+

WO2015001991A1 - Method for treating workpiece - Google Patents

Method for treating workpiece Download PDF

Info

Publication number
WO2015001991A1
WO2015001991A1 PCT/JP2014/066460 JP2014066460W WO2015001991A1 WO 2015001991 A1 WO2015001991 A1 WO 2015001991A1 JP 2014066460 W JP2014066460 W JP 2014066460W WO 2015001991 A1 WO2015001991 A1 WO 2015001991A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
etching
diketone
metal film
processing
Prior art date
Application number
PCT/JP2014/066460
Other languages
French (fr)
Japanese (ja)
Inventor
軍司 勲男
友策 井澤
智典 梅崎
雄太 武田
亜紀応 菊池
勇 毛利
Original Assignee
東京エレクトロン株式会社
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, セントラル硝子株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2015001991A1 publication Critical patent/WO2015001991A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/12Gaseous compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/08Apparatus, e.g. for photomechanical printing surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76865Selective removal of parts of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76873Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires

Definitions

  • the present invention relates to a method for processing an object to be processed.
  • the plated copper seed layer is formed by a physical vapor deposition (PVD) method.
  • PVD physical vapor deposition
  • the normal PVD method copper ions are shielded and are not formed on the side surface or bottom portion below the opening portion, so that an overhang shape is formed.
  • blocking of the opening is performed by applying a bias to the substrate during film formation and sputtering copper in the overhang portion. Film formation and sputtering are repeated alternately.
  • the field portion outside the overhang portion is similarly hit with high-energy ions, so that physical damage may occur in places other than the overhang portion.
  • a method for cleaning a metal film or the like attached in a substrate processing chamber of a film forming apparatus or the like used in a semiconductor device manufacturing process by dry etching is proposed instead of performing a fine etching of a metal film on a substrate.
  • a metal is halogenated with ClF 3 gas, and the metal halide is vaporized to etch the metal film.
  • the method of vaporizing with a metal halide is effective for W (tungsten), Ti (titanium), and Ta (tantalum), where the vapor pressure of the halide is relatively high.
  • metal halides such as Ni (nickel), Co (cobalt), Cu (copper), and Ru (ruthenium), which have a considerably low vapor pressure, are practical with etching gases such as ClF3 that have been conventionally used. Dry etching is difficult without vaporization at temperature.
  • the target metal is once oxidized with O2 (oxygen) and then reacted with a ⁇ -diketone such as hexafluoroacetylacetone (Hhfac),
  • a ⁇ -diketone such as hexafluoroacetylacetone (Hhfac)
  • a processing method of a target object to be disclosed is provided with a mask layer having a predetermined pattern provided on a substrate, and is not covered with the mask layer on a surface of the substrate on which the mask layer is provided.
  • a heating step of heating an object to be processed having a portion and a metal film provided so as to cover part or all of the exposed surface of the mask layer.
  • the disclosed method for processing an object includes a supplying step of supplying a processing gas containing oxygen and ⁇ -diketone.
  • the flow rate ratio of oxygen to ⁇ -diketone in the processing gas is set so that the generation rate of the metal oxide formed by oxidizing the metal film is metal oxide.
  • FIG. 1 is a diagram illustrating an example of a configuration of a substrate processing apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of a processing chamber according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a processing flow in the processing method of the target object according to the first embodiment.
  • FIG. 4 is a graph showing the relationship between the etching thickness of Ni and the oxygen flow rate.
  • FIG. 5 is a graph showing the relationship between the etching thickness of Ni and the oxygen flow rate at each temperature.
  • FIG. 6 is a graph of the Arrhenius plot at the highest etching rate at each heating temperature.
  • FIG. 7 is a graph showing the relationship between the etching thickness of Ni and the partial pressure ratio.
  • FIG. 8 is a graph showing the relationship between the etching thickness of Ni and the partial pressure ratio.
  • FIG. 9 is a graph showing the relationship between the optimum partial pressure ratio and the temperature at each total pressure.
  • FIG. 10 is a graph showing the relationship between the optimum partial pressure ratio and temperature.
  • FIG. 11 is a graph showing the relationship between the etching rate of Ni and the partial pressure ratio.
  • FIG. 12 is a diagram illustrating an example of gas supply including a reduction process.
  • FIG. 13 is a diagram illustrating an example of gas supply including a reduction process.
  • FIG. 14 is a diagram showing an example of the relationship between the oxygen gas flow rate and time in the first embodiment.
  • FIG. 15 is a diagram for illustrating an example of the effect in the first embodiment.
  • FIG. 16 is a diagram illustrating an example of the effect according to the first embodiment.
  • FIG. 17 is a diagram illustrating an example of the effect according to the first embodiment.
  • FIG. 18 is a diagram illustrating an example of the effect according to the first embodiment.
  • FIG. 19 is a diagram illustrating an example of a processing apparatus having a CVD apparatus and an etching apparatus.
  • FIG. 20 is a diagram showing an example of the structure of the processing chamber of the CVD apparatus.
  • a mask layer having a predetermined pattern is provided on the substrate, and is covered with the mask layer on the surface of the substrate on which the mask layer is provided.
  • a supply step of supplying a processing gas containing oxygen and ⁇ -diketone is included.
  • the flow rate ratio of oxygen to ⁇ -diketone in the processing gas is determined based on the rate of formation of the metal oxide formed by oxidizing the metal film, and the rate of formation of the complex formed by the reaction between the metal oxide and ⁇ -diketone. Including a control step of controlling to a range not exceeding.
  • the supplying step includes a step of oxidizing a metal film to form a metal oxide, a metal oxide, a ⁇ -diketone, And a step of forming a complex and a step of sublimating the complex.
  • hexafluoroacetylacetone is used as the ⁇ -diketone.
  • the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas is 1% or less.
  • the supplying step decreases the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas with the passage of time.
  • oxygen and ⁇ -diketone are sufficiently mixed and then supplied to the object to be processed.
  • the mixed oxygen and ⁇ -diketone are supplied to the surface of the object to be processed by the shower supply method.
  • FIG. 1 is a diagram illustrating an example of a configuration of a substrate processing apparatus according to the first embodiment.
  • the substrate processing apparatus is an etching apparatus
  • the present invention is not limited to this, but a CVD (Chemical Vapor Deposition) apparatus, PVD apparatus, ALD (Atomic Layer Deposition) apparatus. It may also serve as a film forming apparatus such as the above, and may be any apparatus capable of realizing the processing method of the object to be processed which will be described in detail below.
  • CVD Chemical Vapor Deposition
  • PVD Physical Vapor Deposition
  • ALD Atomic Layer Deposition
  • an etching apparatus 100 includes a processing chamber 10 that is formed in a substantially cylindrical shape and can be hermetically closed.
  • a gas supply mechanism 200 for supplying a processing gas and an exhaust mechanism 300 are connected to the processing chamber 10.
  • the gas supply mechanism 200 includes an oxygen supply system 210 and a ⁇ -diketone supply system 220.
  • a case where hexafluoroacetylacetone is supplied as ⁇ -diketone will be described as an example.
  • the oxygen supply system 210 includes a first nitrogen supply pipe 211 connected to a nitrogen gas supply source and an oxygen supply pipe 212 connected to the oxygen gas supply source.
  • a mass flow controller (MFC1) 213 is inserted in the first nitrogen supply pipe 211, and a mass flow controller (MFC2) 214 is inserted in the oxygen supply pipe 212.
  • Valves V1 and V2 are inserted upstream and downstream of the mass flow controller (MFC1) 213, and valves V3 and V4 are inserted upstream and downstream of the mass flow controller (MFC2) 214.
  • the first nitrogen supply pipe 211 and the oxygen supply pipe 212 merge and are connected to the main pipe 201.
  • a valve V ⁇ b> 11 is inserted on the downstream side of the junction of the first nitrogen supply pipe 211 and the oxygen supply pipe 212.
  • the ⁇ -diketone supply system 220 includes a second nitrogen supply pipe 221 connected to a nitrogen gas supply source and an Hhfac supply pipe 222 connected to the Hhfac container 223.
  • a mass flow controller (MFC3) 225 is inserted in the second nitrogen supply pipe 221, and a mass flow controller (MFC4) 226 is inserted in the Hhfac supply pipe 222.
  • Valves V5 and V6 are inserted upstream and downstream of the mass flow controller (MFC3) 225, and valves V7 and V8 are inserted upstream and downstream of the mass flow controller (MFC4) 226.
  • the second nitrogen supply pipe 221 and the Hhfac supply pipe 222 merge and are connected to the main pipe 201.
  • a valve V ⁇ b> 12 is inserted downstream of the junction of the second nitrogen supply pipe 221 and the Hhfac supply pipe 222.
  • the Hhfac container 223 is connected to a carrier gas supply pipe 224 for supplying and bubbling a carrier gas.
  • a valve V9 is inserted in the carrier gas supply pipe 224, and a valve V10 is inserted in the Hhfac supply pipe 222 on the outlet side of the Hhfac container 223.
  • the main pipe 201 to which the oxygen supply system 210 and the ⁇ -diketone supply system 220 are connected is connected to the processing chamber 10.
  • the main pipe 201 is provided with a bypass pipe 202 that branches from the main pipe 201 and bypasses the processing chamber 10 and connects to the exhaust mechanism 300.
  • a valve V13 is inserted downstream from the branch point of the bypass pipe 202 of the main pipe 201, and a valve V14 is inserted in the bypass pipe 202.
  • the exhaust mechanism 300 includes a dry pump 301, and the dry pump 301 is connected to the processing chamber 10 by an exhaust pipe 302.
  • An automatic pressure control device (APC) 303 is inserted in the exhaust pipe 302, and valves V15 and V16 are inserted on the upstream side and the downstream side of the automatic pressure control device (APC) 303, respectively.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of a processing chamber according to the first embodiment.
  • a stage 11 for placing a semiconductor wafer as an object to be processed is disposed in the processing chamber 10.
  • the stage 11 is provided with a heater (not shown) for heating the semiconductor wafer to a predetermined temperature.
  • the stage 11 is provided with a plurality of lift pins 12 that are moved up and down by a drive mechanism (not shown) and are allowed to appear and retract on the stage 11. These lift pins 12 are for temporarily supporting the semiconductor wafer above the stage 11 when the semiconductor wafer is carried in and out of the stage 11.
  • a shower head 13 is disposed on the ceiling of the processing chamber 10 so as to face the stage 11 with a gap.
  • a large number of gas ejection holes 14 are provided in the shower head 13, and a predetermined processing gas is supplied from these gas ejection holes 14 toward the semiconductor wafer on the stage 11.
  • the cleaning gas is also supplied into the processing chamber 10 from the gas ejection holes 14 of the shower head 13.
  • the exhaust mechanism 300 shown in FIG. 1 is connected to the processing chamber 10.
  • a dispersion plate 101 is installed in the shower head 13. Therefore, the oxygen gas diluted with the nitrogen gas supplied from the oxygen supply system 210 and the Hhfac gas supplied from the ⁇ -diketone supply system 220 are sufficiently mixed before being supplied to the object to be processed. Further, since the shower head 13 is used, the gas can be uniformly supplied to the surface of the object to be processed.
  • a CVD apparatus places a semiconductor wafer on a stage and heats it to a predetermined temperature, and supplies a predetermined processing gas to the semiconductor wafer from a gas ejection hole of a shower head, and forms a predetermined film on the semiconductor wafer by CVD.
  • a metal film such as Ni (nickel), Co (cobalt), Cu (copper), or Ru (ruthenium) is formed.
  • the semiconductor wafer on which the predetermined film is formed is transferred to the etching apparatus 100.
  • the CVD apparatus and the etching apparatus 100 are transported in a vacuum. In this way, natural oxidation of the formed metal film can be suppressed.
  • the etching apparatus 100 performs a heating process, a supply process, and a control process.
  • the heating step the object to be processed is heated.
  • the etching apparatus 100 supplies a processing gas containing oxygen and ⁇ -diketone.
  • the object to be processed includes a mask layer having a predetermined pattern provided on the substrate, and a portion of the surface of the substrate on which the mask layer is provided that is not covered with the mask layer and a surface on which the mask layer is exposed. A metal film provided so as to cover a part or all of the metal film.
  • the etching apparatus 100 controls the flow rate ratio of oxygen to ⁇ -diketone in the processing gas so that the metal oxide formation rate does not exceed the complex formation rate.
  • FIG. 3 is a diagram illustrating an example of a processing flow in the processing method of the target object according to the first embodiment.
  • FIG. 3A shows an example of the structure of the object 400 to be processed by the object processing method according to the first embodiment.
  • the target object 400 includes a mask layer 402 having a predetermined pattern on a substrate 401.
  • the object to be processed 400 covers a portion of the surface of the substrate 401 on which the mask layer 402 is provided that is not covered with the mask layer 402 and a part or all of the exposed surface of the mask layer 402.
  • a metal film 403 is provided.
  • FIG. 3 shows an example of a processing flow in the processing method of the target object according to the first embodiment.
  • FIG. 3A shows an example of the structure of the object 400 to be processed by the object processing method according to the first embodiment.
  • the target object 400 includes a mask layer 402 having a predetermined pattern on a substrate 401.
  • the object to be processed 400 covers a portion of the surface of the substrate 401
  • the metal film 403 is also formed on the side surface of the hole or trench, and is provided on the top of the mask layer 402 and the metal film 403 provided at the bottom of the hole or trench. Although the case where the metal film 403 is continuous is shown as an example, the present invention is not limited to this.
  • a metal film 403 is covered with an arbitrary PVD apparatus, CVD apparatus, or ALD apparatus on a silicon substrate on which a mask layer 402 having a predetermined pattern is formed. It is formed by doing.
  • a metal with a field thickness of 50 nm is formed using nickel by a PVD apparatus.
  • a film is formed.
  • the metal film 403 is formed of, for example, one or more alloys of metals such as nickel, cobalt, copper, and ruthenium.
  • a heating process for heating the object to be processed 400 is executed.
  • a supply step of supplying a processing gas containing oxygen and ⁇ -diketone is executed. Specifically, in the supply step, the metal film 403 is oxidized as shown in FIG. 3B by supplying a processing gas containing oxygen and ⁇ -diketone while being heated in the heating step. Then, a metal oxide 404 is formed, and as shown in FIG. 3C, the metal oxide 404 and ⁇ -diketone are reacted to form a complex, and the complex is sublimated. For example, the complex is sublimated as a metal complex gas 405 as shown in FIG.
  • the etching apparatus 100 adjusts the pressure to 13300 Pa (100 Torr) by an automatic pressure controller (APC) 303 by flowing N 2 gas into the processing chamber 10 after heating the object to be processed with a stage heater or the like. To do. More preferably, in the CVD apparatus, the pressure is adjusted to 1330 Pa or more by flowing nitrogen gas into the processing chamber 10. Thereafter, the etching apparatus 100 causes a processing gas containing oxygen and ⁇ -diketone to flow into the processing chamber 10.
  • APC automatic pressure controller
  • the ⁇ -diketone it is preferable to use a ⁇ -diketone in which the alkyl group bonded to the carbonyl group has a halogen atom.
  • a ⁇ -diketone in which the alkyl group bonded to the carbonyl group has a halogen atom.
  • Hhfac hexafluoroacetylacetone
  • Hhfac is preferable because the halogen atom has a large inducing effect, and this influence reduces the electron density of the oxygen atom of the carbonyl group, and the hydrogen atom bonded to the oxygen atom is easily dissociated as a hydrogen ion. .
  • the reactivity increases as the dissociation easily occurs.
  • the temperature for heating the object to be processed may be any temperature, for example, 200 ° C. to 400 ° C. is preferable.
  • the etching apparatus 100 allows the flow ratio of oxygen to hexafluoroacetylacetone to be “1%” or less, and flows, for example, 50 sccm of hexafluoroacetylacetone. Further, when the processing gas is flowed into the processing chamber 10, the pressure in the processing chamber 10 is adjusted to 80 Torr (10670 Pa) or more, more preferably 1330 Pa or more. For example, in the etching apparatus 100, the pressure is adjusted to 1330 Pa.
  • the proportion of oxygen in the processing gas is relatively sufficiently small compared to that of hexafluoroacetylacetone.
  • the metal film 403 is above the mask layer 402 having a predetermined pattern.
  • the oxidation of the portion proceeds preferentially as compared with the metal film 403 inside the hole or at the bottom of the hole.
  • formation of a complex with ⁇ -diketone proceeds only in a portion of the metal film 403 that has been preferentially oxidized.
  • the complex formed by adding heat energy is sublimated. In this way, the preferentially oxidized portion of the metal film 403 is removed to form a new metal surface.
  • the metal surface is further reacted with oxygen and oxidized.
  • the metal film 403 is formed of nickel and the ⁇ -diketone is hexafluoroacetylacetone will be described.
  • nickel is oxidized to form NiO, and then reacts with Hhfac to form H 2 O and Ni (hfac) 2 to be gasified and etched.
  • the flow rate ratio of oxygen to ⁇ -diketone in the processing gas is controlled so that the metal oxide formation rate does not exceed the complex formation rate and the metal oxide is formed only in the etched portion. Execute the process.
  • the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas is adjusted to be “1 Vol% or less”.
  • the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas is within a range not exceeding the metal oxide formation rate and complex formation rate, and the range in which the metal oxide is formed only in the etched portion. I will supplement the points.
  • FIG. 4 is a graph showing the relationship between the etching thickness of Ni and the oxygen flow rate.
  • the vertical axis represents the etching thickness of Ni (nm) and the horizontal axis represents the oxygen flow rate (sccm).
  • Etching conditions are a temperature of 325 ° C., a pressure of 13300 Pa (100 Torr), a processing gas is a constant hexafluoroacetylacetone flow rate of 50 sccm, a total flow rate of nitrogen and oxygen is 50 sccm, and the oxygen flow rate is varied between 0 and 10 sccm. It was.
  • the nickel material When the oxygen flow rate was 0, the nickel material was not etched. Further, when 0.5 sccm of oxygen was added, etching of the nickel material occurred, and the etching amount of the nickel material increased substantially linearly until the oxygen flow rate became 2.5 sccm. However, when the oxygen flow rate exceeded 2.5 sccm, the etching amount of the nickel material rapidly decreased, and when the oxygen flow rate became 5.0 sccm or more, the etching amount of the nickel material became substantially “0”.
  • the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas is “1 vol% or less”, the metal oxide is formed only in the etched portion. It was.
  • the oxygen gas flow rate ratio is made smaller, the oxygen gas may be diluted with nitrogen gas and supplied. When diluted and supplied in this way, even a small amount of oxygen gas can be supplied with good controllability.
  • the treatment gas containing oxygen and ⁇ -diketone is supplied from the shower head 13.
  • the processing gas can be supplied uniformly to the surface of the object to be processed.
  • the oxygen concentration is locally increased. Therefore, depending on the shape of the surface of the object to be processed, there is a possibility that oxygen may be supplied to a place where it is not preferentially oxidized. is there.
  • the results shown in FIG. 4 indicate that the presence of oxygen is necessary when etching the nickel material, but the etching of the nickel material does not proceed even when oxygen becomes excessive. This is because when the oxygen is excessive, the nickel surface is excessively oxidized by the oxygen, and the surface of the nickel material is covered by the nickel oxide. In this state, the reaction between nickel oxide and hexafluoroacetylacetone proceeds. It is presumed that no complex is formed. In other words, in order for the reaction between nickel oxide and hexafluoroacetylacetone to proceed, the presence of unoxidized nickel is necessary, and this unoxidized nickel acts as a catalyst in the reaction between nickel oxide and hexafluoroacetylacetone. It is thought that it is doing.
  • the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas is determined based on the rate at which nickel oxide (metal oxide) produced by oxidation of nickel with oxygen is produced by the reaction between nickel oxide and hexafluoroacetylacetone.
  • Etching progresses if the oxygen flow rate is within a range that does not exceed the generation rate of oxygen, that is, a range in which the oxygen flow rate is smaller than the “balance point between oxidation and etching” shown in FIG.
  • the etching amount is the highest, so when actually performing dry etching, the flow rate ratio of oxygen to hexafluoroacetylacetone near this “balance point between oxidation and etching” is selected.
  • the metal film 403 can be efficiently etched.
  • the metal film 403 can be etched with good controllability in a region where the flow rate ratio of oxygen is smaller than the “balance point between oxidation and etching”.
  • the example shown in FIG. 4 is a case where the heating temperature is 325 ° C., and the above “balance point between oxidation and etching” varies depending on the heating temperature.
  • the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas is decreased with the passage of time. That is, for example, the flow rate of oxygen gas is mainly adjusted to be smaller for the purpose of obtaining a desirable metal film shape with the passage of time while flowing the processing gas.
  • the etching rate changes in proportion to the oxygen gas flow rate in the oxygen-deficient region with respect to a predetermined temperature of the substrate to be processed.
  • the initial oxygen gas flow rate and the time for mixing the oxygen gas are determined according to the coating shape of the initial nickel film to be etched in FIG. 3A, and the oxygen gas flow rate is decreased stepwise so as to obtain a desired shape. .
  • the etching rate of the nickel film is reduced and the shape can be adjusted.
  • the oxygen flow rate may be changed in a plurality of steps or may be decreased continuously.
  • FIG. 14 is a diagram showing an example of the relationship between the oxygen gas flow rate and time in the first embodiment.
  • the vertical axis represents the oxygen gas flow rate
  • the horizontal axis represents time.
  • the oxygen gas supply may be stopped in step 1 of FIG.
  • the oxygen supply is stopped in step 2 of FIG.
  • the process is performed up to step 3 in FIG. 14 to stop the oxygen supply.
  • FR1 indicating the gas flow rate of oxygen in step 1
  • FR2 indicating the gas flow rate of oxygen in step 2
  • FR2 indicating the oxygen gas flow rate in step 2
  • FR3 indicating the gas flow rate
  • the etching rate can be precisely controlled by the oxygen flow rate, so that it is possible to perform precision processing such that a minute amount of etching is performed to deform into a desired shape.
  • the overhang near the hole entrance is etched and the step coverage can be improved as compared with FIG.
  • the metal film is formed of copper
  • the embedding of the plating can be realized by the voidless.
  • a shape in which the metal film 403 remains only at the bottom bottom can be realized. It becomes. In this case, a fine dot pattern or an arbitrary pattern can be formed by etching the mask layer 402 thereafter. Further, by stopping the process between (d) and (e) in FIG. 3 and then performing lift-off, the metal film 403 is surely compared with the object to be processed shown in (a) in FIG. This patterning can be realized.
  • lift-off is a technique in which after a resist pattern is formed by photolithography, a metal thin film is formed by vacuum deposition or PCVD, and then the metal film is removed from unnecessary areas together with the resist using a resist stripping solution.
  • FIG. 5 is a graph showing the relationship between the etching thickness of Ni and the oxygen flow rate at each temperature.
  • the graph of FIG. 5 shows the etching thickness when the vertical axis is Ni etching thickness (nm), the horizontal axis is oxygen flow rate (sccm), and the heating temperature is changed to 325 ° C., 300 ° C., 275 ° C., 250 ° C.
  • the result of investigating the relationship between the thickness (nm) and the flow rate of oxygen is shown.
  • the oxygen flow rate that becomes the “balance point between oxidation and etching” shifts to the low flow rate side as the heating temperature decreases.
  • the oxygen flow rate serving as the “balance point between oxidation and etching” is 1.5 sccm.
  • the above heating temperature, the oxygen flow rate that becomes the “balance point between oxidation and etching”, and the maximum etching rate are expressed as follows.
  • the maximum etching rate is 464 nm / min, and the optimum oxygen flow rate is 2.5 sccm.
  • the maximum etching rate is 282 nm / min, and the optimum oxygen flow rate is 1.5 sccm.
  • the maximum etching rate is 142 nm / min, and the optimum oxygen flow rate is 1.0 sccm.
  • the maximum etching rate is 50 nm / min, and the optimum oxygen flow rate is 0.5 sccm.
  • the heating temperature is preferably 200 ° C. or higher. Moreover, since hexafluoroacetylacetone will decompose
  • FIG. 6 is a graph of the Arrhenius plot at the highest etching rate at each heating temperature. A graph of FIG. 6 with the vertical axis representing Ni etching rate (nm / min) and the horizontal axis representing 1000 / T (1 / K) shows an Arrhenius plot at the highest etching rate at a heating temperature of 250 ° C. to 325 ° C.
  • the flow rate of oxygen with respect to hexafluoroacetylacetone described above can be expressed as a ratio P (O2) / P (Hhfac) between the partial pressure P (O2) of oxygen and the partial pressure P (Hhfac) of hexafluoroacetylacetone.
  • FIG. 7 is a graph showing the relationship between the etching thickness of Ni and the partial pressure ratio.
  • FIG. 8 is a graph showing the relationship between the etching thickness of Ni and the partial pressure ratio.
  • the graphs of FIGS. 7 and 8 show the results of investigating the dependence on the total pressure, with the vertical axis representing the Ni etching thickness (nm) and the horizontal axis representing the partial pressure ratio P (O2) / P (Hhfac). 7 shows a case where the heating temperature is 325 ° C., and FIG. 8 shows a case where the heating temperature is 275 ° C.
  • the circular plot indicates the case where the total pressure is 2660 Pa (20 Torr)
  • the triangular plot indicates the total pressure is 13300 Pa (100 Torr)
  • the x plot indicates the case where the total pressure is 23940 Pa (180 Torr).
  • P (O 2) / P (Hhfac) that maximizes the etching amount exists in the same range.
  • the same tendency is shown even if heating temperature changes.
  • FIG. 9 is a graph showing the relationship between the optimum partial pressure ratio and the temperature at each total pressure.
  • the vertical axis is the partial pressure ratio P (O2) / P (Hhfac), and the horizontal axis is the temperature.
  • the total etching pressure at each temperature is 2660 (20 Torr), 13300 Pa (100 Torr), and 23940 Pa (180 Torr).
  • the optimum partial pressure ratio P (O2) / P (Hhfac) is plotted.
  • the optimum partial pressure ratio P (O 2) / P (Hhfac) indicating the maximum etching amount at each heating temperature is substantially the same.
  • FIG. 10 is a graph showing the relationship between the optimum partial pressure ratio and temperature.
  • a range including a plot of the optimum partial pressure ratio P (O2) / P (Hhfac) at which the etching amount at each temperature is maximum, and a range in which the partial pressure ratio P (O2) / P (Hhfac) is higher than that, that is, oxygen If the line which divides the range which becomes excessive is drawn, it will become a line shown in FIG.
  • FIG. 11 is a graph showing the relationship between the etching rate of Ni and the partial pressure ratio.
  • the vertical axis represents the Ni etching rate (nm / min) and the horizontal axis represents the partial pressure ratio P (O 2) / P (Hhfac), and the maximum at each temperature (325 ° C., 300 ° C., 275 ° C., 250 ° C.).
  • oxygen is set to a temperature lower than 400 ° C. as high as the heat-resistant temperature of the object allows, and to be less than a partial pressure ratio P (O 2) / P (Hhfac) indicating a maximum etching rate at that temperature. Reduce gas flow. Thereafter, the oxygen supply is stopped when the etching progresses to a shape desired for application in FIG.
  • the supply of oxygen is temporarily stopped, for example, heating is performed while supplying a reducing gas such as hydrogen gas or ammonia gas, or a remote hydrogen gas is supplied.
  • a reduction step such as applying plasma may be performed.
  • the above-described processing gas may be supplied.
  • FIG. 12 is a diagram showing an example of gas supply including a reduction process.
  • FIG. 12 shows an example of a gas supply process when a reduction process is performed as pre-processing (preconditioning). In this case, first, supply of nitrogen and hydrogen is started, and after a certain period of time, supply of hydrogen is stopped, and then supply of hexafluoroacetylacetone and oxygen is started.
  • FIG. 13 is a diagram showing an example of gas supply including a reduction process.
  • a reduction process is performed to refresh.
  • a heating process for heating the object to be processed is performed, and a supply process for supplying a processing gas containing oxygen and ⁇ -diketone is performed at this time.
  • -Control process for controlling the flow rate of oxygen to diketone basically by fixing the flow rate of ⁇ -diketone and controlling only the flow rate of oxygen so that the metal oxide formation rate does not exceed the complex formation rate. And do.
  • a metal film having a predetermined pattern can be appropriately formed. This is particularly beneficial for transition metals that have low halide vapor pressure and are difficult to plasma etch.
  • the supplying step includes a step of oxidizing the metal film to form a metal oxide, a step of reacting the metal oxide with ⁇ -diketone to form a complex, and a step of sublimating the complex.
  • dry etching is performed by a thermal reaction that does not use plasma, and it becomes possible to suppress the influence of physical and scientific damage and contamination on the base.
  • the reaction rate can be precisely controlled only by controlling the flow rate of oxygen. As a result, for example, processing such as a fine recess on the nm order becomes possible.
  • ⁇ -diketone selectively reacts with a metal oxide and does not affect an unoxidized metal, so that a clean metal surface can be maintained during etching.
  • the object to be processed 400 forms a metal pattern by lift-off of a resist using photolithography when forming a via wiring using carbon nanotubes or when embedding a plating seed layer for embedding a semiconductor copper wiring. It may be formed in some cases.
  • the metal film on the resist mask and the metal formed on the unmasked portion may be a continuous film.
  • the unmasked metal film may be lifted off together, and a fine shape cannot be formed. That is, in the lift-off, if the film formed on the resist and the film formed in the lower stage without the resist are continuous films via the resist pattern side wall, the lift-off is not successful. Even if lift-off is possible, the metal film left on the side wall exists as burrs and remains as an unnecessary structure. In order to avoid these problems, the resist shape has been devised to prevent the film formation on the side wall by using a reverse taper type or a hammer head.
  • the lithography conditions for achieving such a shape and The resist material becomes special. Furthermore, even if the metal film is not successfully formed on the sidewall, there is a concern that the metal film on the resist that should be removed at the time of lift-off remains as particles on the surface without being removed. Therefore, in order to ideally perform the lift-off process, it is desired to preferentially etch the metal film on the resist film and the resist pattern side wall film while leaving the lower metal film remaining as a pattern. Here, in wet etching, the metal film is etched isotropically without depending on the location of the film.
  • carbon dioxide fine particles are sprayed and cooled, and the method of cutting the sidewall metal film using the difference in thermal expansion coefficient between the resist and metal, or heating the substrate to cause cracks in the metal film on the resist. Then, a method of improving the resist stripping property by spraying a resist stripping solution with a high-pressure jet can be considered.
  • any of these methods is difficult to apply to a fine structure due to fear of pattern collapse and damage.
  • transition metals such as copper are difficult to carry out at a temperature that resists can withstand because their compounds are low in volatility.
  • FIGS. 15A to 15C the metal film on the resist film and the resist pattern are left while the lower metal film 403 remaining as a pattern remains.
  • the sidewall film can be preferentially etched.
  • FIG. 15 is a diagram for illustrating an example of the effect in the first embodiment.
  • via wiring using carbon nanotubes is being studied for further miniaturization and higher aspect of semiconductor wiring.
  • the metal element has high straightness, and the metal does not easily adhere to the inner wall of the via hole.
  • a film is naturally formed on the field portion other than the bottom of the via, and the carbon nanotube is generated from the field during the process of generating the carbon nanotube.
  • FIG. 16 is a diagram illustrating an example of the effect according to the first embodiment.
  • FIG. 17 is a diagram illustrating an example of the effect according to the first embodiment.
  • a film is formed using PVD or the like.
  • an overhang shape may be formed.
  • the overhang shape can be improved as shown in FIG. 17B without damaging the underlayer by repeating the sputtering mode, and the metal film It becomes possible to embed a plating seed layer.
  • FIG. 18 is a diagram illustrating an example of the effect according to the first embodiment.
  • “A” is a field portion
  • “B” is a pattern side wall portion
  • “C” is a pattern bottom portion
  • “W” is a groove width or via hole diameter
  • “T” is a groove or via hole depth.
  • the semiconductor wafer on which a predetermined film is formed by the CVD apparatus is transferred to the etching apparatus 100.
  • the CVD apparatus and the etching apparatus 100 may be provided in one apparatus.
  • FIG. 19 is a diagram showing an example of a processing apparatus having a CVD apparatus and an etching apparatus.
  • the processing apparatus 500 is provided with, for example, three loading / unloading ports 501 for placing, for example, three closed transfer containers in which 25 wafers W are stored.
  • An atmospheric transfer chamber 502 is provided along the line.
  • a wafer transfer mechanism 502a constituted by an articulated arm for transferring the wafer W is provided as a normal pressure transfer mechanism.
  • An orientation chamber 503 for adjusting the orientation of the wafer W is provided on the side of the atmospheric transfer chamber 502.
  • a load lock chamber 504 for switching the atmosphere between an atmospheric pressure atmosphere and an air atmosphere is airtightly connected to a surface of the air transfer chamber 502 opposite to the carry-in / out port 501.
  • the case where there are two load lock chambers 504 is shown as an example.
  • a vacuum transfer chamber 505 When viewed from the atmospheric transfer chamber 502, a vacuum transfer chamber 505 provided with a transfer arm 505a, which is a vacuum transfer mechanism that transfers the wafer W in a vacuum atmosphere, is airtightly connected to the back side of the load lock chamber 504.
  • a cleaning processing chamber 506 for cleaning a semiconductor wafer for example, a cleaning processing chamber 506 for cleaning a semiconductor wafer, a CVD processing chamber 507 for forming a metal film, an etching chamber 508 for performing etching, and a carbon nanotube for growing.
  • the CVD process chamber 509 is provided in an airtight manner.
  • the etching chamber 508 corresponds to the etching apparatus 100 described above.
  • the processing apparatus 500 is provided with a control unit 510 formed of a computer for controlling the operation of the entire apparatus.
  • a program for executing the above-described series of processing is stored in the memory of the control unit 510.
  • the program has a group of steps so as to execute the operation of the apparatus corresponding to the processing on the wafer W, for example, and a storage unit that is a storage medium such as a hard disk, a compact disk, a magneto-optical disk, a memory card, and a flexible disk 511 to be installed in the control unit 510.
  • the wafer W is taken out by the wafer transfer mechanism 502a. Thereafter, the semiconductor wafer is carried into the load lock chamber 504 set in an atmospheric atmosphere after aligning the orientation of the wafer W in the orientation chamber 503. Then, after the atmosphere in the load lock chamber 504 is switched to the vacuum atmosphere, the wafer W is formed into a film in the CVD processing chamber 507 by the transfer arm 505a, etched in the etching apparatus 100, and then the CVD processing chamber. At 507, carbon nanotubes are grown. Note that cleaning is performed as appropriate in the cleaning processing chamber 506 between the processing. Thereafter, the processed wafer W is returned to the original position via the load lock chamber 504 and the atmospheric transfer chamber 502.
  • the processing apparatus 500 it is possible to execute from the formation of the metal film to the growth of the carbon nanotube in one apparatus.
  • FIG. 20 is a diagram showing an example of the structure of the processing chamber of the CVD apparatus.
  • a processing chamber 600 of a CVD apparatus is provided with a stage 601 for placing a semiconductor wafer as a processing object.
  • the stage 601 is provided with a heater (not shown) for heating the semiconductor wafer to a predetermined temperature.
  • the stage 601 is provided with a plurality of lift pins 602 that are moved up and down by a drive mechanism (not shown) and are allowed to appear and disappear on the stage 601.
  • the lift pins 602 are for temporarily supporting the semiconductor wafer above the stage 601 when the semiconductor wafer is carried in and out of the stage 601.
  • the processing chamber 600 may not be a shower head type.
  • the portion where the gas ejection holes 603 are provided may not be parallel to the stage and may have an inclination.
  • the present invention is not limited to this, and the processing chamber 600 may have an arbitrary shape.
  • etching apparatus 400 object 401 substrate 402 mask layer 403 metal film 404 metal oxide 405 metal complex gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

