WO2015029625A1 - Medical instrument and method for manufacturing same - Google Patents
Medical instrument and method for manufacturing same Download PDFInfo
- Publication number
- WO2015029625A1 WO2015029625A1 PCT/JP2014/068820 JP2014068820W WO2015029625A1 WO 2015029625 A1 WO2015029625 A1 WO 2015029625A1 JP 2014068820 W JP2014068820 W JP 2014068820W WO 2015029625 A1 WO2015029625 A1 WO 2015029625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- maleic
- structural unit
- medical device
- polymer material
- maleic acid
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 103
- 239000002585 base Substances 0.000 claims abstract description 88
- 239000011247 coating layer Substances 0.000 claims abstract description 64
- 125000000524 functional group Chemical group 0.000 claims abstract description 64
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims abstract description 63
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims abstract description 63
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000011976 maleic acid Substances 0.000 claims abstract description 62
- 229920005989 resin Polymers 0.000 claims abstract description 41
- 239000011347 resin Substances 0.000 claims abstract description 41
- 229920000642 polymer Polymers 0.000 claims abstract description 40
- 239000000126 substance Substances 0.000 claims abstract description 34
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 13
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 13
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 9
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 8
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 8
- 239000001257 hydrogen Substances 0.000 claims abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract description 5
- 239000002861 polymer material Substances 0.000 claims description 98
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 50
- 229920001577 copolymer Polymers 0.000 claims description 47
- 239000000758 substrate Substances 0.000 claims description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 239000010410 layer Substances 0.000 claims description 28
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 28
- 229910001868 water Inorganic materials 0.000 claims description 25
- 239000003513 alkali Substances 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 22
- 125000004432 carbon atom Chemical group C* 0.000 claims description 14
- 125000003277 amino group Chemical group 0.000 claims description 6
- 125000003172 aldehyde group Chemical group 0.000 claims description 5
- 125000003700 epoxy group Chemical group 0.000 claims description 5
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 5
- 239000000470 constituent Substances 0.000 abstract description 7
- 229940098895 maleic acid Drugs 0.000 abstract 5
- 238000005886 esterification reaction Methods 0.000 description 35
- 239000000243 solution Substances 0.000 description 34
- 239000011248 coating agent Substances 0.000 description 23
- 238000000576 coating method Methods 0.000 description 23
- 230000032050 esterification Effects 0.000 description 22
- -1 alkali metal salt Chemical class 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 21
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 20
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 20
- 239000002904 solvent Substances 0.000 description 16
- 210000004369 blood Anatomy 0.000 description 15
- 239000008280 blood Substances 0.000 description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 15
- 210000001124 body fluid Anatomy 0.000 description 14
- 239000010839 body fluid Substances 0.000 description 14
- 238000006460 hydrolysis reaction Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 12
- 150000002148 esters Chemical class 0.000 description 12
- UPBDXRPQPOWRKR-UHFFFAOYSA-N furan-2,5-dione;methoxyethene Chemical compound COC=C.O=C1OC(=O)C=C1 UPBDXRPQPOWRKR-UHFFFAOYSA-N 0.000 description 12
- 150000007942 carboxylates Chemical class 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000011259 mixed solution Substances 0.000 description 10
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000005481 NMR spectroscopy Methods 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- 230000007062 hydrolysis Effects 0.000 description 9
- 239000007769 metal material Substances 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000012423 maintenance Methods 0.000 description 8
- 239000002344 surface layer Substances 0.000 description 8
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 7
- 239000012153 distilled water Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 238000010992 reflux Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 239000012670 alkaline solution Substances 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 4
- 125000004494 ethyl ester group Chemical group 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 229920000768 polyamine Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004800 polyvinyl chloride Substances 0.000 description 4
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-WFGJKAKNSA-N acetone d6 Chemical compound [2H]C([2H])([2H])C(=O)C([2H])([2H])[2H] CSCPPACGZOOCGX-WFGJKAKNSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 239000001273 butane Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 229910001000 nickel titanium Inorganic materials 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 150000003839 salts Chemical group 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 235000017550 sodium carbonate Nutrition 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- 230000002522 swelling effect Effects 0.000 description 3
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 3
- 210000003437 trachea Anatomy 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- ICGQLNMKJVHCIR-UHFFFAOYSA-N 1,3,2-dioxazetidin-4-one Chemical group O=C1ONO1 ICGQLNMKJVHCIR-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical group CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 2
- 125000004018 acid anhydride group Chemical group 0.000 description 2
- 238000007754 air knife coating Methods 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 239000010952 cobalt-chrome Substances 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007766 curtain coating Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical group [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 210000004400 mucous membrane Anatomy 0.000 description 2
- 150000002978 peroxides Chemical group 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 235000011118 potassium hydroxide Nutrition 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- XZLXGTUBUCMRCH-UHFFFAOYSA-N tungsten zinc Chemical compound [Zn].[W] XZLXGTUBUCMRCH-UHFFFAOYSA-N 0.000 description 2
- 210000000626 ureter Anatomy 0.000 description 2
- 210000003708 urethra Anatomy 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- HHEHWCIYDICHCG-ODZAUARKSA-N (z)-but-2-enedioic acid;methoxyethene Chemical compound COC=C.OC(=O)\C=C/C(O)=O HHEHWCIYDICHCG-ODZAUARKSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 description 1
- ZXHZWRZAWJVPIC-UHFFFAOYSA-N 1,2-diisocyanatonaphthalene Chemical compound C1=CC=CC2=C(N=C=O)C(N=C=O)=CC=C21 ZXHZWRZAWJVPIC-UHFFFAOYSA-N 0.000 description 1
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 1
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 1
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 1
- OVGRCEFMXPHEBL-UHFFFAOYSA-N 1-ethenoxypropane Chemical compound CCCOC=C OVGRCEFMXPHEBL-UHFFFAOYSA-N 0.000 description 1
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- VVJIVFKAROPUOS-UHFFFAOYSA-N 2,2-bis(aminomethyl)propane-1,3-diamine Chemical compound NCC(CN)(CN)CN VVJIVFKAROPUOS-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- ZSZRUEAFVQITHH-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethyl 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CC(=C)C(=O)OCCOP([O-])(=O)OCC[N+](C)(C)C ZSZRUEAFVQITHH-UHFFFAOYSA-N 0.000 description 1
- GHKSKVKCKMGRDU-UHFFFAOYSA-N 2-(3-aminopropylamino)ethanol Chemical compound NCCCNCCO GHKSKVKCKMGRDU-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- OZDGMOYKSFPLSE-UHFFFAOYSA-N 2-Methylaziridine Chemical compound CC1CN1 OZDGMOYKSFPLSE-UHFFFAOYSA-N 0.000 description 1
- HSDVRWZKEDRBAG-UHFFFAOYSA-N 2-[1-(oxiran-2-ylmethoxy)hexoxymethyl]oxirane Chemical compound C1OC1COC(CCCCC)OCC1CO1 HSDVRWZKEDRBAG-UHFFFAOYSA-N 0.000 description 1
- HDPLHDGYGLENEI-UHFFFAOYSA-N 2-[1-(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COC(C)COCC1CO1 HDPLHDGYGLENEI-UHFFFAOYSA-N 0.000 description 1
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- FDSYTWVNUJTPMA-UHFFFAOYSA-N 2-[3,9-bis(carboxymethyl)-3,6,9,15-tetrazabicyclo[9.3.1]pentadeca-1(15),11,13-trien-6-yl]acetic acid Chemical compound C1N(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC2=CC=CC1=N2 FDSYTWVNUJTPMA-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- MECNWXGGNCJFQJ-UHFFFAOYSA-N 3-piperidin-1-ylpropane-1,2-diol Chemical compound OCC(O)CN1CCCCC1 MECNWXGGNCJFQJ-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- UMHJEEQLYBKSAN-UHFFFAOYSA-N Adipaldehyde Chemical compound O=CCCCCC=O UMHJEEQLYBKSAN-UHFFFAOYSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 229920001744 Polyaldehyde Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- GKXVJHDEWHKBFH-UHFFFAOYSA-N [2-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC=C1CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- IZALUMVGBVKPJD-UHFFFAOYSA-N benzene-1,3-dicarbaldehyde Chemical compound O=CC1=CC=CC(C=O)=C1 IZALUMVGBVKPJD-UHFFFAOYSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- RGTXVXDNHPWPHH-UHFFFAOYSA-N butane-1,3-diamine Chemical compound CC(N)CCN RGTXVXDNHPWPHH-UHFFFAOYSA-N 0.000 description 1
- GHWVXCQZPNWFRO-UHFFFAOYSA-N butane-2,3-diamine Chemical compound CC(N)C(C)N GHWVXCQZPNWFRO-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- YQLZOAVZWJBZSY-UHFFFAOYSA-N decane-1,10-diamine Chemical compound NCCCCCCCCCCN YQLZOAVZWJBZSY-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000000755 henicosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- LADVLFVCTCHOAI-UHFFFAOYSA-N isocyanic acid;toluene Chemical compound N=C=O.CC1=CC=CC=C1 LADVLFVCTCHOAI-UHFFFAOYSA-N 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- KYCGURZGBKFEQB-UHFFFAOYSA-N n',n'-dibutylpropane-1,3-diamine Chemical compound CCCCN(CCCC)CCCN KYCGURZGBKFEQB-UHFFFAOYSA-N 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- DILRJUIACXKSQE-UHFFFAOYSA-N n',n'-dimethylethane-1,2-diamine Chemical compound CN(C)CCN DILRJUIACXKSQE-UHFFFAOYSA-N 0.000 description 1
- ZUXUNWLVIWKEHB-UHFFFAOYSA-N n',n'-dimethylhexane-1,6-diamine Chemical compound CN(C)CCCCCCN ZUXUNWLVIWKEHB-UHFFFAOYSA-N 0.000 description 1
- KMBPCQSCMCEPMU-UHFFFAOYSA-N n'-(3-aminopropyl)-n'-methylpropane-1,3-diamine Chemical compound NCCCN(C)CCCN KMBPCQSCMCEPMU-UHFFFAOYSA-N 0.000 description 1
- IMENJLNZKOMSMC-UHFFFAOYSA-N n'-[2-[2-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCNCCNCCN IMENJLNZKOMSMC-UHFFFAOYSA-N 0.000 description 1
- QHJABUZHRJTCAR-UHFFFAOYSA-N n'-methylpropane-1,3-diamine Chemical compound CNCCCN QHJABUZHRJTCAR-UHFFFAOYSA-N 0.000 description 1
- HDCAZTXEZQWTIJ-UHFFFAOYSA-N n,n',n'-triethylethane-1,2-diamine Chemical compound CCNCCN(CC)CC HDCAZTXEZQWTIJ-UHFFFAOYSA-N 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- PZMRMZQWGOESGV-UHFFFAOYSA-N n-ethyl-2-ethyliminoethanamine Chemical compound CCNCC=NCC PZMRMZQWGOESGV-UHFFFAOYSA-N 0.000 description 1
- HALVJFMEOOBLMQ-UHFFFAOYSA-N n-ethyl-2-methyliminoethanamine Chemical compound CCNCC=NC HALVJFMEOOBLMQ-UHFFFAOYSA-N 0.000 description 1
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000001196 nonadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- SXJVFQLYZSNZBT-UHFFFAOYSA-N nonane-1,9-diamine Chemical compound NCCCCCCCCCN SXJVFQLYZSNZBT-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000004798 organs belonging to the digestive system Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- NEOPYIBVKJWHMN-UHFFFAOYSA-N pent-2-enedial Chemical compound O=CCC=CC=O NEOPYIBVKJWHMN-UHFFFAOYSA-N 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- JGQDLMSXMOGEMC-UHFFFAOYSA-N pentane-2,4-diamine Chemical compound CC(N)CC(C)N JGQDLMSXMOGEMC-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000141 poly(maleic anhydride) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- PZZICILSCNDOKK-UHFFFAOYSA-N propane-1,2,3-triamine Chemical compound NCC(N)CN PZZICILSCNDOKK-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000002345 surface coating layer Substances 0.000 description 1
- KUCOHFSKRZZVRO-UHFFFAOYSA-N terephthalaldehyde Chemical compound O=CC1=CC=C(C=O)C=C1 KUCOHFSKRZZVRO-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- MBYLVOKEDDQJDY-UHFFFAOYSA-N tris(2-aminoethyl)amine Chemical compound NCCN(CCN)CCN MBYLVOKEDDQJDY-UHFFFAOYSA-N 0.000 description 1
- KLNPWTHGTVSSEU-UHFFFAOYSA-N undecane-1,11-diamine Chemical compound NCCCCCCCCCCCN KLNPWTHGTVSSEU-UHFFFAOYSA-N 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/08—Materials for coatings
- A61L29/085—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/10—Materials for lubricating medical devices
Definitions
- the present invention relates to a medical device and a manufacturing method thereof.
- the present invention relates to a medical device excellent in lubricity under severe conditions and a method for producing the same.
- Medical devices such as airways, trachea, gastrointestinal tract, urethra, and blood vessels, and catheters, guidewires, and stylets that are inserted into tissues must be securely inserted to the target site without damaging the tissue. In addition, it is required to exhibit excellent lubricity to avoid damaging the mucous membrane and causing inflammation while indwelling in the tissue. .
- a resin coating layer having lubricity is formed by covalently bonding a water-soluble polymer such as a maleic anhydride-based polymer substance to the base material surface of a medical device to be inserted into a living body. It is known to form (see, for example, JP-A-60-259269).
- a coating layer of a water-soluble polymer such as a maleic anhydride-based polymer substance is formed on a substrate through an underlayer, and then preferably treated with water to Exhibits lubricity.
- the medical device described in JP-A-60-259269 can exhibit sufficient lubricity in a normal air atmosphere, but the lubricity is excessively lowered under severe conditions such as high temperature, low temperature and high humidity. There was a problem to do. In recent years, there is a possibility that the medical device is exposed to the severe conditions as described above, particularly in a high humidity environment, depending on the transportation process when exporting the medical device or depending on the environment of the country where the medical device is used. For this reason, there is a strong demand for maintaining and improving lubricity under severe conditions such as high temperature, low temperature, and high humidity.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a medical device having excellent lubricity under severe conditions and a method for producing the same.
- the present inventors have found that a coating layer containing a maleic polymer material in which the proportion of carboxylic acid ester is adjusted to a predetermined range is formed on the base material of a medical device.
- the present invention was completed by finding that the above-mentioned problems can be solved by forming the film.
- the object is a medical device to be inserted into a living body in which a resin coating layer containing a maleic polymer material is provided on the surface of a substrate, wherein the resin coating layer is formed of the maleic polymer. It is formed by covalently bonding a substance to a reactive functional group present on at least the surface of a base material constituting the medical device, and the maleic polymer material includes a maleic acid-derived structural unit,
- the structural unit derived from an acid comprises the following structural unit (a) and the following structural unit (b), wherein the molar ratio of the structural unit (a) to the structural unit (b) is 100: 2 to 100: 50. Can be achieved with tools.
- X 1 to X 3 each independently represent hydrogen, an alkali metal, or an alkaline earth metal, and R represents a linear or branched alkyl group having 1 to 24 carbon atoms.
- the above object is to provide a solution containing a linear or branched alcohol having 1 to 24 carbon atoms and water, wherein the alcohol: water content ratio is 100: 0.1 to 150, and a maleic anhydride system.
- a step of obtaining a maleic polymer material containing a maleic acid-derived structural unit by reacting with a polymer material, and treating a substrate constituting a medical device with a solution containing a compound having a reactive functional group Forming a base layer having a reactive functional group on at least the surface of the base material; treating the base material on which the base layer is formed with the maleic polymer material;
- FIG. 1 It is a schematic diagram of a surface lubricity maintenance evaluation test apparatus (friction measuring machine).
- 1 is water
- 2 is a petri dish
- 3 is a medical device (sample)
- 4 is a cylindrical butyl rubber terminal
- 5 is a load
- 6 is a moving table
- 10 is a friction measuring machine. It is a graph which shows the evaluation result of surface lubricity.
- the present invention is a medical device to be inserted into a living body provided with a resin coating layer containing a maleic polymer material on the surface of a substrate,
- the resin coating layer is formed by covalently bonding the maleic polymer material to a reactive functional group present on at least the surface of the base material constituting the medical device,
- the maleic polymer material includes a structural unit derived from maleic acid, and the structural unit derived from maleic acid comprises the following structural unit (a) and the following structural unit (b), and the structural unit (a):
- the molar ratio of the structural unit (b) is from 100: 2 to 100: 50.
- X 1 to X 3 each independently represents hydrogen, an alkali metal, or an alkaline earth metal, and R represents a linear or branched alkyl group having 1 to 24 carbon atoms.
- Examples 8 to 12 of JP-A-60-259269 a half ethyl ester (degree of esterification 40 to 50%) of methyl vinyl ether maleic anhydride copolymer (GANTREZ AN169) was used as a surface coating layer. It is described. A half ethyl ester of a methyl vinyl ether maleic anhydride polymer is produced by opening a maleic anhydride ring with an alcohol (for example, paragraph “0021” of JP-A-2008-279100).
- the degree of esterification of the methyl vinyl ether maleic anhydride copolymer (GANTREZ AN169) of 50% refers to a state in which the anhydrous ring has completely opened and esterification with alcohol has completely proceeded.
- the degree of esterification of methyl vinyl ether maleic anhydride copolymer (GANTREZ AN169) described in JP-A-60-259269 refers to a state in which the esterification reaction with alcohol has not completely proceeded, It refers to the state where some maleic anhydride remains.
- a copolymer having a degree of esterification of 40% of methyl vinyl ether maleic anhydride copolymer (GANTREZ AN169) described in JP-A-60-259269 is a structural unit derived from maleic acid (a ) And the following structural unit (c) derived from maleic anhydride:
- the maleic polymer material of the present invention does not contain the above structural unit (c) in order to completely open the maleic anhydride ring in the maleic anhydride copolymer.
- the maleic polymer material of the present invention when a maleic anhydride copolymer is reacted with alcohol and water, hydrolysis reaction with water occurs together with esterification reaction with alcohol. Therefore, the maleic polymer material of the present invention includes a structural unit (a) formed by esterification reaction of maleic anhydride with alcohol and a structural unit (b) formed by hydrolysis of maleic anhydride. ) Will be included.
- the molar ratio of the structural unit (a) to the structural unit (b) is 100: 2 to 100: 50.
- the molar ratio of the structural unit (b) to the structural unit (a) is less than 2 mol%, the number of carboxylic acid (salt) groups is reduced in the substance, and therefore, under severe conditions such as high temperature and high humidity.
- the lubricity of is reduced.
- the molar ratio of the structural unit (b) to the structural unit (a) 100 mol% exceeds 50 mol%, the lubricity of the medical device in a normal air atmosphere is deteriorated in addition to severe conditions.
- the mechanism that produces the effects as described above is unknown, but is estimated as follows.
- the present invention is not limited to the following estimation. That is, when a maleic polymer material comes into contact with body fluids or blood, the carboxylate (alkali metal salt of carboxyl group) present in the material swells and gels in the body fluids or blood and exhibits lubricity. . Therefore, for example, in Example 1 of Japanese Patent Publication No. 7-83761, a catheter tube coated with a half ethyl ester of a methyl vinyl ether maleic anhydride copolymer is immersed in a NaHCO 3 solution for alkali treatment. Is going.
- the maleic polymer material constituting the coating layer has a higher amount of carboxylate (alkali metal salt of carboxyl group) of the maleic polymer material, so that the swelling property (wetting property) is increased. ) Is high.
- carboxylate alkali metal salt of carboxyl group
- the metal salt of carboxyl group —COOX
- carboxyl group —COOH
- the maleic polymer material in the coating layer As a result, the ratio of the carboxylate becomes low, and the swelling property (wetting property) at the time of wetting is lowered.
- the carboxyl group can be removed under the above-mentioned severe conditions (especially high humidity conditions). Even after a part of the metal salt is converted to a carboxyl group (-COOX ⁇ -COOH), a sufficient amount of carboxylate (alkali metal salt of the carboxyl group) remains in the maleic polymer material.
- carboxylate carboxyl group alkali metal salt
- the medical device of the present invention has excellent lubricity, and can suppress / prevent degradation of lubricity even when transported or affected by the harsh environment of the country where it is used, Maintains and exhibits excellent lubricity.
- X to Y indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
- the medical device of the present invention is a medical device to be inserted into a living body in which a resin coating layer containing a maleic polymer material is formed on the surface of a base material (part) to be inserted into the living body.
- the medical device may be used for any application, but it is preferable that the medical device is used in contact with body fluid or blood in consideration of the effect of imparting lubricity due to contact with body fluid or blood.
- catheters inserted or placed in blood vessels such as indwelling needles, IVH catheters, thermodilution catheters, angiographic catheters, vasodilator catheters (eg, PCTA catheters), dilators or introducers.
- catheters inserted or placed in the digestive organs orally or nasally such as gastrointestinal catheters, nutritional catheters, tube feeding (ED) tubes; oxygen Catheter, oxygen cannula, endotracheal tube and cuff, tracheostomy tube and cuff, intratracheal suction catheter and other catheters that are inserted or placed in the trachea or intratracheally; urethral catheter, lead Urine catheter, urethral balloon catheter Catheters inserted or placed in the urethra or ureter such as catheters and balloons; catheters inserted or placed in various body cavities, organs, tissues such as suction catheter, drainage catheter, rectal catheter; artificial trachea, artificial bronchus ; Medical devices for extracorporeal circulation treatment (artificial lung, artificial heart, artificial kidney, etc.) and their circuits; low during insertion, sliding or indwelling on the outer surface of various intravascular insertion endoscopes Examples include medical devices that require
- the body fluid / blood contact surface of catheters, guide wires, and indwelling needles used in biological lumens such as blood vessels and ureters It is preferable to provide a coating layer according to the present invention.
- the resin coating layer (coating layer) according to the present invention exhibits surface lubricity in aqueous liquids such as body fluids, blood, and physiological saline, so that medical devices such as catheters and guide wires can be easily placed in living body lumens. Operability can be improved, such as being insertable. Further, the resin coating layer (coating layer) according to the present invention can reduce the damage of the tissue mucous membrane during the above operation.
- the resin coating layer is formed by covalently bonding a maleic polymer material with a reactive functional group present on at least the surface of the base material constituting the medical device.
- a maleic polymer material with a reactive functional group present on at least the surface of the base material constituting the medical device.
- base materials in medical devices such as catheters, guide wires, and indwelling needles that are used, it is not always necessary that all surfaces (the entire surface) of these medical devices (base materials) have lubricity, and at least body fluid and blood It is only necessary that the coating layer be formed only on the surface portion (in some cases or in all cases) in contact. For this reason, this invention includes the case where a part of surface of the base material which comprises a medical device, or the inside of a base material has lubricity. Further, the maleic polymer material can exhibit high wet lubricity and durability.
- the maleic polymer material used for the resin coating layer includes a maleic acid-derived structural unit, and the maleic acid-derived structural unit includes the following structural unit (a) and the following structural unit (b).
- X 1 to X 3 each independently represent hydrogen, an alkali metal, or an alkaline earth metal.
- the alkali metal include lithium, sodium, potassium, rubidium, and cesium.
- the alkaline earth metal include magnesium, calcium, strontium, and barium.
- X 1 to X 3 are sodium, potassium, magnesium and calcium, more preferably sodium and calcium, and particularly preferably sodium.
- X 1 to X 3 is sodium, when the maleic polymer substance comes into contact with body fluid or blood, the sodium salt of the carboxyl group in the maleic polymer substance swells and gels in the body fluid or blood, In particular, excellent lubricity can be exhibited.
- X is an alkaline earth metal, adjacent carboxyl groups / esters are linked via X 1 to X 3 (—C ( ⁇ O) —O—X—O—C ( ⁇ O) -)).
- At least one of X 1 to X 3 is an alkali metal.
- the form in which at least one of X 1 to X 3 is an alkali metal or an alkaline earth metal can be obtained by subjecting a substrate having an underlayer and a resin coating layer to an alkali treatment.
- R is a linear or branched alkyl group having 1 to 24 carbon atoms.
- alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, tert-pentyl group, neopentyl group, Hexyl, isohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, 2-ethylhexyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, Examples include an eicosyl group, a heneicosyl group, and a
- R is preferably a linear or branched alkyl group having 1 to 8 carbon atoms, A linear or branched alkyl group having 1 to 3 carbon atoms is more preferred.
- the maleic polymer material of the present invention contains a structural unit derived from maleic acid.
- the maleic acid-derived structural unit means a maleic anhydride-derived structural unit (the above-mentioned structural unit (c)) and a maleate-derived structural unit (structural unit (b)) obtained by ring-opening this. And a maleic ester-derived structural unit (structural unit (a)).
- the maleic polymer material of the present invention is composed of the structural unit (a) and the structural unit (b) as the structural unit derived from maleic acid, and does not include the structural unit (c).
- the maleic acid polymer material of the present invention causes hydrolysis and esterification of the maleic anhydride copolymer in the presence of alcohol and water. Therefore, as a structural unit derived from maleic acid, The structural unit (a) and the structural unit (b) are included.
- the structural unit (c) which is a structural unit derived from maleic anhydride, does not remain in the maleic polymer material.
- the molar ratio of the structural unit (a) to the structural unit (b) is 100: 2 to 100: 50.
- the lubricity under severe conditions such as high temperature and high humidity is lowered.
- the molar ratio of the structural unit (b) to the structural unit (a) 100 mol% exceeds 50 mol%, the lubricity of the medical device in a normal air atmosphere is deteriorated in addition to severe conditions.
- the molar ratio of the structural unit (a) to the structural unit (b) is preferably 100: 2 to 50, more preferably 100: 2 to 43.
- monomers copolymerizable with the structural unit derived from maleic acid are effective according to the present invention (for example, lubricity when wet under normal conditions, lubricity when wet under severe conditions, There is no particular limitation as long as it does not hinder the lubricity maintenance property.
- Specific examples include monomers having an alkyl vinyl ether, acrylamide and derivatives thereof, vinyl pyrrolidone, acrylic acid and methacrylic acid and derivatives thereof, diene compounds, sugars, and phospholipids in the side chain.
- methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, acrylic acid, methacrylic acid, N-methylacrylamide, N, N-dimethylacrylamide, acrylamide, acryloylmorpholine, N, N-dimethylaminoethyl acrylate, vinylpyrrolidone examples thereof include 2-methacryloyloxyethylphosphorylcholine, 2-methacryloyloxyethyl-D-glycoside, 2-methacryloyloxyethyl-D-mannoside, vinyl methyl ether, hydroxyethyl methacrylate and the like.
- the maleic polymer material is preferably an alkyl vinyl ether-maleic acid ester copolymer, a maleic acid-derived structural unit (structural units (a) and (b)) and the following formula (d):
- alkyl vinyl ether-maleic acid ester copolymer composed of structural units derived from alkyl vinyl ether.
- the substituent R ′ in the constituent unit derived from alkyl vinyl ether is a linear or branched alkyl group having 1 to 24 carbon atoms.
- the “alkyl group” has the same definition as the alkyl group relating to the substituent R in the structural unit (a), and thus the description thereof is omitted here.
