WO2015093100A1 - 表示装置およびその駆動方法 - Google Patents
表示装置およびその駆動方法 Download PDFInfo
- Publication number
- WO2015093100A1 WO2015093100A1 PCT/JP2014/072536 JP2014072536W WO2015093100A1 WO 2015093100 A1 WO2015093100 A1 WO 2015093100A1 JP 2014072536 W JP2014072536 W JP 2014072536W WO 2015093100 A1 WO2015093100 A1 WO 2015093100A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- clock signal
- drive
- clock
- unit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 44
- 238000005259 measurement Methods 0.000 claims abstract description 180
- 238000012937 correction Methods 0.000 claims description 72
- 239000011159 matrix material Substances 0.000 claims description 17
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 3
- 102100040862 Dual specificity protein kinase CLK1 Human genes 0.000 abstract description 53
- 101000749294 Homo sapiens Dual specificity protein kinase CLK1 Proteins 0.000 abstract description 49
- 102100040844 Dual specificity protein kinase CLK2 Human genes 0.000 abstract description 35
- 101000749291 Homo sapiens Dual specificity protein kinase CLK2 Proteins 0.000 abstract description 35
- 102100040858 Dual specificity protein kinase CLK4 Human genes 0.000 abstract description 27
- 101000749298 Homo sapiens Dual specificity protein kinase CLK4 Proteins 0.000 abstract description 27
- 238000005401 electroluminescence Methods 0.000 description 56
- 238000010586 diagram Methods 0.000 description 38
- 238000012545 processing Methods 0.000 description 35
- 102100040856 Dual specificity protein kinase CLK3 Human genes 0.000 description 24
- 101000749304 Homo sapiens Dual specificity protein kinase CLK3 Proteins 0.000 description 24
- 238000001514 detection method Methods 0.000 description 22
- 239000003990 capacitor Substances 0.000 description 16
- 238000012986 modification Methods 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 9
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 5
- 101100328361 Schizosaccharomyces pombe (strain 972 / ATCC 24843) clr2 gene Proteins 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 101100438980 Arabidopsis thaliana CDC2C gene Proteins 0.000 description 1
- 101100274517 Arabidopsis thaliana CKL1 gene Proteins 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3233—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2007—Display of intermediate tones
- G09G3/2018—Display of intermediate tones by time modulation using two or more time intervals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3258—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3266—Details of drivers for scan electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3275—Details of drivers for data electrodes
- G09G3/3291—Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0814—Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0819—Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0262—The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0286—Details of a shift registers arranged for use in a driving circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0289—Details of voltage level shifters arranged for use in a driving circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/08—Details of timing specific for flat panels, other than clock recovery
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/029—Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
- G09G2320/0295—Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/04—Maintaining the quality of display appearance
- G09G2320/043—Preventing or counteracting the effects of ageing
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/04—Maintaining the quality of display appearance
- G09G2320/043—Preventing or counteracting the effects of ageing
- G09G2320/045—Compensation of drifts in the characteristics of light emitting or modulating elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0626—Adjustment of display parameters for control of overall brightness
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
Definitions
- the present invention relates to a display device, and more particularly to a display device including a self-luminous display element driven by a current, such as an organic EL display device, and a driving method thereof.
- an electro-optical element whose luminance is controlled by an applied voltage and an electro-optical element whose luminance is controlled by a flowing current.
- a typical example of an electro-optical element whose luminance is controlled by an applied voltage is a liquid crystal display element.
- an electro-optical element whose luminance is controlled by a flowing current is an organic EL (Electro-Luminescence) element.
- the organic EL element is also called OLED (Organic Light-Emitting Light Diode).
- Organic EL display devices that use organic EL elements, which are self-luminous electro-optic elements, can be easily reduced in thickness, power consumption, brightness, etc., compared to liquid crystal display devices that require backlights and color filters. Can be achieved. Accordingly, in recent years, organic EL display devices have been actively developed.
- an organic EL display device As a driving method of an organic EL display device, a passive matrix method (also called a simple matrix method) and an active matrix method are known.
- An organic EL display device adopting a passive matrix system has a simple structure but is difficult to increase in size and definition.
- an organic EL display device adopting an active matrix method hereinafter referred to as an “active matrix type organic EL display device” is larger and has higher definition than an organic EL display device employing a passive matrix method. Can be easily realized.
- a pixel circuit of an active matrix organic EL display device typically includes an input transistor that selects a pixel and a drive transistor that controls the supply of current to the organic EL element.
- the current flowing from the drive transistor to the organic EL element may be referred to as “drive current”.
- FIG. 37 is a circuit diagram showing a configuration of a conventional general pixel circuit 81.
- the pixel circuit 81 is provided corresponding to each intersection of the plurality of data lines DL and the plurality of scanning lines SL provided in the display unit.
- the pixel circuit 81 includes two transistors T1 and T2, one capacitor Cst, and one organic EL element OLED.
- the transistor T1 is an input transistor
- the transistor T2 is a drive transistor.
- the transistor T1 is provided between the data line DL and the gate terminal of the transistor T2.
- a gate terminal is connected to the scanning line SL, and a source terminal is connected to the data line DL.
- the transistor T2 is provided in series with the organic EL element OLED.
- a drain terminal is connected to a power supply line that supplies a high-level power supply voltage ELVDD, and a source terminal is connected to an anode terminal of the organic EL element OLED.
- a power supply line that supplies the high-level power supply voltage ELVDD is hereinafter referred to as a “high-level power supply line”, and the high-level power supply line is given the same sign ELVDD as the high-level power supply voltage.
- the cathode terminal of the organic EL element OLED is connected to a power supply line that supplies a low level power supply voltage ELVSS.
- the power supply line that supplies the low-level power supply voltage ELVSS is hereinafter referred to as “low-level power supply line”, and the same sign ELVSS as the low-level power supply voltage is attached to the low-level power supply line.
- a connection point between the gate terminal of the transistor T2, one end of the capacitor Cst, and the drain terminal of the transistor T1 is referred to as a “gate node VG” for convenience.
- the higher of the drain and the source is called the drain, but in the description of this specification, one is defined as the drain and the other is defined as the source. Therefore, the source potential is higher than the drain potential. May be higher.
- FIG. 38 is a timing chart for explaining the operation of the pixel circuit 81 shown in FIG.
- the scanning line SL Prior to time t81, the scanning line SL is in a non-selected state. Accordingly, before the time point t81, the transistor T1 is in an off state, and the potential of the gate node VG maintains an initial level (for example, a level corresponding to writing in the previous frame).
- the scanning line SL is selected, and the transistor T1 is turned on. Thereby, the data voltage Vdata corresponding to the luminance of the pixel (subpixel) formed by the pixel circuit 81 is supplied to the gate node VG via the data line DL and the transistor T1.
- the potential of the gate node VG changes according to the data voltage Vdata.
- the capacitor Cst is charged to the gate-source voltage Vgs which is the difference between the potential of the gate node VG and the source potential of the transistor T2.
- the scanning line SL is in a non-selected state.
- the transistor T1 is turned off, and the gate-source voltage Vgs held by the capacitor Cst is determined.
- the transistor T2 supplies a drive current to the organic EL element OLED according to the gate-source voltage Vgs held by the capacitor Cst.
- the organic EL element OLED emits light with a luminance corresponding to the drive current.
- a thin film transistor (TFT) is typically employed as a drive transistor.
- TFT thin film transistor
- characteristics threshold voltage and mobility
- variations occur in the characteristics of the drive transistors provided in the display portion, variations occur in the magnitude of the drive current.
- uneven brightness occurs on the display screen.
- it is necessary to compensate for variations in the characteristics of the drive transistor.
- Japanese Unexamined Patent Application Publication No. 2007-233326 discloses an external compensation technique that enables image display with uniform brightness regardless of the characteristics (threshold voltage and mobility) of the drive transistor.
- the drive current is read and control is performed according to the comparison result between the drive current and the data current.
- the pixel circuit is configured as shown in FIG. 39 so that the drive current can be measured in order to perform compensation according to the characteristics of the drive transistor.
- the pixel circuit 91 shown in FIG. 39 is provided with a transistor T3 for controlling whether or not the drive current is measured, in addition to the conventional components.
- the transistor T3 is in the on state, the drive current is read through the data line DL.
- a signal line for controlling on / off of the transistor T3 is provided in parallel with the scanning line.
- a signal line corresponding to a scanning line provided conventionally is referred to as a “write control line”, and a signal line for controlling on / off of the transistor T3 is referred to as a “monitor control line”.
- the write control line is denoted by reference symbol G1_WL
- the monitor control line is denoted by reference symbol G2_Moni.
- the drive current for example, one row per frame.
- one row that is a target of measurement of drive current in each frame is referred to as a “compensation target row”.
- the first row is referred to as “0th row” for convenience of explanation.
- the write control line G1_WL and the monitor control line G2_Moni are driven as shown in FIG.
- a period before time t91 and a period after time t94 are periods for performing processing on rows other than the compensation target row.
- Normal data writing is performed in a period before time t91 and in a period after time t94. Therefore, hereinafter, the period before time t91 and the period after time t94 are referred to as “normal operation period”.
- a period from time t91 to time t94 is a period for performing processing on the compensation target row.
- processing for measuring the drive current and detecting the characteristics of each drive transistor is performed. Therefore, hereinafter, the period from time t91 to time t94 is referred to as a “characteristic detection processing period”.
- the length of the characteristic detection processing period is typically a length corresponding to 5 to 6 horizontal scanning periods.
- the write control line G1_WL is sequentially selected every horizontal scanning period.
- the write control line G1_WL (n) of the compensation target row must be selected twice. Specifically, the write control line G1_WL (n) of the compensation target row must be in a selected state at the beginning and end of the characteristic detection processing period.
- the characteristic detection processing period the following processing is performed on the compensation target row.
- data for driving current measurement hereinafter referred to as “pre-compensation data” is written.
- the drive current is measured.
- Dispensated data Data for image display (hereinafter referred to as “compensated data”) is written during a period from time t93 to time t94.
- the monitor control line G2_Moni (n) is selected during the period from the time point t92 to the time point t93.
- the above-mentioned compensation target line differs depending on the frame. Therefore, for example, in the frame in which the fifth row is determined as the compensation target row, the write control line G1_WL (5) of the fifth row must be selected twice, and for example, the tenth row is the compensation target row. In the frame defined in (2), the write control line G1_WL (10) in the 10th row must be selected twice. As described above, in order to measure the drive current for one row per frame, a complicated operation is required.