In one embodiment, the disclosed method for treating a workpiece includes a heating step in which a workpiece comprising a mask layer (402) layered on top of a substrate (401) so as to form a prescribed pattern is heated, a supply step in which a treatment gas containing oxygen and beta-diketone is supplied, and a control step. On the surface of the substrate (401) on which the mask layer (402) is provided, the parts of said surface that are not covered by the mask layer (402) are covered by a metal film (403), as is some or all of the exposed surface of the mask layer (402). In the control step, the ratio between the flow rates of the oxygen and the beta-diketone in the treatment gas is controlled so as to fall within a range in which the generation rate of a metal oxide formed by oxidation of the metal film (403) does not exceed the generation rate of a complex formed by a reaction between said metal oxide and the beta-diketone.

Description

被処理体の処理方法Processing method of workpiece
 本発明は、被処理体の処理方法に関するものである。 The present invention relates to a method for processing an object to be processed.
 半導体の銅配線をめっきによるダマシン法で埋め込む場合、めっき銅シード層はPhysical Vapor Deposition(PVD)法で成膜される。近年、半導体素子の微細化、高集積化により、シード層を被覆するべきビア構造やトレンチ構造の開口部幅の狭小化が進展している。そのため、通常のPVD法では、銅イオンが遮蔽されて開口部より下の側面や底部に成膜されないためオーバーハング形状となってしまう。そこで、成膜中に基板にバイアスを印加して、オーバーハング部の銅をスパッタリングすることで開口部閉塞を回避することが行われている。成膜とスパッタリングは、交互に繰り返えされる。しかしながらスパッタリングモードでは、オーバーハング部の外側のフィールド部も同様に高エネルギーのイオンで叩くので、オーバーハング部以外の場所における物理的ダメージが発生する虞がある。 When a semiconductor copper wiring is embedded by a damascene method by plating, the plated copper seed layer is formed by a physical vapor deposition (PVD) method. In recent years, with the miniaturization and high integration of semiconductor elements, narrowing of the opening width of via structures and trench structures that should cover the seed layer has progressed. For this reason, in the normal PVD method, copper ions are shielded and are not formed on the side surface or bottom portion below the opening portion, so that an overhang shape is formed. In view of this, blocking of the opening is performed by applying a bias to the substrate during film formation and sputtering copper in the overhang portion. Film formation and sputtering are repeated alternately. However, in the sputtering mode, the field portion outside the overhang portion is similarly hit with high-energy ions, so that physical damage may occur in places other than the overhang portion.
 ここで、これを回避するために、犠牲層を用いてビア構造およびトレンチ構造の開口部形状を変形させる手法が提案されている。しかしこの方法ではウエットプロセスを含む工程が新たに発生し、煩雑になる。さらに、層間絶縁膜への吸湿や、望ましくない変形、さらにはウエットエッチングダメージが懸念される。よって、オーバーハング部閉塞回避を理想的に達成するには、図1にあるように、オーバーハング部とそれに続くフィールド部の銅膜を選択的にダメージなくドライプロセスでリセスバックすることが望まれる。しかしながら銅は遷移金属であるためドライプロセスで化学的にリセスバックすることが難しく、今までそのような手法は試みられていなかった。 Here, in order to avoid this, there has been proposed a technique of deforming the opening shape of the via structure and the trench structure using a sacrificial layer. However, in this method, a process including a wet process is newly generated and becomes complicated. Furthermore, there is a concern about moisture absorption to the interlayer insulating film, undesirable deformation, and wet etching damage. Therefore, in order to ideally avoid the overhang portion blockage, as shown in FIG. 1, it is desirable to selectively back-back the overhang portion and the copper film in the subsequent field portion by a dry process without damage. . However, since copper is a transition metal, it is difficult to chemically back it by a dry process, and no such method has been attempted until now.
 また、基板上の金属膜の微細なエッチングではなく、半導体装置の製造工程に使用される成膜装置等の基板処理チャンバ内に付着した金属膜等を、ドライエッチングによってクリーニングする方法も提案されている。例えば、金属のエッチングはClF3ガスによって金属をハロゲン化し、そのハロゲン化金属を気化させて金属膜をエッチングする。このように、ハロゲン化金属で気化させる手法は、ハロゲン化物の蒸気圧が比較的高いW(タングステン)、Ti(チタン)、Ta(タンタル)に関しては有効である。一方、Ni(ニッケル)、Co(コバルト)、Cu(銅)、Ru(ルテニウム)などのハロゲン化金属の蒸気圧がかなり低いものは、従来用いられてきたClF3等のエッチングガスでは、現実的な温度で気化せずにドライエッチングが困難である。 In addition, a method for cleaning a metal film or the like attached in a substrate processing chamber of a film forming apparatus or the like used in a semiconductor device manufacturing process by dry etching is proposed instead of performing a fine etching of a metal film on a substrate. Yes. For example, in metal etching, a metal is halogenated with ClF 3 gas, and the metal halide is vaporized to etch the metal film. Thus, the method of vaporizing with a metal halide is effective for W (tungsten), Ti (titanium), and Ta (tantalum), where the vapor pressure of the halide is relatively high. On the other hand, metal halides such as Ni (nickel), Co (cobalt), Cu (copper), and Ru (ruthenium), which have a considerably low vapor pressure, are practical with etching gases such as ClF3 that have been conventionally used. Dry etching is difficult without vaporization at temperature.
 このようなハロゲン化金属の蒸気圧が低い金属をドライプロセスで除去する方法としては、一度対象金属をO2(酸素)で酸化してからヘキサフルオロアセチルアセトン(Hhfac)等のβ-ジケトンと反応させ、金属錯体を形成し昇華して排気する方法が知られている。 As a method of removing such a metal halide having a low vapor pressure by a dry process, the target metal is once oxidized with O2 (oxygen) and then reacted with a β-diketone such as hexafluoroacetylacetone (Hhfac), A method of forming a metal complex, sublimating and exhausting is known.
特表2012-510164号公報Special table 2012-510164 gazette 特公平7-93289号公報Japanese Examined Patent Publication No. 7-93289 特許第3739027号公報Japanese Patent No. 3739027 特許第4049423号公報Japanese Patent No. 4049423 特開2008-240078号公報Japanese Patent Laid-Open No. 2008-240078 特開2012-149288号公報JP 2012-149288 A
 上述した銅シード部のオーバーハング解消のためのリセスバックでは、遷移金属のドライエッチングが必要とされる。また、等方的なウェットエッチングではなく、エッチングしたい金属膜と、残したい金属膜の間の場所の違いだけで、選択性が発現するプロセスが必要となる。 In the recess back for eliminating the overhang of the copper seed part described above, dry etching of the transition metal is required. In addition, a process in which selectivity is manifested is required only by the difference in location between the metal film to be etched and the metal film to be left, instead of isotropic wet etching.
 開示する被処理体の処理方法は、1つの実施形態において、所定のパターンのマスク層が基板に設けられ、前記基板の前記マスク層が設けられる側の面のうち前記マスク層に覆われていない部分と、前記マスク層の露出している面の一部又は全てを覆うように設けられる金属膜を有する被処理体を加熱する加熱工程を含む。また、開示する被処理体の処理方法は、1つの実施形態において、酸素とβ-ジケトンとを含む処理ガスを供給する供給工程を含む。また、開示する被処理体の処理方法は、1つの実施形態において、前記処理ガスにおけるβ-ジケトンに対する酸素の流量比を、金属膜を酸化して形成される金属酸化物の生成速度が金属酸化物とβ-ジケトンとが反応して形成される錯体の生成速度を超えない範囲に制御する制御工程を含む。 In one embodiment, a processing method of a target object to be disclosed is provided with a mask layer having a predetermined pattern provided on a substrate, and is not covered with the mask layer on a surface of the substrate on which the mask layer is provided. A heating step of heating an object to be processed having a portion and a metal film provided so as to cover part or all of the exposed surface of the mask layer. In addition, in one embodiment, the disclosed method for processing an object includes a supplying step of supplying a processing gas containing oxygen and β-diketone. Further, according to one embodiment of the disclosed processing method for an object to be processed, the flow rate ratio of oxygen to β-diketone in the processing gas is set so that the generation rate of the metal oxide formed by oxidizing the metal film is metal oxide. And a control step of controlling the product to a range not exceeding the rate of formation of the complex formed by the reaction of the product with β-diketone.
 開示する測定方法の1つの態様によれば、所定のパターンの金属膜を適切に形成可能であるという効果を奏する。 According to one aspect of the disclosed measuring method, there is an effect that a metal film having a predetermined pattern can be appropriately formed.
図1は、第1の実施形態における基板処理装置の構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a configuration of a substrate processing apparatus according to the first embodiment. 図2は、第1の実施形態における処理チャンバの概略構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a schematic configuration of a processing chamber according to the first embodiment. 図3は、第1の実施形態に係る被処理体の処理方法における処理の流れの一例を示す図である。FIG. 3 is a diagram illustrating an example of a processing flow in the processing method of the target object according to the first embodiment. 図4は、Niのエッチング厚さと酸素流量との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the etching thickness of Ni and the oxygen flow rate. 図5は、各温度におけるNiのエッチング厚さと酸素流量との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the etching thickness of Ni and the oxygen flow rate at each temperature. 図6は、夫々の加熱温度における最高のエッチングレートにおけるアレニウスプロットのグラフである。FIG. 6 is a graph of the Arrhenius plot at the highest etching rate at each heating temperature. 図7は、Niのエッチング厚さと分圧比の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the etching thickness of Ni and the partial pressure ratio. 図8は、Niのエッチング厚さと分圧比の関係を示すグラフである。FIG. 8 is a graph showing the relationship between the etching thickness of Ni and the partial pressure ratio. 図9は、各全圧における最適分圧比と温度との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the optimum partial pressure ratio and the temperature at each total pressure. 図10は、最適分圧比と温度との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the optimum partial pressure ratio and temperature. 図11は、Niのエッチングレートと分圧比の関係を示すグラフである。FIG. 11 is a graph showing the relationship between the etching rate of Ni and the partial pressure ratio. 図12は、還元工程を含むガスの供給例を示す図である。FIG. 12 is a diagram illustrating an example of gas supply including a reduction process. 図13は、還元工程を含むガスの供給例を示す図である。FIG. 13 is a diagram illustrating an example of gas supply including a reduction process. 図14は、第1の実施形態における酸素のガス流量と時間との関係の一例について示す図である。FIG. 14 is a diagram showing an example of the relationship between the oxygen gas flow rate and time in the first embodiment. 図15は、第1の実施形態における効果の一例を示すための図である。FIG. 15 is a diagram for illustrating an example of the effect in the first embodiment. 図16は、第1の実施形態による効果の一例を示す図である。FIG. 16 is a diagram illustrating an example of the effect according to the first embodiment. 図17は、第1の実施形態による効果の一例を示す図である。FIG. 17 is a diagram illustrating an example of the effect according to the first embodiment. 図18は、第1の実施形態による効果の一例を示す図である。FIG. 18 is a diagram illustrating an example of the effect according to the first embodiment. 図19は、CVD装置とエッチング装置とを有する処理装置の一例を示す図である。FIG. 19 is a diagram illustrating an example of a processing apparatus having a CVD apparatus and an etching apparatus. 図20は、CVD装置の処理チャンバの構造の一例を示す図である。FIG. 20 is a diagram showing an example of the structure of the processing chamber of the CVD apparatus.
 以下に、開示する被処理体の処理方法の実施形態について、図面に基づいて詳細に説明する。なお、本実施形態により開示する発明が限定されるものではない。各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Hereinafter, an embodiment of a processing method of an object to be disclosed will be described in detail based on the drawings. The invention disclosed by this embodiment is not limited. Each embodiment can be appropriately combined as long as the processing contents do not contradict each other.
(第1の実施形態)
 第1の実施形態に係る被処理体の処理方法では、実施形態の一例において、所定のパターンのマスク層が基板に設けられ、基板のマスク層が設けられる側の面のうちマスク層に覆われていない部分と、マスク層の露出している面の一部又は全てを覆うように設けられる金属膜を有する被処理体を加熱する加熱工程を含む。また、酸素とβ-ジケトンとを含む処理ガスを供給する供給工程を含む。また、処理ガスにおけるβ-ジケトンに対する酸素の流量比を、金属膜を酸化して形成される金属酸化物の生成速度が金属酸化物とβ-ジケトンとが反応して形成される錯体の生成速度を超えない範囲に制御する制御工程を含む。
(First embodiment)
In the processing method for an object to be processed according to the first embodiment, in an example of the embodiment, a mask layer having a predetermined pattern is provided on the substrate, and is covered with the mask layer on the surface of the substrate on which the mask layer is provided. A heating step of heating an object to be processed having a metal film provided so as to cover the part that is not exposed and part or all of the exposed surface of the mask layer. Further, a supply step of supplying a processing gas containing oxygen and β-diketone is included. Further, the flow rate ratio of oxygen to β-diketone in the processing gas is determined based on the rate of formation of the metal oxide formed by oxidizing the metal film, and the rate of formation of the complex formed by the reaction between the metal oxide and β-diketone. Including a control step of controlling to a range not exceeding.
 また、第1の実施形態に係る被処理体の処理方法では、実施形態の一例において、供給工程は、金属膜を酸化して金属酸化物を形成する工程と、金属酸化物とβ-ジケトンとを反応させて錯体を形成する工程と、錯体を昇華する工程とを含む。 In the processing method of the object to be processed according to the first embodiment, in one example of the embodiment, the supplying step includes a step of oxidizing a metal film to form a metal oxide, a metal oxide, a β-diketone, And a step of forming a complex and a step of sublimating the complex.
 また、第1の実施形態に係る被処理体の処理方法では、実施形態の一例において、β-ジケトンとして、例えば、ヘキサフルオロアセチルアセトンを用いる。 Further, in the processing method of the object to be processed according to the first embodiment, in one example of the embodiment, for example, hexafluoroacetylacetone is used as the β-diketone.
 また、第1の実施形態に係る被処理体の処理方法では、実施形態の一例において、例えば、処理ガスにおけるヘキサフルオロアセチルアセトンに対する酸素の流量比が、1%以下である。 Further, in the processing method for an object to be processed according to the first embodiment, in one example of the embodiment, for example, the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas is 1% or less.
 また、第1の実施形態に係る被処理体の処理方法では、実施形態の一例において、例えば、供給工程は、処理ガスにおけるヘキサフルオロアセチルアセトンに対する酸素の流量比を、時間の経過とともに減少させる。 In addition, in the processing method for an object to be processed according to the first embodiment, in one example of the embodiment, for example, the supplying step decreases the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas with the passage of time.
 また、第1の実施形態に係る被処理体の処理方法では、実施形態の一例において、酸素とβ-ジケトンは十分混合されてから被処理体に供給される。 Further, in the processing method of the object to be processed according to the first embodiment, in one example of the embodiment, oxygen and β-diketone are sufficiently mixed and then supplied to the object to be processed.
 また、第1の実施形態に係る被処理体の処理方法では、実施形態の一例において、混合された酸素とβ-ジケトンが、シャワー供給方式によって被処理体表面に対して供給される。 Further, in the processing method of the object to be processed according to the first embodiment, in the example of the embodiment, the mixed oxygen and β-diketone are supplied to the surface of the object to be processed by the shower supply method.
(第1の実施形態における基板処理装置の構成)
 図1は、第1の実施形態における基板処理装置の構成の一例を示す図である。図1に示す例では、基板処理装置がエッチング装置である場合を例に示したが、これに限定されるものではなく、CVD(Chemical Vapor Deposition)装置、PVD装置、ALD(Atomic Layer Deposition)装置等の成膜装置を兼ねていても良く、以下に詳細に説明する被処理体の処理方法を実現可能となる任意の装置であっても良い。
(Configuration of the substrate processing apparatus in the first embodiment)