- R ′ is preferably a linear or branched alkyl group having 1 to 8 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 3 carbon atoms.
- each structural unit may be in a block shape or a random shape.
- the composition of each structural unit is not particularly limited, and a desired effect (for example, lubrication when wet) In consideration of the property, lubricity when wet under severe conditions, and maintenance of lubrication).
- the maleic polymer is derived from 20 to 80 mol% of maleic acid-derived structural units (structural units (a) and (b)), and 80 to 20 mol% of other monomers.
- the structural unit is preferably composed of 30 to 70 mol% of a maleic acid-derived structural unit and more preferably 70 to 30 mol% of a structural unit derived from another monomer.
- the total amount of structural units derived from maleic acid and structural units derived from other monomers is 100 mol%.
- the maleic polymer material is composed of 40 to 60 mol% of an alkyl vinyl ether-derived structural unit and 60 to 40 mol% of a maleic acid-derived structural unit (a total of a structural unit derived from an alkyl vinyl ether and a structural unit derived from maleic acid.
- An alkyl vinyl ether-maleic acid ester copolymer composed of 100 mol%) is preferred.
- the maleic polymer material may have an insolubilized form as long as it has a degree of freedom in the molecular chain and can take a water-containing form.
- the form is not particularly limited as long as it has a degree of freedom in the molecular chain and can take a water-containing form. Specifically, amidated products, anhydrides, halides, etherified products, hydrolysates, acetalized products, formalized products, alkylated products obtained by condensation, addition, substitution, oxidation, reduction reaction, etc.
- the molecular weight of the maleic polymer material is not particularly limited, and the desired effect (for example, lubricity when wet, lubricity when wet under harsh conditions, maintenance of lubrication) is taken into consideration.
- the weight average molecular weight of the maleic polymer material is preferably 10,000 to 7 million, more preferably 100,000 to 5 million.
- the molecular weight (weight average molecular weight) of the maleic polymer is measured by gel permeation chromatography (GPC) using polystyrene as a standard substance and tetrahydrofuran (THF) as a mobile phase. .
- the molecular weight of the maleic acid polymer substance can also be calculated from the type of repeating unit and the number of repeating units.
- the maleic polymer material forms a coating layer on the substrate by covalently bonding at least a reactive functional group present on the substrate surface.
- This coating layer can exhibit continuous lubricity without dissolving in an aqueous liquid such as body fluid or blood.
- the reactive functional group may be present at least on the surface of the substrate. Thereby, it can couple
- the reactive functional group is not particularly limited as long as it reacts with a maleic polymer substance to form a covalent bond.
- Specific examples include a diazonium group, an azide group, an isocyanate group, an acid chloride group, an acid anhydride group, an imino carbonate group, an amino group, a carboxyl group, an epoxy group, a hydroxyl group, and an aldehyde group.
- the reactive functional group is preferably an isocyanate group, an amino group, an aldehyde group or an epoxy group.
- the reactive functional groups may be used alone or in combination of two or more.
- the form of introduction of the reactive functional group is not particularly limited. Specifically, (i) a form using a base material (reactive functional group-containing base material) having at least a reactive functional group on the surface; (ii) a base material previously introduced with at least a reactive functional group on the surface Any form may be used, such as a form to be used; and (iii) a form in which another layer (underlayer) having a reactive functional group is formed on a substrate. Among these, considering the degree of freedom in selecting a base material, the form (iii) is preferable. In the form (iii), the base material constituting the medical device with a solution containing a compound having a reactive functional group is used. It is more preferable to form a base layer having a reactive functional group on at least the surface of the substrate by treatment.
- a substrate formed of polyurethane, polyamide or the like is suitably used as the reactive functional group-containing substrate.
- a method of performing ionized gas plasma irradiation on the substrate surface can be suitably used.
- the ionized gas plasma irradiation may be performed under any conditions, but it is preferable to irradiate ionized gas plasma containing oxygen or nitrogen.
- the substrate surface is modified and activated, and functional groups such as carboxyl groups, hydroxyl groups, and peroxides are introduced into the substrate surface. .
- the content of oxygen in the ionized gas is not particularly limited as long as it has an effect as described above. Also, by irradiating the substrate surface with ionized gas plasma containing nitrogen, the substrate surface is modified and activated, and functional groups such as carboxyl groups, hydroxyl groups, peroxides, amino groups, etc. are formed on the substrate surface. be introduced. Also in the above method, the content of nitrogen in the ionized gas is not particularly limited as long as it has the above-described effects.
- the form (iii) can be applied particularly suitably when a substrate that does not contain a reactive functional group is used as a base material that constitutes the outer wall and inner wall of various medical devices. That is, it is treated with a compound having a reactive functional group, the reactive functional group is present on the substrate, and a maleic polymer material is covalently bonded thereon.
- the compound having the reactive functional group is not particularly limited as long as it has the reactive functional group.
- a compound having an isocyanate group as a reactive functional group ethylene diisocyanate, hexamethylene diisocyanate, xylene diisocyanate, toluene diisocyanate, tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate (MDI), naphthalene diisocyanate, diphenylmethane diisocyanate, phenylene
- MDI 4,4′-diphenylmethane diisocyanate
- naphthalene diisocyanate diphenylmethane diisocyanate
- phenylene examples thereof include polyisocyanates such as diisocyanate, cyclohexylene diisocyanate, tolphenylmethane triisocyanate, and toluene isocyanate, and adducts (adducts)
- Examples of the compound having an amino group as a reactive functional group include ethylenediamine, trimethylenediamine, 1,2-diaminopropane, tetramethylenediamine, 1,3-diaminobutane, 2,3-diaminobutane, pentamethylenediamine, 2, 4-diaminopentane, hexamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dedocamethylenediamine, tridecamethylenediamine, octadecamethylenediacin, N, N-dimethylethylenediamine, N , N-diethyltrimethylenediamine, N, N-dimethyltrimethylenediamine, N, N-dibutyltrimethylenediamine, N, N, N′-triethylethylenediamine, N-methyltrimethylenediamine, NN— Methyl-p-phenylened
- alkyleneimine polymer obtained by ring-opening polymerization of alkyleneimine such as ethyleneimine and propyleneimine [Ensauclopidia of polymer Science and Technology, Volume 1, p. 734], and polyamines such as high molecular weight polyamines such as polyvinylamine and polylysine.
- Examples of the compound having an aldehyde group as a reactive functional group include glutaraldehyde, terephthalaldehyde, isophthalaldehyde, dialdehyde, starch, galoxal, malonaldehyde, succinic acid aldehyde, adipaldehyde, pimelindialdehyde, suberindialdehyde, malein.
- Examples include aldehydes and polyaldehydes such as 2-pentene-1,5-dialdehyde.
- Examples of the compound having an epoxy group as a reactive functional group include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene diglycidyl ether, hexanediol diglycidyl ether, trimethylol propane triglycidyl ether. And polyepoxides.
- the reaction with the maleic polymer substance ie, lubricity when wet under normal conditions, lubricity when wet under severe conditions, lubricity maintenance
- the compound having a functional functional group 4,4′-diphenylmethane diisocyanate (MDI), an adduct of tolylene diisocyanate and trimethylolpropane, an adduct of hexamethylene diisocyanate and trimethylolpropane, a trimer thereof, or diethylenetriamine is preferable.
- MDI 4,4′-diphenylmethane diisocyanate
- the compound having a reactive functional group may be used alone or in the form of a mixture of two or more.
- the base material used in the present embodiment may be composed of any material, and the material is not particularly limited, and can be appropriately selected depending on the type of medical device provided with a coating layer on the surface.
- examples of the material constituting (forming) the base material include metal materials, polymer materials, glass materials, and ceramic materials.
- the entire base material (all) is composed (formed) of any of the above materials, or other than the surface of the base material core portion configured (formed) of any of the above materials. Any of the above materials may be coated (coated) by an appropriate method to form (form) a substrate surface layer.
- a metal material is coated on the surface of a base material core portion formed of a resin material or the like by a suitable method (a conventionally known method such as plating, metal vapor deposition, sputtering, etc.)
- a material made of a material surface layer; a polymer material that is more flexible than a reinforcing material such as a metal material is suitable for the surface of the base material core portion formed of a hard reinforcing material such as a metal material or a ceramic material.
- the base material core portion may be a multilayer structure in which different materials are laminated in multiple layers, or a structure (composite) in which members formed of different materials for each part of the medical device are connected.
- another middle layer may be formed between the base material core portion and the base material surface layer.
- the substrate surface layer may be a multilayer structure in which different materials are laminated in multiple layers, or a structure (composite) in which members formed of different materials are connected to each part of the medical device. .
- the metal material is not particularly limited, and metal materials generally used for medical devices such as catheters, guide wires, and indwelling needles are used.
- various stainless steels such as SUS304, SUS316, SUS316L, SUS420J2, and SUS630, gold, platinum, silver, copper, nickel, cobalt, titanium, iron, aluminum, tin, or nickel-titanium (Ni-Ti) ) Alloys, nickel-cobalt (Ni—Co) alloys, cobalt-chromium (Co—Cr) alloys, various alloys such as zinc-tungsten (Zn—W) alloys, and the like.
- metal material optimal as base materials, such as a catheter, a guide wire, an indwelling needle which is a use application, for the said metal material.
- the polymer material is not particularly limited, and is generally used for medical devices such as catheters, guide wires, and indwelling needles. Is used.
- a polyolefin resin such as a polyamide resin, a linear low density polyethylene (LLDPE), a low density polyethylene (LDPE), a high density polyethylene (HDPE), or a polypropylene resin, a modified polyolefin resin, an epoxy resin, Urethane resin (polyurethane), diallyl phthalate resin (allyl resin), polycarbonate resin, fluorine resin, amino resin (urea resin, melamine resin, benzoguanamine resin), polyester resin, styrene resin, polyacetal resin, vinyl acetate resin, phenol resin, chloride Vinyl resin (polyvinyl chloride), silicone resin (silicon resin), polyether resin, polyimide resin, polystyrene, polyacrylic ester, polymethacrylic ester, polyacrylon
- polymeric material optimal as base materials, such as a catheter, a guide wire, and an indwelling needle which are use uses as the said polymeric material.
- the shape of the base material is not particularly limited, and is appropriately selected depending on the use mode such as a sheet shape, a linear shape (wire), and a tubular shape.
- the medical device of this invention should just be provided with the coating layer for providing lubricity to the base-material surface, and the manufacturing method in particular is not restrict
- the medical device of the present invention introduces a reactive functional group to the surface of the substrate, and then treats the reactive functional group with the maleic polymer material by treating with the maleic polymer material of the present invention.
- the reactive functional group is preferably introduced to the surface of the base material by forming another layer (underlayer) having the reactive functional group on the base material.
- the base material constituting the medical device is treated with a solution containing a compound having a functional group to form an underlayer having a reactive functional group on at least the surface of the base material, thereby being introduced onto the base material surface. It is more preferable. Further, the coating layer containing the maleic polymer material is obtained by treating the substrate having the underlayer with the maleic polymer material to covalently bond the reactive functional group and the maleic polymer material. It is preferable to form on the underlayer. Furthermore, it is preferable that the coating layer formed as described above is subjected to alkali treatment.
- the method for producing a medical device of the present invention contains a linear or branched alcohol having 1 to 24 carbon atoms and water, and the alcohol: water content ratio is 100: 0.1 to 150.
- a maleic anhydride polymer material to obtain a maleic polymer material containing a maleic acid-derived structural unit [step (1)], Treating the substrate constituting the medical device with a solution containing a compound having a reactive functional group to form an underlayer having the reactive functional group on at least the surface of the substrate [step (2)]; ,
- the base material on which the base layer is formed is treated with the maleic polymer material, and the reactive functional group and the maleic polymer material are covalently bonded to form a maleic acid-based material on the base layer.
- step (3) of forming a resin coating layer containing a polymer substance to obtain a base material having a base layer and a resin coating layer. Furthermore, it is preferable to have the step [process (4)] which carries out the alkali treatment of the base material which has a base layer and a resin coating layer.
- the maleic anhydride polymer material contains a linear or branched alcohol having 1 to 24 carbon atoms and water, and the alcohol: water content ratio is 100: 0.1 to 150 (Hereinafter, also simply referred to as a mixed solution), the esterification reaction and the hydrolysis reaction of the maleic anhydride-derived structural unit (c) in the maleic anhydride-based polymer substance are allowed to proceed simultaneously.
- the unit (c) is the structural unit (a) and (b).
- the maleic anhydride-based polymer substance only needs to contain a maleic anhydride-derived structural unit (c) as part of the maleic acid-derived structural unit in the polymer.
- a maleic anhydride-derived structural unit c
- the structural unit that the maleic anhydride-based polymer substance can contain in addition to the above-mentioned structural unit, there are structural units derived from other monomers described in the section of the maleic acid-based polymer substance.
- a commercially available product may be used as the maleic anhydride polymer substance.
- A. F For example, GANTREZ AN series from Corporation.
- the content mass ratio of alcohol: water is preferably 100: 0.1 to 150, and more preferably 100: 0.8 to 80.
- the content ratio of alcohol: water is preferably 100: 0.1 to 150, and more preferably 100: 0.8 to 80.
- maleic anhydride is completely ring-opened and esterification with alcohol easily proceeds, and the structural unit (a) and the structural unit Since it becomes easy to control content mass ratio with (b) in the range of the maleic acid type polymer substance of the present invention, it is preferred.
- an alcohol corresponding to R in the structural unit (a) to be esterified may be used as the linear or branched alcohol having 1 to 24 carbon atoms.
- the mass ratio between the maleic anhydride-based polymer substance used in the reaction and the mixed solution may be appropriately set so that the reaction proceeds.
- Solution 100: 50 to about 5000.
- the esterification reaction and hydrolysis reaction for obtaining a maleic acid polymer substance can be obtained by heating and refluxing the maleic anhydride polymer substance using a mixed solution of alcohol and water.
- the reflux conditions are appropriately selected depending on the solvent (alcohol) to be used, but it is preferable to reflux for 5 to 120 hours in order to sufficiently proceed the reaction.
- the temperature at the reflux is appropriately set depending on the type of alcohol and water used and the mass ratio, but is preferably about 50 to 100 ° C.
- Step (2) the base material constituting the medical device is treated with a solution (coating solution) containing a compound having a reactive functional group to form a base layer in which the reactive functional group exists on at least the surface of the base material.
- the processing method of the base material (base material) which comprises the medical device by the solution containing the compound which has a reactive functional group is not restrict
- coating the solution containing the compound which has a reactive functional group to a base material is mentioned.
- dip coating (dipping method), spraying, spin coating, dripping, doctor blade, brush coating, roll coater, air knife coating, curtain coating, wire bar coating, gravure coating, mixed solution impregnation sponge coating A conventionally well-known method can be applied.
- the concentration of the compound having a reactive functional group in the coating solution is particularly limited as long as the compound having the reactive functional group is present in an amount capable of covalently bonding with a sufficient amount of the maleic polymer material in the next step (3).
- the concentration of the compound having a reactive functional group in the coating solution is:
- the content is preferably 0.5 to 10% by weight, and more preferably 2 to 5% by weight.
- the solvent for preparing the coating solution is not particularly limited as long as it can dissolve a compound having a reactive functional group, and can be appropriately selected depending on the type of the compound having a reactive functional group to be used.
- ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ester solvents such as butyl acetate, ethyl acetate, carbitol acetate, butyl carbitol acetate, methyl cellosolve, ethyl cellosolve, butyl ether, tetrahydrofuran, etc.
- Ether solvents alkane solvents such as butane and hexane, aromatic solvents such as benzene, toluene and xylene, halogen solvents such as dichloroethane, chloroform and methylene chloride, alcohols such as methanol, ethanol, isopropanol and ethylene glycol A solvent etc. are mentioned.
- the said solvent may be used individually by 1 type, and may be used together 2 or more types.
- the above solvent is used when the base material is made of a polymer material (resin) or when a layer made of a polymer material (base material surface layer) is formed in advance on the surface of the base material as described in detail below. Can dissolve or swell them to improve the adhesion strength of the coating layer and maintain lubricity (under normal conditions and harsh conditions) for a longer period of time.
- the coating solution may contain an additive other than the compound having a reactive functional group.
- the other additive is not particularly limited, and examples thereof include a polymer material and a drug.
- the polymer material the polymer material exemplified by the material constituting (forming) the base material can be exemplified similarly.
- polyvinyl chloride, polyurethane, polyamide resin, and polyester resin are preferable in consideration of ease of formation of the underlayer.
- the drug can be appropriately selected depending on the indwelling site of the medical device, the disease to be applied, and the like.
- the concentration of the other additive in the coating solution is not particularly limited, but it is preferably 0.5 to 15% by weight in view of ease of formation of the underlayer, and 2 to 10% by weight. More preferably.
- the treatment conditions of the substrate with the coating solution are not particularly limited as long as the reactive functional group can be introduced onto the desired surface of the substrate.
- the substrate is preferably applied with a coating solution at 0 to 50 ° C. for 1 second to 48 hours.
- a layer made of a polymer material may be formed on the base material surface in advance before forming the base layer.
- a base material and a base layer can be stuck more firmly, and the adhesion strength of a coating layer can be improved.
- the type of the polymer material is not particularly limited, and can be appropriately selected depending on the type of the base material.
- examples of the polymer material include the polymer materials exemplified as the material constituting (forming) the base material.
- the thickness of the layer made of the polymer material is not particularly limited, but considering the lubricity sustaining effect, the adhesion with the underlayer, etc.
- the thickness is preferably 1 to 70 ⁇ m, more preferably 5 to 50 ⁇ m.
- the coating film is dried to form a base layer on the base material.
- the drying conditions are not particularly limited as long as the underlayer can be formed.
- the drying temperature is preferably about room temperature (25 ° C.) to about 80 ° C.
- the drying time is preferably about 5 minutes to 48 hours.
- Process (3) the base material (base material / underlayer) having the underlayer obtained in the above step (2) is treated with a maleic acid-based polymer material, and a reactive functional group and a maleic acid-based polymer material are treated. And a resin coating layer containing a maleic acid polymer material is formed on the underlayer.
- the method of treating the substrate / underlayer with the maleic polymer material is not particularly limited, but a method of applying a solution containing the maleic polymer material (coating layer forming solution) to the substrate can be used.
- a solution containing the maleic polymer material coating layer forming solution
- dip coating spraying, spin coating, dripping, doctor blade, brush coating, roll coater, air knife coating, curtain coating, wire bar coating, gravure coating, mixed solution impregnation sponge coating
- concentration of the maleic polymer material in the coating layer forming solution is not particularly limited as long as the coating layer can be formed with a sufficient amount of the maleic polymer material.
- the concentration of the maleic polymer material in the coating layer forming solution is preferably 0.1 to 15% by weight, preferably 0.5 to 10% by weight. It is more preferable that With such a concentration, the medical device (coating layer) can exhibit excellent lubricity when wet under normal conditions, lubricity when wet under severe conditions, and lubricity maintenance.
- the solvent for preparing the coating layer forming solution is not particularly limited as long as it can dissolve the maleic polymer material, and can be appropriately selected depending on the type of the maleic polymer material to be used. Specifically, the same solvent as that described in the above step (2) can be used. Of these, methyl ethyl ketone, tetrahydrofuran (THF), acetone and the like are preferable. These solvents have little or no reaction with the reactive functional groups present in the substrate / underlayer, and have appropriate solubility and swelling with respect to the substrate / underlayer. In addition, the said solvent may be used individually by 1 type, and may be used together 2 or more types.
- the coating layer forming solution may contain an additive other than the maleic polymer material.
- the other additive is not particularly limited, and examples thereof include a polymer material and a drug.
- the polymer material the polymer material exemplified by the material constituting (forming) the base material can be exemplified similarly.
- the drug can be appropriately selected depending on the indwelling site of the medical device, the disease to be applied, and the like.
- the concentration of the other additive in the coating layer forming solution is not particularly limited, but is preferably 0.5 to 15% by weight in view of the ease of forming the coating layer and the like, and is preferably 2 to 10% by weight. % Is more preferable.
- the treatment conditions of the base material / underlayer with the coating layer forming solution are not particularly limited as long as a suitable amount of a coating layer of maleic polymer material can be formed on the base material / underlayer.
- the substrate / undercoat layer is preferably applied with a coating layer forming solution at 0 ° C. to 80 ° C. for 1 second to 48 hours, more preferably at 10 to 30 ° C. for 1 second to 1 hour. .
- the coating film is dried to form the coating layer on the substrate / underlayer.
- the drying conditions are not particularly limited as long as the coating layer can be formed.
- the drying temperature is preferably about room temperature (25 ° C.) to about 80 ° C.
- the drying temperature is preferably about 5 minutes to 48 hours.
- Step (4) the base material having the base layer and the resin coating layer obtained in the above step (3) is subjected to alkali treatment. At least a part of the carboxyl group (—COOH) and the ester moiety (—COOR) in the maleic polymer material in the coating layer obtained by the esterification reaction and hydrolysis reaction in the above step (1) by alkali treatment Is converted to the carboxylate (—COOX).
- the carboxylate in the maleic polymer material swells and gels with the body fluid or blood, and exhibits excellent lubricity.
- the alkali used for preparing the alkaline solution is not particularly limited, and is sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, calcium hydroxide, sodium bicarbonate, potassium bicarbonate, water.
- Examples include lithium oxide, sodium, and ammonia.
- sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, sodium carbonate, and calcium hydroxide are preferable, and sodium hydrogen carbonate, sodium hydroxide, and sodium carbonate are particularly preferable.
- the solvent for dissolving the alkali is not particularly limited, but alcohols such as water, methanol, ethanol, isopropanol and ethylene glycol, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, chloroform and the like Examples include halides, alkanes such as butane and hexane, ethers such as tetrahydrofuran and butyl ether, aromatics such as benzene and toluene, and amides such as N, N-dimethylformamide (DMF).
- the said solvent may be used individually by 1 type, and may be used together 2 or more types.
- the alkali solution may contain other components in addition to the alkali.
- examples of other components include sodium chloride, sodium bromide, potassium chloride, potassium bromide, lithium chloride, lithium bromide, ice, and sucrose.
- Sodium chloride is preferred.
- the preferred concentration of the other components is not particularly limited, but is such an amount that the concentration in the alkaline solution is preferably 0.01 to 10% by weight.
- the pH of the alkaline solution is not particularly limited, but is preferably 7 to 14.
- the maleic polymer material before alkali treatment that has undergone hydrolysis and esterification reaction has many maleic acid-derived carboxyl groups in the maleic acid-derived structural unit, so that many carboxylates can be formed under mild alkaline conditions. Will have. For this reason, it has favorable lubricity even if it does not perform the alkali treatment under the strong alkali condition in which an ester part becomes a carboxylate by alkali treatment. For this reason, the pH of the alkaline solution is more preferably 7 or more and less than 10.
- the conditions for immersing the base material having the base layer and the resin coating layer in the alkaline solution are not particularly limited, but if one condition is indicated, the immersion temperature is preferably 25 to 70 ° C., 30 It is more preferably from ⁇ 65 ° C., particularly preferably from 40 to 60 ° C.
- the immersion time of the base material having the base layer and the resin coating layer in the alkaline solution is preferably from 0.1 to 20 hours, more preferably from 0.5 to 14 hours.
- a washing step may be performed.
- the cleaning step the conversion from the carboxyl group (—COOH) and the ester moiety (—COOR) to the carboxylate (—COOX) by the alkali treatment can be easily completed.
- the cleaning conditions are not particularly limited.
- the cleaning liquid (solvent) that can be used in the cleaning step includes water, alcohols such as methanol, ethanol, isopropanol, and ethylene glycol, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, halides such as chloroform, Examples include alkanes such as butane and hexane, ethers such as tetrahydrofuran and butyl ether, aromatics such as benzene and toluene, and amides such as N, N-dimethylformamide (DMF).
- the said solvent may be used individually by 1 type, and may be used together 2 or more types.
- the temperature of the cleaning liquid is preferably 0 to 70 ° C., more preferably 20 to 65 ° C.
- the washing time is 0.1 to 120 minutes, more preferably 0.5 to 120 minutes.
- the base material having the base layer and the resin coating layer is dried.
- the drying conditions are not particularly limited as long as the substrate, the base layer, and the resin coating layer after the alkali treatment or the cleaning step can be sufficiently dried.
- the drying temperature is preferably about room temperature (25 ° C.) to about 80 ° C.
- the drying temperature is preferably about 5 minutes to 48 hours.
- the maleic polymer substance is covalently bonded to the reactive functional group, and the coating layer is formed on the surface of the base material to be inserted into the living body.
- non-lubricating treatment may be performed on a portion of the medical device of the present invention that is not inserted into the living body.
- the non-lubricating treatment is not particularly limited, but for example, a method using an isocyanate compound described in JP-A-4-144567 can be suitably used.
- the isocyanate compound is considered to be non-lubricated by grafting to a maleic polymer material or partially crosslinking it.
- Example 1 12 g of methyl vinyl ether maleic anhydride copolymer (trade name: GANTREZ AN-169 GAF) was put into a mixed solution of 85 g of ethanol and 0.7 g of distilled water and refluxed at 78 ° C. for 24 hours. It was. After cooling the reflux liquid, it was put in hexane, and the deposited precipitate was collected, dried at 70 ° C. under reduced pressure for 3 days while being pulverized as needed, and a reaction product of methyl vinyl ether maleic anhydride copolymer (hereinafter referred to as methyl vinyl ether-maleic acid). (Yield 9 g).
- the NMR measurement conditions are as follows.
- a Ni—Ti wire having an outer diameter of 0.25 mm was coated with a thermoplastic polyurethane resin to have an outer diameter of 0.3 mm.
- PVC polyvinyl chloride
- MDI 4,4′-diphenylmethane diisocyanate
- a medical device (2) was obtained in the same manner as in Example 1 except that the obtained methyl vinyl ether-maleic acid copolymer was used.
- a medical device (3) was obtained in the same manner as in Example 1 except that the obtained methyl vinyl ether-maleic acid copolymer was used.
- Example 4 12 g of methyl vinyl ether maleic anhydride copolymer (trade name: GANTREZ AN-169 GAF) was put into a mixed solution of 53 g of ethanol and 41 g of distilled water and refluxed for 24 hours. After cooling the reflux liquid, it was put into diethyl ether, and the deposited precipitate was collected and dried at 70 ° C. under reduced pressure for 3 days while pulverizing as needed to obtain a reaction product of methyl vinyl ether maleic anhydride copolymer (yield 8 g). .
- structural unit (a): structural unit ( b) molar ratio 100: 42.9).
- the hydrolysis and esterification reaction proceeded completely, and the structural units derived from maleic acid in the methyl vinyl ether-maleic acid copolymer were only the structural unit (a) and the structural unit (b).
- a medical device (4) was obtained in the same manner as in Example 1 except that the obtained methyl vinyl ether-maleic acid copolymer was used.
- Comparative Example 1 A comparative medical device (1) was obtained in the same manner as in Example 1 except that a half ethyl ester of methyl vinyl ether maleic anhydride copolymer (degree of esterification of about 50%) was used.