- both the write control line G1_WL and the monitor control line G2_Moni are connected to the gate terminals of the transistors in the pixel circuit 91. Therefore, in this specification, the drive circuit for the write control line and the drive circuit for the monitor control line are collectively referred to as a “gate driver circuit”.
- InGaZnO indium (In), gallium (Ga), zinc (Zn) is used for reasons such as “leakage current is extremely small”, “mobility is relatively high”, and “high definition is possible”.
- a compound comprising oxygen (O)) indium gallium zinc oxide
- the gate driver circuit monolithic the circuit must be realized by using only N-channel TFTs.
- the present invention realizes compensation for variations in characteristics of drive transistors in a display device that includes a self-luminous display element driven by current and that employs a gate driver circuit formed of a single-channel TFT. With the goal.
- a plurality of pixel circuits formed in a matrix each of which includes an electro-optical element whose luminance is controlled by a current and a drive transistor for controlling a current to be supplied to the electro-optical element.
- a display device comprising: A plurality of write control lines provided to correspond to each row and for controlling whether or not to write a data voltage to the pixel circuit in the corresponding row; A plurality of monitor control lines provided to correspond to each row and for controlling whether or not to measure a drive current supplied to a drive transistor included in the pixel circuit of the corresponding row; A plurality of data lines provided to correspond to each column and for supplying the data voltage to the pixel circuits in the corresponding column; A shift register that includes a plurality of first unit circuits that correspond one-to-one with the plurality of write control lines and that operates based on a first clock signal group, and that is based on the first clock signal group.
- the first unit circuit includes a first shift register configured to sequentially become active, and a write control line that selects a write control line corresponding to the active first unit circuit A drive circuit;
- a monitor control line drive circuit for selecting a monitor control line corresponding to a measurement target row, which is a row to be measured for drive current;
- a data line driving circuit for applying the data voltage to the plurality of data lines;
- a current measurement circuit for measuring a drive current supplied from the plurality of pixel circuits;
- a drive control unit for controlling operations of the write control line drive circuit, the monitor control line drive circuit, the data line drive circuit, and the current measurement circuit;
- a correction data calculation / storage unit that calculates correction data for correcting gradation data corresponding to the display gradation of each pixel circuit based on the drive current measured by the current measurement circuit, and holds the correction data
- a gradation correction unit that obtains a data voltage to be written to each pixel circuit by correcting the gradation data based on the correction data held in the correction data calculation
- a second shift register configured to sequentially activate the plurality of second unit circuits based on the second clock signal group, and the monitor permission signal is active
- the monitor control line corresponding to the second unit circuit in the active state is selected,
- One row per frame period is defined as the measurement target row
- the drive control unit A clock counter that counts the number of clock pulses of the first clock signal group;
- a measurement target address value storage unit that holds a measurement target address value indicating the measurement target row;
- a match determination circuit that determines whether or not the value of the clock counter and the measurement target address value match,
- the current measurement circuit measures the drive current for a predetermined period from one clock period after the coincidence determination circuit determines that the value of the clock counter matches the measurement target address value.
- the drive control unit Only the potential of the clock signal applied to the first unit circuit corresponding to the measurement target row among the clock signals included in the first clock signal group changes at the start time and end time of the current measurement period. And controlling the first clock signal group so that the clock operation by the first clock signal group is stopped throughout the current measurement period, After the potential of the clock signal included in the second clock signal group changes at the start time of the current measurement period, the second clock signal group stops the clock operation through the current measurement period. Control the clock signal group of The monitor permission signal is activated only during the current measurement period.
- Each second unit circuit is A first output terminal connected to the preceding stage and the subsequent stage and outputting a state signal indicating an internal state; A second output terminal connected to the corresponding monitor control line; And an output control transistor having the control permission signal supplied to the control terminal, a first conduction terminal connected to the first output terminal, and a second conduction terminal connected to the second output terminal.
- a level shifter circuit for converting a voltage level of the monitor permission signal supplied to the control terminal of the output control transistor is further provided.
- the drive control unit is configured to identify whether the drive current measurement based on the first gradation or the drive current measurement based on the second gradation is performed in each frame period.
- a key identification counter The correction data calculation / storage unit calculates the correction data based on two types of drive currents measured by the current measurement circuit while referring to the value of the gradation identification counter.
- the measurement of the drive current based on the first gradation and the measurement of the drive current based on the second gradation are performed on the pixel circuits in the same row.
- the coincidence determination circuit includes: A plurality of exclusive OR circuits for outputting an exclusive OR of corresponding bits of the clock counter value and the measurement target address value; A plurality of logical negation circuits which are provided so as to correspond one-to-one with the plurality of exclusive OR circuits, and which output a logical negation of the output of the corresponding exclusive OR circuit; And a logical product circuit that outputs a logical product of outputs of the plurality of logical negation circuits.
- the coincidence determination circuit includes: A plurality of exclusive OR circuits for outputting an exclusive OR of corresponding bits of the clock counter value and the measurement target address value; And a negative OR circuit that outputs a negative OR of outputs of the plurality of exclusive OR circuits.
- Each first unit circuit and each second unit circuit are: A first node; A first output terminal for outputting a state signal indicating an internal state; A first signal having a state signal output from the previous stage applied to a control terminal and a first conduction terminal, and a second conduction terminal connected to the first node; A second transistor having a control terminal connected to the first node, a control clock signal applied to a first conduction terminal, and a second conduction terminal connected to the first output terminal; A third transistor in which a state signal output from a subsequent stage is applied to a control terminal, a first conduction terminal is connected to the first output terminal, and an off-level DC power supply voltage is applied to a second conduction terminal; A fourth transistor in which a state signal output from a subsequent stage is applied to a control terminal, a first conduction terminal is connected to the first node, and an off-level DC power supply voltage is applied to a second conduction terminal; The first conduction terminal of the
- the transistors constituting the plurality of first unit circuits and the plurality of second unit circuits are thin film transistors containing indium gallium zinc oxide.
- a plurality of pixel circuits formed in a matrix shape each including an electro-optical element whose luminance is controlled by a current and a driving transistor for controlling a current to be supplied to the electro-optical element.
- a method for driving a display device comprising: A drive control step for controlling the drive operation of the display device; A current measuring step for measuring a driving current supplied to a driving transistor included in each pixel circuit; A correction data calculation step for calculating correction data for correcting gradation data corresponding to the display gradation of each pixel circuit based on the drive current measured in the current measurement step; A gradation correction step for obtaining a data voltage to be written to each pixel circuit by correcting the gradation data based on the correction data calculated in the correction data calculation step;
- the display device A plurality of write control lines provided to correspond to each row and for controlling whether or not to write the data voltage to the pixel circuit of the corresponding row; A plurality of monitor control lines provided to correspond to each row and for controlling whether or not to measure a drive current supplied to a drive transistor included in the pixel circuit of the corresponding row; A plurality of data lines provided to correspond to each column and for supplying the data voltage to the pixel circuits in the corresponding column;
- a shift register that
- the first unit circuit includes a first shift register configured to sequentially become active, and a write control line that selects a write control line corresponding to the active first unit circuit A drive circuit; A monitor control line drive circuit for selecting a monitor control line corresponding to a measurement target row, which is a row that is a target for measuring drive current,
- the plurality of first unit circuits are configured using only N-channel or P-channel transistors,
- the plurality of second unit circuits are configured using transistors of only the same type as the transistors constituting the plurality of first unit circuits among N channel type or P channel type,
- the monitor control line driving circuit is a shift register that includes a plurality of second unit circuits that correspond one-to-one with the plurality of monitor control lines and that operates based on a second clock signal group and a monitor permission signal.
- the drive control step includes A clock pulse counting step for counting the number of clock pulses of the first clock signal group; A match determination step for determining whether or not the value counted in the clock pulse count step and the measurement target address value indicating the measurement target row match, The driving in the current measurement step is performed for a predetermined period from the time point one clock period after the time point determined in the match determination step that the value counted in the clock pulse count step matches the address value to be measured.
- the drive control step Only the potential of the clock signal applied to the first unit circuit corresponding to the measurement target row among the clock signals included in the first clock signal group changes at the start time and end time of the current measurement period. And the first clock signal group is controlled so that the clock operation by the first clock signal group is stopped throughout the current measurement period, After the potential of the clock signal included in the second clock signal group changes at the start time of the current measurement period, the second clock signal group stops the clock operation through the current measurement period.
- the clock signal group of The monitor permission signal is activated only during the current measurement period.
- the drive control unit determines whether or not the number of clock pulses of the first clock signal group that controls the operation of the write control line driving circuit matches the measurement target address value representing the measurement target row.
- a coincidence determination circuit is provided in the drive control unit. If the number of clock pulses of the first clock signal group and the measurement target address value representing the measurement target row match, the drive control unit performs a predetermined period from a time point one clock period after the time when the two match. During the current measurement period), the clock operation by the first clock signal group is stopped.
- the drive control unit only has the potential of the clock signal supplied to the first unit circuit corresponding to the measurement target row among the clock signals included in the first clock signal group at the start time and end time of the current measurement period. To change.
- the write control line of the measurement target row is selected in the period immediately before and immediately after the current measurement period.
- the monitor control line drive circuit is configured to select the monitor control line corresponding to the active second unit circuit when the monitor permission signal is active.
- the drive control unit has a predetermined period (current measurement period) from one clock period after the time when the number of clock pulses of the first clock signal group matches the measurement target address value representing the measurement target row, The clock operation by the second clock signal group is stopped. Thereby, in each frame period, the monitor control line of the measurement target row is selected during the current measurement period, and all the monitor control lines are maintained in the non-selected state during the other periods.
- the drive current for detecting the characteristics of the drive transistor is measured in each frame period. Then, correction data is obtained based on the measured value of the drive current, and the gradation data is corrected based on the correction data. As a result, variations in the characteristics of the drive transistor are compensated.
- the shift register in the gate driver circuit (the write control line driver circuit and the monitor control line driver circuit) that realizes the above-described operation is configured using only one of the N-channel and P-channel transistors. ing.
- a gate driver circuit that includes a self-luminous display element that is driven by current and that is formed of a single-channel transistor, it is possible to compensate for variations in characteristics of the drive transistor.
- a gate driver circuit that performs a complicated operation for enabling measurement of the drive current as described above is generally realized by a CMOS logic circuit.
- CMOS logic circuit For this reason, according to the prior art, when a transistor other than the polysilicon TFT is adopted as the transistor constituting the gate driver circuit, a gate driver circuit that performs a complicated operation cannot be formed on the glass substrate. Therefore, it is necessary to mount the gate driver circuit on the glass substrate in the form of an IC chip.