FIG. 1 is a diagram illustrating an example of a configuration of a substrate processing apparatus according to the first embodiment. In the example shown in FIG. 1, the case where the substrate processing apparatus is an etching apparatus is shown as an example. However, the present invention is not limited to this, but a CVD (Chemical Vapor Deposition) apparatus, PVD apparatus, ALD (Atomic Layer Deposition) apparatus. It may also serve as a film forming apparatus such as the above, and may be any apparatus capable of realizing the processing method of the object to be processed which will be described in detail below.
 図1に示すように、エッチング装置100は、略円筒状に形成され内部を気密に閉塞可能とされた処理チャンバ10を具備している。図1に示すように、処理チャンバ10には、処理ガスを供給するためのガス供給機構200と、排気機構300が接続されている。ガス供給機構200は、酸素供給系210と、β-ジケトン供給系220とを具備している。なおここでは、β-ジケトンとしてヘキサフルオロアセチルアセトンを供給する場合を例として説明する。 As shown in FIG. 1, an etching apparatus 100 includes a processing chamber 10 that is formed in a substantially cylindrical shape and can be hermetically closed. As shown in FIG. 1, a gas supply mechanism 200 for supplying a processing gas and an exhaust mechanism 300 are connected to the processing chamber 10. The gas supply mechanism 200 includes an oxygen supply system 210 and a β-diketone supply system 220. Here, a case where hexafluoroacetylacetone is supplied as β-diketone will be described as an example.
 酸素供給系210は、窒素ガス供給源に接続された第1窒素供給配管211と酸素ガス供給源に接続された酸素供給配管212とを具備している。第1窒素供給配管211には、マスフローコントローラ(MFC1)213が介挿されており、酸素供給配管212には、マスフローコントローラ(MFC2)214が介挿されている。マスフローコントローラ(MFC1)213の上流側及び下流側にはバルブV1,V2が介挿され、マスフローコントローラ(MFC2)214の上流側及び下流側にはバルブV3,V4が介挿されている。第1窒素供給配管211と酸素供給配管212は、合流して主配管201に接続されている。第1窒素供給配管211と酸素供給配管212の合流点の下流側には、バルブV11が介挿されている。 The oxygen supply system 210 includes a first nitrogen supply pipe 211 connected to a nitrogen gas supply source and an oxygen supply pipe 212 connected to the oxygen gas supply source. A mass flow controller (MFC1) 213 is inserted in the first nitrogen supply pipe 211, and a mass flow controller (MFC2) 214 is inserted in the oxygen supply pipe 212. Valves V1 and V2 are inserted upstream and downstream of the mass flow controller (MFC1) 213, and valves V3 and V4 are inserted upstream and downstream of the mass flow controller (MFC2) 214. The first nitrogen supply pipe 211 and the oxygen supply pipe 212 merge and are connected to the main pipe 201. A valve V <b> 11 is inserted on the downstream side of the junction of the first nitrogen supply pipe 211 and the oxygen supply pipe 212.
 β-ジケトン供給系220は、窒素ガス供給源に接続された第2窒素供給配管221とHhfac容器223に接続されたHhfac供給配管222とを具備している。第2窒素供給配管221には、マスフローコントローラ(MFC3)225が介挿されており、Hhfac供給配管222には、マスフローコントローラ(MFC4)226が介挿されている。マスフローコントローラ(MFC3)225の上流側及び下流側にはバルブV5,V6が介挿され、マスフローコントローラ(MFC4)226の上流側及び下流側にはバルブV7,V8が介挿されている。第2窒素供給配管221とHhfac供給配管222は、合流して主配管201に接続されている。第2窒素供給配管221とHhfac供給配管222の合流点の下流側には、バルブV12が介挿されている。また、Hhfac容器223には、キャリアガスを供給してバブリングするためのキャリアガス供給配管224が接続されている。キャリアガス供給配管224には、バルブV9が介挿され、Hhfac容器223の出口側のHhfac供給配管222には、バルブV10が介挿されている。 The β-diketone supply system 220 includes a second nitrogen supply pipe 221 connected to a nitrogen gas supply source and an Hhfac supply pipe 222 connected to the Hhfac container 223. A mass flow controller (MFC3) 225 is inserted in the second nitrogen supply pipe 221, and a mass flow controller (MFC4) 226 is inserted in the Hhfac supply pipe 222. Valves V5 and V6 are inserted upstream and downstream of the mass flow controller (MFC3) 225, and valves V7 and V8 are inserted upstream and downstream of the mass flow controller (MFC4) 226. The second nitrogen supply pipe 221 and the Hhfac supply pipe 222 merge and are connected to the main pipe 201. A valve V <b> 12 is inserted downstream of the junction of the second nitrogen supply pipe 221 and the Hhfac supply pipe 222. The Hhfac container 223 is connected to a carrier gas supply pipe 224 for supplying and bubbling a carrier gas. A valve V9 is inserted in the carrier gas supply pipe 224, and a valve V10 is inserted in the Hhfac supply pipe 222 on the outlet side of the Hhfac container 223.
 酸素供給系210と、β-ジケトン供給系220が接続された主配管201は、処理チャンバ10に接続されている。また、主配管201には、主配管201から分岐し処理チャンバ10をバイパスして排気機構300に接続するバイパス配管202が配設されている。主配管201のバイパス配管202の分岐点より下流側にはバルブV13が介挿されており、バイパス配管202には、バルブV14が介挿されている。 The main pipe 201 to which the oxygen supply system 210 and the β-diketone supply system 220 are connected is connected to the processing chamber 10. The main pipe 201 is provided with a bypass pipe 202 that branches from the main pipe 201 and bypasses the processing chamber 10 and connects to the exhaust mechanism 300. A valve V13 is inserted downstream from the branch point of the bypass pipe 202 of the main pipe 201, and a valve V14 is inserted in the bypass pipe 202.
 排気機構300はドライポンプ301を具備しており、排気管302によってドライポンプ301は処理チャンバ10に接続されている。排気管302には、自動圧力制御装置(APC)303が介挿されており、自動圧力制御装置(APC)303の上流側及び下流側には、夫々バルブV15,V16が介挿されている。 The exhaust mechanism 300 includes a dry pump 301, and the dry pump 301 is connected to the processing chamber 10 by an exhaust pipe 302. An automatic pressure control device (APC) 303 is inserted in the exhaust pipe 302, and valves V15 and V16 are inserted on the upstream side and the downstream side of the automatic pressure control device (APC) 303, respectively.
 図2は、第1の実施形態における処理チャンバの概略構成の一例を示す図である。図2に示すように、処理チャンバ10内には、被処理体としての半導体ウエハを載置するためのステージ11が配設されている。このステージ11には、半導体ウエハを所定温度に加熱するための図示しないヒータが設けられている。また、ステージ11には、図示しない駆動機構によって上下に移動され、ステージ11上に出没自在とされた複数のリフトピン12が設けられている。これらのリフトピン12は、半導体ウエハをステージ11上に搬入及び搬出する際に、一時的に半導体ウエハをステージ11の上方に支持するためのものである。 FIG. 2 is a diagram illustrating an example of a schematic configuration of a processing chamber according to the first embodiment. As shown in FIG. 2, a stage 11 for placing a semiconductor wafer as an object to be processed is disposed in the processing chamber 10. The stage 11 is provided with a heater (not shown) for heating the semiconductor wafer to a predetermined temperature. Further, the stage 11 is provided with a plurality of lift pins 12 that are moved up and down by a drive mechanism (not shown) and are allowed to appear and retract on the stage 11. These lift pins 12 are for temporarily supporting the semiconductor wafer above the stage 11 when the semiconductor wafer is carried in and out of the stage 11.
 処理チャンバ10の天井部には、ステージ11と間隔を設けて対向するように、シャワーヘッド13が配設されている。シャワーヘッド13には、多数のガス噴出孔14が設けられており、これらのガス噴出孔14からステージ11上の半導体ウエハに向けて所定の処理ガスを供給するようになっている。クリーニングガスについても、このシャワーヘッド13のガス噴出孔14から処理チャンバ10内に供給される。なお、処理チャンバ10には、図1に示した排気機構300が接続されている。なお、シャワーヘッド13内には分散板101が設置されている。そのため、酸素供給系210から供給された窒素ガスで希釈された酸素ガスと、β-ジケトン供給系220から供給されたHhfacガスは、被処理体に供給される前に十分に混合される。また、シャワーヘッド13を用いているため、被処理体表面に均一にガスを供給することができる。 A shower head 13 is disposed on the ceiling of the processing chamber 10 so as to face the stage 11 with a gap. A large number of gas ejection holes 14 are provided in the shower head 13, and a predetermined processing gas is supplied from these gas ejection holes 14 toward the semiconductor wafer on the stage 11. The cleaning gas is also supplied into the processing chamber 10 from the gas ejection holes 14 of the shower head 13. Note that the exhaust mechanism 300 shown in FIG. 1 is connected to the processing chamber 10. A dispersion plate 101 is installed in the shower head 13. Therefore, the oxygen gas diluted with the nitrogen gas supplied from the oxygen supply system 210 and the Hhfac gas supplied from the β-diketone supply system 220 are sufficiently mixed before being supplied to the object to be processed. Further, since the shower head 13 is used, the gas can be uniformly supplied to the surface of the object to be processed.
 CVD装置は、ステージ上に半導体ウエハを載置して所定温度に加熱するとともに、シャワーヘッドのガス噴出孔から所定の処理ガスを半導体ウエハに供給して、半導体ウエハ上にCVDにより所定の膜、例えば、Ni(ニッケル)、Co(コバルト)、Cu(銅)、Ru(ルテニウム)などの金属膜を形成する。所定の膜が形成された半導体ウエハは、エッチング装置100に搬送される。なお、CVD装置とエッチング装置100間は、真空中にて搬送されている。こうすると、製膜された金属膜の自然酸化を抑制することができる。 A CVD apparatus places a semiconductor wafer on a stage and heats it to a predetermined temperature, and supplies a predetermined processing gas to the semiconductor wafer from a gas ejection hole of a shower head, and forms a predetermined film on the semiconductor wafer by CVD. For example, a metal film such as Ni (nickel), Co (cobalt), Cu (copper), or Ru (ruthenium) is formed. The semiconductor wafer on which the predetermined film is formed is transferred to the etching apparatus 100. The CVD apparatus and the etching apparatus 100 are transported in a vacuum. In this way, natural oxidation of the formed metal film can be suppressed.
 また、以下に詳細に説明するように、エッチング装置100では、加熱工程と供給工程と制御工程とを実行する。加熱工程では、被処理体を加熱する。供給工程では、エッチング装置100は、酸素とβ-ジケトンとを含む処理ガスを供給する。ここで、被処理体は、所定のパターンのマスク層が基板に設けられ、基板のマスク層が設けられる側の面のうちマスク層に覆われていない部分と、マスク層の露出している面の一部又は全てを覆うように設けられる金属膜を有する。また、制御工程では、エッチング装置100は、処理ガスにおけるβ-ジケトンに対する酸素の流量比を、金属酸化物の生成速度が錯体の生成速度を超えない範囲に制御する。 Also, as will be described in detail below, the etching apparatus 100 performs a heating process, a supply process, and a control process. In the heating step, the object to be processed is heated. In the supply process, the etching apparatus 100 supplies a processing gas containing oxygen and β-diketone. Here, the object to be processed includes a mask layer having a predetermined pattern provided on the substrate, and a portion of the surface of the substrate on which the mask layer is provided that is not covered with the mask layer and a surface on which the mask layer is exposed. A metal film provided so as to cover a part or all of the metal film. In the control step, the etching apparatus 100 controls the flow rate ratio of oxygen to β-diketone in the processing gas so that the metal oxide formation rate does not exceed the complex formation rate.
 図3は、第1の実施形態に係る被処理体の処理方法における処理の流れの一例を示す図である。図3の(a)は、第1の実施形態に係る被処理体の処理方法による処理対象となる被処理体400の構造の一例を示す。図3の(a)に示すように、被処理体400は、基板401の上に、所定のパターンを有するマスク層402を有する。また、被処理体400は、基板401のマスク層402が設けられる側の面のうちマスク層402に覆われていない部分と、マスク層402の露出している面の一部又は全てを覆うように設けられる金属膜403を有する。なお、図3の(a)に示す例では、金属膜403がホールやトレンチの側面にも形成され、ホールやトレンチの底部に設けられた金属膜403と、マスク層402の上部に設けられた金属膜403とが連続している場合を例に示したが、これに限定されるものではない。 FIG. 3 is a diagram illustrating an example of a processing flow in the processing method of the target object according to the first embodiment. FIG. 3A shows an example of the structure of the object 400 to be processed by the object processing method according to the first embodiment. As illustrated in FIG. 3A, the target object 400 includes a mask layer 402 having a predetermined pattern on a substrate 401. Further, the object to be processed 400 covers a portion of the surface of the substrate 401 on which the mask layer 402 is provided that is not covered with the mask layer 402 and a part or all of the exposed surface of the mask layer 402. A metal film 403 is provided. In the example shown in FIG. 3A, the metal film 403 is also formed on the side surface of the hole or trench, and is provided on the top of the mask layer 402 and the metal film 403 provided at the bottom of the hole or trench. Although the case where the metal film 403 is continuous is shown as an example, the present invention is not limited to this.
 例えば、図3の(a)に示す被処理体400は、所定のパターンを有するマスク層402が形成されたシリコン基板に対して、任意のPVD装置やCVD装置、ALD装置により金属膜403を被覆することで形成される。より詳細な一例をあげて説明すると、アスペクトレシオが「4」以上である直径100nmのホールパターンがマスク層402により形成されている場合、PVD装置により、ニッケルを用いて、フィールド膜厚50nmの金属膜を形成する。ここで、カバレッジが「10%」の場合には、ホールの底部の膜厚は「5nm」となる。ここで、金属膜403は、例えば、ニッケルやコバルト、銅、ルテニウムなどの金属のうち、1種又は複数の合金で形成される。 For example, in the object 400 shown in FIG. 3A, a metal film 403 is covered with an arbitrary PVD apparatus, CVD apparatus, or ALD apparatus on a silicon substrate on which a mask layer 402 having a predetermined pattern is formed. It is formed by doing. To explain with a more detailed example, when a hole pattern with a diameter of 100 nm having an aspect ratio of “4” or more is formed by the mask layer 402, a metal with a field thickness of 50 nm is formed using nickel by a PVD apparatus. A film is formed. Here, when the coverage is “10%”, the film thickness at the bottom of the hole is “5 nm”. Here, the metal film 403 is formed of, for example, one or more alloys of metals such as nickel, cobalt, copper, and ruthenium.
 ここで、第1の実施形態に係る被処理体の制御方法によれば、被処理体400を加熱する加熱工程を実行する。また、第1の実施形態に係る被処理体の制御方法によれば、酸素とβ-ジケトンとを含む処理ガスを供給する供給工程を実行する。具体的には、供給工程では、加熱工程により加熱されている際、酸素とβ-ジケトンとを含む処理ガスを供給することで、図3の(b)に示すように、金属膜403を酸化して金属酸化物404を形成し、図3の(c)に示すように、金属酸化物404とβ-ジケトンとを反応させて錯体を形成し、錯体を昇華する。例えば、図3の(c)に示すように、錯体を金属錯体ガス405として昇華させる。 Here, according to the method for controlling an object to be processed according to the first embodiment, a heating process for heating the object to be processed 400 is executed. Further, according to the method for controlling an object to be processed according to the first embodiment, a supply step of supplying a processing gas containing oxygen and β-diketone is executed. Specifically, in the supply step, the metal film 403 is oxidized as shown in FIG. 3B by supplying a processing gas containing oxygen and β-diketone while being heated in the heating step. Then, a metal oxide 404 is formed, and as shown in FIG. 3C, the metal oxide 404 and β-diketone are reacted to form a complex, and the complex is sublimated. For example, the complex is sublimated as a metal complex gas 405 as shown in FIG.
 例えば、エッチング装置100は、ステージヒータなどで被処理体を加熱した上で、N2ガスを処理チャンバ10内に流して圧力を自動圧力制御装置(APC)303により13300Pa(100Torr)になるように調整する。より好ましくは、CVD装置では、窒素ガスを処理チャンバ10内に流して圧力を1330Pa以上になるように調整する。その後、エッチング装置100は、酸素とβ-ジケトンとを含む処理ガスを処理チャンバ10内に流す。 For example, the etching apparatus 100 adjusts the pressure to 13300 Pa (100 Torr) by an automatic pressure controller (APC) 303 by flowing N 2 gas into the processing chamber 10 after heating the object to be processed with a stage heater or the like. To do. More preferably, in the CVD apparatus, the pressure is adjusted to 1330 Pa or more by flowing nitrogen gas into the processing chamber 10. Thereafter, the etching apparatus 100 causes a processing gas containing oxygen and β-diketone to flow into the processing chamber 10.
 ここで、β-ジケトンとしては、カルボニル基に結合したアルキル基がハロゲン原子を有しているβ-ジケトンを使用することが好ましく、例えば、ヘキサフルオロアセチルアセトン(Hhfac)が良い。Hhfacが好ましいのは、ハロゲン原子は誘起効果が大きいので、この影響からカルボニル基の酸素原子の電子密度が小さくなり、この酸素原子に結びついている水素原子が水素イオンとして解離し易くなるからである。この解離が起こり易いほど反応性は高くなる。また、被処理体を加熱する温度は、任意の温度で良く、例えば、200℃~400℃が好ましい。 Here, as the β-diketone, it is preferable to use a β-diketone in which the alkyl group bonded to the carbonyl group has a halogen atom. For example, hexafluoroacetylacetone (Hhfac) is preferable. Hhfac is preferable because the halogen atom has a large inducing effect, and this influence reduces the electron density of the oxygen atom of the carbonyl group, and the hydrogen atom bonded to the oxygen atom is easily dissociated as a hydrogen ion. . The reactivity increases as the dissociation easily occurs. Further, the temperature for heating the object to be processed may be any temperature, for example, 200 ° C. to 400 ° C. is preferable.
