- a porous membrane in order to use a porous membrane as a diaphragm of an electrolytic cell, it must be able to permeate the electrolyte. Since the porous membrane does not have an ion selection system, as a result, selection of a porous membrane having water permeability is indispensable.
- a porous membrane having a water permeability of, for example, 10 ml / min / cm 2 / MPa can be used.
- the relative water pressure with respect to the anode chamber 18b and the cathode chamber 18c of the intermediate chamber 18a is set to 2 kPa or less, thereby generating the anode chamber 18b and the cathode chamber 18c.
- the salt content in alkaline water and acidic water is 300 ppm or less, and can meet the tap water standard.
- a porous membrane having a water permeability in the range of 0.1 to 10 ml / min / cm 2 / MPa and a pore diameter in the range of 2 to 100 nm is used, the relative water pressure is 1 to 10 kPa. Even within this range, salt contamination can be prevented.
- the porous membrane having the above water permeability and pore size for example, it is desirable to use an ultrafiltration membrane.
- the electrolyzer 1 of the present embodiment can perform electrolysis in a state where the saline solution in the intermediate chamber 18a, the anode chamber 18b, and the water in the cathode chamber 18c are still.
- the electrolyzer 1 includes an electrolytic solution supply unit 20 that supplies an electrolytic solution, for example, saturated saline, to the intermediate chamber 18 a of the electrolytic cell 10, and electrolytic water, for example, to the anode chamber 18 b and the cathode chamber 18 c.
- the electrolyte solution supply unit 20 includes a salt water tank (electrolyte solution tank) 70 that generates and stores a saturated saline solution, a supply pipe 20a that guides the saturated saline solution from the salt water tank 70 to the intermediate chamber 18a through the first inflow port 14a, and a supply pipe 20a.
- a liquid feed pump 50 provided therein and a discharge pipe 20b for circulating the saline flowing through the intermediate chamber 18a from the first outlet 14b to the salt water tank 70 again are provided.
- the electrolysis apparatus 1 according to the first embodiment has a specification in which a saline solution as an electrolyte solution is circulated between the intermediate chamber 18 a and the salt water tank 70 by a liquid feed pump 50.
- a solenoid valve 100 and a liquid feed pump 50, which will be described later, provided in the water supply pipe 80a are connected to the control unit 500, and the operation is controlled by the control unit 50.
- the liquid feed pump 50 operates and stops every 5 seconds in conjunction with the electromagnetic valve 100. That is, the liquid feed pump 50 is repeatedly operated and stopped with 10 seconds as one cycle.
- the water pressure in the intermediate chamber 18a when the liquid feed pump 50 is operated is about 5 to 15 kPa, and the water pressure in the intermediate chamber 18a when the liquid feed pump 50 is stopped is 0 kPa or an infinitely small water pressure.
- the salt solution in the intermediate chamber 18a quickly becomes hydrostatic as the liquid feed pump 50 is stopped.
- the water supply pressure of the liquid feed pump 50 and the opening / closing time of the electromagnetic valve 100 may be determined according to the capacity of the electrolytic cell 10. However, when a saturated saline solution is used as the electrolyte solution, the amount of electrolyte consumed is extremely small compared to the amount of flowing water, and therefore the operation of the liquid feeding pump 50 does not necessarily have to coincide with the time when the electromagnetic valve 100 is opened.
- the operation time of the liquid feed pump 50 may be 2 seconds and the stop time may be 8 seconds, or at 2-10 cycles, that is, at the timing when the electromagnetic valve 100 is opened only once every 20-100 seconds.
- the liquid feed pump 50 may be operated by thinning the operation frequency so as to operate.
- the system is switched between water supply and static water by operating and stopping the liquid supply pump 50, but the essence of the embodiment is to control the water pressure by intermittently changing the amount of flowing water. Therefore, the electrolysis apparatus 1 does not necessarily need to be controlled only by operating and stopping the liquid feeding pump 50.
- the water supply amount of the liquid feed pump 50 may be changed using an inverter circuit, and the time for increasing the water supply amount and the time for decreasing the water supply amount may be intermittently performed. That is, in the electrolysis apparatus 1 according to the embodiment, appropriate water pressure control may be switched intermittently.
- the water supply unit 80 includes a water supply source (not shown) for supplying water, a water supply pipe 80a for guiding water from the water supply source to the lower part of the anode chamber 18b and the cathode chamber 18c, and an electromagnetic valve 100 provided in the water supply pipe 80a.
- a pipe 80c and check valves 400b and 400c provided in the first drain pipe 80b and the second drain pipe 80c are provided.
- the water supply pipe 80a branches into two branches from the solenoid valve 100, one end of the branched pipe is connected to the second inlet 12a provided in the anode chamber 18b, and the other end is provided in the cathode chamber 18c.
- the three inflow ports 16a are connected.
- the generated acidic water and alkaline water Due to the presence of the check valves 400b and 400c provided in the first drain pipe 80b and the second drain pipe 80c, the generated acidic water and alkaline water have a higher water pressure in the anode chamber 18b and the cathode chamber 18c than a predetermined value. Although it is discharged in some cases, it does not flow backward from the downstream side to the anode chamber 18b and cathode chamber 18c side. Therefore, it is possible to suppress an increase in the internal pressure of the piping system due to the gas generated during electrolysis and the backflow of the generated acidic water and alkaline water. In addition, the check valves 400b and 400c can prevent the entry of insects and air from the outside.
- the standard flow rate is 1 L / 5 seconds.
- the flow path and the piping are configured so that the water pressure in the anode chamber 18b and the cathode chamber 18c is 20 to 30 kPa.
- the solenoid valve 100 repeats the operation of opening for 5 seconds and closing for 5 seconds in conjunction with the liquid feed pump 50. As a result, while the solenoid valve 100 is open, the water in the anode chamber 18b and the cathode chamber 18c is pushed out by 1 L in 5 seconds, and the water in the anode chamber 18b and the cathode chamber 18c each having a capacity of 500 cc is completely replaced. I am doing so.
- the water pressure in the anode chamber 18b and the cathode chamber 18c is 0 kPa when the solenoid valve 100 is closed, or 20 to 30 kPa when the solenoid valve 100 is open when the solenoid valve 100 is open.
- the water pressure in the intermediate chamber 18a is 0 kPa or an infinitely small water pressure when the liquid feed pump 50 is stopped, and 5 to 15 kPa when the liquid feed pump 50 is operating.
- the solenoid valve 100 is always open at the timing when the liquid feed pump 50 is operating, and the water pressure in the anode chamber 18b and the cathode chamber 18c becomes higher than the water pressure in the intermediate chamber 18a, and the water pressure from the intermediate chamber 18a increases. Salt is prevented from being mixed into the anode chamber 18b and / or the cathode chamber 18c through the porous film.
- the water supplied and discharged to the anode chamber 18b and the cathode chamber 18c by intermittently opening and closing the electromagnetic valve 100 is assumed to repeat water supply and static water intermittently.
- the control of the flowing water pressure may be realized by reducing the amount of water supplied to the anode chamber 18b, the cathode chamber 19c, and the intermediate chamber 18a.
- a water supply pump may be provided in the water supply pipe 80a, the water supply amount of the water supply pump may be controlled by inverter control, and during electrolysis, the water supply amount may be reduced to reduce the water pressure to a predetermined value or less.
- the electrolytic solution may be electrolyzed by applying a voltage to the anode 15a and the cathode 15c in a state where the supply / discharge amount of water to the anode chamber 18b and the cathode chamber 18c is small.
- the liquid feed pump 50, the power source 40, and the electromagnetic valve 100 are controlled by the control unit 500, and the supply and discharge of the liquid, the opening and closing of the valve, and the application of the voltage are appropriately synchronized.
- the water pressure of the water supply source is set to a standard water pressure of 0.2 MPa with a regulator or the like, and when the solenoid valve 100 is opened, for example, the pressure is adjusted so that the water supply amount is 24 L / min.
- the operation / stop of the liquid feed pump 50 and the opening / closing of the solenoid valve 100 are synchronized to supply saturated saline to the intermediate chamber 18a of the electrolytic cell 10, and water is supplied to the anode chamber 18b and the cathode chamber 18c. Supply water.
- the operation time of the liquid feed pump 50 and the opening time of the electromagnetic valve 100 are each 5 seconds. Subsequently, the liquid feed pump 50 is stopped and the solenoid valve 100 is closed simultaneously for 5 seconds.
- the operation stop of the liquid feed pump 50 and the opening and closing of the electromagnetic valve 100 are repeatedly performed with 10 seconds as one cycle while being synchronized.
- the operation stoppage of the liquid feed pump 50 and the opening / closing cycle of the solenoid valve may be adjusted as appropriate in consideration of the capacity of the anode chamber 18b, the cathode chamber 18c and the intermediate chamber 18a and / or the water pressure of the water supply source.
- the cycle of the intermittent operation becomes longer and control becomes easier.
- the burden on the apparatus is reduced and the life of the liquid feed pump is extended.
- the amount of water to be supplied by opening the solenoid valve 100 is about 2000 cc, which is twice the total of the capacity of the anode chamber 18a and the capacity of the cathode chamber 18a. In other words, an extra amount of water about twice the capacity of each room is sent to replace with new water.
- the saline solution and water in the intermediate chamber 18a, the anode chamber 18b, and the cathode chamber 18c become static water, and the water pressure in each chamber is 0 kPa or a sufficiently small water pressure. Become.
- voltage is applied to the anode 15a and the cathode 15b, and electrolysis is performed.
- the control unit 500 synchronizes the stop of the first liquid feeding pump 50, the closing of the electromagnetic valve 100, and the application of voltage to the anode 15a and the cathode 15b.
- the anode chamber 18b and the cathode chamber 18c generate 6 L / min of acidic water and alkaline water, respectively.
- the water supply pressure of the liquid supply pump 50 is approximately 5 to 15 kPa, and the water supply pressure of the feed water source is approximately 20 to 30 kPa. Therefore, even when the porous membranes 17a and 17b having water permeability are used, the water pressure in the anode chamber 18b and the cathode chamber 18c is compared with the water pressure in the intermediate chamber 18a when the saline and water are fed to the electrolytic cell 10. Thus, the salinity does not mix from the intermediate chamber 18a into the anode chamber 18b and / or the cathode chamber 18c.
- the chlorine ions ionized in the saline solution in the intermediate chamber 18a are attracted to the anode 15a, pass through the porous membrane 17a, and flow into the anode chamber 18b. Then, chlorine gas is generated at the anode 15a, and the chlorine gas reacts with water in the anode chamber 18b to generate hypochlorous acid and hydrochloric acid. At the same time, sodium ions and water can pass through the water-permeable porous membrane 17a. However, since the water pressure in each chamber is zero during electrolysis, the passing amount of sodium ions is suppressed to a slight amount below the tap water standard.
- the acidic water (hypochlorous acid and hydrochloric acid) generated in this way flows out from the second outlet 12b of the anode chamber 18b through the first discharge pipe 80b. Thereafter, the processing described above is repeated.
- the above is description of a series of electrolyzed water production
- the electrolysis device 1 not only when each of the saline solution and the water is in a still water state, but also when each of the saline solution and the water is being fed, the anode The water pressure in the chamber 18b and the cathode chamber 18c is higher than the water pressure in the intermediate chamber 18a, and salt is prevented from being mixed into the anode chamber 18b and the cathode chamber 18c from the intermediate chamber 18a.
- the electrolysis apparatus 1 including the three-chamber electrolytic cell uses a highly resistant and water-permeable porous membrane as the first diaphragm and the second diaphragm.
- the water flow in each chamber is hydrostatic during electrolysis to eliminate the difference in water pressure, and when water is supplied, the intermediate chamber is set to a negative pressure from the other chambers to prevent salt from entering the anode and cathode chambers.
- the diaphragm is not easily destroyed by chlorine gas or the like, and stable electrolysis can be performed.
- FIG. 2 is a schematic configuration diagram of the electrolysis apparatus 1 according to the second embodiment.