- a complicated operation is realized by a gate driver circuit configured using a single-channel transistor. Therefore, the gate driver circuit can be formed on the glass substrate without making an IC. As a result, the cost of the display device can be reduced.
- the monitor control line driving circuit capable of selecting the monitor control line only during the current measurement period is realized with a relatively simple configuration.
- the third aspect of the present invention it is possible to reliably increase the level of the voltage applied to the control terminal of the output control transistor to a level sufficient to bring the monitor control line into the selected state.
- the correction data calculation / storage unit is a value based on the second gradation or a measured value of the drive current supplied from the current measurement circuit based on the first gradation. Can be identified. For this reason, the correction data is reliably calculated based on the two types of drive currents.
- the fifth aspect of the present invention it is not necessary to provide a gradation identification counter for each row, and it is only necessary to provide one gradation identification counter as a whole.
- the first aspect of the present invention in a display device having a coincidence determination circuit comprising a plurality of exclusive OR circuits, a plurality of logical negation circuits, and a logical product circuit, the first aspect of the present invention.
- a coincidence determination circuit comprising a plurality of exclusive OR circuits, a plurality of logical negation circuits, and a logical product circuit. The same effect can be obtained.
- the same effect as in the first aspect of the present invention is obtained. It is done.
- the same effects as in the first aspect of the present invention can be obtained without complicating the configuration of the first unit circuit and the second unit circuit.
- the same effect as in the first aspect of the present invention can be achieved in the invention of the display device driving method.
- FIG. 5 is a timing chart for explaining an operation when it is assumed that the fourth row is a compensation target row in the active matrix organic EL display device according to the embodiment of the present invention.
- FIG. 4 is a diagram which shows the whole structure of an organic electroluminescence display.
- FIG. 4 is a diagram for explaining an outline of a data line driving / current measuring circuit in the embodiment.
- it is a figure for demonstrating the structure of a display part.
- 4 is a timing chart for explaining driving of a write control line and a monitor control line in the embodiment.
- FIG. 4 is a circuit diagram showing a part of a pixel circuit and a data line driving / current measuring circuit in the embodiment.
- the said embodiment it is a block diagram which shows the detailed structure of the drive control part in a display control circuit.
- it is a block diagram which shows the structure of a write-in line counter.
- it is a block diagram for demonstrating the structure of a counter (a 1st counter, a 2nd counter).
- it is a figure for demonstrating a D type flip-flop.
- it is a figure for demonstrating a D type flip-flop.
- it is a figure for demonstrating the change of the output from a 1st counter.
- FIG. 3 is a logic circuit diagram showing a configuration of a matching circuit in the embodiment.
- it is a logic circuit diagram which shows one structural example in case the number of data input into an AND circuit increases.
- it is a figure which shows a truth table when paying attention to the structure for 1 bit of the matching circuit shown in FIG.
- it is a block diagram which shows the detailed structure of the correction data calculation / storage part in a display control circuit.
- FIG. 4 is a block diagram showing a configuration of a write control line drive circuit in the embodiment.
- FIG. 4 is a circuit diagram showing a configuration of a unit circuit (a configuration of one stage of a shift register) in a shift register that configures a write control line drive circuit in the embodiment.
- 5 is a timing chart for explaining a basic operation of a unit circuit in the embodiment.
- FIG. 4 is a block diagram showing a configuration of a monitor control line drive circuit in the embodiment. It is a signal waveform diagram of the clock signal CLK3 and the clock signal CLK4 during the normal operation period in the embodiment.
- FIG. 4 is a circuit diagram showing a configuration of a unit circuit (a configuration of one stage of the shift register) in the shift register that configures the monitor control line driving circuit in the embodiment.
- 10 is a diagram for explaining how a monitor enable signal is given to a transistor T49 in the unit circuit in the embodiment.
- 6 is a timing chart for explaining the operation of the write control line drive circuit in the embodiment.
- 5 is a timing chart for explaining the operation of the monitor control line drive circuit in the embodiment.
- 5 is a timing chart for explaining the operation of the pixel circuit in the embodiment. In the said embodiment, it is a figure for demonstrating the flow of the electric current in a pixel circuit. In the said embodiment, it is a figure for demonstrating the flow of the electric current in a pixel circuit.
- 5 is a flowchart illustrating a control procedure for a characteristic detection process (a series of processes for detecting a characteristic of a driving transistor) in the embodiment.
- FIG. 6 is a flowchart for explaining a procedure of compensation processing (a series of processing for compensating for variations in characteristics of driving transistors) when attention is paid to one pixel (pixel in i row and j column) in the embodiment.
- FIG. 4 is a diagram showing gradation-current characteristics in the embodiment. It is a logic circuit diagram which shows the structure of the matching circuit in the 1st modification of the said embodiment.
- FIG. 10 is a logic circuit diagram showing a configuration example when the number of data input to the NOR circuit increases in the first modification of the embodiment. It is a figure for demonstrating how the monitor enable signal is given to the transistor T49 in a unit circuit in the 2nd modification of the said embodiment. It is a circuit diagram which shows the structure of the conventional general pixel circuit.
- FIG. 4 is a diagram showing gradation-current characteristics in the embodiment. It is a logic circuit diagram which shows the structure of the matching circuit in the 1st modification of the said embodiment.
- FIG. 10 is a logic circuit diagram showing a configuration example
- FIG. 38 is a timing chart for explaining the operation of the pixel circuit shown in FIG. 37.
- FIG. FIG. 6 is a circuit diagram illustrating a configuration example of a pixel circuit for enabling measurement of a drive current in order to perform compensation according to characteristics of a drive transistor. 6 is a timing chart for explaining driving of a write control line and a monitor control line.
- the gate terminal corresponds to the control terminal
- the drain terminal corresponds to the first conduction terminal
- the source terminal corresponds to the second conduction terminal.
- FIG. 2 is a block diagram showing the overall configuration of an active matrix organic EL display device 1 according to an embodiment of the present invention.
- the organic EL display device 1 includes a display control circuit 100, a data line drive / current measurement circuit 200, a write control line drive circuit 300, a monitor control line drive circuit 400, and a display unit 500.
- the data line drive / current measurement circuit 200 includes a portion that functions as the data line drive circuit 210 and a portion that functions as the current measurement circuit 220.
- the write control line drive circuit 300 and the monitor control line drive circuit 400 are formed in the organic EL panel 6 including the display unit 500.
- the organic EL display device 1 includes, as components for supplying various power supply voltages to the organic EL panel 6, a logic power supply 610, a logic power supply 620, an organic EL high level power supply 630, and an organic EL low level.
- a power source 640 is provided.
- the high level power supply voltage VDD and the low level power supply voltage VSS required for the operation of the write control line drive circuit 300 are supplied from the logic power supply 610 to the organic EL panel 6.
- a high level power supply voltage VDD and a low level power supply voltage VSS required for the operation of the monitor control line drive circuit 400 are supplied from the logic power supply 620 to the organic EL panel 6.
- a high level power supply voltage ELVDD that is a constant voltage is supplied from the organic EL high level power supply 630 to the organic EL panel 6.
- a low level power supply voltage ELVSS which is a constant voltage is supplied from the organic EL low level power supply 640 to the organic EL panel 6.
- FIG. 4 is a diagram for explaining the configuration of the display unit 500 in the present embodiment.
- the display unit 500 includes 1080 write control lines G1_WL (0) to G1_WL (1079) and 5760 data lines DL (0) to DL (5759). It is arranged.
- the data lines DL (0) to DL (5759) a data line for red pixels, a data line for green pixels, and a data line for blue pixels are sequentially arranged.
- a pixel circuit 50 is provided corresponding to each intersection of the write control lines G1_WL (0) to G1_WL (1079) and the data lines DL (0) to DL (5759). That is, in the display unit 500, the pixel circuits 50 are formed in a matrix so as to configure a plurality of rows (1080 rows) and a plurality of columns (5760 columns). As described above, in this specification, the first row is referred to as “0th row”. That is, the 1080th rows are referred to as the 0th to 1079th rows, respectively. Similarly, the 5760 columns are referred to as the 0th to 5759th columns, respectively.
- the display unit 500 also includes 1080 monitor control lines G2_Moni (0) to G2_Moni (1079) so as to correspond to the 1080 write control lines G1_WL (0) to G1_WL (1079) on a one-to-one basis. It is arranged. Further, the display unit 500 is provided with a high level power line ELVDD and a low level power line ELVSS. A detailed configuration of the pixel circuit 50 will be described later.
- the write control lines are simply denoted by reference numeral G1_WL.
- the monitor control line and the data line are simply represented by a symbol G2_Moni and a symbol DL, respectively.
- the display control circuit 100 functionally includes a drive control unit 110, a correction data calculation / storage unit 120, and a gradation correction unit 130.
- the drive control unit 110 includes a write control signal WCTL for controlling the operation of the write control line drive circuit 300, a monitor control signal MCTL, a monitor enable signal Moni_EN for controlling the operation of the monitor control line drive circuit 400, data
- a source control signal SCTL for controlling the operation of the line drive / current measurement circuit 200 is output.
- the write control signal WCTL includes a start pulse signal GSP, a clock signal CLK1, and a clock signal CLK2, which will be described later.
- the monitor control signal MCTL includes a start pulse signal MSP, a clock signal CLK3, and a clock signal CLK4 which will be described later.
- the source control signal SCTL includes a start pulse signal SSP, a clock signal SCK, a latch strobe signal LS, and an input / output control signal DWT, which will be described later.
- the monitor enable signal Moni_EN is a signal for controlling whether or not the drive current can be measured.
- the drive control unit 110 also outputs a data signal DA and a gradation position instruction signal PS described later within the display control circuit 100.
- the correction data calculation / storage unit 120 holds correction data used for correcting the data signal DA.
- the correction data includes an offset value and a gain value.
- the correction data calculation / storage unit 120 receives the gradation position instruction signal PS and the monitor voltage Vmo that is the result of current measurement in the data line drive / current measurement circuit 200, and updates the correction data.
- the gradation correction unit 130 corrects the data signal DA output from the drive control unit 110 using the correction data DH held in the correction data calculation / storage unit 120, and the data obtained by the correction is obtained. Output as a digital video signal DV.
- the first clock signal group is realized by the clock signal CLK1 and the clock signal CLK2
- the second clock signal group is realized by the clock signal CLK3 and the clock signal CLK4, and is monitored by the monitor enable signal Moni_EN.
- a permission signal is realized.