 例えば、エッチング装置100は、ヘキサフルオロアセチルアセトンに対する酸素の流量比が「1%」以下とした上で、例えば、ヘキサフルオロアセチルアセトンを50sccm流す。また、処理ガスを処理チャンバ10内に流す際には、処理チャンバ10内の圧力を80Torr(10670Pa)以上、より好ましくは1330Pa以上になるように調整する。例えば、エッチング装置100では、1330Paとなるように調整する。 For example, the etching apparatus 100 allows the flow ratio of oxygen to hexafluoroacetylacetone to be “1%” or less, and flows, for example, 50 sccm of hexafluoroacetylacetone. Further, when the processing gas is flowed into the processing chamber 10, the pressure in the processing chamber 10 is adjusted to 80 Torr (10670 Pa) or more, more preferably 1330 Pa or more. For example, in the etching apparatus 100, the pressure is adjusted to 1330 Pa.
 このように、処理チャンバ10内では、処理ガスにおいて酸素の占める割合がヘキサフルオロアセチルアセトンと比較して相対的に十分小さい結果、金属膜403のうち、所定のパターンを有するマスク層402の上部にある部分の酸化が、ホールの内部やホールの底にある金属膜403と比較して優先的に進む。次に、金属膜403のうち優先的に酸化された部分のみにおいて、β-ジケトンによる錯体の形成が進行する。そして、熱エネルギーが加わることで形成された錯体は、昇華される。このようにして、金属膜403のうち優先的に酸化された部分は除去され、新たな金属表面となる。金属表面は、さらに酸素と反応し酸化される。このようにして、優先的な酸化が繰り返される。ここで、供給する酸素が微小量の場合、酸素は、パターン上部の金属酸化にのみ消費されるため、パターン下部までには供給されない。また、同様に、処理チャンバ10内の圧力が、例えば、1330Paとなるように調整される結果、酸素のホールパターン内への拡散が抑制され、金属膜403のうち、所定のパターンを有するマスク層402の上部にある部分の酸化が、ホールの内部やホールの底にある金属膜403と比較して更に優先的に選択的に進む。 As described above, in the processing chamber 10, the proportion of oxygen in the processing gas is relatively sufficiently small compared to that of hexafluoroacetylacetone. As a result, the metal film 403 is above the mask layer 402 having a predetermined pattern. The oxidation of the portion proceeds preferentially as compared with the metal film 403 inside the hole or at the bottom of the hole. Next, formation of a complex with β-diketone proceeds only in a portion of the metal film 403 that has been preferentially oxidized. And the complex formed by adding heat energy is sublimated. In this way, the preferentially oxidized portion of the metal film 403 is removed to form a new metal surface. The metal surface is further reacted with oxygen and oxidized. In this way, preferential oxidation is repeated. Here, when a small amount of oxygen is supplied, oxygen is consumed only for the metal oxidation on the upper part of the pattern, and thus is not supplied to the lower part of the pattern. Similarly, as a result of adjusting the pressure in the processing chamber 10 to be, for example, 1330 Pa, diffusion of oxygen into the hole pattern is suppressed, and the mask layer having a predetermined pattern in the metal film 403 is suppressed. Oxidation of the portion at the top of 402 proceeds more selectively and preferentially than the metal film 403 inside the hole or at the bottom of the hole.
 例えば、金属膜403がニッケルで形成され、β-ジケトンがヘキサフルオロアセチルアセトンである場合を用いて説明する。この場合、ニッケルが酸化されてNiOを形成し、その後、Hhfacと反応してHOとNi(hfac)2を形成してガス化してエッチングされる。 For example, the case where the metal film 403 is formed of nickel and the β-diketone is hexafluoroacetylacetone will be described. In this case, nickel is oxidized to form NiO, and then reacts with Hhfac to form H 2 O and Ni (hfac) 2 to be gasified and etched.
 また、処理ガスにおけるβ-ジケトンに対する酸素の流量比を、金属酸化物の生成速度が錯体の生成速度を超えない範囲、かつ、被エッチング部のみに金属酸化物が形成される範囲に制御する制御工程を実行する。例えば、処理ガスにおけるヘキサフルオロアセチルアセトンに対する酸素の流量比が「1Vol%以下」となるように調整する。 In addition, the flow rate ratio of oxygen to β-diketone in the processing gas is controlled so that the metal oxide formation rate does not exceed the complex formation rate and the metal oxide is formed only in the etched portion. Execute the process. For example, the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas is adjusted to be “1 Vol% or less”.
 ここで、処理ガスにおけるヘキサフルオロアセチルアセトンに対する酸素の流量比を、金属酸化物の生成速度、錯体の生成速度を超えない範囲とする点、および、被エッチング部のみに金属酸化物が形成される範囲とする点について補足する。 Here, the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas is within a range not exceeding the metal oxide formation rate and complex formation rate, and the range in which the metal oxide is formed only in the etched portion. I will supplement the points.
 図4は、Niのエッチング厚さと酸素流量との関係を示すグラフである。図4のグラフは、縦軸をNiのエッチング厚さ(nm)、横軸を酸素流量(sccm)として、上記処理ガスでニッケル(Ni)を10分間エッチングした時のエッチング厚さを、酸素の流量を変化させて調べた結果を示している。エッチング条件は、温度325℃、圧力13300Pa(100Torr)、処理ガスは、ヘキサフルオロアセチルアセトンの流量を50sccmで一定とし、窒素と酸素の合計流量を50sccmとして、酸素流量を0から10sccmの間で変化させた。 FIG. 4 is a graph showing the relationship between the etching thickness of Ni and the oxygen flow rate. In the graph of FIG. 4, the vertical axis represents the etching thickness of Ni (nm) and the horizontal axis represents the oxygen flow rate (sccm). The result of examining by changing the flow rate is shown. Etching conditions are a temperature of 325 ° C., a pressure of 13300 Pa (100 Torr), a processing gas is a constant hexafluoroacetylacetone flow rate of 50 sccm, a total flow rate of nitrogen and oxygen is 50 sccm, and the oxygen flow rate is varied between 0 and 10 sccm. It was.
 酸素流量が0の場合、ニッケル材料のエッチングは生じなかった。また、酸素を0.5sccm添加するとニッケル材料のエッチングが起き、ニッケル材料のエッチング量は、酸素流量が2.5sccmとなるまで、略直線的に増加した。しかし、酸素流量が2.5sccmを超えると急速にニッケル材料のエッチング量が減少し、酸素流量が5.0sccm以上となるとニッケル材料のエッチング量が略「0」となった。 When the oxygen flow rate was 0, the nickel material was not etched. Further, when 0.5 sccm of oxygen was added, etching of the nickel material occurred, and the etching amount of the nickel material increased substantially linearly until the oxygen flow rate became 2.5 sccm. However, when the oxygen flow rate exceeded 2.5 sccm, the etching amount of the nickel material rapidly decreased, and when the oxygen flow rate became 5.0 sccm or more, the etching amount of the nickel material became substantially “0”.
 ここで、発明者の鋭意研究の結果、処理ガスにおけるヘキサフルオロアセチルアセトンに対する酸素の流量比が「1Vol%以下」とすれば、被エッチング部のみに金属酸化物が形成される範囲となることが分かった。また、酸素ガス流量比をより少量とする場合は、酸素ガスを窒素ガスにて希釈して供給してもよい。このように希釈して供給すると少量の酸素ガスであっても制御性よく供給することができる。 Here, as a result of the inventor's diligent research, it is found that if the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas is “1 vol% or less”, the metal oxide is formed only in the etched portion. It was. When the oxygen gas flow rate ratio is made smaller, the oxygen gas may be diluted with nitrogen gas and supplied. When diluted and supplied in this way, even a small amount of oxygen gas can be supplied with good controllability.
 なお、本件実施の形態では、酸素とβ-ジケトンとを含む処理ガスはシャワーヘッド13から供給されている。このようにすると被処理体表面の酸素濃度に偏る虞がなく、処理ガスを被処理体表面に均一に供給することができる。一方、供給するガスに偏りがあった場合は、局所的に酸素濃度が濃くなるため、被処理体表面の形状によっては、優先的に酸化したくない場所にも酸素が供給されてしまう虞がある。 In the present embodiment, the treatment gas containing oxygen and β-diketone is supplied from the shower head 13. In this way, there is no risk of unevenness in the oxygen concentration on the surface of the object to be processed, and the processing gas can be supplied uniformly to the surface of the object to be processed. On the other hand, when there is a bias in the gas to be supplied, the oxygen concentration is locally increased. Therefore, depending on the shape of the surface of the object to be processed, there is a possibility that oxygen may be supplied to a place where it is not preferentially oxidized. is there.
 図4に示す結果は、ニッケル材料のエッチングを行う場合、酸素の存在が必要であるが、酸素が過剰となった場合もニッケル材料のエッチングが進行しないことを示している。これは、酸素が過剰となると酸素によるニッケル表面の酸化が進行し過ぎて、酸化ニッケルによってニッケル材料の表面が覆いつくされてしまい、この状態となると酸化ニッケルとヘキサフルオロアセチルアセトンとの反応が進行せず、錯体が形成されなくなってしまうからと推測される。すなわち、酸化ニッケルとヘキサフルオロアセチルアセトンとの反応が進行するためには、酸化されていないニッケルの存在が必要であり、この酸化されていないニッケルが酸化ニッケルとヘキサフルオロアセチルアセトンとの反応において触媒的作用をしているものと考えられる。 The results shown in FIG. 4 indicate that the presence of oxygen is necessary when etching the nickel material, but the etching of the nickel material does not proceed even when oxygen becomes excessive. This is because when the oxygen is excessive, the nickel surface is excessively oxidized by the oxygen, and the surface of the nickel material is covered by the nickel oxide. In this state, the reaction between nickel oxide and hexafluoroacetylacetone proceeds. It is presumed that no complex is formed. In other words, in order for the reaction between nickel oxide and hexafluoroacetylacetone to proceed, the presence of unoxidized nickel is necessary, and this unoxidized nickel acts as a catalyst in the reaction between nickel oxide and hexafluoroacetylacetone. It is thought that it is doing.
 そして、処理ガスにおけるヘキサフルオロアセチルアセトンに対する酸素の流量比を、酸素によるニッケルの酸化により生成される酸化ニッケル(金属酸化物)の生成速度が、酸化ニッケルとヘキサフルオロアセチルアセトンとの反応によって生成される錯体の生成速度を超えない範囲、すなわち、図4に示す「酸化とエッチングのバランスポイント」より酸素流量が少ない範囲とすれば、エッチングが進行する。 Then, the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas is determined based on the rate at which nickel oxide (metal oxide) produced by oxidation of nickel with oxygen is produced by the reaction between nickel oxide and hexafluoroacetylacetone. Etching progresses if the oxygen flow rate is within a range that does not exceed the generation rate of oxygen, that is, a range in which the oxygen flow rate is smaller than the “balance point between oxidation and etching” shown in FIG.
 図4に示す「酸化とエッチングのバランスポイント」は、酸素流量が2.5sccmの場合であり、この時のヘキサフルオロアセチルアセトンに対する酸素の流量比は、2.5/50=5%である。この「酸化とエッチングのバランスポイント」では、エッチング量が最高となるため、実際にドライエッチングを行う場合、この「酸化とエッチングのバランスポイント」の近傍のヘキサフルオロアセチルアセトンに対する酸素の流量比を選択することによって、効率良く金属膜403のエッチングを行うことができる。一方、「酸化とエッチングのバランスポイント」よりも酸素の流量比が少ない領域では、制御性よく金属膜403のエッチングを行うことができる。図4に示す例は、加熱温度が325℃の場合であり、上記した「酸化とエッチングのバランスポイント」は、加熱温度によって変動する。 The “balance point between oxidation and etching” shown in FIG. 4 is when the oxygen flow rate is 2.5 sccm, and the flow rate ratio of oxygen to hexafluoroacetylacetone at this time is 2.5 / 50 = 5%. At this “balance point between oxidation and etching”, the etching amount is the highest, so when actually performing dry etching, the flow rate ratio of oxygen to hexafluoroacetylacetone near this “balance point between oxidation and etching” is selected. Thus, the metal film 403 can be efficiently etched. On the other hand, the metal film 403 can be etched with good controllability in a region where the flow rate ratio of oxygen is smaller than the “balance point between oxidation and etching”. The example shown in FIG. 4 is a case where the heating temperature is 325 ° C., and the above “balance point between oxidation and etching” varies depending on the heating temperature.
 その後、供給工程では、処理ガスにおけるヘキサフルオロアセチルアセトンに対する酸素の流量比を、時間の経過とともに減少させる。すなわち、例えば、処理ガスを流しながら、時間経過とともに望ましい金属膜形状とすることを目的として、酸素ガスの流量を主に少ない方に調整する。 Thereafter, in the supply process, the flow rate ratio of oxygen to hexafluoroacetylacetone in the processing gas is decreased with the passage of time. That is, for example, the flow rate of oxygen gas is mainly adjusted to be smaller for the purpose of obtaining a desirable metal film shape with the passage of time while flowing the processing gas.
 例えば、図4にあるように、所定の被処理基板の温度に対して、酸素不足領域では酸素ガス流量に比例してエッチングレートが変化する。図3(a)にあるエッチングするべき初期ニッケル膜の被覆形状に応じて、初期の酸素ガス流量と酸素ガスを混合する時間を決め、望ましい形状になるように酸素ガス流量を段階的に少なくする。そうすることで、ニッケル膜のエッチング速度が減少し、形状を整えることが出来る。その際、酸素流量は図14に示すように、複数の段階的に変化させてもよいし、連続的に減少させても良い。 For example, as shown in FIG. 4, the etching rate changes in proportion to the oxygen gas flow rate in the oxygen-deficient region with respect to a predetermined temperature of the substrate to be processed. The initial oxygen gas flow rate and the time for mixing the oxygen gas are determined according to the coating shape of the initial nickel film to be etched in FIG. 3A, and the oxygen gas flow rate is decreased stepwise so as to obtain a desired shape. . By doing so, the etching rate of the nickel film is reduced and the shape can be adjusted. At that time, as shown in FIG. 14, the oxygen flow rate may be changed in a plurality of steps or may be decreased continuously.
 図14は、第1の実施形態における酸素のガス流量と時間との関係の一例について示す図である。図14では、縦軸が酸素のガス流量を示し、横軸が、時間を示す。例えば、図3(d)の形状を得たい場合は、図14のステップ1で酸素ガス供給を停止させれば良い。また、図3(e)のようにフィールド上の金属膜およびパターン側壁部の金属を除去したい場合は、図14のステップ2で酸素供給を停止させる。さらに、パターン底部の金属膜403を薄膜化したい場合には、図14のステップ3までおこなって酸素供給を停止させる。ここで、ステップ1とステップ2とステップ3とを分ける時間のタイミングと、ステップ1における酸素のガス流量を示す「FR1」、ステップ2における酸素のガス流量を示す「FR2」、ステップ3における酸素のガス流量を示す「FR3」は、それぞれ、プロセスごとに決定される。 FIG. 14 is a diagram showing an example of the relationship between the oxygen gas flow rate and time in the first embodiment. In FIG. 14, the vertical axis represents the oxygen gas flow rate, and the horizontal axis represents time. For example, when it is desired to obtain the shape of FIG. 3D, the oxygen gas supply may be stopped in step 1 of FIG. If it is desired to remove the metal film on the field and the metal on the pattern side wall as shown in FIG. 3E, the oxygen supply is stopped in step 2 of FIG. Furthermore, when it is desired to reduce the thickness of the metal film 403 at the bottom of the pattern, the process is performed up to step 3 in FIG. 14 to stop the oxygen supply. Here, “FR1” indicating the gas flow rate of oxygen in step 1, “FR2” indicating the gas flow rate of oxygen in step 2, “FR2” indicating the oxygen gas flow rate in step 2, and the oxygen flow rate in step 3 “FR3” indicating the gas flow rate is determined for each process.
 以上のように本発明を用いれば、ウェットエッチングと異なり、エッチング速度を酸素流量で精密に制御できるので、微小量のエッチングを行って所望の形状に変形させるような精密加工が可能となる。 As described above, when the present invention is used, unlike wet etching, the etching rate can be precisely controlled by the oxygen flow rate, so that it is possible to perform precision processing such that a minute amount of etching is performed to deform into a desired shape.
 この結果、図3の(d)に示すように、図3の(a)と比較してホール入り口付近のオーバーハングがエッチングされて段差被覆性を向上可能となる。この場合、例えば、金属膜が銅で形成されている場合には、めっきの埋め込みをボイドレスで実現可能となる。 As a result, as shown in FIG. 3D, the overhang near the hole entrance is etched and the step coverage can be improved as compared with FIG. In this case, for example, when the metal film is formed of copper, the embedding of the plating can be realized by the voidless.
 また、図3の(e)に示すように、その後更に酸素の供給量を減少させるように調整しながら処理を継続することで、ボトム底部のみに金属膜403が残存するような形状を実現可能となる。この場合、その後、マスク層402をエッチングすることで、微少なドットパターンや任意のパターンを形成可能となる。また、図3の(d)と(e)との間において処理を停止し、その後リフトオフを実行することで、図3の(a)に示される被処理体と比較して確実に金属膜403のパターニングが実現可能となる。 Also, as shown in FIG. 3E, by continuing the process while adjusting the oxygen supply amount to be further reduced, a shape in which the metal film 403 remains only at the bottom bottom can be realized. It becomes. In this case, a fine dot pattern or an arbitrary pattern can be formed by etching the mask layer 402 thereafter. Further, by stopping the process between (d) and (e) in FIG. 3 and then performing lift-off, the metal film 403 is surely compared with the object to be processed shown in (a) in FIG. This patterning can be realized.
 なお、リフトオフとは、フォトリソグラフィーによりレジストパターンを形成した後に、真空蒸着やPCVDにより金属薄膜を成膜し、その後レジスト剥離液を用いてレジストと共に不要なエリアから金属膜を取り除く手法である。 Note that lift-off is a technique in which after a resist pattern is formed by photolithography, a metal thin film is formed by vacuum deposition or PCVD, and then the metal film is removed from unnecessary areas together with the resist using a resist stripping solution.
