WO2015198470A1 - Measurement device and measurement method - Google Patents
Measurement device and measurement method Download PDFInfo
- Publication number
- WO2015198470A1 WO2015198470A1 PCT/JP2014/067157 JP2014067157W WO2015198470A1 WO 2015198470 A1 WO2015198470 A1 WO 2015198470A1 JP 2014067157 W JP2014067157 W JP 2014067157W WO 2015198470 A1 WO2015198470 A1 WO 2015198470A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- output
- light receiving
- amplitude
- signal
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
- A61B5/0285—Measuring or recording phase velocity of blood waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
Definitions
- the present invention relates to a technical field of a measurement apparatus and a measurement method for measuring information related to movement of a measurement target using light scattered in the measurement target.
- the band gap changes due to the rise in the laser temperature, so that the oscillation wavelength gradually changes to a long wavelength as the temperature rises.
- the oscillation wavelength suddenly jumps to the wavelength having the maximum gain on the long wavelength side at a certain timing. This phenomenon is called mode hopping, and is known to cause a measurement error in a measuring apparatus using optical Doppler, for example.
- Patent Document 1 proposes a technique of controlling the temperature of a laser light source using a Peltier element in order to suppress the occurrence of the mode hop described above.
- An object of the present invention is to provide a measuring apparatus and a measuring method capable of suppressing an adverse effect of mode hops on measurement.
- a measuring apparatus for solving the above problems includes an irradiating means for irradiating a measurement target with laser light, a light receiving means for receiving the laser light scattered by the measurement target, and an amplitude of an output signal of the light receiving means.
- Limiting means for limiting the value within a predetermined range; and output means for outputting information on the movement of the measurement target based on a beat signal resulting from the Doppler shift of the laser light included in the output signal of the light receiving means; Is provided.
- a measurement method for solving the above problems includes an irradiation step of irradiating a measurement target with laser light, a light reception step of receiving the laser light scattered by the measurement target, and an output signal obtained in the light reception step
- the information on the movement of the measurement target is output based on a limiting process for limiting the amplitude of the laser beam to a predetermined range and a beat signal resulting from the Doppler shift of the laser light included in the output signal obtained in the light receiving process Output step.
- the measurement apparatus is configured to irradiate laser light onto a measurement target, light reception means that receives the laser light scattered by the measurement target, and an amplitude of an output signal of the light reception means.
- Limiting means for limiting to within the range, and output means for outputting information on the movement of the measurement target based on a beat signal resulting from the Doppler shift of the laser light included in the output signal of the light receiving means. .
- the laser beam is irradiated from the irradiation unit to the measurement target during the operation.
- the irradiation means is configured to include, for example, a semiconductor laser element or the like, and is disposed at a position where the measurement target can be efficiently irradiated with light when used.
- the measurement target is a fluid such as blood of a living body.
- the measurement target is not particularly limited, and may be other than fluid (for example, an individual) as long as it moves.
- the laser light emitted from the irradiation means is scattered (specifically reflected and transmitted) in the object to be measured and then received by the light receiving means.
- the light receiving means includes, for example, a photodiode and outputs an output signal corresponding to the received light.
- the amplitude of the output signal of the light receiving means is limited within a predetermined range by the limiting means. For this reason, the output signal is output in a state where, for example, a portion where the amplitude exceeds a predetermined range is cut.
- the “predetermined range” is an amplitude range (in other words, an upper limit value of amplitude) set as a reference for amplitude limitation in order to suppress the influence caused by the mode hop as will be described later. is there.
- the predetermined range is set as a range in which the influence by the mode hop can be effectively suppressed by a prior simulation or the like.
- the predetermined range may be a fixed value, or may be a value that can be changed according to a measurement situation or the like.
- the output signal of the light receiving means is used when outputting information related to the movement of the measurement target from the output means.
- information on the movement of the measurement target is obtained based on a beat signal resulting from a Doppler shift (hereinafter referred to as “optical Doppler” as appropriate) of the laser light included in the output signal of the light receiving means.
- optical Doppler a Doppler shift
- information relating to movement is a broad concept including information that indirectly indicates such information in addition to the movement speed, movement amount, and movement direction of the measurement target.
- the amplitude value of the output signal of the light receiving means greatly fluctuates due to the mode hop (for example, the amplitude instantaneously becomes a very large value), which is unnecessary for the measurement result obtained from the output signal. Variation will occur.
- the amplitude of the output signal of the light receiving means is limited within a predetermined range. For this reason, even if a mode hop occurs, the fluctuation portion due to the mode hop is excluded from the output signal of the light receiving means. As a result, the output signal used when outputting the information related to the movement of the measurement target is in a state in which it is not influenced by mode hops at all or almost. Therefore, even in a situation where a mode hop occurs, information regarding the movement of the measurement target is output as accurate.
- the measurement apparatus According to the measurement apparatus according to the present embodiment, it is possible to suppress the influence of mode hops and perform measurement accurately.
- the limiting unit changes the predetermined range according to the past amplitude of the output signal of the light receiving unit.
- information relating to the amplitude of the output signal of the light receiving means is stored and used for the subsequent amplitude limitation. More specifically, for example, the amplitude of the output signal of the light receiving means in the situation where the mode hop has not occurred immediately after the start of the operation is stored, and a predetermined coefficient (for example, 1.1, for example) is stored in the average value of the stored amplitude peaks. A value obtained by multiplying a coefficient for allowing a slight variation in the degree is set as the predetermined range.
- a predetermined coefficient for example, 1.1, for example
- the amplitude of the output signal can be more appropriately limited as compared with the case where the predetermined range which is a fixed value is used. Specifically, the predetermined range is too large to remove the fluctuation part due to the mode hop from the output signal, or the predetermined range is too small to cause the part from the output signal not to cause the mode hop (i.e., for measurement). It is possible to prevent the removal of the portion to be used. Therefore, according to this aspect, it is possible to obtain a more accurate measurement result.
- the limiting unit limits the amplitude at a stage before converting the output signal of the light receiving unit from an analog signal to a digital signal.
- the output signal after limitation is amplified in accordance with the D range of the subsequent A / D conversion, and the quantum by the A / D conversion is increased. Error can be reduced. As a result, the bit length of A / D conversion can be set small, and the cost of the A / D converter can be reduced.
- the limiting unit limits the amplitude at a stage after the output signal of the light receiving unit is converted from an analog signal to a digital signal.
- the amplitude of the output signal is limited by the state of the digital signal, it is possible to perform the highly accurate limiting process relatively easily by utilizing the characteristics of the digital signal.
- the limiting unit limits the amplitude in both the stage before and after the conversion of the output signal of the light receiving unit from an analog signal to a digital signal.
- the restriction process is performed in two stages. Therefore, in the restriction process in the first analog stage, even if there is a restriction with a certain margin (that is, a component due to mode hops remains to some extent). It is desirable to perform a highly accurate restriction (that is, a restriction that can remove a component due to a mode hop as much as possible) in the restriction process in the last digital stage.
- the light receiving means outputs first and second photoelectric conversion element units that respectively convert the laser light into current and output, and the first photoelectric conversion element unit outputs A differential current output unit that outputs a differential current between a current to be output and a current output from the second photoelectric conversion element unit as a detection current.
- the two photoelectric conversion element portions are provided for converting laser light into current and outputting the current.
- Each of the first and second photoelectric conversion element units includes one or a plurality of photoelectric conversion elements (for example, photodiodes), and outputs a current according to the amount of input light.
- the first and second photoelectric conversion element units include, for example, a cathode of the first photoelectric conversion element unit and an anode of the second photoelectric conversion element unit, and an anode and a first photoelectric conversion element unit.
- the two photoelectric conversion element portions are connected in parallel so as to be connected.
- the first and second photoelectric conversion element portions are connected in series so that the cathodes or the anodes are connected to each other.
- the differential current output unit outputs a differential current between the current output from the first photoelectric conversion element unit and the current output from the second photoelectric conversion element unit as a detection current. Accordingly, a current component corresponding to a steady light component included in the laser light (hereinafter referred to as a “DC (direct current) component” as appropriate) among the currents output from the first and second photoelectric conversion element units.
- a current mainly including a current component corresponding to a signal light component included in the laser light hereinafter referred to as an “AC (alternate current) component” as appropriate
- AC alternate current
- a detection current mainly including components can be output.
- the detection current contains little or no DC component, for example, a current-voltage conversion circuit that can be generated when the DC component contained in the detection current is relatively large (that is, the detection current is converted into a voltage).
- the gain of amplification by the current-voltage conversion circuit can be increased while avoiding the occurrence of the saturation phenomenon of the circuit).
- the S / N ratio (signal-to-noise) of the output signal can be output. ratio) can be improved. That is, according to this aspect, the DC component corresponding to the noise component included as the steady light component in the laser light out of the current output from each of the first and second photoelectric conversion element units is reduced or removed, Since the detection current mainly including the AC component corresponding to the signal component is output, the S / N ratio in the output signal can be improved.
- the measurement method includes an irradiation process for irradiating a measurement target with laser light, a light reception process for receiving the laser light scattered by the measurement target, and an amplitude of an output signal obtained in the light reception process.
- the measurement method of the present embodiment it is possible to perform measurement accurately while suppressing the influence of mode hops, as in the measurement apparatus according to the present embodiment described above.
- the measurement device according to the present invention is configured as a blood flow measurement device that measures blood flow
- a blood flow measurement device that measures blood flow
- FIG. 1 is a block diagram showing the overall configuration of the measuring apparatus according to the first embodiment.
- the measuring apparatus includes a laser driving unit 110, a semiconductor laser 120, a light receiving element 130, an IV conversion unit 140, an amplitude limiter amplifier 150, an A / D converter 160, and the like.
- the blood flow calculation unit 170 is provided.
- the laser driver 110 generates a current for driving the semiconductor laser 120.
- the semiconductor laser 120 is a specific example of “irradiation means”, and irradiates the measurement target 200 (for example, skin of a living body) with laser light corresponding to the drive current generated in the laser drive unit 110. .
- the light receiving element 130 is a specific example of “light receiving means”, and receives scattered light scattered by the blood 200 out of the laser light emitted from the semiconductor laser 120.
- the light receiving element 130 outputs a detection current according to the intensity of the received scattered light.
- the IV converter 140 converts the detection current output from the light receiving element 130 into a voltage and outputs a detection voltage.
- the amplitude limiter amplifier 150 is a specific example of “limiting means”, which performs a limiter process on the detected voltage, amplifies it, and outputs it as an amplified signal. The limiter process will be described in detail later.
- the A / D converter 160 quantizes the input analog amplified signal and outputs it as digital data.
- the blood flow calculation unit 170 is a specific example of “output means”, and outputs a blood flow (specifically, information related to movement of the blood 200 such as a flow rate) based on input data.
- the blood flow calculation unit 170 is configured as a DSP (Digital Signal Processor), for example, and can perform digital signal processing such as frequency analysis on input data.
- DSP Digital Signal Processor
- the laser driving unit 110 generates a specified operating current that is equal to or higher than the threshold current of the semiconductor laser 120 and supplies it to the semiconductor laser 120. Thereby, the semiconductor laser 120 oscillates.
- the semiconductor laser 120 is fixed to the measurement target 200 with a clip or the like (not shown) so as to emit laser light to the measurement target 200.
- the measurement target 200 is living body skin
- the irradiated laser light becomes scattered light scattered by a skin tissue that is a fixed object and scattered light scattered by red blood cells in a capillary that is a moving object, Both of them are received by the light receiving element 130.
- the scattered light scattered by the skin tissue is the reference light
- the scattered light scattered by the red blood cells is the scattered light that has caused an optical Doppler shift corresponding to the moving speed of the red blood cells.
- These two scattered lights cause interference due to the coherence of the laser light.
- the light receiving element 130 generates a detection current corresponding to the intensity of the optical beat signal as a result of this interference.
- the light receiving element 130 is fixed to the measurement target 200 with a clip or the like (not shown) so as to receive the scattered light from the measurement target 200.
- the detection current corresponding to the optical beat signal detected by the light receiving element 130 is converted into a current voltage by the IV converter 140 and output as a detection voltage.
- FIG. 2 is a circuit diagram showing a specific configuration of the light receiving element and the I- ⁇ converter.
- the light receiving element 130 includes two light receiving elements 130a and 130b.
- the light receiving elements 130a and 130b are specific examples of a “first photoelectric conversion element unit” and a “second photoelectric conversion element unit”, and are configured as, for example, a photodetector using a PIN semiconductor.
- the light receiving elements 130a and 130b have cathodes connected to each other and are connected in series in opposite directions. If comprised in this way, DC component can be suppressed and AC component which is a signal component can be detected efficiently.
- a current component corresponding to a steady light component included in the input light (hereinafter referred to as “DC (direct current) component”) is reduced or removed from the current output from each of the light receiving elements 130a and 130b.
- DC direct current
- AC alternate current
- a current mainly including a current component corresponding to the signal light component included in the input light (hereinafter appropriately referred to as “AC (alternate current) component”) can be output as the detection current. That is, the DC component of the output current of the light receiving element 130a and the DC component of the current output of the light receiving element 130b can be canceled, and a detection current mainly including an AC component corresponding to the signal light component included in the input light is obtained. Can be output.
- the detection current of the light receiving element 130a is Id1 and the detection current of the light receiving element 130b is Id2, since both are connected in series with opposite polarities, the detection current is represented by the following formula (1).
- Idt Id2-Id1 (1) Further, since the scattered light received by the light receiving element 130a and the scattered light received by the light receiving element 130b are different from each other, if the wavelength of the light is used as a reference length, the signal is approximately uncorrelated. Therefore, the intensity of the optical beat signal, which is a signal component, is multiplied by ⁇ 2 by subtraction.