- an anode auxiliary chamber 90b and a cathode auxiliary chamber 90c having a capacity of 2L are further provided in the first drain pipe 80b and the second drain pipe 80c.
- the other configuration of the electrolysis apparatus 1 is the same as that of the electrolysis apparatus 1 according to the first embodiment.
- the amount of water to be supplied at one time can be increased even if the capacity of the positive electrode chamber 18b and the negative electrode chamber 18c is reduced, and the solenoid valve 100 can be supplied.
- the period of the intermittent operation such as opening and closing of can be increased to, for example, 30 seconds (for example, the electromagnetic valve 100 is opened for 6 seconds and closed for 24 seconds). That is, in the electrolysis apparatus 1 according to the second embodiment, the burden on the apparatus is reduced.
- the opening / closing cycle of the solenoid valve 100 is not limited to 30 seconds, but may be 20 seconds, 40 seconds, 50 seconds, or 60 seconds.
- the ratio of the time for opening and closing the electromagnetic valve 100 is not limited to 1: 4 and can be changed as appropriate.
- the time for opening the solenoid valve 100 can be shortened by increasing the diameters of the water supply pipe 80a, the first drain pipe 80b, and the second drain pipe 80c.
- an auxiliary chamber is provided in the drainage pipe separately from the electrolytic cell 10 so as to communicate with the electrolytic cell 10. For this reason, the combined capacity of the anode chamber 18b (cathode chamber 18c) and the anode auxiliary chamber 90b (cathode auxiliary chamber 90b) is increased, so that excess water during water feeding is reduced and the concentration of hypochlorous acid water is not easily increased. It is configured.
- the electrolysis apparatus 1 according to the second embodiment adopting the above configuration has a long cycle of intermittent operation, so that the burden on the apparatus is reduced and the electrolysis efficiency of the anode chamber 18b is maintained at a high level.
- the electrolysis apparatus 1 including the three-chamber electrolytic cell prevents the salt from entering the anode chamber and the cathode chamber, and the diaphragm is discarded by chlorine gas or the like. Therefore, stable electrolysis can be performed.
- FIG. 3 is a schematic configuration diagram of the electrolysis apparatus 1 according to the third embodiment.
- water-tight ion exchange membranes 13a and 13b are used as the first diaphragm and the second diaphragm of the electrolytic cell 10, and the room in the electrolytic cell 10 is partitioned. Yes.
- the liquid feeding pump 50 is always operated without being intermittently operated. That is, a saturated saline solution is always allowed to flow into the intermediate chamber 18a.
- the other structure of the electrolyzer 1 is the same as that of the electrolyzer 1 which concerns on 1st Embodiment.
- a water pressure of 10 kPa is always applied to the intermediate chamber 18a, while water is intermittently sent to the anode chamber 18b and the cathode chamber 18c by the electromagnetic valve 100 to perform electrolysis. Is performed when the water in the anode chamber 18b and the cathode chamber 18c is in a still water state and the water pressure is 0 kPa. Therefore, during electrolysis, the water pressure in the intermediate chamber 18a is higher than that in the anode chamber 18b and the cathode chamber 18c, and the ion exchange membrane is in close contact with the electrode by water pressure. Therefore, the production efficiency and water quality stability of alkaline water and acidic water are improved.
- an inexpensive pump has a low water supply pressure of about 10 kPa, and the water pressure on the intermediate chamber 18a side is low in a state where water flows into the anode chamber 18b and the cathode chamber 18c.
- the intermediate chamber 18a is electrolyzed in a desirable state with a positive pressure relative to the anode chamber 18b and the cathode chamber 18c. can do.
- the electrolysis apparatus 1 including the three-chamber electrolytic cell can perform stable electrolysis while preventing the salt from being mixed into the anode chamber and the cathode chamber.
- FIG. 4 is a schematic configuration diagram of an electrolysis apparatus 1 according to the fourth embodiment.
- the electromagnetic valve 100 is provided in the water supply pipe 80a connected to the second inlet 12a of the anode chamber 18b, and only the anode chamber 18b is intermittently fed with water.
- the cathode chamber 18c is configured to constantly flow at a predetermined flow rate. In this case, a water pressure difference is generated between the cathode chamber 18c and the intermediate chamber 18a, but no water pressure difference is generated between the anode chamber 18b and the intermediate chamber 18a. Therefore, it is possible to prevent salt from being mixed into the anode chamber 18b.
- the porous membrane 17a resistant to chlorine gas is used as the first diaphragm, stable electrolysis can be performed.
- the second diaphragm that partitions the cathode chamber 18c and the intermediate chamber 18a uses a cation exchange membrane 13b that does not have water permeability and does not contain salt even if there is a difference in water pressure. It was.
- the pH of the saline used for electrolysis tends to fluctuate.
- the salt solution is basically subjected to electrolysis in a still water state, and when the consumption of the salt solution reaches a limit, the salt solution is replaced (for example, the first liquid feeding pump 50 is operated once every 30 minutes). ) It was configured to be discarded. For this reason, a check valve 400 is provided in the supply pipe 20a so that the salt water whose water quality has changed from the intermediate chamber 18a does not reversely diffuse.
- the other configuration of the electrolysis apparatus 1 is the same as that of the electrolysis apparatus 1 according to the first embodiment.
- the electrolysis apparatus 1 including the three-chamber electrolytic cell is separated from the anode chamber 18b and the cathode chamber 18c by salt gas while preventing the salt from entering the anode chamber 18b and the cathode chamber 18c. Is less likely to be destroyed and stable electrolysis can be performed.
- the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
- various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
- constituent elements over different embodiments may be appropriately combined.
- the electrolyte solution may be other than saline and can be selected in a timely manner according to the application.
- the electrolyzed water to be generated is not limited to hypochlorous acid water or sodium hydroxide water, and can be selected in a timely manner according to the application.
- the opening / closing time of the solenoid valve 100 and the time for electrolysis described in the above embodiments can be appropriately changed according to the purpose.
- the concentration of hypochlorous acid to be generated is changed to double
- the value of the voltage applied to the anode 15a may be doubled
- the time for closing the solenoid valve 100 without changing the value of the applied voltage. May be about twice as long.
- the time for opening the solenoid valve 100 can be shortened by increasing the set value of the water supply pressure of the liquid feed pump 50.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
An electrolytic device according to an embodiment comprises: an electrolytic cell (10) including a first diaphragm (17a) separating an intermediate compartment (18a) through which an electrolytic solution flows and an anode compartment (18b), a second diaphragm (17b) separating the intermediate compartment (18a) and a cathode compartment (18c), an anode (15a) arranged in the anode compartment (18b) to face the first diaphragm (17a), and a cathode (15b) arranged in the cathode compartment (18c) to face the second diaphragm (17b); a water supply unit (80) for supplying water to the anode compartment (18b) and the cathode compartment (18c), and intermittently varying the amount of water supply to and water discharge from the anode compartment (18b) and/or the cathode compartment (18c); an electrolytic solution supply unit (20) for supplying and discharging the electrolytic solution to and from the intermediate compartment (18a); and a control unit (500) for electrolyzing the electrolytic solution by applying a voltage to the anode (15a) and the cathode (15b) while the amount of water supply to and water discharge from the anode compartment (18b) and/or the cathode compartment (18c) is reduced or water is static in the anode compartment (18b) and/or the cathode compartment (18c).
Description
ここで述べる実施形態は、電解装置および電解水生成方法に関する。
Embodiment described here is related with the electrolyzer and the electrolyzed water production | generation method.
(関連出願の引用)
本出願は、2014年9月22日に出願した先行する日本国特許出願第2014-192939号を基礎とし、その優先権の利益を求めているとともに、この日本国特許出願の内容全体は引用により本出願に包含される。 (Citation of related application)
This application is based on the preceding Japanese patent application No. 2014-192939 filed on September 22, 2014, and seeks the benefit of its priority, and the entire content of this Japanese patent application is incorporated by reference. Included in this application.
本出願は、2014年9月22日に出願した先行する日本国特許出願第2014-192939号を基礎とし、その優先権の利益を求めているとともに、この日本国特許出願の内容全体は引用により本出願に包含される。 (Citation of related application)
This application is based on the preceding Japanese patent application No. 2014-192939 filed on September 22, 2014, and seeks the benefit of its priority, and the entire content of this Japanese patent application is incorporated by reference. Included in this application.
従来、アルカリイオン水、オゾン水または次亜塩素酸水などを生成する装置として、3室型の電解槽を有する電解水生成装置が用いられている。3室型の電解槽は、陽イオン交換膜および陰イオン交換膜からなる隔膜によって、ケーシング内が陽極室、中間室および陰極室と3室に区切られる。陽極室および陰極室には、陽極および陰極がそれぞれ配置されている。
Conventionally, an electrolyzed water generating apparatus having a three-chamber electrolytic cell has been used as an apparatus for generating alkaline ionized water, ozone water, hypochlorous acid water, or the like. In the three-chamber type electrolytic cell, the inside of the casing is divided into three chambers, an anode chamber, an intermediate chamber, and a cathode chamber, by a diaphragm composed of a cation exchange membrane and an anion exchange membrane. An anode and a cathode are respectively disposed in the anode chamber and the cathode chamber.
このような電解水生成装置では、例えば、中間室に塩水を流し、左右の陰極室および陽極室に水を流して、中間室の塩水を陰極および陽極で電解することにより、陽極室で発生した塩素ガスから次亜塩素酸水を生成するとともに、陰極室で水酸化ナトリウム水を生成する。生成した次亜塩素酸水は殺菌消毒水として、水酸化ナトリウム水は洗浄水として活用される。上述した技術に関連する文献を下記に示し、内容全体を引用によりここに包含する。
In such an electrolyzed water generating device, for example, salt water is flowed in the intermediate chamber, water is flowed in the left and right cathode chambers and the anode chamber, and the salt water in the intermediate chamber is electrolyzed with the cathode and the anode, thereby being generated in the anode chamber. Hypochlorous acid water is generated from chlorine gas, and sodium hydroxide water is generated in the cathode chamber. The produced hypochlorous acid water is used as sterilizing / disinfecting water, and sodium hydroxide water is used as washing water. Documents related to the above-described technology are shown below, the entire contents of which are incorporated herein by reference.
しかしながら、中間室と陽極室とを区画する陰イオン交換膜は、陽極で発生する塩素ガスや酸アルカリへの耐久性に乏しい。また、上記のような3室型の電解槽では、電解槽に水および電解質液を送水する際に生じる陽極室および/または陰極室と中間室との水圧差等により、電極とイオン交換膜との間に隙間が生じ、電解特性が変動する場合がある。
However, the anion exchange membrane that partitions the intermediate chamber and the anode chamber is poor in durability to chlorine gas and acid alkali generated at the anode. In the three-chamber type electrolytic cell as described above, the electrode, the ion exchange membrane, and the like are caused by a difference in water pressure between the anode chamber and / or the cathode chamber and the intermediate chamber generated when water and an electrolyte solution are supplied to the electrolytic cell. There is a case where a gap is generated between the two and the electrolytic characteristics fluctuate.
本実施形態が取り扱う課題は、耐久性又は電解効率の向上を図る電解装置又は電解水生成方法を提供することである。
The problem dealt with by this embodiment is to provide an electrolyzing device or an electrolyzed water generating method for improving durability or electrolysis efficiency.
実施形態によれば、電解装置は、電解質液を流す中間室と陽極室とに区画する第1隔膜と、前記中間室と陰極室とに区画する第2隔膜と、前記第1隔膜に対向して前記陽極室に設けられた陽極と、前記第2隔膜に対向して前記陰極室に設けられた陰極と、を具備する電解槽と、前記陽極室および前記陰極室に水を供給するとともに、前記陽極室および前記陰極室の少なくとも一方への水の供給排出量を間欠的に変動させる水供給部と、前記中間室へ電解質液を供給および排出する電解質液供給部と、前記陽極室および前記陰極室の少なくとも一方において前記水の供給排出量が小さくなっているか又は静水している状態で、前記陽極および前記陰極に電圧を印加して前記電解質液を電解する制御部と、を備える。
According to the embodiment, the electrolysis device is opposed to the first diaphragm that is divided into an intermediate chamber and an anode chamber through which the electrolyte solution flows, the second diaphragm that is divided into the intermediate chamber and the cathode chamber, and the first diaphragm. An electrolytic cell comprising an anode provided in the anode chamber and a cathode provided in the cathode chamber facing the second diaphragm; and supplying water to the anode chamber and the cathode chamber; A water supply unit that intermittently varies a supply and discharge amount of water to at least one of the anode chamber and the cathode chamber; an electrolyte solution supply unit that supplies and discharges an electrolyte solution to and from the intermediate chamber; and the anode chamber and the A control unit that applies a voltage to the anode and the cathode to electrolyze the electrolyte solution in a state where the supply / discharge amount of water is small or is still water in at least one of the cathode chambers.