 図5は、各温度におけるNiのエッチング厚さと酸素流量との関係を示すグラフである。図5のグラフは、縦軸をNiのエッチング厚さ(nm)、横軸を酸素流量(sccm)として、加熱温度を、325℃、300℃、275℃、250℃と変更した場合のエッチング厚さ(nm)と、酸素の流量との関係を調べた結果を示している。この図4のグラフに示すように、「酸化とエッチングのバランスポイント」となる酸素流量は、加熱温度の低下に伴って低流量側にシフトする。 FIG. 5 is a graph showing the relationship between the etching thickness of Ni and the oxygen flow rate at each temperature. The graph of FIG. 5 shows the etching thickness when the vertical axis is Ni etching thickness (nm), the horizontal axis is oxygen flow rate (sccm), and the heating temperature is changed to 325 ° C., 300 ° C., 275 ° C., 250 ° C. The result of investigating the relationship between the thickness (nm) and the flow rate of oxygen is shown. As shown in the graph of FIG. 4, the oxygen flow rate that becomes the “balance point between oxidation and etching” shifts to the low flow rate side as the heating temperature decreases.
 すなわち、加熱温度が300℃の場合、「酸化とエッチングのバランスポイント」となる酸素流量は、1.5sccmであり、この場合のヘキサフルオロアセチルアセトンに対する酸素の流量比は、1.5/50=3%である。加熱温度が275℃の場合、「酸化とエッチングのバランスポイント」となる酸素流量は、1.0sccmであり、この場合のヘキサフルオロアセチルアセトンに対する酸素の流量比は、1.0/50=2%である。加熱温度が250℃の場合、「酸化とエッチングのバランスポイント」となる酸素流量は、0.5sccmであり、この場合のヘキサフルオロアセチルアセトンに対する酸素の流量比は、0.5/50=1%である。 That is, when the heating temperature is 300 ° C., the oxygen flow rate serving as the “balance point between oxidation and etching” is 1.5 sccm. In this case, the flow rate ratio of oxygen to hexafluoroacetylacetone is 1.5 / 50 = 3. %. When the heating temperature is 275 ° C., the oxygen flow rate serving as the “balance point between oxidation and etching” is 1.0 sccm, and the flow rate ratio of oxygen to hexafluoroacetylacetone in this case is 1.0 / 50 = 2%. is there. When the heating temperature is 250 ° C., the oxygen flow rate that becomes the “balance point between oxidation and etching” is 0.5 sccm, and the flow rate ratio of oxygen to hexafluoroacetylacetone in this case is 0.5 / 50 = 1%. is there.
 上記の加熱温度と、「酸化とエッチングのバランスポイント」となる酸素流量と、最高のエッチングレートを数値で示すと以下のようになる。
温度325℃の場合、最高のエッチングレート464nm/min、最適酸素流量2.5sccm。
温度300℃の場合、最高のエッチングレート282nm/min、最適酸素流量1.5sccm。
温度275℃の場合、最高のエッチングレート142nm/min、最適酸素流量1.0sccm。
温度250℃の場合、最高のエッチングレート50nm/min、最適酸素流量0.5sccm。
The above heating temperature, the oxygen flow rate that becomes the “balance point between oxidation and etching”, and the maximum etching rate are expressed as follows.
When the temperature is 325 ° C., the maximum etching rate is 464 nm / min, and the optimum oxygen flow rate is 2.5 sccm.
When the temperature is 300 ° C., the maximum etching rate is 282 nm / min, and the optimum oxygen flow rate is 1.5 sccm.
When the temperature is 275 ° C., the maximum etching rate is 142 nm / min, and the optimum oxygen flow rate is 1.0 sccm.
When the temperature is 250 ° C., the maximum etching rate is 50 nm / min, and the optimum oxygen flow rate is 0.5 sccm.
 上記の結果から、金属膜をエッチングする上では、加熱温度は200℃以上とすることが好ましい。また、加熱温度が400℃を超えるとヘキサフルオロアセチルアセトンが分解を起こすため、加熱温度は400℃以下とすることが好ましい。したがって、加熱温度は200℃~400℃程度とすることが好ましい。図6は、夫々の加熱温度における最高のエッチングレートにおけるアレニウスプロットのグラフである。縦軸をNiエッチング速度(nm/min)、横軸を1000/T(1/K)とした図6のグラフに、250℃~325℃の加熱温度の最高のエッチングレートにおけるアレニウスプロットを示す。 From the above results, when etching the metal film, the heating temperature is preferably 200 ° C. or higher. Moreover, since hexafluoroacetylacetone will decompose | disassemble when heating temperature exceeds 400 degreeC, it is preferable that heating temperature shall be 400 degrees C or less. Therefore, the heating temperature is preferably about 200 ° C. to 400 ° C. FIG. 6 is a graph of the Arrhenius plot at the highest etching rate at each heating temperature. A graph of FIG. 6 with the vertical axis representing Ni etching rate (nm / min) and the horizontal axis representing 1000 / T (1 / K) shows an Arrhenius plot at the highest etching rate at a heating temperature of 250 ° C. to 325 ° C.
 上述したヘキサフルオロアセチルアセトンに対する酸素の流量は、酸素の分圧P(O2)とヘキサフルオロアセチルアセトンの分圧P(Hhfac)との比P(O2)/P(Hhfac)として表すことができる。図7は、Niのエッチング厚さと分圧比の関係を示すグラフである。図8は、Niのエッチング厚さと分圧比の関係を示すグラフである。図7、図8のグラフは、縦軸をNiのエッチング厚さ(nm)、横軸を分圧比P(O2)/P(Hhfac)として、全圧に対する依存性を調べた結果を示したものであり、図7は加熱温度が325℃の場合、図8は加熱温度が275℃の場合を示している。 The flow rate of oxygen with respect to hexafluoroacetylacetone described above can be expressed as a ratio P (O2) / P (Hhfac) between the partial pressure P (O2) of oxygen and the partial pressure P (Hhfac) of hexafluoroacetylacetone. FIG. 7 is a graph showing the relationship between the etching thickness of Ni and the partial pressure ratio. FIG. 8 is a graph showing the relationship between the etching thickness of Ni and the partial pressure ratio. The graphs of FIGS. 7 and 8 show the results of investigating the dependence on the total pressure, with the vertical axis representing the Ni etching thickness (nm) and the horizontal axis representing the partial pressure ratio P (O2) / P (Hhfac). 7 shows a case where the heating temperature is 325 ° C., and FIG. 8 shows a case where the heating temperature is 275 ° C.
 これらのグラフにおいて、円形のプロットは、全圧が2660Pa(20Torr)、三角のプロットは、全圧が13300Pa(100Torr)、×のプロットは、全圧が23940Pa(180Torr)の場合を示している。図7、図8のグラフに示すように、全圧が変わっても、エッチング量が最大となる分圧比P(O2)/P(Hhfac)は、同じ範囲に存在する。また、加熱温度が変わっても同じ傾向を示す。 In these graphs, the circular plot indicates the case where the total pressure is 2660 Pa (20 Torr), the triangular plot indicates the total pressure is 13300 Pa (100 Torr), and the x plot indicates the case where the total pressure is 23940 Pa (180 Torr). As shown in the graphs of FIGS. 7 and 8, even when the total pressure changes, the partial pressure ratio P (O 2) / P (Hhfac) that maximizes the etching amount exists in the same range. Moreover, the same tendency is shown even if heating temperature changes.
 図9は、各全圧における最適分圧比と温度との関係を示すグラフである。図9では、縦軸を分圧比P(O2)/P(Hhfac)、横軸を温度として各温度における全圧2660(20Torr)、13300Pa(100Torr)、23940Pa(180Torr)の場合のエッチング量が最大となる最適分圧比P(O2)/P(Hhfac)をプロットしたものである。全圧が2660Pa~23940Paの範囲で、夫々の加熱温度における最大エッチング量を示す最適分圧比P(O2)/P(Hhfac)は、略同じとなる。 FIG. 9 is a graph showing the relationship between the optimum partial pressure ratio and the temperature at each total pressure. In FIG. 9, the vertical axis is the partial pressure ratio P (O2) / P (Hhfac), and the horizontal axis is the temperature. The total etching pressure at each temperature is 2660 (20 Torr), 13300 Pa (100 Torr), and 23940 Pa (180 Torr). The optimum partial pressure ratio P (O2) / P (Hhfac) is plotted. When the total pressure is in the range of 2660 Pa to 23940 Pa, the optimum partial pressure ratio P (O 2) / P (Hhfac) indicating the maximum etching amount at each heating temperature is substantially the same.
 図10は、最適分圧比と温度との関係を示すグラフである。上記の各温度におけるエッチング量が最大となる最適分圧比P(O2)/P(Hhfac)のプロットを含む範囲と、これより分圧比P(O2)/P(Hhfac)が高くなる範囲、すなわち酸素が過剰となる範囲とを仕切る線を描くと図10に示す線となる。この線は、
y(P(O2)/P(Hhfac))=1.5×4.329×10-17×T5.997
であり、したがって、分圧比P(O2)/P(Hhfac)が、
P(O2)/P(Hhfac)≦1.5×4.329×10-17×T5.997
となる範囲でプロセスを行うことが好ましい。この結果、酸素が過剰となることなく、プロセスを進めることが可能となる。
FIG. 10 is a graph showing the relationship between the optimum partial pressure ratio and temperature. A range including a plot of the optimum partial pressure ratio P (O2) / P (Hhfac) at which the etching amount at each temperature is maximum, and a range in which the partial pressure ratio P (O2) / P (Hhfac) is higher than that, that is, oxygen If the line which divides the range which becomes excessive is drawn, it will become a line shown in FIG. This line is
y (P (O2) / P (Hhfac)) = 1.5 × 4.329 × 10 −17 × T 5.997
Therefore, the partial pressure ratio P (O2) / P (Hhfac) is
P (O2) / P (Hhfac) ≦ 1.5 × 4.329 × 10 −17 × T 5.997
It is preferable to carry out the process within the range. As a result, it is possible to proceed the process without excessive oxygen.
 図11は、Niのエッチングレートと分圧比の関係を示すグラフである。図11では、縦軸をNiのエッチングレート(nm/min)、横軸を分圧比P(O2)/P(Hhfac)として、各温度(325℃、300℃、275℃、250℃)における最大エッチングレートと分圧比P(O2)/P(Hhfac)との関係をプロットしたものである。この図11に示されるように、最大エッチングレートは、分圧比P(O2)/P(Hhfac)に対して略直線上に位置する。この場合の直線は、Y=9280Xであった。 FIG. 11 is a graph showing the relationship between the etching rate of Ni and the partial pressure ratio. In FIG. 11, the vertical axis represents the Ni etching rate (nm / min) and the horizontal axis represents the partial pressure ratio P (O 2) / P (Hhfac), and the maximum at each temperature (325 ° C., 300 ° C., 275 ° C., 250 ° C.). It is a plot of the relationship between the etching rate and the partial pressure ratio P (O2) / P (Hhfac). As shown in FIG. 11, the maximum etching rate is located on a substantially straight line with respect to the partial pressure ratio P (O2) / P (Hhfac). The straight line in this case was Y = 9280X.
 上記の内容を踏まえると、400℃未満で被処理体の耐熱温度が許す限りの高温にて、その温度で最大エッチングレートを示す分圧比P(O2)/P(Hhfac)未満になるように酸素ガス流量を減少させる。その後、図3において応用上望ましい形状までエッチングが進んだら酸素供給を停止させる。 In consideration of the above contents, oxygen is set to a temperature lower than 400 ° C. as high as the heat-resistant temperature of the object allows, and to be less than a partial pressure ratio P (O 2) / P (Hhfac) indicating a maximum etching rate at that temperature. Reduce gas flow. Thereafter, the oxygen supply is stopped when the etching progresses to a shape desired for application in FIG.
 また、酸化が進み、酸化物が過剰となってしまった場合は、一旦酸素の供給を停止し、例えば、水素ガス、アンモニアガス等の還元性のガスを供給しつつ加熱するか、水素のリモートプラズマを作用させる等の還元工程を実施しても良い。また、前処理(プリコンディショニング)として還元工程を実施した後、前述した処理ガスを供給するようにしても良い。 Further, when the oxidation proceeds and the oxide becomes excessive, the supply of oxygen is temporarily stopped, for example, heating is performed while supplying a reducing gas such as hydrogen gas or ammonia gas, or a remote hydrogen gas is supplied. A reduction step such as applying plasma may be performed. Further, after the reduction process is performed as pre-processing (preconditioning), the above-described processing gas may be supplied.
 図12は、還元工程を含むガスの供給例を示す図である。図12に、前処理(プリコンディショニング)として、還元工程を行う場合のガスの供給工程の例を示す。この場合、まず、窒素と水素の供給を開始し、一定時間後に水素の供給を停止した上で、ヘキサフルオロアセチルアセトンと酸素の供給を開始する。 FIG. 12 is a diagram showing an example of gas supply including a reduction process. FIG. 12 shows an example of a gas supply process when a reduction process is performed as pre-processing (preconditioning). In this case, first, supply of nitrogen and hydrogen is started, and after a certain period of time, supply of hydrogen is stopped, and then supply of hexafluoroacetylacetone and oxygen is started.
 図13は、還元工程を含むガスの供給例を示す図である。図13は、処理ガスを供給した後、処理終了前に、還元工程を入れてリフレッシュするものであり、この場合、まず、窒素の供給を開始し、一定時間後、ヘキサフルオロアセチルアセトンと酸素の供給を開始する。そして、一定サイクルで酸素の供給を停止し、酸素の供給を停止している間に水素の供給を行う。 FIG. 13 is a diagram showing an example of gas supply including a reduction process. In FIG. 13, after supplying the processing gas and before the end of the processing, a reduction process is performed to refresh. In this case, first, supply of nitrogen is started, and after a certain period of time, supply of hexafluoroacetylacetone and oxygen is performed. To start. Then, the supply of oxygen is stopped at a constant cycle, and hydrogen is supplied while the supply of oxygen is stopped.
 上述したように、第1の実施形態によれば、被処理体を加熱する加熱工程を行い、その際、酸素とβ-ジケトンとを含む処理ガスを供給する供給工程を行い、処理ガスにおけるβ-ジケトンに対する酸素の流量比を、基本的にはβ-ジケトン流量を固定し、酸素流量だけを制御することで、金属酸化物の生成速度が錯体の生成速度を超えない範囲に制御する制御工程とを行う。この結果、所定のパターンの金属膜を適切に形成可能であるという効果を奏する。特に、ハロゲン化物の蒸気圧が低く、プラズマエッチングしにくい遷移金属について、有益である。 As described above, according to the first embodiment, a heating process for heating the object to be processed is performed, and a supply process for supplying a processing gas containing oxygen and β-diketone is performed at this time. -Control process for controlling the flow rate of oxygen to diketone, basically by fixing the flow rate of β-diketone and controlling only the flow rate of oxygen so that the metal oxide formation rate does not exceed the complex formation rate. And do. As a result, there is an effect that a metal film having a predetermined pattern can be appropriately formed. This is particularly beneficial for transition metals that have low halide vapor pressure and are difficult to plasma etch.
 すなわち、供給工程では、金属膜を酸化して金属酸化物を形成する工程と、金属酸化物とβ-ジケトンとを反応させて錯体を形成する工程と、錯体を昇華する工程とが含まれる。この結果、例えば、プラズマを使わない熱反応によるドライエッチングとなり、下地への物理的、科学的ダメージやコンタミネーションの影響を抑えることが可能となる。また、例えば、濃度で反応速度を素早く変更できない等方性のウェットエッチングと比較して、酸素の流量制御だけで反応速度を精密に制御可能となる。この結果、例えば、nmオーダーでの微細なリセス等の加工が可能となる。また、例えば、高エネルギーイオン粒子の衝突によるスパッタエッチングとは異なり、基板へのダメージを抑えることが可能となる。また、例えば、β-ジケトンは金属酸化物と選択的に反応し、酸化していない金属には影響を与えないので、エッチング中に清浄金属表面を維持可能となる。 That is, the supplying step includes a step of oxidizing the metal film to form a metal oxide, a step of reacting the metal oxide with β-diketone to form a complex, and a step of sublimating the complex. As a result, for example, dry etching is performed by a thermal reaction that does not use plasma, and it becomes possible to suppress the influence of physical and scientific damage and contamination on the base. In addition, for example, compared with isotropic wet etching in which the reaction rate cannot be changed quickly by concentration, the reaction rate can be precisely controlled only by controlling the flow rate of oxygen. As a result, for example, processing such as a fine recess on the nm order becomes possible. Also, for example, unlike sputter etching by collision of high energy ion particles, it is possible to suppress damage to the substrate. Further, for example, β-diketone selectively reacts with a metal oxide and does not affect an unoxidized metal, so that a clean metal surface can be maintained during etching.
 また、図3の(a)に示すような被処理体が形成される場合の一例について説明する。被処理体400は、例えば、カーボンナノチューブを使用したビア配線を形成する場合や、半導体の銅配線を埋め込むためのめっきシード層を埋め込む場合、フォトリソグラフィーを用いたレジストのリフトオフで金属パターンを形成する場合などに形成されることが考えられる。 Further, an example in the case where the object to be processed as shown in FIG. For example, the object to be processed 400 forms a metal pattern by lift-off of a resist using photolithography when forming a via wiring using carbon nanotubes or when embedding a plating seed layer for embedding a semiconductor copper wiring. It may be formed in some cases.