- the data line drive / current measurement circuit 200 operates to drive the data lines DL (0) to DL (5759) (operation as the data line drive circuit 210) and from the pixel circuit 50 to the data lines DL (0) to DL ( 5759) is selectively performed (the operation as the current measurement circuit 220) for measuring the drive current output to 5759).
- the correction data calculation / storage unit 120 holds an offset value and a gain value as correction data.
- the data line drive / current measurement circuit 200 measures the drive current based on two kinds of gradations (first gradation P1 and second gradation P2: P2> P1).
- the write control line drive circuit 300 drives 1080 write control lines G1_WL (0) to G1_WL (1079) based on the write control signal WCTL sent from the display control circuit 100.
- the monitor control line drive circuit 400 drives the 1080 monitor control lines G2_Moni (0) to G2_Moni (1079) based on the monitor control signal MCTL and the monitor enable signal Moni_EN sent from the display control circuit 100.
- the write control line G1_WL and the monitor control line G2_Moni are driven as shown in FIG. In FIG. In FIG.
- the period before time t2 and the period after time t5 are normal operation periods, and the period from time t2 to time t5 is a characteristic detection processing period.
- the write control line G1_WL is sequentially selected by one horizontal scanning period. Further, during the normal operation period, all the monitor control lines G2_Moni are maintained in a non-selected state.
- the characteristic detection processing period includes a pre-compensation data writing period in which pre-compensation data (data for driving current measurement) is written, a current measurement period in which driving current measurement is performed, and post-compensation data (image display For example, a compensated data writing period during which data is written.
- the write control line G1_WL (n) of the compensation target row is selected. Further, the monitor control line G2_Moni (n) in the compensation target row is selected during the current measurement period. How the above driving is realized in this embodiment will be described later.
- the data lines DL (0) to DL (5759), the write control lines G1_WL (0) to G1_WL (1079), and the monitor control lines G2_Moni (0) to G2_Moni (1079) are operated by the operation of each component.
- an image is displayed on the display unit 500.
- the data signal DA is corrected based on the measurement result of the drive current, the variation in the characteristics of the drive transistor is compensated.
- the data line drive / current measurement circuit 200 performs the following operation when functioning as the data line drive circuit 210.
- the data line drive / current measurement circuit 200 receives the source control signal SCTL sent from the display control circuit 100 and applies a drive video signal to the data lines DL (0) to DL (5759).
- the digital video signal DV indicating the voltage to be applied to each data line DL is generated at the timing when the pulse of the clock signal SCK is generated with the pulse of the start pulse signal SSP as a trigger. Sequentially held.
- the held digital video signal DV is converted into an analog voltage at the timing when the pulse of the latch strobe signal LS is generated.
- the converted analog voltage is applied simultaneously to all the data lines DL (0) to DL (5759) as drive video signals.
- the data line drive / current measurement circuit 200 functions as the current measurement circuit 220, the data line drive / current measurement circuit 200 outputs a monitor voltage Vmo corresponding to the drive current output from the pixel circuit 50 to the data lines DL (0) to DL (5759).
- FIG. 6 is a circuit diagram showing a part of the pixel circuit 50 and the data line driving / current measuring circuit 200.
- FIG. 6 shows a pixel circuit 50 in the i-th row and j-th column and a portion corresponding to the j-th data line DL (j) in the data line driving / current measuring circuit 200.
- the pixel circuit 50 includes one organic EL element (electro-optical element) OLED, three transistors T1 to T3, and one capacitor Cst.
- the transistor T1 functions as an input transistor for selecting a pixel
- the transistor T2 functions as a driving transistor that controls the supply of current to the organic EL element OLED
- the transistor T3 performs current measurement for detecting the characteristics of the driving transistor. It functions as a monitor control transistor for controlling whether or not.
- the transistor T1 is provided between the data line DL (j) and the gate terminal of the transistor T2.
- the gate terminal is connected to the write control line GL_WL (i), and the source terminal is connected to the data line DL (j).
- the transistor T2 is provided in series with the organic EL element OLED.
- the gate terminal is connected to the drain terminal of the transistor T1, the drain terminal is connected to the high-level power supply line ELVDD, and the source terminal is connected to the anode terminal of the organic EL element OLED.
- the gate terminal is connected to the monitor control line G2_Moni (i)
- the drain terminal is connected to the anode terminal of the organic EL element OLED
- the source terminal is connected to the data line DL (j).
- the capacitor Cst one end is connected to the gate terminal of the transistor T2, and the other end is connected to the drain terminal of the transistor T2.
- the cathode terminal of the organic EL element OLED is connected to the low level power line ELVSS.
- the transistors T1 to T3 in the pixel circuit 50 are all N-channel type.
- TFTs containing InGaZnO are employed for the transistors T1 to T3.
- the present invention can be applied to a configuration using a transistor other than a TFT containing InGaZnO as long as the configuration uses only a single-channel transistor.
- the data line drive / current measurement circuit 200 includes a DA converter 21, an operational amplifier 22, a capacitor 23, and a switch 24.
- a digital video signal DV is given to an input terminal of the DA converter 21.
- the DA converter 21 converts the digital video signal DV into an analog data voltage.
- the output terminal of the DA converter 21 is connected to the non-inverting input terminal of the operational amplifier 22. Therefore, a data voltage is applied to the non-inverting input terminal of the operational amplifier 22.
- the inverting input terminal of the operational amplifier 22 is connected to the data line DL (j).
- the switch 24 is provided between the inverting input terminal and the output terminal of the operational amplifier 22.
- the capacitor 23 is provided between the inverting input terminal and the output terminal of the operational amplifier 22 in parallel with the switch 24.
- An input / output control signal DWT included in the source control signal SCTL is given to the control terminal of the switch 24.
- the output terminal of the operational amplifier 22 is connected to the input terminal of the AD converter 131 included in the gradation correction unit 130 in the display control circuit 100.
- the switch 24 when the input / output control signal DWT is at a high level, the switch 24 is turned on, and the inverting input terminal and the output terminal of the operational amplifier 22 are short-circuited. At this time, the operational amplifier 22 functions as a buffer amplifier. As a result, the data voltage applied to the non-inverting input terminal of the operational amplifier 22 is applied to the data line DL (j). When the input / output control signal DWT is at a low level, the switch 24 is turned off, and the inverting input terminal and the output terminal of the operational amplifier 22 are connected via the capacitor 23. At this time, the operational amplifier 22 and the capacitor 23 function as an integrating circuit.
- the output voltage (monitor voltage Vmo) of the operational amplifier 22 becomes a voltage according to the drive current output from the pixel circuit 50 to the data line DL (j).
- the AD converter 131 converts the output voltage (monitor voltage Vmo) of the operational amplifier 22 into a digital value.
- the input / output control signal DWT is at a low level during the current measurement period, and the input / output control signal DWT is at a high level during periods other than the current measurement period.
- FIG. 7 is a block diagram illustrating a detailed configuration of the drive control unit 110 in the display control circuit 100.
- the drive control unit 110 includes a write line counter 111, a compensation target line address storage memory 112, a matching circuit 113, a matching counter 114, a status machine 115, an image data / source control signal generation circuit 116, a gate.
- a control signal generation circuit 117 is included.
- a clock counter is realized by the write line counter 111
- a measurement target address value storage unit is realized by the compensation target line address storage memory 112
- a match determination circuit is realized by the matching circuit 113
- a matching counter is realized by 114.
- FIG. 8 is a block diagram showing the configuration of the write line counter 111.
- the write line counter 111 outputs a first counter 1111 that counts the number of clock pulses of the clock signal CLK1 output from the gate control signal generation circuit 117 and a gate control signal generation circuit 117.
- a second counter 1112 that counts the number of clock pulses of the clock signal CLK2, and an adder 1113 that outputs a value indicating the sum of the output value of the first counter 1111 and the output value of the second counter 1112 as the count value CntWL. It is configured.
- FIG. 9 is a block diagram for explaining the configuration of the counters (first counter 1111 and second counter 1112) used in the present embodiment.
- a 4-bit counter will be described as an example.
- This counter is composed of four D-type flip-flops FF (0) to FF (3) connected in series with each other.
- the D-type flip-flop FF (0) outputs OUT_0 representing the least significant bit of the 4 bits
- the D-type flip-flop FF (3) outputs OUT_3 representing the most significant bit of the 4 bits.
- a 10-bit counter is used. That is, as the number of write control lines G1_WL increases, the number of flip-flops to be connected may be increased.
- FIG. 10 is a diagram showing one D-type flip-flop FF.
- the D-type flip-flop FF outputs a value indicating the logical value of the input signal D at the rising edge of the clock signal CLK as Q, and outputs a value obtained by inverting Q as QB. Since the D-type flip-flop FF operates in this way, if the configuration is such that QB is given as the input signal D as shown in FIG. 11, every time the clock signal CLK rises (except for the first rise time of the clock signal CLK) ( Every time the logic value of the clock signal CLK changes from 0 to 1, the value of Q is inverted.
- the clock signal CLK1 is given to the flip-flop FF (0).
- the flip-flop FF (0) inverts the value of OUT_0 every time the logical value of the clock signal CLK1 changes from 0 to 1.
- the flip-flop FF (1) inverts the value of OUT_1 every time the logical value of OUT_0 changes from 1 to 0.
- the flip-flop FF (2) inverts the value of OUT_2 every time the logical value of OUT_1 changes from 1 to 0.
- the flip-flop FF (3) inverts the value of OUT_3 every time the logical value of OUT_2 changes from 1 to 0.
- the clock signal CLK1 and the clock signal CLK2 change as shown in FIG.
- OUT_1 to OUT_4 change as shown in FIG. 13 based on the clock signal CLK1 after generation of the pulse of the start pulse signal GSP.
- the clock signal CLK1 and the clock signal CLK2 are 180 degrees out of phase. Accordingly, in the second counter 1112, the values of OUT_1 to OUT_4 change as shown in FIG. 14 based on the clock signal CLK2 after the start pulse signal GSP is generated.
- the count value CntWL output from the write line counter 111 becomes 0 when the clock signal CLK1 first rises after the start pulse signal GSP is generated. Thereafter, each time either the clock signal CLK1 or the clock signal CLK2 rises, the count value CntWL increases by one.
- the D-type flip-flops FF (0) to FF (3) are initialized based on the clear signal CLR. In other words, the count value CntWL output from the write line counter 111 is set to 0 based on the clear signal CLR.
- the compensation target line address storage memory 112 stores an address (hereinafter referred to as “compensation target line address”) Addr indicating a row (compensation target row) where a drive current is to be measured next. Yes.