以下に、図面を参照しながら、種々の実施形態について説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。なお、本願において、「静水」は、必ずしも流体が完全に静的な状態であることを要求しない。静水とは、透過することを望まないイオン物質が、イオン選択制の無い多孔質膜を、所定の時間内に、十分にわずかにしか移動しない程度に、流体の運動が穏やかであることを意味してもよく、或いは、流体の圧力が十分に小さいことを意味してもよい。
Hereinafter, various embodiments will be described with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to a common structure through embodiment, and the overlapping description is abbreviate | omitted. In addition, each drawing is a schematic diagram for promoting the embodiment and its understanding, and its shape, dimensions, ratio, etc. are different from the actual device, but these are considered in consideration of the following description and known techniques. The design can be changed as appropriate. In the present application, “static water” does not necessarily require that the fluid be in a completely static state. Hydrostatic means that the kinetics of the fluid is so gentle that ionic substances that do not want to permeate move through the porous membrane that does not have ion selectivity only slightly enough within a given time. Or it may mean that the pressure of the fluid is sufficiently small.
(第1の実施形態)
図1は、第1の実施形態に係る電解装置1全体の構成を概略的に示す図である。図1に示すように、電解装置1は、3室型の電解槽10を備えている。この電解槽10は、例えば、ほぼ矩形箱状のケーシングを備える。ケーシング内は、第1隔膜17aおよび第2隔膜17bにより、中間室18aと、中間室18aの両側に位置する陽極室18bおよび陰極室18cと、に仕切られている。本実施形態において、第1隔膜17aおよび第2隔膜17bは、同じ仕様の多孔質膜でそれぞれ構成している。陽極室18b内には第1隔膜17aに近接して陽極15aが設けられ、陰極室18c内には第2隔膜17bに近接して陰極15bが設けられている。 (First embodiment)
FIG. 1 is a diagram schematically showing the overall configuration of the electrolysis apparatus 1 according to the first embodiment. As shown in FIG. 1, the electrolysis apparatus 1 includes a three-chamber typeelectrolytic cell 10. The electrolytic cell 10 includes, for example, a substantially rectangular box-shaped casing. The inside of the casing is divided into an intermediate chamber 18a and an anode chamber 18b and a cathode chamber 18c located on both sides of the intermediate chamber 18a by the first diaphragm 17a and the second diaphragm 17b. In this embodiment, the 1st diaphragm 17a and the 2nd diaphragm 17b are each comprised with the porous film of the same specification. An anode 15a is provided in the anode chamber 18b close to the first diaphragm 17a, and a cathode 15b is provided in the cathode chamber 18c close to the second diaphragm 17b.
図1は、第1の実施形態に係る電解装置1全体の構成を概略的に示す図である。図1に示すように、電解装置1は、3室型の電解槽10を備えている。この電解槽10は、例えば、ほぼ矩形箱状のケーシングを備える。ケーシング内は、第1隔膜17aおよび第2隔膜17bにより、中間室18aと、中間室18aの両側に位置する陽極室18bおよび陰極室18cと、に仕切られている。本実施形態において、第1隔膜17aおよび第2隔膜17bは、同じ仕様の多孔質膜でそれぞれ構成している。陽極室18b内には第1隔膜17aに近接して陽極15aが設けられ、陰極室18c内には第2隔膜17bに近接して陰極15bが設けられている。 (First embodiment)
FIG. 1 is a diagram schematically showing the overall configuration of the electrolysis apparatus 1 according to the first embodiment. As shown in FIG. 1, the electrolysis apparatus 1 includes a three-chamber type
中間室18aは、電解質液が流入する第1流入口14aおよび中間室18a内を流れた電解質液を排出する第1流出口14bを有する。陽極室18bは、電解水が流入する第2流入口12aおよび陽極室18b内を流れた電解水を排出する第2流出口12bを有する。陰極室18cは、電解水が流入する第3流入口16aおよび陰極室18c内を流れた電解水を排出する第3流出口16bを有する。第1の実施形態では、陽極室18bおよび陰極室18cの容量は、双方とも500ccである。一般的に、陽極室18bおよび陰極室18cの容量が、200cc以上であると、下で説明する間欠動作のサイクルが短くならず、制御が容易になる。
The intermediate chamber 18a has a first inflow port 14a into which the electrolyte solution flows and a first outflow port 14b through which the electrolyte solution that has flowed through the intermediate chamber 18a is discharged. The anode chamber 18b has a second inlet 12a through which electrolytic water flows and a second outlet 12b through which the electrolytic water that has flowed through the anode chamber 18b is discharged. The cathode chamber 18c has a third inlet 16a through which electrolytic water flows and a third outlet 16b through which the electrolytic water that has flowed through the cathode chamber 18c is discharged. In the first embodiment, the capacities of the anode chamber 18b and the cathode chamber 18c are both 500 cc. Generally, when the capacity of the anode chamber 18b and the cathode chamber 18c is 200 cc or more, the cycle of the intermittent operation described below is not shortened, and the control becomes easy.
第1隔膜17aおよび第2隔膜17bを構成する多孔質膜は、基本的に、イオン選択透過性は無いが、塩素ガスに対する耐性のある材料、例えば、酸化物セラミック、PVDF(polyvinylidenedifluoride)樹脂、PTFE(polytetrafluoroethylene)樹脂を選ぶことができる。ただし、多孔質膜を電解槽の隔膜として使うには、電解質を透過できなければならない。多孔質膜は、イオン選択制が無いため、結果的に、透水性のある多孔質膜の選択が不可欠となる。多孔質膜は、透水性が、例えば、10ml/分/cm2/MPaのものを使用することができる。
The porous membranes constituting the first diaphragm 17a and the second diaphragm 17b basically have no ion selective permeability but are resistant to chlorine gas, such as oxide ceramic, PVDF (polyvinylidenedifluoride) resin, PTFE. (Polytetrafluoroethylene) resin can be selected. However, in order to use a porous membrane as a diaphragm of an electrolytic cell, it must be able to permeate the electrolyte. Since the porous membrane does not have an ion selection system, as a result, selection of a porous membrane having water permeability is indispensable. A porous membrane having a water permeability of, for example, 10 ml / min / cm 2 / MPa can be used.
一方、イオン選択制は無いが透水性はある多孔質膜を使用した場合、隔膜の両側の水圧差により、余分な物質、たとえば、陽極室18bにとって不要な陽イオンも透過することになる。そのため、中間室18aに食塩水を供給した場合、水圧差によっては不要な塩分が陽極室18bあるいは陰極室18cに混入する懸念があった。
On the other hand, when a porous membrane having no water permeability but having water permeability is used, excess substances, for example, cations unnecessary for the anode chamber 18b are also transmitted due to a difference in water pressure between both sides of the diaphragm. Therefore, when saline is supplied to the intermediate chamber 18a, there is a concern that unnecessary salt content may be mixed into the anode chamber 18b or the cathode chamber 18c depending on the water pressure difference.
上記の透水性を有した多孔質膜を使用すれば、中間室18aの陽極室18bおよび陰極室18cに対する相対的な水圧を2kPa以下とすることによって、陽極室18bおよび陰極室18cにて生成するアルカリ性水および酸性水への塩分の混入が300ppm以下となり、水道水基準を満たすことができる。更に、透水性が0.1~10ml/分/cm2/MPaの範囲内であり、孔径が2~100nmの範囲内である多孔質膜を使用すれば、上記相対的な水圧が1~10kPaの範囲内であっても、塩分混入を防止することができる。上記の透水性及び孔径を有する多孔質膜としては、例えば、限外ろ過膜を使用することが望ましい。
If the porous membrane having the above water permeability is used, the relative water pressure with respect to the anode chamber 18b and the cathode chamber 18c of the intermediate chamber 18a is set to 2 kPa or less, thereby generating the anode chamber 18b and the cathode chamber 18c. The salt content in alkaline water and acidic water is 300 ppm or less, and can meet the tap water standard. Furthermore, if a porous membrane having a water permeability in the range of 0.1 to 10 ml / min / cm 2 / MPa and a pore diameter in the range of 2 to 100 nm is used, the relative water pressure is 1 to 10 kPa. Even within this range, salt contamination can be prevented. As the porous membrane having the above water permeability and pore size, for example, it is desirable to use an ultrafiltration membrane.
本実施形態の電解装置1は、下に説明するように、中間室18a内の食塩水および陽極室18b並びに陰極室18c内の水を静水させた状態で電解することが可能である。換言すると、上記相対的な水圧が0kPaの状態、または、十分に小さい圧力で電解することが可能であり、その場合、透水性が0.1~100ml/分/cm2/MPaの範囲内であり、孔径が2~1000nmの範囲内である多孔質膜を使用しても、塩分混入を防止することができる。また、透水性が100mL/分/cm2/MPaを超える多孔質膜では、水圧差を無くしても拡散により不要な塩分が混入してしまう。透水性が0.1mL/分/cm2/MPa以下の多孔質膜では電解に必要な電解質が十分透過できず所望の電解ができなくなる。
As will be described below, the electrolyzer 1 of the present embodiment can perform electrolysis in a state where the saline solution in the intermediate chamber 18a, the anode chamber 18b, and the water in the cathode chamber 18c are still. In other words, it is possible to perform electrolysis at a relative water pressure of 0 kPa or at a sufficiently small pressure, in which case the water permeability is within the range of 0.1 to 100 ml / min / cm 2 / MPa. Even if a porous membrane having a pore diameter in the range of 2 to 1000 nm is used, salt contamination can be prevented. Moreover, in the porous membrane whose water permeability exceeds 100 mL / min / cm 2 / MPa, unnecessary salt content is mixed by diffusion even if the water pressure difference is eliminated. In a porous membrane having a water permeability of 0.1 mL / min / cm 2 / MPa or less, an electrolyte necessary for electrolysis cannot be sufficiently permeated and desired electrolysis cannot be performed.
電解装置1は、電解槽10に加えて、電解槽10の中間室18aに電解質液、例えば、飽和食塩水を供給する電解質液供給部20と、陽極室18bおよび陰極室18cに電解水、例えば、水を供給する水供給部80と、陽極15aおよび陰極15bに正電圧および負電圧をそれぞれ印加する電源40と、を備えている。
In addition to the electrolytic cell 10, the electrolyzer 1 includes an electrolytic solution supply unit 20 that supplies an electrolytic solution, for example, saturated saline, to the intermediate chamber 18 a of the electrolytic cell 10, and electrolytic water, for example, to the anode chamber 18 b and the cathode chamber 18 c. A water supply unit 80 for supplying water, and a power source 40 for applying a positive voltage and a negative voltage to the anode 15a and the cathode 15b, respectively.
電解質液供給部20は、飽和食塩水を生成および収容する塩水タンク(電解質液タンク)70、塩水タンク70から第1流入口14aを通して中間室18aに飽和食塩水を導く供給配管20a、供給配管20a中に設けられた送液ポンプ50、および、中間室18aを流れた食塩水を第1流出口14bから再び塩水タンク70に循環させる排出配管20bを備えている。図1に示した通り、第1の実施形態に係る電解装置1では、電解質液である食塩水が送液ポンプ50によって、中間室18aと塩水タンク70との間を循環する仕様である。
The electrolyte solution supply unit 20 includes a salt water tank (electrolyte solution tank) 70 that generates and stores a saturated saline solution, a supply pipe 20a that guides the saturated saline solution from the salt water tank 70 to the intermediate chamber 18a through the first inflow port 14a, and a supply pipe 20a. A liquid feed pump 50 provided therein and a discharge pipe 20b for circulating the saline flowing through the intermediate chamber 18a from the first outlet 14b to the salt water tank 70 again are provided. As shown in FIG. 1, the electrolysis apparatus 1 according to the first embodiment has a specification in which a saline solution as an electrolyte solution is circulated between the intermediate chamber 18 a and the salt water tank 70 by a liquid feed pump 50.