 ここで、フォトリソグラフィーを用いたレジストのリフトオフで金属パターンを形成する場合、レジストマスク上にある金属膜とマスクされていない部分に成膜されている金属が連続した膜となることがあり、この場合、マスクされていない金属膜も一緒にリフトオフされることがあり、微細な形状が形成できない。すなわち、リフトオフでは、レジスト上に形成された膜と、レジストが無い下段に形成された膜とがレジストパターン側壁を介して連続膜になっているとうまくリフトオフされない。また、仮にリフトオフが出来ても、側壁に残された金属膜がバリとして存在し、不要な構造物として残存してしまう。これらを回避するためにレジスト形状を逆テーパー型やハンマーヘッドのようにすることで側壁への成膜を防止するような工夫がなされているが、このような形状を達成するためのリソグラフィー条件およびレジスト材料は特殊なものになってしまう。さらには、うまく側壁に金属膜が成膜されないようにしても、リフトオフ時に除去されるべきレジスト上の金属膜が、除去されずに表面上にパーティクルとして残ってしまう懸念がある。よって、リフトオフプロセスを理想的に行うためには、パターンとして残る下部の金属膜は残しつつ、レジスト膜上の金属膜およびレジストパターン側壁膜を優先的にエッチングすることが望まれる。ここで、ウェットエッチングでは膜の場所に依存せずに等方的に金属膜をエッチングしてしまう。ここで、炭酸ガス微粒子を吹き付けて冷却し、レジストと金属の熱膨張率の差を利用して、側壁金属膜を切断させる手法や、基板を加熱してレジスト上の金属膜にクラックを生じさせ、その後高圧ジェットによりレジスト剥離液を吹きかけることでレジストの剥離性を向上させる手法などが考えられるが、いずれも微細構造に対しては、パターン倒れやダメージが懸念され適用が難しい。また、従来の化学的ドライエッチングでは、ダマシン法で述べたように、銅などの遷移金属はその化合物の揮発性が低いため、レジストが堪え得る温度での実施が難しい。 Here, when the metal pattern is formed by lift-off of the resist using photolithography, the metal film on the resist mask and the metal formed on the unmasked portion may be a continuous film. In this case, the unmasked metal film may be lifted off together, and a fine shape cannot be formed. That is, in the lift-off, if the film formed on the resist and the film formed in the lower stage without the resist are continuous films via the resist pattern side wall, the lift-off is not successful. Even if lift-off is possible, the metal film left on the side wall exists as burrs and remains as an unnecessary structure. In order to avoid these problems, the resist shape has been devised to prevent the film formation on the side wall by using a reverse taper type or a hammer head. However, the lithography conditions for achieving such a shape and The resist material becomes special. Furthermore, even if the metal film is not successfully formed on the sidewall, there is a concern that the metal film on the resist that should be removed at the time of lift-off remains as particles on the surface without being removed. Therefore, in order to ideally perform the lift-off process, it is desired to preferentially etch the metal film on the resist film and the resist pattern side wall film while leaving the lower metal film remaining as a pattern. Here, in wet etching, the metal film is etched isotropically without depending on the location of the film. Here, carbon dioxide fine particles are sprayed and cooled, and the method of cutting the sidewall metal film using the difference in thermal expansion coefficient between the resist and metal, or heating the substrate to cause cracks in the metal film on the resist. Then, a method of improving the resist stripping property by spraying a resist stripping solution with a high-pressure jet can be considered. However, any of these methods is difficult to apply to a fine structure due to fear of pattern collapse and damage. Further, in the conventional chemical dry etching, as described in the damascene method, transition metals such as copper are difficult to carry out at a temperature that resists can withstand because their compounds are low in volatility.
 これに対して、第1の実施形態によれば、図15の(a)~(c)に示すように、パターンとして残る下部の金属膜403は残しつつ、レジスト膜上の金属膜およびレジストパターン側壁膜を優先的にエッチングすることが可能となる。図15は、第1の実施形態における効果の一例を示すための図である。 On the other hand, according to the first embodiment, as shown in FIGS. 15A to 15C, the metal film on the resist film and the resist pattern are left while the lower metal film 403 remaining as a pattern remains. The sidewall film can be preferentially etched. FIG. 15 is a diagram for illustrating an example of the effect in the first embodiment.
 また、半導体配線のさらなる微細化、高アスペクト化に対して、カーボンナノチューブを使用したビア配線が検討されている。実際にビア配線をカーボンナノチューブで作成するには、高アスペクトのビアホールの底部にカーボンナノチューブ生成に必須である触媒のNiやCo微粒子を成膜する必要がある。触媒金属をビア構造底部に成膜する手法として、金属元素の直進性が高く、ビアホール内側壁に金属が付着しにくい、異方性ロングスロースパッタ法、コリメータスパッタ法、イオン化金属プラズマ(IMP)スパッタなどが考えられる。しかしながら、これらの手法ではビア底以外のフィールド部にも当然成膜することになり、カーボンナノチューブを生成するプロセス時に、フィールド上からも生成してしまう。カーボンナノチューブのビア底からの選択成長を理想的に行うためには、触媒としての下部の金属膜は残しつつ、ビア側壁およびフィールド部の金属膜を優先的にエッチングすることが望まれる。PVDやCVDにより全面を微粒子で被覆する手法や、フィールド部をCMP(Chemical Mechanical Polishing)で除去する手法があるが、ホールやトレンチの側壁部に被覆された金属膜を除去するのは困難である。 Also, via wiring using carbon nanotubes is being studied for further miniaturization and higher aspect of semiconductor wiring. In order to actually form via wiring with carbon nanotubes, it is necessary to form Ni or Co fine particles of a catalyst essential for carbon nanotube generation at the bottom of a high aspect via hole. As a method of depositing catalyst metal on the bottom of the via structure, the metal element has high straightness, and the metal does not easily adhere to the inner wall of the via hole. Anisotropic long throw sputtering, collimator sputtering, ionized metal plasma (IMP) sputtering And so on. However, in these methods, a film is naturally formed on the field portion other than the bottom of the via, and the carbon nanotube is generated from the field during the process of generating the carbon nanotube. In order to ideally perform selective growth of carbon nanotubes from the via bottom, it is desirable to preferentially etch the via sidewall and the field metal film while leaving the lower metal film as a catalyst. There are a method of covering the entire surface with fine particles by PVD or CVD, and a method of removing the field portion by CMP (Chemical Mechanical Polishing), but it is difficult to remove the metal film coated on the side wall portion of the hole or trench. .
 これに対して、第1の実施形態によれば、ホールやトレンチの側面についてもエッチング可能であり、適切にリフトオフ可能となるという有利な効果を奏する。また、第1の実施形態によれば、ビアホールの底部やトレンチの底部に、触媒となる金属膜を適切に形成可能となる。この結果、図16の(a)~(b)に示すように、触媒としての下部の金属膜は残しつつ、ビア側壁およびフィールド部の金属膜を優先的にエッチングすることが可能となる結果、図16の(c)に示すように、カーボンナノチューブのビア底からの選択成長を理想的に行うことが可能となる。図16は、第1の実施形態による効果の一例を示す図である。 On the other hand, according to the first embodiment, it is possible to etch the side surfaces of the holes and trenches, and there is an advantageous effect that the lift-off can be appropriately performed. Further, according to the first embodiment, a metal film serving as a catalyst can be appropriately formed on the bottom of the via hole or the bottom of the trench. As a result, as shown in FIGS. 16A and 16B, the metal film on the via side wall and the field portion can be preferentially etched while leaving the lower metal film as a catalyst. As shown in FIG. 16C, selective growth from the via bottom of the carbon nanotube can be ideally performed. FIG. 16 is a diagram illustrating an example of the effect according to the first embodiment.
 図17は、第1の実施形態による効果の一例を示す図である。また、半導体の銅配線を埋め込むためのめっきシード層を埋め込む場合、PVDなどを用いて成膜するが、ホールやトレンチの入り口で過剰に成膜される結果、図17の(a)に示すように、オーバーハング形状を形成することがある。オーバーハング形状が形成されると、入り口よりも下の側面や底部に成膜されないため、スパッタリングモードでオーバーハングを削って再度成膜することを繰り返すことになる。これに対して、第1の実施形態によれば、スパッタリングモードを繰り返すことで下地層にダメージを与えることなく、図17の(b)に示すように、オーバーハング形状を改善可能となり、金属膜となるめっきシード層の埋め込みが可能となる。 FIG. 17 is a diagram illustrating an example of the effect according to the first embodiment. Further, when a plating seed layer for embedding a semiconductor copper wiring is embedded, a film is formed using PVD or the like. As a result of excessive film formation at the entrance of a hole or trench, as shown in FIG. In addition, an overhang shape may be formed. When the overhang shape is formed, the film is not formed on the side surface or the bottom part below the entrance, so that the overhang is removed in the sputtering mode and the film formation is repeated. On the other hand, according to the first embodiment, the overhang shape can be improved as shown in FIG. 17B without damaging the underlayer by repeating the sputtering mode, and the metal film It becomes possible to embed a plating seed layer.
 図18は、第1の実施形態による効果の一例を示す図である。図18において、「A」はフィールド部、「B」はパターン側壁部、「C」はパターン底部、「W」は溝幅もしくはビアホール径、「T」は溝、もしくはビアホール深さである。ここで、第1の実施形態によれば、パターン底部の金属膜は極力エッチングせずに、フィールド部とパターン側壁部とを選択的にエッチング可能となる。 FIG. 18 is a diagram illustrating an example of the effect according to the first embodiment. In FIG. 18, “A” is a field portion, “B” is a pattern side wall portion, “C” is a pattern bottom portion, “W” is a groove width or via hole diameter, and “T” is a groove or via hole depth. Here, according to the first embodiment, it is possible to selectively etch the field part and the pattern side wall part without etching the metal film at the bottom of the pattern as much as possible.
 ここで、上述した説明では、CVD装置によって所定の膜が形成された半導体ウエハが、エッチング装置100に搬送されると説明した。ここで、例えば、CVD装置とエッチング装置100とは、1つの装置内に設けられても良い。 Here, in the above description, it has been described that the semiconductor wafer on which a predetermined film is formed by the CVD apparatus is transferred to the etching apparatus 100. Here, for example, the CVD apparatus and the etching apparatus 100 may be provided in one apparatus.
 図19は、CVD装置とエッチング装置とを有する処理装置の一例を示す図である。処理装置500には、例えば25枚のウエハWが収納された密閉型の搬送容器を載置するための搬入出ポート501が横並びに例えば3箇所に設けられており、これら搬入出ポート501の並びに沿うように、大気搬送室502が設けられている。この大気搬送室502内には、ウエハWを搬送するための多関節アームにより構成されたウエハ搬送機構502aが常圧搬送機構として設けられている。また、大気搬送室502の側方側には、ウエハWの向きの調整を行うためのオリエント室503が設けられている。また、大気搬送室502における搬入出ポート501の反対側の面には、常圧雰囲気と大気雰囲気との間で雰囲気の切り替えを行うためのロードロック室504が気密に接続されている。図19に示す例では、ロードロック室504が2つある場合を例に示した。 FIG. 19 is a diagram showing an example of a processing apparatus having a CVD apparatus and an etching apparatus. The processing apparatus 500 is provided with, for example, three loading / unloading ports 501 for placing, for example, three closed transfer containers in which 25 wafers W are stored. An atmospheric transfer chamber 502 is provided along the line. In the atmospheric transfer chamber 502, a wafer transfer mechanism 502a constituted by an articulated arm for transferring the wafer W is provided as a normal pressure transfer mechanism. An orientation chamber 503 for adjusting the orientation of the wafer W is provided on the side of the atmospheric transfer chamber 502. Further, a load lock chamber 504 for switching the atmosphere between an atmospheric pressure atmosphere and an air atmosphere is airtightly connected to a surface of the air transfer chamber 502 opposite to the carry-in / out port 501. In the example shown in FIG. 19, the case where there are two load lock chambers 504 is shown as an example.
 大気搬送室502から見た時に、ロードロック室504よりも奥側には、真空雰囲気にてウエハWの搬送を行う真空搬送機構である搬送アーム505aの設けられた真空搬送室505が気密に接続されている。真空搬送室505には、例えば、半導体ウエハを洗浄するための洗浄処理室506と、金属膜を成膜するためのCVD処理室507、エッチングを行うためのエッチング室508、カーボンナノチューブを成長させるためのCVD処理室509とが、それぞれ気密に設けられる。なお、エッチング室508は、上述したエッチング装置100に相当する。 When viewed from the atmospheric transfer chamber 502, a vacuum transfer chamber 505 provided with a transfer arm 505a, which is a vacuum transfer mechanism that transfers the wafer W in a vacuum atmosphere, is airtightly connected to the back side of the load lock chamber 504. Has been. In the vacuum transfer chamber 505, for example, a cleaning processing chamber 506 for cleaning a semiconductor wafer, a CVD processing chamber 507 for forming a metal film, an etching chamber 508 for performing etching, and a carbon nanotube for growing. The CVD process chamber 509 is provided in an airtight manner. Note that the etching chamber 508 corresponds to the etching apparatus 100 described above.
 処理装置500には、装置全体の動作のコントロールを行うためのコンピュータからなる制御部510が設けられる。制御部510のメモリ内には、上述した一連の処理を実行するためのプログラムが格納されている。プログラムは、例えば、ウエハWに対する処理に対応した装置の動作を実行するようにステップ群が組まれており、ハードディスク、コンパクトディスク、光磁気ディスク、メモリカード、フレキシブルディスクなどの記憶媒体である記憶部511から制御部510内にインストールされる。 The processing apparatus 500 is provided with a control unit 510 formed of a computer for controlling the operation of the entire apparatus. A program for executing the above-described series of processing is stored in the memory of the control unit 510. The program has a group of steps so as to execute the operation of the apparatus corresponding to the processing on the wafer W, for example, and a storage unit that is a storage medium such as a hard disk, a compact disk, a magneto-optical disk, a memory card, and a flexible disk 511 to be installed in the control unit 510.
 処理装置500では、例えば、搬入出ポート501に半導体ウエハが載置されると、ウエハ搬送機構502aによりウエハWが取り出される。その後、半導体ウエハは、オリエント室503においてウエハWの向きを揃えた後、大気雰囲気に設定されたロードロック室504に搬入される。そして、ロードロック室504内の雰囲気が真空雰囲気に切り替えられた後、ウエハWは搬送アーム505aによりCVD処理室507にて成膜され、エッチング装置100にてエッチングが行われ、その後、CVD処理室507にてカーボンナノチューブを成長させる。なお、処理の合間には、適宜、洗浄処理室506にて洗浄される。その後、処理済みのウエハWは、ロードロック室504及び大気搬送室502を介して元の位置に戻される。 In the processing apparatus 500, for example, when a semiconductor wafer is placed on the loading / unloading port 501, the wafer W is taken out by the wafer transfer mechanism 502a. Thereafter, the semiconductor wafer is carried into the load lock chamber 504 set in an atmospheric atmosphere after aligning the orientation of the wafer W in the orientation chamber 503. Then, after the atmosphere in the load lock chamber 504 is switched to the vacuum atmosphere, the wafer W is formed into a film in the CVD processing chamber 507 by the transfer arm 505a, etched in the etching apparatus 100, and then the CVD processing chamber. At 507, carbon nanotubes are grown. Note that cleaning is performed as appropriate in the cleaning processing chamber 506 between the processing. Thereafter, the processed wafer W is returned to the original position via the load lock chamber 504 and the atmospheric transfer chamber 502.
 上述したように、処理装置500によれば、1つの装置内部にて、金属膜の成膜からカーボンナノチューブの成長までを実行することが可能となる。 As described above, according to the processing apparatus 500, it is possible to execute from the formation of the metal film to the growth of the carbon nanotube in one apparatus.
 図20は、CVD装置の処理チャンバの構造の一例を示す図である。図20に示すように、CVD装置の処理チャンバ600は、被処理体としての半導体ウエハを載置するためのステージ601が配設されている。ステージ601には、半導体ウエハを所定温度に加熱するための図示しないヒータが設けられている。また、ステージ601には、図示しない駆動機構によって上下に移動され、ステージ601上に出没自在とされた複数のリフトピン602が設けられている。リフトピン602は、半導体ウエハをステージ601上に搬入及び搬出する際に、一時的に半導体ウエハをステージ601の上方に支持するためのものである。ここで、処理チャンバ600は、エッチング装置100の処理チャンバとは異なり、シャワーヘッド型ではなくても良い。言い換えると、ガス噴出孔603が設けられる部分が、ステージと並行となっていなくても良く、傾斜を有しても良い。ただし、これに限定されるものではなく、処理チャンバ600は、任意の形状であって良い。 FIG. 20 is a diagram showing an example of the structure of the processing chamber of the CVD apparatus. As shown in FIG. 20, a processing chamber 600 of a CVD apparatus is provided with a stage 601 for placing a semiconductor wafer as a processing object. The stage 601 is provided with a heater (not shown) for heating the semiconductor wafer to a predetermined temperature. Further, the stage 601 is provided with a plurality of lift pins 602 that are moved up and down by a drive mechanism (not shown) and are allowed to appear and disappear on the stage 601. The lift pins 602 are for temporarily supporting the semiconductor wafer above the stage 601 when the semiconductor wafer is carried in and out of the stage 601. Here, unlike the processing chamber of the etching apparatus 100, the processing chamber 600 may not be a shower head type. In other words, the portion where the gas ejection holes 603 are provided may not be parallel to the stage and may have an inclination. However, the present invention is not limited to this, and the processing chamber 600 may have an arbitrary shape.
100  エッチング装置
400  被処理体
401  基板
402  マスク層
403  金属膜
404  金属酸化物
405  金属錯体ガス
100 etching apparatus 400 object 401 substrate 402 mask layer 403 metal film 404 metal oxide 405 metal complex gas

