+

WO2015166847A1 - Method for producing trans-1-chloro-3,3,3-trifluoropropene - Google Patents

Method for producing trans-1-chloro-3,3,3-trifluoropropene Download PDF

Info

Publication number
WO2015166847A1
WO2015166847A1 PCT/JP2015/062147 JP2015062147W WO2015166847A1 WO 2015166847 A1 WO2015166847 A1 WO 2015166847A1 JP 2015062147 W JP2015062147 W JP 2015062147W WO 2015166847 A1 WO2015166847 A1 WO 2015166847A1
Authority
WO
WIPO (PCT)
Prior art keywords
dichloro
trifluoropropane
chloro
trifluoropropene
activated carbon
Prior art date
Application number
PCT/JP2015/062147
Other languages
French (fr)
Japanese (ja)
Inventor
優 竹内
允彦 中村
岡本 秀一
古田 昇二
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2015166847A1 publication Critical patent/WO2015166847A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing trans-1-chloro-3,3,3-trifluoropropene.
  • a mixture of a trans isomer and a cis isomer is represented by adding (EZ) to the end of the abbreviation
  • one of the trans isomer and the cis isomer is represented by adding (EorZ) to the end of the abbreviation.
  • the refrigerant number of 1-chloro-3,3,3-trifluoropropene is “R-1233zd”
  • trans-1-chloro-3,3,3-trifluoropropene is “R ⁇ 1233zd (E)
  • cis-1-chloro-3,3,3-trifluoropropene is represented by“ R-1233zd (Z) ”.
  • trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-3,3,3-trifluoropropene is represented by “R-1233zd (EZ)”, and trans-1 “R-1233zd (EorZ)” represents one of chloro-3,3,3-trifluoropropene and cis-1-chloro-3,3,3-trifluoropropene.
  • R-1233zd (E) is a greenhouse gas such as 1,1,1,2-tetrafluoroethane (refrigerant number: R-134a) and 1,1,1,3,3-pentafluoropropane (refrigerant number: In recent years, it has been expected as an alternative compound to R-245fa).
  • R-1233zd E
  • the following method has been proposed.
  • (3) A method of dehydrochlorinating R-243fa in the presence of a metal catalyst Patent Document 2.
  • Non-patent Document 2 A method for dehydroiodination of 3-chloro-1,1,1-trifluoro-3-iodopropane in an alcohol solution of potassium hydroxide (Non-patent Document 2).
  • Non-patent Document 3 A method of reacting R-245fa with hydrogen chloride in the gas phase in the presence of a solid catalyst (Patent Document 3).
  • Patent Document 4 and 5 A method of reacting 1,1,1,3,3-pentachloropropane and hydrogen fluoride in the gas phase or liquid phase in the presence of a catalyst.
  • reaction route of the following reaction (i), a combination of reactions (ii) and (i), or a combination of reactions (iii) and (i) To obtain R-1233zd (E).
  • X is a halogen atom.
  • R-1233zd (E) is used as a substitute for R-134a and R-245fa, and is required to have a high purity. For this purpose, it is desirable to produce R-1233zd (E) with high selectivity.
  • E-form (R-1233ze) of 3-chloro-1,3,3-trifluoropropene (refrigerant number: R-1233ze) is simultaneously formed with R-1233zd (E).
  • (E)) and (Z) form (R-1233ze (Z)) are considered to be by-produced. Since R-1233zd (E) is difficult to be separated from R-1233ze (E) and R-1233ze (Z) by the methods (2) and (3), high-purity R-1233zd (E) ) Cannot be obtained.
  • R-243fb 1,3-dichloro-1,3,3-trifluoropropane
  • R-243fb can be dehydrochlorinated to produce R-1233ze (E) and R-1233ze (Z).
  • An object of the present invention is to provide a method capable of easily producing R-1233zd (E) with high selectivity without forming a metal salt.
  • the method for producing R-1233zd (E) of the present invention is characterized in that R-243fa is converted to R-1233zd (E) by contacting with R-233fa with an activated carbon catalyst having a specific surface area of 10 to 3000 m 2 / g.
  • R-243fa is gaseous and can be brought into contact with the activated carbon catalyst, and the contact temperature is preferably 50 to 500 ° C.
  • the R-243fa gas may be diluted with a compound inert gas, and an inert gas is preferable as the inert compound.
  • R-243fa is liquid and can be brought into contact with the activated carbon catalyst, and the contact temperature is preferably 0 to 250 ° C.
  • the specific surface area of the activated carbon catalyst is preferably 20 to 2500 m 2 / g, the ash content of the activated carbon catalyst is preferably 15% or less, and the water content of the activated carbon catalyst is preferably 10% or less. .
  • R-243fa including R-243fb is R-243fa obtained by reacting 1,1-difluoroethylene (hereinafter referred to as VdF) with dichlorofluoromethane (refrigerant number: R-21). Is preferred. Further, in this case, R-243fa obtained by removing R-243fb from the reaction mixture obtained by reacting VdF and R-21 is preferable. R-243fa including R-243fb is preferably R-243fa obtained by reacting pentahalogenopropane with hydrogen fluoride. Further, in this case, R-243fa obtained by removing R-243fb from the reaction mixture obtained by reacting pentahalogenopropane with hydrogen fluoride is preferable.
  • R-1233zd (E) of the present invention R-1233zd (E) can be easily produced with high selectivity without forming a metal salt.
  • the production method of the present invention is a method for obtaining R-1233zd (E) by contacting R-243fa with an activated carbon catalyst having a specific surface area of 10 to 3000 m 2 / g to convert to R-1233zd (E). is there.
  • the reaction for converting R-1233zd (E) by contacting R-243fa with an activated carbon catalyst is represented by the following formula (1).
  • R-243fa may be in gaseous form and contacted with the activated carbon catalyst, or in liquid form and contacted with the activated carbon catalyst.
  • the method of contacting R-243fa in gaseous form with the activated carbon catalyst is hereinafter referred to as a gas phase method, and the method of contacting the activated carbon catalyst with a liquid state is hereinafter referred to as a liquid phase method.
  • R-243fa may contain a compound inert to the above reaction. Examples of the compound inert to the reaction include inert gases such as nitrogen, carbon dioxide, rare gas, and water vapor, and organic compounds that do not dehydrochlorinate.
  • organic compound that does not dehydrochlorination C 3 F 8, CF 3 CF 2 Cl, halogenated hydrocarbons containing fluorine atoms, such as CF 3 CH 2 F preferred. Furthermore, even a compound that may affect the above reaction may be contained in R-243fa if the effect is small due to its small amount.
  • R-243fa does not affect the above reaction, it may contain an impurity that reacts in the same manner as R-243fa to produce a compound other than R-1233zd (E).
  • R-243fa may contain an impurity that reacts in the same manner as R-243fa to produce a compound other than R-1233zd (E).
  • a product other than R-1233zd (E) produced from such a compound is easily separated from R-1233zd (E)
  • purification of R-1233zd (E) results in purification of R-1233zd (E) having high purity. ) Can be manufactured.
  • R-243fa has few impurities that produce such difficult-to-separate products.
  • R-243fa containing R-243fb by-produced in the production of R-243fa described later is used as a raw material
  • R-1233ze (E) generated by the dehydrochlorination reaction of R-243fb, R-1233ze (Z) is difficult to separate from R-1233zd (E). Therefore, R-243fa produced by the production method described later is preferably used as a raw material for R-1233zd (E) after reducing by-produced R-243fb.
  • the content ratio of R-243fb in R-243fa is preferably 5 mol% or less, more preferably 3 mol% or less, still more preferably 1 mol% or less with respect to the total amount of R-243fa and R-243fb.
  • impurities in the product particularly R-1233ze (E) and R-1233ze (Z) are small, and purification of R-1233zd (E) is facilitated.
  • the activated carbon catalyst in the present invention is a catalyst for dehydrochlorinating R-243fa to convert it into R-1233zd (E).
  • the specific surface area of the activated carbon catalyst is 10 to 3000 m 2 / g.
  • the reaction rate of R-243fa is improved.
  • an active site will reduce and it will be easy to suppress the production
  • the specific surface area of the activated carbon catalyst from the both of suppression of increase and by-products of the conversion to the desired product easiness, preferably 20 ⁇ 2500m 2 / g, more preferably 50 ⁇ 2000m 2 / g.
  • the specific surface area of the activated carbon catalyst is measured by a method based on the BET method.
  • Examples of the activated carbon catalyst include activated carbon prepared from charcoal, coal, coconut shell, and the like.
  • Examples of the shape of the activated carbon catalyst include formed coal having a length of about 2 to 5 mm, crushed coal having a size of about 4 to 50 mesh, granular coal, powdered coal and the like. In the case of a gas phase method, 4-20 mesh crushed coal or coal is preferable. In the case of the liquid phase method, powdered coal or granular coal is preferable.
  • the ash content of the activated carbon catalyst is preferably 15% or less, more preferably 10% or less, and even more preferably 8% or less. When the ash content of the activated carbon catalyst exceeds 15%, side reactions tend to occur.
  • the ash content of the activated carbon catalyst is measured according to ASTM D2866.
  • the ash content of the activated carbon catalyst can be removed by a known method such as washing with an acid. For example, even if the ash content of activated carbon made from coal or the like exceeds 15%, the activated carbon can be washed with an acid such as hydrochloric acid to reduce the ash content to 15% or less.
  • the activated carbon catalyst is preferably dried sufficiently before being used in the reaction.
  • the water content in the activated carbon catalyst before use is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 1% by mass or less, out of 100% by mass of the activated carbon (including moisture). preferable.
  • Examples of the gas phase method for producing R-1233zd (E) include a method of forming a catalyst layer filled with an activated carbon catalyst and introducing a gas containing R-243fa into the catalyst layer.
  • FIG. 1 is a flowchart showing an example of a gas phase method.
  • R-243fa gas and, if necessary, a diluting gas are introduced into the reactor heated by the heating means, and the R-243fa gas is brought into contact with the activated carbon catalyst of the catalyst layer in the reactor.
  • Product is continuously removed from the bottom of the reactor. A part of the product taken out from the lower part of the reactor may be collected and subjected to composition analysis by gas chromatography (GC). If necessary, the product is passed through a deoxidation tower to remove hydrogen chloride.
  • GC gas chromatography
  • Examples of the reactor include known reactors capable of forming a catalyst layer, such as a fixed bed reactor and a fluidized bed reactor.
  • a fixed bed reactor is preferred.
  • Examples of the material for the reactor include iron, nickel, alloys containing these as main components, and glass. An alloy containing iron (stainless steel or the like) is preferable.
  • the catalyst layer is formed by filling an activated carbon catalyst into the reactor. There may be two or more catalyst layers in the reactor. Packing density of the activated carbon catalyst in the catalyst layer is preferably 0.2 ⁇ 1.0g / cm 3, more preferably 0.25 ⁇ 0.7g / cm 3.
  • the packing density of the activated carbon catalyst is 0.2 g / cm 3 or more, the amount of the activated carbon catalyst per unit volume is large, and the amount of gas to be reacted can be increased, so that productivity is improved. If the packing density of the activated carbon catalyst is 1.0 g / cm 3 or less, the temperature rise of the catalyst layer can be easily suppressed, and the reaction temperature can be easily managed.
  • the heating means include an electric furnace and an oil bath.
  • the diluent gas is introduced into the reactor together with R-243fa gas as necessary to extend the catalyst life of the activated carbon catalyst, improve the conversion rate, and improve the selectivity.
  • the diluent gas include inert gases (nitrogen, rare gases, etc.) and halogenated hydrocarbons that are inert to dehydrochlorination. Dilution gases other than these include hydrogen chloride and the like.
  • the ratio of the dilution gas is preferably 10 mol or less and more preferably 4 mol or less with respect to 1 mol of the raw material from the viewpoint of the recovery rate of the dilution gas.
  • the contact temperature is preferably 50 to 500 ° C., more preferably 100 to 400 ° C., and even more preferably 170 to 380 ° C. from the viewpoint of excellent reaction rate.
  • the pressure in the reactor may be ordinary pressure, increased pressure, or reduced pressure. Normal pressure or pressurization is preferred.
  • the contact time can be shortened if the contact temperature is high, and can be lengthened if the contact temperature is low. More preferably, it is preferably ⁇ 300 seconds, particularly preferably 10 to 100 seconds.
  • the gas linear velocity in the catalyst layer is preferably 0.1 to 100 cm / second, more preferably 0.3 to 30 cm / second. If the linear velocity is 0.1 cm / second or more, productivity is improved. When the linear velocity is 100 cm / second or less, the reaction rate of the raw material is improved.
  • the product includes unreacted raw materials and by-products.
  • By-products include hydrogen chloride.
  • Hydrogen chloride contained in the product can be easily removed by distillation. If necessary, the product may be removed by contacting with a metal hydroxide or an aqueous solution thereof to neutralize.
  • the metal hydroxide include sodium hydroxide and potassium hydroxide.
  • the liquid phase method for producing R-1233zd (E) may be a batch method or a continuous method. From the viewpoint of production efficiency, the continuous type is preferable.
  • FIG. 2 is a flowchart showing an example of the liquid phase method.
  • R-243fa is continuously supplied to a reactor containing an activated carbon catalyst and, if necessary, a liquid medium inert to the reaction, and the activated carbon catalyst and R-243fa are brought into contact with each other in a liquid phase in the reactor. .
  • the product is recovered from the reactor. When the product is recovered from the liquid phase in the reactor, the product is cooled by cooling. If necessary, the product is passed through a deoxidation tower to remove hydrogen chloride.
  • Examples of the reactor include known reactors capable of bringing activated carbon catalyst into contact with liquid R-243fa.
  • Examples of the material for the reactor include iron, nickel, alloys containing these as main components, and glass. If necessary, lining treatment such as resin lining and glass lining may be performed.
  • the activated carbon catalyst powdered or granular charcoal is preferable.
  • a liquid medium may be used or a liquid medium may not be used. It is preferable not to use a liquid medium.
  • the liquid medium is a liquid inert to the dehydrochlorination reaction, and examples thereof include water and organic solvents (alcohols, fluorine-containing solvents, etc.).