給水配管80aに設けられた後述の電磁弁100および送液ポンプ50は、制御部500に接続され、この制御部50によって動作が制御される。送液ポンプ50は、電磁弁100と連動し、稼働および停止を、それぞれ5秒ごとに行う。即ち、送液ポンプ50は、10秒を1サイクルとして稼働および停止を繰り返す。送液ポンプ50を稼働した時の中間室18aの水圧は、5~15kPa程度であり、送液ポンプ50を停止した時の中間室18aの水圧は0kPaまたは限りなく小さい水圧である。なお、中間室18a内の食塩水は、送液ポンプ50の停止とともに、速やかに静水状態となる。
A solenoid valve 100 and a liquid feed pump 50, which will be described later, provided in the water supply pipe 80a are connected to the control unit 500, and the operation is controlled by the control unit 50. The liquid feed pump 50 operates and stops every 5 seconds in conjunction with the electromagnetic valve 100. That is, the liquid feed pump 50 is repeatedly operated and stopped with 10 seconds as one cycle. The water pressure in the intermediate chamber 18a when the liquid feed pump 50 is operated is about 5 to 15 kPa, and the water pressure in the intermediate chamber 18a when the liquid feed pump 50 is stopped is 0 kPa or an infinitely small water pressure. In addition, the salt solution in the intermediate chamber 18a quickly becomes hydrostatic as the liquid feed pump 50 is stopped.
送液ポンプ50の送水圧力および電磁弁100の開閉時間は、電解槽10の容量に応じて決定してもよい。しかし、電解質液に飽和食塩水を用いた場合、消費される電解質は流水量に比べて極めて微量であるため、送液ポンプ50の稼働は必ずしも電磁弁100の開く時間に一致させる必要はない。たとえば、送液ポンプ50の稼働時間を2秒とし停止時間を8秒としてもよいし、2~10サイクル、すなわち20~100秒間隔に1度だけ電磁弁100が開いたタイミングで送液ポンプ50を稼働するように、稼働頻度を間引いて送液ポンプ50を稼働してもよい。
The water supply pressure of the liquid feed pump 50 and the opening / closing time of the electromagnetic valve 100 may be determined according to the capacity of the electrolytic cell 10. However, when a saturated saline solution is used as the electrolyte solution, the amount of electrolyte consumed is extremely small compared to the amount of flowing water, and therefore the operation of the liquid feeding pump 50 does not necessarily have to coincide with the time when the electromagnetic valve 100 is opened. For example, the operation time of the liquid feed pump 50 may be 2 seconds and the stop time may be 8 seconds, or at 2-10 cycles, that is, at the timing when the electromagnetic valve 100 is opened only once every 20-100 seconds. The liquid feed pump 50 may be operated by thinning the operation frequency so as to operate.
本実施形態では送液ポンプ50の稼働と停止により送水と静水を切り替える方式としているが、実施形態の本質は流水量を間欠的に変えることで水圧を制御することである。従って、電解装置1は、必ずしも送液ポンプ50の稼働および停止のみで制御しなくてもよい。例えば、たとえば、インバータ回路を用いて送液ポンプ50の送水量を変動させ、送水量を多くする時間と送水量を少なくする時間とを間欠的に行うようにしてもよい。すなわち、実施形態に係る電解装置1は、適切な水圧制御が間欠的に切り替えられればよい。
In this embodiment, the system is switched between water supply and static water by operating and stopping the liquid supply pump 50, but the essence of the embodiment is to control the water pressure by intermittently changing the amount of flowing water. Therefore, the electrolysis apparatus 1 does not necessarily need to be controlled only by operating and stopping the liquid feeding pump 50. For example, the water supply amount of the liquid feed pump 50 may be changed using an inverter circuit, and the time for increasing the water supply amount and the time for decreasing the water supply amount may be intermittently performed. That is, in the electrolysis apparatus 1 according to the embodiment, appropriate water pressure control may be switched intermittently.
水供給部80は、水を供給する図示しない給水源と、給水源から陽極室18bおよび陰極室18cの下部に水を導く給水配管80aと、給水配管80a中に設けられた電磁弁100と、陽極室18bを流れた水を陽極室18bの第2流出口12bから排出する第1排水配管80bと、陰極室18cを流れた水を陰極室18cの第3流出口16bから排出する第2排水配管80cと、第1排水配管80bおよび第2排水配管80c中に設けられた逆止弁400bおよび400cと、を備えている。
The water supply unit 80 includes a water supply source (not shown) for supplying water, a water supply pipe 80a for guiding water from the water supply source to the lower part of the anode chamber 18b and the cathode chamber 18c, and an electromagnetic valve 100 provided in the water supply pipe 80a. A first drain pipe 80b for discharging water flowing through the anode chamber 18b from the second outlet 12b of the anode chamber 18b, and a second drain for discharging water flowing through the cathode chamber 18c from the third outlet 16b of the cathode chamber 18c. A pipe 80c and check valves 400b and 400c provided in the first drain pipe 80b and the second drain pipe 80c are provided.
給水配管80aは、電磁弁100より先が2枝に分岐し、分岐した配管の一端は陽極室18bに設けられた第2流入口12aに接続され、もう一端は陰極室18cに設けられた第3流入口16aに接続されている。
The water supply pipe 80a branches into two branches from the solenoid valve 100, one end of the branched pipe is connected to the second inlet 12a provided in the anode chamber 18b, and the other end is provided in the cathode chamber 18c. The three inflow ports 16a are connected.
第1排水配管80bおよび第2排水配管80cに設けられた逆止弁400b、400cの存在により、生成した酸性水およびアルカリ性水は、陽極室18bおよび陰極室18cの水圧が所定の値よりも高い場合に排出されるが、下流側から陽極室18bおよび陰極室18c側には逆流しない。そのため、電解時に発生するガスによる配管系統の内圧上昇、および生成した酸性水ならびにアルカリ性水の逆流を抑制できる。また、逆止弁400bおよび400cにより、外部からの虫や空気の混入も防げる。
Due to the presence of the check valves 400b and 400c provided in the first drain pipe 80b and the second drain pipe 80c, the generated acidic water and alkaline water have a higher water pressure in the anode chamber 18b and the cathode chamber 18c than a predetermined value. Although it is discharged in some cases, it does not flow backward from the downstream side to the anode chamber 18b and cathode chamber 18c side. Therefore, it is possible to suppress an increase in the internal pressure of the piping system due to the gas generated during electrolysis and the backflow of the generated acidic water and alkaline water. In addition, the check valves 400b and 400c can prevent the entry of insects and air from the outside.
給水配管80a、第1排水配管80bおよび第2排水配管80cは、供給源の水圧が、レギュレータなどによって標準水圧である0.2MPaに調整してある場合、標準流量が1L/5秒となるように設定されている。この際、陽極室18bおよび陰極室18cの水圧が20~30kPaとなるように流路および配管が構成されている。
In the water supply pipe 80a, the first drain pipe 80b, and the second drain pipe 80c, when the water pressure of the supply source is adjusted to 0.2 MPa, which is the standard water pressure, by a regulator or the like, the standard flow rate is 1 L / 5 seconds. Is set to At this time, the flow path and the piping are configured so that the water pressure in the anode chamber 18b and the cathode chamber 18c is 20 to 30 kPa.
また、電磁弁100は送液ポンプ50と連動して5秒開いては5秒閉じる動作を繰り返えす。その結果、電磁弁100が開いている間は陽極室18bおよび陰極室18c内の水が5秒間で1L押出され、各500ccの容量である陽極室18bおよび陰極室18c内の水が完全に入れ替わるようにしている。
Also, the solenoid valve 100 repeats the operation of opening for 5 seconds and closing for 5 seconds in conjunction with the liquid feed pump 50. As a result, while the solenoid valve 100 is open, the water in the anode chamber 18b and the cathode chamber 18c is pushed out by 1 L in 5 seconds, and the water in the anode chamber 18b and the cathode chamber 18c each having a capacity of 500 cc is completely replaced. I am doing so.
従って、陽極室18bおよび陰極室18cの水圧は、電磁弁100が閉じている場合、0kPaであるか、または、限りなく小さい水圧であり、電磁弁100が開いている場合、20~30kPaとなる。一方、中間室18aの水圧は、送液ポンプ50が停止していれば、0kPaまたは限りなく小さい水圧であり、送液ポンプ50が稼働していれば、5~15kPaである。このため、送液ポンプ50が稼働しているタイミングでは必ず電磁弁100が開いており、陽極室18bおよび陰極室18cの水圧が、中間室18aの水圧と比較して高くなり、中間室18aから陽極室18bおよび/または陰極室18cへ多孔質膜を介して塩分が混入することがないようにしている。
Accordingly, the water pressure in the anode chamber 18b and the cathode chamber 18c is 0 kPa when the solenoid valve 100 is closed, or 20 to 30 kPa when the solenoid valve 100 is open when the solenoid valve 100 is open. . On the other hand, the water pressure in the intermediate chamber 18a is 0 kPa or an infinitely small water pressure when the liquid feed pump 50 is stopped, and 5 to 15 kPa when the liquid feed pump 50 is operating. For this reason, the solenoid valve 100 is always open at the timing when the liquid feed pump 50 is operating, and the water pressure in the anode chamber 18b and the cathode chamber 18c becomes higher than the water pressure in the intermediate chamber 18a, and the water pressure from the intermediate chamber 18a increases. Salt is prevented from being mixed into the anode chamber 18b and / or the cathode chamber 18c through the porous film.
なお、上の説明では電磁弁100の開閉により、陽極室18bおよび陰極室18cに供給排出する水は、間欠的に、送水と静水とを繰り返すとした。しかしながら、本実施形態の電解装置は流水圧力を間欠的に制御することがより重要である。流水圧力の制御は、陽極室18b、陰極室19cおよび中間室18aへの供給水量を少なくすることによって実現してもよい。例えば、給水配管80aに送水ポンプを設け、送水ポンプの送水量をインバータ制御により制御し、電解時は送水量を小さくして水圧を所定値以下にしてもよい。換言すると、陽極室18bおよび陰極室18cへの水の供給排出量が小さくなっている状態で、陽極15aおよび陰極15cに電圧を印加して電解質液を電解してもよい。
In the above description, the water supplied and discharged to the anode chamber 18b and the cathode chamber 18c by intermittently opening and closing the electromagnetic valve 100 is assumed to repeat water supply and static water intermittently. However, it is more important for the electrolytic apparatus of this embodiment to intermittently control the flowing water pressure. The control of the flowing water pressure may be realized by reducing the amount of water supplied to the anode chamber 18b, the cathode chamber 19c, and the intermediate chamber 18a. For example, a water supply pump may be provided in the water supply pipe 80a, the water supply amount of the water supply pump may be controlled by inverter control, and during electrolysis, the water supply amount may be reduced to reduce the water pressure to a predetermined value or less. In other words, the electrolytic solution may be electrolyzed by applying a voltage to the anode 15a and the cathode 15c in a state where the supply / discharge amount of water to the anode chamber 18b and the cathode chamber 18c is small.