- the non-inverting input terminals of Amp1 and Amp2 are grounded. Due to the negative feedback action of the feedback resistors Rf1 and Rf2 of Amp1 and Amp2, the non-inversion terminal and the inversion terminal are in an imaginary shoot state and have approximately the same potential. Therefore, the anode of the light receiving element 130a and the anode of the light receiving element 130b are at the same potential, and the P light receiving element 130a and the light receiving element 130b operate in a so-called power generation mode. With this power generation mode, dark current is suppressed, and noise increase due to dark current fluctuation can be suppressed.
- the detection voltage Vd1 of Amp1 and the detection voltage Vd2 of Amp2 are as shown in the following formulas (2) and (3).
- Vd1 Rf1 ⁇ Idt (2)
- Vd2 Rf2 ⁇ ( ⁇ Idt) (3)
- Amp3 differentially amplifies the detection voltage of Amp1 and Amp2 and outputs it as Vout. This differential amplification removes common mode noise such as power supply noise and hum.
- Vout is expressed by the following formula (4).
- FIG. 3 is a block diagram showing a specific configuration of the amplitude limiter amplifier.
- FIG. 4 is a circuit diagram showing a specific configuration of the amplitude limiter unit.
- the detection voltage input to the amplitude limiter amplifier 150 is first input to the variable amplifier 151.
- a gain setting value is input to the control terminal of the variable amplifier 151 from an external CPU (not shown).
- the variable amplifier 151 amplifies the detection voltage with a specified gain according to the gain setting value, and outputs the amplified detection voltage to the BPF unit 152.
- the BPF unit 152 constitutes a band pass filter for suppressing low frequency noise such as a hum signal and high frequency noise from the SW power source.
- the output of BPF 152 is input to the amplitude limiter unit 153.
- the amplitude limiter unit 153 includes a resistor Ri and diodes D1 and D2.
- the resistor Ri is set to be larger than the on-resistances of the diodes D1 and D2, thereby limiting the signal amplitude exceeding the forward voltage of the diodes D1 and D2.
- the amplitude limiter unit 153 constitutes a so-called diode limiter.
- the output of the amplitude limiter unit 153 is input to the AC amplifier 154.
- the AC amplifier 154 amplifies the signal so as to obtain an appropriate amplitude with respect to the D range of A / D conversion, and outputs it as an amplified signal.
- the gain of the AC amplifier may be set to double.
- the amplified signal that is the output of the amplitude limiter amplifier 150 is input to the A / D converter 160.
- the A / D converter 160 quantizes the input amplified signal at a specified sampling frequency and outputs data as a digital value.
- FIG. 5 is a block diagram showing a specific configuration of the blood flow calculation unit.
- FIG. 6 is a graph showing a specific example of a blood flow spectrum.
- data input to the blood flow calculation unit 170 is first input to the Hanning window processing unit 171.
- the Hanning window processing unit 171 executes Hanning window processing as preprocessing for FFT (Fast Fourier Transform).
- the FFT processing unit 172 performs frequency analysis on the data limited by the window function by FFT processing.
- the square calculation unit 173 performs complex conjugate processing on the frequency analysis data, and acquires the power spectrum P (f).
- the first moment integration unit 174 multiplies the obtained power spectrum P (f) by the frequency vector f, and further integrates it within the specified band to obtain ⁇ ⁇ f ⁇ P (f) ⁇ .
- the LPF unit 175 removes the high-frequency component of the ⁇ ⁇ f ⁇ P (f) ⁇ signal and multiplies it by a specified gain. Thereby, a blood flow output is obtained.
- the power spectrum P (f) of the optical beat signal is indicated by a dotted line in the figure.
- the low frequency component is included more than the high frequency component.
- the power spectrum P (f) of the optical beat signal has the characteristics shown by the solid line in the figure. As a result, the high frequency component is contained more than the low frequency component.
- the blood flow calculation unit 170 performs calculation to efficiently detect the power spectrum change of the optical beat signal.
- a method using frequency analysis by FFT has been described, but the present invention is not limited to this method.
- FIGS. 7 to 9 are graphs showing the amplified signal and the blood flow output, respectively. Note that the horizontal axis of the graphs shown in FIGS. 7 to 9 is time, which corresponds to 0 to 27 seconds.
- the waveform shown in FIG. 7 is an example of a waveform obtained when the semiconductor laser 120 is stably oscillating in a single mode, that is, when no mode hop occurs. In this case, since no mode hop occurs, almost no noise is present in the amplified signal. For this reason, an accurate blood flow output is obtained without performing the amplitude limiter process.
- the waveform shown in FIG. 8 is an example of a waveform obtained when the semiconductor laser 120 is in an unstable oscillation state due to mode hopping. In this case, as can be seen from comparison with FIG. 7, a lot of noise is present in the amplified signal due to the occurrence of mode hops. For this reason, if the amplitude limiter process is not performed, the pulse wave of the blood flow output is disturbed.
- the waveform shown in FIG. 9 is an example of a waveform obtained when the semiconductor laser 120 is in an unstable oscillation state due to mode hops, as in FIG. 8, but the amplitude limiter processing according to this embodiment is performed. Demodulating. For this reason, the noise component is suppressed by the amplitude limiting action of the amplitude limiter amplifier 150. As a result, the disturbance of the pulse wave in the blood flow output is suppressed to a minimum, and a waveform close to a state in which mode hopping is not performed (that is, no noise) is obtained as in the case of FIG.
- the measurement apparatus of the first embodiment even if noise due to the mode hop of the semiconductor laser 120 occurs, the influence can be suppressed and more accurate blood flow measurement can be performed. It is. Further, if the mode hop itself of the semiconductor laser 120 is to be removed, it is required to introduce an expensive temperature control system or the like. However, in this embodiment, it is not necessary to remove the mode hop itself. realizable. Furthermore, if a temperature control system with high power consumption is not required, battery driving is possible, and the apparatus can be miniaturized.
- FIG. 10 is a block diagram showing the overall configuration of the measuring apparatus according to the second embodiment.
- the measurement apparatus includes a laser driving unit 110, a semiconductor laser 120, a light receiving element 130, an IV conversion unit 140, an amplifier 155, an A / D converter 160, The blood flow calculation unit 170 and the limiter processing unit 180 are provided.
- the part that performs the limiter process of the amplitude limiter amplifier 150 (see FIG. 1) according to the first embodiment serves as a limiter processing unit 180 in the subsequent stage of the A / D converter 160. It is provided independently.
- the limiter processing unit 180 limits the amplitude of the digital data input from the A / D converter 160 by digital signal processing, and outputs it to the blood flow calculation unit 170 as limit data.
- the amplifier 155 does not limit the amplitude by analog processing, but amplifies the detection voltage input from the IV conversion unit 140 to obtain an amplified signal. Output to the A / D converter 160.
- FIG. 11 is a block diagram showing a specific configuration of the limiter processing unit.
- the data input to the limiter processing unit 180 is first input to the positive side level comparison unit 181.
- the positive level comparing unit 181 compares the input data with a limit level (that is, a predetermined amplitude limit value).
- the first data switching unit 182 switches the input data to the limit level.
- the limit level is inverted in sign by the -1 time processing unit 183 and compared with the input data in the negative side level comparison unit 184.
- the second data switching unit 185 replaces the input data with the limit level multiplied by ⁇ 1.
- the amplitude of the input data is limited according to the limit level and output as limit data.
- the limiter processing unit 180 described above may be configured as a variable limiter processing unit by including a limit level adjustment unit.
- a limit level adjustment part is demonstrated with reference to FIG.
- FIG. 12 is a block diagram showing a specific configuration of the limit level adjustment unit.
- the limit level adjustment unit 190 is provided between the A / D converter 160 and the limiter processing unit 180.
- the data input to the limit level adjustment unit 190 is accumulated n points in the buffering unit 191.
- n which is the number of accumulated data, may be selected, for example, the number of data necessary for the FFT processing in the blood flow calculation unit 170.
- the peak detector 192 detects the peak value of the accumulated data.
- the LPF unit 193 averages the peak amounts detected by the peak detection unit 192. For this reason, the output of the LPF unit 193 is an average value of peak amounts.
- the gain multiplying unit 194 multiplies the average value of the peak amount, which is the output of the LPF unit 193, by a predetermined gain (for example, 1.1 times).
- the upper limit setting unit 195 compares the output of the gain multiplication unit 194 with a predetermined upper limit value (that is, a limit level). If the upper limit setting unit 195 is larger than the predetermined upper limit value, the upper limit setting unit 195 is replaced with the predetermined upper limit value and output as a variable limit level. The On the other hand, when it is not larger than the predetermined upper limit value, it is output as a variable limit level as it is.
- the output of the buffering unit 191 is also input to the limiter processing unit 180.
- the limiter processing unit 180 compares the buffered data with the variable limit level, and executes a process of replacing the data exceeding the variable limit level with the variable limit level. This process is the same as the process executed by the limiter processing unit 180 described with reference to FIG.
- FIG. 13 is a graph showing data not subjected to limiter processing and the corresponding blood flow output.
- FIG. 14 is a graph showing data subjected to limiter processing and the corresponding blood flow output.
- the limit data at the time of executing the limiter process is limited in waveform by the variable limit level as compared with the data when the limiter process is not performed, and is generated due to the mode hop noise of the semiconductor laser 120. It can be seen that the impulse waveform is removed.
- variable limit level realized by the limit level adjusting unit 190 is an appropriate limiter level according to the amplitude of the data. Specifically, when the data amplitude level during normal operation is low, the limiter level is automatically lowered. On the other hand, when the amplitude level of data during normal operation is high, the limiter level automatically increases. Therefore, an appropriate limiter level can always be selected regardless of fluctuations in the amplitude level of data during normal operation. . With this configuration, the blood flow output can be output as a more appropriate waveform.
- the measuring apparatus As described above, according to the measuring apparatus according to the second embodiment, as in the first embodiment, even if noise due to mode hops occurs, the influence is suppressed and more accurate blood flow measurement is performed. Is possible.
- the third embodiment differs from the first and second embodiments described above only in part of the configuration and operation, and many parts are the same as the first and second embodiments. For this reason, below, a different part from 1st and 2nd Example is demonstrated in detail, and description shall be abbreviate
- FIG. 15 is a block diagram showing the overall configuration of the measuring apparatus according to the third embodiment.
- the measurement apparatus includes a laser driving unit 110, a semiconductor laser 120, a light receiving element 130, an IV conversion unit 140, an analog amplitude limiter 150b, an amplifier 155, an A / A A D converter 160, a variable limiter processing unit 180b, and a blood flow calculation unit 170 are provided. That is, in the measurement apparatus according to the third embodiment, the analog amplitude limiter 150b and the variable limiter processing unit 180b that perform the limiter process are provided in each of the front stage and the rear stage of the A / D converter 160.
- the analog amplitude limiter 150b performs amplitude limitation by analog signal processing on the detection voltage output from the IV conversion unit 140. .
- the amplitude limitation in the analog amplitude limiter 150b is executed using a fixed limit level.
- variable limiter processing unit 180b performs amplitude limitation by digital signal processing on the data output from the A / D converter 160, similarly to the limiter processing unit 180 (see FIG. 10) according to the second embodiment. Unlike the analog amplitude limiter 150b, the amplitude limit in the variable limiter processing unit 180b is executed using a variable limit level.
- the limit level can be made variable to limit the amplitude more precisely. For this reason, more appropriate limit processing can be executed, and the influence of mode hop noise can be suppressed more appropriately.
- the limit process is performed by both the analog signal process and the digital signal process, and thus blood flow measurement can be more suitably performed. is there.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- General Physics & Mathematics (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
This measurement device is provided with an illuminating means (120) for illuminating a subject of measurement (200) with laser light, a light-receiving means (130) for receiving laser light scattered by said subject of measurement, a constraining means (150) for constraining the amplitude of an output signal from the light-receiving means to within prescribed bounds, and an outputting means (170) for outputting information regarding motion of the subject of measurement on the basis of a beat signal due to a laser-light Doppler shift in the output signal from the light-receiving means. Said measurement device minimizes the impact of mode hopping, allowing measurement to be performed in a suitable manner.
Description
本発明は、被測定対象において散乱された光を利用して、被測定対象の移動に関する情報を測定する測定装置及び測定方法の技術分野に関する。
The present invention relates to a technical field of a measurement apparatus and a measurement method for measuring information related to movement of a measurement target using light scattered in the measurement target.
この種の測定装置に用いられる半導体レーザは、レーザの温度の上昇に起因してバンドギャップが変化するため、温度の上昇に伴い発振波長は長波長へと徐々に変化する。そして、温度の上昇が続くと、あるタイミングで、次の長波長側の最大利得を有する波長に発振波長が突然飛び移る。この現象はモードホップと呼ばれ、例えば光ドップラを利用した測定装置における測定誤差の原因となることが知られている。
In the semiconductor laser used in this type of measuring apparatus, the band gap changes due to the rise in the laser temperature, so that the oscillation wavelength gradually changes to a long wavelength as the temperature rises. When the temperature continues to rise, the oscillation wavelength suddenly jumps to the wavelength having the maximum gain on the long wavelength side at a certain timing. This phenomenon is called mode hopping, and is known to cause a measurement error in a measuring apparatus using optical Doppler, for example.
特許文献1では、上述したモードホップの発生を抑制するために、ペルチェ素子を用いてレーザ光源の温度を制御するという技術が提案されている。
Patent Document 1 proposes a technique of controlling the temperature of a laser light source using a Peltier element in order to suppress the occurrence of the mode hop described above.
しかしながら、上述した特許文献1に記載されているような技術では、吸熱手段であるペルチェ素子の消費電力が大きく、加えて検温センサ及び制御IC等も必要になるため、構成部品も多く、コスト的に不利になるという技術的問題点がある。また、モードホップを抑制するためには、検温センサ及び吸熱手段で厳密に温度を管理する必要があり、モードホップの発生を完全になくすことは難しいという技術的問題点もある。
However, in the technique described in Patent Document 1 described above, the power consumption of the Peltier element, which is a heat absorption means, is large, and in addition, a temperature sensor and a control IC are required, so there are many components and cost is low. There is a technical problem that is disadvantageous. Further, in order to suppress mode hops, it is necessary to strictly control the temperature with a temperature sensor and an endothermic means, and there is a technical problem that it is difficult to completely eliminate mode hops.