  • the amount of the medium is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the raw material.
  • the contact temperature is preferably 0 to 250 ° C, more preferably 20 to 150 ° C. When the contact temperature is 0 ° C. or higher, the reaction rate is improved. If a contact temperature is 250 degrees C or less, it will be easy to suppress a by-product.
  • the pressure in the reaction vessel is preferably 0 to 10 MPa [gage], more preferably 0.05 to 5 MPa [gage], and still more preferably 0.15 to 3 MPa [gage].
  • the reaction pressure is preferably not less than the vapor pressure of R-243fa at the reaction temperature.
  • the contact time is preferably 1 to 50 hours for the batch method, and preferably 1 to 3000 seconds for the continuous method.
  • the product may be recovered from the gas phase or may be recovered from the liquid phase. It is preferable to recover from the gas phase.
  • a cooling device may be attached to the extraction site. By attaching a cooling device, unreacted raw materials can be returned to the reactor, and R-1233zd (E), R-1233zd (Z) and hydrogen chloride having low boiling points can be selectively removed from the reaction system. Excellent conversion and selectivity.
  • the product includes unreacted raw materials and by-products.
  • By-products include hydrogen chloride.
  • Hydrogen chloride contained in the product can be easily removed by distillation. If necessary, the product may be removed by contacting with a metal hydroxide or an aqueous solution thereof to neutralize.
  • the metal hydroxide include sodium hydroxide and potassium hydroxide.
  • R-1233zd (E) obtained by a gas phase method or a liquid phase method can be purified to give R-1233zd (E) with few impurities.
  • the purification method include distillation, extractive distillation, adsorption, washing, dehydration, and two-layer separation. Distillation is preferred because it can be carried out easily.
  • washing include washing with an acidic aqueous solution, a neutral aqueous solution, or a basic aqueous solution.
  • R-1233ze (E) and R-1233ze (Z) are difficult to separate from R-1233zd (E) in the product (eg, distillation separation).
  • the content ratio of is reduced. Therefore, high-purity R-1233zd (E) can be obtained from the reaction product by separation and purification by general distillation.
  • Examples of the method for obtaining the raw material R-243fa include the following method (a-1) and method (a-2).
  • the method (a-1) is preferred because R-243fa having a small content of impurities other than R-243fb can be obtained.
  • (A-1) A method of reacting VdF with R-21.
  • (A-2) A method of reacting pentahalogenopropane with hydrogen fluoride.
  • Method (a-1) The reaction between VdF and R-21 is represented by the following formula (2).
  • R-243fb is produced together with R-243fa by the reaction of VdF and R-21.
  • the content ratio of R-243fb in the mixture obtained by the reaction varies depending on the reaction conditions (especially the reaction temperature and the type of catalyst), but usually 5 mol out of a total of 100 mol% of R-243fa and R-243fb. % Or more.
  • the mixture contains chloroform, 1,1,1-trifluoroethane (refrigerant number: R-143a), etc., in addition to R-243fa and R-243fb.
  • the reaction between VdF and R-21 is preferably performed using a catalyst.
  • the catalyst include aluminum chloride; modified zirconium chloride treated with trichlorofluoromethane or the like (see JP-A-4-253828); Lewis acid catalyst and the like.
  • the Lewis acid catalyst include a halide containing at least one element selected from the group consisting of Al, Sb, Nb, Ta, W, Re, B, Sn, Ga, In, Zr, Hf, and Ti. .
  • Method (a-2) The reaction between pentahalogenopropane and hydrogen fluoride is represented by the following formula (3).
  • m is an integer of 1 to 3.
  • the content ratio of R-243fb in the mixture obtained by the reaction varies depending on the reaction conditions (especially the reaction temperature and the type of catalyst), but usually 5 mol out of a total of 100 mol% of R-243fa and R-243fb. % Or more.
  • the reaction mixture obtained by the method (a-1), the method (a-2) or the like contains at least R-243fa and R-243fb, and may contain other components.
  • Other components include chloroform, tetrachloromethane, 1,2-dichloroethane, 1,1-dichloroethane, 1,1,2-trichloro-3,3-difluoroethane (refrigerant number: R-122), 1,1, 2-trichloroethylene, R-244fa, 1-chloro-1,1,3,3-tetrafluoropropane (refrigerant number: R-244fb), 1,3-dichloro-3,3-difluoropropene (refrigerant number: R- 1232zd E and Z), R-1233ze (E), R-1233ze (Z), R-1233zd (Z), 3,3-dichloro-1,1,3-trifluoropropene (refrigerant number: R ⁇ 1233zc),
  • the content of R-243fa in the reaction mixture is preferably 30 mol% or more, more preferably 50 mol% or more, and further preferably 70 mol% or more in the reaction mixture (100 mol%).
  • the content of R-243fb in the reaction mixture is preferably 15 mol% or less, more preferably 10 mol% or less, and even more preferably 7 mol% or less in the reaction mixture (100 mol%).
  • the content ratio of R-243fb in R-243fa is preferably 5 mol% or less, more preferably 3 mol% or less, more preferably 1 mol% with respect to the total amount of R-243fa and R-243fb.
  • the following is more preferable. Therefore, when the reaction mixture obtained by the method (a-1), the method (a-2), etc. contains R-243fb exceeding this ratio, the method (a-1), the method (a-2), etc.
  • the obtained reaction mixture is purified, and the ratio of R-243fb in R-243fa is preferably within the above range.
  • the purification method include distillation, extractive distillation, adsorption and the like. Distillation is preferred because it can be carried out easily. Distillation may be performed under normal pressure, may be performed under pressure, or may be performed under reduced pressure. It is preferable to carry out under normal pressure.
  • R-1233zd (E) is useful as a refrigerant, a foaming agent, a foam, a preform mix, a solvent, a cleaning agent, a propellant and a compatibilizer, and a raw material monomer of a functional material and an intermediate for synthesis.
  • R-1233zd (E) is used as a raw material monomer of a functional material or an intermediate for synthesis, it is preferably highly pure (for example, 99.0 mol% or more).
  • R-1233zd (E) of the present invention is not limited to the method described above as long as it is a method for bringing R-243fa into contact with a specific activated carbon catalyst.
  • R-243fa may be obtained by methods other than the method (a-1) and the method (a-2), and the obtaining method is not particularly limited.
  • R-1233zd (E) of the present invention (Mechanism of action)
  • R-243fa is dehydrochlorinated by bringing R-243fa into contact with a specific activated carbon catalyst to obtain R-1233zd (E). Therefore, R-1233zd (E) can be easily produced with high selectivity without producing a metal salt.
  • Example 1 Adjustment of modified zirconium chloride catalyst: A cooler having a height of 15 cm was connected to the top, and 256.9 g of zirconium tetrachloride was placed in a four-necked flask (material: glass, capacity: 1 L) containing a magnetic stirrer. While cooling the condenser and flask with dry ice to ⁇ 78 ° C., 636 g of R-21 was gradually added. While stirring with a magnetic stirrer, the temperature of the cooler and the flask was gradually raised to 0 ° C., and the stirring was continued for 2.5 hours after the internal temperature reached 0 ° C. The cooling of the condenser and flask was stopped, and drying was performed under reduced pressure at room temperature overnight. After the drying, 236.1 g of modified zirconium chloride catalyst was recovered.
  • R-243fa In an autoclave (material: Hastelloy, capacity: 10 L), an initial solvent (R-243fa: 71.4 mol%, R-243fb: 8.7 mol%, chloroform: 1.3 mol%, R-22: 0.1) Mol%, R-21: 1.3 mol%, other components: 17.2 mol%) and 78 g of the modified zirconium chloride catalyst were added.
  • the autoclave was cooled to -15 ° C. While cooling and stirring, 7202 g of R-21 was slowly added at such a rate that the internal temperature remained below -10 ° C. While cooling and stirring, 4480 g of VdF was added over 10 hours so that the internal temperature was kept below 0 ° C.
  • the reaction crude liquid was extracted from the bottom of the autoclave.
  • the amount of the reaction crude liquid was 12822 g.
  • the reaction crude liquid was filtered with a pressure filter set with filter paper (4 ⁇ m diameter) to obtain 12277 g of a uniform organic layer.
  • the composition ratio of the organic layer was as follows.
  • R-243fa 67.9 mol%
  • R-243fb 9.3 mol%
  • Chloroform 1.1 mol%
  • R-143a 3.2 mol%
  • R-21 2.2 mol%
  • Other ingredients 16.3 mol%.
  • R-243fa In a distillation column (material: glass, inner diameter: 3 cm, height: 97 cm) equipped with a kettle (material: glass, capacity: 10 L), a magnetic reflux device, a reflux timer and a Dimroth cooler that can be heated with a mantle heater, A filling for distillation (manufactured by Takenaka Wire Mesh Co., Ltd., Helipac No. 1) was filled (measured number of stages: 43 stages). 11,000 g of the reaction crude liquid obtained in the production of R-243fa was put in a kettle of a distillation column, and the ratio of reflux time / distillation time was adjusted to 50/1 to 300/1 by a reflux timer at normal pressure. Distillation was performed.
  • R-243fa-containing composition 1 2220 g of a composition having R-243fa of more than 99.9 mol% and R-243fb of less than 0.1 mol% (hereinafter also referred to as R-243-containing composition 1) was obtained.
  • R-243fa 3870 g of a composition having R-243fa of 94.0 mol% and R-243fb of 5.9 mol% (hereinafter also referred to as R-243-containing composition 2) was obtained.
  • R-243fa-containing composition 1 was used as a raw material.
  • R-1233zd (E) A vertical fixed bed reactor (material: SUS316, inner diameter 23.0 mm ⁇ height 200 mm) was used as the reaction apparatus. An insertion tube (material: SUS316, diameter: 4 mm) was introduced into the center of the reactor, a K-type thermocouple was inserted therein, and the internal temperature was measured. The central part of the reactor was filled with an activated carbon catalyst, which was used as a catalyst layer. The catalyst layer was heated by an electric furnace. A raw material preheating mixing line heated to 100 ° C. connected to a gas feed line and a raw material supply line heated to 100 ° C. was connected to the upper part of the reactor.
  • Nitrogen was supplied from the gas feed line to the raw material preheating mixing line by adjusting the gas flow rate using a mass flow controller.
  • the raw material containing R-243fa was vaporized through a raw material supply line heated to 100 ° C. using a plunger pump, and then supplied to the raw material preheating mixing line.
  • Product was continuously removed from the bottom of the reactor.
  • a part of the product taken out from the lower part of the reactor was collected and subjected to composition analysis by gas chromatography (GC).
  • GC gas chromatography
  • the reactor activated carbon catalyst (Japan EnviroChemicals Chemicals Inc., Shirasagi activated carbon C2x, specific surface area: 1260m 2 / g, ash content: 1.2 wt%) was charged with 81.2ML (41.2 g) of. Nitrogen and raw materials were introduced into the reactor under the conditions shown in Table 1, and the reaction was continued for 4 hours. Immediately before the end of the reaction, a part of the outlet gas was sampled and analyzed by gas chromatography (GC). The results are shown in Table 1.
  • Example 2-7 Under the conditions shown in Table 1, nitrogen and raw materials or only raw materials were introduced into the reactor and reacted continuously for 4 hours. Immediately before the end of the reaction, a part of the outlet gas was sampled and subjected to composition analysis by gas chromatography (GC). The results are shown in Table 1.
  • Example 8 The raw materials were introduced into the reactor under the same reaction conditions as in Example 6 and reacted continuously for 256 hours. Immediately before the end of the reaction, a part of the outlet gas was sampled and subjected to composition analysis by gas chromatography (GC). The results are shown in Table 1. Further, after extracting the catalyst after this reaction from the reactor, the specific surface area was measured by using a continuous flow type surface area meter SA-9601 manufactured by Horiba Seisakusho, and it was 78 m 2 / g.
  • R-1233zd selectivity The R-1233zd (E) selectivity Y (E) (%) and the R-1233zd (Z) selectivity Y (Z) (%) were obtained from the following equations.
  • Y (E) 100 ⁇ Ya / (Xa ⁇ Xb).
  • Y (Z) 100 ⁇ Yb / (Xa ⁇ Xb).
  • Yb R-1233zd (Z) content ratio (mol%) in the outlet gas after the reaction.
  • R-1233zd (E) of the present invention R-1233zd (E) can be produced with high selectivity. Further, comparison between Example 3 and Example 6 shows that the R-1233zd (E) selectivity is hardly lowered even if R-243fa is not diluted with nitrogen.
  • Example 9 After adding 19.3 g of tetrabutylammonium chloride (TBAC) and 3861.9 g (23.1 mol) of R-243fa-containing composition 2 as raw materials to an autoclave (material: Hastelloy, capacity: 10 L) While maintaining the internal temperature at 5 to 10 ° C., 6907.7 g (NaOH: 34.7 mol) of a 20 mass% sodium hydroxide aqueous solution was added. After replacing the gas phase with nitrogen, the internal temperature was raised to 25 ° C. and stirred for 2 hours, and the internal temperature was further raised to 40 ° C. and stirred for 8 hours.
  • TBAC tetrabutylammonium chloride
  • R-1233zd (E) -containing composition 1 having the following composition.
  • 3,3,3-trifluoropropyne 1.0 mol%
  • R-243fa 3.8 mol%
  • R-1233zc 0.3 mol%.
  • Heatable kettle material: SUS, capacity: 5 L
  • reflux column a fine distillation packing
  • nitrogen gas line a fine distillation packing
  • back pressure valve dry ice cooled low boiling point substance recovery trap
  • dry ice cooled low boiling point substance recovery trap material: SUS, inner diameter: 2.7 cm, height: 300 cm, packing height: 250 cm
  • a fine distillation packing manufactured by Takenaka Wire Mesh Co., Ltd., Helipack No. 3
  • 5564 g of the obtained R-1233zd (E) -containing composition 1 was put in a distillation column kettle, and the ratio of reflux time / distillation time was adjusted to 300/1 to 600/1 by a reflux timer to adjust the back pressure valve.
  • R-1233zd (E) of the present invention can be suitably used for the production of R-1233zd (E) because R-1233zd (E) can be obtained with high selectivity.
  • the entire content of the specification, claims, abstract, and drawings of Japanese Patent Application No. 2014-093092 filed on April 28, 2014 is cited here as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 Provided is a method that makes it possible to easily produce trans-1-chloro-3,3,3-trifluoropropene (R-1233zd(E)) at high selectivity without generating metal salts. 1,1-Dichloro-3,3,3-trifluoropropane (R-243fa) is converted into trans-1-chloro-3,3,3-trifluoropropene by contact with an active carbon catalyst having a specific surface area of 10-3,000 m2/g.