- the compensation target line address Addr stored in the compensation target line address storage memory 112 is rewritten by the rewrite signal WE output from the status machine 115.
- a numerical value indicating the number of the compensation target line is determined as the compensation target line address Addr. For example, if the fifth line is a compensation target line, the compensation target line address is 5.
- the matching circuit 113 determines whether or not the count value CntWL output from the write line counter 111 matches the compensation target line address Addr stored in the compensation target line address storage memory 112, and the determination result is determined.
- the matching signal MS shown is output. Note that the count value CntWL and the compensation target line address Addr are represented by the same number of bits. In the present embodiment, if the count value CntWL and the compensation target line address Addr match, the matching signal MS is set to high level, and if they do not match, the matching signal MS is set to low level.
- the matching signal MS output from the matching circuit 113 is given to the status machine 115 and the matching counter 114.
- FIG. 15 is a logic circuit diagram showing the configuration of the matching circuit 113 in the present embodiment.
- the matching circuit 113 includes four EXOR circuits (exclusive OR circuits) 71 (1) to 71 (4), four inverters (logic negation circuits) 72 (1) to 72 (4), and one And an AND circuit (logical product circuit) 73.
- the EXOR circuits 71 (1) to 71 (4) and the inverters 72 (1) to 72 (4) have a one-to-one correspondence.
- 1-bit data out of 4-bit data indicating the compensation target line address Addr stored in the compensation target line address storage memory 112 is the first input data IN (a ).
- each EXOR circuit 71 is supplied with 1-bit data of the 4-bit data (count value CntWL) output from the write line counter 111 as the second input data IN (b).
- Each EXOR circuit 71 outputs a value indicating an exclusive OR of the logical value of the first input data IN (a) and the logical value of the second input data IN (b) as the first output data OUT (c). .
- the first output data OUT (c) output from the corresponding EXOR circuit 71 is applied to the input terminal of each inverter 72.
- Each inverter 72 outputs a value obtained by inverting the logical value of the first output data OUT (c) (that is, a value indicating the logical negation of the logical value of the first output data OUT (c)) as the second output data OUT (d ) Is output.
- the AND circuit 73 outputs a value indicating a logical product of the four second output data OUT (d) output from the inverters 72 (1) to 72 (4) as the matching signal MS.
- 4-bit data is compared, but actually, for example, 10 EXOR circuits 71 and 10 inverters 72 are provided to compare 10-bit data. That is, the number of EXOR circuits 71 and inverters 72 should be increased as the number of write control lines G1_WL increases.
- the second output data OUT output from the plurality of inverters 72 instead of one AND circuit 73 is used.
- a configuration is provided in which a plurality of AND circuits 731 for outputting a value indicating the logical product of (d) and a single AND circuit 732 for outputting a value indicating the logical product of the values output from the plurality of AND circuits 731 are provided. May be.
- FIG. 17 is a diagram showing a truth table when focusing on the configuration of one bit of the matching circuit 113 shown in FIG. If the value of the first input data IN (a) is 0 and the value of the second input data IN (b) is 0, the value of the first output data OUT (c) is 0, and the second output The value of the data OUT (d) is 1. If the value of the first input data IN (a) is 1 and the value of the second input data IN (b) is 0, the value of the first output data OUT (c) is 1 and the second output The value of the data OUT (d) is 0.
- the value of the first input data IN (a) is 0 and the value of the second input data IN (b) is 1, the value of the first output data OUT (c) is 1 and the second output The value of the data OUT (d) is 0. If the value of the first input data IN (a) is 1 and the value of the second input data IN (b) is 1, the value of the first output data OUT (c) is 0, and the second output The value of the data OUT (d) is 1.
- the matching signal MS becomes low level.
- the matching signal MS output from the matching circuit 113 becomes a high level, and the compensation target line address Addr and the count value CntWL are equal to each other. If not, the matching signal MS output from the matching circuit 113 is at a low level.
- the write control line G1_WL is sequentially selected based on the clock signals CLK1 and CLK2.
- the count value CntWL output from the write line counter 111 increases by 1 based on the clock signals CLK1 and CLK2. Accordingly, the count value CntWL represents the value of the row of the write control line G1_WL to be selected. For example, when the clock signal CLK1 rises at a certain time tx and the count value CntWL becomes 50, the write control line G1_WL (50) in the 50th row is selected for one horizontal scanning period from the time tx.
- the compensation target line address Addr indicating the compensation target line is stored in the compensation target line address storage memory 112, the time when the count value CntWL and the compensation target line address Addr coincide with each other is the start time of the characteristic detection processing period. It becomes.
- the matching counter 114 outputs a count value CntM.
- the count value CntM is incremented by 1 each time the matching signal MS changes from low level to high level after being initialized (after being set to 0).
- the matching counter 114 also determines the gradation position for identifying whether the driving current is measured based on the first gradation P1 or whether the driving current is measured based on the second gradation P2.
- An instruction signal PS is output.
- the matching counter 114 is initialized based on the clear signal CLR2 output from the status machine.
- the status machine 115 outputs a control signal S1, a control signal S2, and a monitor enable signal Moni_EN based on the matching signal MS.
- the status machine 115 also outputs a clear signal CLR for initializing the write line counter 111 and a clear signal CLR2 for initializing the matching counter 114. Further, the status machine 115 outputs a rewrite signal WE for updating the compensation target line address Addr stored in the compensation target line address storage memory 112.
- the image data / source control signal generation circuit 116 outputs the source control signal SCTL and the data signal DA based on the control signal S1 given from the status machine 115.
- the control signal S1 includes, for example, a signal for instructing the start of compensation processing (a series of processing for compensating for variations in characteristics of the drive transistors).
- the gate control signal generation circuit 117 outputs a write control signal GCTL and a monitor control signal MCTL based on the control signal S2 given from the status machine 115.
- the control signal S2 includes, for example, a signal for controlling the clock operation of the clock signals CLK1 to CLK4 and a signal for instructing the output of the start pulse signals GSP and MSP.
- the gradation correction unit 130 reads the correction data DH (offset value and gain value) held in the correction data calculation / storage unit 120 and corrects the data signal DA output from the drive control unit 110. Then, the gradation correction unit 130 outputs data obtained by the correction (data corresponding to the data voltage to be written in the pixel circuit 50) as a digital video signal DV.
- the digital video signal DV output from the gradation correction unit 130 is sent to the data line drive / current measurement circuit 200.
- FIG. 18 is a block diagram showing a detailed configuration of the correction data calculation / storage unit 120 in the display control circuit 100.
- the correction data calculation / storage unit 120 includes an AD converter 121, a correction arithmetic circuit 122, a nonvolatile memory 123, and a buffer memory 124.
- the AD converter 121 converts the monitor voltage Vmo (analog voltage) output from the data line drive / current measurement circuit 200 into a digital signal Dmo.
- the correction arithmetic circuit 122 obtains correction data (offset value and gain value) to be used for correction in the gradation correction unit 130 based on the digital signal Dmo.
- the digital signal Dmo output from the AD converter 121 is output from the matching counter 114 in order to determine whether the digital signal Dmo is data based on the first gradation P1 or data based on the second gradation P2.
- the tone position signal PS is referred to.
- the correction data DH obtained by the correction arithmetic circuit 132 is held in the nonvolatile memory 123.
- the non-volatile memory 123 holds an offset value and a gain value for each pixel circuit 50.
- FIG. 19 is a block diagram showing the configuration of the write control line drive circuit 300 in this embodiment.
- the write control line driving circuit 300 is realized using the shift register 3.
- Each stage of the shift register 3 is provided so as to correspond to each write control line G1_WL in the display portion 500 on a one-to-one basis. That is, in the present embodiment, the write control line drive circuit 300 includes the shift register 3 having 1080 stages.
- FIG. 19 shows only unit circuits 30 (i ⁇ 1) to 30 (i + 1) constituting the (i ⁇ 1) th stage to the (i + 1) th stage among the 1080th stage. For convenience of explanation, it is assumed that i is an even number.
- Each stage (unit circuit) of the shift register 3 has an input terminal for receiving the clock signal VCLK, an input terminal for receiving the set signal S, an input terminal for receiving the reset signal R, An output terminal for outputting a status signal Q indicating an internal state is provided.
- the symbol Q in FIGS. 9 to 11 and the symbol Q in FIG. 19 have no relationship.
- a first shift register is realized by the shift register 3, and a first unit circuit is realized by the unit circuit 30.
- the signals given to the input terminals of each stage (each unit circuit) of the shift register 3 are as follows.
- the clock signal CLK1 is given as the clock signal VCLK
- the clock signal CLK2 is given as the clock signal VCLK.
- the state signal Q output from the previous stage is given as the set signal S
- the state signal Q outputted from the next stage is given as the reset signal R.
- the start pulse signal GSP is given as the set signal S.
- the low-level power supply voltage VSS (not shown in FIG. 19) is commonly applied to all the unit circuits 30.
- a status signal Q is output from each stage of the shift register 3.
- the state signal Q output from each stage is output to the corresponding write control line G1_WL, is given to the previous stage as the reset signal R, and is given to the next stage as the set signal S.
- FIG. 20 is a circuit diagram showing the configuration of the unit circuit 30 in the shift register 3 constituting the write control line drive circuit 300 (configuration of one stage of the shift register 3).
- the unit circuit 30 includes four transistors T31 to T34.
- the unit circuit 30 has three input terminals 31 to 33 and one output terminal 38 in addition to the input terminal for the low-level power supply voltage VSS.
- the input terminal that receives the set signal S is denoted by reference numeral 31
- the input terminal that receives the reset signal R is denoted by reference numeral 32
- the input terminal that receives the clock signal VCLK is denoted by reference numeral 33.
- the output terminal for outputting the status signal Q is denoted by reference numeral 38.
- a parasitic capacitance Cgd is formed between the gate terminal and the drain terminal of the transistor T32, and a parasitic capacitance Cgs is formed between the gate terminal and the source terminal of the transistor T32.
- the source terminal of the transistor T31, the gate terminal of the transistor T32, and the drain terminal of the transistor T34 are connected to each other.
- a region (wiring) in which these are connected to each other is hereinafter referred to as a “first node”.
- the first node is denoted by reference numeral N1.
- the gate terminal and the drain terminal are connected to the input terminal 31 (that is, diode connection), and the source terminal is connected to the first node N1.
- the gate terminal is connected to the first node N1
- the drain terminal is connected to the input terminal 33
- the source terminal is connected to the output terminal 38.
- the gate terminal is connected to the input terminal 32
- the drain terminal is connected to the output terminal 38
- the source terminal is connected to the input terminal for the low-level power supply voltage VSS.