以下、上記のように構成された電解装置1により、実際に食塩水を電解して酸性水(次亜塩素酸および塩酸)とアルカリ性水(水酸化ナトリウム)を生成する動作について説明する。なお、第1の実施形態において、送液ポンプ50と、電源40と、電磁弁100とは、制御部500によって制御されており、液の給水排出、弁の開閉、電圧の印加は適切に同期されているとする。
Hereinafter, an operation of actually electrolyzing a saline solution to generate acidic water (hypochlorous acid and hydrochloric acid) and alkaline water (sodium hydroxide) by the electrolysis apparatus 1 configured as described above will be described. In the first embodiment, the liquid feed pump 50, the power source 40, and the electromagnetic valve 100 are controlled by the control unit 500, and the supply and discharge of the liquid, the opening and closing of the valve, and the application of the voltage are appropriately synchronized. Suppose that
先ず、給水源の水圧をレギュレータ等によって標準水圧の0.2MPaとなるように設定し、電磁弁100を開いたときに、例えば、送水量が24L/分となるように圧力調整しておく。続いて、送液ポンプ50の稼働/停止と電磁弁100の開/閉とを同期させ、電解槽10の中間室18aに飽和食塩水を供給するとともに、陽極室18bおよび陰極室18cに水を給水する。送液ポンプ50の稼働時間と電磁弁100の開口時間とは、それぞれ5秒間とする。続いて、送液ポンプ50の停止と電磁弁100の閉塞とを同時に5秒間行う。即ち、送液ポンプ50の稼働停止および電磁弁100の開閉を、それぞれ、同期させながら10秒間を1サイクルとして繰り返し実施する。送液ポンプ50の稼働停止および電磁弁の開閉サイクルは、陽極室18b、陰極室18cおよび中間室18aの容量および/又は給水源の水圧などとの兼ね合いで適時調整してよい。
First, the water pressure of the water supply source is set to a standard water pressure of 0.2 MPa with a regulator or the like, and when the solenoid valve 100 is opened, for example, the pressure is adjusted so that the water supply amount is 24 L / min. Subsequently, the operation / stop of the liquid feed pump 50 and the opening / closing of the solenoid valve 100 are synchronized to supply saturated saline to the intermediate chamber 18a of the electrolytic cell 10, and water is supplied to the anode chamber 18b and the cathode chamber 18c. Supply water. The operation time of the liquid feed pump 50 and the opening time of the electromagnetic valve 100 are each 5 seconds. Subsequently, the liquid feed pump 50 is stopped and the solenoid valve 100 is closed simultaneously for 5 seconds. That is, the operation stop of the liquid feed pump 50 and the opening and closing of the electromagnetic valve 100 are repeatedly performed with 10 seconds as one cycle while being synchronized. The operation stoppage of the liquid feed pump 50 and the opening / closing cycle of the solenoid valve may be adjusted as appropriate in consideration of the capacity of the anode chamber 18b, the cathode chamber 18c and the intermediate chamber 18a and / or the water pressure of the water supply source.
一般的に、陽極室18bおよび陰極室18cの容量が、200cc以上であると、上記間欠動作のサイクルが長くなり、制御が容易になる。また、間欠動作のサイクルが長いと、装置負担が軽減し、送液ポンプの寿命が延びる。なお、電磁弁100を開いて送水する水の量は、陽極室18aの容量と陰極室18aの容量との合計の2倍である2000cc程度とする。換言すると、各室の容量の2倍程度の量の水を余分に送水して新しい水と入れ替える。
Generally, when the capacity of the anode chamber 18b and the cathode chamber 18c is 200 cc or more, the cycle of the intermittent operation becomes longer and control becomes easier. In addition, if the cycle of intermittent operation is long, the burden on the apparatus is reduced and the life of the liquid feed pump is extended. The amount of water to be supplied by opening the solenoid valve 100 is about 2000 cc, which is twice the total of the capacity of the anode chamber 18a and the capacity of the cathode chamber 18a. In other words, an extra amount of water about twice the capacity of each room is sent to replace with new water.
送液ポンプ50が停止し、電磁弁100が閉じている間、中間室18aおよび陽極室18b並びに陰極室18c内の食塩水および水は静水となり、各室の水圧は0kPaまたは十分に小さい水圧となる。この間、陽極15aおよび陰極15bには、電圧が印加され、電解が行われる。第1送液ポンプ50の停止と電磁弁100を閉塞することと陽極15aおよび陰極15bに電圧が印加されることとは、制御部500によって同期される。上記の設定では、平均すると陽極室18bおよび陰極室18cは、それぞれ、6L/分の酸性水およびアルカリ性水を生成する。
While the liquid feed pump 50 is stopped and the solenoid valve 100 is closed, the saline solution and water in the intermediate chamber 18a, the anode chamber 18b, and the cathode chamber 18c become static water, and the water pressure in each chamber is 0 kPa or a sufficiently small water pressure. Become. During this time, voltage is applied to the anode 15a and the cathode 15b, and electrolysis is performed. The control unit 500 synchronizes the stop of the first liquid feeding pump 50, the closing of the electromagnetic valve 100, and the application of voltage to the anode 15a and the cathode 15b. In the above setting, on average, the anode chamber 18b and the cathode chamber 18c generate 6 L / min of acidic water and alkaline water, respectively.
上述したとおり、送液ポンプ50の送水圧は、およそ5~15kPaであり、給水原の送水圧は、およそ20~30kPaである。そのため、透水性のある多孔質膜17a、17bを用いても食塩水および水を電解槽10に送水している時は、陽極室18bおよび陰極室18cの水圧が、中間室18aの水圧と比較して高くなり、中間室18aから陽極室18bおよび/または陰極室18cへ塩分が混入することがない。また、食塩水および水が静水状態であるときも、各室の水圧差が無いため中間室18aから陽極室18bおよび/または陰極室18cへ塩分が混入しない。
As described above, the water supply pressure of the liquid supply pump 50 is approximately 5 to 15 kPa, and the water supply pressure of the feed water source is approximately 20 to 30 kPa. Therefore, even when the porous membranes 17a and 17b having water permeability are used, the water pressure in the anode chamber 18b and the cathode chamber 18c is compared with the water pressure in the intermediate chamber 18a when the saline and water are fed to the electrolytic cell 10. Thus, the salinity does not mix from the intermediate chamber 18a into the anode chamber 18b and / or the cathode chamber 18c. Further, even when the saline solution and the water are in a still water state, there is no difference in water pressure between the chambers, so that no salt is mixed from the intermediate chamber 18a into the anode chamber 18b and / or the cathode chamber 18c.
陽極15aおよび陰極15bに電圧が印加され、電解が行われている間、中間室18aへ流入した食塩水中において電離しているナトリウムイオンは、陰極15bに引き寄せられ、第2隔膜17bを通過して、陰極室18cへ流入する。そして、陰極室18cにおいて、水が分解して水素ガスを生じ、水酸化ナトリウム水溶液を生成する。同時に透水性のある第2隔膜17bを塩素イオンや水も通過できるが、電解時は各室の水圧がゼロであるため、塩素イオンの通過量は水道水基準以下のわずかな量に抑制される。このようにして生成された水酸化ナトリウム水溶液および水素ガスは、陰極室18cの第3流出口16bから第2排出配管80cを通って排出される。
While a voltage is applied to the anode 15a and the cathode 15b and electrolysis is performed, sodium ions ionized in the saline flowing into the intermediate chamber 18a are attracted to the cathode 15b and pass through the second diaphragm 17b. , Flows into the cathode chamber 18c. And in the cathode chamber 18c, water decomposes | disassembles and produces | generates hydrogen gas and produces | generates sodium hydroxide aqueous solution. At the same time, chlorine ions and water can pass through the permeable second diaphragm 17b. However, since the water pressure in each chamber is zero during electrolysis, the amount of chlorine ions passing is suppressed to a slight amount below the tap water standard. . The aqueous sodium hydroxide solution and hydrogen gas thus generated are discharged from the third outlet 16b of the cathode chamber 18c through the second discharge pipe 80c.
また、中間室18a内の食塩水中で電離している塩素イオンは、陽極15aに引き寄せられ、多孔質膜17aを通過して、陽極室18bへ流入する。そして、陽極15aにて塩素ガスが発生し、塩素ガスは陽極室18b内で水と反応して次亜塩素酸と塩酸を生じる。同時に透水性のある多孔質膜17aをナトリウムイオンや水も通過できるが、電解時は各室の水圧がゼロであるためナトリウムイオンの通過量は水道水基準以下のわずかな量に抑制される。このようにして生成された酸性水(次亜塩素酸および塩酸)は、陽極室18bの第2流出口12bから第1排出配管80bを通って流出する。
以後、上で述べた処理を繰り返す。以上が第1の実施形態の電解装置1を使用した場合の、一連の電解水生成動作の説明である。 Further, the chlorine ions ionized in the saline solution in theintermediate chamber 18a are attracted to the anode 15a, pass through the porous membrane 17a, and flow into the anode chamber 18b. Then, chlorine gas is generated at the anode 15a, and the chlorine gas reacts with water in the anode chamber 18b to generate hypochlorous acid and hydrochloric acid. At the same time, sodium ions and water can pass through the water-permeable porous membrane 17a. However, since the water pressure in each chamber is zero during electrolysis, the passing amount of sodium ions is suppressed to a slight amount below the tap water standard. The acidic water (hypochlorous acid and hydrochloric acid) generated in this way flows out from the second outlet 12b of the anode chamber 18b through the first discharge pipe 80b.
Thereafter, the processing described above is repeated. The above is description of a series of electrolyzed water production | generation operation | movement at the time of using the electrolyzer 1 of 1st Embodiment.
以後、上で述べた処理を繰り返す。以上が第1の実施形態の電解装置1を使用した場合の、一連の電解水生成動作の説明である。 Further, the chlorine ions ionized in the saline solution in the
Thereafter, the processing described above is repeated. The above is description of a series of electrolyzed water production | generation operation | movement at the time of using the electrolyzer 1 of 1st Embodiment.
上記のとおり、第1の実施形態に係る電解装置1では、食塩水および水のそれぞれが静水状態であるときのみならず、食塩水および水のそれぞれが送水されている時であっても、陽極室18bおよび陰極室18cの水圧が、中間室18aの水圧と比較して高くなり、中間室18aから陽極室18bおよび陰極室18cへ塩分が混入することが防止される。
As described above, in the electrolysis device 1 according to the first embodiment, not only when each of the saline solution and the water is in a still water state, but also when each of the saline solution and the water is being fed, the anode The water pressure in the chamber 18b and the cathode chamber 18c is higher than the water pressure in the intermediate chamber 18a, and salt is prevented from being mixed into the anode chamber 18b and the cathode chamber 18c from the intermediate chamber 18a.
上記の構成を採用された本発明の第1の実施形態によれば、3室型電解槽を備える電解装置1は、高耐性で透水性のある多孔質膜を第1隔膜および第2隔膜として使用するとともに、電解時は各室の水流を静水して水圧差を無くし、かつ、送水時には中間室が他室より陰圧になるようにして、陽極室および陰極室への塩分の混入を防ぎつつ且つ塩素ガス等で隔膜が棄損されにくい、安定的な電解を実施できる構成としている。
According to the first embodiment of the present invention employing the above-described configuration, the electrolysis apparatus 1 including the three-chamber electrolytic cell uses a highly resistant and water-permeable porous membrane as the first diaphragm and the second diaphragm. In addition to using it, the water flow in each chamber is hydrostatic during electrolysis to eliminate the difference in water pressure, and when water is supplied, the intermediate chamber is set to a negative pressure from the other chambers to prevent salt from entering the anode and cathode chambers. On the other hand, the diaphragm is not easily destroyed by chlorine gas or the like, and stable electrolysis can be performed.
(第2の実施形態)
図2は、第2の実施形態に係る電解装置1の概略的な構成図である。第2の実施形態に係る電解装置1は、第1排水配管80bおよび第2排水配管80cに、容量が2Lである陽極補助室90bおよび陰極補助室90cがさらに設けられている。第2の実施形態において、電解装置1の他の構成は、第1の実施形態に係る電解装置1と同様である。 (Second Embodiment)
FIG. 2 is a schematic configuration diagram of the electrolysis apparatus 1 according to the second embodiment. In the electrolysis apparatus 1 according to the second embodiment, an anodeauxiliary chamber 90b and a cathode auxiliary chamber 90c having a capacity of 2L are further provided in the first drain pipe 80b and the second drain pipe 80c. In the second embodiment, the other configuration of the electrolysis apparatus 1 is the same as that of the electrolysis apparatus 1 according to the first embodiment.