Description

トランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法Process for producing trans-1-chloro-3,3,3-trifluoropropene
 本発明は、トランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法に関する。 The present invention relates to a method for producing trans-1-chloro-3,3,3-trifluoropropene.
 本明細書においては、ハロゲン化炭化水素の化合物名の後の括弧内に略称(冷媒番号等)を記載する場合がある。本明細書においては、必要に応じて化合物名に替えて略称を用いる。
 また、シス-トランス異性体のうち、トランス体(E体)を上記略称の末尾に(E)を付して表し、シス体(Z体)を上記略称の末尾に(Z)を付して表す。さらに、トランス体とシス体の混合物を上記略称の末尾に(EZ)を付して表し、トランス体とシス体の一方であることを上記略称の末尾に(EorZ)を付して表す。
 具体的には、たとえば、1-クロロ-3,3,3-トリフルオロプロペンの冷媒番号は「R-1233zd」であり、トランス-1-クロロ-3,3,3-トリフルオロプロペンは「R-1233zd(E)」で表し、シス-1-クロロ-3,3,3-トリフルオロプロペンは「R-1233zd(Z)」で表す。また、トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-3,3,3-トリフルオロプロペンの混合物を「R-1233zd(EZ)」で表し、トランス-1-クロロ-3,3,3-トリフルオロプロペンとシス-1-クロロ-3,3,3-トリフルオロプロペンの一方であることを「R-1233zd(EorZ)」で表す。
In the present specification, abbreviations (refrigerant numbers and the like) may be described in parentheses after the halogenated hydrocarbon compound name. In the present specification, abbreviations are used instead of compound names as necessary.
Of the cis-trans isomers, the trans isomer (E isomer) is indicated by adding (E) to the end of the abbreviation, and the cis isomer (Z isomer) is indicated by adding (Z) to the end of the abbreviation. To express. Further, a mixture of a trans isomer and a cis isomer is represented by adding (EZ) to the end of the abbreviation, and one of the trans isomer and the cis isomer is represented by adding (EorZ) to the end of the abbreviation.
Specifically, for example, the refrigerant number of 1-chloro-3,3,3-trifluoropropene is “R-1233zd”, and trans-1-chloro-3,3,3-trifluoropropene is “R −1233zd (E) ”, and cis-1-chloro-3,3,3-trifluoropropene is represented by“ R-1233zd (Z) ”. A mixture of trans-1-chloro-3,3,3-trifluoropropene and cis-1-chloro-3,3,3-trifluoropropene is represented by “R-1233zd (EZ)”, and trans-1 “R-1233zd (EorZ)” represents one of chloro-3,3,3-trifluoropropene and cis-1-chloro-3,3,3-trifluoropropene.
 R-1233zd(E)は、温室効果ガスである1,1,1,2-テトラフルオロエタン(冷媒番号:R-134a)や1,1,1,3,3-ペンタフルオロプロパン(冷媒番号:R-245fa)の代替化合物として、近年期待されている。 R-1233zd (E) is a greenhouse gas such as 1,1,1,2-tetrafluoroethane (refrigerant number: R-134a) and 1,1,1,3,3-pentafluoropropane (refrigerant number: In recent years, it has been expected as an alternative compound to R-245fa).
 R-1233zd(E)を製造する方法としては、たとえば、下記の方法が提案されている。
 (1)触媒の存在下、3-クロロ-1,1,1,3-テトラフルオロプロパン(冷媒番号:R-244fa)を脱フッ化水素化する方法(特許文献1)。
 (2)アルカリ溶液中、1,1-ジクロロ-3,3,3-トリフルオロプロパン(冷媒番号:R-243fa)を脱塩化水素化する方法(非特許文献1)。
 (3)金属触媒の存在下、R-243faを脱塩化水素化する方法(特許文献2)。
 (4)水酸化カリウムのアルコール溶液中、3-クロロ-1,1,1-トリフルオロ-3-ヨードプロパンを脱ヨウ化水素化する方法(非特許文献2)。
 (5)気相中、固体触媒の存在下、R-245faと塩化水素とを反応させる方法(特許文献3)。
 (6)気相または液相中、触媒の存在下、1,1,1,3,3-ペンタクロロプロパンとフッ化水素とを反応させる方法(特許文献4、5)。
As a method for producing R-1233zd (E), for example, the following method has been proposed.
(1) A method of dehydrofluorinating 3-chloro-1,1,1,3-tetrafluoropropane (refrigerant number: R-244fa) in the presence of a catalyst (Patent Document 1).
(2) A method of dehydrochlorinating 1,1-dichloro-3,3,3-trifluoropropane (refrigerant number: R-243fa) in an alkaline solution (Non-patent Document 1).
(3) A method of dehydrochlorinating R-243fa in the presence of a metal catalyst (Patent Document 2).
(4) A method for dehydroiodination of 3-chloro-1,1,1-trifluoro-3-iodopropane in an alcohol solution of potassium hydroxide (Non-patent Document 2).
(5) A method of reacting R-245fa with hydrogen chloride in the gas phase in the presence of a solid catalyst (Patent Document 3).
(6) A method of reacting 1,1,1,3,3-pentachloropropane and hydrogen fluoride in the gas phase or liquid phase in the presence of a catalyst (Patent Documents 4 and 5).
 (1)~(6)の方法はいずれも、下記の、(i)の反応、(ii)と(i)の反応の組み合わせ、または(iii)と(i)の反応の組み合わせ、の反応経路によってR-1233zd(E)を得る方法である。ただし、Xは、ハロゲン原子である。 In any of the methods (1) to (6), the reaction route of the following reaction (i), a combination of reactions (ii) and (i), or a combination of reactions (iii) and (i) To obtain R-1233zd (E). However, X is a halogen atom.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 R-1233zd(E)は、R-134aやR-245faの代替品として用いられるものであり、高純度のものが求められている。そのためには、R-1233zd(E)を高選択率で製造することが望ましい。 R-1233zd (E) is used as a substitute for R-134a and R-245fa, and is required to have a high purity. For this purpose, it is desirable to produce R-1233zd (E) with high selectivity.
 しかし、(1)の方法では、原料であるR-244faの選択的な製造が難しい。また、目的物のR-1233zd(E)と副生成物のR-245faが共沸するため、分離が困難である(特許文献6参照)。
 (2)の方法では、R-243faと等モル量のアルカリ金属化合物が必要であり、かつ等モル量のアルカリ金属塩が副生する。
 (3)の方法では、金属触媒の調製が煩雑であり、かつ触媒が高価である。また、金属触媒による目的物、および副生するオレフィン類の重合により、高沸物が副生し、触媒が失活しやすい。
 (4)の方法では、3-クロロ-1,1,1-トリフルオロ-3-ヨードプロパンと等モル量の水酸化カリウムが必要であり、かつ等モル量のカリウム塩が副生する。また、3-クロロ-1,1,1-トリフルオロ-3-ヨードプロパンを入手しにくい。
 (5)、(6)の方法では、R-1233zd(E)の選択率を高くするのが困難であり、収率が低い。また(6)の方法では、危険なフッ化水素のハンドリングが容易ではない。
However, in the method (1), it is difficult to selectively produce R-244fa as a raw material. In addition, the target R-1233zd (E) and the by-product R-245fa azeotrope, making separation difficult (see Patent Document 6).
In the method (2), an equimolar amount of an alkali metal compound and R-243fa are required, and an equimolar amount of an alkali metal salt is by-produced.
In the method (3), the preparation of the metal catalyst is complicated and the catalyst is expensive. Further, polymerization of the target product by metal catalyst and by-product olefins results in by-product formation of high-boiling products and the catalyst tends to be deactivated.
In the method (4), an equimolar amount of potassium hydroxide and 3-chloro-1,1,1-trifluoro-3-iodopropane are required, and an equimolar amount of potassium salt is by-produced. Also, 3-chloro-1,1,1-trifluoro-3-iodopropane is difficult to obtain.
In the methods (5) and (6), it is difficult to increase the selectivity of R-1233zd (E), and the yield is low. In the method (6), handling of dangerous hydrogen fluoride is not easy.
 また、(2)および(3)の方法では、R-1233zd(E)と同時に、3-クロロ-1,3,3-トリフルオロプロペン(冷媒番号:R-1233ze)のE体(R-1233ze(E))および(Z)体(R-1233ze(Z))が副生していると考えられる。R-1233zd(E)は、R-1233ze(E)およびR-1233ze(Z)との蒸留分離が困難であるため、(2)および(3)の方法では、高純度のR-1233zd(E)が得られないという問題がある。 In the methods (2) and (3), E-form (R-1233ze) of 3-chloro-1,3,3-trifluoropropene (refrigerant number: R-1233ze) is simultaneously formed with R-1233zd (E). (E)) and (Z) form (R-1233ze (Z)) are considered to be by-produced. Since R-1233zd (E) is difficult to be separated from R-1233ze (E) and R-1233ze (Z) by the methods (2) and (3), high-purity R-1233zd (E) ) Cannot be obtained.
 また、R-243faを脱塩化水素する際に、R-243faの異性体である1,3-ジクロロ-1,3,3-トリフルオロプロパン(冷媒番号:R-243fb)が反応系内に存在している場合、R-243fbが脱塩化水素し、R-1233ze(E)およびR-1233ze(Z)が生成し得る。 In addition, when dehydrochlorinating R-243fa, 1,3-dichloro-1,3,3-trifluoropropane (refrigerant number: R-243fb), which is an isomer of R-243fa, is present in the reaction system. In this case, R-243fb can be dehydrochlorinated to produce R-1233ze (E) and R-1233ze (Z).
特開2009-263365号公報JP 2009-263365 A 米国特許第8653309号明細書US Pat. No. 8,653,309 特許第5277813号公報Japanese Patent No. 5277813 特許第3516324号公報Japanese Patent No. 3516324 特許第4746544号公報Japanese Patent No. 4746544 米国特許第7183448号明細書US Pat. No. 7,183,448
 本発明は、金属塩が生成することなく、高い選択率でR-1233zd(E)を簡便に製造できる方法の提供を目的とする。 An object of the present invention is to provide a method capable of easily producing R-1233zd (E) with high selectivity without forming a metal salt.
 本発明のR-1233zd(E)の製造方法は、R-243faを、比表面積が10~3000m/gの活性炭触媒と接触させてR-1233zd(E)に変換することを特徴とする。
 R-243faはガス状で前記活性炭触媒に接触させることができ、その接触温度は50~500℃であることが好ましい。また、R-243faのガスは反応に不活性な化合物のガスで希釈されていてもよく、反応に不活性な化合物としては不活性ガスが好ましい。
 また、R-243faは液状で前記活性炭触媒に接触させることができ、その接触温度は0~250℃であることが好ましい。
 前記活性炭触媒の比表面積は、20~2500m/gであることが好ましく、前記活性炭触媒の灰分は15%以下であることが好ましく、前記活性炭触媒の水分量は10%以下であることが好ましい。
The method for producing R-1233zd (E) of the present invention is characterized in that R-243fa is converted to R-1233zd (E) by contacting with R-233fa with an activated carbon catalyst having a specific surface area of 10 to 3000 m 2 / g.
R-243fa is gaseous and can be brought into contact with the activated carbon catalyst, and the contact temperature is preferably 50 to 500 ° C. The R-243fa gas may be diluted with a compound inert gas, and an inert gas is preferable as the inert compound.
R-243fa is liquid and can be brought into contact with the activated carbon catalyst, and the contact temperature is preferably 0 to 250 ° C.
The specific surface area of the activated carbon catalyst is preferably 20 to 2500 m 2 / g, the ash content of the activated carbon catalyst is preferably 15% or less, and the water content of the activated carbon catalyst is preferably 10% or less. .
 前記R-243faがR-243fbを含む場合、R-243fbの含有割合は、R-243faとR-243fbの合計量に対して、5モル%以下であることが好ましい。
 前記R-243fbを含むR-243faは、1,1-ジフルオロエチレン(以下、VdFという。)とジクロロフルオロメタン(冷媒番号:R-21)とを反応させて得られたR-243faであることが好ましい。さらに、この場合、VdFとR-21とを反応させて得られた反応混合物からR-243fbを除去して得られたR-243faであることが好ましい。
 また、前記R-243fbを含むR-243faは、ペンタハロゲノプロパンとフッ化水素とを反応させて得られたR-243faであることが好ましい。さらに、この場合、ペンタハロゲノプロパンとフッ化水素とを反応させて得られた反応混合物からR-243fbを除去して得られたR-243faであることが好ましい。
When R-243fa contains R-243fb, the content ratio of R-243fb is preferably 5 mol% or less with respect to the total amount of R-243fa and R-243fb.
R-243fa including R-243fb is R-243fa obtained by reacting 1,1-difluoroethylene (hereinafter referred to as VdF) with dichlorofluoromethane (refrigerant number: R-21). Is preferred. Further, in this case, R-243fa obtained by removing R-243fb from the reaction mixture obtained by reacting VdF and R-21 is preferable.
R-243fa including R-243fb is preferably R-243fa obtained by reacting pentahalogenopropane with hydrogen fluoride. Further, in this case, R-243fa obtained by removing R-243fb from the reaction mixture obtained by reacting pentahalogenopropane with hydrogen fluoride is preferable.
 本発明のR-1233zd(E)の製造方法によれば、金属塩が生成することなく、高い選択率でR-1233zd(E)を簡便に製造できる。 According to the production method of R-1233zd (E) of the present invention, R-1233zd (E) can be easily produced with high selectivity without forming a metal salt.
気相反応の一例を示すフロー図である。It is a flowchart which shows an example of a gas phase reaction. 液相反応の一例を示すフロー図である。It is a flowchart which shows an example of a liquid phase reaction. 例11における精製の挙動を示すグラフである。10 is a graph showing the purification behavior in Example 11.
<R-1233zd(E)の製造方法>
 本発明の製造方法は、R-243faを、比表面積が10~3000m/gの活性炭触媒と接触させてR-1233zd(E)に転換することにより、R-1233zd(E)を得る方法である。
<Method for producing R-1233zd (E)>
The production method of the present invention is a method for obtaining R-1233zd (E) by contacting R-243fa with an activated carbon catalyst having a specific surface area of 10 to 3000 m 2 / g to convert to R-1233zd (E). is there.
 R-243faを活性炭触媒と接触させてR-1233zd(E)を転換する反応は、下式(1)で表される。
Figure JPOXMLDOC01-appb-C000002
The reaction for converting R-1233zd (E) by contacting R-243fa with an activated carbon catalyst is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
 R-243faはガス状で活性炭触媒に接触させてもよく、液状で活性炭触媒に接触させてもよい。R-243faはガス状で活性炭触媒に接触させる方法を以下気相法といい、液状で活性炭触媒に接触させる方法を以下液相法という。
 また、R-243faは上記反応に不活性な化合物を含んでいてもよい。上記反応に不活性な化合物としては窒素、二酸化炭素、希ガス、水蒸気などの不活性ガスや脱塩化水素しない有機化合物が挙げられる。脱塩化水素しない有機化合物としては、C、CFCFCl、CFCHFなどのフッ素原子を含むハロゲン化炭化水素が好ましい。さらに、上記反応に影響するおそれのある化合物であっても、その量が少ないこと等の理由で影響が少ない場合は、R-243faに含まれていてもよい。
R-243fa may be in gaseous form and contacted with the activated carbon catalyst, or in liquid form and contacted with the activated carbon catalyst. The method of contacting R-243fa in gaseous form with the activated carbon catalyst is hereinafter referred to as a gas phase method, and the method of contacting the activated carbon catalyst with a liquid state is hereinafter referred to as a liquid phase method.
R-243fa may contain a compound inert to the above reaction. Examples of the compound inert to the reaction include inert gases such as nitrogen, carbon dioxide, rare gas, and water vapor, and organic compounds that do not dehydrochlorinate. As the organic compound that does not dehydrochlorination, C 3 F 8, CF 3 CF 2 Cl, halogenated hydrocarbons containing fluorine atoms, such as CF 3 CH 2 F preferred. Furthermore, even a compound that may affect the above reaction may be contained in R-243fa if the effect is small due to its small amount.