- the transistor T34 the gate terminal is connected to the input terminal 32, the drain terminal is connected to the first node N1, and the source terminal is connected to the input terminal for the low-level power supply voltage VSS.
- the transistor T31 changes the potential of the first node N1 toward high level.
- the transistor T32 applies the potential of the clock signal VCLK to the output terminal 38 when the potential of the first node N1 becomes high level.
- the transistor T33 changes the potential of the output terminal 38 toward the potential of the low level power supply voltage VSS.
- the transistor T34 changes the potential of the first node N1 toward the potential of the low level power supply voltage VSS.
- a first output terminal is realized by the output terminal 38
- a first transistor is realized by the transistor T31
- a second transistor is realized by the transistor T32
- a transistor T33 is provided.
- a third transistor is realized
- a fourth transistor is realized by the transistor T34
- a control clock signal is realized by the clock signal VCLK.
- the waveforms of the clock signals CLK1 and CLK2 given to the unit circuit 30 as the clock signal VCLK are as shown in FIG. 12 (except for the characteristic detection processing period).
- the potential of the first node N1 and the potential of the state signal Q are at a low level.
- the input terminal 33 is supplied with a clock signal VCLK that becomes high level at predetermined intervals. Note that, with respect to FIG. 21, although an actual waveform has some delay, an ideal waveform is shown here.
- a pulse of the set signal S is given to the input terminal 31. Since the transistor T31 is diode-connected as shown in FIG. 20, the pulse of the set signal S turns on the transistor T31. As a result, the potential of the first node N1 rises.
- the clock signal VCLK changes from the low level to the high level.
- the transistor T34 since the reset signal R is at a low level, the transistor T34 is in an off state. Accordingly, the first node N1 is in a floating state.
- the parasitic capacitance Cgd is formed between the gate terminal and the drain terminal of the transistor T32, and the parasitic capacitance Cgs is formed between the gate terminal and the source terminal of the transistor T32. For this reason, the potential of the first node N1 greatly increases due to the bootstrap effect. As a result, a large voltage is applied to the transistor T32.
- the potential of the state signal Q rises to the high level potential of the clock signal VCLK.
- the reset signal R is at a low level during the period from the time point t21 to the time point t22. For this reason, since the transistor T33 is maintained in the off state, the potential of the state signal Q does not decrease during this period.
- the clock signal VCLK changes from the high level to the low level.
- the potential of the state signal Q decreases as the potential of the input terminal 33 decreases, and the potential of the first node N1 also decreases via the parasitic capacitances Cgd and Cgs.
- a pulse of the reset signal R is given to the input terminal 32.
- the transistor T33 and the transistor T34 are turned on.
- the transistor T33 is turned on, the potential of the state signal Q is lowered to a low level, and when the transistor T34 is turned on, the potential of the first node N1 is lowered to a low level.
- the following operation is performed during the normal operation period.
- the pulse of the start pulse signal GSP as the set signal S is given to the first stage of the shift register 3
- the shift pulse included in the status signal Q output from each stage is zero based on the clock signals CKL1 and CLK2.
- the status signal Q output from each stage is output to the corresponding write control line G1_WL.
- the write control lines G1_WL are sequentially selected one by one in accordance with the shift pulse transfer. In this way, during the normal operation period, the write control lines G1_WL are sequentially selected one by one.
- the configuration of the unit circuit 30 is not limited to the configuration shown in FIG. 20 (the configuration including the four transistors T31 to T34). Generally, the unit circuit 30 includes more than four transistors in order to improve driving performance and reliability. Even in such a case, the present invention can be applied.
- FIG. 22 is a block diagram showing a configuration of the monitor control line drive circuit 400 in the present embodiment.
- the monitor control line drive circuit 400 is realized using the shift register 4.
- Each stage of the shift register 4 is provided so as to correspond to each monitor control line G2_Moni in the display unit 500 on a one-to-one basis. That is, in the present embodiment, the monitor control line driving circuit 400 includes the shift register 4 having 1080 stages.
- FIG. 22 shows only unit circuits 40 (i ⁇ 1) to 40 (i + 1) constituting the (i ⁇ 1) th stage to the (i + 1) th stage among the 1080th stage.
- Each stage (unit circuit) of the shift register 4 has an input terminal for receiving the clock signal VCLK, an input terminal for receiving the set signal S, an input terminal for receiving the reset signal R, and a status signal Q Are provided, and an output terminal for outputting the output signal Q2 is provided.
- a second shift register is realized by the shift register 4, and a second unit circuit is realized by the unit circuit 40.
- signals given to input terminals of each stage (each unit circuit) of the shift register 4 are as follows.
- the clock signal CLK3 is given as the clock signal VCLK
- the clock signal CLK4 is given as the clock signal VCLK.
- the state signal Q output from the previous stage is given as the set signal S
- the state signal Q outputted from the next stage is given as the reset signal R.
- the start pulse signal MSP is given as the set signal S.
- the low-level power supply voltage VSS (not shown in FIG. 22) is commonly applied to all the unit circuits 40.
- a monitor enable signal Moni_EN (not shown in FIG.
- a status signal Q and an output signal Q2 are output from each stage of the shift register 4.
- the state signal Q output from each stage is given to the previous stage as a reset signal R, and is given to the next stage as a set signal S.
- the output signal Q2 output from each stage is output to the corresponding monitor control line G2_Moni.
- the clock signal CLK3 and the clock signal CLK4 change as shown in FIG.
- FIG. 24 is a circuit diagram showing the configuration of the unit circuit 40 in the shift register 4 constituting the monitor control line driving circuit 400 (configuration of one stage of the shift register 4).
- the unit circuit 40 includes five transistors T41 to T44, T49.
- the unit circuit 40 has four input terminals 41 to 44 and two output terminals 48 and 49 in addition to the input terminal for the low-level power supply voltage VSS.
- Transistors T41 to T44, input terminals 41 to 43, and output terminal 48 in FIG. 24 correspond to transistors T31 to T34, input terminals 31 to 33, and output terminal 38 in FIG. 20, respectively. That is, the unit circuit 40 has the same configuration as the unit circuit 30 except for the following points.
- the unit circuit 40 is provided with an output terminal 49 different from the output terminal 48.
- the unit circuit 40 includes a transistor T49 configured such that a drain terminal is connected to the output terminal 48, a source terminal is connected to the output terminal 49, and a monitor enable signal Moni_EN is supplied to the gate terminal. .
- the unit circuit 40 is not limited to the configuration shown in FIG. 24 as is the case with the unit circuit 30 in the shift register 3 that constitutes the write control line drive circuit 300.
- a first output terminal is realized by the output terminal 48
- a second output terminal is realized by the output terminal 49
- a first transistor is realized by the transistor T41
- a transistor T42 implements a second transistor
- transistor T43 implements a third transistor
- transistor T44 implements a fourth transistor
- transistor T49 implements an output control transistor
- clock signal VCLK implements a control clock signal Has been.
- the unit circuit 40 has the same configuration as that of the unit circuit 30 except that the output terminal 49 and the transistor T49 are provided.
- the shift register 4 is supplied with clock signals CLK3 and CLK4 having a waveform shown in FIG. As described above, based on the clock signals CLK3 and CLK4, the state signal Q output from each stage of the shift register 4 sequentially becomes a high level.
- the monitor enable signal Moni_EN is at a low level
- the transistor T49 is turned off. At this time, even if the status signal Q is at a high level, the output signal Q2 is maintained at a low level. For this reason, the monitor control line G2_Moni corresponding to the unit circuit 40 is not selected.
- the monitor enable signal Moni_EN is at a high level
- the transistor T49 is turned on.
- the status signal Q is at a high level
- the output signal Q2 is also at a high level.
- the monitor control line G2_Moni corresponding to the unit circuit 40 is selected.
- the monitor enable signal Moni_EN given to the transistor T49 is outputted from the delay circuit 1151.
- the delay circuit 1151 is provided in the status machine 115 in the drive control unit 110 of the display control circuit 100.
- the count value CntWL output from the write line counter 111 matches the compensation target line address Addr stored in the compensation target line address storage memory 112
- the matching signal MS changes from the low level to the high level.
- the delay circuit 1151 delays the waveform of the matching signal MS by one horizontal scanning period.
- the signal thus obtained is output from the delay circuit 1151 as the monitor enable signal Moni_EN.
- the monitor enable signal Moni_EN given to the transistor T49 becomes the high level after one horizontal scanning period from the time when the matching signal MS changes from the low level to the high level.
- the matching circuit 113 determines whether or not the count value CntWL output from the write line counter 111 matches the compensation target line address Addr stored in the compensation target line address storage memory 112. .
- the matching signal MS supplied to the status machine 115 changes from the low level to the high level.
- the status machine 115 performs the following control. Note that the point in time when the count value CntWL matches the compensation target line address Addr is the start point of the characteristic detection processing period.
- the following control process is performed by the drive control unit 110 in the display control circuit 100.
- the drive control unit 110 changes only the potential of the clock signal applied to the unit circuit 30 corresponding to the compensation target row of the two clock signals CLK1 and CLK2 at the start time and end time of the current measurement period, and
- the clock signals CLK1 and CLK2 are controlled so that the clock operation by the clock signals CLK1 and CLK2 is stopped throughout the current measurement period.
- the drive control unit 110 changes the clock signals CLK3 and CLK4 so that the clock operation by the clock signals CLK3 and CLK4 is stopped during the current measurement period after the potentials of the clock signals CLK3 and CLK4 change at the start of the current measurement period. Control.
- the drive control unit 110 activates the monitor enable signal Moni_EN only during the current measurement period.
- FIG. 26 is a timing chart for explaining the operation of the write control line driving circuit 300. It is assumed that the nth row is determined as a compensation target row.
- the write control line G1_WL (n-1) in the (n-1) th row is selected.
- normal data writing is performed in the (n ⁇ 1) th row.
- the write control line G1_WL (n ⁇ 1) in the (n ⁇ 1) th row is selected, the first node N1 (n) in the nth unit circuit 30 (n) in the shift register 3 is selected.
- Potential increases Note that the compensation target line address Addr and the count value CntWL do not match up to a time point just before the time point t2.
- the clock signal CLK1 rises.
- the potential of the first node N1 (n) further increases.
- the n-th write control line G1_WL (n) is selected.
- pre-compensation data is written in each pixel circuit 50 in the nth row.
- the write control line G1_WL (n) of the nth row is selected, so that in the (n + 1) th unit circuit 30 (n + 1) in the shift register 3, the first node N1 ( The potential of n + 1) rises.