Claims (6)

  1.  所定のパターンのマスク層が基板に設けられ、前記基板の前記マスク層が設けられる側の面のうち前記マスク層に覆われていない部分と、前記マスク層の露出している面の一部又は全てを覆うように設けられる金属膜を有する被処理体を加熱する加熱工程と、
     酸素とβ-ジケトンとを含む処理ガスを供給する供給工程と、
     前記処理ガスにおけるβ-ジケトンに対する酸素の流量比を、金属膜を酸化して形成される金属酸化物の生成速度が金属酸化物とβ-ジケトンとが反応して形成される錯体の生成速度を超えない範囲に制御する制御工程と
     を含むことを特徴とする被処理体の処理方法。
    A mask layer having a predetermined pattern is provided on the substrate, and a portion of the surface of the substrate on which the mask layer is provided that is not covered with the mask layer and a part of the exposed surface of the mask layer or A heating step of heating a target object having a metal film provided so as to cover all;
    A supplying step of supplying a processing gas containing oxygen and β-diketone;
    The flow rate ratio of oxygen to β-diketone in the processing gas is determined according to the rate of formation of the metal oxide formed by oxidizing the metal film and the rate of formation of the complex formed by the reaction between the metal oxide and β-diketone. And a control step of controlling to a range not exceeding.
  2.  前記供給工程は、前記β-ジケトン及び酸素を、シャワー供給方式によって被処理体表面に対して供給することを特徴とする請求項1に記載の被処理体の処理方法。 2. The processing method of an object to be processed according to claim 1, wherein the supplying step supplies the β-diketone and oxygen to the surface of the object to be processed by a shower supply method.
  3.  前記供給工程は、
     前記金属膜を酸化して金属酸化物を形成する工程と、
     前記金属酸化物とβ-ジケトンとを反応させて錯体を形成する工程と、
     前記錯体を昇華する工程と
     を含むことを特徴とする請求項1に記載の被処理体の処理方法。
    The supply step includes
    Oxidizing the metal film to form a metal oxide;
    Reacting the metal oxide with β-diketone to form a complex;
    The method of processing a to-be-processed object of Claim 1 including the process of sublimating the said complex.
  4.  前記β-ジケトンがヘキサフルオロアセチルアセトンであることを特徴とする請求項1に記載の被処理体の処理方法。 The method for treating an object to be treated according to claim 1, wherein the β-diketone is hexafluoroacetylacetone.
  5.  前記処理ガスにおけるヘキサフルオロアセチルアセトンに対する酸素の流量比が、1%以下であることを特徴とする請求項4に記載の被処理体の処理方法。 The method for treating an object to be treated according to claim 4, wherein a flow ratio of oxygen to hexafluoroacetylacetone in the treatment gas is 1% or less.
  6.  前記供給工程は、前記処理ガスにおけるヘキサフルオロアセチルアセトンに対する酸素の流量比を、時間の経過とともに減少させることを特徴とする請求項4に記載の被処理体の処理方法。 5. The processing method of an object to be processed according to claim 4, wherein the supply step decreases a flow ratio of oxygen to hexafluoroacetylacetone in the processing gas with the passage of time.
PCT/JP2014/066460 2013-07-01 2014-06-20 Method for treating workpiece WO2015001991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-138289 2013-07-01
JP2013138289A JP2015012243A (en) 2013-07-01 2013-07-01 Processing method of workpiece