 R-243faには、上記反応には影響がないものの、R-243faと同様に反応してR-1233zd(E)以外の化合物が生成する不純物が含まれていてもよい。そのような化合物から生成するR-1233zd(E)以外の生成物がR-1233zd(E)と分離が容易である場合は、R-1233zd(E)の精製により純度の高いR-1233zd(E)を製造することができる。しかし、R-1233zd(E)以外の生成物がR-1233zd(E)から分離困難である場合、R-243faにはそのような分離困難な生成物が生じる不純物は少ないことが好ましい。具体的には、たとえば、後述のR-243faの製造において副生したR-243fbを含むR-243faを原料として使用する場合、R-243fbの脱塩化水素反応により生じるR-1233ze(E)やR-1233ze(Z)はR-1233zd(E)と分離することが困難である。したがって、後述の製造方法で製造したR-243faは、副生したR-243fbを低減させた後、R-1233zd(E)の原料として使用することが好ましい。 Although R-243fa does not affect the above reaction, it may contain an impurity that reacts in the same manner as R-243fa to produce a compound other than R-1233zd (E). In the case where a product other than R-1233zd (E) produced from such a compound is easily separated from R-1233zd (E), purification of R-1233zd (E) results in purification of R-1233zd (E) having high purity. ) Can be manufactured. However, when products other than R-1233zd (E) are difficult to separate from R-1233zd (E), it is preferable that R-243fa has few impurities that produce such difficult-to-separate products. Specifically, for example, when R-243fa containing R-243fb by-produced in the production of R-243fa described later is used as a raw material, R-1233ze (E) generated by the dehydrochlorination reaction of R-243fb, R-1233ze (Z) is difficult to separate from R-1233zd (E). Therefore, R-243fa produced by the production method described later is preferably used as a raw material for R-1233zd (E) after reducing by-produced R-243fb.
 R-243fa中のR-243fbの含有割合は、R-243faおよびR-243fbの合計量に対して、5モル%以下が好ましく、3モル%以下がより好ましく、1モル%以下がさらに好ましい。R-243fbの含有割合がこの範囲であれば、生成物中の不純物、特にR-1233ze(E)およびR-1233ze(Z)が少なく、R-1233zd(E)の精製が容易になる。 The content ratio of R-243fb in R-243fa is preferably 5 mol% or less, more preferably 3 mol% or less, still more preferably 1 mol% or less with respect to the total amount of R-243fa and R-243fb. When the content ratio of R-243fb is within this range, impurities in the product, particularly R-1233ze (E) and R-1233ze (Z) are small, and purification of R-1233zd (E) is facilitated.
 活性炭触媒:
 本発明における活性炭触媒は、R-243faを脱塩化水素化してR-1233zd(E)に変換するための触媒である。
Activated carbon catalyst:
The activated carbon catalyst in the present invention is a catalyst for dehydrochlorinating R-243fa to convert it into R-1233zd (E).
 活性炭触媒の比表面積は、10~3000m/gである。活性炭触媒の比表面積が10m/g以上であれば、R-243faの反応率が向上する。活性炭触媒の比表面積が3000m/g以下であれば、活性点が減少し、副生成物の生成を抑制しやすい。
 活性炭触媒の比表面積は、目的物への変換率の向上および副生成物の抑制の両立が容易な点から、20~2500m/gが好ましく、50~2000m/gがより好ましい。
 活性炭触媒の比表面積は、BET法に準拠した方法で測定される。
The specific surface area of the activated carbon catalyst is 10 to 3000 m 2 / g. When the specific surface area of the activated carbon catalyst is 10 m 2 / g or more, the reaction rate of R-243fa is improved. If the specific surface area of an activated carbon catalyst is 3000 m < 2 > / g or less, an active site will reduce and it will be easy to suppress the production | generation of a by-product.
The specific surface area of the activated carbon catalyst, from the both of suppression of increase and by-products of the conversion to the desired product easiness, preferably 20 ~ 2500m 2 / g, more preferably 50 ~ 2000m 2 / g.
The specific surface area of the activated carbon catalyst is measured by a method based on the BET method.
 活性炭触媒の種類としては、木炭、石炭、ヤシ殻等から調製された活性炭等が挙げられる。
 活性炭触媒の形状としては、長さ2~5mm程度の成形炭、4~50メッシュ程度の破砕炭、粒状炭、粉末炭等が挙げられる。気相法の場合は、4~20メッシュの破砕炭または成形炭が好ましい。液相法の場合は、粉末炭または粒状炭が好ましい。
Examples of the activated carbon catalyst include activated carbon prepared from charcoal, coal, coconut shell, and the like.
Examples of the shape of the activated carbon catalyst include formed coal having a length of about 2 to 5 mm, crushed coal having a size of about 4 to 50 mesh, granular coal, powdered coal and the like. In the case of a gas phase method, 4-20 mesh crushed coal or coal is preferable. In the case of the liquid phase method, powdered coal or granular coal is preferable.
 活性炭触媒の灰分は、15%以下が好ましく、10%以下がより好ましく、8%以下がさらに好ましい。活性炭触媒の灰分が15%を超えると、副反応が起こりやすくなる。
 活性炭触媒の灰分は、ASTM D2866に準じて測定される。
 活性炭触媒の灰分は、酸による洗浄等の公知の方法で除去できる。たとえば、石炭等を原料とした活性炭の灰分が15%を超えていても、該活性炭を塩酸等の酸で洗浄して灰分を15%以下にできる。
The ash content of the activated carbon catalyst is preferably 15% or less, more preferably 10% or less, and even more preferably 8% or less. When the ash content of the activated carbon catalyst exceeds 15%, side reactions tend to occur.
The ash content of the activated carbon catalyst is measured according to ASTM D2866.
The ash content of the activated carbon catalyst can be removed by a known method such as washing with an acid. For example, even if the ash content of activated carbon made from coal or the like exceeds 15%, the activated carbon can be washed with an acid such as hydrochloric acid to reduce the ash content to 15% or less.
 活性炭触媒は、反応に用いる前に充分に乾燥させることが好ましい。具体的には、使用前の活性炭触媒中の水分は、活性炭(水分を含む。)の100質量%のうち、10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下が特に好ましい。 The activated carbon catalyst is preferably dried sufficiently before being used in the reaction. Specifically, the water content in the activated carbon catalyst before use is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 1% by mass or less, out of 100% by mass of the activated carbon (including moisture). preferable.
 R-1233zd(E)を製造する気相法としては、たとえば、活性炭触媒を充填した触媒層を形成し、触媒層にR-243faを含むガスを導入する方法が挙げられる。
 図1は、気相法の一例を示すフロー図である。加熱手段によって加熱された反応器に、R-243faガスおよび必要に応じて希釈ガスを導入し、反応器内の触媒層の活性炭触媒にR-243faガスを接触させる。生成物を反応器の下部から連続的に取り出す。反応器の下部から取り出された生成物の一部を採取し、ガスクロマトグラフィ(GC)による組成分析を行ってもよい。必要に応じて生成物を脱酸塔に通して塩化水素を取り除く。
Examples of the gas phase method for producing R-1233zd (E) include a method of forming a catalyst layer filled with an activated carbon catalyst and introducing a gas containing R-243fa into the catalyst layer.
FIG. 1 is a flowchart showing an example of a gas phase method. R-243fa gas and, if necessary, a diluting gas are introduced into the reactor heated by the heating means, and the R-243fa gas is brought into contact with the activated carbon catalyst of the catalyst layer in the reactor. Product is continuously removed from the bottom of the reactor. A part of the product taken out from the lower part of the reactor may be collected and subjected to composition analysis by gas chromatography (GC). If necessary, the product is passed through a deoxidation tower to remove hydrogen chloride.
 反応器としては、触媒層を形成できる公知の反応器、たとえば、固定床型反応器、流動床型反応器が挙げられる。固定床型反応器が好ましい。
 反応器の材質としては、鉄、ニッケル、これらを主成分とする合金、ガラス等が挙げられる。鉄を含む合金(ステンレス鋼等)が好ましい。
 触媒層は、活性炭触媒を反応器に充填することによって形成される。触媒層は、反応器内に2つ以上あってもよい。
 触媒層における活性炭触媒の充填密度は、0.2~1.0g/cmが好ましく、0.25~0.7g/cmがより好ましい。活性炭触媒の充填密度が0.2g/cm以上であれば、単位容積あたりの活性炭触媒の充填量が多く、反応させるガス量を多くすることができるため、生産性が向上する。活性炭触媒の充填密度が1.0g/cm以下であれば、触媒層の温度上昇を抑制しやすく、反応温度の管理が容易になる。
Examples of the reactor include known reactors capable of forming a catalyst layer, such as a fixed bed reactor and a fluidized bed reactor. A fixed bed reactor is preferred.
Examples of the material for the reactor include iron, nickel, alloys containing these as main components, and glass. An alloy containing iron (stainless steel or the like) is preferable.
The catalyst layer is formed by filling an activated carbon catalyst into the reactor. There may be two or more catalyst layers in the reactor.
Packing density of the activated carbon catalyst in the catalyst layer is preferably 0.2 ~ 1.0g / cm 3, more preferably 0.25 ~ 0.7g / cm 3. If the packing density of the activated carbon catalyst is 0.2 g / cm 3 or more, the amount of the activated carbon catalyst per unit volume is large, and the amount of gas to be reacted can be increased, so that productivity is improved. If the packing density of the activated carbon catalyst is 1.0 g / cm 3 or less, the temperature rise of the catalyst layer can be easily suppressed, and the reaction temperature can be easily managed.
 加熱手段としては、電気炉、オイルバス等が挙げられる。
 希釈ガスは、活性炭触媒の触媒寿命を延ばす、転化率を向上する、選択率を向上するために、必要に応じてR-243faガスとともに反応器に導入される。
 希釈ガスとしては、不活性ガス(窒素、希ガス等)や脱塩化水素化に不活性なハロゲン化炭化水素等が挙げられる。これら以外の希釈ガスとしては、塩化水素等が挙げられる。
 希釈ガスの割合は、希釈ガスの回収率の点から、原料1モルに対して、10モル以下が好ましく、4モル以下がより好ましい。
Examples of the heating means include an electric furnace and an oil bath.
The diluent gas is introduced into the reactor together with R-243fa gas as necessary to extend the catalyst life of the activated carbon catalyst, improve the conversion rate, and improve the selectivity.
Examples of the diluent gas include inert gases (nitrogen, rare gases, etc.) and halogenated hydrocarbons that are inert to dehydrochlorination. Dilution gases other than these include hydrogen chloride and the like.
The ratio of the dilution gas is preferably 10 mol or less and more preferably 4 mol or less with respect to 1 mol of the raw material from the viewpoint of the recovery rate of the dilution gas.
 接触温度は、反応率に優れる点から、50~500℃が好ましく、100~400℃がより好ましく、170~380℃がさらに好ましい。
 反応器内の圧力は、常圧であってもよく、加圧であってもよく、減圧であってもよい。常圧または加圧が好ましい。
 接触時間は、原料の転化率と選択率を制御するために、接触温度が高ければ接触時間を短く、接触温度が低ければ接触時間を長くすることができるが、1~1000秒が好ましく、5~300秒がさらに好ましく、10~100秒が特に好ましい。
The contact temperature is preferably 50 to 500 ° C., more preferably 100 to 400 ° C., and even more preferably 170 to 380 ° C. from the viewpoint of excellent reaction rate.
The pressure in the reactor may be ordinary pressure, increased pressure, or reduced pressure. Normal pressure or pressurization is preferred.
In order to control the conversion rate and selectivity of the raw material, the contact time can be shortened if the contact temperature is high, and can be lengthened if the contact temperature is low. More preferably, it is preferably ˜300 seconds, particularly preferably 10 to 100 seconds.
 触媒層におけるガスの線速度は、0.1~100cm/秒が好ましく、0.3~30cm/秒がより好ましい。線速度が0.1cm/秒以上であれば、生産性が向上する。線速度が100cm/秒以下であれば、原料の反応率が向上する。
 線速度uは、反応器に導入される原料ガスの量と触媒層の体積とから、下式によって計算される。
 u=V/S。
 ただし、
 Vは、触媒層に導入される全ガスの流量(cm/秒)であり、
 Sは、触媒層のガスの流通方向に対する断面積(cm)である。
The gas linear velocity in the catalyst layer is preferably 0.1 to 100 cm / second, more preferably 0.3 to 30 cm / second. If the linear velocity is 0.1 cm / second or more, productivity is improved. When the linear velocity is 100 cm / second or less, the reaction rate of the raw material is improved.
The linear velocity u is calculated by the following equation from the amount of the raw material gas introduced into the reactor and the volume of the catalyst layer.
u = V / S.
However,
V is the flow rate (cm 3 / sec) of the total gas introduced into the catalyst layer,
S is a cross-sectional area (cm 2 ) with respect to the gas flow direction of the catalyst layer.
 生成物には、目的物の他に、未反応の原料、副生成物が含まれる。副生成物には、塩化水素が含まれる。
 生成物に含まれる塩化水素は、蒸留により容易に除去できる。必要に応じて、生成物を金属水酸化物またはその水溶液と接触させて中和することによって除去してもよい。金属水酸化物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。
In addition to the target product, the product includes unreacted raw materials and by-products. By-products include hydrogen chloride.
Hydrogen chloride contained in the product can be easily removed by distillation. If necessary, the product may be removed by contacting with a metal hydroxide or an aqueous solution thereof to neutralize. Examples of the metal hydroxide include sodium hydroxide and potassium hydroxide.
 R-1233zd(E)を製造する液相法としては、バッチ式であってもよく、連続式であってもよい。生産効率の点から、連続式が好ましい。
 図2は、液相法の一例を示すフロー図である。
 活性炭触媒および必要に応じて反応に不活性な液状媒体が入れられた反応器に、R-243faを連続的に供給し、反応器内の液相にて活性炭触媒とR-243faとを接触させる。生成物を反応器から回収する。生成物を反応器内の液相から回収する場合は、冷却にて生成物を冷却する。必要に応じて生成物を脱酸塔に通して塩化水素を取り除く。
The liquid phase method for producing R-1233zd (E) may be a batch method or a continuous method. From the viewpoint of production efficiency, the continuous type is preferable.
FIG. 2 is a flowchart showing an example of the liquid phase method.
R-243fa is continuously supplied to a reactor containing an activated carbon catalyst and, if necessary, a liquid medium inert to the reaction, and the activated carbon catalyst and R-243fa are brought into contact with each other in a liquid phase in the reactor. . The product is recovered from the reactor. When the product is recovered from the liquid phase in the reactor, the product is cooled by cooling. If necessary, the product is passed through a deoxidation tower to remove hydrogen chloride.
 反応器としては、活性炭触媒と液状R-243faとを接触させることができる公知の反応器が挙げられる。
 反応器の材質としては、鉄、ニッケル、これらを主成分とする合金、ガラス等が挙げられる。必要に応じて、樹脂ライニング、ガラスライニング等のライニング処理を行ってもよい。
Examples of the reactor include known reactors capable of bringing activated carbon catalyst into contact with liquid R-243fa.
Examples of the material for the reactor include iron, nickel, alloys containing these as main components, and glass. If necessary, lining treatment such as resin lining and glass lining may be performed.
 活性炭触媒としては、粉末状または粒状炭のものが好ましい。
 液相法では、液状媒体を用いてもよく、液状媒体を用いなくてもよい。液状媒体を用いないことが好ましい。液状媒体は、脱塩化水素反応に不活性な液体であり、水、有機溶媒(アルコール、含フッ素溶媒等)等が挙げられる。
 液状媒体を用いる場合、媒体の量は、原料100質量部に対して、10~100質量部が好ましい。
As the activated carbon catalyst, powdered or granular charcoal is preferable.
In the liquid phase method, a liquid medium may be used or a liquid medium may not be used. It is preferable not to use a liquid medium. The liquid medium is a liquid inert to the dehydrochlorination reaction, and examples thereof include water and organic solvents (alcohols, fluorine-containing solvents, etc.).
When a liquid medium is used, the amount of the medium is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the raw material.
 接触温度は、0~250℃が好ましく、20~150℃がより好ましい。接触温度が0℃以上であれば、反応率が向上する。接触温度が250℃以下であれば、副生成物を抑制しやすい。
 反応容器内の圧力は、0~10MPa[gage]が好ましく、0.05~5MPa[gage]がより好ましく、0.15~3MPa[gage]がさらに好ましい。反応圧力は、前記反応温度において、R-243faの蒸気圧以上であることが好ましい。
 接触時間は、バッチ式であれば1~50時間が好ましく、連続式であれば1~3000秒が好ましい。