図2は、第2の実施形態に係る電解装置1の概略的な構成図である。第2の実施形態に係る電解装置1は、第1排水配管80bおよび第2排水配管80cに、容量が2Lである陽極補助室90bおよび陰極補助室90cがさらに設けられている。第2の実施形態において、電解装置1の他の構成は、第1の実施形態に係る電解装置1と同様である。 (Second Embodiment)
FIG. 2 is a schematic configuration diagram of the electrolysis apparatus 1 according to the second embodiment. In the electrolysis apparatus 1 according to the second embodiment, an anode
上記のように、陽極補助室90bおよび陰極補助室90cを設けると、陽極室18bおよび陰極室18cの容量を小さくコンパクトにしても一度に送水する水の量を多くすることができ、電磁弁100の開閉など間欠動作の周期を、例えば、30秒(例えば、電磁弁100を6秒開き24秒閉じる)と長くすることができる。即ち、第2の実施形態に係る電解装置1では、装置負担が軽減されている。電磁弁100の開閉周期は、上記30秒に限らず、20秒、40秒、50秒または60秒であってもよい。また、電磁弁100を開く時間と閉じる時間の比は、上記1:4に限らず適宜変更可能である。例えば、給水配管80aおよび第1排水配管80bおよび第2排水配管80cの径を太くすることにより、電磁弁100を開く時間を短くすることも可能である。
As described above, when the auxiliary anode chamber 90b and the auxiliary cathode chamber 90c are provided, the amount of water to be supplied at one time can be increased even if the capacity of the positive electrode chamber 18b and the negative electrode chamber 18c is reduced, and the solenoid valve 100 can be supplied. The period of the intermittent operation such as opening and closing of can be increased to, for example, 30 seconds (for example, the electromagnetic valve 100 is opened for 6 seconds and closed for 24 seconds). That is, in the electrolysis apparatus 1 according to the second embodiment, the burden on the apparatus is reduced. The opening / closing cycle of the solenoid valve 100 is not limited to 30 seconds, but may be 20 seconds, 40 seconds, 50 seconds, or 60 seconds. Further, the ratio of the time for opening and closing the electromagnetic valve 100 is not limited to 1: 4 and can be changed as appropriate. For example, the time for opening the solenoid valve 100 can be shortened by increasing the diameters of the water supply pipe 80a, the first drain pipe 80b, and the second drain pipe 80c.
間欠送水動作では電解槽10の水を入れ替える際に、電解槽10の容量より多めの水を送水しないとうまく入れ替わらない。このため、電解質液を入れ替えるために、電解槽10の容量より余分に送水する量を見込み、電解生成物が目的の濃度より濃くなるようにアルカリ性水および酸性水を生成する。一方で、陽極室18bで生成される次亜塩素酸水は、過度に濃度を高くすると酸性度が上がり、次亜塩素酸の一部が塩素ガスになって次亜塩素酸の生成効率が落ちてしまう。
In intermittent water supply operation, when the water in the electrolytic cell 10 is replaced, the water cannot be replaced successfully unless more water than the electrolytic cell 10 is supplied. For this reason, in order to replace the electrolyte solution, the amount of water to be supplied in excess of the capacity of the electrolytic cell 10 is anticipated, and alkaline water and acidic water are generated so that the electrolytic product is thicker than the target concentration. On the other hand, the hypochlorous acid water generated in the anode chamber 18b increases in acidity when the concentration is excessively increased, and a part of hypochlorous acid becomes chlorine gas, and the generation efficiency of hypochlorous acid decreases. End up.
第2の実施形態では、電解槽10とは別に排水配管中に補助室をもうけて電解槽10と連通した状態としている。このため陽極室18b(陰極室18c)と陽極補助室90b(陰極補助室90b)とをあわせた容量が大きくなり、送水時の余分な水を減らすとともに次亜塩素酸水が高濃度になりにくい構成としている。
In the second embodiment, an auxiliary chamber is provided in the drainage pipe separately from the electrolytic cell 10 so as to communicate with the electrolytic cell 10. For this reason, the combined capacity of the anode chamber 18b (cathode chamber 18c) and the anode auxiliary chamber 90b (cathode auxiliary chamber 90b) is increased, so that excess water during water feeding is reduced and the concentration of hypochlorous acid water is not easily increased. It is configured.
上記構成を採用した第2の実施形態に係る電解装置1は、間欠動作のサイクルが長いため装置負担が軽減され、かつ陽極室18bの電解生成効率が高い水準で維持される。
The electrolysis apparatus 1 according to the second embodiment adopting the above configuration has a long cycle of intermittent operation, so that the burden on the apparatus is reduced and the electrolysis efficiency of the anode chamber 18b is maintained at a high level.
第2の実施形態によれば、第1の実施形態と同様、3室型電解槽を備える電解装置1は、陽極室および陰極室への塩分の混入を防ぎつつ且つ塩素ガス等で隔膜が棄損されにくく、安定的な電解を実施できる。
According to the second embodiment, as in the first embodiment, the electrolysis apparatus 1 including the three-chamber electrolytic cell prevents the salt from entering the anode chamber and the cathode chamber, and the diaphragm is discarded by chlorine gas or the like. Therefore, stable electrolysis can be performed.
(第3の実施形態)
図3は、第3の実施形態に係る電解装置1の概略的な構成図である。第3の実施形態に係る電解装置1によれば、電解槽10の第1隔膜および第2隔膜として、遮水性のイオン交換膜13aおよび13bを使用し、電解槽10内の部屋を区画している。また、送液ポンプ50を間欠動作させず、常時稼働させるようにした。即ち、中間室18aに常に飽和食塩水が流入されるようにした。第3の実施形態において、電解装置1の他の構成は、第1の実施形態に係る電解装置1と同様である。 (Third embodiment)
FIG. 3 is a schematic configuration diagram of the electrolysis apparatus 1 according to the third embodiment. According to the electrolysis apparatus 1 according to the third embodiment, water-tight ion exchange membranes 13a and 13b are used as the first diaphragm and the second diaphragm of the electrolytic cell 10, and the room in the electrolytic cell 10 is partitioned. Yes. Further, the liquid feeding pump 50 is always operated without being intermittently operated. That is, a saturated saline solution is always allowed to flow into the intermediate chamber 18a. In 3rd Embodiment, the other structure of the electrolyzer 1 is the same as that of the electrolyzer 1 which concerns on 1st Embodiment.
図3は、第3の実施形態に係る電解装置1の概略的な構成図である。第3の実施形態に係る電解装置1によれば、電解槽10の第1隔膜および第2隔膜として、遮水性のイオン交換膜13aおよび13bを使用し、電解槽10内の部屋を区画している。また、送液ポンプ50を間欠動作させず、常時稼働させるようにした。即ち、中間室18aに常に飽和食塩水が流入されるようにした。第3の実施形態において、電解装置1の他の構成は、第1の実施形態に係る電解装置1と同様である。 (Third embodiment)
FIG. 3 is a schematic configuration diagram of the electrolysis apparatus 1 according to the third embodiment. According to the electrolysis apparatus 1 according to the third embodiment, water-tight
第3の実施形態に係る電解装置1では、中間室18aに常に10kPaの水圧が印加されている一方、陽極室18bおよび陰極室18cには、電磁弁100により間欠的に水が送水され、電解は、陽極室18bおよび陰極室18c内の水が静水状態であり水圧が0kPaの時に行われる。従って、電解時には中間室18aの水圧が陽極室18bおよび陰極室18cより高い状態にあり、イオン交換膜は水圧により電極に密着している。そのため、アルカリ性水および酸性水の生成効率や水質安定性が向上する。
In the electrolysis apparatus 1 according to the third embodiment, a water pressure of 10 kPa is always applied to the intermediate chamber 18a, while water is intermittently sent to the anode chamber 18b and the cathode chamber 18c by the electromagnetic valve 100 to perform electrolysis. Is performed when the water in the anode chamber 18b and the cathode chamber 18c is in a still water state and the water pressure is 0 kPa. Therefore, during electrolysis, the water pressure in the intermediate chamber 18a is higher than that in the anode chamber 18b and the cathode chamber 18c, and the ion exchange membrane is in close contact with the electrode by water pressure. Therefore, the production efficiency and water quality stability of alkaline water and acidic water are improved.
一般的に廉価なポンプは、送水圧力が10kPa程度と低く、陽極室18bや陰極室18cに流水した状態では中間室18a側の水圧が低くなってしまう。しかしながら、図3の実施形態であれば電解時は陽極室18bおよび陰極室18c内に流水圧力がないため、中間室18aが陽極室18bおよび陰極室18cに対して陽圧となる望ましい状態で電解することができる。
In general, an inexpensive pump has a low water supply pressure of about 10 kPa, and the water pressure on the intermediate chamber 18a side is low in a state where water flows into the anode chamber 18b and the cathode chamber 18c. However, in the embodiment of FIG. 3, since there is no flowing water pressure in the anode chamber 18b and the cathode chamber 18c during electrolysis, the intermediate chamber 18a is electrolyzed in a desirable state with a positive pressure relative to the anode chamber 18b and the cathode chamber 18c. can do.
第3の実施形態によれば、第1の実施形態と同様、3室型電解槽を備える電解装置1は、陽極室および陰極室への塩分の混入を防ぎつつ安定的な電解を実施できる。
According to the third embodiment, as in the first embodiment, the electrolysis apparatus 1 including the three-chamber electrolytic cell can perform stable electrolysis while preventing the salt from being mixed into the anode chamber and the cathode chamber.
(第4の実施形態)
図4は、第4の実施形態に係る電解装置1の概略的な構成図である。第4の実施形態に係る電解装置1では、陽極室18bの第2流入口12aに接続される給水配管80aに電磁弁100が設けられ、陽極室18bのみが間欠的に水を送水される。第4の実施形態では、陰極室18cは所定の流量が常に流水する構成とした。この場合、陰極室18cと中間室18aとには水圧差が生じるが、陽極室18bと中間室18aとには水圧差が生じない。従って、陽極室18bに塩分が混入するのを防止できる。また、第1隔膜として、塩素ガスに耐性のある多孔質膜17aを利用すれば、安定な電解を行うことができる。また、水酸化ナトリウム水を活用することを考慮し、陰極室18cと中間室18aとを区画する第2隔膜は、水圧差があっても透水性がなく塩分混入しない陽イオン交換膜13bを用いた。この場合、使用する隔膜の種類が陽極室18bと陰極室18cとで異なることから、電解に供した食塩水はpHが変動しやすい。そのため、食塩水は基本的に静水状態で電解に供され、食塩水の消費が限度に達した時点で食塩水を入れ替えて(例えば、30分に1回、第1送液ポンプ50を稼働する)廃棄する構成とした。このため、供給配管20aには中間室18aから水質変動した食塩水が逆拡散しないように逆止弁400を設けている。第4の実施形態において、電解装置1の他の構成は、第1の実施形態に係る電解装置1と同様である。 (Fourth embodiment)
FIG. 4 is a schematic configuration diagram of an electrolysis apparatus 1 according to the fourth embodiment. In the electrolysis apparatus 1 according to the fourth embodiment, theelectromagnetic valve 100 is provided in the water supply pipe 80a connected to the second inlet 12a of the anode chamber 18b, and only the anode chamber 18b is intermittently fed with water. In the fourth embodiment, the cathode chamber 18c is configured to constantly flow at a predetermined flow rate. In this case, a water pressure difference is generated between the cathode chamber 18c and the intermediate chamber 18a, but no water pressure difference is generated between the anode chamber 18b and the intermediate chamber 18a. Therefore, it is possible to prevent salt from being mixed into the anode chamber 18b. Moreover, if the porous membrane 17a resistant to chlorine gas is used as the first diaphragm, stable electrolysis can be performed. Considering the use of sodium hydroxide water, the second diaphragm that partitions the cathode chamber 18c and the intermediate chamber 18a uses a cation exchange membrane 13b that does not have water permeability and does not contain salt even if there is a difference in water pressure. It was. In this case, since the kind of diaphragm to be used is different between the anode chamber 18b and the cathode chamber 18c, the pH of the saline used for electrolysis tends to fluctuate. Therefore, the salt solution is basically subjected to electrolysis in a still water state, and when the consumption of the salt solution reaches a limit, the salt solution is replaced (for example, the first liquid feeding pump 50 is operated once every 30 minutes). ) It was configured to be discarded. For this reason, a check valve 400 is provided in the supply pipe 20a so that the salt water whose water quality has changed from the intermediate chamber 18a does not reversely diffuse. In the fourth embodiment, the other configuration of the electrolysis apparatus 1 is the same as that of the electrolysis apparatus 1 according to the first embodiment.