本発明が解決しようとする課題には上記のようなものが一例として挙げられる。本発明は、モードホップが測定に及ぼす悪影響を抑制することが可能な測定装置及び測定方法を提供することを課題とする。
Examples of problems to be solved by the present invention include the above. An object of the present invention is to provide a measuring apparatus and a measuring method capable of suppressing an adverse effect of mode hops on measurement.
上記課題を解決するための測定装置は、被測定対象にレーザ光を照射する照射手段と、前記被測定対象によって散乱された前記レーザ光を受光する受光手段と、前記受光手段の出力信号の振幅を所定の範囲内に制限する制限手段と、前記受光手段の出力信号に含まれる前記レーザ光のドップラーシフトに起因するビート信号に基づいて、前記被測定対象の移動に関する情報を出力する出力手段とを備える。
A measuring apparatus for solving the above problems includes an irradiating means for irradiating a measurement target with laser light, a light receiving means for receiving the laser light scattered by the measurement target, and an amplitude of an output signal of the light receiving means. Limiting means for limiting the value within a predetermined range; and output means for outputting information on the movement of the measurement target based on a beat signal resulting from the Doppler shift of the laser light included in the output signal of the light receiving means; Is provided.
上記課題を解決するための測定方法は、被測定対象にレーザ光を照射する照射工程と、前記被測定対象によって散乱された前記レーザ光を受光する受光工程と、前記受光工程で得られる出力信号の振幅を所定の範囲内に制限する制限工程と、前記受光工程で得られる出力信号に含まれる前記レーザ光のドップラーシフトに起因するビート信号に基づいて、前記被測定対象の移動に関する情報を出力する出力工程とを備える。
A measurement method for solving the above problems includes an irradiation step of irradiating a measurement target with laser light, a light reception step of receiving the laser light scattered by the measurement target, and an output signal obtained in the light reception step The information on the movement of the measurement target is output based on a limiting process for limiting the amplitude of the laser beam to a predetermined range and a beat signal resulting from the Doppler shift of the laser light included in the output signal obtained in the light receiving process Output step.
<1>
本実施形態に係る測定装置は、被測定対象にレーザ光を照射する照射手段と、前記被測定対象によって散乱された前記レーザ光を受光する受光手段と、前記受光手段の出力信号の振幅を所定の範囲内に制限する制限手段と、前記受光手段の出力信号に含まれる前記レーザ光のドップラーシフトに起因するビート信号に基づいて、前記被測定対象の移動に関する情報を出力する出力手段とを備える。 <1>
The measurement apparatus according to the present embodiment is configured to irradiate laser light onto a measurement target, light reception means that receives the laser light scattered by the measurement target, and an amplitude of an output signal of the light reception means. Limiting means for limiting to within the range, and output means for outputting information on the movement of the measurement target based on a beat signal resulting from the Doppler shift of the laser light included in the output signal of the light receiving means. .
本実施形態に係る測定装置は、被測定対象にレーザ光を照射する照射手段と、前記被測定対象によって散乱された前記レーザ光を受光する受光手段と、前記受光手段の出力信号の振幅を所定の範囲内に制限する制限手段と、前記受光手段の出力信号に含まれる前記レーザ光のドップラーシフトに起因するビート信号に基づいて、前記被測定対象の移動に関する情報を出力する出力手段とを備える。 <1>
The measurement apparatus according to the present embodiment is configured to irradiate laser light onto a measurement target, light reception means that receives the laser light scattered by the measurement target, and an amplitude of an output signal of the light reception means. Limiting means for limiting to within the range, and output means for outputting information on the movement of the measurement target based on a beat signal resulting from the Doppler shift of the laser light included in the output signal of the light receiving means. .
本実施形態に係る測定装置によれば、その動作時には、被測定対象に対して、照射手段からレーザ光が照射される。照射手段は、例えば半導体レーザ素子等を含んで構成されており、その使用時には、被測定対象に効率的に光を照射できる位置に配置される。なお、被測定対象は、例えば生体の血液等の流体である。ただし、被測定対象は特に限定されるものではなく、移動するものであれば流体以外(例えば、個体)であっても構わない。
According to the measurement apparatus according to the present embodiment, the laser beam is irradiated from the irradiation unit to the measurement target during the operation. The irradiation means is configured to include, for example, a semiconductor laser element or the like, and is disposed at a position where the measurement target can be efficiently irradiated with light when used. The measurement target is a fluid such as blood of a living body. However, the measurement target is not particularly limited, and may be other than fluid (for example, an individual) as long as it moves.
照射手段から照射されたレーザ光は被測定対象において散乱(具体的には、反射及び透過)された後、受光手段で受光される。受光手段は、例えばフォトダイオード等を含んで構成され、受光した光に応じた出力信号を出力する。
The laser light emitted from the irradiation means is scattered (specifically reflected and transmitted) in the object to be measured and then received by the light receiving means. The light receiving means includes, for example, a photodiode and outputs an output signal corresponding to the received light.
ここで本実施形態では特に、受光手段の出力信号の振幅が、制限手段によって所定の範囲内に制限される。このため出力信号は、例えば振幅が所定の範囲を超えた部分がカットされた状態で出力されることになる。なお、ここでの「所定の範囲」とは、後述するようにモードホップに起因する影響を抑制するために、振幅制限の基準として設定される振幅の範囲(言い換えれば、振幅の上限値)である。所定の範囲は、事前のシミュレーション等によりモードホップによる影響を効果的に抑制できるような範囲として設定される。所定の範囲は固定値であってもよいし、測定状況等に応じて可変とされる値であってもよい。
Here, particularly in the present embodiment, the amplitude of the output signal of the light receiving means is limited within a predetermined range by the limiting means. For this reason, the output signal is output in a state where, for example, a portion where the amplitude exceeds a predetermined range is cut. Here, the “predetermined range” is an amplitude range (in other words, an upper limit value of amplitude) set as a reference for amplitude limitation in order to suppress the influence caused by the mode hop as will be described later. is there. The predetermined range is set as a range in which the influence by the mode hop can be effectively suppressed by a prior simulation or the like. The predetermined range may be a fixed value, or may be a value that can be changed according to a measurement situation or the like.
受光手段の出力信号は、出力手段から被測定対象の移動に関する情報を出力する際に用いられる。具体的には、出力手段では、受光手段の出力信号に含まれるレーザ光のドップラーシフト(以下、適宜「光ドップラ」と称する)に起因するビート信号に基づいて、被測定対象の移動に関する情報が算出される。なお、ここでの「移動に関する情報」とは、被測定対象の移動速度や移動量、移動方向の他、それらの情報を間接的に示す情報を含む広い概念である。
The output signal of the light receiving means is used when outputting information related to the movement of the measurement target from the output means. Specifically, in the output means, information on the movement of the measurement target is obtained based on a beat signal resulting from a Doppler shift (hereinafter referred to as “optical Doppler” as appropriate) of the laser light included in the output signal of the light receiving means. Calculated. Here, “information relating to movement” is a broad concept including information that indirectly indicates such information in addition to the movement speed, movement amount, and movement direction of the measurement target.
光ドップラを利用して被測定対象の移動に関する情報を出力しようとする場合、例えば照射手段の温度上昇に起因してモードホップが発生すると、測定結果に誤差が生じてしまうことがある。具体的には、モードホップに起因して受光手段の出力信号の振幅値が大きく変動する(例えば、振幅が瞬間的に極めて大きい値となる)ため、出力信号から得られる測定結果に不必要な変動が生ずることになる。
When using optical Doppler to output information related to the movement of the object to be measured, for example, if a mode hop occurs due to a temperature rise of the irradiation means, an error may occur in the measurement result. Specifically, the amplitude value of the output signal of the light receiving means greatly fluctuates due to the mode hop (for example, the amplitude instantaneously becomes a very large value), which is unnecessary for the measurement result obtained from the output signal. Variation will occur.
しかるに本実施形態では、上述したように、受光手段の出力信号の振幅が所定の範囲内に制限される。このため、仮にモードホップが発生したとしても、受光手段の出力信号からはモードホップによる変動部分が除かれる。これにより、被測定対象の移動に関する情報を出力する際に用いられる出力信号は、モードホップの影響を全く或いは殆ど受けていない状態のものとされる。従って、モードホップが発生している状況においても、被測定対象の移動に関する情報は正確なものとして出力される。
However, in this embodiment, as described above, the amplitude of the output signal of the light receiving means is limited within a predetermined range. For this reason, even if a mode hop occurs, the fluctuation portion due to the mode hop is excluded from the output signal of the light receiving means. As a result, the output signal used when outputting the information related to the movement of the measurement target is in a state in which it is not influenced by mode hops at all or almost. Therefore, even in a situation where a mode hop occurs, information regarding the movement of the measurement target is output as accurate.
以上説明したように、本実施形態に係る測定装置によれば、モードホップの影響を抑制して、正確に測定を行うことが可能である。
As described above, according to the measurement apparatus according to the present embodiment, it is possible to suppress the influence of mode hops and perform measurement accurately.
<2>
本実施形態に係る測定装置の一態様では、前記制限手段は、前記受光手段の出力信号の過去の振幅に応じて前記所定の範囲を変化させる。 <2>
In one aspect of the measuring apparatus according to the present embodiment, the limiting unit changes the predetermined range according to the past amplitude of the output signal of the light receiving unit.
本実施形態に係る測定装置の一態様では、前記制限手段は、前記受光手段の出力信号の過去の振幅に応じて前記所定の範囲を変化させる。 <2>
In one aspect of the measuring apparatus according to the present embodiment, the limiting unit changes the predetermined range according to the past amplitude of the output signal of the light receiving unit.
この態様によれば、受光手段の出力信号の振幅に関する情報が記憶され、その後の振幅の制限に利用される。より具体的には、例えば動作開始直後におけるモードホップ発生していない状況での受光手段の出力信号の振幅が記憶され、記憶された振幅のピークの平均値に所定の係数(例えば、1.1程度の多少の変動を許容するための係数)を乗じた値が所定の範囲として設定される。
According to this aspect, information relating to the amplitude of the output signal of the light receiving means is stored and used for the subsequent amplitude limitation. More specifically, for example, the amplitude of the output signal of the light receiving means in the situation where the mode hop has not occurred immediately after the start of the operation is stored, and a predetermined coefficient (for example, 1.1, for example) is stored in the average value of the stored amplitude peaks. A value obtained by multiplying a coefficient for allowing a slight variation in the degree is set as the predetermined range.
上述したように所定の範囲を可変とすれば、固定値である所定の範囲を利用する場合と比べて、より適切に出力信号の振幅を制限できる。具体的には、所定の範囲が大き過ぎて、出力信号からモードホップに起因する変動部分を除去できない、或いは所定の範囲が小さ過ぎて、出力信号からモードホップに起因しない部分(即ち、測定に利用すべき部分)までが除去されてしまうことを防止できる。従って、本態様によれば、より正確な測定結果を得ることが可能である。
As described above, if the predetermined range is variable, the amplitude of the output signal can be more appropriately limited as compared with the case where the predetermined range which is a fixed value is used. Specifically, the predetermined range is too large to remove the fluctuation part due to the mode hop from the output signal, or the predetermined range is too small to cause the part from the output signal not to cause the mode hop (i.e., for measurement). It is possible to prevent the removal of the portion to be used. Therefore, according to this aspect, it is possible to obtain a more accurate measurement result.
<3>
本実施形態に係る測定装置の他の態様では、前記制限手段は、前記受光手段の出力信号をアナログ信号からデジタル信号に変換する前の段階において振幅を制限する。 <3>
In another aspect of the measuring apparatus according to this embodiment, the limiting unit limits the amplitude at a stage before converting the output signal of the light receiving unit from an analog signal to a digital signal.
本実施形態に係る測定装置の他の態様では、前記制限手段は、前記受光手段の出力信号をアナログ信号からデジタル信号に変換する前の段階において振幅を制限する。 <3>
In another aspect of the measuring apparatus according to this embodiment, the limiting unit limits the amplitude at a stage before converting the output signal of the light receiving unit from an analog signal to a digital signal.
この態様によれば、出力信号の振幅がアナログ信号の状態で制限されるため、制限後の出力信号を、その後のA/D変換のDレンジに合わせて増幅させて、A/D変換による量子化誤差を低減することができる。この結果、A/D変換のビット長を小さく設定することが可能となり、A/D変換器のコストを低減できる。
According to this aspect, since the amplitude of the output signal is limited in the state of an analog signal, the output signal after limitation is amplified in accordance with the D range of the subsequent A / D conversion, and the quantum by the A / D conversion is increased. Error can be reduced. As a result, the bit length of A / D conversion can be set small, and the cost of the A / D converter can be reduced.
<4>
本実施形態に係る測定装置の他の態様では、前記制限手段は、前記受光手段の出力信号をアナログ信号からデジタル信号に変換した後の段階において振幅を制限する。 <4>
In another aspect of the measuring apparatus according to this embodiment, the limiting unit limits the amplitude at a stage after the output signal of the light receiving unit is converted from an analog signal to a digital signal.
本実施形態に係る測定装置の他の態様では、前記制限手段は、前記受光手段の出力信号をアナログ信号からデジタル信号に変換した後の段階において振幅を制限する。 <4>
In another aspect of the measuring apparatus according to this embodiment, the limiting unit limits the amplitude at a stage after the output signal of the light receiving unit is converted from an analog signal to a digital signal.
この態様によれば、出力信号の振幅がデジタル信号の状態で制限されるため、デジタル信号の特性を活かして、精度の高い制限処理を比較的容易に行うことが可能となる。
According to this aspect, since the amplitude of the output signal is limited by the state of the digital signal, it is possible to perform the highly accurate limiting process relatively easily by utilizing the characteristics of the digital signal.