- a comparative medical device (2) was obtained in the same manner as in Example 1 except that the obtained methyl vinyl ether-maleic acid copolymer was used.
- a comparative medical device (3) was obtained in the same manner as in Example 1 except that the obtained methyl vinyl ether-maleic acid copolymer was used.
- the maleic acid-derived structural unit consists only of the structural unit (a) and the structural unit (b), and the molar ratio of the structural unit (a): the structural unit (b) is 100: 2 to 100.
- Medical devices (1) to (4) of Examples 1 to 4 using a maleic polymer material in the range of 50 are used under normal conditions (room temperature) and harsh conditions (temperature and humidity cycle test). In both cases, it can be seen that in both cases, the film thickness when swollen is 20 ⁇ m or more and exhibits good lubricity.
- a maleic acid-based polymer substance which is a maleic anhydride half ester containing a maleic anhydride-derived structural unit (c)
- the film thickness at swelling of 20 ⁇ m or more shows good lubricity, it can be seen that under severe conditions (after the temperature and humidity cycle test), the film thickness at swelling is less than 20 ⁇ m, and the lubricity is inferior to the allowable range.
- the film thickness when swollen in a normal environment is less than 20 ⁇ m, and the lubricity is acceptable. It turns out that it is inferior to the range.
- each sample 3 after the temperature and humidity cycle test was fixed in the petri dish 2 and immersed in water 1 having a height that the entire sample 3 was immersed.
- This petri dish 2 was placed on the moving table 6 of the friction measuring machine 10 shown in FIG.
- the moving table 6 was reciprocated horizontally five times at a speed of 10 m / sec and a moving distance of 25 mm, and the sliding resistance value (gf) at the fifth reciprocation was measured. The results are shown in FIG.
- the structural unit derived from maleic acid consists only of the structural unit (a) and the structural unit (b), and the molar ratio of the structural unit (a) to the structural unit (b) is 100: 2 to 100.
- the medical devices (1) to (4) of Examples 1 to 4 using a maleic acid polymer material in the range of 50 are derived from maleic anhydride under severe conditions (after temperature and humidity cycle test).
- substance ( ) As compared to when it imparts excellent lubricity to the medical device surface, it is discussed.
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
Abstract
Provided are a medical instrument having excellent lubricity in harsh conditions, and a method for manufacturing the medical instrument. A medical instrument in which a resin coating layer including a maleic-acid-based polymer substance is provided on a surface of a base material, the medical instrument being inserted in the body, the resin coating layer being formed by covalent bonding of the maleic-acid-based polymer substance with reactive functional groups present on at least a surface of the base material constituting the medical instrument, the maleic-acid-based polymer substance including constituent units derived from maleic acid, the constituent units derived from maleic acid comprising constituent unit (a) and constituent unit (b), and the mole ratio of constituent unit (a) to constituent unit (b) being 100:2 to 100:50. In the formulas, X1-X3 each independently represent hydrogen, an alkali metal, or an alkaline earth metal, and R represents a C1-24 straight-chain or branched alkyl group.
Description
本発明は、医療用具およびその製造方法に関する。特に、本発明は、過酷な条件下での潤滑性に優れる医療用具およびその製造方法に関する。
The present invention relates to a medical device and a manufacturing method thereof. In particular, the present invention relates to a medical device excellent in lubricity under severe conditions and a method for producing the same.
気道、気管、消化管、尿道、血管等の生体管腔や組織中に挿入されるカテーテル、ガイドワイヤ、スタイレット等の医療用具は、組織を損傷させず、また目的部位まで確実に挿入することを可能とする操作性が要求され、さらには組織内に留置している間に摩擦によって粘膜を損傷したり、炎症を引き起こしたりすることを避けるために優れた潤滑性を示すことが要求される。
Medical devices such as airways, trachea, gastrointestinal tract, urethra, and blood vessels, and catheters, guidewires, and stylets that are inserted into tissues must be securely inserted to the target site without damaging the tissue. In addition, it is required to exhibit excellent lubricity to avoid damaging the mucous membrane and causing inflammation while indwelling in the tissue. .
このような、要求を満足するため、生体内に挿入する医療器具の基材表面に、無水マレイン酸系高分子物質等の水溶性高分子を共有結合させて、潤滑性を有する樹脂被覆層を形成することが知られている(例えば、特開昭60-259269号公報参照)。特開昭60-259269号公報では、無水マレイン酸系高分子物質等の水溶性高分子の被覆層を下地層を介して基材上に形成した後、好ましくは水処理することによって、湿潤時に潤滑性を発揮させている。
In order to satisfy such requirements, a resin coating layer having lubricity is formed by covalently bonding a water-soluble polymer such as a maleic anhydride-based polymer substance to the base material surface of a medical device to be inserted into a living body. It is known to form (see, for example, JP-A-60-259269). In JP-A-60-259269, a coating layer of a water-soluble polymer such as a maleic anhydride-based polymer substance is formed on a substrate through an underlayer, and then preferably treated with water to Exhibits lubricity.
特開昭60-259269号公報に記載される医療用具は、通常の大気雰囲気中では十分な潤滑性を発揮できるものの、高温、低温、高湿度などの過酷な条件下では潤滑性が過度に低下するという問題があった。近年、医療用具を輸出する際の輸送工程中、あるいは使用する国の環境によっては、上記したような過酷な条件、特に高湿度の環境下に、医療用具がさらされる可能性がある。このため、高温、低温、高湿度などの過酷な条件下での潤滑性の維持・向上が強く要求される。
The medical device described in JP-A-60-259269 can exhibit sufficient lubricity in a normal air atmosphere, but the lubricity is excessively lowered under severe conditions such as high temperature, low temperature and high humidity. There was a problem to do. In recent years, there is a possibility that the medical device is exposed to the severe conditions as described above, particularly in a high humidity environment, depending on the transportation process when exporting the medical device or depending on the environment of the country where the medical device is used. For this reason, there is a strong demand for maintaining and improving lubricity under severe conditions such as high temperature, low temperature, and high humidity.
したがって、本発明は、上記事情を鑑みてなされたものであり、過酷な条件下での潤滑性に優れる医療用具およびその製造方法を提供することを目的とする。
Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a medical device having excellent lubricity under severe conditions and a method for producing the same.
本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、カルボン酸エステルの割合を所定の範囲に調節したマレイン酸系高分子物質を含む被覆層を医療用具の基材上に形成することによって、上記課題を解決できることを見出し、本発明を完成させた。
As a result of intensive studies to solve the above problems, the present inventors have found that a coating layer containing a maleic polymer material in which the proportion of carboxylic acid ester is adjusted to a predetermined range is formed on the base material of a medical device. The present invention was completed by finding that the above-mentioned problems can be solved by forming the film.
すなわち、上記目的は、基材の表面にマレイン酸系高分子物質を含む樹脂被覆層を設けてなる生体内に挿入される医療用具であって、前記樹脂被覆層は、前記マレイン酸系高分子物質を、前記医療用具を構成する基材の少なくとも表面に存在する反応性官能基と共有結合させることにより形成され、前記マレイン酸系高分子物質は、マレイン酸由来の構成単位を含み、前記マレイン酸由来の構成単位は、下記構成単位(a)および下記構成単位(b)からなり、前記構成単位(a):構成単位(b)のモル比が100:2~100:50である、医療用具によって達成できる。
That is, the object is a medical device to be inserted into a living body in which a resin coating layer containing a maleic polymer material is provided on the surface of a substrate, wherein the resin coating layer is formed of the maleic polymer. It is formed by covalently bonding a substance to a reactive functional group present on at least the surface of a base material constituting the medical device, and the maleic polymer material includes a maleic acid-derived structural unit, The structural unit derived from an acid comprises the following structural unit (a) and the following structural unit (b), wherein the molar ratio of the structural unit (a) to the structural unit (b) is 100: 2 to 100: 50. Can be achieved with tools.
式中、X1~X3は、それぞれ独立して、水素、アルカリ金属、またはアルカリ土類金属を表し、Rは炭素数1~24の直鎖または分岐鎖のアルキル基を表す。
In the formula, X 1 to X 3 each independently represent hydrogen, an alkali metal, or an alkaline earth metal, and R represents a linear or branched alkyl group having 1 to 24 carbon atoms.
また、上記目的は、炭素数1~24の直鎖または分岐鎖のアルコールおよび水を含有し、前記アルコール:水の含有質量比が100:0.1~150である溶液と、無水マレイン酸系高分子物質と、を反応させて、マレイン酸由来の構成単位を含むマレイン酸系高分子物質を得る段階と、反応性官能基を有する化合物を含む溶液で医療用具を構成する基材を処理して、該基材の少なくとも表面に反応性官能基が存在する下地層を形成する段階と、前記下地層が形成された基材を前記マレイン酸系高分子物質で処理して、前記反応性官能基と前記マレイン酸系高分子物質とを共有結合させて、前記下地層上にマレイン酸系高分子物質を含む樹脂被覆層を形成する段階と、を有する、本発明の医療用具の製造方法によっても達成できる。
Further, the above object is to provide a solution containing a linear or branched alcohol having 1 to 24 carbon atoms and water, wherein the alcohol: water content ratio is 100: 0.1 to 150, and a maleic anhydride system. A step of obtaining a maleic polymer material containing a maleic acid-derived structural unit by reacting with a polymer material, and treating a substrate constituting a medical device with a solution containing a compound having a reactive functional group Forming a base layer having a reactive functional group on at least the surface of the base material; treating the base material on which the base layer is formed with the maleic polymer material; A step of covalently bonding a group and the maleic polymer material to form a resin coating layer containing the maleic polymer material on the underlayer, according to the method for producing a medical device of the present invention. Can also be achieved.
本発明は、基材の表面にマレイン酸系高分子物質を含む樹脂被覆層を設けてなる生体内に挿入される医療用具であって、
前記樹脂被覆層は、前記マレイン酸系高分子物質を、前記医療用具を構成する基材の少なくとも表面に存在する反応性官能基と共有結合させることにより形成され、
前記マレイン酸系高分子物質は、マレイン酸由来の構成単位を含み、前記マレイン酸由来の構成単位は、下記構成単位(a)および下記構成単位(b)からなり、前記構成単位(a):構成単位(b)のモル比が100:2~100:50である、医療用具を提供する。 The present invention is a medical device to be inserted into a living body provided with a resin coating layer containing a maleic polymer material on the surface of a substrate,
The resin coating layer is formed by covalently bonding the maleic polymer material to a reactive functional group present on at least the surface of the base material constituting the medical device,
The maleic polymer material includes a structural unit derived from maleic acid, and the structural unit derived from maleic acid comprises the following structural unit (a) and the following structural unit (b), and the structural unit (a): Provided is a medical device wherein the molar ratio of the structural unit (b) is from 100: 2 to 100: 50.
前記樹脂被覆層は、前記マレイン酸系高分子物質を、前記医療用具を構成する基材の少なくとも表面に存在する反応性官能基と共有結合させることにより形成され、
前記マレイン酸系高分子物質は、マレイン酸由来の構成単位を含み、前記マレイン酸由来の構成単位は、下記構成単位(a)および下記構成単位(b)からなり、前記構成単位(a):構成単位(b)のモル比が100:2~100:50である、医療用具を提供する。 The present invention is a medical device to be inserted into a living body provided with a resin coating layer containing a maleic polymer material on the surface of a substrate,
The resin coating layer is formed by covalently bonding the maleic polymer material to a reactive functional group present on at least the surface of the base material constituting the medical device,
The maleic polymer material includes a structural unit derived from maleic acid, and the structural unit derived from maleic acid comprises the following structural unit (a) and the following structural unit (b), and the structural unit (a): Provided is a medical device wherein the molar ratio of the structural unit (b) is from 100: 2 to 100: 50.
式中、X1~X3は、それぞれ独立して、水素、アルカリ金属、またはアルカリ土類金属を表し、Rは、炭素原子数1~24の直鎖または分岐鎖のアルキル基を表す。
In the formula, X 1 to X 3 each independently represents hydrogen, an alkali metal, or an alkaline earth metal, and R represents a linear or branched alkyl group having 1 to 24 carbon atoms.
上記特開昭60-259269号公報の実施例8~12には、メチルビニルエーテル無水マレイン酸共重合体(GANTREZ AN169)のハーフエチルエステル(エステル化度40~50%)を表面被覆層として用いたことが記載されている。メチルビニルエーテル無水マレイン酸重合体のハーフエチルエステルは、マレイン酸無水環をアルコールで開環することによって製造される(例えば、特開2008-279100号公報 段落「0021」)。このため、上記メチルビニルエーテル無水マレイン酸共重合体(GANTREZ AN169)のエステル化度50%とは、無水環が完全に開環して、アルコールによるエステル化が完全に進行した状態を指し、マレイン酸由来の構成単位は構成単位(a)のみからなる(構成単位(b)=0)。また、特開昭60-259269号公報でいうメチルビニルエーテル無水マレイン酸共重合体(GANTREZ AN169)のエステル化度40%とは、アルコールによるエステル化反応が完全には進行していない状態を指し、一部無水マレイン酸が残っている状態を指す。換言すれば、特開昭60-259269号公報でいうメチルビニルエーテル無水マレイン酸共重合体(GANTREZ AN169)のエステル化度40%の共重合体とは、マレイン酸由来の構成単位は構成単位(a)とともに、無水マレイン酸由来の下記構成単位(c):
In Examples 8 to 12 of JP-A-60-259269, a half ethyl ester (degree of esterification 40 to 50%) of methyl vinyl ether maleic anhydride copolymer (GANTREZ AN169) was used as a surface coating layer. It is described. A half ethyl ester of a methyl vinyl ether maleic anhydride polymer is produced by opening a maleic anhydride ring with an alcohol (for example, paragraph “0021” of JP-A-2008-279100). Therefore, the degree of esterification of the methyl vinyl ether maleic anhydride copolymer (GANTREZ AN169) of 50% refers to a state in which the anhydrous ring has completely opened and esterification with alcohol has completely proceeded. The derived structural unit consists only of the structural unit (a) (structural unit (b) = 0). Further, the degree of esterification of methyl vinyl ether maleic anhydride copolymer (GANTREZ AN169) described in JP-A-60-259269 refers to a state in which the esterification reaction with alcohol has not completely proceeded, It refers to the state where some maleic anhydride remains. In other words, a copolymer having a degree of esterification of 40% of methyl vinyl ether maleic anhydride copolymer (GANTREZ AN169) described in JP-A-60-259269 is a structural unit derived from maleic acid (a ) And the following structural unit (c) derived from maleic anhydride:
が残存している形態を指す(構成単位(a):構成単位(c)=40:20(モル比)、構成単位(b)=0)。
Refers to the form in which the structure remains (structural unit (a): structural unit (c) = 40: 20 (molar ratio), structural unit (b) = 0).
一方、本発明のマレイン酸系高分子物質は、無水マレイン酸共重合体中のマレイン酸無水環を完全に開環させるため、上記構成単位(c)を含まない。
On the other hand, the maleic polymer material of the present invention does not contain the above structural unit (c) in order to completely open the maleic anhydride ring in the maleic anhydride copolymer.
本発明のマレイン酸系高分子物質は、無水マレイン酸共重合体をアルコールおよび水と反応させることによって、アルコールによるエステル化反応とともに水による加水分解反応が起こる。このため、本発明のマレイン酸系高分子物質は、無水マレイン酸のアルコールによるエステル化反応により形成される構成単位(a)を含むとともに、無水マレイン酸の加水分解により形成される構成単位(b)を含むこととなる。
In the maleic acid polymer material of the present invention, when a maleic anhydride copolymer is reacted with alcohol and water, hydrolysis reaction with water occurs together with esterification reaction with alcohol. Therefore, the maleic polymer material of the present invention includes a structural unit (a) formed by esterification reaction of maleic anhydride with alcohol and a structural unit (b) formed by hydrolysis of maleic anhydride. ) Will be included.
本発明のマレイン酸系高分子物質は、構成単位(a):構成単位(b)のモル比が100:2~100:50である。構成単位(a)100モル%に対する構成単位(b)のモル比が2モル%未満であると、カルボン酸(塩)基が物質内で少なくなるため、高温高湿などの過酷な条件下での潤滑性が低下する。また、構成単位(a)100モル%に対する構成単位(b)のモル比が50モル%を超えると、過酷な条件下に加えて通常の大気雰囲気中での医療用具の潤滑性が低下する。
In the maleic polymer material of the present invention, the molar ratio of the structural unit (a) to the structural unit (b) is 100: 2 to 100: 50. When the molar ratio of the structural unit (b) to the structural unit (a) is less than 2 mol%, the number of carboxylic acid (salt) groups is reduced in the substance, and therefore, under severe conditions such as high temperature and high humidity. The lubricity of is reduced. Moreover, when the molar ratio of the structural unit (b) to the structural unit (a) 100 mol% exceeds 50 mol%, the lubricity of the medical device in a normal air atmosphere is deteriorated in addition to severe conditions.
ここで、上記したような効果を奏するメカニズムは、不明であるが、下記のように推測される。なお、本発明は、下記推測に限定されるものではない。すなわち、マレイン酸系高分子物質は体液や血液と接触すると、その物質中に存在するカルボン酸塩(カルボキシル基のアルカリ金属塩)が体液や血液で膨潤してゲル化して、潤滑性を発揮する。このため、例えば、特公平7-83761号公報の実施例1では、メチルビニルエーテル無水マレイン酸共重合体のハーフエチルエステルで基材を被覆したカテーテルチューブを、NaHCO3溶液に浸漬してアルカリ処理を行っている。
Here, the mechanism that produces the effects as described above is unknown, but is estimated as follows. Note that the present invention is not limited to the following estimation. That is, when a maleic polymer material comes into contact with body fluids or blood, the carboxylate (alkali metal salt of carboxyl group) present in the material swells and gels in the body fluids or blood and exhibits lubricity. . Therefore, for example, in Example 1 of Japanese Patent Publication No. 7-83761, a catheter tube coated with a half ethyl ester of a methyl vinyl ether maleic anhydride copolymer is immersed in a NaHCO 3 solution for alkali treatment. Is going.
このため、被覆層を構成するマレイン酸系高分子物質は、マレイン酸系高分子物質のカルボン酸塩(カルボキシル基のアルカリ金属塩)の存在量がある程度多いほうが、湿潤時の膨潤性(湿潤性)が高い。しかし、上記したような過酷な条件(特に、高湿条件)下では、カルボキシル基の金属塩(-COOX)がカルボキシル基(-COOH)に変換して、被覆層中のマレイン酸系高分子物質のカルボン酸塩の割合が低くなり、湿潤時の膨潤性(湿潤性)が低下してしまう。このため、本発明によるように、カルボン酸塩がある程度多く存在するようにエステル化度を調節することによって、上記したような過酷な条件(特に、高湿条件)下におかれてカルボキシル基の金属塩の一部がカルボキシル基に変換した(-COOX→-COOH)後であっても、十分量のカルボン酸塩(カルボキシル基のアルカリ金属塩)がマレイン酸系高分子物質中に残る。このため、本発明に係る被覆層は、高温、低温、高湿度などの過酷な条件下におかれた後であっても、十分量のカルボン酸塩(カルボキシル基のアルカリ金属塩)が体液や血液で膨潤してゲル化して、湿潤時の潤滑性を低下させず、優れた潤滑性を維持・発揮できる。
For this reason, the maleic polymer material constituting the coating layer has a higher amount of carboxylate (alkali metal salt of carboxyl group) of the maleic polymer material, so that the swelling property (wetting property) is increased. ) Is high. However, under the severe conditions described above (especially in high humidity conditions), the metal salt of carboxyl group (—COOX) is converted to carboxyl group (—COOH), and the maleic polymer material in the coating layer As a result, the ratio of the carboxylate becomes low, and the swelling property (wetting property) at the time of wetting is lowered. For this reason, according to the present invention, by adjusting the degree of esterification so that a certain amount of carboxylate is present, the carboxyl group can be removed under the above-mentioned severe conditions (especially high humidity conditions). Even after a part of the metal salt is converted to a carboxyl group (-COOX → -COOH), a sufficient amount of carboxylate (alkali metal salt of the carboxyl group) remains in the maleic polymer material. Therefore, even after the coating layer according to the present invention is subjected to severe conditions such as high temperature, low temperature, and high humidity, a sufficient amount of carboxylate (carboxyl group alkali metal salt) It swells with blood and gels, and maintains excellent lubricity without reducing lubricity when wet.
一方で、構成単位(a)100モル%に対する構成単位(b)のモル比が50モル%を超えると、上記アルカリ処理時に高分子物質が溶解し、膨潤がうまく進行せず、潤滑性が低下する。
On the other hand, when the molar ratio of the structural unit (b) to the structural unit (a) 100 mol% exceeds 50 mol%, the polymer substance is dissolved during the alkali treatment, the swelling does not proceed well, and the lubricity decreases. To do.
したがって、本発明の医療用具は、優れた潤滑性を有するとともに、輸送時または使用される国の過酷な環境などによる影響を受けた場合であっても、潤滑性の低下を抑制・防止でき、優れた潤滑性を維持・発揮できる。
Therefore, the medical device of the present invention has excellent lubricity, and can suppress / prevent degradation of lubricity even when transported or affected by the harsh environment of the country where it is used, Maintains and exhibits excellent lubricity.
以下、本発明の実施の形態を説明する。なお、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」及び「重量部」と「質量部」は同義語として扱う。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。
Hereinafter, embodiments of the present invention will be described. In the present specification, “X to Y” indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
(医療用具)
本発明の医療用具は、生体内に挿入される基材(部分)の表面にマレイン酸系高分子物質を含む樹脂被覆層が形成されてなる生体内に挿入される医療用具である。医療用具は、いずれの用途に使用されてもよいが、体液や血液との接触による潤滑性付与効果を考慮すると、体液や血液と接触して用いられることが好ましい。具体的には、留置針、IVHカテーテル、サーモダイリューションカテーテル、血管造影用カテーテル、血管拡張用カテーテル(例えば、PCTAカテーテル)、ダイレーターあるいはイントロデューサーなどの血管内に挿入ないし留置されるカテーテル類、あるいは、これらのカテーテル用のガイドワイヤ、スタイレット;胃管カテーテル、栄養カテーテル、経管栄養用(ED)チューブなどの経口もしくは経鼻的に消化器官内に挿入ないし留置されるカテーテル類;酸素カテーテル、酸素カヌラ、気管内チューブのチューブやカフ、気管切開チューブのチューブやカフ、気管内吸引カテーテルなどの経口または経鼻的に気道ないし気管内に挿入ないし留置されるカテーテル類;尿道カテーテル、導尿カテーテル、尿道バルーンカテーテルのカテーテルやバルーンなどの尿道ないし尿管内に挿入ないし留置されるカテーテル類;吸引カテーテル、排液カテーテル、直腸カテーテルなどの各種体腔、臓器、組織内に挿入ないし留置されるカテーテル類;人工気管、人工気管支;体外循環治療用の医療用具(人工肺、人工心臓、人工腎臓など)やその回路類;各種器管内挿入用内視鏡の外表面など生体内挿入時、摺動時または留置時等に低い摩擦抵抗を要求される医療用具などが挙げられる。これらのうち、体液や血液との接触による潤滑性付与効果に対する要求が高いという面では、血管や尿管等の生体管腔内で使用されるカテーテル、ガイドワイヤ、留置針の体液/血液接触面に本発明に係る被覆層を設けることが好ましい。 (Medical equipment)
The medical device of the present invention is a medical device to be inserted into a living body in which a resin coating layer containing a maleic polymer material is formed on the surface of a base material (part) to be inserted into the living body. The medical device may be used for any application, but it is preferable that the medical device is used in contact with body fluid or blood in consideration of the effect of imparting lubricity due to contact with body fluid or blood. Specifically, catheters inserted or placed in blood vessels such as indwelling needles, IVH catheters, thermodilution catheters, angiographic catheters, vasodilator catheters (eg, PCTA catheters), dilators or introducers. Or guidewires and stylets for these catheters; catheters inserted or placed in the digestive organs orally or nasally, such as gastrointestinal catheters, nutritional catheters, tube feeding (ED) tubes; oxygen Catheter, oxygen cannula, endotracheal tube and cuff, tracheostomy tube and cuff, intratracheal suction catheter and other catheters that are inserted or placed in the trachea or intratracheally; urethral catheter, lead Urine catheter, urethral balloon catheter Catheters inserted or placed in the urethra or ureter such as catheters and balloons; catheters inserted or placed in various body cavities, organs, tissues such as suction catheter, drainage catheter, rectal catheter; artificial trachea, artificial bronchus ; Medical devices for extracorporeal circulation treatment (artificial lung, artificial heart, artificial kidney, etc.) and their circuits; low during insertion, sliding or indwelling on the outer surface of various intravascular insertion endoscopes Examples include medical devices that require frictional resistance. Among these, in terms of the high demand for lubricity imparting effect due to contact with body fluids and blood, the body fluid / blood contact surface of catheters, guide wires, and indwelling needles used in biological lumens such as blood vessels and ureters It is preferable to provide a coating layer according to the present invention.
本発明の医療用具は、生体内に挿入される基材(部分)の表面にマレイン酸系高分子物質を含む樹脂被覆層が形成されてなる生体内に挿入される医療用具である。医療用具は、いずれの用途に使用されてもよいが、体液や血液との接触による潤滑性付与効果を考慮すると、体液や血液と接触して用いられることが好ましい。具体的には、留置針、IVHカテーテル、サーモダイリューションカテーテル、血管造影用カテーテル、血管拡張用カテーテル(例えば、PCTAカテーテル)、ダイレーターあるいはイントロデューサーなどの血管内に挿入ないし留置されるカテーテル類、あるいは、これらのカテーテル用のガイドワイヤ、スタイレット;胃管カテーテル、栄養カテーテル、経管栄養用(ED)チューブなどの経口もしくは経鼻的に消化器官内に挿入ないし留置されるカテーテル類;酸素カテーテル、酸素カヌラ、気管内チューブのチューブやカフ、気管切開チューブのチューブやカフ、気管内吸引カテーテルなどの経口または経鼻的に気道ないし気管内に挿入ないし留置されるカテーテル類;尿道カテーテル、導尿カテーテル、尿道バルーンカテーテルのカテーテルやバルーンなどの尿道ないし尿管内に挿入ないし留置されるカテーテル類;吸引カテーテル、排液カテーテル、直腸カテーテルなどの各種体腔、臓器、組織内に挿入ないし留置されるカテーテル類;人工気管、人工気管支;体外循環治療用の医療用具(人工肺、人工心臓、人工腎臓など)やその回路類;各種器管内挿入用内視鏡の外表面など生体内挿入時、摺動時または留置時等に低い摩擦抵抗を要求される医療用具などが挙げられる。これらのうち、体液や血液との接触による潤滑性付与効果に対する要求が高いという面では、血管や尿管等の生体管腔内で使用されるカテーテル、ガイドワイヤ、留置針の体液/血液接触面に本発明に係る被覆層を設けることが好ましい。 (Medical equipment)
The medical device of the present invention is a medical device to be inserted into a living body in which a resin coating layer containing a maleic polymer material is formed on the surface of a base material (part) to be inserted into the living body. The medical device may be used for any application, but it is preferable that the medical device is used in contact with body fluid or blood in consideration of the effect of imparting lubricity due to contact with body fluid or blood. Specifically, catheters inserted or placed in blood vessels such as indwelling needles, IVH catheters, thermodilution catheters, angiographic catheters, vasodilator catheters (eg, PCTA catheters), dilators or introducers. Or guidewires and stylets for these catheters; catheters inserted or placed in the digestive organs orally or nasally, such as gastrointestinal catheters, nutritional catheters, tube feeding (ED) tubes; oxygen Catheter, oxygen cannula, endotracheal tube and cuff, tracheostomy tube and cuff, intratracheal suction catheter and other catheters that are inserted or placed in the trachea or intratracheally; urethral catheter, lead Urine catheter, urethral balloon catheter Catheters inserted or placed in the urethra or ureter such as catheters and balloons; catheters inserted or placed in various body cavities, organs, tissues such as suction catheter, drainage catheter, rectal catheter; artificial trachea, artificial bronchus ; Medical devices for extracorporeal circulation treatment (artificial lung, artificial heart, artificial kidney, etc.) and their circuits; low during insertion, sliding or indwelling on the outer surface of various intravascular insertion endoscopes Examples include medical devices that require frictional resistance. Among these, in terms of the high demand for lubricity imparting effect due to contact with body fluids and blood, the body fluid / blood contact surface of catheters, guide wires, and indwelling needles used in biological lumens such as blood vessels and ureters It is preferable to provide a coating layer according to the present invention.