図4は、第4の実施形態に係る電解装置1の概略的な構成図である。第4の実施形態に係る電解装置1では、陽極室18bの第2流入口12aに接続される給水配管80aに電磁弁100が設けられ、陽極室18bのみが間欠的に水を送水される。第4の実施形態では、陰極室18cは所定の流量が常に流水する構成とした。この場合、陰極室18cと中間室18aとには水圧差が生じるが、陽極室18bと中間室18aとには水圧差が生じない。従って、陽極室18bに塩分が混入するのを防止できる。また、第1隔膜として、塩素ガスに耐性のある多孔質膜17aを利用すれば、安定な電解を行うことができる。また、水酸化ナトリウム水を活用することを考慮し、陰極室18cと中間室18aとを区画する第2隔膜は、水圧差があっても透水性がなく塩分混入しない陽イオン交換膜13bを用いた。この場合、使用する隔膜の種類が陽極室18bと陰極室18cとで異なることから、電解に供した食塩水はpHが変動しやすい。そのため、食塩水は基本的に静水状態で電解に供され、食塩水の消費が限度に達した時点で食塩水を入れ替えて(例えば、30分に1回、第1送液ポンプ50を稼働する)廃棄する構成とした。このため、供給配管20aには中間室18aから水質変動した食塩水が逆拡散しないように逆止弁400を設けている。第4の実施形態において、電解装置1の他の構成は、第1の実施形態に係る電解装置1と同様である。 (Fourth embodiment)
FIG. 4 is a schematic configuration diagram of an electrolysis apparatus 1 according to the fourth embodiment. In the electrolysis apparatus 1 according to the fourth embodiment, the
第4の実施形態によれば、第1の実施形態と同様、3室型電解槽を備える電解装置1は、陽極室18bおよび陰極室18cへの塩分の混入を防ぎつつ且つ塩素ガス等で隔膜が棄損されにくく、安定的な電解を実施できる。
According to the fourth embodiment, as in the first embodiment, the electrolysis apparatus 1 including the three-chamber electrolytic cell is separated from the anode chamber 18b and the cathode chamber 18c by salt gas while preventing the salt from entering the anode chamber 18b and the cathode chamber 18c. Is less likely to be destroyed and stable electrolysis can be performed.
本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
The present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
たとえば、電解質液は食塩水以外のものでもよく、用途に応じて適時選定することができる。更にまた、生成する電解水も次亜塩素酸水や水酸化ナトリウム水に限らず、用途に応じて適時選定することができる。
For example, the electrolyte solution may be other than saline and can be selected in a timely manner according to the application. Furthermore, the electrolyzed water to be generated is not limited to hypochlorous acid water or sodium hydroxide water, and can be selected in a timely manner according to the application.
また、上記の各実施形態で説明した、電磁弁100の開閉時間、電解に供する時間は、目的に応じて適宜変更可能である。例えば、生成したい次亜塩素酸の濃度を倍に変更する場合は、陽極15aに印加する電圧の値を倍にしてもよく、印加する電圧の値を変更せずに電磁弁100を閉塞する時間を2倍程度に長くしてもよい。また、送液ポンプ50の送水圧力の設定値を大きくすることによって、電磁弁100を開口する時間を短くすることも可能である。
In addition, the opening / closing time of the solenoid valve 100 and the time for electrolysis described in the above embodiments can be appropriately changed according to the purpose. For example, when the concentration of hypochlorous acid to be generated is changed to double, the value of the voltage applied to the anode 15a may be doubled, and the time for closing the solenoid valve 100 without changing the value of the applied voltage. May be about twice as long. In addition, the time for opening the solenoid valve 100 can be shortened by increasing the set value of the water supply pressure of the liquid feed pump 50.
Claims (23)
- 電解質液を流す中間室と陽極室とに区画する第1隔膜と、前記中間室と陰極室とに区画する第2隔膜と、前記第1隔膜に対向して前記陽極室に設けられた陽極と、前記第2隔膜に対向して前記陰極室に設けられた陰極と、を具備する電解槽と、
前記陽極室および前記陰極室に水を供給するとともに、前記陽極室および前記陰極室の少なくとも一方への水の供給排出量を間欠的に変動させる水供給部と、
前記中間室へ電解質液を供給および排出する電解質液供給部と、
前記陽極室および前記陰極室の少なくとも一方において前記水の供給排出量が小さくなっているか又は静水している状態で、前記陽極および前記陰極に電圧を印加して前記電解質液を電解する制御部と、
を備える電解装置。 A first diaphragm partitioned into an intermediate chamber and an anode chamber through which an electrolyte solution flows; a second diaphragm partitioned into the intermediate chamber and the cathode chamber; an anode provided in the anode chamber facing the first diaphragm; An electrolytic cell comprising: a cathode provided in the cathode chamber facing the second diaphragm;
A water supply unit for supplying water to the anode chamber and the cathode chamber, and for intermittently changing the supply and discharge amount of water to at least one of the anode chamber and the cathode chamber;
An electrolyte solution supply unit for supplying and discharging the electrolyte solution to and from the intermediate chamber;
A controller that electrolyzes the electrolyte solution by applying a voltage to the anode and the cathode in a state where the supply / discharge amount of the water is small or hydrostatic in at least one of the anode chamber and the cathode chamber; ,
An electrolysis apparatus comprising: - 前記水供給部は、給水源から前記陽極室および前記陰極室に水を導く給水配管と、前記給水配管に設けられ前記給水配管を開閉する電磁弁とを備え、
前記制御部は、前記電磁弁を所定時間、間欠的に開放および閉塞し、前記陽極室および前記陰極室の少なくとも一方へ間欠的な給水排出を制御する請求項1に記載の電解装置。 The water supply unit includes a water supply pipe that guides water from a water supply source to the anode chamber and the cathode chamber, and an electromagnetic valve that is provided in the water supply pipe and opens and closes the water supply pipe.
2. The electrolysis apparatus according to claim 1, wherein the control unit intermittently opens and closes the electromagnetic valve for a predetermined time to control intermittent supply and discharge of water to at least one of the anode chamber and the cathode chamber. - 前記間欠的な給水排出をされる前記陽極室および前記陰極室の少なくとも一方は、前記水の供給排出量が小さくなっているか又は静水している時の水圧が10KPa以下である請求項1または2に記載の電解装置。 3. The water pressure when at least one of the anode chamber and the cathode chamber from which the intermittent water supply and discharge are performed is such that the supply / discharge amount of the water is small or the water is still water is 10 KPa or less. The electrolyzer described in 1.
- 前記間欠的な給水排出をされる前記陽極室および前記陰極室の少なくとも一方は、前記水の供給排出量が小さくなっているか又は静水しているときの水圧が前記中間室の水圧よりも低い請求項1ないし3の何れか1項に記載の電解装置。 At least one of the anode chamber and the cathode chamber from which the intermittent supply and discharge of water is performed has a lower water pressure than the water pressure of the intermediate chamber when the amount of water supply and discharge is small or when the water is still. Item 4. The electrolysis apparatus according to any one of Items 1 to 3.
- 前記間欠的な給水排出をされる前記陽極室および前記陰極室の少なくとも一方は、前記水の供給排出量が大きくなったときの水圧が、前記水の供給排出量が大きくなったときの前記中間室の水圧より高い請求項1ないし4の何れか1項に記載の電解装置。 At least one of the anode chamber and the cathode chamber where the intermittent water supply / discharge is performed is such that the water pressure when the water supply / discharge amount increases is the intermediate pressure when the water supply / discharge amount increases. The electrolyzer according to any one of claims 1 to 4, wherein the electrolyzer is higher than a water pressure in the chamber.
- 前記間欠的な給水排出をされる前記陽極室および前記陰極室の少なくとも一方は、前記中間室と透水性を有する多孔質膜によって区画されている請求項1ないし5の何れか1項に記載の電解装置。 6. The device according to claim 1, wherein at least one of the anode chamber and the cathode chamber from which the intermittent water supply / discharge is performed is partitioned from the intermediate chamber by a porous film having water permeability. Electrolytic device.
- 前記多孔質膜の透水性は、0.1ないし100mL/分/cm2/MPaの範囲内である請求項6に記載の電解装置。 The electrolytic device according to claim 6, wherein the water permeability of the porous membrane is in a range of 0.1 to 100 mL / min / cm 2 / MPa.
- 前記多孔質膜の孔径は2ないし1000nmの範囲内である請求項6または7に記載の電解装置。 The electrolyzer according to claim 6 or 7, wherein a pore diameter of the porous membrane is in a range of 2 to 1000 nm.
- 前記間欠的な給水排出をされる前記陽極室および前記陰極室の少なくとも一方の容積は、200cc以上である請求項1ないし8の何れか1項に記載の電解装置。 The electrolyzer according to any one of claims 1 to 8, wherein a volume of at least one of the anode chamber and the cathode chamber from which the intermittent water supply is discharged is 200 cc or more.
- 前記間欠的な給水排出をされる前記陽極室および前記陰極室の少なくとも一方に接続される排水配管は補助室を有し、前記陽極室の容積および前記陰極室の容積は、前記補助室の容積と併せて200cc以上である請求項1ないし8の何れか1項に記載の電解装置。 A drainage pipe connected to at least one of the anode chamber and the cathode chamber from which the intermittent supply and discharge of water is performed has an auxiliary chamber, and the volume of the anode chamber and the volume of the cathode chamber are the volumes of the auxiliary chamber. The electrolysis apparatus according to any one of claims 1 to 8, wherein the electrolysis apparatus is 200 cc or more.
- 前記間欠的な給水排出をされる前記陽極室および前記陰極室の少なくとも一方の容積よりも、前記間欠的に行う水の供給量が多い請求項1ないし10の何れか1項に記載の電解装置。 The electrolyzer according to any one of claims 1 to 10, wherein the amount of water supplied intermittently is larger than the volume of at least one of the anode chamber and the cathode chamber from which the intermittent water supply is discharged. .
- 前記間欠的な給水排出をされる前記陽極室および前記陰極室の少なくとも一方に接続される排水配管は逆止弁が設けられている請求項1ないし11の何れか1項に記載の電解装置。 The electrolyzer according to any one of claims 1 to 11, wherein a check valve is provided in a drain pipe connected to at least one of the anode chamber and the cathode chamber from which the intermittent supply and discharge of water is performed.
- 前記逆止弁は所定の水圧以上で開く安全弁であり、前記間欠的な給水排出をされる前記陽極室および前記陰極室の少なくとも一方は、前記水が静水している時に所定の水圧が印加される請求項12に記載の電解装置。 The check valve is a safety valve that opens above a predetermined water pressure, and a predetermined water pressure is applied to at least one of the anode chamber and the cathode chamber from which the intermittent supply and discharge of water is performed. The electrolyzer according to claim 12.
- 前記所定の水圧は、10KPa以下である請求項13に記載の電解装置。 The electrolyzer according to claim 13, wherein the predetermined water pressure is 10 KPa or less.
- 前記中間室に供給される前記電解質液は、電解時に前記電解液を送水する量が小さくなっているか又は静水している状態である請求項1ないし14の何れか1項に記載の電解装置。 The electrolyzer according to any one of claims 1 to 14, wherein the electrolyte solution supplied to the intermediate chamber is in a state where the amount of water supplied to the electrolyte solution during electrolysis is small or still.