The contact temperature is preferably 0 to 250 ° C, more preferably 20 to 150 ° C. When the contact temperature is 0 ° C. or higher, the reaction rate is improved. If a contact temperature is 250 degrees C or less, it will be easy to suppress a by-product.
The pressure in the reaction vessel is preferably 0 to 10 MPa [gage], more preferably 0.05 to 5 MPa [gage], and still more preferably 0.15 to 3 MPa [gage]. The reaction pressure is preferably not less than the vapor pressure of R-243fa at the reaction temperature.
The contact time is preferably 1 to 50 hours for the batch method, and preferably 1 to 3000 seconds for the continuous method.
 生成物は、気相から回収してもよく、液相から回収してもよい。気相から回収することが好ましい。気相から生成物を回収する場合、抜き出し箇所に冷却装置を取り付けてもよい。冷却装置を取り付けることによって、未反応の原料を反応器に戻し、沸点の低いR-1233zd(E)、R-1233zd(Z)および塩化水素を選択的に反応系内から取り出すことができるため、転化率や選択率に優れる。 The product may be recovered from the gas phase or may be recovered from the liquid phase. It is preferable to recover from the gas phase. When recovering the product from the gas phase, a cooling device may be attached to the extraction site. By attaching a cooling device, unreacted raw materials can be returned to the reactor, and R-1233zd (E), R-1233zd (Z) and hydrogen chloride having low boiling points can be selectively removed from the reaction system. Excellent conversion and selectivity.
 生成物には、目的物の他に、未反応の原料、副生成物が含まれる。副生成物には、塩化水素が含まれる。
 生成物に含まれる塩化水素は、蒸留により容易に除去できる。必要に応じて、生成物を金属水酸化物またはその水溶液と接触させて中和することによって除去してもよい。金属水酸化物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。
In addition to the target product, the product includes unreacted raw materials and by-products. By-products include hydrogen chloride.
Hydrogen chloride contained in the product can be easily removed by distillation. If necessary, the product may be removed by contacting with a metal hydroxide or an aqueous solution thereof to neutralize. Examples of the metal hydroxide include sodium hydroxide and potassium hydroxide.
 気相法や液相法で得られたR-1233zd(E)を精製し、不純物の少ないR-1233zd(E)とすることができる。
 精製方法としては、蒸留、抽出蒸留、吸着、洗浄、脱水、二層分離等が挙げられる。簡便に行うことができる点から、蒸留が好ましい。洗浄としては、酸性水溶液、中性水溶液または塩基性水溶液による洗浄が挙げられる。
R-1233zd (E) obtained by a gas phase method or a liquid phase method can be purified to give R-1233zd (E) with few impurities.
Examples of the purification method include distillation, extractive distillation, adsorption, washing, dehydration, and two-layer separation. Distillation is preferred because it can be carried out easily. Examples of washing include washing with an acidic aqueous solution, a neutral aqueous solution, or a basic aqueous solution.
 R-243fbを低減したR-243faを用いた場合、生成物中の、R-1233zd(E)と分離(たとえば、蒸留分離)が困難な、R-1233ze(E)およびR-1233ze(Z)の含有割合が低減される。そのため、一般的な蒸留による分離精製によって、反応生成物から高純度のR-1233zd(E)を得ることができる。 When R-243fa with reduced R-243fb is used, R-1233ze (E) and R-1233ze (Z) are difficult to separate from R-1233zd (E) in the product (eg, distillation separation). The content ratio of is reduced. Therefore, high-purity R-1233zd (E) can be obtained from the reaction product by separation and purification by general distillation.
 原料のR-243faを得る方法としては、下記の方法(a-1)、方法(a-2)等が挙げられる。R-243fb以外の不純物の含有量が少ないR-243faが得られる点から、方法(a-1)が好ましい。
 (a-1)VdFとR-21とを反応させる方法。
 (a-2)ペンタハロゲノプロパンとフッ化水素とを反応させる方法。
Examples of the method for obtaining the raw material R-243fa include the following method (a-1) and method (a-2). The method (a-1) is preferred because R-243fa having a small content of impurities other than R-243fb can be obtained.
(A-1) A method of reacting VdF with R-21.
(A-2) A method of reacting pentahalogenopropane with hydrogen fluoride.
 方法(a-1):
  VdFとR-21との反応は、下式(2)で表される。
Method (a-1):
The reaction between VdF and R-21 is represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(2)で示されるように、VdFとR-21との反応によりR-243faとともにR-243fbが生成する。
 該反応で得られる混合物中のR-243fbの含有割合は、反応条件(特に反応温度および触媒の種類)によって異なるが、通常、R-243faおよびR-243fbの合計100モル%のうち、5モル%以上である。
 なお、混合物には、R-243faおよびR-243fb以外に、クロロホルム、1,1,1-トリフルオロエタン(冷媒番号:R-143a)等が含まれる。
As shown by the above formula (2), R-243fb is produced together with R-243fa by the reaction of VdF and R-21.
The content ratio of R-243fb in the mixture obtained by the reaction varies depending on the reaction conditions (especially the reaction temperature and the type of catalyst), but usually 5 mol out of a total of 100 mol% of R-243fa and R-243fb. % Or more.
The mixture contains chloroform, 1,1,1-trifluoroethane (refrigerant number: R-143a), etc., in addition to R-243fa and R-243fb.
 VdFとR-21との反応は、触媒を用いて行うことが好ましい。触媒としては、塩化アルミニウム;トリクロロフルオロメタン等で処理された変性塩化ジルコニウム(特開平4-253928号公報参照);ルイス酸触媒等が挙げられる。ルイス酸触媒としては、Al、Sb、Nb、Ta、W、Re、B、Sn、Ga、In、Zr、HfおよびTiからなる群から選ばれる少なくとも1種の元素を含むハロゲン化物等が挙げられる。 The reaction between VdF and R-21 is preferably performed using a catalyst. Examples of the catalyst include aluminum chloride; modified zirconium chloride treated with trichlorofluoromethane or the like (see JP-A-4-253828); Lewis acid catalyst and the like. Examples of the Lewis acid catalyst include a halide containing at least one element selected from the group consisting of Al, Sb, Nb, Ta, W, Re, B, Sn, Ga, In, Zr, Hf, and Ti. .
 方法(a-2):
 ペンタハロゲノプロパンとフッ化水素との反応は、下式(3)で表される。ただし、mは、1~3の整数である。
Method (a-2):
The reaction between pentahalogenopropane and hydrogen fluoride is represented by the following formula (3). Here, m is an integer of 1 to 3.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 該反応で得られる混合物中のR-243fbの含有割合は、反応条件(特に反応温度および触媒の種類)によって異なるが、通常、R-243faおよびR-243fbの合計100モル%のうち、5モル%以上である。 The content ratio of R-243fb in the mixture obtained by the reaction varies depending on the reaction conditions (especially the reaction temperature and the type of catalyst), but usually 5 mol out of a total of 100 mol% of R-243fa and R-243fb. % Or more.
 方法(a-1)、方法(a-2)等で得られる反応混合物は、R-243faと、R-243fbとを少なくとも含み、他の成分を含んでいてもよい。
 他の成分としては、クロロホルム、テトラクロロメタン、1,2-ジクロロエタン、1,1-ジクロロエタン、1,1,2-トリクロロ-3,3-ジフルオロエタン(冷媒番号:R-122)、1,1,2-トリクロロエチレン、R-244fa、1-クロロ-1,1,3,3-テトラフルオロプロパン(冷媒番号:R-244fb)、1,3-ジクロロ-3,3-ジフルオロプロペン(冷媒番号:R-1232zdのE体とZ体)、R-1233ze(E)、R-1233ze(Z)、R-1233zd(Z)、3,3-ジクロロ-1,1,3-トリフルオロプロペン(冷媒番号:R-1233zc)、クロロジフルオロメタン(冷媒番号:R-22)、R-21、R-143a等が挙げられる。
The reaction mixture obtained by the method (a-1), the method (a-2) or the like contains at least R-243fa and R-243fb, and may contain other components.
Other components include chloroform, tetrachloromethane, 1,2-dichloroethane, 1,1-dichloroethane, 1,1,2-trichloro-3,3-difluoroethane (refrigerant number: R-122), 1,1, 2-trichloroethylene, R-244fa, 1-chloro-1,1,3,3-tetrafluoropropane (refrigerant number: R-244fb), 1,3-dichloro-3,3-difluoropropene (refrigerant number: R- 1232zd E and Z), R-1233ze (E), R-1233ze (Z), R-1233zd (Z), 3,3-dichloro-1,1,3-trifluoropropene (refrigerant number: R −1233zc), chlorodifluoromethane (refrigerant number: R-22), R-21, R-143a, and the like.
 反応混合物中のR-243faの含有割合は、反応混合物(100モル%)のうち、30モル%以上が好ましく、50モル%以上がより好ましく、70モル%以上がさらに好ましい。
 反応混合物中のR-243fbの含有割合は、反応混合物(100モル%)のうち、15モル%以下が好ましく、10モル%以下がより好ましく、7モル%以下がさらに好ましい。
The content of R-243fa in the reaction mixture is preferably 30 mol% or more, more preferably 50 mol% or more, and further preferably 70 mol% or more in the reaction mixture (100 mol%).
The content of R-243fb in the reaction mixture is preferably 15 mol% or less, more preferably 10 mol% or less, and even more preferably 7 mol% or less in the reaction mixture (100 mol%).
 前記のように、R-243fa中のR-243fbの含有割合は、R-243faおよびR-243fbの合計量に対して、5モル%以下が好ましく、3モル%以下がより好ましく、1モル%以下がさらに好ましい。したがって、方法(a-1)、方法(a-2)等で得られた反応混合物がこの割合を超えるR-243fbを含む場合は、方法(a-1)、方法(a-2)等で得られた反応混合物を精製し、R-243fa中のR-243fbの割合を上記範囲とすることが好ましい。
 精製方法としては、蒸留、抽出蒸留、吸着等が挙げられる。簡便に行うことができる点から、蒸留が好ましい。
 蒸留は、常圧下で行ってもよく、加圧下で行ってもよく、減圧下で行ってもよい。常圧下で行うことが好ましい。
As described above, the content ratio of R-243fb in R-243fa is preferably 5 mol% or less, more preferably 3 mol% or less, more preferably 1 mol% with respect to the total amount of R-243fa and R-243fb. The following is more preferable. Therefore, when the reaction mixture obtained by the method (a-1), the method (a-2), etc. contains R-243fb exceeding this ratio, the method (a-1), the method (a-2), etc. The obtained reaction mixture is purified, and the ratio of R-243fb in R-243fa is preferably within the above range.
Examples of the purification method include distillation, extractive distillation, adsorption and the like. Distillation is preferred because it can be carried out easily.
Distillation may be performed under normal pressure, may be performed under pressure, or may be performed under reduced pressure. It is preferable to carry out under normal pressure.
 (R-1233zd(E)の用途)
 R-1233zd(E)は、冷媒、発泡剤、フォーム、プレフォームミックス、溶媒、洗浄剤、噴射剤および相溶剤、ならびに、機能性材料の原料モノマーおよび合成用中間体として有用である。
 R-1233zd(E)を、機能性材料の原料モノマーまたは合成用中間体として用いる場合、高純度(たとえば、99.0モル%以上)であることが好ましい。
(Use of R-1233zd (E))
R-1233zd (E) is useful as a refrigerant, a foaming agent, a foam, a preform mix, a solvent, a cleaning agent, a propellant and a compatibilizer, and a raw material monomer of a functional material and an intermediate for synthesis.
When R-1233zd (E) is used as a raw material monomer of a functional material or an intermediate for synthesis, it is preferably highly pure (for example, 99.0 mol% or more).
 (他の形態)
 本発明のR-1233zd(E)の製造方法は、R-243faを特定の活性炭触媒と接触させる方法であればよく、上述した方法に限定されない。
 たとえば、R-243faは、方法(a-1)、方法(a-2)以外の方法によって得てもよく、入手方法は特に限定はされない。
(Other forms)
The method for producing R-1233zd (E) of the present invention is not limited to the method described above as long as it is a method for bringing R-243fa into contact with a specific activated carbon catalyst.
For example, R-243fa may be obtained by methods other than the method (a-1) and the method (a-2), and the obtaining method is not particularly limited.
 (作用機序)
 以上説明した本発明のR-1233zd(E)の製造方法にあっては、R-243faを特定の活性炭触媒と接触させることによって、R-243faを脱塩化水素化してR-1233zd(E)を得ているため、金属塩が生成することなく、高い選択率でR-1233zd(E)を簡便に製造できる。
(Mechanism of action)
In the production method of R-1233zd (E) of the present invention described above, R-243fa is dehydrochlorinated by bringing R-243fa into contact with a specific activated carbon catalyst to obtain R-1233zd (E). Therefore, R-1233zd (E) can be easily produced with high selectivity without producing a metal salt.
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
 (例1)
 変性塩化ジルコニウム触媒の調整:
 高さ15cmの冷却器を上部に接続し、磁気式撹拌子を入れた四ツ口フラスコ(材質:ガラス、容量:1L)に、四塩化ジルコニウムの256.9gを入れた。冷却器およびフラスコをドライアイスで-78℃に冷却しながら、R-21の636gを徐々に加えた。磁気式撹拌子で撹拌しながら冷却器およびフラスコの温度を徐々に0℃まで上昇させ、内温が0℃に到達した後、撹拌を2.5時間続けた。冷却器およびフラスコの冷却を停止し、室温で1晩減圧乾燥した。乾燥終了後、236.1gの変性塩化ジルコニウム触媒を回収した。
(Example 1)
Adjustment of modified zirconium chloride catalyst:
A cooler having a height of 15 cm was connected to the top, and 256.9 g of zirconium tetrachloride was placed in a four-necked flask (material: glass, capacity: 1 L) containing a magnetic stirrer. While cooling the condenser and flask with dry ice to −78 ° C., 636 g of R-21 was gradually added. While stirring with a magnetic stirrer, the temperature of the cooler and the flask was gradually raised to 0 ° C., and the stirring was continued for 2.5 hours after the internal temperature reached 0 ° C. The cooling of the condenser and flask was stopped, and drying was performed under reduced pressure at room temperature overnight. After the drying, 236.1 g of modified zirconium chloride catalyst was recovered.
 R-243faの製造:
 オートクレーブ(材質:ハステロイ、容量:10L)に、初期溶媒(R-243fa:71.4モル%、R-243fb:8.7モル%、クロロホルム:1.3モル%、R-22:0.1モル%、R-21:1.3モル%、他の成分:17.2モル%)の1000g、変性塩化ジルコニウム触媒の78gを入れた。オートクレーブを-15℃まで冷却した。冷却および撹拌しながら、内温が-10℃未満を保つような速度でR-21の7202gをゆっくり加えた。冷却および撹拌しながら、内温が0℃未満を保つようにVdFの4480gを10時間かけて加えた。さらに30分間撹拌した後、気相部を窒素で置換し、反応を終了した。撹拌しながら、オートクレーブの底部から反応粗液を抜き出した。反応粗液の量は、12822gであった。ろ紙(4μm径)をセットした加圧ろ過器で反応粗液をろ過し、均一な有機層の12277gを得た。有機層を一部回収し、GCによって組成分析を行った結果、有機層の組成比は、下記のとおりであった。
 R-243fa:67.9モル%、
 R-243fb:9.3モル%、
 クロロホルム:1.1モル%、
 R-143a:3.2モル%、
 R-21:2.2モル%、
 他の成分:16.3モル%。
Production of R-243fa:
In an autoclave (material: Hastelloy, capacity: 10 L), an initial solvent (R-243fa: 71.4 mol%, R-243fb: 8.7 mol%, chloroform: 1.3 mol%, R-22: 0.1) Mol%, R-21: 1.3 mol%, other components: 17.2 mol%) and 78 g of the modified zirconium chloride catalyst were added. The autoclave was cooled to -15 ° C. While cooling and stirring, 7202 g of R-21 was slowly added at such a rate that the internal temperature remained below -10 ° C. While cooling and stirring, 4480 g of VdF was added over 10 hours so that the internal temperature was kept below 0 ° C. After stirring for another 30 minutes, the gas phase was replaced with nitrogen to complete the reaction. While stirring, the reaction crude liquid was extracted from the bottom of the autoclave. The amount of the reaction crude liquid was 12822 g. The reaction crude liquid was filtered with a pressure filter set with filter paper (4 μm diameter) to obtain 12277 g of a uniform organic layer. As a result of partially collecting the organic layer and analyzing the composition by GC, the composition ratio of the organic layer was as follows.