(樹脂被覆層)
本発明に係る樹脂被覆層(被覆層)は、体液や血液や生理食塩水などの水系液体中で表面潤滑性を発揮して、カテーテルやガイドワイヤ等の医療用具を容易に生体管腔内に挿入できるなど、操作性を向上できる。また、本発明に係る樹脂被覆層(被覆層)は、上記操作中による組織粘膜の損傷を低減できる。 (Resin coating layer)
The resin coating layer (coating layer) according to the present invention exhibits surface lubricity in aqueous liquids such as body fluids, blood, and physiological saline, so that medical devices such as catheters and guide wires can be easily placed in living body lumens. Operability can be improved, such as being insertable. Further, the resin coating layer (coating layer) according to the present invention can reduce the damage of the tissue mucous membrane during the above operation.
本発明に係る樹脂被覆層(被覆層)は、体液や血液や生理食塩水などの水系液体中で表面潤滑性を発揮して、カテーテルやガイドワイヤ等の医療用具を容易に生体管腔内に挿入できるなど、操作性を向上できる。また、本発明に係る樹脂被覆層(被覆層)は、上記操作中による組織粘膜の損傷を低減できる。 (Resin coating layer)
The resin coating layer (coating layer) according to the present invention exhibits surface lubricity in aqueous liquids such as body fluids, blood, and physiological saline, so that medical devices such as catheters and guide wires can be easily placed in living body lumens. Operability can be improved, such as being insertable. Further, the resin coating layer (coating layer) according to the present invention can reduce the damage of the tissue mucous membrane during the above operation.
上記樹脂被覆層は、マレイン酸系高分子物質を、医療用具を構成する基材の少なくとも表面に存在する反応性官能基と共有結合させることにより形成される。なお、使用用途であるカテーテル、ガイドワイヤ、留置針等の医療用具において、必ずしもこれらの医療用具(基材)の全ての表面(表面全体)が潤滑性を有する必要はなく、少なくとも体液や血液と接触する表面部分(一部の場合もあれば全部の場合もある)のみに被覆層が形成されていればよい。このため、本発明は、医療用具を構成する基材の表面の一部あるいは基材の内部が潤滑性を有する場合を包含する。また、マレイン酸系高分子物質は、高い湿潤時の潤滑性およびその持続性を発揮できる。
The resin coating layer is formed by covalently bonding a maleic polymer material with a reactive functional group present on at least the surface of the base material constituting the medical device. In addition, in medical devices such as catheters, guide wires, and indwelling needles that are used, it is not always necessary that all surfaces (the entire surface) of these medical devices (base materials) have lubricity, and at least body fluid and blood It is only necessary that the coating layer be formed only on the surface portion (in some cases or in all cases) in contact. For this reason, this invention includes the case where a part of surface of the base material which comprises a medical device, or the inside of a base material has lubricity. Further, the maleic polymer material can exhibit high wet lubricity and durability.
樹脂被覆層に使用されるマレイン酸系高分子物質は、マレイン酸由来の構成単位を含み、前記マレイン酸由来の構成単位は、下記構成単位(a)および下記構成単位(b)からなる。
The maleic polymer material used for the resin coating layer includes a maleic acid-derived structural unit, and the maleic acid-derived structural unit includes the following structural unit (a) and the following structural unit (b).
式中、X1~X3は、それぞれ独立して、水素、アルカリ金属、またはアルカリ土類金属を表す。ここで、アルカリ金属としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウムがある。また、アルカリ土類金属としては、例えば、マグネシウム、カルシウム、ストロンチウム、バリウムがある。好ましくは、X1~X3は、ナトリウム、カリウム、マグネシウム、カルシウムであり、ナトリウム、カルシウムであることがより好ましく、ナトリウムであることが特に好ましい。X1~X3がナトリウムである場合、マレイン酸系高分子物質が体液や血液と接触すると、マレイン酸系高分子物質中のカルボキシル基のナトリウム塩が体液や血液で膨潤してゲル化して、特に優れた潤滑性を発揮できる。なお、Xがアルカリ土類金属である場合には、隣接するカルボキシル基/エステルがX1~X3を介して連結する(-C(=O)-O-X-O-C(=O)-)を形成する)。
In the formula, X 1 to X 3 each independently represent hydrogen, an alkali metal, or an alkaline earth metal. Here, examples of the alkali metal include lithium, sodium, potassium, rubidium, and cesium. Examples of the alkaline earth metal include magnesium, calcium, strontium, and barium. Preferably, X 1 to X 3 are sodium, potassium, magnesium and calcium, more preferably sodium and calcium, and particularly preferably sodium. When X 1 to X 3 is sodium, when the maleic polymer substance comes into contact with body fluid or blood, the sodium salt of the carboxyl group in the maleic polymer substance swells and gels in the body fluid or blood, In particular, excellent lubricity can be exhibited. When X is an alkaline earth metal, adjacent carboxyl groups / esters are linked via X 1 to X 3 (—C (═O) —O—X—O—C (═O) -)).
潤滑性向上の観点からは、X1~X3のうち少なくとも1つがアルカリ金属であることが好ましい。
From the viewpoint of improving the lubricity, it is preferable that at least one of X 1 to X 3 is an alkali metal.
なお、X1~X3のうち少なくとも1つがアルカリ金属あるいはアルカリ土類金属である形態は、下地層及び樹脂被覆層を有する基材をアルカリ処理することによって得られる。
The form in which at least one of X 1 to X 3 is an alkali metal or an alkaline earth metal can be obtained by subjecting a substrate having an underlayer and a resin coating layer to an alkali treatment.
また、上記式中、Rは炭素原子数1~24の直鎖または分岐鎖のアルキル基である。ここで、アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、2-エチルヘキシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ヘンエイコシル基、ドコシル基などが挙げられる。これらのうち、湿潤時の膨潤性(潤滑性)の高さや当該効果の維持(耐久性)などを考慮すると、Rは、炭素原子数1~8の直鎖または分岐鎖のアルキル基が好ましく、炭素原子数1~3の直鎖または分岐鎖のアルキル基がより好ましい。
In the above formula, R is a linear or branched alkyl group having 1 to 24 carbon atoms. Here, examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, tert-pentyl group, neopentyl group, Hexyl, isohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, 2-ethylhexyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, Examples include an eicosyl group, a heneicosyl group, and a docosyl group. Among these, considering the high swelling property (lubricity) when wet and the maintenance of the effect (durability), R is preferably a linear or branched alkyl group having 1 to 8 carbon atoms, A linear or branched alkyl group having 1 to 3 carbon atoms is more preferred.
本発明のマレイン酸系高分子物質は、マレイン酸由来の構成単位を含む。ここでマレイン酸由来の構成単位とは、無水マレイン酸由来の構成単位(上記構成単位(c))、ならびにこれを開環して得られるマレイン酸塩由来の構成単位(構成単位(b))およびマレイン酸エステル由来の構成単位(構成単位(a))を指す。このうち、本発明のマレイン酸系高分子物質は、マレイン酸由来の構成単位として、構成単位(a)および構成単位(b)からなり、構成単位(c)を含まない。本発明のマレイン酸系高分子物質は、後述するように、無水マレイン酸共重合体をアルコールおよび水の共存下で加水分解とエステル化を起こさせているため、マレイン酸由来の構成単位として、構成単位(a)および構成単位(b)を含むこととなる。
The maleic polymer material of the present invention contains a structural unit derived from maleic acid. Here, the maleic acid-derived structural unit means a maleic anhydride-derived structural unit (the above-mentioned structural unit (c)) and a maleate-derived structural unit (structural unit (b)) obtained by ring-opening this. And a maleic ester-derived structural unit (structural unit (a)). Among these, the maleic polymer material of the present invention is composed of the structural unit (a) and the structural unit (b) as the structural unit derived from maleic acid, and does not include the structural unit (c). As will be described later, the maleic acid polymer material of the present invention causes hydrolysis and esterification of the maleic anhydride copolymer in the presence of alcohol and water. Therefore, as a structural unit derived from maleic acid, The structural unit (a) and the structural unit (b) are included.
なお、マレイン酸系高分子物質中に無水マレイン酸由来の構成単位である構成単位(c)が残っていないことは赤外分光法によって確認することができる。
In addition, it can be confirmed by infrared spectroscopy that the structural unit (c), which is a structural unit derived from maleic anhydride, does not remain in the maleic polymer material.
本発明のマレイン酸系高分子物質は、構成単位(a):構成単位(b)のモル比が100:2~100:50である。構成単位(a)100モル%に対する構成単位(b)のモル比が2モル%未満であると、高温高湿などの過酷な条件下での潤滑性が低下する。また、構成単位(a)100モル%に対する構成単位(b)のモル比が50モル%を超えると、過酷な条件下に加えて通常の大気雰囲気中での医療用具の潤滑性が低下する。構成単位(a):構成単位(b)のモル比は、好ましくは100:2~50であり、より好ましくは100:2~43である。
In the maleic polymer material of the present invention, the molar ratio of the structural unit (a) to the structural unit (b) is 100: 2 to 100: 50. When the molar ratio of the structural unit (b) to the structural unit (a) is less than 2 mol%, the lubricity under severe conditions such as high temperature and high humidity is lowered. Moreover, when the molar ratio of the structural unit (b) to the structural unit (a) 100 mol% exceeds 50 mol%, the lubricity of the medical device in a normal air atmosphere is deteriorated in addition to severe conditions. The molar ratio of the structural unit (a) to the structural unit (b) is preferably 100: 2 to 50, more preferably 100: 2 to 43.
また、マレイン酸由来の構成単位と共重合可能な他の単量体は、本発明による効果(例えば、通常条件下での湿潤時の潤滑性、過酷な条件下での湿潤時の潤滑性、潤滑維持性)を阻害しないものであれば特に制限されない。具体的には、アルキルビニルエーテル、アクリルアミドやその誘導体、ビニルピロリドン、アクリル酸やメタクリル酸及びそれらの誘導体、ジエン系化合物、糖、リン脂質を側鎖に有する単量体を例示できる。より具体的には、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、アクリル酸、メタクリル酸、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、アクリルアミド、アクリロイルモルホリン、N,N-ジメチルアミノエチルアクリレート、ビニルピロリドン、2-メタクリロイルオキシエチルフォスフォリルコリン、2-メタクリロイルオキシエチル-D-グリコシド、2-メタクリロイルオキシエチル-D-マンノシド、ビニルメチルエーテル、ヒドロキシエチルメタクリレートなどが例示できる。これらのうち、湿潤時の潤滑性、過酷な条件下での湿潤時の潤滑性、潤滑維持性などを考慮すると、アルキルビニルエーテルが好ましく、メチルビニルエーテル、エチルビニルエーテルが特に好ましい。すなわち、マレイン酸系高分子物質は、アルキルビニルエーテル-マレイン酸エステル共重合体であることが好ましく、マレイン酸由来の構成単位(構成単位(a)および(b))および下記式(d):
Further, other monomers copolymerizable with the structural unit derived from maleic acid are effective according to the present invention (for example, lubricity when wet under normal conditions, lubricity when wet under severe conditions, There is no particular limitation as long as it does not hinder the lubricity maintenance property. Specific examples include monomers having an alkyl vinyl ether, acrylamide and derivatives thereof, vinyl pyrrolidone, acrylic acid and methacrylic acid and derivatives thereof, diene compounds, sugars, and phospholipids in the side chain. More specifically, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, acrylic acid, methacrylic acid, N-methylacrylamide, N, N-dimethylacrylamide, acrylamide, acryloylmorpholine, N, N-dimethylaminoethyl acrylate, vinylpyrrolidone, Examples thereof include 2-methacryloyloxyethylphosphorylcholine, 2-methacryloyloxyethyl-D-glycoside, 2-methacryloyloxyethyl-D-mannoside, vinyl methyl ether, hydroxyethyl methacrylate and the like. Of these, alkyl vinyl ether is preferable, and methyl vinyl ether and ethyl vinyl ether are particularly preferable in consideration of wet lubricity, wet lubricity under severe conditions, and lubricity maintenance. That is, the maleic polymer material is preferably an alkyl vinyl ether-maleic acid ester copolymer, a maleic acid-derived structural unit (structural units (a) and (b)) and the following formula (d):
で示されるアルキルビニルエーテル由来の構成単位から構成されるアルキルビニルエーテル-マレイン酸エステル共重合体であることが特に好ましい。上記式(d)において、アルキルビニルエーテル由来の構成単位における置換基R’は、炭素原子数1~24の直鎖または分岐鎖のアルキル基である。ここで、「アルキル基」は、上記構成単位(a)における置換基Rに関するアルキル基と同様の定義であるため、ここでは説明を省略する。これらのうち、R’は、炭素原子数1~8の直鎖または分岐鎖のアルキル基が好ましく、炭素原子数1~3の直鎖または分岐鎖のアルキル基がより好ましい。なお、マレイン酸系高分子物質が共重合体である場合に、各構成単位は、ブロック状であってもまたはランダム状であってもよい。
Particularly preferred is an alkyl vinyl ether-maleic acid ester copolymer composed of structural units derived from alkyl vinyl ether. In the above formula (d), the substituent R ′ in the constituent unit derived from alkyl vinyl ether is a linear or branched alkyl group having 1 to 24 carbon atoms. Here, the “alkyl group” has the same definition as the alkyl group relating to the substituent R in the structural unit (a), and thus the description thereof is omitted here. Of these, R ′ is preferably a linear or branched alkyl group having 1 to 8 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 3 carbon atoms. In the case where the maleic polymer is a copolymer, each structural unit may be in a block shape or a random shape.
また、マレイン酸系高分子物質が共重合体である場合の、各構成単位(各構成単位を形成する単量体)の組成は、特に制限されず、所望の効果(例えば、湿潤時の潤滑性、過酷な条件下での湿潤時の潤滑性、潤滑維持性)を考慮して、適宜選択される。具体的には、マレイン酸系高分子物質は、20~80モル%のマレイン酸由来の構成単位(構成単位(a)および(b))、および80~20モル%の他の単量体由来の構成単位から構成されることが好ましく、30~70モル%のマレイン酸由来の構成単位、および70~30モル%の他の単量体由来の構成単位から構成されることがより好ましい。ここで、マレイン酸由来の構成単位および他の単量体由来の構成単位の合計量は、100モル%である。特に、マレイン酸系高分子物質は、40~60モル%のアルキルビニルエーテル由来の構成単位および60~40モル%マレイン酸由来の構成単位(アルキルビニルエーテル由来の構成単位およびマレイン酸由来の構成単位の合計量は100モル%である)から構成されるアルキルビニルエーテル-マレイン酸エステル共重合体であることが好ましい。
In addition, when the maleic polymer is a copolymer, the composition of each structural unit (monomer forming each structural unit) is not particularly limited, and a desired effect (for example, lubrication when wet) In consideration of the property, lubricity when wet under severe conditions, and maintenance of lubrication). Specifically, the maleic polymer is derived from 20 to 80 mol% of maleic acid-derived structural units (structural units (a) and (b)), and 80 to 20 mol% of other monomers. The structural unit is preferably composed of 30 to 70 mol% of a maleic acid-derived structural unit and more preferably 70 to 30 mol% of a structural unit derived from another monomer. Here, the total amount of structural units derived from maleic acid and structural units derived from other monomers is 100 mol%. In particular, the maleic polymer material is composed of 40 to 60 mol% of an alkyl vinyl ether-derived structural unit and 60 to 40 mol% of a maleic acid-derived structural unit (a total of a structural unit derived from an alkyl vinyl ether and a structural unit derived from maleic acid. An alkyl vinyl ether-maleic acid ester copolymer composed of 100 mol%) is preferred.
また、マレイン酸系高分子物質は、分子鎖に自由度を有しかつ含水形態をとりうるものであれば、不溶化形態を有していてもよい。当該形態としては、分子鎖に自由度を有しかつ含水形態をとりうるものであれば、特に制限されない。具体的には、上記マレイン酸系高分子物質の縮合、付加、置換、酸化、還元反応などで得られるアミド化物、無水物、ハロゲン化物、エーテル化物、加水分解物、アセタール化物、ホルマール化物、アルキロール化物、4級化物、ジアゾ化物、ヒドラジド化物、スルホン化物、ニトロ化物、イオンコンプレックス;ジアゾニウム基、アジド基、イソシアネート基、酸クロリド基、酸無水物基、イミノ炭酸エステル基、アミノ基、カルボキシル基、エポキシ基、水酸基、アルデヒド基等、反応性官能基を2個以上有する物質との架橋物などが挙げられる。このようなマレイン酸系高分子物質は、体液や血液と接触させると、生体管腔や組織との摩擦抵抗を著しく低下させることができ、潤滑剤として好適に使用できる。また、これらのマレイン酸系高分子物質の縮合または付加反応や置換反応などで得られる誘導体や、一部架橋などされたものも潤滑剤として同様に有効である。
The maleic polymer material may have an insolubilized form as long as it has a degree of freedom in the molecular chain and can take a water-containing form. The form is not particularly limited as long as it has a degree of freedom in the molecular chain and can take a water-containing form. Specifically, amidated products, anhydrides, halides, etherified products, hydrolysates, acetalized products, formalized products, alkylated products obtained by condensation, addition, substitution, oxidation, reduction reaction, etc. Rolled product, quaternized product, diazotized product, hydrazide product, sulfonated product, nitrated product, ion complex; diazonium group, azide group, isocyanate group, acid chloride group, acid anhydride group, imino carbonate group, amino group, carboxyl group And a cross-linked product with a substance having two or more reactive functional groups such as an epoxy group, a hydroxyl group and an aldehyde group. When such a maleic polymer material is brought into contact with a body fluid or blood, it can remarkably reduce the frictional resistance with a living body lumen or tissue, and can be suitably used as a lubricant. Derivatives obtained by condensation or addition reaction or substitution reaction of these maleic acid-based polymer substances, and those partially crosslinked are also effective as lubricants.
さらに、マレイン酸系高分子物質の分子量もまた、特に制限されず、所望の効果(例えば、湿潤時の潤滑性、過酷な条件下での湿潤時の潤滑性、潤滑維持性)を考慮して、適宜選択される。具体的には、マレイン酸系高分子物質の重量平均分子量は、好ましくは1万~700万、より好ましくは10万~500万である。なお、本明細書においては、マレイン酸系高分子物質の分子量(重量平均分子量)は、標準物質としてポリスチレン、移動相としてテトラヒドロフラン(THF)を用いたゲル浸透クロマトグラフィー(GPC)により測定している。なお、マレイン酸系高分子物質の分子量は、繰り返し単位の種類およびその繰り返し単位数により算出することもできる。
Further, the molecular weight of the maleic polymer material is not particularly limited, and the desired effect (for example, lubricity when wet, lubricity when wet under harsh conditions, maintenance of lubrication) is taken into consideration. Are appropriately selected. Specifically, the weight average molecular weight of the maleic polymer material is preferably 10,000 to 7 million, more preferably 100,000 to 5 million. In the present specification, the molecular weight (weight average molecular weight) of the maleic polymer is measured by gel permeation chromatography (GPC) using polystyrene as a standard substance and tetrahydrofuran (THF) as a mobile phase. . The molecular weight of the maleic acid polymer substance can also be calculated from the type of repeating unit and the number of repeating units.
(反応性官能基)
上記マレイン酸系高分子物質は、少なくとも基材表面に存在する反応性官能基と共有結合させることにより、被覆層を基材上に形成させる。この被覆層は、体液や血液などの水系液体中に溶解することなく、持続的な潤滑性を発揮できる。反応性官能基は、少なくとも基材表面に存在すればよい。これにより、被覆層中のマレイン酸系高分子物質と容易に結合できる。このため、反応性官能基は、基材表面に加えて基材の内部に存在していてもよい。 (Reactive functional group)
The maleic polymer material forms a coating layer on the substrate by covalently bonding at least a reactive functional group present on the substrate surface. This coating layer can exhibit continuous lubricity without dissolving in an aqueous liquid such as body fluid or blood. The reactive functional group may be present at least on the surface of the substrate. Thereby, it can couple | bond easily with the maleic acid type polymer substance in a coating layer. For this reason, a reactive functional group may exist in the inside of a base material in addition to the base material surface.
上記マレイン酸系高分子物質は、少なくとも基材表面に存在する反応性官能基と共有結合させることにより、被覆層を基材上に形成させる。この被覆層は、体液や血液などの水系液体中に溶解することなく、持続的な潤滑性を発揮できる。反応性官能基は、少なくとも基材表面に存在すればよい。これにより、被覆層中のマレイン酸系高分子物質と容易に結合できる。このため、反応性官能基は、基材表面に加えて基材の内部に存在していてもよい。 (Reactive functional group)
The maleic polymer material forms a coating layer on the substrate by covalently bonding at least a reactive functional group present on the substrate surface. This coating layer can exhibit continuous lubricity without dissolving in an aqueous liquid such as body fluid or blood. The reactive functional group may be present at least on the surface of the substrate. Thereby, it can couple | bond easily with the maleic acid type polymer substance in a coating layer. For this reason, a reactive functional group may exist in the inside of a base material in addition to the base material surface.
ここで、反応性官能基は、マレイン酸系高分子物質と反応し、共有結合を形成するものであれば、特に制限はない。具体的には、ジアゾニウム基、アジド基、イソシアネート基、酸クロリド基、酸無水物基、イミノ炭酸エステル基、アミノ基、カルボキシル基、エポキシ基、水酸基、アルデヒド基等が挙げられる。これらのうち、反応性官能基は、イソシアネート基、アミノ基、アルデヒド基またはエポキシ基であることが好ましい。上記反応性官能基は、1種単独で使用されてもあるいは2種以上を併用されてもよい。
Here, the reactive functional group is not particularly limited as long as it reacts with a maleic polymer substance to form a covalent bond. Specific examples include a diazonium group, an azide group, an isocyanate group, an acid chloride group, an acid anhydride group, an imino carbonate group, an amino group, a carboxyl group, an epoxy group, a hydroxyl group, and an aldehyde group. Of these, the reactive functional group is preferably an isocyanate group, an amino group, an aldehyde group or an epoxy group. The reactive functional groups may be used alone or in combination of two or more.
反応性官能基の導入形態は、特に制限されない。具体的には、(i)反応性官能基を少なくとも表面に有する基材(反応性官能基含有基材)を使用する形態;(ii)反応性官能基を予め少なくとも表面に導入した基材を使用する形態;および(iii)基材上に反応性官能基を有する別の層(下地層)を形成する形態など、いずれの形態を使用してもよい。これらのうち、基材選択の自由度などを考慮すると、(iii)の形態が好ましく、上記(iii)の形態において、反応性官能基を有する化合物を含む溶液で医療用具を構成する基材を処理して、該基材の少なくとも表面に反応性官能基が存在する下地層を形成することがより好ましい。
The form of introduction of the reactive functional group is not particularly limited. Specifically, (i) a form using a base material (reactive functional group-containing base material) having at least a reactive functional group on the surface; (ii) a base material previously introduced with at least a reactive functional group on the surface Any form may be used, such as a form to be used; and (iii) a form in which another layer (underlayer) having a reactive functional group is formed on a substrate. Among these, considering the degree of freedom in selecting a base material, the form (iii) is preferable. In the form (iii), the base material constituting the medical device with a solution containing a compound having a reactive functional group is used. It is more preferable to form a base layer having a reactive functional group on at least the surface of the substrate by treatment.
上記(i)の形態では、ポリウレタン、ポリアミドなどから形成される基材が、反応性官能基含有基材として好適に使用される。また、上記(ii)の形態では、基材表面にイオン化ガスプラズマ照射を行う方法が好適に使用できる。ここで、イオン化ガスプラズマ照射は、いずれの条件で行ってもよいが、酸素または窒素を含有するイオン化ガスプラズマを照射することが好ましい。例えば、基材表面に酸素を含有するイオン化ガスプラズマを照射することによって、基材表面が改質、活性化されて、基材表面にカルボキシル基、水酸基、パーオキサイド等の官能基が導入される。なお、上記方法において、イオン化ガス中の酸素の含有量は、上記したような効果を奏する量であれば特に制限されない。また、基材表面に窒素を含有するイオン化ガスプラズマを照射することによって、基材表面が改質、活性化されて、基材表面にカルボキシル基、水酸基、パーオキサイド、アミノ基等の官能基が導入される。なお、上記方法においても、イオン化ガス中の窒素の含有量は、上記したような効果を奏する量であれば特に制限されない。
In the above form (i), a substrate formed of polyurethane, polyamide or the like is suitably used as the reactive functional group-containing substrate. In the form (ii), a method of performing ionized gas plasma irradiation on the substrate surface can be suitably used. Here, the ionized gas plasma irradiation may be performed under any conditions, but it is preferable to irradiate ionized gas plasma containing oxygen or nitrogen. For example, by irradiating the substrate surface with ionized gas plasma containing oxygen, the substrate surface is modified and activated, and functional groups such as carboxyl groups, hydroxyl groups, and peroxides are introduced into the substrate surface. . In the above method, the content of oxygen in the ionized gas is not particularly limited as long as it has an effect as described above. Also, by irradiating the substrate surface with ionized gas plasma containing nitrogen, the substrate surface is modified and activated, and functional groups such as carboxyl groups, hydroxyl groups, peroxides, amino groups, etc. are formed on the substrate surface. be introduced. Also in the above method, the content of nitrogen in the ionized gas is not particularly limited as long as it has the above-described effects.
上記(iii)の形態では、各種医療用具の外壁、内壁などを構成する基材として、反応性官能基を含有していないものを使用する場合に特に好適に適用できる。すなわち、反応性官能基を有する化合物にて処理し、反応性官能基を基材に存在させ、この上にマレイン酸系高分子物質を共有結合させる。
The form (iii) can be applied particularly suitably when a substrate that does not contain a reactive functional group is used as a base material that constitutes the outer wall and inner wall of various medical devices. That is, it is treated with a compound having a reactive functional group, the reactive functional group is present on the substrate, and a maleic polymer material is covalently bonded thereon.