- 前記電解質液供給部は、電解質液を貯溜する電解質液タンクと、前記電解質液タンクの電解質液を前記中間室に導く供給配管と、前記供給配管に設けられた送水ポンプと、を備え、前記制御部は、前記送水ポンプにより前記電解質液を間欠的に前記中間室に供給する請求項1ないし15の何れか1項に記載の電解装置。 The electrolyte solution supply unit includes an electrolyte solution tank that stores the electrolyte solution, a supply pipe that guides the electrolyte solution in the electrolyte solution tank to the intermediate chamber, and a water supply pump that is provided in the supply pipe. The electrolysis apparatus according to any one of claims 1 to 15, wherein the unit intermittently supplies the electrolyte solution to the intermediate chamber by the water pump.
- 前記電解質液供給部は、前記中間室内を流れた電解質液を前記中間室から排出する排出配管と、前記排出配管に設けられた逆止弁と、を備えている請求項1ないし16の何れか1項に記載の電解装置。 The said electrolyte solution supply part is provided with the discharge piping which discharges the electrolyte solution which flowed through the said intermediate chamber from the said intermediate chamber, and the non-return valve provided in the said discharge piping. 2. The electrolysis apparatus according to item 1.
- 前記逆止弁は、前記間欠的な給水排出をされる前記陽極室および前記陰極室の少なくとも一方に供給される水の供給排出量が小さくなっているか又は静水しているときの水圧よりも高い水圧で開く安全弁である請求項17に記載の電解装置。 The check valve has a lower supply or discharge amount of water supplied to at least one of the anode chamber and the cathode chamber from which the intermittent supply and discharge of water is performed, or higher than a water pressure when the water is still water. The electrolyzer according to claim 17, which is a safety valve opened by water pressure.
- 第1隔膜および第2隔膜により仕切られた中間室と、この中間室の両側に位置する陽極室および陰極室と、前記第1隔膜に対向して前記陽極室に設けられた陽極と、前記第2隔膜に対向して前記陰極室に設けられた陰極と、を具備する電解槽を備える電解装置により電解水を生成する電解水生成方法であって、
前記中間室に電解質液を供給し、
前記陽極室および陰極室に水を供給し、
前記陽極室および前記陰極室の少なくとも一方への水の供給排出量を間欠的に変動させ、
前記陽極室および前記陰極室の少なくとも一方において前記水の供給排出量が小さくなっているか又は静水している状態で、前記陽極および前記陰極に電圧を印加して前記中間室内の電解質液を電解し、前記陽極室および前記陰極室の少なくとも一方において電解水を生成する電解水生成方法。 An intermediate chamber partitioned by a first diaphragm and a second diaphragm; an anode chamber and a cathode chamber located on both sides of the intermediate chamber; an anode provided in the anode chamber facing the first diaphragm; An electrolyzed water generating method for generating electrolyzed water by an electrolyzer comprising an electrolyzer comprising a cathode provided in the cathode chamber facing the two diaphragms,
Supplying an electrolyte solution to the intermediate chamber;
Supplying water to the anode chamber and the cathode chamber;
Intermittently varying the supply and discharge of water to at least one of the anode chamber and the cathode chamber,
In at least one of the anode chamber and the cathode chamber, the supply / discharge amount of the water is small or still water is applied, and a voltage is applied to the anode and the cathode to electrolyze the electrolyte solution in the intermediate chamber. An electrolyzed water generating method for generating electrolyzed water in at least one of the anode chamber and the cathode chamber. - 前記陽極室および陰極室の少なくとも一方に、所定時間ごとに間欠的に給水および給水停止し、給水停止している状態で、前記陽極および陰極に電圧を印加する請求項19に記載の電解水生成方法。 The electrolyzed water generation according to claim 19, wherein water supply and water supply are intermittently stopped and supplied to at least one of the anode chamber and the cathode chamber every predetermined time, and a voltage is applied to the anode and cathode while the water supply is stopped. Method.
- 前記給水および給水停止に同期して、前記中間室に電解質液を間欠的に給水および給水停止する請求項20に記載の電解水生成方法。 21. The electrolytic water generating method according to claim 20, wherein the electrolytic solution is intermittently supplied and stopped in the intermediate chamber in synchronization with the water supply and the water supply stop.
- 前記陽極室および陰極室の少なくとも一方において、前記水の供給排出量が小さくなっているか又は静水しているときの水圧を、前記中間室の水圧よりも低くする請求項19ないし21の何れか1項に記載の電解水生成方法。 The water pressure when at least one of the anode chamber and the cathode chamber when the supply / discharge amount of water is small or when the water is still is made lower than the water pressure of the intermediate chamber. The electrolyzed water production | generation method of item.
- 前記間欠的な給水排出をされる前記陽極室および前記陰極室の少なくとも一方において、前記水の供給排出量が大きくなったときの水圧を前記中間室の水圧よりも高くする請求項19ないし22の何れか1項に電解水生成方法。 23. The water pressure when at least one of the anode chamber and the cathode chamber where the intermittent water supply / discharge is performed, when the supply / discharge amount of the water becomes larger than the water pressure of the intermediate chamber. Any one item is a method for generating electrolyzed water.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015537862A JP5859177B1 (en) | 2014-09-22 | 2015-02-23 | ELECTROLYTIC DEVICE AND ELECTROLYTIC WATER GENERATING METHOD |
CN201580033138.4A CN106460206A (en) | 2014-09-22 | 2015-02-23 | Electrolytic device and electrolyzed water generation method |
US15/068,023 US20160194770A1 (en) | 2014-09-22 | 2016-03-11 | Electrolytic apparatus and method of producing electrolyzed water |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-192939 | 2014-09-22 | ||
JP2014192939 | 2014-09-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/068,023 Continuation US20160194770A1 (en) | 2014-09-22 | 2016-03-11 | Electrolytic apparatus and method of producing electrolyzed water |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016047161A1 true WO2016047161A1 (en) | 2016-03-31 |
Family
ID=55580705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054981 WO2016047161A1 (en) | 2014-09-22 | 2015-02-23 | Electrolytic device and electrolyzed water generation method |
Country Status (3)
Country | Link |
---|---|
US (1) | US20160194770A1 (en) |
CN (1) | CN106460206A (en) |
WO (1) | WO2016047161A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018051428A (en) * | 2016-09-26 | 2018-04-05 | 株式会社東芝 | Apparatus for producing electrolyzed water |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3458628A1 (en) | 2016-05-17 | 2019-03-27 | Diversey, Inc. | Alkaline and chlorine solutions produced using electro-chemical activation |
WO2018140551A1 (en) | 2017-01-26 | 2018-08-02 | Diversey, Inc. | Neutralization in electro-chemical activation systems |
EP3778991A4 (en) * | 2018-03-27 | 2021-05-19 | Tokuyama Corporation | Electrolysis vessel for alkaline water electrolysis |
CN108640229A (en) * | 2018-03-28 | 2018-10-12 | 广州市康亦健医疗设备有限公司 | A kind of acidification water generating device of time variant electrolytic tank electrode |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51110500A (en) * | 1975-03-25 | 1976-09-30 | Asahi Glass Co Ltd | Kaseiarukarino seizohoho |
JPH09108677A (en) * | 1995-10-23 | 1997-04-28 | Hoshizaki Electric Co Ltd | Electrolytic water generator |
JPH11179359A (en) * | 1997-12-24 | 1999-07-06 | Chemicoat & Co Ltd | Super-electrolysis ionic water producing device |
JP2007330831A (en) * | 2006-06-12 | 2007-12-27 | Matsushita Electric Ind Co Ltd | Washing water feeder |
JP2012007220A (en) * | 2010-06-25 | 2012-01-12 | Masaaki Arai | Apparatus and method for producing electrolytic water |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3181796B2 (en) * | 1994-10-28 | 2001-07-03 | 日本電気株式会社 | Electrolyzed water production equipment |
JP3681015B2 (en) * | 1995-07-03 | 2005-08-10 | ホシザキ電機株式会社 | Electrolyzed water generator |
JP3689417B2 (en) * | 2003-10-14 | 2005-08-31 | ホシザキ電機株式会社 | Electrolyzed water production equipment |
JP4856530B2 (en) * | 2005-12-21 | 2012-01-18 | ミドリ安全株式会社 | An effective chlorine concentration adjusting method for electrolyzed water, a pH adjusting method for electrolyzed water, and an electrolyzed water generator. |
JP3906297B1 (en) * | 2006-11-16 | 2007-04-18 | 稔 菅野 | Endoscope cleaning method and cleaning apparatus |
JP4216892B1 (en) * | 2007-04-13 | 2009-01-28 | 優章 荒井 | Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water |
JP2009050797A (en) * | 2007-08-27 | 2009-03-12 | Midori Anzen Co Ltd | Apparatus and method for generating electrolytic water |
-
2015
- 2015-02-23 WO PCT/JP2015/054981 patent/WO2016047161A1/en active Application Filing
- 2015-02-23 CN CN201580033138.4A patent/CN106460206A/en active Pending
-
2016
- 2016-03-11 US US15/068,023 patent/US20160194770A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51110500A (en) * | 1975-03-25 | 1976-09-30 | Asahi Glass Co Ltd | Kaseiarukarino seizohoho |
JPH09108677A (en) * | 1995-10-23 | 1997-04-28 | Hoshizaki Electric Co Ltd | Electrolytic water generator |
JPH11179359A (en) * | 1997-12-24 | 1999-07-06 | Chemicoat & Co Ltd | Super-electrolysis ionic water producing device |
JP2007330831A (en) * | 2006-06-12 | 2007-12-27 | Matsushita Electric Ind Co Ltd | Washing water feeder |
JP2012007220A (en) * | 2010-06-25 | 2012-01-12 | Masaaki Arai | Apparatus and method for producing electrolytic water |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018051428A (en) * | 2016-09-26 | 2018-04-05 | 株式会社東芝 | Apparatus for producing electrolyzed water |
Also Published As
Publication number | Publication date |
---|---|
CN106460206A (en) | 2017-02-22 |
US20160194770A1 (en) | 2016-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016047161A1 (en) | Electrolytic device and electrolyzed water generation method | |
JP6105130B2 (en) | Electrolyzer | |
US20080047844A1 (en) | Method of generating electrolyzed water and electrolyzed water generation apparatus therefor | |
WO2016016954A1 (en) | Electrolytic ion water generation method and electrolytic ion water generation apparatus | |
KR101373389B1 (en) | On-site sodium hypochlorite generator for high concentration product | |
WO2018207452A1 (en) | Electrolyzed water generating apparatus | |
JP6171047B1 (en) | Electrolyzed water production apparatus and operation method thereof | |
JP2013063372A (en) | Desalination system | |
JP4597263B1 (en) | Electrolyzed water production apparatus and electrolyzed water production method using the same | |
KR101683533B1 (en) | Manufacturing apparatus of Hydrogen water | |
JP5859177B1 (en) | ELECTROLYTIC DEVICE AND ELECTROLYTIC WATER GENERATING METHOD | |
JP2012217882A (en) | Hydrogen-dissolved water generator | |
JP2011255347A (en) | Electrolytic water generator | |
JP2017164692A (en) | Electrolytic water generator | |
EP4452869A2 (en) | System and method for electrochemical ocean alkalinity enhancement | |
KR20130066084A (en) | Gas-liguide separator for electrolytic sterilizer generation system | |
JP6190431B2 (en) | Dissolved hydrogen water generator | |
JP2018030068A (en) | Electrolytic water production device, and electrolytic water production method | |
JP2010064028A (en) | Water treatment apparatus | |
JP7324904B1 (en) | water treatment equipment | |
JPH11221568A (en) | Continuous type electrolytic water forming device having medicinal liquid adding mechanism | |
JP2017170272A (en) | Electric water generator | |
JP2024131100A (en) | Water treatment system and method for operating same | |
JP2016168555A (en) | Device and method for generating electrolytic water | |
KR20150113403A (en) | Acid-base solution produce system from seawater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015537862 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15844542 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15844542 Country of ref document: EP Kind code of ref document: A1 |