Publications (1)

Publication Number Publication Date
WO2015001991A1 true WO2015001991A1 (en) 2015-01-08

Family

ID=52143569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066460 WO2015001991A1 (en) 2013-07-01 2014-06-20 Method for treating workpiece

Country Status (2)

Country Link
JP (1) JP2015012243A (en)
WO (1) WO2015001991A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003662A1 (en) * 2017-06-27 2019-01-03 株式会社Kokusai Electric Semiconductor device production method, substrate processing device, and program

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529371B2 (en) 2015-07-27 2019-06-12 東京エレクトロン株式会社 Etching method and etching apparatus
JP2019054014A (en) * 2016-02-02 2019-04-04 セントラル硝子株式会社 Etching method and etching device
KR102382484B1 (en) * 2016-07-26 2022-04-04 샌트랄 글래스 컴퍼니 리미티드 Etching method and etching apparatus
JP6820717B2 (en) 2016-10-28 2021-01-27 株式会社日立ハイテク Plasma processing equipment
JP7063117B2 (en) * 2018-03-30 2022-05-09 東京エレクトロン株式会社 Etching method and etching equipment
KR102244395B1 (en) 2018-03-30 2021-04-23 도쿄엘렉트론가부시키가이샤 Etching method and etching apparatus
KR20200096406A (en) * 2019-02-01 2020-08-12 주식회사 히타치하이테크 Etching method and plasma treatment device
JP6854844B2 (en) * 2019-05-08 2021-04-07 東京エレクトロン株式会社 Etching method and etching equipment
JP7338355B2 (en) 2019-09-20 2023-09-05 東京エレクトロン株式会社 Etching method and etching apparatus
KR102521816B1 (en) 2019-12-20 2023-04-14 주식회사 히타치하이테크 Plasma processing device and wafer processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144031A (en) * 1999-11-12 2001-05-25 Sony Corp Producing method for semiconductor device
JP2002057058A (en) * 2000-08-11 2002-02-22 Anelva Corp Method for etching magnetic multilayer thin film including thin film of magnetic metal material
JP2003287603A (en) * 2002-03-27 2003-10-10 Seiko Epson Corp Microlens array, method of manufacturing the same, and optical device
JP2012510164A (en) * 2008-11-24 2012-04-26 アプライド マテリアルズ インコーポレイテッド Method and apparatus for deforming cross-sectional shape of trench and via
JP2012149288A (en) * 2011-01-18 2012-08-09 Tokyo Electron Ltd Dry cleaning method of substrate treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144031A (en) * 1999-11-12 2001-05-25 Sony Corp Producing method for semiconductor device
JP2002057058A (en) * 2000-08-11 2002-02-22 Anelva Corp Method for etching magnetic multilayer thin film including thin film of magnetic metal material
JP2003287603A (en) * 2002-03-27 2003-10-10 Seiko Epson Corp Microlens array, method of manufacturing the same, and optical device
JP2012510164A (en) * 2008-11-24 2012-04-26 アプライド マテリアルズ インコーポレイテッド Method and apparatus for deforming cross-sectional shape of trench and via
JP2012149288A (en) * 2011-01-18 2012-08-09 Tokyo Electron Ltd Dry cleaning method of substrate treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003662A1 (en) * 2017-06-27 2019-01-03 株式会社Kokusai Electric Semiconductor device production method, substrate processing device, and program
JPWO2019003662A1 (en) * 2017-06-27 2020-03-19 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing apparatus, and program
US11705326B2 (en) 2017-06-27 2023-07-18 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Also Published As

Publication number Publication date
JP2015012243A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
WO2015001991A1 (en) Method for treating workpiece
TWI394858B (en) Method of depositing tungsten film with reduced resistivity and improved surface morphology
JP6038975B2 (en) Method for processing a semiconductor substrate
JP6554418B2 (en) Tungsten film forming method and film forming apparatus
JP5707144B2 (en) Substrate processing apparatus dry cleaning method and metal film removal method
TWI687994B (en) Methods for etching via atomic layer deposition (ald) cycles
TW201837979A (en) Semiconductor processing apparatus
JP2017069313A (en) Method for manufacturing semiconductor device, apparatus for processing substrate, gas-supply system and program
JP2018085502A (en) Deposition of aluminum oxide etch stop layers
JP6336866B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
TW201626503A (en) Feature fill with nucleation inhibition
JP7525793B2 (en) Dry etching method, semiconductor device manufacturing method and etching apparatus
TW201640561A (en) Selectively lateral growth of silicon oxide thin film
US10600685B2 (en) Methods to fill high aspect ratio features on semiconductor substrates with MOCVD cobalt film
JP6559107B2 (en) Film forming method and film forming system
KR20190101450A (en) Dry etching method and etching apparatus
TWI663277B (en) Film-forming method and film-forming device for ruthenium film, and method for manufacturing semiconductor device
TW201903966A (en) Self-aligned via process flow
JP6253214B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
CN112740364A (en) Manufacturing method of semiconductor device, substrate processing apparatus, and recording medium
JP2010212452A (en) METHOD FOR DEPOSITING Cu FILM AND STORAGE MEDIUM
JP5151082B2 (en) Film forming method, film forming apparatus, and storage medium
TW201903841A (en) Method and structure for reducing contact resistance of fin field effect transistor device
JP2007332422A (en) Film deposition method and film deposition apparatus
WO2021079624A1 (en) Dry etching method, method for producing semiconductor device, and etching device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820196

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载