上記反応性官能基を有する化合物としては、上記反応性官能基を有するものであれば特に制限されない。例えば、反応性官能基としてイソシアネート基を有する化合物としては、エチレンジイソシアネート、ヘキサメチレンジイソシアネート、キシレンジイソシアネート、トルエンジイソシアネート、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、シクロヘキシレンジイソシアネート、トルフェニルメタントリイソシアネート、トルエントリイソシアネート等のポリイソシアネート、およびこれらポリイソシアネートとポリオール(例えばトリメチロールプロパン)とのアダクト(付加体)またはプレポリマーなどが挙げられる。
The compound having the reactive functional group is not particularly limited as long as it has the reactive functional group. For example, as a compound having an isocyanate group as a reactive functional group, ethylene diisocyanate, hexamethylene diisocyanate, xylene diisocyanate, toluene diisocyanate, tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate (MDI), naphthalene diisocyanate, diphenylmethane diisocyanate, phenylene Examples thereof include polyisocyanates such as diisocyanate, cyclohexylene diisocyanate, tolphenylmethane triisocyanate, and toluene isocyanate, and adducts (adducts) or prepolymers of these polyisocyanates and polyols (for example, trimethylolpropane).
反応性官能基としてアミノ基を有する化合物としては、エチレンジアミン、トリメチレンジアミン、1,2-ジアミノプロパン、テトラメチレンジアミン、1,3-ジアミノブタン、2,3-ジアミノブタン、ペンタメチレンジアミン、2,4-ジアミノペンタン、ヘキサメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、デドカメチレンジアミン、トリデカメチレンジアミン、オクタデカメチレンジアシン、N,N-ジメチルエチレンジアミン、N,N-ジエチルトリメチレンジアミン、N,N-ジメチルトリメチレンジアミン、N,N-ジブチルトリメチレンジアミン、N,N,N’-トリエチルエチレンジアミン、N-メチルトリメチレンジアミン、N-N-ジメチル-p-フェニレンジアミン、N,N-ジメチルヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ヘプタエチレンオクタミン、ノナエチレンデカミン、1,3-ビス(2’-アミノエチルアミノ)プロパン、ビス(3-ダミノプロパル)アミン、1,3-ビス(3’-アシノプロピルアミノ)プロパン、1,2,3-トリアミノプロパン、トリス(2-アミノエチル)アミン、テトラ(アミノメチル)メタン、メチルイミノビスプロピルアミン、メチルイミノビスエチルアミン、エチルイミノビスエチルアミン、N-アミノプロピル-2-モルホリン、N-アミノプロピル-2-ピペコリン、N-(2-ヒドロキシエチル)トリメチレンジアミン、キシリレンジアミン、フェニレンジアミン、ピペラジン、N-メチルピペラジン、N-(2-アミノエチル)エタノールアミン、N-アミノエチルピペラジン、N,N,N’N’-テトラメチルエチレンジアミン、N,N,N’N’-テトラメチルテトラメチレンジアミン等の低分子ポリアミン、アミンとアルキレンジハライドあるいはエピクロルヒドリンから合成されるポリ(アルキレンポリアミン)〔エンサイクロピディア・オブ・ポリマー・サイエンス・アンド・テクノロジー(Encyclopedia of Polymer Science and Technology)10巻、616ページ〕、エチレンイミン、プロピレンイミンなどのアルキレンイミンの開環重合によって得られるアルキレンイミン重合体〔エンサウクロピディア・オブ・ポリマー・サイエンス・アンド・テクノロジー、1巻、734ページ〕、ポリビニルアミン、ポリリジン等の高分子ポリアミンなどのポリアミンなどが挙げられる。
Examples of the compound having an amino group as a reactive functional group include ethylenediamine, trimethylenediamine, 1,2-diaminopropane, tetramethylenediamine, 1,3-diaminobutane, 2,3-diaminobutane, pentamethylenediamine, 2, 4-diaminopentane, hexamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dedocamethylenediamine, tridecamethylenediamine, octadecamethylenediacin, N, N-dimethylethylenediamine, N , N-diethyltrimethylenediamine, N, N-dimethyltrimethylenediamine, N, N-dibutyltrimethylenediamine, N, N, N′-triethylethylenediamine, N-methyltrimethylenediamine, NN— Methyl-p-phenylenediamine, N, N-dimethylhexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, heptaethyleneoctamine, nonaethylenedecamine, 1,3-bis (2'-aminoethylamino) Propane, bis (3-daminopropal) amine, 1,3-bis (3′-acinopropylamino) propane, 1,2,3-triaminopropane, tris (2-aminoethyl) amine, tetra (aminomethyl) methane , Methyliminobispropylamine, methyliminobisethylamine, ethyliminobisethylamine, N-aminopropyl-2-morpholine, N-aminopropyl-2-pipecoline, N- (2-hydroxyethyl) trimethylenediamine, xylylenediamine , Feni Diamine, piperazine, N-methylpiperazine, N- (2-aminoethyl) ethanolamine, N-aminoethylpiperazine, N, N, N'N'-tetramethylethylenediamine, N, N, N'N'-tetramethyl Low molecular weight polyamines such as tetramethylenediamine, poly (alkylene polyamines) synthesized from amines and alkylene dihalides or epichlorohydrins [Encyclopedia of Polymer Science and Technology, Volume 10 , P. 616], an alkyleneimine polymer obtained by ring-opening polymerization of alkyleneimine such as ethyleneimine and propyleneimine [Ensauclopidia of polymer Science and Technology, Volume 1, p. 734], and polyamines such as high molecular weight polyamines such as polyvinylamine and polylysine.
反応性官能基としてアルデヒド基を有する化合物としては、グルタルアルデヒド、テレフタルアルデヒド、イソフタルアルデヒド、ジアルデヒド、デンプン、ガリオキサール、マロンアルデヒド、コハク酸アルドヒド、アジプアルデヒド、ピメリンジアルデヒド、スベリンジアルデヒド、マレインアルデヒド、2-ペンテン-1,5-ジアルデヒド等のポリアルデヒドなどが挙げられる。
Examples of the compound having an aldehyde group as a reactive functional group include glutaraldehyde, terephthalaldehyde, isophthalaldehyde, dialdehyde, starch, galoxal, malonaldehyde, succinic acid aldehyde, adipaldehyde, pimelindialdehyde, suberindialdehyde, malein. Examples include aldehydes and polyaldehydes such as 2-pentene-1,5-dialdehyde.
反応性官能基としてエポキシ基を有する化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリンジルエーテル、ポリプロピレンジグリンシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチエロールプロパントリグリシジルエーテル等のポリエポキシド、などが挙げられる。
Examples of the compound having an epoxy group as a reactive functional group include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene diglycidyl ether, hexanediol diglycidyl ether, trimethylol propane triglycidyl ether. And polyepoxides.
これらのうち、マレイン酸系高分子物質との結合性(即ち、通常条件下での湿潤時の潤滑性、過酷な条件下での湿潤時の潤滑性、潤滑維持性)などを考慮すると、反応性官能基を有する化合物としては、4,4’-ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネートとトリメチロールプロパンとのアダクト、ヘキサメチレンジイソシアネートとトリメチロールプロパンとのアダクト、あるいはそのトリマー、ジエチレントリアミンが好ましい。上記反応性官能基を有する化合物は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
Of these, the reaction with the maleic polymer substance (ie, lubricity when wet under normal conditions, lubricity when wet under severe conditions, lubricity maintenance) is considered. As the compound having a functional functional group, 4,4′-diphenylmethane diisocyanate (MDI), an adduct of tolylene diisocyanate and trimethylolpropane, an adduct of hexamethylene diisocyanate and trimethylolpropane, a trimer thereof, or diethylenetriamine is preferable. The compound having a reactive functional group may be used alone or in the form of a mixture of two or more.
(基材)
本実施形態で用いられる基材は、いずれの材料から構成されてもよく、その材料は特に制限されず、表面に被覆層を設ける医療用具の種類によって適宜選択できる。具体的には、基材を構成(形成)する材料としては、金属材料、高分子材料、ガラス材料、およびセラミックス材料等が挙げられる。ここで、基材は、基材全体(全部)が上記いずれかの材料で構成(形成)されても、または、上記いずれかの材料で構成(形成)された基材コア部の表面に他の上記いずれかの材料を適当な方法で被覆(コーティング)して、基材表面層を構成(形成)した構造を有していてもよい。後者の場合の例としては、樹脂材料等で形成された基材コア部の表面に金属材料が適当な方法(メッキ、金属蒸着、スパッタ等従来公知の方法)で被覆(コーティング)されて、基材表面層を形成してなるもの;金属材料やセラミックス材料等の硬い補強材料で形成された基材コア部の表面に、金属材料等の補強材料に比して柔軟な高分子材料が適当な方法(浸漬(ディッピング)、噴霧(スプレー)、塗布・印刷等従来公知の方法)で被覆(コーティング)あるいは基材コア部の補強材料と基材表面層の高分子材料とが複合化(適当な反応処理)されて、基材表面層を形成してなるものなどが挙げられる。よって、基材コア部が、異なる材料を多層に積層してなる多層構造体、あるいは医療用具の部分ごとに異なる材料で形成された部材を繋ぎ合わせた構造(複合体)などであってもよい。また、基材コア部と基材表面層との間に、さらに別のミドル層が形成されていてもよい。さらに、基材表面層に関しても異なる材料を多層に積層してなる多層構造体、あるいは医療用具の部分ごとに異なる材料で形成された部材を繋ぎ合わせた構造(複合体)などであってもよい。 (Base material)
The base material used in the present embodiment may be composed of any material, and the material is not particularly limited, and can be appropriately selected depending on the type of medical device provided with a coating layer on the surface. Specifically, examples of the material constituting (forming) the base material include metal materials, polymer materials, glass materials, and ceramic materials. Here, the entire base material (all) is composed (formed) of any of the above materials, or other than the surface of the base material core portion configured (formed) of any of the above materials. Any of the above materials may be coated (coated) by an appropriate method to form (form) a substrate surface layer. As an example of the latter case, a metal material is coated on the surface of a base material core portion formed of a resin material or the like by a suitable method (a conventionally known method such as plating, metal vapor deposition, sputtering, etc.) A material made of a material surface layer; a polymer material that is more flexible than a reinforcing material such as a metal material is suitable for the surface of the base material core portion formed of a hard reinforcing material such as a metal material or a ceramic material. Coating (coating) by a method (dipping (dipping), spraying (spraying), coating / printing, etc., conventionally known methods) or a composite material of a reinforcing material for a base material core and a polymer material for a surface layer of a base material (appropriate And the like formed by a reaction treatment) to form a substrate surface layer. Therefore, the base material core portion may be a multilayer structure in which different materials are laminated in multiple layers, or a structure (composite) in which members formed of different materials for each part of the medical device are connected. . Further, another middle layer may be formed between the base material core portion and the base material surface layer. Further, the substrate surface layer may be a multilayer structure in which different materials are laminated in multiple layers, or a structure (composite) in which members formed of different materials are connected to each part of the medical device. .
本実施形態で用いられる基材は、いずれの材料から構成されてもよく、その材料は特に制限されず、表面に被覆層を設ける医療用具の種類によって適宜選択できる。具体的には、基材を構成(形成)する材料としては、金属材料、高分子材料、ガラス材料、およびセラミックス材料等が挙げられる。ここで、基材は、基材全体(全部)が上記いずれかの材料で構成(形成)されても、または、上記いずれかの材料で構成(形成)された基材コア部の表面に他の上記いずれかの材料を適当な方法で被覆(コーティング)して、基材表面層を構成(形成)した構造を有していてもよい。後者の場合の例としては、樹脂材料等で形成された基材コア部の表面に金属材料が適当な方法(メッキ、金属蒸着、スパッタ等従来公知の方法)で被覆(コーティング)されて、基材表面層を形成してなるもの;金属材料やセラミックス材料等の硬い補強材料で形成された基材コア部の表面に、金属材料等の補強材料に比して柔軟な高分子材料が適当な方法(浸漬(ディッピング)、噴霧(スプレー)、塗布・印刷等従来公知の方法)で被覆(コーティング)あるいは基材コア部の補強材料と基材表面層の高分子材料とが複合化(適当な反応処理)されて、基材表面層を形成してなるものなどが挙げられる。よって、基材コア部が、異なる材料を多層に積層してなる多層構造体、あるいは医療用具の部分ごとに異なる材料で形成された部材を繋ぎ合わせた構造(複合体)などであってもよい。また、基材コア部と基材表面層との間に、さらに別のミドル層が形成されていてもよい。さらに、基材表面層に関しても異なる材料を多層に積層してなる多層構造体、あるいは医療用具の部分ごとに異なる材料で形成された部材を繋ぎ合わせた構造(複合体)などであってもよい。 (Base material)
The base material used in the present embodiment may be composed of any material, and the material is not particularly limited, and can be appropriately selected depending on the type of medical device provided with a coating layer on the surface. Specifically, examples of the material constituting (forming) the base material include metal materials, polymer materials, glass materials, and ceramic materials. Here, the entire base material (all) is composed (formed) of any of the above materials, or other than the surface of the base material core portion configured (formed) of any of the above materials. Any of the above materials may be coated (coated) by an appropriate method to form (form) a substrate surface layer. As an example of the latter case, a metal material is coated on the surface of a base material core portion formed of a resin material or the like by a suitable method (a conventionally known method such as plating, metal vapor deposition, sputtering, etc.) A material made of a material surface layer; a polymer material that is more flexible than a reinforcing material such as a metal material is suitable for the surface of the base material core portion formed of a hard reinforcing material such as a metal material or a ceramic material. Coating (coating) by a method (dipping (dipping), spraying (spraying), coating / printing, etc., conventionally known methods) or a composite material of a reinforcing material for a base material core and a polymer material for a surface layer of a base material (appropriate And the like formed by a reaction treatment) to form a substrate surface layer. Therefore, the base material core portion may be a multilayer structure in which different materials are laminated in multiple layers, or a structure (composite) in which members formed of different materials for each part of the medical device are connected. . Further, another middle layer may be formed between the base material core portion and the base material surface layer. Further, the substrate surface layer may be a multilayer structure in which different materials are laminated in multiple layers, or a structure (composite) in which members formed of different materials are connected to each part of the medical device. .
上記基材を構成(形成)する材料のうち、金属材料としては、特に制限されるものではなく、カテーテル、ガイドワイヤ、留置針等の医療用具に一般的に使用される金属材料が使用される。具体的には、SUS304、SUS316、SUS316L、SUS420J2、SUS630などの各種ステンレス鋼(SUS)、金、白金、銀、銅、ニッケル、コバルト、チタン、鉄、アルミニウム、スズあるいはニッケル-チタン(Ni-Ti)合金、ニッケル-コバルト(Ni-Co)合金、コバルト-クロム(Co-Cr)合金、亜鉛-タングステン(Zn-W)合金等の各種合金などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。上記金属材料には、使用用途であるカテーテル、ガイドワイヤ、留置針等の基材として最適な金属材料を適宜選択すればよい。
Among the materials constituting (forming) the base material, the metal material is not particularly limited, and metal materials generally used for medical devices such as catheters, guide wires, and indwelling needles are used. . Specifically, various stainless steels (SUS) such as SUS304, SUS316, SUS316L, SUS420J2, and SUS630, gold, platinum, silver, copper, nickel, cobalt, titanium, iron, aluminum, tin, or nickel-titanium (Ni-Ti) ) Alloys, nickel-cobalt (Ni—Co) alloys, cobalt-chromium (Co—Cr) alloys, various alloys such as zinc-tungsten (Zn—W) alloys, and the like. These may be used individually by 1 type and may use 2 or more types together. What is necessary is just to select suitably the metal material optimal as base materials, such as a catheter, a guide wire, an indwelling needle which is a use application, for the said metal material.
また、上記基材を構成(形成)する材料のうち、高分子材料としては、特に制限されるものではなく、カテーテル、ガイドワイヤ、留置針等の医療用具に一般的に使用される高分子材料が使用される。具体的には、ポリアミド樹脂、直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)などのポリエチレン樹脂やポリプロピレン樹脂などのポリオレフィン樹脂、変性ポリオレフィン樹脂、エポキシ樹脂、ウレタン樹脂(ポリウレタン)、ジアリルフタレート樹脂(アリル樹脂)、ポリカーボネート樹脂、フッ素樹脂、アミノ樹脂(ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂)、ポリエステル樹脂、スチロール樹脂、ポリアセタール樹脂、酢酸ビニル樹脂、フェノール樹脂、塩化ビニル樹脂(ポリ塩化ビニル)、シリコーン樹脂(ケイ素樹脂)、ポリエーテル樹脂、ポリイミド樹脂、ポリスチレン、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリアクリロニトリル、ポリアクリルアミド、ポリアクリル酸、ポリメタクリル酸、ポリビニルアルコール、ポリ無水マレイン酸、ポリエチレンイミンなどが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。上記高分子材料には、使用用途であるカテーテル、ガイドワイヤ、留置針等の基材として最適な高分子材料を適宜選択すればよい。
Of the materials constituting (forming) the base material, the polymer material is not particularly limited, and is generally used for medical devices such as catheters, guide wires, and indwelling needles. Is used. Specifically, a polyolefin resin such as a polyamide resin, a linear low density polyethylene (LLDPE), a low density polyethylene (LDPE), a high density polyethylene (HDPE), or a polypropylene resin, a modified polyolefin resin, an epoxy resin, Urethane resin (polyurethane), diallyl phthalate resin (allyl resin), polycarbonate resin, fluorine resin, amino resin (urea resin, melamine resin, benzoguanamine resin), polyester resin, styrene resin, polyacetal resin, vinyl acetate resin, phenol resin, chloride Vinyl resin (polyvinyl chloride), silicone resin (silicon resin), polyether resin, polyimide resin, polystyrene, polyacrylic ester, polymethacrylic ester, polyacrylonitrile , Polyacrylamide, polyacrylic acid, polymethacrylic acid, polyvinyl alcohol, polymaleic anhydride, polyethylene imine. These may be used individually by 1 type and may use 2 or more types together. What is necessary is just to select suitably the polymeric material optimal as base materials, such as a catheter, a guide wire, and an indwelling needle which are use uses as the said polymeric material.
また、上記基材の形状は、特に制限されることはなく、シート状、線状(ワイヤ)、管状など使用態様により適宜選択される。
The shape of the base material is not particularly limited, and is appropriately selected depending on the use mode such as a sheet shape, a linear shape (wire), and a tubular shape.
(医療用具の製造方法)
本発明の医療用具は、基材表面に潤滑性を付与するための被覆層が設けられていればよく、その製造方法は特に制限されない。具体的には、本発明の医療用具は、基材表面に反応性官能基を導入した後、本発明のマレイン酸系高分子物質で処理して、反応性官能基とマレイン酸系高分子物質とを共有結合させて、被覆層を形成することが好ましい。ここで、上述したように、反応性官能基は、基材上に反応性官能基を有する別の層(下地層)を形成することによって、基材表面に導入されることが好ましく、反応性官能基を有する化合物を含む溶液で医療用具を構成する基材を処理して、該基材の少なくとも表面に反応性官能基が存在する下地層を形成することによって、基材表面に導入されることがより好ましい。また、マレイン酸系高分子物質を含む被覆層は、上記下地層を有する基材をマレイン酸系高分子物質で処理して、反応性官能基とマレイン酸系高分子物質とを共有結合させて、下地層上に形成することが好ましい。さらに、上記したようにして形成された被覆層をアルカリ処理することが好ましい。 (Method for manufacturing medical devices)
The medical device of this invention should just be provided with the coating layer for providing lubricity to the base-material surface, and the manufacturing method in particular is not restrict | limited. Specifically, the medical device of the present invention introduces a reactive functional group to the surface of the substrate, and then treats the reactive functional group with the maleic polymer material by treating with the maleic polymer material of the present invention. Are preferably bonded to form a coating layer. Here, as described above, the reactive functional group is preferably introduced to the surface of the base material by forming another layer (underlayer) having the reactive functional group on the base material. The base material constituting the medical device is treated with a solution containing a compound having a functional group to form an underlayer having a reactive functional group on at least the surface of the base material, thereby being introduced onto the base material surface. It is more preferable. Further, the coating layer containing the maleic polymer material is obtained by treating the substrate having the underlayer with the maleic polymer material to covalently bond the reactive functional group and the maleic polymer material. It is preferable to form on the underlayer. Furthermore, it is preferable that the coating layer formed as described above is subjected to alkali treatment.
本発明の医療用具は、基材表面に潤滑性を付与するための被覆層が設けられていればよく、その製造方法は特に制限されない。具体的には、本発明の医療用具は、基材表面に反応性官能基を導入した後、本発明のマレイン酸系高分子物質で処理して、反応性官能基とマレイン酸系高分子物質とを共有結合させて、被覆層を形成することが好ましい。ここで、上述したように、反応性官能基は、基材上に反応性官能基を有する別の層(下地層)を形成することによって、基材表面に導入されることが好ましく、反応性官能基を有する化合物を含む溶液で医療用具を構成する基材を処理して、該基材の少なくとも表面に反応性官能基が存在する下地層を形成することによって、基材表面に導入されることがより好ましい。また、マレイン酸系高分子物質を含む被覆層は、上記下地層を有する基材をマレイン酸系高分子物質で処理して、反応性官能基とマレイン酸系高分子物質とを共有結合させて、下地層上に形成することが好ましい。さらに、上記したようにして形成された被覆層をアルカリ処理することが好ましい。 (Method for manufacturing medical devices)
The medical device of this invention should just be provided with the coating layer for providing lubricity to the base-material surface, and the manufacturing method in particular is not restrict | limited. Specifically, the medical device of the present invention introduces a reactive functional group to the surface of the substrate, and then treats the reactive functional group with the maleic polymer material by treating with the maleic polymer material of the present invention. Are preferably bonded to form a coating layer. Here, as described above, the reactive functional group is preferably introduced to the surface of the base material by forming another layer (underlayer) having the reactive functional group on the base material. The base material constituting the medical device is treated with a solution containing a compound having a functional group to form an underlayer having a reactive functional group on at least the surface of the base material, thereby being introduced onto the base material surface. It is more preferable. Further, the coating layer containing the maleic polymer material is obtained by treating the substrate having the underlayer with the maleic polymer material to covalently bond the reactive functional group and the maleic polymer material. It is preferable to form on the underlayer. Furthermore, it is preferable that the coating layer formed as described above is subjected to alkali treatment.
したがって、本発明の医療用具の製造方法は、炭素数1~24の直鎖または分岐鎖のアルコールおよび水を含有し、前記アルコール:水の含有質量比が100:0.1~150である溶液と、無水マレイン酸系高分子物質と、を反応させて、マレイン酸由来の構成単位を含むマレイン酸系高分子物質を得る段階[工程(1)]と、
反応性官能基を有する化合物を含む溶液で医療用具を構成する基材を処理して、該基材の少なくとも表面に反応性官能基が存在する下地層を形成する段階[工程(2)]と、
前記下地層が形成された基材を前記マレイン酸系高分子物質で処理して、前記反応性官能基と前記マレイン酸系高分子物質とを共有結合させて、前記下地層上にマレイン酸系高分子物質を含む樹脂被覆層を形成して、下地層及び樹脂被覆層を有する基材を得る段階[工程(3)]と、を有することが好ましい。さらに、下地層及び樹脂被覆層を有する基材をアルカリ処理する段階[工程(4)]を有することが好ましい。 Therefore, the method for producing a medical device of the present invention contains a linear or branched alcohol having 1 to 24 carbon atoms and water, and the alcohol: water content ratio is 100: 0.1 to 150. And a maleic anhydride polymer material to obtain a maleic polymer material containing a maleic acid-derived structural unit [step (1)],
Treating the substrate constituting the medical device with a solution containing a compound having a reactive functional group to form an underlayer having the reactive functional group on at least the surface of the substrate [step (2)]; ,
The base material on which the base layer is formed is treated with the maleic polymer material, and the reactive functional group and the maleic polymer material are covalently bonded to form a maleic acid-based material on the base layer. It is preferable to have a step [step (3)] of forming a resin coating layer containing a polymer substance to obtain a base material having a base layer and a resin coating layer. Furthermore, it is preferable to have the step [process (4)] which carries out the alkali treatment of the base material which has a base layer and a resin coating layer.
反応性官能基を有する化合物を含む溶液で医療用具を構成する基材を処理して、該基材の少なくとも表面に反応性官能基が存在する下地層を形成する段階[工程(2)]と、
前記下地層が形成された基材を前記マレイン酸系高分子物質で処理して、前記反応性官能基と前記マレイン酸系高分子物質とを共有結合させて、前記下地層上にマレイン酸系高分子物質を含む樹脂被覆層を形成して、下地層及び樹脂被覆層を有する基材を得る段階[工程(3)]と、を有することが好ましい。さらに、下地層及び樹脂被覆層を有する基材をアルカリ処理する段階[工程(4)]を有することが好ましい。 Therefore, the method for producing a medical device of the present invention contains a linear or branched alcohol having 1 to 24 carbon atoms and water, and the alcohol: water content ratio is 100: 0.1 to 150. And a maleic anhydride polymer material to obtain a maleic polymer material containing a maleic acid-derived structural unit [step (1)],
Treating the substrate constituting the medical device with a solution containing a compound having a reactive functional group to form an underlayer having the reactive functional group on at least the surface of the substrate [step (2)]; ,
The base material on which the base layer is formed is treated with the maleic polymer material, and the reactive functional group and the maleic polymer material are covalently bonded to form a maleic acid-based material on the base layer. It is preferable to have a step [step (3)] of forming a resin coating layer containing a polymer substance to obtain a base material having a base layer and a resin coating layer. Furthermore, it is preferable to have the step [process (4)] which carries out the alkali treatment of the base material which has a base layer and a resin coating layer.
以下、上記本発明の医療用具の好ましい製造方法について、詳述する。なお、本発明は、下記形態に限定されない。
Hereinafter, a preferable method for producing the medical device of the present invention will be described in detail. In addition, this invention is not limited to the following form.
1.工程(1)
本工程では、無水マレイン酸系高分子物質を炭素数1~24の直鎖または分岐鎖のアルコールおよび水を含有し、前記アルコール:水の含有質量比が100:0.1~150である溶液(以下、単に混合溶液とも称する)と反応させることにより、無水マレイン酸系高分子物質中の無水マレイン酸由来の構成単位(c)のエステル化反応と加水分解反応とを同時に進行させて、構成単位(c)を上記構成単位(a)および(b)とするものである。 1. Process (1)
In this step, the maleic anhydride polymer material contains a linear or branched alcohol having 1 to 24 carbon atoms and water, and the alcohol: water content ratio is 100: 0.1 to 150 (Hereinafter, also simply referred to as a mixed solution), the esterification reaction and the hydrolysis reaction of the maleic anhydride-derived structural unit (c) in the maleic anhydride-based polymer substance are allowed to proceed simultaneously. The unit (c) is the structural unit (a) and (b).