<5>
本実施形態に係る測定装置の他の態様では、前記制限手段は、前記受光手段の出力信号をアナログ信号からデジタル信号に変換する前の段階及び後の段階の両方において夫々振幅を制限する。 <5>
In another aspect of the measuring apparatus according to the present embodiment, the limiting unit limits the amplitude in both the stage before and after the conversion of the output signal of the light receiving unit from an analog signal to a digital signal.
本実施形態に係る測定装置の他の態様では、前記制限手段は、前記受光手段の出力信号をアナログ信号からデジタル信号に変換する前の段階及び後の段階の両方において夫々振幅を制限する。 <5>
In another aspect of the measuring apparatus according to the present embodiment, the limiting unit limits the amplitude in both the stage before and after the conversion of the output signal of the light receiving unit from an analog signal to a digital signal.
この態様によれば、上述したアナログ段階で制限処理を行う利得、及びデジタル段階で制限処理を行う利得を両方享受できるため、極めて好適な測定を実現できる。
According to this aspect, it is possible to enjoy both the gain for performing the limiting process in the analog stage and the gain for performing the limiting process in the digital stage, so that a very suitable measurement can be realized.
なお、本態様では2段階で制限処理を行うことになるため、初めのアナログ段階での制限処理では、ある程度の余裕を持たせた制限(即ち、多少はモードホップに起因する成分が残ってもよい前提での制限)を行い、最後のデジタル段階での制限処理において精度の高い制限(即ち、モードホップに起因する成分をできるだけ除去できるような制限)を行うことが望ましい。
In this aspect, the restriction process is performed in two stages. Therefore, in the restriction process in the first analog stage, even if there is a restriction with a certain margin (that is, a component due to mode hops remains to some extent). It is desirable to perform a highly accurate restriction (that is, a restriction that can remove a component due to a mode hop as much as possible) in the restriction process in the last digital stage.
<6>
本実施形態に係る測定装置の他の態様では、前記受光手段は、前記レーザ光を電流に夫々変換して出力する第1及び第2光電変換素子部と、前記第1光電変換素子部が出力する電流と前記第2光電変換素子部が出力する電流との差分電流を検出電流として出力する差分電流出力部とを有する。 <6>
In another aspect of the measuring apparatus according to the present embodiment, the light receiving means outputs first and second photoelectric conversion element units that respectively convert the laser light into current and output, and the first photoelectric conversion element unit outputs A differential current output unit that outputs a differential current between a current to be output and a current output from the second photoelectric conversion element unit as a detection current.
本実施形態に係る測定装置の他の態様では、前記受光手段は、前記レーザ光を電流に夫々変換して出力する第1及び第2光電変換素子部と、前記第1光電変換素子部が出力する電流と前記第2光電変換素子部が出力する電流との差分電流を検出電流として出力する差分電流出力部とを有する。 <6>
In another aspect of the measuring apparatus according to the present embodiment, the light receiving means outputs first and second photoelectric conversion element units that respectively convert the laser light into current and output, and the first photoelectric conversion element unit outputs A differential current output unit that outputs a differential current between a current to be output and a current output from the second photoelectric conversion element unit as a detection current.
この態様によれば、レーザ光を電流に変換して出力するものとして、2つの光電変換素子部が設けられている。第1及び第2光電変換素子部の各々は、1又は複数の光電変換素子(例えばフォトダイオード等)からなり、入力光の光量に応じて電流を出力する。
According to this aspect, the two photoelectric conversion element portions are provided for converting laser light into current and outputting the current. Each of the first and second photoelectric conversion element units includes one or a plurality of photoelectric conversion elements (for example, photodiodes), and outputs a current according to the amount of input light.
より具体的には、第1及び第2光電変換素子部は、例えば第1光電変換素子部のカソードと第2光電変換素子部のアノードとが接続され且つ第1光電変換素子部のアノードと第2光電変換素子部のカソードとが接続されるように、並列接続されている。或いは、第1及び第2光電変換素子部は、互いにカソード同士又はアノード同士が接続されるように、直列接続されている。
More specifically, the first and second photoelectric conversion element units include, for example, a cathode of the first photoelectric conversion element unit and an anode of the second photoelectric conversion element unit, and an anode and a first photoelectric conversion element unit. The two photoelectric conversion element portions are connected in parallel so as to be connected. Alternatively, the first and second photoelectric conversion element portions are connected in series so that the cathodes or the anodes are connected to each other.
差分電流出力部は、第1光電変換素子部が出力する電流と第2光電変換素子部が出力する電流との差分電流を検出電流として出力する。これにより、第1及び第2光電変換素子部の各々から出力される電流のうちレーザ光に含まれる定常光成分に相当する電流成分(以下、適宜「DC(direct current)成分」と称する)を低減或いは除去して、レーザ光に含まれる信号光成分に相当する電流成分(以下、適宜「AC(alternate current)成分」と称する)を主として含む電流を検出電流として出力することができる。即ち、第1光電変換素子部が出力する電流のDC成分と、第2光電変換素子部が出力する電流のDC成分とを相殺させることができ、レーザ光に含まれる信号光成分に相当するAC成分を主として含む検出電流を出力することができる。
The differential current output unit outputs a differential current between the current output from the first photoelectric conversion element unit and the current output from the second photoelectric conversion element unit as a detection current. Accordingly, a current component corresponding to a steady light component included in the laser light (hereinafter referred to as a “DC (direct current) component” as appropriate) among the currents output from the first and second photoelectric conversion element units. A current mainly including a current component corresponding to a signal light component included in the laser light (hereinafter referred to as an “AC (alternate current) component” as appropriate) can be output as a detection current after being reduced or removed. That is, the DC component of the current output from the first photoelectric conversion element unit and the DC component of the current output from the second photoelectric conversion element unit can be canceled, and the AC corresponding to the signal light component included in the laser light. A detection current mainly including components can be output.
以上の結果、検出電流にはDC成分が殆ど或いは全く含まれていないので、例えば検出電流に含まれるDC成分が比較的大きい場合に発生し得る電流電圧変換回路(即ち、検出電流を電圧に変換する回路)の飽和現象の発生を回避しつつ、電流電圧変換回路による増幅の利得を大きくすることができる。
As a result, since the detection current contains little or no DC component, for example, a current-voltage conversion circuit that can be generated when the DC component contained in the detection current is relatively large (that is, the detection current is converted into a voltage). The gain of amplification by the current-voltage conversion circuit can be increased while avoiding the occurrence of the saturation phenomenon of the circuit).
更に、本態様によれば、レーザ光に含まれる信号光成分に相当するAC成分を主として含む電流を、検出電流として出力することができるので、出力信号のS/N比(signal-to-noise ratio)を向上させることができる。即ち、本態様によれば、第1及び第2光電変換素子部の各々から出力される電流のうち、レーザ光に定常光成分として含まれるノイズ成分に相当するDC成分を低減或いは除去して、信号成分に相当するAC成分を主として含む検出電流を出力するので、出力信号におけるS/N比を向上させることができる。
Furthermore, according to this aspect, since a current mainly including an AC component corresponding to the signal light component included in the laser light can be output as the detection current, the S / N ratio (signal-to-noise) of the output signal can be output. ratio) can be improved. That is, according to this aspect, the DC component corresponding to the noise component included as the steady light component in the laser light out of the current output from each of the first and second photoelectric conversion element units is reduced or removed, Since the detection current mainly including the AC component corresponding to the signal component is output, the S / N ratio in the output signal can be improved.
<7>
本実施形態に係る測定方法は、被測定対象にレーザ光を照射する照射工程と、前記被測定対象によって散乱された前記レーザ光を受光する受光工程と、前記受光工程で得られる出力信号の振幅を所定の範囲内に制限する制限工程と、前記受光工程で得られる出力信号に含まれる前記レーザ光のドップラーシフトに起因するビート信号に基づいて、前記被測定対象の移動に関する情報を出力する出力工程とを備える。 <7>
The measurement method according to the present embodiment includes an irradiation process for irradiating a measurement target with laser light, a light reception process for receiving the laser light scattered by the measurement target, and an amplitude of an output signal obtained in the light reception process. An output for outputting information related to the movement of the measurement object based on a beat signal resulting from a Doppler shift of the laser light included in the output signal obtained in the light receiving step A process.
本実施形態に係る測定方法は、被測定対象にレーザ光を照射する照射工程と、前記被測定対象によって散乱された前記レーザ光を受光する受光工程と、前記受光工程で得られる出力信号の振幅を所定の範囲内に制限する制限工程と、前記受光工程で得られる出力信号に含まれる前記レーザ光のドップラーシフトに起因するビート信号に基づいて、前記被測定対象の移動に関する情報を出力する出力工程とを備える。 <7>
The measurement method according to the present embodiment includes an irradiation process for irradiating a measurement target with laser light, a light reception process for receiving the laser light scattered by the measurement target, and an amplitude of an output signal obtained in the light reception process. An output for outputting information related to the movement of the measurement object based on a beat signal resulting from a Doppler shift of the laser light included in the output signal obtained in the light receiving step A process.
本実施形態の測定方法によれば、上述した本実施形態に係る測定装置と同様に、モードホップの影響を抑制して、正確に測定を行うことが可能である。
According to the measurement method of the present embodiment, it is possible to perform measurement accurately while suppressing the influence of mode hops, as in the measurement apparatus according to the present embodiment described above.
なお、本実施形態に係る測定方法においても、上述した本実施形態に係る測定装置における各種態様と同様の各種態様を採ることが可能である。
In the measurement method according to this embodiment, it is possible to adopt various aspects similar to the various aspects of the measurement apparatus according to this embodiment described above.
本実施形態に係る測定装置及び測定方法の作用及び他の利得については、以下に示す実施例において、より詳細に説明する。
The operation and other gains of the measuring apparatus and measuring method according to the present embodiment will be described in more detail in the following examples.
以下では、図面を参照して測定装置及び測定方法の実施例について詳細に説明する。なお、以下では、本発明に係る測定装置が、血流を測定する血流測定装置として構成される場合を例にとり説明する。
Hereinafter, embodiments of the measuring apparatus and the measuring method will be described in detail with reference to the drawings. In the following, a case where the measurement device according to the present invention is configured as a blood flow measurement device that measures blood flow will be described as an example.
<第1実施例>
第1実施例に係る測定装置について、図1から図9を参照して説明する。 <First embodiment>
A measuring apparatus according to the first embodiment will be described with reference to FIGS.
第1実施例に係る測定装置について、図1から図9を参照して説明する。 <First embodiment>
A measuring apparatus according to the first embodiment will be described with reference to FIGS.
<全体構成>
先ず、第1実施例に係る測定装置の全体構成について、図1を参照して説明する。ここに図1は、第1実施例に係る測定装置の全体構成を示すブロック図である。 <Overall configuration>
First, the overall configuration of the measuring apparatus according to the first embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing the overall configuration of the measuring apparatus according to the first embodiment.
先ず、第1実施例に係る測定装置の全体構成について、図1を参照して説明する。ここに図1は、第1実施例に係る測定装置の全体構成を示すブロック図である。 <Overall configuration>
First, the overall configuration of the measuring apparatus according to the first embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing the overall configuration of the measuring apparatus according to the first embodiment.
図1において、本実施例に係る測定装置は、レーザ駆動部110と、半導体レーザ120と、受光素子130と、I-V変換部140と、振幅リミッタ増幅器150と、A/D変換器160と、血流演算部170とを備えて構成されている。
In FIG. 1, the measuring apparatus according to the present embodiment includes a laser driving unit 110, a semiconductor laser 120, a light receiving element 130, an IV conversion unit 140, an amplitude limiter amplifier 150, an A / D converter 160, and the like. The blood flow calculation unit 170 is provided.
レーザ駆動部110は、半導体レーザ120を駆動するための電流を発生する。
The laser driver 110 generates a current for driving the semiconductor laser 120.
半導体レーザ120は、「照射手段」の一具体例であり、レーザ駆動部110において発生された駆動電流に応じたレーザ光を、被測定対象200(例えば、生体の皮膚等)に対して照射する。
The semiconductor laser 120 is a specific example of “irradiation means”, and irradiates the measurement target 200 (for example, skin of a living body) with laser light corresponding to the drive current generated in the laser drive unit 110. .
受光素子130は、「受光手段」の一具体例であり、半導体レーザ120から照射されたレーザ光のうち、血液200で散乱された散乱光を受光する。受光素子130は、受光した散乱光の強度に応じて検出電流を出力する。
The light receiving element 130 is a specific example of “light receiving means”, and receives scattered light scattered by the blood 200 out of the laser light emitted from the semiconductor laser 120. The light receiving element 130 outputs a detection current according to the intensity of the received scattered light.
I-V変換器140は、受光素子130から出力された検出電流を電圧に変換して、検出電圧を出力する。
The IV converter 140 converts the detection current output from the light receiving element 130 into a voltage and outputs a detection voltage.
振幅リミッタ増幅器150は、「制限手段」の一具体例であり、検出電圧にリミッタ処理を施すと共に増幅し、増幅信号として出力する。リミッタ処理については後に詳述する。
The amplitude limiter amplifier 150 is a specific example of “limiting means”, which performs a limiter process on the detected voltage, amplifies it, and outputs it as an amplified signal. The limiter process will be described in detail later.
A/D変換器160は、入力されるアナログの増幅信号を量子化し、デジタルのデータとして出力する。
The A / D converter 160 quantizes the input analog amplified signal and outputs it as digital data.