- the display control circuit 100 causes the clock signal CLK1 to fall at time t3 after one horizontal scanning period from time t2, and then operates with the clock signals CLK1 and CLK2 until the end of the current measurement period (time t4). Stop. That is, during the period from the time point t3 to the time point t4, the clock signal CLK1 and the clock signal CLK2 are maintained at the low level.
- the potential of the first node N1 (n) in the n-th unit circuit 30 (n) decreases. Further, since the clock signal CLK2 does not rise at the time point t3, the write control line G1_WL (n + 1) of the (n + 1) th row is not selected. For this reason, the high-level reset signal R is not input to the nth stage unit circuit 30 (n). Accordingly, the potential of the first node N1 (n) in the n-th unit circuit 30 (n) at the time immediately after the time t3 is substantially equal to the potential at the time immediately before the time t2.
- the drive current is measured to detect the characteristics of the drive transistor.
- the clock operation by the clock signals CLK1 and CLK2 is stopped. Therefore, during the current measurement period, the potential of the first node N1 (n) in the n-th unit circuit 30 (n) is maintained.
- the display control circuit 100 restarts the clock operation using the clock signals CLK1 and CLK2.
- the signal (clock signal CLK1 in the example shown in FIG. 26) that is lowered at the start time (time point t3) of the current measurement period of the clock signal CLK1 and the clock signal CLK2 is raised.
- the clock signal CLK1 rises at the time point t4
- the n-th unit circuit 30 (n) the potential of the first node N1 (n) rises.
- the n-th write control line G1_WL (n) is selected.
- the compensated data is written in each pixel circuit 50 in the nth row.
- the clock signal CLK1 falls and the clock signal CLK2 rises.
- the write control line G1_WL is selected row by row. As a result, normal data writing is performed line by line.
- FIG. 27 is a timing chart for explaining the operation of the monitor control line drive circuit 400.
- the nth row is determined as the compensation target row.
- the state signal Q output from each unit circuit 40 in the shift register 4 sequentially becomes high level for each horizontal scanning period. For example, during the period from the time point t1 to the time point t2, the state signal Q (n-2) output from the unit circuit 40 (n-2) at the (n-2) -th stage becomes a high level, and the time point t2 to the time point t3 During this period, the state signal Q (n ⁇ 1) output from the unit circuit 40 (n ⁇ 1) at the (n ⁇ 1) th stage is at the high level.
- the monitor enable signal Moni_EN is at the low level in the period before the time point just before the time point t3, the monitor control lines G2_Moni (n-2) and (n-1) rows of the (n-2) th row are used.
- the eye monitor control line G2_Moni (n ⁇ 1) is not selected.
- the display control circuit 100 changes the monitor enable signal Moni_EN from the low level to the high level at the time t3 after one horizontal scanning period from the time t2.
- the transistors T49 in all the unit circuits 40 are turned on.
- the state signal Q (n) output from the n-th unit circuit 40 (n) becomes high level.
- the output signal Q2 (n) output from the nth stage unit circuit 40 (n) becomes the high level, and the monitor control line G2_Moni (n) in the nth row is selected.
- the display control circuit 100 changes the values of the clock signal CLK3 and the clock signal CLK4 at time t3, and then stops the clock operation by the clock signals CLK3 and CLK4 throughout the current measurement period (period from time t3 to time t4).
- the clock signal CLK3 changes from the low level to the high level and the clock signal CLK4 changes from the high level to the low level at the time point t3.
- CLK3 is maintained at a high level
- the clock signal CLK4 is maintained at a low level. Since the clock operation by the clock signals CLK3 and CLK4 is thus stopped, the monitor control line G2_Moni (n) in the nth row is maintained in the selected state throughout the current measurement period.
- the display control circuit 100 changes the monitor enable signal Moni_EN from the high level to the low level and restarts the clock operation by the clock signals CLK3 and CLK4.
- the state signal Q (n + 1) output from the unit circuit 40 (n + 1) in the (n + 1) -th stage is high level, but the monitor enable signal Moni_EN is low level.
- (N + 1) -th row monitor control line G2_Moni (n + 1) is not selected.
- none of the monitor control lines G2_Moni is in a selected state.
- FIG. 28 is a timing chart for explaining the operation of the pixel circuit 50.
- the nth row is determined as the compensation target row.
- the write control line G1_WL (n) is selected.
- the transistor T1 is turned on.
- pre-compensation data is supplied from the data line driving circuit 210 to the data line DL.
- current is supplied from the data line DL into the pixel circuit 50 as indicated by an arrow indicated by reference numeral 75 in FIG.
- the capacitor Cst is charged based on the pre-compensation data, and the transistor T2 is turned on.
- the monitor control line G2_Moni (n) is in the non-selected state before the time point t3, the transistor T3 is maintained in the off state.
- the drive current is supplied to the organic EL element OLED via the transistor T2, as indicated by the arrow 76 in FIG.
- the organic EL element OLED emits light with a luminance corresponding to the drive current.
- data based on the first gradation P1 is used as pre-compensation data for odd frames
- data based on the second gradation P2 is used for pre-compensation data for even frames.
- the write control line G1_WL (n) is in a non-selected state. As a result, the transistor T1 is turned off. Further, since the monitor enable signal Moni_EN becomes high level at time t3, the monitor control line G2_Moni () is based on the output signal Q2 (n) output from the n-th unit circuit 40 (n) of the shift register 4. n) is selected. Thereby, the transistor T3 is turned on. As a result, a drive current is output to the data line DL via the transistor T3 as indicated by an arrow denoted by reference numeral 77 in FIG. Then, the current measurement circuit 220 measures the drive current.
- the write control line G1_WL (n) is again selected.
- the transistor T1 is turned on.
- the monitor control line G2_Moni (n) is in a non-selected state.
- the transistor T3 is turned off.
- the compensated data is supplied from the data line driving circuit 210 to the data line DL. Accordingly, current is supplied from the data line DL into the pixel circuit 50 as indicated by an arrow indicated by reference numeral 75 in FIG.
- the capacitor Cst is charged based on the compensated data, and the transistor T2 is turned on.
- the drive current is supplied to the organic EL element OLED via the transistor T2, as indicated by the arrow 76 in FIG.
- the organic EL element OLED emits light with a luminance corresponding to the drive current.
- a pulse of the start pulse signal GSP is generated, and at time t12, a pulse of the start pulse signal MSP is generated.
- the count value CntWL becomes 0 when the clock signal CLK1 rises at time t12, and the count value CntWL becomes 1 when the clock signal CLK2 rises at time t13.
- the compensation target line address Addr and the count value CntWL do not match. Accordingly, normal data writing is performed row by row during a period before time t16.
- the count value CntWL becomes 4. That is, at time t16, the compensation target line address Addr and the count value CntWL coincide.
- the write control line G1_WL (4) in the fourth row is in a selected state, and pre-compensation data is written in the pixel circuit 50 in the fourth row.
- the clock signal CLK1 changes from high level to low level.
- the write control line G1_WL (4) in the fourth row is in a non-selected state.
- the clock signal CLK3 changes from low level to high level, and the clock signal CLK4 changes from high level to low level.
- the monitor enable signal Moni_EN changes from the low level to the high level, and the monitor control line G2_Moni (4) in the fourth row is selected.
- the drive current is measured during the period from time t17 to time t18.
- the clock signal CLK3 changes from high level to low level
- the clock signal CLK4 changes from low level to high level.
- the monitor enable signal Moni_EN changes from the high level to the low level
- the monitor control line G2_Moni (4) in the fourth row is in a non-selected state.
- the clock signal CLK1 changes from the low level to the high level.
- the write control line G1_WL (4) in the fourth row is again selected.
- the compensated data is written in the pixel circuit 50 in the fourth row. Normal data writing is performed row by row during a period after time t19.
- FIG. 31 is a flowchart showing a control procedure for the characteristic detection process (a series of processes for detecting the characteristic of the drive transistor). It is assumed that the write line counter 111 and the matching counter 114 are initialized in advance, and the value of the compensation target line address Addr stored in the compensation target line address storage memory 112 is a value indicating the compensation target row. .
- step S100 After the start of the characteristic detection process, each time the clock pulse of the clock signal CLK1 or the clock signal CLK2 is generated, one write control line G1_WL is selected as a scanning target (step S100). Then, it is determined whether or not the compensation target line address Addr stored in the compensation target line address storage memory 112 matches the count value CntWL output from the write line counter 111 (step S110). As a result, if both match, the process proceeds to step S120, and if both do not match, the process proceeds to step S112. In step S112, it is determined whether or not the scanning target is the write control line of the last row. As a result, if the scan target is the last row write control line, the process proceeds to step S150. If the scan target is not the last row write control line, the process returns to step S100. When the process proceeds to step S112, normal data writing is performed.
- step S120 1 is added to the count value CntM. Thereafter, it is determined whether the count value CntM is 1 or 2 (step S130). As a result, if the count value CntM is 1, the process proceeds to step S132, and if the count value CntM is 2, the process proceeds to step S134. In step S132, the drive current is measured based on the first gradation P1. In step S134, the drive current is measured based on the second gradation P2.
- step S140 it is determined whether or not the scanning target is the write control line of the last row (step S140). As a result, if the scan target is the last row write control line, the process proceeds to step S150. If the scan target is not the last row write control line, the process returns to step S100.
- step S150 the count value CntWL is initialized. Thereafter, it is determined whether or not the condition that “the count value CntM is 1 and the value of the compensation target line address Addr is equal to or less than the value WL_Max indicating the last row” is satisfied (step S160). As a result, if the condition is satisfied, the process proceeds to step S162. If the condition is not satisfied, the process proceeds to step S164.
- step S162 the same value is assigned to the compensation target line address Addr in the compensation target line address storage memory 112. Note that step S162 is not necessarily provided.
- step S164 it is determined whether or not the condition that “the count value CntM is 2 and the value of the compensation target line address Addr is equal to or less than a value WL_Max indicating the last row” is satisfied. As a result, if the condition is satisfied, the process proceeds to step S166. If the condition is not satisfied, the process proceeds to step S170. In step S166, 1 is added to the compensation target line address Addr. In step S168, the count value CntM is initialized.
- step S170 it is determined whether or not the condition “the value of the compensation target line address Addr is equal to the value obtained by adding 1 to the value WL_Max indicating the last row” is satisfied. As a result, if the condition is satisfied, the process proceeds to step S180. If the condition is not satisfied, the process returns to step S100. In step S180, the compensation target line address Addr is initialized. As described above, one characteristic detection process for all the drive transistors in the display unit 500 is completed.