R-243fa: 67.9 mol%,
R-243fb: 9.3 mol%,
Chloroform: 1.1 mol%,
R-143a: 3.2 mol%,
R-21: 2.2 mol%,
Other ingredients: 16.3 mol%.
 R-243faの精製:
 マントルヒータで加熱可能な釜(材質:ガラス、容量:10L)、マグネット式還流装置、還流タイマおよびジムロート冷却器を備えた蒸留塔(材質:ガラス、内径:3cm、高さ:97cm)に、精蒸留用充填物(竹中金網社製、ヘリパックNo.1)を充填した(段数測定値:43段)。
 前記R-243faの製造で得られた反応粗液のうち11000gを蒸留塔の釜に入れ、還流タイマによって還流時間/留出時間の比を50/1~300/1に調整しながら常圧で蒸留を行った。R-243faが99.9モル%超、R-243fbが0.1モル%未満の組成物(以下、R-243含有組成物1とも記す。)の2220gを得た。また、R-243faが94.0モル%、R-243fbが5.9モル%の組成物(以下、R-243含有組成物2とも記す。)の3870gを得た。
 以下の例1~8においては原料としてR-243fa含有組成物1を用いた。
Purification of R-243fa:
In a distillation column (material: glass, inner diameter: 3 cm, height: 97 cm) equipped with a kettle (material: glass, capacity: 10 L), a magnetic reflux device, a reflux timer and a Dimroth cooler that can be heated with a mantle heater, A filling for distillation (manufactured by Takenaka Wire Mesh Co., Ltd., Helipac No. 1) was filled (measured number of stages: 43 stages).
11,000 g of the reaction crude liquid obtained in the production of R-243fa was put in a kettle of a distillation column, and the ratio of reflux time / distillation time was adjusted to 50/1 to 300/1 by a reflux timer at normal pressure. Distillation was performed. As a result, 2220 g of a composition having R-243fa of more than 99.9 mol% and R-243fb of less than 0.1 mol% (hereinafter also referred to as R-243-containing composition 1) was obtained. In addition, 3870 g of a composition having R-243fa of 94.0 mol% and R-243fb of 5.9 mol% (hereinafter also referred to as R-243-containing composition 2) was obtained.
In Examples 1 to 8 below, R-243fa-containing composition 1 was used as a raw material.
 R-1233zd(E)の製造:
 反応装置として、垂直固定床反応器(材質:SUS316、内径23.0mm×高さ200mm)を用いた。反応器の中心に差込管(材質:SUS316、直径:4mm)を導入し、その中にK型熱電対を挿入し、内温を測定した。反応器の中央部に活性炭触媒を充填し、ここを触媒層とした。触媒層は電気炉によって加熱した。ガスフィードラインおよび100℃に加熱された原料供給ラインを接続した100℃に加熱された原料予熱混合ラインを反応器の上部に接続した。窒素は、マスフローコントローラを用いてガス流量を調整し、ガスフィードラインから原料予熱混合ラインに供給した。R-243faを含む原料は、プランジャーポンプを用いて液流量を調整し、100℃に加熱された原料供給ラインを通して気化させた後、原料予熱混合ラインに供給した。生成物は、反応器の下部から連続的に取り出た。反応器の下部から取り出された生成物の一部を採取し、ガスクロマトグラフィ(GC)による組成分析を行った。以下、反応器の下部から取り出された生成物を出口ガスという。
Production of R-1233zd (E):
A vertical fixed bed reactor (material: SUS316, inner diameter 23.0 mm × height 200 mm) was used as the reaction apparatus. An insertion tube (material: SUS316, diameter: 4 mm) was introduced into the center of the reactor, a K-type thermocouple was inserted therein, and the internal temperature was measured. The central part of the reactor was filled with an activated carbon catalyst, which was used as a catalyst layer. The catalyst layer was heated by an electric furnace. A raw material preheating mixing line heated to 100 ° C. connected to a gas feed line and a raw material supply line heated to 100 ° C. was connected to the upper part of the reactor. Nitrogen was supplied from the gas feed line to the raw material preheating mixing line by adjusting the gas flow rate using a mass flow controller. The raw material containing R-243fa was vaporized through a raw material supply line heated to 100 ° C. using a plunger pump, and then supplied to the raw material preheating mixing line. Product was continuously removed from the bottom of the reactor. A part of the product taken out from the lower part of the reactor was collected and subjected to composition analysis by gas chromatography (GC). Hereinafter, the product taken out from the lower part of the reactor is referred to as outlet gas.
 反応器に、活性炭触媒(日本エンバイロケミカルズ社製、白鷺活性炭C2x、比表面積:1260m/g、灰分:1.2質量%)の81.2mL(41.2g)を充填した。
 表1に示す条件にて窒素および原料を反応器に導入し、連続4時間反応させた。反応終了直前に出口ガスの一部を採取し、ガスクロマトグラフィ(GC)による組成分析を行った。結果を表1に示す。
The reactor activated carbon catalyst (Japan EnviroChemicals Chemicals Inc., Shirasagi activated carbon C2x, specific surface area: 1260m 2 / g, ash content: 1.2 wt%) was charged with 81.2ML (41.2 g) of.
Nitrogen and raw materials were introduced into the reactor under the conditions shown in Table 1, and the reaction was continued for 4 hours. Immediately before the end of the reaction, a part of the outlet gas was sampled and analyzed by gas chromatography (GC). The results are shown in Table 1.
 (例2~7)
 表1に示す条件にて窒素と原料または原料のみを反応器に導入し、連続4時間反応させた。反応終了直前に出口ガスの一部を採取し、ガスクロマトグラフィ(GC)による組成分析を行った。結果を表1に示す。
(Examples 2-7)
Under the conditions shown in Table 1, nitrogen and raw materials or only raw materials were introduced into the reactor and reacted continuously for 4 hours. Immediately before the end of the reaction, a part of the outlet gas was sampled and subjected to composition analysis by gas chromatography (GC). The results are shown in Table 1.
 (例8)
 例6と同様の反応条件で原料を反応器に導入し、連続256時間反応させた。反応終了直前に出口ガスの一部を採取し、ガスクロマトグラフィ(GC)による組成分析を行った。結果を表1に示す。また、この反応後の触媒を反応器から抜き出した後、堀場製作所製の連続流動式表面積計SA-9601を用いて比表面積を測定したところ、78m/gであった。
(Example 8)
The raw materials were introduced into the reactor under the same reaction conditions as in Example 6 and reacted continuously for 256 hours. Immediately before the end of the reaction, a part of the outlet gas was sampled and subjected to composition analysis by gas chromatography (GC). The results are shown in Table 1. Further, after extracting the catalyst after this reaction from the reactor, the specific surface area was measured by using a continuous flow type surface area meter SA-9601 manufactured by Horiba Seisakusho, and it was 78 m 2 / g.
 (生成物の組成分析)
 生成物の組成分析には、ガスクロマトグラムを用いた。カラムとしては、DB-1(アジレント・テクノロジー社製、長さ60m×内径250μm×厚さ1μm)を用いた。
(Product composition analysis)
A gas chromatogram was used for composition analysis of the product. DB-1 (manufactured by Agilent Technologies, length 60 m × inner diameter 250 μm × thickness 1 μm) was used as the column.
 (R-243fa転化率)
 R-243fa転化率X(%)は、下式から求めた。
 X=100×(Xa-Xb)/Xa。
 ただし、
 Xa:原料中のR-243fa含有割合(モル%)、
 Xb:反応後の出口ガス中のR-243fa含有割合(モル%)。
(R-243fa conversion)
The R-243fa conversion rate X (%) was determined from the following equation.
X = 100 × (Xa−Xb) / Xa.
However,
Xa: R-243fa content ratio (mol%) in the raw material,
Xb: R-243fa content ratio (mol%) in the outlet gas after the reaction.
 (R-1233zd選択率)
 R-1233zd(E)選択率Y(E)(%)およびR-1233zd(Z)選択率Y(Z)(%)は、下式から求めた。
 Y(E)=100×Ya/(Xa-Xb)。
 Y(Z)=100×Yb/(Xa-Xb)。
 ただし、
 Ya:反応後の出口ガス中のR-1233zd(E)含有割合(モル%)、
 Yb:反応後の出口ガス中のR-1233zd(Z)含有割合(モル%)。
(R-1233zd selectivity)
The R-1233zd (E) selectivity Y (E) (%) and the R-1233zd (Z) selectivity Y (Z) (%) were obtained from the following equations.
Y (E) = 100 × Ya / (Xa−Xb).
Y (Z) = 100 × Yb / (Xa−Xb).
However,
Ya: R-1233zd (E) content ratio (mol%) in the outlet gas after the reaction,
Yb: R-1233zd (Z) content ratio (mol%) in the outlet gas after the reaction.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 例1~8の結果から、本発明のR-1233zd(E)の製造方法によれば、高選択率でR-1233zd(E)を製造できることがわかる。
 また、例3と例6との比較から、R-243faを窒素で希釈しなくても、R-1233zd(E)選択率がほとんど低下しないことがわかる。
From the results of Examples 1 to 8, it can be seen that according to the production method of R-1233zd (E) of the present invention, R-1233zd (E) can be produced with high selectivity.
Further, comparison between Example 3 and Example 6 shows that the R-1233zd (E) selectivity is hardly lowered even if R-243fa is not diluted with nitrogen.
 (例9)
 オートクレーブ(材質:ハステロイ、容量:10L)に、テトラブチルアンモニウムクロリド(TBAC)の19.3gと、原料として前記R-243fa含有組成物2の3861.9g(23.1モル)とを加えた後、内温を5~10℃に保ちながら20質量%水酸化ナトリウム水溶液の6907.7g(NaOH:34.7モル)を投入した。窒素で気相部を置換した後、内温を25℃まで上昇させ2時間撹拌し、さらに内温を40℃まで上昇させて8時間撹拌した。内温を5℃に冷却した後、2時間静置し、オートクレーブの下部より有機層、水層の順番で回収した。有機層回収量は2835.4g、水層回収量は7723.7gであった。有機層について、ガスクロマトグラフィ(GC)による組成を行った。結果およびその他反応成績を表2に示す。
(Example 9)
After adding 19.3 g of tetrabutylammonium chloride (TBAC) and 3861.9 g (23.1 mol) of R-243fa-containing composition 2 as raw materials to an autoclave (material: Hastelloy, capacity: 10 L) While maintaining the internal temperature at 5 to 10 ° C., 6907.7 g (NaOH: 34.7 mol) of a 20 mass% sodium hydroxide aqueous solution was added. After replacing the gas phase with nitrogen, the internal temperature was raised to 25 ° C. and stirred for 2 hours, and the internal temperature was further raised to 40 ° C. and stirred for 8 hours. After cooling the internal temperature to 5 ° C., the mixture was allowed to stand for 2 hours and recovered in the order of the organic layer and the aqueous layer from the bottom of the autoclave. The recovery amount of the organic layer was 2835.4 g, and the recovery amount of the aqueous layer was 7733.7 g. About the organic layer, the composition by gas chromatography (GC) was performed. The results and other reaction results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2中、R-243fa転化率X(%)、R-1233zd(E)選択率Y(%)、およびR-1233zd(E)中のR-1233ze(EorZ):異性体A含有率Z(%)は、以下の式で求められる。 In Table 2, R-243fa conversion rate X (%), R-1233zd (E) selectivity Y (%), and R-1233ze (EorZ) in R-1233zd (E): isomer A content Z ( %) Is obtained by the following equation.
 (R-243fa転化率)
 X=100×(Xa-Xb)/Xa。
 ただし、
 Xa:原料中のR-243fa含有割合(モル%)、
 Xb:反応後の出口ガス中のR-243fa含有割合(モル%)。
(R-243fa conversion)
X = 100 × (Xa−Xb) / Xa.
However,
Xa: R-243fa content ratio (mol%) in the raw material,
Xb: R-243fa content ratio (mol%) in the outlet gas after the reaction.
 (R-1233zd(E)選択率)
 Y=100×Ya/(Xa-Xb)。
 ただし、
 Ya:反応後の出口ガス中のR-1233zd(E)含有割合(モル%)。
(R-1233zd (E) selectivity)
Y = 100 × Ya / (Xa−Xb).
However,
Ya: R-1233zd (E) content ratio (mol%) in the outlet gas after the reaction.
 (R-1233zd(E)中のR-1233ze(EorZ):異性体A含有率)
 Z=100×Za/(Za+Zb)。
 ただし、
 Za:反応後の出口ガス中のR-1233ze(EorZ):異性体A含有割合(モル%)
 Zb:反応後の出口ガス中のR-1233zd(E)含有割合(モル%)。
(R-1233ze (EorZ) in R-1233zd (E): isomer A content)
Z = 100 × Za / (Za + Zb).
However,
Za: R-1233ze (EorZ) in the exit gas after the reaction: Content ratio of isomer A (mol%)
Zb: R-1233zd (E) content ratio (mol%) in the outlet gas after the reaction.
 上記脱塩化水素反応を2回実施し、得られた組成物を混合することによって、下記の組成のR-1233zd(E)含有組成物1の5564gを得た。
 R-1233zd(E):86.0モル%、
 R-1233zd(Z):6.4モル%、
 3,3,3-トリフルオロプロピン:1.0モル%、
 R-243fa:3.8モル%、
 R-1233ze(EorZ):異性体A:2.2モル%、
 R-1233ze(EorZ):異性体B:0.4モル%、
 R-1233zc:0.3モル%。
The dehydrochlorination reaction was carried out twice, and the resulting composition was mixed to obtain 5564 g of R-1233zd (E) -containing composition 1 having the following composition.
R-1233zd (E): 86.0 mol%,
R-1233zd (Z): 6.4 mol%,
3,3,3-trifluoropropyne: 1.0 mol%,
R-243fa: 3.8 mol%,
R-1233ze (EorZ): Isomer A: 2.2 mol%
R-1233ze (EorZ): Isomer B: 0.4 mol%
R-1233zc: 0.3 mol%.
 精製:
 加熱可能な釜(材質:SUS、容量:5L)、還流ライン、還流タイマ、多管式冷却コンデンサ、窒素ガスライン、背圧弁およびドライアイス冷却した低沸点物質回収トラップを備えた蒸留塔(材質:SUS、内径:2.7cm、高さ:300cm、充填物高さ:250cm)に、精蒸留用充填物(竹中金網社製、ヘリパックNo.3)を充填した(段数測定値:30段)。
 得られたR-1233zd(E)含有組成物1の5564gを蒸留塔の釜に入れ、還流タイマによって還流時間/留出時間の比を300/1~600/1に調整し、背圧弁を調整しながら窒素で0.2MPaに加圧下、蒸留を行った。結果、R-1233zd(E)が99.0モル%超の組成物は得られず、R-1233zd(E)とR-1233ze(EorZ):異性体Aの混合組成物として得られた。混合組成物(R-1233zd(E)+R-1233ze(EorZ):異性体Aが99.0モル%超)の収量は3630gであり、その組成はR-1233zd(E)が98.3モル%、R-1233ze(EorZ):異性体Aが1.7モル%であった。また、釜残分として559gの組成物を回収した。蒸留挙動を図3に示す。
 図3から明らかなように、R-1233zd(E)とR-1233ze(EorZ):異性体Aの分離は非常に困難であった。
Purification:
Heatable kettle (material: SUS, capacity: 5 L), reflux column, reflux timer, multi-tube cooling condenser, nitrogen gas line, back pressure valve and dry ice cooled low boiling point substance recovery trap (material: SUS, inner diameter: 2.7 cm, height: 300 cm, packing height: 250 cm) were packed with a fine distillation packing (manufactured by Takenaka Wire Mesh Co., Ltd., Helipack No. 3) (measured number of stages: 30 stages).
5564 g of the obtained R-1233zd (E) -containing composition 1 was put in a distillation column kettle, and the ratio of reflux time / distillation time was adjusted to 300/1 to 600/1 by a reflux timer to adjust the back pressure valve. Then, distillation was performed under a pressure of 0.2 MPa with nitrogen. As a result, a composition having R-1233zd (E) exceeding 99.0 mol% was not obtained, but a composition having R-1233zd (E) and R-1233ze (EorZ): isomer A was obtained. The yield of the mixed composition (R-1233zd (E) + R-1233ze (EorZ): isomer A is more than 99.0 mol%) was 3630 g, and the composition was 98.3 mol% R-1233zd (E). , R-1233ze (EorZ): The isomer A was 1.7 mol%. In addition, 559 g of the composition was recovered as the kettle residue. The distillation behavior is shown in FIG.
As is clear from FIG. 3, separation of R-1233zd (E) and R-1233ze (EorZ): isomer A was very difficult.
 本発明のR-1233zd(E)の製造方法は、高い選択率でR-1233zd(E)を得ることができることから、R-1233zd(E)の製造に好適に用いることができる。
 なお、2014年4月28日に出願された日本特許出願2014-093092号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The production method of R-1233zd (E) of the present invention can be suitably used for the production of R-1233zd (E) because R-1233zd (E) can be obtained with high selectivity.
In addition, the entire content of the specification, claims, abstract, and drawings of Japanese Patent Application No. 2014-093092 filed on April 28, 2014 is cited here as disclosure of the specification of the present invention. Incorporated.