血流演算部170は、「出力手段」の一具体例であり、入力されるデータに基づいて血流(具体的には、血液200の流速等の移動に関する情報)を出力する。血流演算部170は、例えばDSP(Digital Signal Processor)として構成されており、入力されるデータに対して周波数解析等のデジタル信号処理を実行可能とされている。
The blood flow calculation unit 170 is a specific example of “output means”, and outputs a blood flow (specifically, information related to movement of the blood 200 such as a flow rate) based on input data. The blood flow calculation unit 170 is configured as a DSP (Digital Signal Processor), for example, and can perform digital signal processing such as frequency analysis on input data.
<動作説明>
以下では、上述した測定装置の動作について、引き続き図1を参照して詳細に説明する。 <Description of operation>
Below, operation | movement of the measuring apparatus mentioned above is demonstrated in detail with reference to FIG.
以下では、上述した測定装置の動作について、引き続き図1を参照して詳細に説明する。 <Description of operation>
Below, operation | movement of the measuring apparatus mentioned above is demonstrated in detail with reference to FIG.
図1において、本実施例に係る測定装置の動作時には、先ずレーザ駆動部110が、半導体レーザ120の閾値電流以上の規定の動作電流を発生し、半導体レーザ120に供給する。これにより、半導体レーザ120はレーザ発振する。
In FIG. 1, during the operation of the measuring apparatus according to the present embodiment, first, the laser driving unit 110 generates a specified operating current that is equal to or higher than the threshold current of the semiconductor laser 120 and supplies it to the semiconductor laser 120. Thereby, the semiconductor laser 120 oscillates.
半導体レーザ120は被測定対象200に対してレーザ光を出射すべく、クリップ等(図示せず)により被測定対象200に固定される。被測定対象200が生体の皮膚である場合、照射されたレーザ光は、固定物体である皮膚組織により散乱された散乱光、及び移動物体である毛細血管中の赤血球で散乱された散乱光となり、その両者が受光素子130によって受光される。
The semiconductor laser 120 is fixed to the measurement target 200 with a clip or the like (not shown) so as to emit laser light to the measurement target 200. When the measurement target 200 is living body skin, the irradiated laser light becomes scattered light scattered by a skin tissue that is a fixed object and scattered light scattered by red blood cells in a capillary that is a moving object, Both of them are received by the light receiving element 130.
ここで、皮膚組織により散乱された散乱光は参照光であり、赤血球で散乱された散乱光は赤血球の移動速度に対応して光ドップラーシフトを生じた散乱光である。これら2つの散乱光は、レーザ光の可干渉性により干渉を起こす。受光素子130は、この干渉の結果である光ビート信号の強度に対応して、検出電流を生じる。
Here, the scattered light scattered by the skin tissue is the reference light, and the scattered light scattered by the red blood cells is the scattered light that has caused an optical Doppler shift corresponding to the moving speed of the red blood cells. These two scattered lights cause interference due to the coherence of the laser light. The light receiving element 130 generates a detection current corresponding to the intensity of the optical beat signal as a result of this interference.
受光素子130は、半導体レーザ120と同様に、被測定対象200からの散乱光を受光すべくクリップ等(図示せず)により被測定対象200に固定されている。受光素子130が検出した光ビート信号に対応した検出電流は、I-V変換器140にて、電流電圧変換され、検出電圧として出力される。
Similarly to the semiconductor laser 120, the light receiving element 130 is fixed to the measurement target 200 with a clip or the like (not shown) so as to receive the scattered light from the measurement target 200. The detection current corresponding to the optical beat signal detected by the light receiving element 130 is converted into a current voltage by the IV converter 140 and output as a detection voltage.
以下では、受光素子130及びI-V変換器140の具体的な構成及び動作について、図2を参照して説明する。ここに図2は、受光素子及びI-∨変換器の具体的な構成を示す回路図である。
Hereinafter, specific configurations and operations of the light receiving element 130 and the IV converter 140 will be described with reference to FIG. FIG. 2 is a circuit diagram showing a specific configuration of the light receiving element and the I-∨ converter.
図2において、本実施例に係る受光素子130は、2つの受光素子130a及び130bを含んで構成されている。受光素子130a及び130bは、「第1光電変換素子部」及び「第2光電変換素子部」の一具体例であり、例えばPIN型半導体によるフォトディテクタとして構成されている。受光素子130a及び130bは、カソード同士が接続され、互いに逆向きに直列接続されている。このように構成すれば、DC成分を抑圧し、信号成分であるAC成分を効率よく検出できる。
In FIG. 2, the light receiving element 130 according to the present embodiment includes two light receiving elements 130a and 130b. The light receiving elements 130a and 130b are specific examples of a “first photoelectric conversion element unit” and a “second photoelectric conversion element unit”, and are configured as, for example, a photodetector using a PIN semiconductor. The light receiving elements 130a and 130b have cathodes connected to each other and are connected in series in opposite directions. If comprised in this way, DC component can be suppressed and AC component which is a signal component can be detected efficiently.
具体的には、受光素子130a及び130bの各々から出力される電流のうち入力光に含まれる定常光成分に相当する電流成分(以下「DC(direct current)成分」と適宜称する)を低減或いは除去して、入力光に含まれる信号光成分に相当する電流成分(以下「AC(alternate current)成分」と適宜称する)を主として含む電流を検出電流として出力することができる。即ち、受光素子130aの出力電流のDC成分と、受光素子130bの出力する電流のDC成分とを相殺させることができ、入力光に含まれる信号光成分に相当するAC成分を主として含む検出電流を出力することができる。
Specifically, a current component corresponding to a steady light component included in the input light (hereinafter referred to as “DC (direct current) component”) is reduced or removed from the current output from each of the light receiving elements 130a and 130b. Thus, a current mainly including a current component corresponding to the signal light component included in the input light (hereinafter appropriately referred to as “AC (alternate current) component”) can be output as the detection current. That is, the DC component of the output current of the light receiving element 130a and the DC component of the current output of the light receiving element 130b can be canceled, and a detection current mainly including an AC component corresponding to the signal light component included in the input light is obtained. Can be output.
例えば、受光素子130aの検出電流をId1、受光素子130bの検出電流をId2とすると、両者は極性が逆に直列接続されているため、検出電流は以下の数式(1)のようになる。
For example, assuming that the detection current of the light receiving element 130a is Id1 and the detection current of the light receiving element 130b is Id2, since both are connected in series with opposite polarities, the detection current is represented by the following formula (1).
Idt=Id2-Id1・・・(1)
また、受光素子130aが受光した散乱光と、受光素子130bが受光した散乱光とは、両者の経路が互いに異なっているため、光の波長を基準長さとすると、およそ無相関の信号となる。そのため、減算により、信号成分である光ビート信号の強度は、√2倍となる。 Idt = Id2-Id1 (1)
Further, since the scattered light received by thelight receiving element 130a and the scattered light received by the light receiving element 130b are different from each other, if the wavelength of the light is used as a reference length, the signal is approximately uncorrelated. Therefore, the intensity of the optical beat signal, which is a signal component, is multiplied by √2 by subtraction.
また、受光素子130aが受光した散乱光と、受光素子130bが受光した散乱光とは、両者の経路が互いに異なっているため、光の波長を基準長さとすると、およそ無相関の信号となる。そのため、減算により、信号成分である光ビート信号の強度は、√2倍となる。 Idt = Id2-Id1 (1)
Further, since the scattered light received by the
一方、DC電流は減算により相殺されるので、トランスインピーダンスアンプであるAmp1とAmp2の検出感度を高く設定しても飽和を防止できる。具体的には、帰還抵抗Rf1とRf2の抵抗値を高く設定することが可能となり、電流電圧変換感度が向上する。この結果、高い検出S/N(Signal-to-Noise ratio)が得られる。
On the other hand, since the DC current is canceled by subtraction, saturation can be prevented even if the detection sensitivity of Amp1 and Amp2 which are transimpedance amplifiers is set high. Specifically, the resistance values of the feedback resistors Rf1 and Rf2 can be set high, and the current-voltage conversion sensitivity is improved. As a result, a high detection S / N (Signal-to-Noise ratio) is obtained.
Amp1とAmp2の非反転入力端子は、接地されている。Amp1とAmp2の帰還抵抗Rf1とRf2の負帰還作用により、非反転端子と反転端子はイマジナリシュート状態であり、およそ同一電位となる。そのため、受光素子130aのアノードと受光素子130bのアノードとは同一電位となり、P受光素子130aと受光素子130bとは所謂発電モードで動作している。この発電モードにより、暗電流が抑圧され、暗電流ゆらぎによるノイズ増加が抑圧できる。
The non-inverting input terminals of Amp1 and Amp2 are grounded. Due to the negative feedback action of the feedback resistors Rf1 and Rf2 of Amp1 and Amp2, the non-inversion terminal and the inversion terminal are in an imaginary shoot state and have approximately the same potential. Therefore, the anode of the light receiving element 130a and the anode of the light receiving element 130b are at the same potential, and the P light receiving element 130a and the light receiving element 130b operate in a so-called power generation mode. With this power generation mode, dark current is suppressed, and noise increase due to dark current fluctuation can be suppressed.
Amp1の検出電圧Vd1及びAmp2の検出電圧Vd2は、以下の数式(2)、(3)のようになる。
The detection voltage Vd1 of Amp1 and the detection voltage Vd2 of Amp2 are as shown in the following formulas (2) and (3).
Vd1=Rf1・Idt ・・・(2)
Vd2=Rf2・(-Idt)・・・(3)
Amp3は、Amp1とAmp2の検出電圧を差動増幅し、Voutとして出力する。この差動増幅により、電源ノイズやハム等の同相ノイズは除去される。 Vd1 = Rf1 · Idt (2)
Vd2 = Rf2 · (−Idt) (3)
Amp3 differentially amplifies the detection voltage of Amp1 and Amp2 and outputs it as Vout. This differential amplification removes common mode noise such as power supply noise and hum.
Vd2=Rf2・(-Idt)・・・(3)
Amp3は、Amp1とAmp2の検出電圧を差動増幅し、Voutとして出力する。この差動増幅により、電源ノイズやハム等の同相ノイズは除去される。 Vd1 = Rf1 · Idt (2)
Vd2 = Rf2 · (−Idt) (3)
Amp3 differentially amplifies the detection voltage of Amp1 and Amp2 and outputs it as Vout. This differential amplification removes common mode noise such as power supply noise and hum.
ここで、Ra1=Ra2=Ra、Rb1=Rb2=Rbとなるように抵抗値を設定すると、Voutは、以下の数式(4)のようになる。
Here, when the resistance value is set so that Ra1 = Ra2 = Ra and Rb1 = Rb2 = Rb, Vout is expressed by the following formula (4).
Vout=(Rb/Ra)(Vd1-Vd2) ・・・(4)
上記数式(2)、(3)及び(4)から、Rf1=Rf2=Rfとなるように抵抗値を設定すると、Voutは、以下の数式(5)のようになる。 Vout = (Rb / Ra) (Vd1-Vd2) (4)
From the above equations (2), (3), and (4), when the resistance value is set so that Rf1 = Rf2 = Rf, Vout is expressed by the following equation (5).
上記数式(2)、(3)及び(4)から、Rf1=Rf2=Rfとなるように抵抗値を設定すると、Voutは、以下の数式(5)のようになる。 Vout = (Rb / Ra) (Vd1-Vd2) (4)
From the above equations (2), (3), and (4), when the resistance value is set so that Rf1 = Rf2 = Rf, Vout is expressed by the following equation (5).
Vout=2Rf(Rb/Ra)Idt ・・・(5)
上記数式(5)から、信号成分である光ビート信号の強度に対応した、検出電圧Voutが得られることが分かる。 Vout = 2Rf (Rb / Ra) Idt (5)
From the above equation (5), it can be seen that the detection voltage Vout corresponding to the intensity of the optical beat signal as the signal component can be obtained.
上記数式(5)から、信号成分である光ビート信号の強度に対応した、検出電圧Voutが得られることが分かる。 Vout = 2Rf (Rb / Ra) Idt (5)
From the above equation (5), it can be seen that the detection voltage Vout corresponding to the intensity of the optical beat signal as the signal component can be obtained.
図1に戻り、I-V変換器140から出力された検出電圧は、振幅リミッタ増幅器150に入力され、増幅信号として出力される。以下では、振幅リミッタ増幅器150の具体的な構成及び動作について、図3及び4を参照して説明する。ここに図3は振幅リミッタ増幅器の具体的な構成を示すブロック図である。また図4は、振幅リミッタ部の具体的な構成を示す回路図である。
Returning to FIG. 1, the detection voltage output from the IV converter 140 is input to the amplitude limiter amplifier 150 and output as an amplified signal. Hereinafter, a specific configuration and operation of the amplitude limiter amplifier 150 will be described with reference to FIGS. FIG. 3 is a block diagram showing a specific configuration of the amplitude limiter amplifier. FIG. 4 is a circuit diagram showing a specific configuration of the amplitude limiter unit.
図3において、振幅リミッタ増幅器150に入力された検出電圧は、先ず可変増幅器151に入力される。可変増幅器151の制御端子には、外部のCPU(図示せず)からゲイン設定値が入力される。可変増幅器151は、ゲイン設定値に従い、規定のゲインで検出電圧を増幅し、BPF部152に出力する。
In FIG. 3, the detection voltage input to the amplitude limiter amplifier 150 is first input to the variable amplifier 151. A gain setting value is input to the control terminal of the variable amplifier 151 from an external CPU (not shown). The variable amplifier 151 amplifies the detection voltage with a specified gain according to the gain setting value, and outputs the amplified detection voltage to the BPF unit 152.
BPF部152は、ハム信号等の低周波ノイズと、SW電源からの高周波ノイズを抑圧するための帯域通過フィルタを構成している。BPF152分の出力は、振幅リミッタ部153に入力される。
The BPF unit 152 constitutes a band pass filter for suppressing low frequency noise such as a hum signal and high frequency noise from the SW power source. The output of BPF 152 is input to the amplitude limiter unit 153.