本工程では、無水マレイン酸系高分子物質を炭素数1~24の直鎖または分岐鎖のアルコールおよび水を含有し、前記アルコール:水の含有質量比が100:0.1~150である溶液(以下、単に混合溶液とも称する)と反応させることにより、無水マレイン酸系高分子物質中の無水マレイン酸由来の構成単位(c)のエステル化反応と加水分解反応とを同時に進行させて、構成単位(c)を上記構成単位(a)および(b)とするものである。 1. Process (1)
In this step, the maleic anhydride polymer material contains a linear or branched alcohol having 1 to 24 carbon atoms and water, and the alcohol: water content ratio is 100: 0.1 to 150 (Hereinafter, also simply referred to as a mixed solution), the esterification reaction and the hydrolysis reaction of the maleic anhydride-derived structural unit (c) in the maleic anhydride-based polymer substance are allowed to proceed simultaneously. The unit (c) is the structural unit (a) and (b).
ここで、無水マレイン酸系高分子物質は、高分子中のマレイン酸由来の構成単位の一部に無水マレイン酸由来の構成単位(c)を含んでいればよい。無水マレイン酸系高分子物質が含みうる構成単位としては、上記構成単位に加えて、上記マレイン酸系高分子物質の項で記載した他の単量体由来の構成単位がある。また、無水マレイン酸系高分子物質は、市販品を用いてもよく、例えば、G.A.F.コーポレーション社のGANTREZ ANシリーズなどが挙げられる。
Here, the maleic anhydride-based polymer substance only needs to contain a maleic anhydride-derived structural unit (c) as part of the maleic acid-derived structural unit in the polymer. As the structural unit that the maleic anhydride-based polymer substance can contain, in addition to the above-mentioned structural unit, there are structural units derived from other monomers described in the section of the maleic acid-based polymer substance. A commercially available product may be used as the maleic anhydride polymer substance. A. F. For example, GANTREZ AN series from Corporation.
アルコール:水の含有質量比は、100:0.1~150であることが好ましく、100:0.8~80であることがより好ましい。アルコール:水の含有質量比が上記範囲内である溶液を用いることによって、無水マレイン酸が完全に開環してアルコールによるエステル化が完全に進行しやすく、また、構成単位(a)と構成単位(b)との含有質量比を本発明のマレイン酸系高分子物質の範囲内に制御することが容易となるため好ましい。炭素数1~24の直鎖または分岐鎖のアルコールとしては、エステル化する上記構成単位(a)中のRに対応するアルコールを用いればよい。
The content mass ratio of alcohol: water is preferably 100: 0.1 to 150, and more preferably 100: 0.8 to 80. By using a solution in which the content ratio of alcohol: water is within the above range, maleic anhydride is completely ring-opened and esterification with alcohol easily proceeds, and the structural unit (a) and the structural unit Since it becomes easy to control content mass ratio with (b) in the range of the maleic acid type polymer substance of the present invention, it is preferred. As the linear or branched alcohol having 1 to 24 carbon atoms, an alcohol corresponding to R in the structural unit (a) to be esterified may be used.
反応の際に用いる無水マレイン酸系高分子物質と、混合溶液との質量比は、反応が進行するように適宜設定すればよいが、通常、質量比で、無水マレイン酸系高分子物質:混合溶液=100:50~5000程度である。
The mass ratio between the maleic anhydride-based polymer substance used in the reaction and the mixed solution may be appropriately set so that the reaction proceeds. Usually, the maleic anhydride-based polymer substance: mixed in the mass ratio. Solution = 100: 50 to about 5000.
マレイン酸系高分子物質を得るためのエステル化反応および加水分解反応は、アルコールおよび水の混合溶液を用いて、無水マレイン酸系高分子物質を加熱還流することにより得られる。還流条件は、用いる溶媒(アルコール)によって適宜選択されるが、反応を十分に進行させるためには、5~120時間還流させることが好ましい。また、還流の際の温度は用いるアルコールおよび水の種類および含有質量比によって適宜設定されるが、50~100℃程度であることが好ましい。
The esterification reaction and hydrolysis reaction for obtaining a maleic acid polymer substance can be obtained by heating and refluxing the maleic anhydride polymer substance using a mixed solution of alcohol and water. The reflux conditions are appropriately selected depending on the solvent (alcohol) to be used, but it is preferable to reflux for 5 to 120 hours in order to sufficiently proceed the reaction. The temperature at the reflux is appropriately set depending on the type of alcohol and water used and the mass ratio, but is preferably about 50 to 100 ° C.
2.工程(2)
本工程では、反応性官能基を有する化合物を含む溶液(塗布溶液)で医療用具を構成する基材を処理して、該基材の少なくとも表面に反応性官能基が存在する下地層を形成する。 2. Step (2)
In this step, the base material constituting the medical device is treated with a solution (coating solution) containing a compound having a reactive functional group to form a base layer in which the reactive functional group exists on at least the surface of the base material. .
本工程では、反応性官能基を有する化合物を含む溶液(塗布溶液)で医療用具を構成する基材を処理して、該基材の少なくとも表面に反応性官能基が存在する下地層を形成する。 2. Step (2)
In this step, the base material constituting the medical device is treated with a solution (coating solution) containing a compound having a reactive functional group to form a base layer in which the reactive functional group exists on at least the surface of the base material. .
反応性官能基を有する化合物を含む溶液による医療用具を構成する基材(基材)の処理方法は、特に制限されないが、反応性官能基を有する化合物を含む溶液を基材に塗布する方法が使用できる。ここで、塗布方法としては、ディップコーティング(浸漬法)、噴霧、スピンコーティング、滴下、ドクターブレード、刷毛塗り、ロールコーター、エアーナイフコート、カーテンコート、ワイヤーバーコート、グラビアコート、混合溶液含浸スポンジコート等、従来公知の方法を適用することができる。また、塗布溶液中の反応性官能基を有する化合物の濃度は、反応性官能基を有する化合物が次工程(3)で十分量のマレイン酸系高分子物質と共有結合できる量存在すれば特に制限されない。次工程(3)での十分量のマレイン酸系高分子物質との反応性、マレイン酸系高分子物質による被覆量などを考慮すると、塗布溶液中の反応性官能基を有する化合物の濃度は、0.5~10重量%であることが好ましく、2~5重量%であることがより好ましい。
Although the processing method of the base material (base material) which comprises the medical device by the solution containing the compound which has a reactive functional group is not restrict | limited, The method of apply | coating the solution containing the compound which has a reactive functional group to a base material is mentioned. Can be used. Here, dip coating (dipping method), spraying, spin coating, dripping, doctor blade, brush coating, roll coater, air knife coating, curtain coating, wire bar coating, gravure coating, mixed solution impregnation sponge coating A conventionally well-known method can be applied. In addition, the concentration of the compound having a reactive functional group in the coating solution is particularly limited as long as the compound having the reactive functional group is present in an amount capable of covalently bonding with a sufficient amount of the maleic polymer material in the next step (3). Not. Considering the reactivity with a sufficient amount of maleic polymer material in the next step (3), the coating amount with the maleic polymer material, etc., the concentration of the compound having a reactive functional group in the coating solution is: The content is preferably 0.5 to 10% by weight, and more preferably 2 to 5% by weight.
塗布溶液を調製するための溶媒としては、反応性官能基を有する化合物を溶解できるものであれば特に制限されず、使用される反応性官能基を有する化合物の種類によって適宜選択できる。具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸ブチル、酢酸エチル、カルビトールアセテート、ブチルカルビトールアセテート等のエステル系溶媒、メチルセロソルブ、エチルセロソルブ、ブチルエーテル、テトラヒドロフラン等のエーテル系溶媒、ブタン、ヘキサン等のアルカン系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、ジクロロエタン、クロロホルム、塩化メチレン等のハロゲン系溶媒、メタノール、エタノール、イソプロパノール、エチレングリコール等のアルコール系溶媒などが挙げられる。上記溶媒は、1種単独で用いてもよいし、2種以上併用してもよい。上記溶媒は、基材が高分子材料(樹脂)製である場合、または下記に詳述するが基材の表面に予め高分子材料からなる層(基材表面層)が形成されている場合には、これらを溶解ないし膨潤させて、被覆層の被着強度を向上させ、(通常条件及び過酷な条件下での)潤滑性をより長期間維持できる。
The solvent for preparing the coating solution is not particularly limited as long as it can dissolve a compound having a reactive functional group, and can be appropriately selected depending on the type of the compound having a reactive functional group to be used. Specifically, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ester solvents such as butyl acetate, ethyl acetate, carbitol acetate, butyl carbitol acetate, methyl cellosolve, ethyl cellosolve, butyl ether, tetrahydrofuran, etc. Ether solvents, alkane solvents such as butane and hexane, aromatic solvents such as benzene, toluene and xylene, halogen solvents such as dichloroethane, chloroform and methylene chloride, alcohols such as methanol, ethanol, isopropanol and ethylene glycol A solvent etc. are mentioned. The said solvent may be used individually by 1 type, and may be used together 2 or more types. The above solvent is used when the base material is made of a polymer material (resin) or when a layer made of a polymer material (base material surface layer) is formed in advance on the surface of the base material as described in detail below. Can dissolve or swell them to improve the adhesion strength of the coating layer and maintain lubricity (under normal conditions and harsh conditions) for a longer period of time.
塗布溶液は、反応性官能基を有する化合物以外の他の添加剤を含んでもよい。ここで、他の添加剤は、特に制限されないが、例えば、高分子材料、薬剤などが挙げられる。ここで、高分子材料としては、上記基材を構成(形成)する材料で例示された高分子材料が同様にして例示できる。これらのうち、下地層の形成のしやすさなどを考慮すると、ポリ塩化ビニル、ポリウレタン、ポリアミド樹脂、ポリエステル樹脂が好ましい。また、薬剤は、医療用具の留置部位、適用される疾患などによって、適宜選択できる。ここで、他の添加剤の塗布溶液における濃度は、特に制限されないが、下地層の形成しやすさなどを考慮すると、0.5~15重量%であることが好ましく、2~10重量%であることがより好ましい。
The coating solution may contain an additive other than the compound having a reactive functional group. Here, the other additive is not particularly limited, and examples thereof include a polymer material and a drug. Here, as the polymer material, the polymer material exemplified by the material constituting (forming) the base material can be exemplified similarly. Of these, polyvinyl chloride, polyurethane, polyamide resin, and polyester resin are preferable in consideration of ease of formation of the underlayer. The drug can be appropriately selected depending on the indwelling site of the medical device, the disease to be applied, and the like. Here, the concentration of the other additive in the coating solution is not particularly limited, but it is preferably 0.5 to 15% by weight in view of ease of formation of the underlayer, and 2 to 10% by weight. More preferably.
塗布溶液による基材の処理条件は、基材の所望の表面に反応性官能基を導入できる条件であれば特に制限されない。具体的には、塗布溶液で基材を、0~50℃で1秒~48時間塗布することが好ましい。
The treatment conditions of the substrate with the coating solution are not particularly limited as long as the reactive functional group can be introduced onto the desired surface of the substrate. Specifically, the substrate is preferably applied with a coating solution at 0 to 50 ° C. for 1 second to 48 hours.
また、特に、金属材料、ガラス材料、セラミックス材料等を基材とするときには、下地層を形成する前に、高分子材料からなる層(基材表面層)を予め基材表面に形成することが好ましい。これにより、基材と下地層とをより強固に密着でき、被覆層の被着強度を向上させることができる。ここで、高分子材料の種類は、特に制限されず、基材の種類によって適宜選択できる。具体的には、高分子材料としては、上記基材を構成(形成)する材料で例示された高分子材料が同様にして例示できる。これらのうち、潤滑性持続効果、下地層との密着性などを考慮すると、ポリ塩化ビニル、ポリウレタン、ポリアミド樹脂、ポリエステル樹脂が好ましい。ここで、高分子材料からなる層を予め基材表面に形成する場合の、高分子材料からなる層の厚みは、特に制限されないが、潤滑性持続効果、下地層との密着性などを考慮すると、1~70μmであることが好ましく、5~50μmであることがより好ましい。
In particular, when a metal material, a glass material, a ceramic material, or the like is used as a base material, a layer made of a polymer material (base material surface layer) may be formed on the base material surface in advance before forming the base layer. preferable. Thereby, a base material and a base layer can be stuck more firmly, and the adhesion strength of a coating layer can be improved. Here, the type of the polymer material is not particularly limited, and can be appropriately selected depending on the type of the base material. Specifically, examples of the polymer material include the polymer materials exemplified as the material constituting (forming) the base material. Of these, polyvinyl chloride, polyurethane, polyamide resin, and polyester resin are preferable in consideration of the lubricity sustaining effect and adhesion to the underlayer. Here, when the layer made of the polymer material is previously formed on the surface of the substrate, the thickness of the layer made of the polymer material is not particularly limited, but considering the lubricity sustaining effect, the adhesion with the underlayer, etc. The thickness is preferably 1 to 70 μm, more preferably 5 to 50 μm.
上記したようにして塗布溶液で基材を塗布した後は、塗膜を乾燥して、下地層を基材上に形成する。ここで、乾燥条件は、下地層が形成できる条件であれば特に制限されない。例えば、乾燥温度は、室温(25℃)~80℃程度であることが好ましい。また、乾燥時間は、5分~48時間程度であることが好ましい。
After applying the base material with the coating solution as described above, the coating film is dried to form a base layer on the base material. Here, the drying conditions are not particularly limited as long as the underlayer can be formed. For example, the drying temperature is preferably about room temperature (25 ° C.) to about 80 ° C. The drying time is preferably about 5 minutes to 48 hours.
3.工程(3)
本工程では、上記工程(2)で得られた下地層を有する基材(基材/下地層)を、マレイン酸系高分子物質で処理して、反応性官能基とマレイン酸系高分子物質とを共有結合させて、下地層上にマレイン酸系高分子物質を含む樹脂被覆層を形成する。 3. Process (3)
In this step, the base material (base material / underlayer) having the underlayer obtained in the above step (2) is treated with a maleic acid-based polymer material, and a reactive functional group and a maleic acid-based polymer material are treated. And a resin coating layer containing a maleic acid polymer material is formed on the underlayer.
本工程では、上記工程(2)で得られた下地層を有する基材(基材/下地層)を、マレイン酸系高分子物質で処理して、反応性官能基とマレイン酸系高分子物質とを共有結合させて、下地層上にマレイン酸系高分子物質を含む樹脂被覆層を形成する。 3. Process (3)
In this step, the base material (base material / underlayer) having the underlayer obtained in the above step (2) is treated with a maleic acid-based polymer material, and a reactive functional group and a maleic acid-based polymer material are treated. And a resin coating layer containing a maleic acid polymer material is formed on the underlayer.
ここで、マレイン酸系高分子物質による基材/下地層の処理方法は、特に制限されないが、マレイン酸系高分子物質を含む溶液(被覆層形成溶液)を基材に塗布する方法が使用できる。ここで、塗布方法としては、ディップコーティング(浸漬法)、噴霧、スピンコーティング、滴下、ドクターブレード、刷毛塗り、ロールコーター、エアーナイフコート、カーテンコート、ワイヤーバーコート、グラビアコート、混合溶液含浸スポンジコート等、従来公知の方法を適用することができる。また、被覆層形成溶液中のマレイン酸系高分子物質の濃度は、十分量のマレイン酸系高分子物質による被覆層が形成できる濃度であれば特に制限されない。マレイン酸系高分子物質による被覆量などを考慮すると、被覆層形成溶液中のマレイン酸系高分子物質の濃度は、0.1~15重量%であることが好ましく、0.5~10重量%であることがより好ましい。このような濃度であれば、医療用具(被覆層)は、優れた通常条件下での湿潤時の潤滑性、過酷な条件下での湿潤時の潤滑性および潤滑維持性を発揮できる。
Here, the method of treating the substrate / underlayer with the maleic polymer material is not particularly limited, but a method of applying a solution containing the maleic polymer material (coating layer forming solution) to the substrate can be used. . Here, dip coating (dipping method), spraying, spin coating, dripping, doctor blade, brush coating, roll coater, air knife coating, curtain coating, wire bar coating, gravure coating, mixed solution impregnation sponge coating A conventionally well-known method can be applied. In addition, the concentration of the maleic polymer material in the coating layer forming solution is not particularly limited as long as the coating layer can be formed with a sufficient amount of the maleic polymer material. Considering the amount of coating with the maleic polymer material, the concentration of the maleic polymer material in the coating layer forming solution is preferably 0.1 to 15% by weight, preferably 0.5 to 10% by weight. It is more preferable that With such a concentration, the medical device (coating layer) can exhibit excellent lubricity when wet under normal conditions, lubricity when wet under severe conditions, and lubricity maintenance.
被覆層形成溶液を調製するための溶媒としては、マレイン酸系高分子物質を溶解できるものであれば特に制限されず、使用されるマレイン酸系高分子物質の種類によって適宜選択できる。具体的には、上記工程(2)で記載された溶媒と同様の溶媒が使用できる。これらのうち、メチルエチルケトン、テトラヒドロフラン(THF)、アセトン等が好ましい。これらの溶媒は、基材/下地層に存在する反応性官能基とほとんどまたは全く反応せず、また、基材/下地層に対して適度な溶解性や膨潤性を有する。なお、上記溶媒は、1種単独で用いてもよいし、2種以上併用してもよい。
The solvent for preparing the coating layer forming solution is not particularly limited as long as it can dissolve the maleic polymer material, and can be appropriately selected depending on the type of the maleic polymer material to be used. Specifically, the same solvent as that described in the above step (2) can be used. Of these, methyl ethyl ketone, tetrahydrofuran (THF), acetone and the like are preferable. These solvents have little or no reaction with the reactive functional groups present in the substrate / underlayer, and have appropriate solubility and swelling with respect to the substrate / underlayer. In addition, the said solvent may be used individually by 1 type, and may be used together 2 or more types.
被覆層形成溶液は、マレイン酸系高分子物質以外の他の添加剤を含んでもよい。ここで、他の添加剤は、特に制限されないが、例えば、高分子材料、薬剤などが挙げられる。ここで、高分子材料としては、上記基材を構成(形成)する材料で例示された高分子材料が同様にして例示できる。また、薬剤は、医療用具の留置部位、適用される疾患などによって、適宜選択できる。ここで、他の添加剤の被覆層形成溶液における濃度は、特に制限されないが、被覆層の形成しやすさなどを考慮すると、0.5~15重量%であることが好ましく、2~10重量%であることがより好ましい。
The coating layer forming solution may contain an additive other than the maleic polymer material. Here, the other additive is not particularly limited, and examples thereof include a polymer material and a drug. Here, as the polymer material, the polymer material exemplified by the material constituting (forming) the base material can be exemplified similarly. The drug can be appropriately selected depending on the indwelling site of the medical device, the disease to be applied, and the like. Here, the concentration of the other additive in the coating layer forming solution is not particularly limited, but is preferably 0.5 to 15% by weight in view of the ease of forming the coating layer and the like, and is preferably 2 to 10% by weight. % Is more preferable.
被覆層形成溶液による基材/下地層の処理条件は、基材/下地層上に適量のマレイン酸系高分子物質の被覆層が形成できる条件であれば特に制限されない。具体的には、被覆層形成溶液で基材/下地層を、0℃~80℃で1秒~48時間塗布することが好ましく、10~30℃で1秒~1時間塗布することがより好ましい。
The treatment conditions of the base material / underlayer with the coating layer forming solution are not particularly limited as long as a suitable amount of a coating layer of maleic polymer material can be formed on the base material / underlayer. Specifically, the substrate / undercoat layer is preferably applied with a coating layer forming solution at 0 ° C. to 80 ° C. for 1 second to 48 hours, more preferably at 10 to 30 ° C. for 1 second to 1 hour. .
上記したようにして被覆層形成溶液で基材/下地層を塗布した後は、塗膜を乾燥して、被覆層を基材/下地層上に形成する。ここで、乾燥条件は、被覆層が形成できる条件であれば特に制限されない。例えば、乾燥温度は、室温(25℃)~80℃程度であることが好ましい。また、乾燥温度は、5分~48時間程度であることが好ましい。
After applying the substrate / underlayer with the coating layer forming solution as described above, the coating film is dried to form the coating layer on the substrate / underlayer. Here, the drying conditions are not particularly limited as long as the coating layer can be formed. For example, the drying temperature is preferably about room temperature (25 ° C.) to about 80 ° C. The drying temperature is preferably about 5 minutes to 48 hours.
4.工程(4)
本工程では、上記工程(3)で得られた下地層及び樹脂被覆層を有する基材をアルカリ処理する。アルカリ処理により、上記工程(1)のエステル化反応および加水分解反応で得られた被覆層中のマレイン酸系高分子物質中のカルボキシル基(-COOH)及びエステル部分(-COOR)の少なくとも一部がカルボン酸塩(-COOX)に変換する。アルカリ処理により、マレイン酸系高分子物質が体液や血液と接触すると、マレイン酸系高分子物質中のカルボン酸塩が体液や血液で膨潤してゲル化して、優れた潤滑性を発揮できる。 4). Step (4)
In this step, the base material having the base layer and the resin coating layer obtained in the above step (3) is subjected to alkali treatment. At least a part of the carboxyl group (—COOH) and the ester moiety (—COOR) in the maleic polymer material in the coating layer obtained by the esterification reaction and hydrolysis reaction in the above step (1) by alkali treatment Is converted to the carboxylate (—COOX). When the maleic polymer material comes into contact with body fluid or blood by the alkali treatment, the carboxylate in the maleic polymer material swells and gels with the body fluid or blood, and exhibits excellent lubricity.
本工程では、上記工程(3)で得られた下地層及び樹脂被覆層を有する基材をアルカリ処理する。アルカリ処理により、上記工程(1)のエステル化反応および加水分解反応で得られた被覆層中のマレイン酸系高分子物質中のカルボキシル基(-COOH)及びエステル部分(-COOR)の少なくとも一部がカルボン酸塩(-COOX)に変換する。アルカリ処理により、マレイン酸系高分子物質が体液や血液と接触すると、マレイン酸系高分子物質中のカルボン酸塩が体液や血液で膨潤してゲル化して、優れた潤滑性を発揮できる。 4). Step (4)
In this step, the base material having the base layer and the resin coating layer obtained in the above step (3) is subjected to alkali treatment. At least a part of the carboxyl group (—COOH) and the ester moiety (—COOR) in the maleic polymer material in the coating layer obtained by the esterification reaction and hydrolysis reaction in the above step (1) by alkali treatment Is converted to the carboxylate (—COOX). When the maleic polymer material comes into contact with body fluid or blood by the alkali treatment, the carboxylate in the maleic polymer material swells and gels with the body fluid or blood, and exhibits excellent lubricity.
上記アルカリ処理において、アルカリ溶液を調製するために使用されるアルカリは、特に制限されず、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、水酸化カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化リチウム、ナトリウム、アンモニア等が挙げられる。これらのうち、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、水酸化カルシウムであることが好ましく、炭酸水素ナトリウム、水酸化ナトリウム、炭酸ナトリウムであることが特に好ましい。
In the above alkali treatment, the alkali used for preparing the alkaline solution is not particularly limited, and is sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, calcium hydroxide, sodium bicarbonate, potassium bicarbonate, water. Examples include lithium oxide, sodium, and ammonia. Of these, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, sodium carbonate, and calcium hydroxide are preferable, and sodium hydrogen carbonate, sodium hydroxide, and sodium carbonate are particularly preferable.
また、上記アルカリを溶解するための溶媒は、特に制限されないが、水、メタノール、エタノール、イソプロパノール、エチレングリコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル等のエステル類、クロロホルム等のハロゲン化物、ブタン、ヘキサン等のアルカン類、テトラヒドロフラン、ブチルエーテル等のエーテル類、ベンゼン、トルエン等の芳香族類、N,N-ジメチルホルムアミド(DMF)等のアミド類などが挙げられる。上記溶媒は、1種単独で用いてもよいし、2種以上併用してもよい。
Further, the solvent for dissolving the alkali is not particularly limited, but alcohols such as water, methanol, ethanol, isopropanol and ethylene glycol, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, chloroform and the like Examples include halides, alkanes such as butane and hexane, ethers such as tetrahydrofuran and butyl ether, aromatics such as benzene and toluene, and amides such as N, N-dimethylformamide (DMF). The said solvent may be used individually by 1 type, and may be used together 2 or more types.
アルカリ溶液は、アルカリ以外に他の成分を含んでもよい。ここで、他の成分としては、塩化ナトリウム、臭化ナトリウム、塩化カリウム、臭化カリウム、塩化リチウム、臭化リチウム、氷、スクロースなどが挙げられる。好ましくは塩化ナトリウムである。他の成分の好ましい濃度は、特に制限されないが、アルカリ溶液中、好ましくは0.01~10重量%の濃度となるような量である。
The alkali solution may contain other components in addition to the alkali. Here, examples of other components include sodium chloride, sodium bromide, potassium chloride, potassium bromide, lithium chloride, lithium bromide, ice, and sucrose. Sodium chloride is preferred. The preferred concentration of the other components is not particularly limited, but is such an amount that the concentration in the alkaline solution is preferably 0.01 to 10% by weight.
アルカリ溶液のpHは特に限定されるものではないが、7~14であることが好ましい。加水分解およびエステル化反応を経たアルカリ処理前のマレイン酸系高分子物質は、マレイン酸由来の構成単位中にマレイン酸由来のカルボキシル基を多く有するため、緩和なアルカリ条件で多くのカルボン酸塩を有することとなる。このため、エステル部分がアルカリ処理によりカルボン酸塩となる強アルカリ条件下でのアルカリ処理を行わなくとも良好な潤滑性を有する。このため、アルカリ溶液のpHは7以上10未満であることがより好ましい。
The pH of the alkaline solution is not particularly limited, but is preferably 7 to 14. The maleic polymer material before alkali treatment that has undergone hydrolysis and esterification reaction has many maleic acid-derived carboxyl groups in the maleic acid-derived structural unit, so that many carboxylates can be formed under mild alkaline conditions. Will have. For this reason, it has favorable lubricity even if it does not perform the alkali treatment under the strong alkali condition in which an ester part becomes a carboxylate by alkali treatment. For this reason, the pH of the alkaline solution is more preferably 7 or more and less than 10.
また、下地層及び樹脂被覆層を有する基材のアルカリ溶液への浸漬条件は特に限定されるものではないが、一条件を示すと、浸漬温度は、25~70℃であることが好ましく、30~65℃であることがより好ましく、40~60℃であることが特に好ましい。下地層及び樹脂被覆層を有する基材のアルカリ溶液への浸漬時間は、0.1~20時間であることが好ましく、0.5~14時間であることよりが好ましい。
In addition, the conditions for immersing the base material having the base layer and the resin coating layer in the alkaline solution are not particularly limited, but if one condition is indicated, the immersion temperature is preferably 25 to 70 ° C., 30 It is more preferably from ˜65 ° C., particularly preferably from 40 to 60 ° C. The immersion time of the base material having the base layer and the resin coating layer in the alkaline solution is preferably from 0.1 to 20 hours, more preferably from 0.5 to 14 hours.