Claims (15)

  1.  1,1-ジクロロ-3,3,3-トリフルオロプロパンを、比表面積が10~3000m/gの活性炭触媒と接触させてトランス-1-クロロ-3,3,3-トリフルオロプロペンに変換することを特徴とするトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 1,1-dichloro-3,3,3-trifluoropropane is converted to trans-1-chloro-3,3,3-trifluoropropene by contacting with an activated carbon catalyst having a specific surface area of 10 to 3000 m 2 / g. A process for producing trans-1-chloro-3,3,3-trifluoropropene.
  2.  1,1-ジクロロ-3,3,3-トリフルオロプロパンをガス状で前記活性炭触媒に接触させる、請求項1に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 The process for producing trans-1-chloro-3,3,3-trifluoropropene according to claim 1, wherein 1,1-dichloro-3,3,3-trifluoropropane is brought into contact with the activated carbon catalyst in a gaseous state. .
  3.  前記活性炭触媒との接触温度が、50~500℃である、請求項2に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 The process for producing trans-1-chloro-3,3,3-trifluoropropene according to claim 2, wherein the contact temperature with the activated carbon catalyst is 50 to 500 ° C.
  4.  前記1,1-ジクロロ-3,3,3-トリフルオロプロパンのガスが、反応に不活性な化合物のガスで希釈されている、請求項2または3に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 4. Trans-1-chloro-3, according to claim 2 or 3, wherein the 1,1-dichloro-3,3,3-trifluoropropane gas is diluted with a gas of a compound inert to the reaction. A method for producing 3,3-trifluoropropene.
  5.  前記反応に不活性な化合物が不活性ガスである、請求項4に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 The method for producing trans-1-chloro-3,3,3-trifluoropropene according to claim 4, wherein the compound inert to the reaction is an inert gas.
  6.  1,1-ジクロロ-3,3,3-トリフルオロプロパンを液状で前記活性炭触媒に接触させる、請求項1に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 The process for producing trans-1-chloro-3,3,3-trifluoropropene according to claim 1, wherein 1,1-dichloro-3,3,3-trifluoropropane is brought into contact with the activated carbon catalyst in a liquid state.
  7.  前記活性炭触媒との接触温度が0~250℃である、請求項6に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 The process for producing trans-1-chloro-3,3,3-trifluoropropene according to claim 6, wherein the contact temperature with the activated carbon catalyst is 0 to 250 ° C.
  8.  前記活性炭触媒の比表面積が20~2500m/gである、請求項1~7のいずれか一項に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 The process for producing trans-1-chloro-3,3,3-trifluoropropene according to any one of claims 1 to 7, wherein the activated carbon catalyst has a specific surface area of 20 to 2500 m 2 / g.
  9.  前記活性炭触媒の灰分が15%以下である、請求項1~8のいずれか一項に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 The process for producing trans-1-chloro-3,3,3-trifluoropropene according to any one of claims 1 to 8, wherein the activated carbon catalyst has an ash content of 15% or less.
  10.  前記活性炭触媒の水分量が10%以下である、請求項1~9のいずれか一項に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 The process for producing trans-1-chloro-3,3,3-trifluoropropene according to any one of claims 1 to 9, wherein the activated carbon catalyst has a water content of 10% or less.
  11.  前記1,1-ジクロロ-3,3,3-トリフルオロプロパンが1,3-ジクロロ-1,3,3-トリフルオロプロパンを含み、
     1,3-ジクロロ-1,3,3-トリフルオロプロパンの含有割合が、1,1-ジクロロ-3,3,3-トリフルオロプロパンと1,3-ジクロロ-1,3,3-トリフルオロプロパンの合計量に対して、5モル%以下である、請求項1~10のいずれか一項に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。
    The 1,1-dichloro-3,3,3-trifluoropropane comprises 1,3-dichloro-1,3,3-trifluoropropane;
    The content ratio of 1,3-dichloro-1,3,3-trifluoropropane is such that 1,1-dichloro-3,3,3-trifluoropropane and 1,3-dichloro-1,3,3-trifluoro The process for producing trans-1-chloro-3,3,3-trifluoropropene according to any one of claims 1 to 10, which is 5 mol% or less based on the total amount of propane.
  12.  前記1,3-ジクロロ-1,3,3-トリフルオロプロパンを含む1,1-ジクロロ-3,3,3-トリフルオロプロパンが、1,1-ジフルオロエチレンとジクロロフルオロメタンとを反応させて得られた1,1-ジクロロ-3,3,3-トリフルオロプロパンである、請求項11に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 1,1-dichloro-3,3,3-trifluoropropane containing 1,3-dichloro-1,3,3-trifluoropropane reacts 1,1-difluoroethylene with dichlorofluoromethane. The process for producing trans-1-chloro-3,3,3-trifluoropropene according to claim 11, which is the obtained 1,1-dichloro-3,3,3-trifluoropropane.
  13.  前記1,3-ジクロロ-1,3,3-トリフルオロプロパンを含む1,1-ジクロロ-3,3,3-トリフルオロプロパンが、1,1-ジフルオロエチレンとジクロロフルオロメタンとを反応させて得られた反応混合物から1,3-ジクロロ-1,3,3-トリフルオロプロパンを除去して得られた1,1-ジクロロ-3,3,3-トリフルオロプロパンである、請求項12に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 1,1-dichloro-3,3,3-trifluoropropane containing 1,3-dichloro-1,3,3-trifluoropropane reacts 1,1-difluoroethylene with dichlorofluoromethane. 13. 1,1-dichloro-3,3,3-trifluoropropane obtained by removing 1,3-dichloro-1,3,3-trifluoropropane from the obtained reaction mixture, A process for producing the trans-1-chloro-3,3,3-trifluoropropene described.
  14.  前記1,3-ジクロロ-1,3,3-トリフルオロプロパンを含む1,1-ジクロロ-3,3,3-トリフルオロプロパンがペンタハロゲノプロパンとフッ化水素とを反応させて得られた1,1-ジクロロ-3,3,3-トリフルオロプロパンである、請求項11に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 1,1-dichloro-3,3,3-trifluoropropane containing 1,3-dichloro-1,3,3-trifluoropropane was obtained by reacting pentahalogenopropane with hydrogen fluoride. The process for producing trans-1-chloro-3,3,3-trifluoropropene according to claim 11, which is 1,1-dichloro-3,3,3-trifluoropropane.
  15.  前記1,3-ジクロロ-1,3,3-トリフルオロプロパンを含む1,1-ジクロロ-3,3,3-トリフルオロプロパンが、ペンタハロゲノプロパンとフッ化水素とを反応させて得られた反応混合物から1,3-ジクロロ-1,3,3-トリフルオロプロパンを除去して得られた1,1-ジクロロ-3,3,3-トリフルオロプロパンである、請求項14に記載のトランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。 1,1-dichloro-3,3,3-trifluoropropane containing 1,3-dichloro-1,3,3-trifluoropropane was obtained by reacting pentahalogenopropane with hydrogen fluoride. 15. The trans of claim 14, which is 1,1-dichloro-3,3,3-trifluoropropane obtained by removing 1,3-dichloro-1,3,3-trifluoropropane from the reaction mixture. A process for producing 1-chloro-3,3,3-trifluoropropene.
PCT/JP2015/062147 2014-04-28 2015-04-21 Method for producing trans-1-chloro-3,3,3-trifluoropropene WO2015166847A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-093092 2014-04-28
JP2014093092A JP2017114766A (en) 2014-04-28 2014-04-28 Manufacturing method of (e)-1-chloro-3,3,3-trifluoropropene