図4に示すように、振幅リミッタ部153は、抵抗Ri、ダイオードD1及びD2により構成される。抵抗Riは、ダイオードD1及びD2の各々のオン抵抗に比較して大きく設定されており、これによりダイオードD1及びD2の順方向電圧を超えた信号振幅が制限される。このように、振幅リミッタ部153は、所謂ダイオードリミッタを構成している。振幅リミッタ部153の出力は、AC増幅器154に入力される。
As shown in FIG. 4, the amplitude limiter unit 153 includes a resistor Ri and diodes D1 and D2. The resistor Ri is set to be larger than the on-resistances of the diodes D1 and D2, thereby limiting the signal amplitude exceeding the forward voltage of the diodes D1 and D2. Thus, the amplitude limiter unit 153 constitutes a so-called diode limiter. The output of the amplitude limiter unit 153 is input to the AC amplifier 154.
AC増幅器154は、A/D変換のDレンジに対して適切な振幅が得られるように信号を増幅し、増幅信号として出力する。具体的には、A/D変換器160の入力Dレンジが±1.4V、ダイオードリミット振幅が±0.7Vの場合、AC増幅器のゲインは2倍に設定すればよい。
The AC amplifier 154 amplifies the signal so as to obtain an appropriate amplitude with respect to the D range of A / D conversion, and outputs it as an amplified signal. Specifically, when the input D range of the A / D converter 160 is ± 1.4V and the diode limit amplitude is ± 0.7V, the gain of the AC amplifier may be set to double.
再び図1に戻り、振幅リミッタ増幅器150の出力である増幅信号は、A/D変換器160に入力される。A/D変換器160は、入力された増幅信号を規定のサンプリング周波数にて量子化し、デジタル値としてのデータを出力する。
Returning to FIG. 1 again, the amplified signal that is the output of the amplitude limiter amplifier 150 is input to the A / D converter 160. The A / D converter 160 quantizes the input amplified signal at a specified sampling frequency and outputs data as a digital value.
A/D変換器160から出力されたデータは、血流演算部170によりデジタル信号処理され、血流に関する情報が出力される。以下では、血流演算部170の具体的な構成及び動作について、図5及び図6を参照して説明する。ここに図5は、血流演算部の具体的な構成を示すブロック図である。また図6は、血流スペクトルの具体例を示すグラフである。
The data output from the A / D converter 160 is subjected to digital signal processing by the blood flow calculation unit 170, and information relating to blood flow is output. Below, the specific structure and operation | movement of the blood flow calculating part 170 are demonstrated with reference to FIG.5 and FIG.6. FIG. 5 is a block diagram showing a specific configuration of the blood flow calculation unit. FIG. 6 is a graph showing a specific example of a blood flow spectrum.
図5において、血流演算部170に入力されたデータは、先ずハニング窓処理部171に入力される。ハニング窓処理部171は、FFT(高速フーリエ変換)の前処理としてのハニング窓処理を実行する。
In FIG. 5, data input to the blood flow calculation unit 170 is first input to the Hanning window processing unit 171. The Hanning window processing unit 171 executes Hanning window processing as preprocessing for FFT (Fast Fourier Transform).
FFT処理部172は、窓関数により制限されたデータを、FFT処理により周波数解析する。
The FFT processing unit 172 performs frequency analysis on the data limited by the window function by FFT processing.
2乗演算部173は、周波数解析データに複素共役処理を実行し、パワースペクトルP(f)を取得する。
The square calculation unit 173 performs complex conjugate processing on the frequency analysis data, and acquires the power spectrum P (f).
1次モーメント積算部174は、得られたパワースペクトルP(f)に周波数ベクトルfを乗算し、更に規定帯域内で積算して、Σ{f・P(f)}を得る。
The first moment integration unit 174 multiplies the obtained power spectrum P (f) by the frequency vector f, and further integrates it within the specified band to obtain Σ {f · P (f)}.
LPF部175は、Σ{f・P(f)}信号の高周波成分を除去し、規定のゲインを乗算する。これにより、血流出力が得られる。
The LPF unit 175 removes the high-frequency component of the Σ {f · P (f)} signal and multiplies it by a specified gain. Thereby, a blood flow output is obtained.
図6に示すように、血流が低いとき、即ち毛細血管内を流れる散乱体である血球の流れる速度が遅い場合、光ビート信号のパワースペクトルP(f)については、図中の点線で示したような特性が得られ、低周波成分が高周波成分に比較してより多く含まれる。一方、血流が高いとき、即ち毛細血管内を流れる散乱体である血球の流れる速度が速い場合、光ビート信号のパワースペクトルP(f)については、図中の実線で示したような特性が得られ、高周波成分が低周波成分に比較してより多く含まれる。
As shown in FIG. 6, when the blood flow is low, that is, when the velocity of blood cells, which are scatterers flowing in the capillary, is slow, the power spectrum P (f) of the optical beat signal is indicated by a dotted line in the figure. Thus, the low frequency component is included more than the high frequency component. On the other hand, when the blood flow is high, that is, when the flow velocity of blood cells, which are scatterers flowing in the capillaries, is fast, the power spectrum P (f) of the optical beat signal has the characteristics shown by the solid line in the figure. As a result, the high frequency component is contained more than the low frequency component.
このように、移動体の速度が速い場合、散乱光のドップラーシフト量が増加する。よって、光ビート信号の周波数スペクトルは、周波数が高い領域の成分がより増加し、図6のような特性を示すことになる。
Thus, when the moving body is fast, the Doppler shift amount of scattered light increases. Therefore, in the frequency spectrum of the optical beat signal, components in a high frequency region are further increased, and the characteristics as shown in FIG. 6 are exhibited.
なお、血流演算部170は、光ビート信号のパワースペクトル変化を効率的に検出すべく演算を行う。本実施例ではFFTによる周波数解析を利用した方式を説明したが、この方式に限定されるものではない。
Note that the blood flow calculation unit 170 performs calculation to efficiently detect the power spectrum change of the optical beat signal. In this embodiment, a method using frequency analysis by FFT has been described, but the present invention is not limited to this method.
<モードホップに対する効果>
次に、本実施例に係る測定装置によって得られる効果について、図7から図9を参照して説明する。ここに図7から図9は夫々、増幅信号及び血流出力を示すグラフである。なお、図7から図9で示されているグラフの横軸は時間であり、0秒から27秒に対応している。 <Effects on mode hops>
Next, effects obtained by the measuring apparatus according to the present embodiment will be described with reference to FIGS. 7 to 9 are graphs showing the amplified signal and the blood flow output, respectively. Note that the horizontal axis of the graphs shown in FIGS. 7 to 9 is time, which corresponds to 0 to 27 seconds.
次に、本実施例に係る測定装置によって得られる効果について、図7から図9を参照して説明する。ここに図7から図9は夫々、増幅信号及び血流出力を示すグラフである。なお、図7から図9で示されているグラフの横軸は時間であり、0秒から27秒に対応している。 <Effects on mode hops>
Next, effects obtained by the measuring apparatus according to the present embodiment will be described with reference to FIGS. 7 to 9 are graphs showing the amplified signal and the blood flow output, respectively. Note that the horizontal axis of the graphs shown in FIGS. 7 to 9 is time, which corresponds to 0 to 27 seconds.
図7に示す波形は、半導体レーザ120が安定してシングルモードで発振している状態、即ちモードホップを生じていない場合に得られる波形の一例である。この場合は、モードホップが生じていないため、増幅信号にノイズが殆ど存在していない。このため、振幅リミッタ処理を行わずとも、正確な血流出力が得られている。
The waveform shown in FIG. 7 is an example of a waveform obtained when the semiconductor laser 120 is stably oscillating in a single mode, that is, when no mode hop occurs. In this case, since no mode hop occurs, almost no noise is present in the amplified signal. For this reason, an accurate blood flow output is obtained without performing the amplitude limiter process.
図8に示す波形は、半導体レーザ120がモードホップにより不安定な発振状態にある場合に得られる波形の一例である。この場合は、図7と比較しても分かるように、モードホップの発生に起因して、増幅信号に多くのノイズが存在している。このため、振幅リミッタ処理を行わないと、血流出力の脈波に乱れが生じてしまう。
The waveform shown in FIG. 8 is an example of a waveform obtained when the semiconductor laser 120 is in an unstable oscillation state due to mode hopping. In this case, as can be seen from comparison with FIG. 7, a lot of noise is present in the amplified signal due to the occurrence of mode hops. For this reason, if the amplitude limiter process is not performed, the pulse wave of the blood flow output is disturbed.
図9に示す波形は、図8の場合と同様に、半導体レーザ120がモードホップにより不安定な発振状態にある場合に得られる波形の一例であるが、本実施例に係る振幅リミッタ処理を行って復調している。このため、振幅リミッタ増幅器150の振幅制限作用により、ノイズ成分が抑圧されている。その結果、血流出力における脈波の乱れは、最小限に抑えられ、図7の場合と同様に、モードホップしていない(即ち、ノイズのない)状態に近い波形が得られている。
The waveform shown in FIG. 9 is an example of a waveform obtained when the semiconductor laser 120 is in an unstable oscillation state due to mode hops, as in FIG. 8, but the amplitude limiter processing according to this embodiment is performed. Demodulating. For this reason, the noise component is suppressed by the amplitude limiting action of the amplitude limiter amplifier 150. As a result, the disturbance of the pulse wave in the blood flow output is suppressed to a minimum, and a waveform close to a state in which mode hopping is not performed (that is, no noise) is obtained as in the case of FIG.
以上説明したように、第1実施例に係る測定装置によれば、半導体レーザ120のモードホップによるノイズが生じても、その影響を抑圧して、より正確な血流測定を実施することが可能である。また、半導体レーザ120のモードホップ自体を除去しようとすれば、高価な温度制御システム等を導入することが求められるが、本実施例ではモードホップ自体を除去する必要はないため、低コスト化を実現できる。更には、消費電力の大きな温度制御システムが必要なくなれば電池駆動が可能となり、装置の小型化を実現することができる。
As described above, according to the measurement apparatus of the first embodiment, even if noise due to the mode hop of the semiconductor laser 120 occurs, the influence can be suppressed and more accurate blood flow measurement can be performed. It is. Further, if the mode hop itself of the semiconductor laser 120 is to be removed, it is required to introduce an expensive temperature control system or the like. However, in this embodiment, it is not necessary to remove the mode hop itself. realizable. Furthermore, if a temperature control system with high power consumption is not required, battery driving is possible, and the apparatus can be miniaturized.
<第2実施例>
次に、第2実施例に係る測定装置について、図10から図14を参照して説明する。なお、第2実施例は、上述した第1実施例と比べて一部の構成及び動作が異なるのみで、多くの部分は第1実施例と同様である。このため、以下では第1実施例と異なる部分について詳細に説明し、重複する部分については適宜説明を省略するものとする。 <Second embodiment>
Next, a measuring apparatus according to the second embodiment will be described with reference to FIGS. The second embodiment is different from the first embodiment described above only in part of the configuration and operation, and many parts are the same as the first embodiment. For this reason, below, a different part from 1st Example is demonstrated in detail, and description is abbreviate | omitted suitably about the overlapping part.
次に、第2実施例に係る測定装置について、図10から図14を参照して説明する。なお、第2実施例は、上述した第1実施例と比べて一部の構成及び動作が異なるのみで、多くの部分は第1実施例と同様である。このため、以下では第1実施例と異なる部分について詳細に説明し、重複する部分については適宜説明を省略するものとする。 <Second embodiment>
Next, a measuring apparatus according to the second embodiment will be described with reference to FIGS. The second embodiment is different from the first embodiment described above only in part of the configuration and operation, and many parts are the same as the first embodiment. For this reason, below, a different part from 1st Example is demonstrated in detail, and description is abbreviate | omitted suitably about the overlapping part.
<全体構成>
第2実施例に係る測定装置の全体構成について、図10を参照して説明する。ここに図10は、第2実施例に係る測定装置の全体構成を示すブロック図である。 <Overall configuration>
The overall configuration of the measuring apparatus according to the second embodiment will be described with reference to FIG. FIG. 10 is a block diagram showing the overall configuration of the measuring apparatus according to the second embodiment.
第2実施例に係る測定装置の全体構成について、図10を参照して説明する。ここに図10は、第2実施例に係る測定装置の全体構成を示すブロック図である。 <Overall configuration>
The overall configuration of the measuring apparatus according to the second embodiment will be described with reference to FIG. FIG. 10 is a block diagram showing the overall configuration of the measuring apparatus according to the second embodiment.
図10において、第2実施例に係る測定装置は、レーザ駆動部110と、半導体レーザ120と、受光素子130と、I-V変換部140と、増幅器155と、A/D変換器160と、血流演算部170と、リミッタ処理部180とを備えて構成されている。即ち、第2実施例に係る測定装置では、第1実施例に係る振幅リミッタ増幅器150(図1参照)のリミッタ処理を行う部分が、リミッタ処理部180として、A/D変換器160の後段に独立して設けられている。
In FIG. 10, the measurement apparatus according to the second embodiment includes a laser driving unit 110, a semiconductor laser 120, a light receiving element 130, an IV conversion unit 140, an amplifier 155, an A / D converter 160, The blood flow calculation unit 170 and the limiter processing unit 180 are provided. In other words, in the measuring apparatus according to the second embodiment, the part that performs the limiter process of the amplitude limiter amplifier 150 (see FIG. 1) according to the first embodiment serves as a limiter processing unit 180 in the subsequent stage of the A / D converter 160. It is provided independently.
リミッタ処理部180は、A/D変換器160から入力されたデジタルのデータの振幅を、デジタル信号処理により制限し、リミットデータとして血流演算部170に出力する。
The limiter processing unit 180 limits the amplitude of the digital data input from the A / D converter 160 by digital signal processing, and outputs it to the blood flow calculation unit 170 as limit data.