上記アルカリ処理後に、必要であれば、洗浄工程を行ってもよい。当該洗浄工程により、アルカリ処理によるカルボキシル基(-COOH)及びエステル部分(-COOR)からカルボン酸塩(-COOX)への変換を容易に終了することができる。ここで、洗浄条件は、特に制限されない。例えば、洗浄工程に使用できる洗浄液(溶媒)としては、水、メタノール、エタノール、イソプロパノール、エチレングリコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル等のエステル類、クロロホルム等のハロゲン化物、ブタン、ヘキサン等のアルカン類、テトラヒドロフラン、ブチルエーテル等のエーテル類、ベンゼン、トルエン等の芳香族類、N,N-ジメチルホルムアミド(DMF)等のアミド類などが挙げられる。上記溶媒は、1種単独で用いてもよいし、2種以上併用してもよい。また、洗浄液の温度は、好ましくは0~70℃であり、より好ましくは20~65℃である。洗浄時間は、0.1~120分間であり、より好ましくは0.5~120分間である。
After the alkali treatment, if necessary, a washing step may be performed. By the washing step, the conversion from the carboxyl group (—COOH) and the ester moiety (—COOR) to the carboxylate (—COOX) by the alkali treatment can be easily completed. Here, the cleaning conditions are not particularly limited. For example, the cleaning liquid (solvent) that can be used in the cleaning step includes water, alcohols such as methanol, ethanol, isopropanol, and ethylene glycol, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, halides such as chloroform, Examples include alkanes such as butane and hexane, ethers such as tetrahydrofuran and butyl ether, aromatics such as benzene and toluene, and amides such as N, N-dimethylformamide (DMF). The said solvent may be used individually by 1 type, and may be used together 2 or more types. The temperature of the cleaning liquid is preferably 0 to 70 ° C., more preferably 20 to 65 ° C. The washing time is 0.1 to 120 minutes, more preferably 0.5 to 120 minutes.
上記アルカリ処理または洗浄工程後に、必要であれば、下地層及び樹脂被覆層を有する基材を乾燥する。ここで、乾燥条件は、アルカリ処理または洗浄工程後の基材、下地層及び樹脂被覆層を十分乾燥できる条件であれば、特に制限されない。例えば、乾燥温度は、室温(25℃)~80℃程度であることが好ましい。また、乾燥温度は、5分~48時間程度であることが好ましい。
After the alkali treatment or washing step, if necessary, the base material having the base layer and the resin coating layer is dried. Here, the drying conditions are not particularly limited as long as the substrate, the base layer, and the resin coating layer after the alkali treatment or the cleaning step can be sufficiently dried. For example, the drying temperature is preferably about room temperature (25 ° C.) to about 80 ° C. The drying temperature is preferably about 5 minutes to 48 hours.
上記したようにして得られた医療用具では、マレイン酸系高分子物質が反応性官能基と共有結合して被覆層が生体内に挿入される基材の表面に形成される。一方、本発明の医療用具のうち、生体内に挿入されない部位には、非潤滑性処理が施されてもよい。ここで、非潤滑性処理としては、特に制限されないが、例えば、特開平4-144567号公報に記載されるイソシアネート化合物を使用する方法が好適に使用できる。イソシアネート化合物は、マレイン酸系高分子物質にグラフトしたり、一部これを架橋したりして、これを非潤滑化するものであると考えられる。
In the medical device obtained as described above, the maleic polymer substance is covalently bonded to the reactive functional group, and the coating layer is formed on the surface of the base material to be inserted into the living body. On the other hand, non-lubricating treatment may be performed on a portion of the medical device of the present invention that is not inserted into the living body. Here, the non-lubricating treatment is not particularly limited, but for example, a method using an isocyanate compound described in JP-A-4-144567 can be suitably used. The isocyanate compound is considered to be non-lubricated by grafting to a maleic polymer material or partially crosslinking it.
本発明の効果を、以下の実施例および比較例を用いて説明する。実施例において「部」あるいは「%」の表示を用いる場合があるが、特に断りがない限り、「重量部」あるいは「重量%」を表す。また、特記しない限り、各操作は、室温(25℃)で行われる。
The effect of the present invention will be described using the following examples and comparative examples. In the examples, “part” or “%” may be used, but “part by weight” or “% by weight” is expressed unless otherwise specified. Unless otherwise specified, each operation is performed at room temperature (25 ° C.).
(実施例1)
メチルビニルエーテル無水マレイン酸共重合体(商品名:GANTREZ AN-169 G.A.F.社製)12gをエタノール85g-蒸留水0.7gの混合溶液中に入れ、24時間、78℃で還流させた。還流液冷却後ヘキサン中に入れ、析出した沈殿物を採取し、随時粉砕しながら70℃、減圧下で3日間乾燥させメチルビニルエーテル無水マレイン酸共重合体の反応物(以下、メチルビニルエーテル-マレイン酸系共重合体とする)を得た(収量9g)。得られたメチルビニルエーテル-マレイン酸系共重合体のエステル化度(マレイン酸由来の構成単位中のエステル部分の割合)をNMRで測定したところ49%であった(構成単位(a):構成単位(b)のモル比=100:2)。加水分解およびエステル化反応は完全に進行し、メチルビニルエーテル-マレイン酸系共重合体中のマレイン酸由来の構成単位は、構成単位(a)および構成単位(b)のみであった。 Example 1
12 g of methyl vinyl ether maleic anhydride copolymer (trade name: GANTREZ AN-169 GAF) was put into a mixed solution of 85 g of ethanol and 0.7 g of distilled water and refluxed at 78 ° C. for 24 hours. It was. After cooling the reflux liquid, it was put in hexane, and the deposited precipitate was collected, dried at 70 ° C. under reduced pressure for 3 days while being pulverized as needed, and a reaction product of methyl vinyl ether maleic anhydride copolymer (hereinafter referred to as methyl vinyl ether-maleic acid). (Yield 9 g). The degree of esterification of the methyl vinyl ether-maleic acid copolymer obtained (ratio of the ester moiety in the structural unit derived from maleic acid) was 49% as measured by NMR (structural unit (a): structural unit). (B) molar ratio = 100: 2). The hydrolysis and esterification reaction proceeded completely, and the structural units derived from maleic acid in the methyl vinyl ether-maleic acid copolymer were only the structural unit (a) and the structural unit (b).
メチルビニルエーテル無水マレイン酸共重合体(商品名:GANTREZ AN-169 G.A.F.社製)12gをエタノール85g-蒸留水0.7gの混合溶液中に入れ、24時間、78℃で還流させた。還流液冷却後ヘキサン中に入れ、析出した沈殿物を採取し、随時粉砕しながら70℃、減圧下で3日間乾燥させメチルビニルエーテル無水マレイン酸共重合体の反応物(以下、メチルビニルエーテル-マレイン酸系共重合体とする)を得た(収量9g)。得られたメチルビニルエーテル-マレイン酸系共重合体のエステル化度(マレイン酸由来の構成単位中のエステル部分の割合)をNMRで測定したところ49%であった(構成単位(a):構成単位(b)のモル比=100:2)。加水分解およびエステル化反応は完全に進行し、メチルビニルエーテル-マレイン酸系共重合体中のマレイン酸由来の構成単位は、構成単位(a)および構成単位(b)のみであった。 Example 1
12 g of methyl vinyl ether maleic anhydride copolymer (trade name: GANTREZ AN-169 GAF) was put into a mixed solution of 85 g of ethanol and 0.7 g of distilled water and refluxed at 78 ° C. for 24 hours. It was. After cooling the reflux liquid, it was put in hexane, and the deposited precipitate was collected, dried at 70 ° C. under reduced pressure for 3 days while being pulverized as needed, and a reaction product of methyl vinyl ether maleic anhydride copolymer (hereinafter referred to as methyl vinyl ether-maleic acid). (Yield 9 g). The degree of esterification of the methyl vinyl ether-maleic acid copolymer obtained (ratio of the ester moiety in the structural unit derived from maleic acid) was 49% as measured by NMR (structural unit (a): structural unit). (B) molar ratio = 100: 2). The hydrolysis and esterification reaction proceeded completely, and the structural units derived from maleic acid in the methyl vinyl ether-maleic acid copolymer were only the structural unit (a) and the structural unit (b).
なお、NMRの測定条件は下記のとおりである。
The NMR measurement conditions are as follows.
NMR機器:Varian製Unity Plus NMR Spectrometer
共鳴周波数:399.897 MHz
積算:8回
測定溶媒:Acetone-d6
基準ピーク:2.04 ppm(Acetone-d6中の残留プロトン)
試料濃度:10mg/0.75mL Acetone-d6
さらに、下記構造の(1)、(2)の2プロトン分の積分値A(δ3.2~2.8ppm)と、(3)の2プロトン分の積分値B(δ4.25~4.0ppm)を用い、エステル化度=(B/2/A)×100(%)を算出した。 NMR equipment: Unity Plus NMR Spectrometer manufactured by Varian
Resonance frequency: 399.897 MHz
Integration: 8 times Measurement solvent: Acetone-d6
Reference peak: 2.04 ppm (residual protons in Acetone-d6)
Sample concentration: 10 mg / 0.75 mL Acetone-d6
Furthermore, the integral value A (δ3.2 to 2.8 ppm) of two protons of (1) and (2) in the following structure and the integral value B (δ4.25 to 4.0 ppm) of two protons of (3) ), The degree of esterification = (B / 2 / A) × 100 (%) was calculated.
共鳴周波数:399.897 MHz
積算:8回
測定溶媒:Acetone-d6
基準ピーク:2.04 ppm(Acetone-d6中の残留プロトン)
試料濃度:10mg/0.75mL Acetone-d6
さらに、下記構造の(1)、(2)の2プロトン分の積分値A(δ3.2~2.8ppm)と、(3)の2プロトン分の積分値B(δ4.25~4.0ppm)を用い、エステル化度=(B/2/A)×100(%)を算出した。 NMR equipment: Unity Plus NMR Spectrometer manufactured by Varian
Resonance frequency: 399.897 MHz
Integration: 8 times Measurement solvent: Acetone-d6
Reference peak: 2.04 ppm (residual protons in Acetone-d6)
Sample concentration: 10 mg / 0.75 mL Acetone-d6
Furthermore, the integral value A (δ3.2 to 2.8 ppm) of two protons of (1) and (2) in the following structure and the integral value B (δ4.25 to 4.0 ppm) of two protons of (3) ), The degree of esterification = (B / 2 / A) × 100 (%) was calculated.
外径0.25mmのNi-Ti製ワイヤに、熱可塑性ポリウレタン樹脂をコートし、外径0.3mmとした。次に、このポリウレタン樹脂をコートしたワイヤをポリ塩化ビニル(PVC)及び4,4’-ジフェニルメタンジイソシアネート(MDI)のテトラヒドロフラン(THF)溶液(各濃度=5重量%)に室温(25℃)で1秒間浸漬し、室温(25℃)で30分間乾燥させた。
A Ni—Ti wire having an outer diameter of 0.25 mm was coated with a thermoplastic polyurethane resin to have an outer diameter of 0.3 mm. Next, this polyurethane resin-coated wire was added to a solution of polyvinyl chloride (PVC) and 4,4′-diphenylmethane diisocyanate (MDI) in tetrahydrofuran (THF) (each concentration = 5% by weight) at room temperature (25 ° C.). It was immersed for 2 seconds and dried at room temperature (25 ° C.) for 30 minutes.
さらに、上記で得られたメチルビニルエーテル-マレイン酸系共重合体(エステル化度49%)の1重量%THF溶液中に室温(25℃)で1秒間浸漬し、約60℃で12時間乾燥させた。
Further, it was immersed in a 1% by weight THF solution of the methyl vinyl ether-maleic acid copolymer (degree of esterification 49%) obtained above for 1 second at room temperature (25 ° C.) and dried at about 60 ° C. for 12 hours. It was.
次いで、NaClを0.1重量%、NaHCO3を0.05重量%溶解した約60℃の温水中(pH8.2)に30分間浸漬し、次いで約60℃の温水で1分間洗浄し、室温(25℃)で乾燥し、医療用具(1)を得た。
Next, it was immersed in warm water (pH 8.2) of about 60 ° C. in which 0.1% by weight of NaCl and 0.05% by weight of NaHCO 3 were dissolved, and then washed with warm water of about 60 ° C. for 1 minute. It dried at (25 degreeC) and obtained the medical device (1).
実施例2
メチルビニルエーテル無水マレイン酸共重合体(商品名:GANTREZ AN-169 G.A.F.社製)12gをエタノール83g-蒸留水3.2gの混合溶液中に入れ、24時間還流させた。実施例1と同様に処理してメチルビニルエーテル無水マレイン酸共重合体の反応物を得た(収量11g)。得られたメチルビニルエーテル-マレイン酸系共重合体のエステル化度(マレイン酸由来の構成単位中のエステル化度)をNMRで測定したところ46%であった(構成単位(a):構成単位(b)のモル比=100:8.7)。加水分解およびエステル化反応は完全に進行し、メチルビニルエーテル-マレイン酸系共重合体中のマレイン酸由来の構成単位は、構成単位(a)および構成単位(b)のみであった。 Example 2
12 g of methyl vinyl ether maleic anhydride copolymer (trade name: manufactured by GANTREZ AN-169 GAF) was put into a mixed solution of 83 g of ethanol and 3.2 g of distilled water and refluxed for 24 hours. The reaction was conducted in the same manner as in Example 1 to obtain a reaction product of methyl vinyl ether maleic anhydride copolymer (yield 11 g). The degree of esterification of the methyl vinyl ether-maleic acid copolymer obtained (the degree of esterification in the structural unit derived from maleic acid) was measured by NMR to be 46% (structural unit (a): structural unit ( b) molar ratio = 100: 8.7). The hydrolysis and esterification reaction proceeded completely, and the structural units derived from maleic acid in the methyl vinyl ether-maleic acid copolymer were only the structural unit (a) and the structural unit (b).
メチルビニルエーテル無水マレイン酸共重合体(商品名:GANTREZ AN-169 G.A.F.社製)12gをエタノール83g-蒸留水3.2gの混合溶液中に入れ、24時間還流させた。実施例1と同様に処理してメチルビニルエーテル無水マレイン酸共重合体の反応物を得た(収量11g)。得られたメチルビニルエーテル-マレイン酸系共重合体のエステル化度(マレイン酸由来の構成単位中のエステル化度)をNMRで測定したところ46%であった(構成単位(a):構成単位(b)のモル比=100:8.7)。加水分解およびエステル化反応は完全に進行し、メチルビニルエーテル-マレイン酸系共重合体中のマレイン酸由来の構成単位は、構成単位(a)および構成単位(b)のみであった。 Example 2
12 g of methyl vinyl ether maleic anhydride copolymer (trade name: manufactured by GANTREZ AN-169 GAF) was put into a mixed solution of 83 g of ethanol and 3.2 g of distilled water and refluxed for 24 hours. The reaction was conducted in the same manner as in Example 1 to obtain a reaction product of methyl vinyl ether maleic anhydride copolymer (yield 11 g). The degree of esterification of the methyl vinyl ether-maleic acid copolymer obtained (the degree of esterification in the structural unit derived from maleic acid) was measured by NMR to be 46% (structural unit (a): structural unit ( b) molar ratio = 100: 8.7). The hydrolysis and esterification reaction proceeded completely, and the structural units derived from maleic acid in the methyl vinyl ether-maleic acid copolymer were only the structural unit (a) and the structural unit (b).
得られたメチルビニルエーテル-マレイン酸系共重合体を用いたこと以外は、実施例1と同様にして、医療用具(2)を得た。
A medical device (2) was obtained in the same manner as in Example 1 except that the obtained methyl vinyl ether-maleic acid copolymer was used.
実施例3
メチルビニルエーテル無水マレイン酸共重合体(商品名:GANTREZ AN-169 G.A.F.社製)12gをエタノール80g-蒸留水6.3gの混合溶液中に入れ、24時間還流させた。実施例1と同様に処理してメチルビニルエーテル無水マレイン酸共重合体の反応物を得た(収量8g)。得られたメチルビニルエーテル-マレイン酸系共重合体のエステル化度(マレイン酸由来の構成単位中のエステル化度)をNMRで測定したところ43%であった(構成単位(a):構成単位(b)のモル比=100:16.3)。加水分解およびエステル化反応は完全に進行し、メチルビニルエーテル-マレイン酸系共重合体中のマレイン酸由来の構成単位は、構成単位(a)および構成単位(b)のみであった。 Example 3
12 g of methyl vinyl ether maleic anhydride copolymer (trade name: manufactured by GANTREZ AN-169 GAFF) was put into a mixed solution of 80 g of ethanol and 6.3 g of distilled water and refluxed for 24 hours. The same treatment as in Example 1 was performed to obtain a reaction product of methyl vinyl ether maleic anhydride copolymer (yield 8 g). The degree of esterification (the degree of esterification in the maleic acid-derived structural unit) of the resulting methyl vinyl ether-maleic acid copolymer was measured by NMR to be 43% (structural unit (a): structural unit ( b) molar ratio = 100: 16.3). The hydrolysis and esterification reaction proceeded completely, and the structural units derived from maleic acid in the methyl vinyl ether-maleic acid copolymer were only the structural unit (a) and the structural unit (b).
メチルビニルエーテル無水マレイン酸共重合体(商品名:GANTREZ AN-169 G.A.F.社製)12gをエタノール80g-蒸留水6.3gの混合溶液中に入れ、24時間還流させた。実施例1と同様に処理してメチルビニルエーテル無水マレイン酸共重合体の反応物を得た(収量8g)。得られたメチルビニルエーテル-マレイン酸系共重合体のエステル化度(マレイン酸由来の構成単位中のエステル化度)をNMRで測定したところ43%であった(構成単位(a):構成単位(b)のモル比=100:16.3)。加水分解およびエステル化反応は完全に進行し、メチルビニルエーテル-マレイン酸系共重合体中のマレイン酸由来の構成単位は、構成単位(a)および構成単位(b)のみであった。 Example 3
12 g of methyl vinyl ether maleic anhydride copolymer (trade name: manufactured by GANTREZ AN-169 GAFF) was put into a mixed solution of 80 g of ethanol and 6.3 g of distilled water and refluxed for 24 hours. The same treatment as in Example 1 was performed to obtain a reaction product of methyl vinyl ether maleic anhydride copolymer (yield 8 g). The degree of esterification (the degree of esterification in the maleic acid-derived structural unit) of the resulting methyl vinyl ether-maleic acid copolymer was measured by NMR to be 43% (structural unit (a): structural unit ( b) molar ratio = 100: 16.3). The hydrolysis and esterification reaction proceeded completely, and the structural units derived from maleic acid in the methyl vinyl ether-maleic acid copolymer were only the structural unit (a) and the structural unit (b).
得られたメチルビニルエーテル-マレイン酸系共重合体を用いたこと以外は、実施例1と同様にして、医療用具(3)を得た。
A medical device (3) was obtained in the same manner as in Example 1 except that the obtained methyl vinyl ether-maleic acid copolymer was used.
実施例4
メチルビニルエーテル無水マレイン酸共重合体(商品名:GANTREZ AN-169 G.A.F.社製)12gをエタノール53g-蒸留水41gの混合溶液中に入れ、24時間還流させた。還流液冷却後ジエチルエーテル中に入れ、析出した沈殿物を採取し、随時粉砕しながら70℃、減圧下で3日間乾燥させメチルビニルエーテル無水マレイン酸共重合体の反応物を得た(収量8g)。得られたメチルビニルエーテル-マレイン酸系共重合体のエステル化度(マレイン酸由来の構成単位中のエステル化度)をNMRで測定したところ35%であった(構成単位(a):構成単位(b)のモル比=100:42.9)。加水分解およびエステル化反応は完全に進行し、メチルビニルエーテル-マレイン酸系共重合体中のマレイン酸由来の構成単位は、構成単位(a)および構成単位(b)のみであった。 Example 4
12 g of methyl vinyl ether maleic anhydride copolymer (trade name: GANTREZ AN-169 GAF) was put into a mixed solution of 53 g of ethanol and 41 g of distilled water and refluxed for 24 hours. After cooling the reflux liquid, it was put into diethyl ether, and the deposited precipitate was collected and dried at 70 ° C. under reduced pressure for 3 days while pulverizing as needed to obtain a reaction product of methyl vinyl ether maleic anhydride copolymer (yield 8 g). . The degree of esterification (the degree of esterification in the maleic acid-derived structural unit) of the resulting methyl vinyl ether-maleic acid copolymer was measured by NMR and found to be 35% (structural unit (a): structural unit ( b) molar ratio = 100: 42.9). The hydrolysis and esterification reaction proceeded completely, and the structural units derived from maleic acid in the methyl vinyl ether-maleic acid copolymer were only the structural unit (a) and the structural unit (b).
メチルビニルエーテル無水マレイン酸共重合体(商品名:GANTREZ AN-169 G.A.F.社製)12gをエタノール53g-蒸留水41gの混合溶液中に入れ、24時間還流させた。還流液冷却後ジエチルエーテル中に入れ、析出した沈殿物を採取し、随時粉砕しながら70℃、減圧下で3日間乾燥させメチルビニルエーテル無水マレイン酸共重合体の反応物を得た(収量8g)。得られたメチルビニルエーテル-マレイン酸系共重合体のエステル化度(マレイン酸由来の構成単位中のエステル化度)をNMRで測定したところ35%であった(構成単位(a):構成単位(b)のモル比=100:42.9)。加水分解およびエステル化反応は完全に進行し、メチルビニルエーテル-マレイン酸系共重合体中のマレイン酸由来の構成単位は、構成単位(a)および構成単位(b)のみであった。 Example 4
12 g of methyl vinyl ether maleic anhydride copolymer (trade name: GANTREZ AN-169 GAF) was put into a mixed solution of 53 g of ethanol and 41 g of distilled water and refluxed for 24 hours. After cooling the reflux liquid, it was put into diethyl ether, and the deposited precipitate was collected and dried at 70 ° C. under reduced pressure for 3 days while pulverizing as needed to obtain a reaction product of methyl vinyl ether maleic anhydride copolymer (yield 8 g). . The degree of esterification (the degree of esterification in the maleic acid-derived structural unit) of the resulting methyl vinyl ether-maleic acid copolymer was measured by NMR and found to be 35% (structural unit (a): structural unit ( b) molar ratio = 100: 42.9). The hydrolysis and esterification reaction proceeded completely, and the structural units derived from maleic acid in the methyl vinyl ether-maleic acid copolymer were only the structural unit (a) and the structural unit (b).
得られたメチルビニルエーテル-マレイン酸系共重合体を用いたこと以外は、実施例1と同様にして、医療用具(4)を得た。
A medical device (4) was obtained in the same manner as in Example 1 except that the obtained methyl vinyl ether-maleic acid copolymer was used.
比較例1
メチルビニルエーテル無水マレイン酸共重合体のハーフエチルエステル(エステル化度約50%)を用いたこと以外は、実施例1と同様にして比較医療用具(1)を得た。 Comparative Example 1
A comparative medical device (1) was obtained in the same manner as in Example 1 except that a half ethyl ester of methyl vinyl ether maleic anhydride copolymer (degree of esterification of about 50%) was used.
メチルビニルエーテル無水マレイン酸共重合体のハーフエチルエステル(エステル化度約50%)を用いたこと以外は、実施例1と同様にして比較医療用具(1)を得た。 Comparative Example 1
A comparative medical device (1) was obtained in the same manner as in Example 1 except that a half ethyl ester of methyl vinyl ether maleic anhydride copolymer (degree of esterification of about 50%) was used.
比較例2
メチルビニルエーテル無水マレイン酸共重合体(商品名:GANTREZ AN-169 G.A.F.社製)12gをエタノール38g-蒸留水60gの混合溶液中に入れ、24時間還流させた。実施例1と同様に処理してメチルビニルエーテル無水マレイン酸共重合体の反応物を得た(収量8g)。得られたメチルビニルエーテル-マレイン酸系共重合体のエステル化度(マレイン酸由来の構成単位中のエステル化度)をNMRで測定したところ30%であった(構成単位(a):構成単位(b)のモル比=100:66.6)。加水分解およびエステル化反応は完全に進行し、メチルビニルエーテル-マレイン酸系共重合体中のマレイン酸由来の構成単位は、構成単位(a)および構成単位(b)のみであった。 Comparative Example 2
12 g of methyl vinyl ether maleic anhydride copolymer (trade name: manufactured by GANTREZ AN-169 GAF) was put into a mixed solution of 38 g of ethanol and 60 g of distilled water and refluxed for 24 hours. The same treatment as in Example 1 was performed to obtain a reaction product of methyl vinyl ether maleic anhydride copolymer (yield 8 g). The degree of esterification (the degree of esterification in the maleic acid-derived structural unit) of the resulting methyl vinyl ether-maleic acid copolymer was 30% as measured by NMR (structural unit (a): structural unit ( b) molar ratio = 100: 66.6). The hydrolysis and esterification reaction proceeded completely, and the structural units derived from maleic acid in the methyl vinyl ether-maleic acid copolymer were only the structural unit (a) and the structural unit (b).
メチルビニルエーテル無水マレイン酸共重合体(商品名:GANTREZ AN-169 G.A.F.社製)12gをエタノール38g-蒸留水60gの混合溶液中に入れ、24時間還流させた。実施例1と同様に処理してメチルビニルエーテル無水マレイン酸共重合体の反応物を得た(収量8g)。得られたメチルビニルエーテル-マレイン酸系共重合体のエステル化度(マレイン酸由来の構成単位中のエステル化度)をNMRで測定したところ30%であった(構成単位(a):構成単位(b)のモル比=100:66.6)。加水分解およびエステル化反応は完全に進行し、メチルビニルエーテル-マレイン酸系共重合体中のマレイン酸由来の構成単位は、構成単位(a)および構成単位(b)のみであった。 Comparative Example 2
12 g of methyl vinyl ether maleic anhydride copolymer (trade name: manufactured by GANTREZ AN-169 GAF) was put into a mixed solution of 38 g of ethanol and 60 g of distilled water and refluxed for 24 hours. The same treatment as in Example 1 was performed to obtain a reaction product of methyl vinyl ether maleic anhydride copolymer (yield 8 g). The degree of esterification (the degree of esterification in the maleic acid-derived structural unit) of the resulting methyl vinyl ether-maleic acid copolymer was 30% as measured by NMR (structural unit (a): structural unit ( b) molar ratio = 100: 66.6). The hydrolysis and esterification reaction proceeded completely, and the structural units derived from maleic acid in the methyl vinyl ether-maleic acid copolymer were only the structural unit (a) and the structural unit (b).
得られたメチルビニルエーテル-マレイン酸系共重合体を用いたこと以外は、実施例1と同様にして、比較医療用具(2)を得た。
A comparative medical device (2) was obtained in the same manner as in Example 1 except that the obtained methyl vinyl ether-maleic acid copolymer was used.