Publications (1)

Publication Number Publication Date
WO2015166847A1 true WO2015166847A1 (en) 2015-11-05

Family

ID=54358578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062147 WO2015166847A1 (en) 2014-04-28 2015-04-21 Method for producing trans-1-chloro-3,3,3-trifluoropropene

Country Status (2)

Country Link
JP (1) JP2017114766A (en)
WO (1) WO2015166847A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111227A1 (en) * 2015-01-06 2016-07-14 旭硝子株式会社 Method for producing (e)-1-chloro-3,3,3-trifluoropropene

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219625B2 (en) * 2019-02-06 2023-02-08 学校法人 関西大学 Method for producing 1-chloro-2,2-difluoroethylene

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873385A (en) * 1994-06-28 1996-03-19 A G Technol Kk Production of 1, 1, 1, 3, 3-pentafluoropropane
JP2001509803A (en) * 1997-01-31 2001-07-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Contact production of pentafluoropropene
US20060058560A1 (en) * 2004-09-10 2006-03-16 Honeywell International Inc. Process for the preparation of 1,1-dichloro-3,3,3-trifluoropropane
JP2006193437A (en) * 2005-01-11 2006-07-27 Central Glass Co Ltd Method for producing 1,1,3,3,3-pentafluoropropene
JP2008110980A (en) * 2006-10-27 2008-05-15 Honeywell Internatl Inc Method for selectively dehydrohalogenating halogenated alkane
US20120271069A1 (en) * 2011-04-20 2012-10-25 Haiyou Wang Process for producing trans-1233zd
WO2014046251A1 (en) * 2012-09-21 2014-03-27 セントラル硝子株式会社 Production method for 1,2-dichloro-3,3,3-trifluoropropene

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873385A (en) * 1994-06-28 1996-03-19 A G Technol Kk Production of 1, 1, 1, 3, 3-pentafluoropropane
JP2001509803A (en) * 1997-01-31 2001-07-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Contact production of pentafluoropropene
US20060058560A1 (en) * 2004-09-10 2006-03-16 Honeywell International Inc. Process for the preparation of 1,1-dichloro-3,3,3-trifluoropropane
JP2006193437A (en) * 2005-01-11 2006-07-27 Central Glass Co Ltd Method for producing 1,1,3,3,3-pentafluoropropene
JP2008110980A (en) * 2006-10-27 2008-05-15 Honeywell Internatl Inc Method for selectively dehydrohalogenating halogenated alkane
US20120271069A1 (en) * 2011-04-20 2012-10-25 Haiyou Wang Process for producing trans-1233zd
WO2014046251A1 (en) * 2012-09-21 2014-03-27 セントラル硝子株式会社 Production method for 1,2-dichloro-3,3,3-trifluoropropene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111227A1 (en) * 2015-01-06 2016-07-14 旭硝子株式会社 Method for producing (e)-1-chloro-3,3,3-trifluoropropene

Also Published As

Publication number Publication date
JP2017114766A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6426795B2 (en) Method for producing chlorinated propene
JP5615179B2 (en) Process for the synthesis of fluorinated olefins
JP5592607B2 (en) Method for producing fluorinated organic compound
US8383867B2 (en) Method for producing fluorinated organic compounds
KR101388042B1 (en) Integrated hfc-1234ze manufacture process
JP6449791B2 (en) Method for producing chloroalkane
KR101595196B1 (en) Process for preparing 2,3,3,3-tetrafluoropropene
JP2019031526A (en) Manufacturing method of fluorinated organic compound
JP5484820B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
JP5598333B2 (en) Method for producing 1,1-dichloro-2,2,3,3,3-pentafluoropropane
JP6245259B2 (en) (E) Process for producing 1-chloro-3,3,3-trifluoropropene
JP5715177B2 (en) Method for producing fluorinated organic compound
WO2013151070A1 (en) Method for purifying fluoroolefin, and method for producing fluoroolefin
JP5817591B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
JP2017001990A (en) Manufacturing method of 1,2-dichloro-3,3,3-trifluoropropene
JP5713015B2 (en) Method for producing 1,1-dichloro-2,2,3,3,3-pentafluoropropane
WO2015020808A1 (en) Process for 1-chloro -3,3,3 -trifluoropropene from trifluoropropene
WO2015166847A1 (en) Method for producing trans-1-chloro-3,3,3-trifluoropropene
WO2018079726A1 (en) Production method for tetrafluoropropenes
JP6015543B2 (en) (E) Process for producing 1-chloro-3,3,3-trifluoropropene
WO2016111227A1 (en) Method for producing (e)-1-chloro-3,3,3-trifluoropropene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15786286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载