なお、増幅器155は、第1実施例に係る振幅リミッタ増幅器150とは異なり、アナログ処理による振幅制限を実施せず、I-V変換部140から入力された検出電圧を増幅して、増幅信号としてA/D変換器160に出力する。
Note that, unlike the amplitude limiter amplifier 150 according to the first embodiment, the amplifier 155 does not limit the amplitude by analog processing, but amplifies the detection voltage input from the IV conversion unit 140 to obtain an amplified signal. Output to the A / D converter 160.
<リミッタ処理部の具体的な構成>
次に、リミッタ処理部180の具体的な構成について、図11を参照して説明する。ここに図11は、リミッタ処理部の具体的な構成を示すブロック図である。 <Specific Configuration of Limiter Processing Unit>
Next, a specific configuration of thelimiter processing unit 180 will be described with reference to FIG. FIG. 11 is a block diagram showing a specific configuration of the limiter processing unit.
次に、リミッタ処理部180の具体的な構成について、図11を参照して説明する。ここに図11は、リミッタ処理部の具体的な構成を示すブロック図である。 <Specific Configuration of Limiter Processing Unit>
Next, a specific configuration of the
図11において、リミッタ処理部180に入力されたデータは、先ず正側レベル比較部181に入力される。正側レベル比較部181は、入力されたデータとリミットレベル(即ち、所定の振幅制限値)とを比較する。そして、入力データがリミットレベルより大きい場合、第1データ入れ替え部182において入力データをリミットレベルに入れ替える。同様に、リミットレベルは-1倍処理部183において符号反転され、負側レベル比較部184において入力データと比較される。-1倍されたリミットレベルより、入力データが小さい場合(即ち、負の振幅が大きい場合)、第2データ入れ替え部185において、入力データは-1倍されたリミットレベルに入れ替えられる。この結果、入力データの振幅は、リミットレベルに応じて振幅制限されて、リミットデータとして出力される。
In FIG. 11, the data input to the limiter processing unit 180 is first input to the positive side level comparison unit 181. The positive level comparing unit 181 compares the input data with a limit level (that is, a predetermined amplitude limit value). When the input data is larger than the limit level, the first data switching unit 182 switches the input data to the limit level. Similarly, the limit level is inverted in sign by the -1 time processing unit 183 and compared with the input data in the negative side level comparison unit 184. When the input data is smaller than the limit level multiplied by −1 (that is, when the negative amplitude is large), the second data switching unit 185 replaces the input data with the limit level multiplied by −1. As a result, the amplitude of the input data is limited according to the limit level and output as limit data.
<リミットレベル調整部>
上述したリミッタ処理部180は、リミットレベル調整部を備えることで、可変リミッタ処理部として構成されてもよい。以下では、リミットレベル調整部について、図12を参照して説明する。ここに図12は、リミットレベル調整部の具体的な構成を示すブロック図である。 <Limit level adjustment unit>
Thelimiter processing unit 180 described above may be configured as a variable limiter processing unit by including a limit level adjustment unit. Below, a limit level adjustment part is demonstrated with reference to FIG. FIG. 12 is a block diagram showing a specific configuration of the limit level adjustment unit.
上述したリミッタ処理部180は、リミットレベル調整部を備えることで、可変リミッタ処理部として構成されてもよい。以下では、リミットレベル調整部について、図12を参照して説明する。ここに図12は、リミットレベル調整部の具体的な構成を示すブロック図である。 <Limit level adjustment unit>
The
図12において、リミットレベル調整部190は、A/D変換器160と、リミッタ処理部180との間に設けられている。リミットレベル調整部190に入力されたデータは、バッファリング部191においてnポイント蓄積される。なお、蓄積データ数であるnは、例えば血流演算部170でのFFT処理に必要なデータ数を選べばよい。
12, the limit level adjustment unit 190 is provided between the A / D converter 160 and the limiter processing unit 180. The data input to the limit level adjustment unit 190 is accumulated n points in the buffering unit 191. Note that n, which is the number of accumulated data, may be selected, for example, the number of data necessary for the FFT processing in the blood flow calculation unit 170.
ピーク検出部192は、蓄積されたデータのピーク値を検出する。LPF部193は、ピーク検出部192において検出されたピーク量を平均化する。このため、LPF部193の出力は、ピーク量の平均値となる。
The peak detector 192 detects the peak value of the accumulated data. The LPF unit 193 averages the peak amounts detected by the peak detection unit 192. For this reason, the output of the LPF unit 193 is an average value of peak amounts.
ゲイン乗算部194は、LPF部193の出力であるピーク量の平均値に対して、所定のゲイン(例えば1.1倍)を乗算する。上限設定部195は、ゲイン乗算部194の出力と所定の上限値(即ち、リミットレベル)と比較し、所定の上限値より大きい場合は、所定の上限値に置き換えられ、可変リミットレベルとして出力される。一方、所定の上限値より大きくない場合は、そのまま可変リミットレベルとして出力される。
The gain multiplying unit 194 multiplies the average value of the peak amount, which is the output of the LPF unit 193, by a predetermined gain (for example, 1.1 times). The upper limit setting unit 195 compares the output of the gain multiplication unit 194 with a predetermined upper limit value (that is, a limit level). If the upper limit setting unit 195 is larger than the predetermined upper limit value, the upper limit setting unit 195 is replaced with the predetermined upper limit value and output as a variable limit level. The On the other hand, when it is not larger than the predetermined upper limit value, it is output as a variable limit level as it is.
他方で、バッファリング部191の出力は、リミッタ処理部180にも入力される。リミッタ処理部180は、バッファリングされたデータと、可変リミットレベルとを比較し、可変リミットレベルを超えたデータに対しては可変リミットレベルへの置き換え処理を実行する。この処理は、図11で説明したリミッタ処理部180が実行する処理と同様の処理である。
On the other hand, the output of the buffering unit 191 is also input to the limiter processing unit 180. The limiter processing unit 180 compares the buffered data with the variable limit level, and executes a process of replacing the data exceeding the variable limit level with the variable limit level. This process is the same as the process executed by the limiter processing unit 180 described with reference to FIG.
<モードホップに対する効果>
次に、第2実施例に係る測定装置によって得られる効果について、図13及び図14を参照して説明する。ここに図13は、リミッタ処理を行わないデータ及び対応する血流出力を示すグラフである。また図14は、リミッタ処理を行ったデータ及び対応する血流出力を示すグラフである。 <Effects on mode hops>
Next, effects obtained by the measuring apparatus according to the second embodiment will be described with reference to FIGS. FIG. 13 is a graph showing data not subjected to limiter processing and the corresponding blood flow output. FIG. 14 is a graph showing data subjected to limiter processing and the corresponding blood flow output.
次に、第2実施例に係る測定装置によって得られる効果について、図13及び図14を参照して説明する。ここに図13は、リミッタ処理を行わないデータ及び対応する血流出力を示すグラフである。また図14は、リミッタ処理を行ったデータ及び対応する血流出力を示すグラフである。 <Effects on mode hops>
Next, effects obtained by the measuring apparatus according to the second embodiment will be described with reference to FIGS. FIG. 13 is a graph showing data not subjected to limiter processing and the corresponding blood flow output. FIG. 14 is a graph showing data subjected to limiter processing and the corresponding blood flow output.
図13及び図14において、リミッタ処理実行時のリミットデータは、リミッタ処理を行わない場合のデータに比較して、可変リミットレベルで波形が制限されており、半導体レーザ120のモードホップノイズにより生じたインパルス状の波形を除去していることが分かる。
In FIG. 13 and FIG. 14, the limit data at the time of executing the limiter process is limited in waveform by the variable limit level as compared with the data when the limiter process is not performed, and is generated due to the mode hop noise of the semiconductor laser 120. It can be seen that the impulse waveform is removed.
なお、リミットレベル調整部190により実現される可変リミットレベルは、データの振幅に応じて適切なリミッタレベルとされる。具体的には、通常動作時のデータの振幅レベルが低い場合は、リミッタレベルは自動的に低下する。逆に、通常動作時のデータの振幅レベルが高い場合は、リミッタレベルは自動的に上昇するので、通常動作時のデータの振幅レベルの変動によらず、常に適切なリミッタレベルが選択可能となる。この構成により、血流出力をより適切な波形として出力することが可能となる。
Note that the variable limit level realized by the limit level adjusting unit 190 is an appropriate limiter level according to the amplitude of the data. Specifically, when the data amplitude level during normal operation is low, the limiter level is automatically lowered. On the other hand, when the amplitude level of data during normal operation is high, the limiter level automatically increases. Therefore, an appropriate limiter level can always be selected regardless of fluctuations in the amplitude level of data during normal operation. . With this configuration, the blood flow output can be output as a more appropriate waveform.
ちなみに、図13及び14で示す例では、リミッタ処理を行わない場合、0.5秒より短い周期の偽の脈波が検出されている。一方、リミッタ処理実行時は、0.5秒より短い周期の偽の脈波が抑圧されている。
Incidentally, in the example shown in FIGS. 13 and 14, when the limiter process is not performed, a false pulse wave with a period shorter than 0.5 seconds is detected. On the other hand, when the limiter process is executed, a false pulse wave having a period shorter than 0.5 seconds is suppressed.
以上説明したように、第2実施例に係る測定装置によれば、第1実施例と同様に、モードホップによるノイズが生じても、その影響を抑圧して、より正確な血流測定を実施することが可能である。
As described above, according to the measuring apparatus according to the second embodiment, as in the first embodiment, even if noise due to mode hops occurs, the influence is suppressed and more accurate blood flow measurement is performed. Is possible.
<第3実施例>
次に、第3実施例に係る測定装置について、図15を参照して説明する。なお、第3実施例は、上述した第1及び第2実施例と比べて一部の構成及び動作が異なるのみで、多くの部分は第1及び第2実施例と同様である。このため、以下では第1及び第2実施例と異なる部分について詳細に説明し、重複する部分については適宜説明を省略するものとする。 <Third embodiment>
Next, a measuring apparatus according to the third embodiment will be described with reference to FIG. The third embodiment differs from the first and second embodiments described above only in part of the configuration and operation, and many parts are the same as the first and second embodiments. For this reason, below, a different part from 1st and 2nd Example is demonstrated in detail, and description shall be abbreviate | omitted suitably about the overlapping part.
次に、第3実施例に係る測定装置について、図15を参照して説明する。なお、第3実施例は、上述した第1及び第2実施例と比べて一部の構成及び動作が異なるのみで、多くの部分は第1及び第2実施例と同様である。このため、以下では第1及び第2実施例と異なる部分について詳細に説明し、重複する部分については適宜説明を省略するものとする。 <Third embodiment>
Next, a measuring apparatus according to the third embodiment will be described with reference to FIG. The third embodiment differs from the first and second embodiments described above only in part of the configuration and operation, and many parts are the same as the first and second embodiments. For this reason, below, a different part from 1st and 2nd Example is demonstrated in detail, and description shall be abbreviate | omitted suitably about the overlapping part.
<全体構成>
第3実施例に係る測定装置の全体構成について、図15を参照して説明する。ここに図15は、第3実施例に係る測定装置の全体構成を示すブロック図である。 <Overall configuration>
The overall configuration of the measuring apparatus according to the third embodiment will be described with reference to FIG. FIG. 15 is a block diagram showing the overall configuration of the measuring apparatus according to the third embodiment.
第3実施例に係る測定装置の全体構成について、図15を参照して説明する。ここに図15は、第3実施例に係る測定装置の全体構成を示すブロック図である。 <Overall configuration>
The overall configuration of the measuring apparatus according to the third embodiment will be described with reference to FIG. FIG. 15 is a block diagram showing the overall configuration of the measuring apparatus according to the third embodiment.
図15において、第3実施例に係る測定装置は、レーザ駆動部110と、半導体レーザ120と、受光素子130と、I-V変換部140と、アナログ振幅リミッタ150bと、増幅器155と、A/D変換器160と、可変リミッタ処理部180bと、血流演算部170とを備えて構成されている。即ち、第3実施例に係る測定装置では、A/D変換器160の前段及び後段の各々に、リミッタ処理を行うアナログ振幅リミッタ150b及び可変リミッタ処理部180bが設けられている。
15, the measurement apparatus according to the third embodiment includes a laser driving unit 110, a semiconductor laser 120, a light receiving element 130, an IV conversion unit 140, an analog amplitude limiter 150b, an amplifier 155, an A / A A D converter 160, a variable limiter processing unit 180b, and a blood flow calculation unit 170 are provided. That is, in the measurement apparatus according to the third embodiment, the analog amplitude limiter 150b and the variable limiter processing unit 180b that perform the limiter process are provided in each of the front stage and the rear stage of the A / D converter 160.
アナログ振幅リミッタ150bは、第1実施例に係る振幅リミッタ増幅器150(図1参照)と同様に、I-V変換部140から出力される検出電圧に対して、アナログ信号処理による振幅制限を実行する。なお、アナログ振幅リミッタ150bにおける振幅制限は、固定のリミットレベルを用いて実行される。
Similar to the amplitude limiter amplifier 150 (see FIG. 1) according to the first embodiment, the analog amplitude limiter 150b performs amplitude limitation by analog signal processing on the detection voltage output from the IV conversion unit 140. . The amplitude limitation in the analog amplitude limiter 150b is executed using a fixed limit level.
アナログ信号処理による振幅制限を行うことで、その後の増幅器155における増幅処理において、A/D変換器160のDレンジに合わせた振幅への増幅が実現でき、量子化誤差を低減することが可能となる。
By limiting the amplitude by analog signal processing, it is possible to realize amplification to the amplitude in accordance with the D range of the A / D converter 160 in the subsequent amplification processing in the amplifier 155, and to reduce the quantization error. Become.
他方、可変リミッタ処理部180bは、第2実施例に係るリミッタ処理部180(図10参照)と同様に、A/D変換器160から出力されるデータにデジタル信号処理による振幅制限を実行する。可変リミッタ処理部180bにおける振幅制限は、アナログ振幅リミッタ150bとは異なり、可変のリミットレベルを用いて実行される。
On the other hand, the variable limiter processing unit 180b performs amplitude limitation by digital signal processing on the data output from the A / D converter 160, similarly to the limiter processing unit 180 (see FIG. 10) according to the second embodiment. Unlike the analog amplitude limiter 150b, the amplitude limit in the variable limiter processing unit 180b is executed using a variable limit level.