比較例3
メチルビニルエーテル無水マレイン酸共重合体(商品名:GANTREZ AN-169 G.A.F.社製)12gをエタノール85gの溶液中に入れ、3.5時間還流させた。還流液冷却後ヘキサン中に入れ、析出した沈殿物を採取し、随時粉砕しながら70℃、減圧下で3日間乾燥させメチルビニルエーテル無水マレイン酸共重合体の反応物を得た(収量10g)。得られたメチルビニルエーテル-マレイン酸系共重合体のエステル化度(マレイン酸由来の構成単位中のエステル化度)をNMRで測定したところ40%であった。しかしながら、この共重合体は、加水分解およびエステル化反応が完全には進行せず、メチルビニルエーテル-マレイン酸系共重合体中のマレイン酸由来の構成単位は、構成単位(a)、構成単位(b)の他、構成単位(c)を含むものであった。 Comparative Example 3
12 g of methyl vinyl ether maleic anhydride copolymer (trade name: GANTREZ AN-169 GAF) was put in a solution of 85 g of ethanol and refluxed for 3.5 hours. After cooling the reflux liquid, it was put into hexane, and the deposited precipitate was collected and dried at 70 ° C. under reduced pressure for 3 days while being pulverized as needed to obtain a reaction product of methyl vinyl ether maleic anhydride copolymer (yield 10 g). The degree of esterification (degree of esterification in the structural unit derived from maleic acid) of the resulting methyl vinyl ether-maleic acid copolymer was measured by NMR and found to be 40%. However, in this copolymer, hydrolysis and esterification reaction do not proceed completely, and the structural unit derived from maleic acid in the methyl vinyl ether-maleic acid copolymer is composed of structural unit (a), structural unit ( In addition to b), the structural unit (c) was included.
メチルビニルエーテル無水マレイン酸共重合体(商品名:GANTREZ AN-169 G.A.F.社製)12gをエタノール85gの溶液中に入れ、3.5時間還流させた。還流液冷却後ヘキサン中に入れ、析出した沈殿物を採取し、随時粉砕しながら70℃、減圧下で3日間乾燥させメチルビニルエーテル無水マレイン酸共重合体の反応物を得た(収量10g)。得られたメチルビニルエーテル-マレイン酸系共重合体のエステル化度(マレイン酸由来の構成単位中のエステル化度)をNMRで測定したところ40%であった。しかしながら、この共重合体は、加水分解およびエステル化反応が完全には進行せず、メチルビニルエーテル-マレイン酸系共重合体中のマレイン酸由来の構成単位は、構成単位(a)、構成単位(b)の他、構成単位(c)を含むものであった。 Comparative Example 3
12 g of methyl vinyl ether maleic anhydride copolymer (trade name: GANTREZ AN-169 GAF) was put in a solution of 85 g of ethanol and refluxed for 3.5 hours. After cooling the reflux liquid, it was put into hexane, and the deposited precipitate was collected and dried at 70 ° C. under reduced pressure for 3 days while being pulverized as needed to obtain a reaction product of methyl vinyl ether maleic anhydride copolymer (yield 10 g). The degree of esterification (degree of esterification in the structural unit derived from maleic acid) of the resulting methyl vinyl ether-maleic acid copolymer was measured by NMR and found to be 40%. However, in this copolymer, hydrolysis and esterification reaction do not proceed completely, and the structural unit derived from maleic acid in the methyl vinyl ether-maleic acid copolymer is composed of structural unit (a), structural unit ( In addition to b), the structural unit (c) was included.
得られたメチルビニルエーテル-マレイン酸系共重合体を用いたこと以外は、実施例1と同様にして、比較医療用具(3)を得た。
A comparative medical device (3) was obtained in the same manner as in Example 1 except that the obtained methyl vinyl ether-maleic acid copolymer was used.
上記実施例1~4で作製された医療用具(1)~(4)及び比較例1~3で作製された比較医療用具(1)~(3)について、下記試験を行い、通常の環境下での膨潤性、過酷な条件下での膨潤性および表面潤滑性を評価した。その結果を下記表2に示す。
For the medical devices (1) to (4) prepared in Examples 1 to 4 and the comparative medical devices (1) to (3) prepared in Comparative Examples 1 to 3, the following tests were conducted under normal circumstances. Swellability, swellability under severe conditions and surface lubricity were evaluated. The results are shown in Table 2 below.
(通常環境下での膨潤性の評価)
各医療用具を蒸留水中に、25℃で1分間浸漬し、十分膨潤させた後、顕微鏡にて膜厚(μm)を測定する。測定された膜厚によって、下記のとおりに分類する。なお、この膜厚が20μm以上(下記表2中の「○」)であれば、その医療用具は十分な潤滑性を発揮できると判定される。 (Evaluation of swellability under normal environment)
Each medical device is immersed in distilled water at 25 ° C. for 1 minute and sufficiently swollen, and then the film thickness (μm) is measured with a microscope. According to the measured film thickness, it classifies as follows. If the film thickness is 20 μm or more (“◯” in Table 2 below), it is determined that the medical device can exhibit sufficient lubricity.
各医療用具を蒸留水中に、25℃で1分間浸漬し、十分膨潤させた後、顕微鏡にて膜厚(μm)を測定する。測定された膜厚によって、下記のとおりに分類する。なお、この膜厚が20μm以上(下記表2中の「○」)であれば、その医療用具は十分な潤滑性を発揮できると判定される。 (Evaluation of swellability under normal environment)
Each medical device is immersed in distilled water at 25 ° C. for 1 minute and sufficiently swollen, and then the film thickness (μm) is measured with a microscope. According to the measured film thickness, it classifies as follows. If the film thickness is 20 μm or more (“◯” in Table 2 below), it is determined that the medical device can exhibit sufficient lubricity.
(過酷な条件下での膨潤性の評価)
各医療用具について、下記表1に示される条件で温湿度サイクル試験を行った。温湿度サイクル試験後の各医療用具を蒸留水中に、25℃で1分間浸漬し、十分膨潤させた後、顕微鏡にて膜厚(μm)を測定する。測定された膜厚によって、上記(通常の環境下での膨潤性の評価)と同様にして分類する。なお、この膜厚が20μm以上(下記表2中の「○」)であれば、その医療用具は十分な潤滑性を発揮できると判定される。 (Evaluation of swellability under severe conditions)
Each medical device was subjected to a temperature and humidity cycle test under the conditions shown in Table 1 below. Each medical device after the temperature and humidity cycle test is immersed in distilled water at 25 ° C. for 1 minute and sufficiently swollen, and then the film thickness (μm) is measured with a microscope. According to the measured film thickness, classification is performed in the same manner as described above (evaluation of swellability in a normal environment). If the film thickness is 20 μm or more (“◯” in Table 2 below), it is determined that the medical device can exhibit sufficient lubricity.
各医療用具について、下記表1に示される条件で温湿度サイクル試験を行った。温湿度サイクル試験後の各医療用具を蒸留水中に、25℃で1分間浸漬し、十分膨潤させた後、顕微鏡にて膜厚(μm)を測定する。測定された膜厚によって、上記(通常の環境下での膨潤性の評価)と同様にして分類する。なお、この膜厚が20μm以上(下記表2中の「○」)であれば、その医療用具は十分な潤滑性を発揮できると判定される。 (Evaluation of swellability under severe conditions)
Each medical device was subjected to a temperature and humidity cycle test under the conditions shown in Table 1 below. Each medical device after the temperature and humidity cycle test is immersed in distilled water at 25 ° C. for 1 minute and sufficiently swollen, and then the film thickness (μm) is measured with a microscope. According to the measured film thickness, classification is performed in the same manner as described above (evaluation of swellability in a normal environment). If the film thickness is 20 μm or more (“◯” in Table 2 below), it is determined that the medical device can exhibit sufficient lubricity.
表2から、マレイン酸由来の構成単位が、前記構成単位(a)および前記構成単位(b)のみからなり、前記構成単位(a):構成単位(b)のモル比が100:2~100:50の範囲内であるマレイン酸系高分子物質を用いた実施例1~4の医療用具(1)~(4)は、通常の環境下(室温)及び過酷な条件下(温湿度サイクル試験後)双方において、膨潤時膜厚は20μm以上と良好な潤滑性を示すことが分かる。これに対して、無水マレイン酸由来の構成単位(c)を含む無水マレイン酸のハーフエステルであるマレイン酸系高分子物質を用いた比較例1の比較医療用具(1)では、通常環境下での膨潤時膜厚は20μm以上と良好な潤滑性を示すものの、過酷な条件下(温湿度サイクル試験後)では、膨潤時膜厚は20μm未満となり、潤滑性が許容範囲より劣ることが分かる。また、構成単位(a):構成単位(b)のモル比が100:50を超えるマレイン酸系高分子物質を用いた比較例2の比較医療用具(2)および構成単位(a)、構成単位(b)および構成単位(c)を含むマレイン酸系高分子物質を用いた比較例3の比較医療用具(3)では、通常環境下での膨潤時膜厚も20μm未満となり、潤滑性が許容範囲より劣ることが分かる。
From Table 2, the maleic acid-derived structural unit consists only of the structural unit (a) and the structural unit (b), and the molar ratio of the structural unit (a): the structural unit (b) is 100: 2 to 100. : Medical devices (1) to (4) of Examples 1 to 4 using a maleic polymer material in the range of 50 are used under normal conditions (room temperature) and harsh conditions (temperature and humidity cycle test). In both cases, it can be seen that in both cases, the film thickness when swollen is 20 μm or more and exhibits good lubricity. On the other hand, the comparative medical device (1) of Comparative Example 1 using a maleic acid-based polymer substance, which is a maleic anhydride half ester containing a maleic anhydride-derived structural unit (c), under normal circumstances. Although the film thickness at swelling of 20 μm or more shows good lubricity, it can be seen that under severe conditions (after the temperature and humidity cycle test), the film thickness at swelling is less than 20 μm, and the lubricity is inferior to the allowable range. Further, the comparative medical device (2), the structural unit (a), and the structural unit of Comparative Example 2 using a maleic polymer material having a molar ratio of the structural unit (a): the structural unit (b) exceeding 100: 50 In the comparative medical device (3) of Comparative Example 3 using the maleic polymer material containing (b) and the structural unit (c), the film thickness when swollen in a normal environment is less than 20 μm, and the lubricity is acceptable. It turns out that it is inferior to the range.
(表面潤滑性の評価)
温湿度サイクル試験を行った各医療用具(以下、単に「サンプル」とも略記する)について、下記方法にしたがって、図1に示される摩擦測定機(トリニティーラボ社製、ハンディートライボマスターTL201)10を用いて、表面潤滑層の潤滑性を評価した。 (Evaluation of surface lubricity)
For each medical device (hereinafter simply abbreviated as “sample”) subjected to the temperature and humidity cycle test, a friction measuring machine (manufactured by Trinity Lab, Handy Tribomaster TL201) 10 shown in FIG. 1 is used according to the following method. Thus, the lubricity of the surface lubricating layer was evaluated.
温湿度サイクル試験を行った各医療用具(以下、単に「サンプル」とも略記する)について、下記方法にしたがって、図1に示される摩擦測定機(トリニティーラボ社製、ハンディートライボマスターTL201)10を用いて、表面潤滑層の潤滑性を評価した。 (Evaluation of surface lubricity)
For each medical device (hereinafter simply abbreviated as “sample”) subjected to the temperature and humidity cycle test, a friction measuring machine (manufactured by Trinity Lab, Handy Tribomaster TL201) 10 shown in FIG. 1 is used according to the following method. Thus, the lubricity of the surface lubricating layer was evaluated.
すなわち、温湿度サイクル試験後の上記各サンプル3をシャーレ2中に固定し、サンプル3全体が浸る高さの水1中に浸漬した。このシャーレ2を、図1に示される摩擦測定機10の移動テーブル6に載置した。円柱状ブチルゴム端子(φ=7mm)4をサンプル3に接触させ、端子4上に70gの荷重5をかけた。速度10m/秒、移動距離25mmの設定で、移動テーブル6を水平に5回往復移動させ、5往復目の摺動抵抗値(gf)を測定した。結果を図2に示す。
That is, each sample 3 after the temperature and humidity cycle test was fixed in the petri dish 2 and immersed in water 1 having a height that the entire sample 3 was immersed. This petri dish 2 was placed on the moving table 6 of the friction measuring machine 10 shown in FIG. A cylindrical butyl rubber terminal (φ = 7 mm) 4 was brought into contact with the sample 3 and a load 5 of 70 g was applied on the terminal 4. The moving table 6 was reciprocated horizontally five times at a speed of 10 m / sec and a moving distance of 25 mm, and the sliding resistance value (gf) at the fifth reciprocation was measured. The results are shown in FIG.
図2から、マレイン酸由来の構成単位が、前記構成単位(a)および前記構成単位(b)のみからなり、前記構成単位(a):構成単位(b)のモル比が100:2~100:50の範囲内であるマレイン酸系高分子物質を用いた実施例1~4の医療用具(1)~(4)は、過酷な条件下(温湿度サイクル試験後)において、無水マレイン酸由来の構成単位(c)を含む無水マレイン酸のハーフエステルであるマレイン酸系高分子物質を用いた比較例1の比較医療用具(1)、構成単位(a):構成単位(b)のモル比が100:50を超えるマレイン酸系高分子物質を用いた比較例2の比較医療用具(2)あるいは構成単位(a)、構成単位(b)および構成単位(c)を含むマレイン酸系高分子物質を用いた比較例3の比較医療用具(3)と比較して、医療用具表面に優れた潤滑性を付与できると、考察される。
From FIG. 2, the structural unit derived from maleic acid consists only of the structural unit (a) and the structural unit (b), and the molar ratio of the structural unit (a) to the structural unit (b) is 100: 2 to 100. : The medical devices (1) to (4) of Examples 1 to 4 using a maleic acid polymer material in the range of 50 are derived from maleic anhydride under severe conditions (after temperature and humidity cycle test). Comparative medical device (1) of Comparative Example 1 using a maleic acid-based polymer substance which is a half ester of maleic anhydride containing the structural unit (c): The molar ratio of the structural unit (a) to the structural unit (b) Comparative medical device (2) of Comparative Example 2 using a maleic acid polymer material having a ratio of more than 100: 50 or a maleic acid polymer comprising the structural unit (a), the structural unit (b) and the structural unit (c) Comparative medical device of Comparative Example 3 using substance ( ) As compared to when it imparts excellent lubricity to the medical device surface, it is discussed.
本出願は、2013年9月2日に出願された日本特許出願番号2013-181452号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
This application is based on Japanese Patent Application No. 2013-181452 filed on September 2, 2013, the disclosure of which is incorporated by reference in its entirety.
This application is based on Japanese Patent Application No. 2013-181452 filed on September 2, 2013, the disclosure of which is incorporated by reference in its entirety.
Claims (6)
- 基材の表面にマレイン酸系高分子物質を含む樹脂被覆層を設けてなる生体内に挿入される医療用具であって、
前記樹脂被覆層は、前記マレイン酸系高分子物質を、前記医療用具を構成する基材の少なくとも表面に存在する反応性官能基と共有結合させることにより形成され、
前記マレイン酸系高分子物質は、マレイン酸由来の構成単位を含み、前記マレイン酸由来の構成単位は、下記構成単位(a)および下記構成単位(b)からなり、前記構成単位(a):構成単位(b)のモル比が100:2~100:50である、医療用具。
式中、X1~X3は、それぞれ独立して、水素、アルカリ金属、またはアルカリ土類金属を表し、Rは、炭素原子数1~24の直鎖または分岐鎖のアルキル基を表す。 A medical device inserted into a living body provided with a resin coating layer containing a maleic polymer material on the surface of a base material,
The resin coating layer is formed by covalently bonding the maleic polymer material to a reactive functional group present on at least the surface of the base material constituting the medical device,
The maleic polymer material includes a structural unit derived from maleic acid, and the structural unit derived from maleic acid comprises the following structural unit (a) and the following structural unit (b), and the structural unit (a): A medical device wherein the molar ratio of the structural unit (b) is 100: 2 to 100: 50.
In the formula, X 1 to X 3 each independently represents hydrogen, an alkali metal, or an alkaline earth metal, and R represents a linear or branched alkyl group having 1 to 24 carbon atoms. - 前記X1~X3のうち少なくとも1つはアルカリ金属である、請求項1に記載の医療用具。 The medical device according to claim 1, wherein at least one of the X 1 to X 3 is an alkali metal.
- 前記反応性官能基は、イソシアネート基、アミノ基、アルデヒド基またはエポキシ基である、請求項1または2に記載の医療用具。 The medical device according to claim 1 or 2, wherein the reactive functional group is an isocyanate group, an amino group, an aldehyde group or an epoxy group.
- 前記マレイン酸系高分子物質は、アルキルビニルエーテル-マレイン酸エステル共重合体である、請求項1~3のいずれか1項に記載の医療用具。 The medical device according to any one of claims 1 to 3, wherein the maleic polymer material is an alkyl vinyl ether-maleic acid ester copolymer.
- 炭素数1~24の直鎖または分岐鎖のアルコールおよび水を含有し、前記アルコール:水の含有質量比が100:0.1~150である溶液と、無水マレイン酸系高分子物質と、を反応させて、マレイン酸由来の構成単位を含むマレイン酸系高分子物質を得る段階と、
反応性官能基を有する化合物を含む溶液で医療用具を構成する基材を処理して、該基材の少なくとも表面に反応性官能基が存在する下地層を形成する段階と、
前記下地層が形成された基材を前記マレイン酸系高分子物質で処理して、前記反応性官能基と前記マレイン酸系高分子物質とを共有結合させて、前記下地層上にマレイン酸系高分子物質を含む樹脂被覆層を形成する段階と、を有する、請求項1~4のいずれか1項に記載の医療用具の製造方法。 A solution containing a linear or branched alcohol having 1 to 24 carbon atoms and water, wherein the mass ratio of alcohol: water is 100: 0.1 to 150, and a maleic anhydride-based polymer substance. Reacting to obtain a maleic polymer material containing a maleic acid-derived constitutional unit;
Treating a substrate constituting the medical device with a solution containing a compound having a reactive functional group to form an underlayer having the reactive functional group on at least the surface of the substrate;
The base material on which the base layer is formed is treated with the maleic polymer material, and the reactive functional group and the maleic polymer material are covalently bonded to form a maleic acid-based material on the base layer. The method for producing a medical device according to any one of claims 1 to 4, further comprising the step of forming a resin coating layer containing a polymer substance. - さらに、前記下地層及び樹脂被覆層を有する基材をアルカリ処理する段階を有する、請求項5に記載の方法。 Furthermore, the method of Claim 5 which has a step which carries out the alkali treatment of the base material which has the said foundation | substrate layer and resin coating layer.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015534076A JP6335179B2 (en) | 2013-09-02 | 2014-07-15 | Medical device and manufacturing method thereof |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013-181452 | 2013-09-02 | ||
| JP2013181452 | 2013-09-02 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015029625A1 true WO2015029625A1 (en) | 2015-03-05 |
Family
ID=52586200
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2014/068820 WO2015029625A1 (en) | 2013-09-02 | 2014-07-15 | Medical instrument and method for manufacturing same |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP6335179B2 (en) |
| WO (1) | WO2015029625A1 (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20180098632A (en) * | 2015-12-29 | 2018-09-04 | 서모딕스, 아이엔씨 | Lubricous coating with a surface salt group |
| JP2019509843A (en) * | 2016-03-31 | 2019-04-11 | サーモディクス,インコーポレイティド | Lubricating coating for medical devices |
| JP2019103742A (en) * | 2017-12-14 | 2019-06-27 | ニプロ株式会社 | Medical equipment, and production method of medical equipment |
| US10905802B2 (en) | 2012-01-18 | 2021-02-02 | Surmodics, Inc. | Lubricious medical device coating with low particulates |
| US11174447B2 (en) | 2015-12-29 | 2021-11-16 | Surmodics, Inc. | Lubricious coatings with surface salt groups |
| WO2023276995A1 (en) | 2021-06-29 | 2023-01-05 | テルモ株式会社 | Medical instrument and method for manufacturing same |
| WO2024009927A1 (en) * | 2022-07-07 | 2024-01-11 | テルモ株式会社 | Indwelling catheter |
| WO2024190653A1 (en) * | 2023-03-10 | 2024-09-19 | テルモ株式会社 | Medical instrument and production method for same |
| WO2024190654A1 (en) * | 2023-03-10 | 2024-09-19 | テルモ株式会社 | Medical tool and method for manufacturing medical tool |
| US12409253B2 (en) | 2013-01-04 | 2025-09-09 | Surmodics, Inc. | Low particulate lubricious coating with vinyl pyrrolidone and acidic polymer-containing layers |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS60259269A (en) * | 1984-06-04 | 1985-12-21 | テルモ株式会社 | Medical device and its production |
| JPH04144567A (en) * | 1990-10-04 | 1992-05-19 | Terumo Corp | Medical treating implement |
| JPH06511001A (en) * | 1991-09-19 | 1994-12-08 | スミスクライン・ビーチャム・コーポレイション | adhesive product |
| JP2002172159A (en) * | 2000-12-07 | 2002-06-18 | Terumo Corp | Medical care appliance for body embedding |
| JP2004105580A (en) * | 2002-09-20 | 2004-04-08 | Nippon Sherwood Medical Industries Ltd | Medical device and manufacturing method thereof |
| JP2008279100A (en) * | 2007-05-11 | 2008-11-20 | Japan Stent Technology Co Ltd | Medical tool with lubricative surface excellent in durability and its manufacturing method |
| JP2011188908A (en) * | 2010-03-12 | 2011-09-29 | Nipro Corp | Medical instrument with lubricity when moistened |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005255966A (en) * | 2004-03-09 | 2005-09-22 | Teruo Hashimoto | Surface-hydrophilized resin composition, method of surface hydrophilization and concrete filling material, tube, filter, guide wire, artificial lung or clothing material comprised of surface-hydrophilized resin composition |
| JP2009213525A (en) * | 2008-03-07 | 2009-09-24 | Seam Kagaku Kenkyusho:Kk | Medical instrument having lubricative surface and its manufacturing method |
-
2014
- 2014-07-15 WO PCT/JP2014/068820 patent/WO2015029625A1/en active Application Filing
- 2014-07-15 JP JP2015534076A patent/JP6335179B2/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS60259269A (en) * | 1984-06-04 | 1985-12-21 | テルモ株式会社 | Medical device and its production |
| JPH04144567A (en) * | 1990-10-04 | 1992-05-19 | Terumo Corp | Medical treating implement |
| JPH06511001A (en) * | 1991-09-19 | 1994-12-08 | スミスクライン・ビーチャム・コーポレイション | adhesive product |
| JP2002172159A (en) * | 2000-12-07 | 2002-06-18 | Terumo Corp | Medical care appliance for body embedding |
| JP2004105580A (en) * | 2002-09-20 | 2004-04-08 | Nippon Sherwood Medical Industries Ltd | Medical device and manufacturing method thereof |
| JP2008279100A (en) * | 2007-05-11 | 2008-11-20 | Japan Stent Technology Co Ltd | Medical tool with lubricative surface excellent in durability and its manufacturing method |
| JP2011188908A (en) * | 2010-03-12 | 2011-09-29 | Nipro Corp | Medical instrument with lubricity when moistened |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10905802B2 (en) | 2012-01-18 | 2021-02-02 | Surmodics, Inc. | Lubricious medical device coating with low particulates |
| US11872325B2 (en) | 2012-01-18 | 2024-01-16 | Surmodics, Inc. | Lubricious medical device coating with low particulates |
| US12409253B2 (en) | 2013-01-04 | 2025-09-09 | Surmodics, Inc. | Low particulate lubricious coating with vinyl pyrrolidone and acidic polymer-containing layers |
| KR102736959B1 (en) | 2015-12-29 | 2024-12-03 | 서모딕스, 아이엔씨 | Lubricating coating having a surface salt phase |
| JP2019503219A (en) * | 2015-12-29 | 2019-02-07 | サーモディクス,インコーポレイテッド | Lubricating coating with salt groups on the surface |
| US11174447B2 (en) | 2015-12-29 | 2021-11-16 | Surmodics, Inc. | Lubricious coatings with surface salt groups |
| KR20180098632A (en) * | 2015-12-29 | 2018-09-04 | 서모딕스, 아이엔씨 | Lubricous coating with a surface salt group |
| JP2019509843A (en) * | 2016-03-31 | 2019-04-11 | サーモディクス,インコーポレイティド | Lubricating coating for medical devices |
| JP2021192838A (en) * | 2016-03-31 | 2021-12-23 | サーモディクス,インコーポレイティド | Lubricating coating for medical devices |
| JP7224409B2 (en) | 2016-03-31 | 2023-02-17 | サーモディクス,インコーポレイティド | Lubricant coating for medical devices |
| JP2019103742A (en) * | 2017-12-14 | 2019-06-27 | ニプロ株式会社 | Medical equipment, and production method of medical equipment |
| JP7003619B2 (en) | 2017-12-14 | 2022-01-20 | ニプロ株式会社 | Medical devices and manufacturing methods for medical devices |
| WO2023276995A1 (en) | 2021-06-29 | 2023-01-05 | テルモ株式会社 | Medical instrument and method for manufacturing same |
| WO2024009927A1 (en) * | 2022-07-07 | 2024-01-11 | テルモ株式会社 | Indwelling catheter |
| WO2024190654A1 (en) * | 2023-03-10 | 2024-09-19 | テルモ株式会社 | Medical tool and method for manufacturing medical tool |
| WO2024190653A1 (en) * | 2023-03-10 | 2024-09-19 | テルモ株式会社 | Medical instrument and production method for same |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2015029625A1 (en) | 2017-03-02 |
| JP6335179B2 (en) | 2018-05-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6335179B2 (en) | Medical device and manufacturing method thereof | |
| JP6357156B2 (en) | Medical device and manufacturing method thereof | |
| AU2014247580B2 (en) | Medical device and method for producing medical device | |
| JPH04144567A (en) | Medical treating implement | |
| JP6619360B2 (en) | Medical device and manufacturing method thereof | |
| JP5547095B2 (en) | Medical device whose surface has lubricity when wet | |
| JP4952578B2 (en) | Durability wet surface coating excellent in durability, surface coating method, and medical device having the surface coating | |
| US8859030B2 (en) | Method for producing medical device | |
| US20220203000A1 (en) | Medical instrument | |
| JP2016150163A (en) | Method of producing medical tool | |
| JP6110186B2 (en) | Lubricant coatings and medical devices | |
| JP3432101B2 (en) | Medical equipment | |
| JP2006192294A (en) | Guide wire | |
| WO2024190654A1 (en) | Medical tool and method for manufacturing medical tool | |
| JP2003033438A (en) | Guide wire | |
| JP2013169283A (en) | Method of manufacturing medical instrument and the medical instrument | |
| KR102721932B1 (en) | Composition, kit and method for treating surface of biomaterials | |
| WO2024190653A1 (en) | Medical instrument and production method for same | |
| WO2025069720A1 (en) | Medical instrument and method for manufacturing medical instrument | |
| JP2020039826A (en) | Manufacturing method of medical supply and medical supply | |
| JP2024060627A (en) | Hydrophilic copolymer and medical instrument | |
| JP2023026365A (en) | Medical composition and its use | |
| JP2024010351A (en) | Medical instrument | |
| WO2022210938A1 (en) | Composition for medical use and application of same | |
| JPH07204262A (en) | Low frictional medical instrument |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14839474 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2015534076 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 14839474 Country of ref document: EP Kind code of ref document: A1 |