デジタル信号処理による振幅制限では、リミットレベルを可変として、より精密に振幅を制限できる。このため、より適切なリミット処理が実行でき、モードホップノイズの影響をより適切に抑圧することができる。
∙ In the amplitude limit by digital signal processing, the limit level can be made variable to limit the amplitude more precisely. For this reason, more appropriate limit processing can be executed, and the influence of mode hop noise can be suppressed more appropriately.
以上説明したように、第3実施例に係る測定装置によれば、リミット処理が、アナログ信号処理及びデジタル信号処理の両方で実行されるため、より好適に血流測定を実施することが可能である。
As described above, according to the measuring apparatus according to the third embodiment, the limit process is performed by both the analog signal process and the digital signal process, and thus blood flow measurement can be more suitably performed. is there.
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う測定装置及び測定方法もまた本発明の技術的範囲に含まれるものである。
The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification. The method is also included in the technical scope of the present invention.
110 レーザ駆動部
120 半導体レーザ
130 受光素子
140 I-V変換部
150 振幅リミッタ増幅器
151 可変増幅器
152 BPF部
153 振幅リミッタ
154 AC増幅器
155 増幅器
160 A/D変換器
170 血流演算部
171 ハニング窓処理部
172 FFT処理部
173 2乗演算部
174 一次モーメント積算部
175 LPF部
180 リミッタ処理部
181 正側レベル比較部
182 第1データ入れ替え部
183 -1倍処理部
184 負側レベル比較部
185 第2データ入れ替え部
190 リミットレベル調整部
191 バッファリング部
192 ピーク検出部
193 LPF部
194 ゲイン乗算部
195 上限設定部
200 被測定対象 DESCRIPTION OFSYMBOLS 110 Laser drive part 120 Semiconductor laser 130 Light receiving element 140 IV conversion part 150 Amplitude limiter amplifier 151 Variable amplifier 152 BPF part 153 Amplitude limiter 154 AC amplifier 155 Amplifier 160 A / D converter 170 Blood flow calculation part 171 Hanning window process part 172 FFT processing unit 173 square calculation unit 174 primary moment integration unit 175 LPF unit 180 limiter processing unit 181 positive side level comparison unit 182 first data switching unit 183 -1 times processing unit 184 negative side level comparison unit 185 second data switching Unit 190 limit level adjustment unit 191 buffering unit 192 peak detection unit 193 LPF unit 194 gain multiplication unit 195 upper limit setting unit 200 object to be measured
120 半導体レーザ
130 受光素子
140 I-V変換部
150 振幅リミッタ増幅器
151 可変増幅器
152 BPF部
153 振幅リミッタ
154 AC増幅器
155 増幅器
160 A/D変換器
170 血流演算部
171 ハニング窓処理部
172 FFT処理部
173 2乗演算部
174 一次モーメント積算部
175 LPF部
180 リミッタ処理部
181 正側レベル比較部
182 第1データ入れ替え部
183 -1倍処理部
184 負側レベル比較部
185 第2データ入れ替え部
190 リミットレベル調整部
191 バッファリング部
192 ピーク検出部
193 LPF部
194 ゲイン乗算部
195 上限設定部
200 被測定対象 DESCRIPTION OF
Claims (7)
- 被測定対象にレーザ光を照射する照射手段と、
前記被測定対象によって散乱された前記レーザ光を受光する受光手段と、
前記受光手段の出力信号の振幅を所定の範囲内に制限する制限手段と、
前記受光手段の出力信号に含まれる前記レーザ光のドップラーシフトに起因するビート信号に基づいて、前記被測定対象の移動に関する情報を出力する出力手段と
を備えることを特徴とする測定装置。 Irradiating means for irradiating the measurement target with laser light;
A light receiving means for receiving the laser light scattered by the measurement object;
Limiting means for limiting the amplitude of the output signal of the light receiving means within a predetermined range;
And an output means for outputting information relating to the movement of the object to be measured based on a beat signal resulting from a Doppler shift of the laser light included in an output signal of the light receiving means. - 前記制限手段は、前記受光手段の出力信号の過去の振幅に応じて前記所定の範囲を変化させることを特徴とする請求項1に記載の測定装置。 2. The measuring apparatus according to claim 1, wherein the limiting unit changes the predetermined range in accordance with a past amplitude of an output signal of the light receiving unit.
- 前記制限手段は、前記受光手段の出力信号をアナログ信号からデジタル信号に変換する前の段階において振幅を制限することを特徴とする請求項1又は2に記載の測定装置。 3. The measuring apparatus according to claim 1, wherein the limiting unit limits the amplitude before converting the output signal of the light receiving unit from an analog signal to a digital signal.
- 前記制限手段は、前記受光手段の出力信号をアナログ信号からデジタル信号に変換した後の段階において振幅を制限することを特徴とする請求項1又は2に記載の測定装置。 3. The measuring apparatus according to claim 1, wherein the limiting means limits the amplitude at a stage after the output signal of the light receiving means is converted from an analog signal to a digital signal.
- 前記制限手段は、前記受光手段の出力信号をアナログ信号からデジタル信号に変換する前の段階及び後の段階の両方において夫々振幅を制限することを特徴とする請求項1又は2に記載の測定装置。 3. The measuring apparatus according to claim 1, wherein the limiting unit limits the amplitude in both a stage before and after a step of converting an output signal of the light receiving unit from an analog signal to a digital signal. .
- 前記受光手段は、
前記レーザ光を電流に夫々変換して出力する第1及び第2光電変換素子部と、
前記第1光電変換素子部が出力する電流と前記第2光電変換素子部が出力する電流との差分電流を検出電流として出力する差分電流出力部と
を有することを特徴とする請求項1から5のいずれか一項に記載の測定装置。 The light receiving means is
First and second photoelectric conversion element units for converting the laser light into current and outputting the current,
6. A differential current output unit that outputs a differential current between a current output from the first photoelectric conversion element unit and a current output from the second photoelectric conversion element unit as a detection current. The measuring apparatus as described in any one of. - 被測定対象にレーザ光を照射する照射工程と、
前記被測定対象によって散乱された前記レーザ光を受光する受光工程と、
前記受光工程で得られる出力信号の振幅を所定の範囲内に制限する制限工程と、
前記受光工程で得られる出力信号に含まれる前記レーザ光のドップラーシフトに起因するビート信号に基づいて、前記被測定対象の移動に関する情報を出力する出力工程と
を備えることを特徴とする測定方法。 An irradiation step of irradiating a measurement target with laser light;
A light receiving step for receiving the laser light scattered by the measurement object;
A limiting step of limiting the amplitude of the output signal obtained in the light receiving step within a predetermined range;
An output step of outputting information relating to the movement of the measurement target based on a beat signal resulting from a Doppler shift of the laser light included in the output signal obtained in the light receiving step.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016528957A JPWO2015198470A1 (en) | 2014-06-27 | 2014-06-27 | Measuring apparatus and measuring method |
PCT/JP2014/067157 WO2015198470A1 (en) | 2014-06-27 | 2014-06-27 | Measurement device and measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/067157 WO2015198470A1 (en) | 2014-06-27 | 2014-06-27 | Measurement device and measurement method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015198470A1 true WO2015198470A1 (en) | 2015-12-30 |
Family
ID=54937594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/067157 WO2015198470A1 (en) | 2014-06-27 | 2014-06-27 | Measurement device and measurement method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015198470A1 (en) |
WO (1) | WO2015198470A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018183375A (en) * | 2017-04-25 | 2018-11-22 | セイコーエプソン株式会社 | Fluid analysis device, blood flow analysis device, and fluid analysis method |
JP2019076539A (en) * | 2017-10-26 | 2019-05-23 | セイコーエプソン株式会社 | Blood flow analysis device, blood flow analysis method, and program |
WO2019188472A1 (en) * | 2018-03-29 | 2019-10-03 | ソニーセミコンダクタソリューションズ株式会社 | Signal processing device, signal processing method, program, and measurement device |
US11486892B2 (en) | 2016-10-25 | 2022-11-01 | Air Water Biodesign Inc. | Fluid measuring device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6395372A (en) * | 1986-10-09 | 1988-04-26 | Mitsubishi Electric Corp | Measuring apparatus for uneven rotation |
JPH05237106A (en) * | 1991-08-26 | 1993-09-17 | Yokogawa Medical Syst Ltd | Ultrasonic diagnostic device |
JPH11514443A (en) * | 1995-10-19 | 1999-12-07 | コモンウェルス・サイエンティフィック・アンド・インダストリアル・リサーチ・オーガニゼイション | Digital flow velocity measurement in ultrasonic flowmeter |
WO2010023744A1 (en) * | 2008-08-28 | 2010-03-04 | パイオニア株式会社 | Biometric information measuring device |
JP2013162198A (en) * | 2012-02-02 | 2013-08-19 | Hioki Ee Corp | Signal measurement apparatus |
WO2013153664A1 (en) * | 2012-04-13 | 2013-10-17 | パイオニア株式会社 | Fluid assessment device and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001120509A (en) * | 1999-10-29 | 2001-05-08 | Cyber Firm Inc | Bloodstream signal extracting apparatus and bloodstream signal extracting method |
JP2002045342A (en) * | 2000-08-01 | 2002-02-12 | Cyber Firm Inc | Transducer unit of tissue blood flow meter |
JP4359093B2 (en) * | 2003-07-08 | 2009-11-04 | パナソニック株式会社 | Ultrasonic diagnostic equipment |
JP5897812B2 (en) * | 2011-03-31 | 2016-03-30 | パイオニア株式会社 | Photodetector and fluid measuring device |
-
2014
- 2014-06-27 JP JP2016528957A patent/JPWO2015198470A1/en active Pending
- 2014-06-27 WO PCT/JP2014/067157 patent/WO2015198470A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6395372A (en) * | 1986-10-09 | 1988-04-26 | Mitsubishi Electric Corp | Measuring apparatus for uneven rotation |
JPH05237106A (en) * | 1991-08-26 | 1993-09-17 | Yokogawa Medical Syst Ltd | Ultrasonic diagnostic device |
JPH11514443A (en) * | 1995-10-19 | 1999-12-07 | コモンウェルス・サイエンティフィック・アンド・インダストリアル・リサーチ・オーガニゼイション | Digital flow velocity measurement in ultrasonic flowmeter |
WO2010023744A1 (en) * | 2008-08-28 | 2010-03-04 | パイオニア株式会社 | Biometric information measuring device |
JP2013162198A (en) * | 2012-02-02 | 2013-08-19 | Hioki Ee Corp | Signal measurement apparatus |
WO2013153664A1 (en) * | 2012-04-13 | 2013-10-17 | パイオニア株式会社 | Fluid assessment device and method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11486892B2 (en) | 2016-10-25 | 2022-11-01 | Air Water Biodesign Inc. | Fluid measuring device |
EP3534122B1 (en) * | 2016-10-25 | 2023-11-29 | Air Water Biodesign Inc. | Fluid measuring device |
JP2018183375A (en) * | 2017-04-25 | 2018-11-22 | セイコーエプソン株式会社 | Fluid analysis device, blood flow analysis device, and fluid analysis method |
JP7019962B2 (en) | 2017-04-25 | 2022-02-16 | セイコーエプソン株式会社 | Fluid analysis device, blood flow analysis device and fluid analysis method |
JP2019076539A (en) * | 2017-10-26 | 2019-05-23 | セイコーエプソン株式会社 | Blood flow analysis device, blood flow analysis method, and program |
JP6996224B2 (en) | 2017-10-26 | 2022-01-17 | セイコーエプソン株式会社 | Blood flow analyzer, blood flow analysis method and program |
WO2019188472A1 (en) * | 2018-03-29 | 2019-10-03 | ソニーセミコンダクタソリューションズ株式会社 | Signal processing device, signal processing method, program, and measurement device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015198470A1 (en) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5244973B2 (en) | Photodetector and fluid measuring device | |
JP5806390B2 (en) | Fluid evaluation apparatus and method | |
JP5897812B2 (en) | Photodetector and fluid measuring device | |
WO2015198470A1 (en) | Measurement device and measurement method | |
CN106535753A (en) | Optical heart rate sensor | |
JP2010233908A (en) | Pulse oximeter | |
JP4729454B2 (en) | Optical receiving circuit and identification level control method thereof | |
US10251574B2 (en) | Biological information measurement device | |
WO2016046905A1 (en) | Measurement device, measurement method, computer program, and recording medium | |
CN112987919B (en) | Brain-computer interface system based on indirect time-of-flight measurement technology and implementation method | |
JP2017049266A (en) | Fluid evaluation apparatus and method | |
JP6433000B2 (en) | Measuring apparatus and measuring method | |
JP2016027337A (en) | Fluid evaluating apparatus, and method | |
JP4962234B2 (en) | Pulse oximeter | |
JP5840209B2 (en) | Lightwave ranging device | |
US11486892B2 (en) | Fluid measuring device | |
JP2019164165A (en) | Measurement device | |
JP6605755B2 (en) | Fluid evaluation apparatus and method, computer program, and recording medium | |
JP2021063846A (en) | Measuring device, method for measurement, and computer program | |
US10028681B2 (en) | Biological sensor | |
WO2019058482A1 (en) | Optical measurement device, optical measurement method, computer program, and recording medium | |
JP2019168465A (en) | Fluid evaluation device and method | |
JP2018105879A (en) | Fluid evaluation device and method | |
JP2017060621A (en) | Photoacoustic imaging device | |
WO2018078727A1 (en) | Fluid measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14896202 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016528957 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14896202 Country of ref document: EP Kind code of ref document: A1 |