- FIG. 32 is a flowchart for explaining a procedure of compensation processing (a series of processing for compensating for variations in characteristics of driving transistors) when attention is paid to one pixel (pixel in i row and j column).
- the drive current is measured during the characteristic detection processing period (step S200).
- the drive current is measured based on two types of gradations (first gradation P1 and second gradation P2: P2> P1).
- first gradation P1 and second gradation P2: P2> P1 In the present embodiment, in two consecutive frames, the driving current is measured based on the first gradation P1 in the first frame, and the driving current is measured based on the second gradation P2 in the second frame.
- the drive current obtained by writing the first measurement gradation voltage Vm P1 calculated by the following equation (1) into the pixel circuit 50 is measured, and the second frame is measured.
- the measurement of the drive current obtained by writing the second measurement gradation voltage Vm P2 calculated by the following equation (2) into the pixel circuit 50 is performed.
- Vcw is the difference between the gradation voltage corresponding to the minimum gradation and the gradation voltage corresponding to the maximum gradation (that is, the gradation voltage range).
- Vn (P1) is a value obtained by normalizing the first gradation P1 to a value in the range of 0 to 1
- Vn (P2) is a value obtained by normalizing the second gradation P2 to a value in the range of 0 to 1.
- B (i, j) is a normalization coefficient for the pixel of i rows and j columns calculated by the following equation (3).
- Vth (i, j) is an offset value for the pixel in i row and j column (this offset value corresponds to the threshold voltage of the driving transistor).
- ⁇ 0 is the average value of the gain values of all the pixels
- ⁇ is the gain value for the pixels in i rows and j columns.
- step S210 After the drive current is measured based on the two types of gradations, the offset value Vth and the gain value ⁇ are calculated based on the measured values (step S210).
- the processing in step S210 is performed by the correction arithmetic circuit 122 (see FIG. 18).
- the following equation (4) indicating the relationship between the drain-source current (drive current) Ids of the transistor and the gate-source voltage Vgs is used.
- IO P1 is a drive current as a measurement result based on the first gradation P1
- IO P2 is a drive current as a measurement result based on the second gradation P2.
- the correction data held in the nonvolatile memory 123 (see FIG. 18) in the correction data calculation / storage unit 120 is updated using the offset value Vth and the gain value ⁇ calculated as described above.
- the measurement value data obtained in step S200 is temporarily stored in a memory capable of high-speed access such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory) so that the process of Step S210 is performed at high speed.
- step S220 when writing a voltage to the pixel circuit 50 in the i row and j column, the gradation voltage is calculated by the following equation (7) using the offset value Vth and the gain value ⁇ (step S220).
- the processing in step S220 is performed by the gradation correction unit 130 (see FIG. 2).
- Vn (P) is a value obtained by normalizing the display gradation in the pixel in i row and j column to a value in the range of 0 to 1.
- step S230 the gradation voltage calculated in step S220 is written into the pixel circuit 50 in i row and j column (step S230).
- the compensation process as described above is performed on all the pixels, so that the variation in the characteristics of the drive transistor is compensated.
- FIG. 33 is a diagram showing gradation-current characteristics.
- the drive transistor is deteriorated, the drive current IO P1 obtained when writing based on the first gradation P1 is not coincident with the target current corresponding to the first gradation P1, and the second drive current IO write based on the gradation P2 obtained when conducted P2 does not coincide with the target current corresponding to the second gradation P2.
- the offset value Vth and the gain value ⁇ are calculated by the method described above based on the drive currents IO P1 and IO P2 .
- the gradation voltage corresponding to each gradation is corrected using the offset value Vth and the gain value ⁇ .
- the drive current obtained when the gradation voltage is written in the pixel circuit 50 substantially matches the target current for an arbitrary gradation. Therefore, the occurrence of luminance unevenness in the display screen is suppressed, and high-quality display is performed.
- the count value CntWL (count value CntWL representing the scanning target row) obtained based on the clock signals CLK1 and CLK2 for controlling the operation of the write control line driving circuit 300 and the compensation target line representing the compensation target row.
- a matching circuit 113 for determining whether or not the address Addr matches is provided in the display control circuit 100. If the count value CntWL and the compensation target line address Addr match, the display control circuit 100 outputs the clock signals CLK1 and CLK2 for a predetermined period (current measurement period) after one horizontal scanning period when the two match. Stop clock operation.
- the display control circuit 100 controls the clock operation of the clock signals CLK1 and CLK2 so that the same clock signal pulse is generated before and after the current measurement period.
- the write control line G1_WL (n) of the compensation target row is selected twice during the characteristic detection processing period.
- the unit circuit 40 in the shift register 4 constituting the monitor control line drive circuit 400 is connected to the output terminal 48 for outputting the status signal Q for controlling the operation of other stages and the monitor control line G2_Moni.
- An output terminal 49 is provided, and between the output terminal 48 and the output terminal 49, a transistor T49 whose on / off is controlled by a monitor enable signal Moni_EN given from the display control circuit 100 is provided.
- the display control circuit 100 sets the monitor enable signal Moni_EN to a high level for a predetermined period (current measurement period) after one horizontal scanning period at the time when the two match.
- the clock operation of the clock signals CLK3 and CLK4 is stopped during the current measurement period.
- the monitor control line G2_Moni (n) of the compensation target row is selected during the current measurement period during the characteristic detection processing period, and all the monitor control lines G2_Moni are not selected during the other periods. Maintained.
- the shift register in the gate driver circuit (the write control line drive circuit 300 and the monitor control line drive circuit 400) that realizes the above-described operation is configured using only an N-channel TFT.
- the organic EL display device 1 that employs a gate driver circuit formed of a single-channel TFT, it is possible to compensate for variations in the characteristics of the drive transistor.
- a gate driver circuit that performs a complicated operation as described in this specification is generally realized by a CMOS logic circuit.
- the gate driver circuit that performs the complicated operation as described above is formed on the glass substrate. It is not possible. Therefore, it is necessary to mount the gate driver circuit on the glass substrate in the form of an IC chip.
- the complex operation as described above is realized by the gate driver circuit configured using only the N-channel TFT. Therefore, the gate driver circuit can be formed on the glass substrate without making an IC. As a result, the cost of the display device can be reduced.
- FIG. 34 is a logic circuit diagram showing a configuration of the matching circuit 113 in the first modification of the embodiment.
- a NOR circuit (negative OR circuit) 74 is provided instead of the inverters 72 (1) to 72 (4) and the AND circuit 73 (see FIG. 15) in the above embodiment.
- the NOR circuit 74 outputs a value indicating a negative logical sum of the four first output data OUT (c) output from the EXOR circuits 71 (1) to 71 (4) as the matching signal MS.
- the value of the first input data IN (a) matches the value of the second input data IN (b)
- the value of the first output data OUT (c) becomes 0. If the value of the first input data IN (a) does not match the value of the second input data IN (b), the value of the first output data OUT (c) is 1. Therefore, if the value of the first input data IN (a) and the value of the second input data IN (b) are the same in all the EXOR circuits 71 (1) to 71 (4), the input to the NOR circuit 74 is performed. The values to be output are all 0, and the value output from the NOR circuit 74 is 1. That is, if the count value CntWL output from the write line counter 111 matches the compensation target line address Addr stored in the compensation target line address storage memory 112, the matching signal MS becomes high level.
- the matching circuit 113 can be configured as shown in FIG.
- the number of data input to the NOR circuit 74 increases, for example, as shown in FIG. 35, instead of one NOR circuit 74, a plurality of NOR circuits 741, one AND circuit 742, You may make it the structure which provides.
- the monitor enable signal Moni_EN output from the delay circuit 1151 is given to the transistor T49.
- the level of the voltage applied to the transistor T49 may not reach a level sufficient to set the monitor control line G2_Moni to the selected state. Therefore, in this modification, as shown in FIG. 36, a level shifter circuit 118 is provided at the subsequent stage of the delay circuit 1151.
- the logic voltage is boosted to a desired level.
- the level of the voltage applied to the transistor T49 can be reliably increased to a level sufficient to bring the monitor control line G2_Moni into the selected state.
- the level shifter circuit 118 may be realized by a CMOS circuit.
- the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made without departing from the spirit of the present invention.
- the organic EL display device has been described as an example.
- any display device other than the organic EL display device may be used as long as the display device includes a self-luminous display element driven by current.
- the invention can be applied.
- the gate driver circuit is configured using only N-channel TFTs.
- the gate driver circuit is configured using only P-channel TFTs.
- the present invention can also be applied to.
- Tone correction unit 200 Data line drive / current measurement circuit 300 Write control line drive circuit 400 Monitor control line drive circuit 500 Display unit T1 Input transistor T2 Drive transistor T3 Monitor control transistor Cst Capacitor DL, DL (0) to DL (5978) ... Data lines G1_WL, G1_WL (0) to G1_WL (1079) ... Write control lines G2_Moni, G2_Moni (0) to G2_Moni (1079) ... Monitor control lines CLK1 to CLK4 ... Clock signals Moni_EN ... Monitor enable signals MS ... Matching signals Addr ... Compensation target line address CntWL: Count value output from the write line counter
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Control Of El Displays (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
各行に対応するように設けられ、対応する行の画素回路にデータ電圧を書き込むか否かを制御するための複数の書き込み制御線と、
各行に対応するように設けられ、対応する行の画素回路に含まれている駆動トランジスタに供給される駆動電流を測定するか否かを制御するための複数のモニタ制御線と、
各列に対応するように設けられ、対応する列の画素回路に前記データ電圧を供給するための複数のデータ線と、
前記複数の書き込み制御線と1対1で対応する複数の第1の単位回路からなり第1のクロック信号群に基づいて動作するシフトレジスタであって前記第1のクロック信号群に基づいて前記複数の第1の単位回路が順次にアクティブな状態となるように構成された第1のシフトレジスタを含み、アクティブな状態の第1の単位回路に対応する書き込み制御線を選択状態にする書き込み制御線駆動回路と、
駆動電流を測定する対象となっている行である測定対象行に対応するモニタ制御線を選択状態にするためのモニタ制御線駆動回路と、
前記複数のデータ線に前記データ電圧を印加するデータ線駆動回路と、
前記複数の画素回路から供給される駆動電流を測定する電流測定回路と、
前記書き込み制御線駆動回路,前記モニタ制御線駆動回路,前記データ線駆動回路,および前記電流測定回路の動作を制御する駆動制御部と、
前記電流測定回路によって測定された駆動電流に基づいて、各画素回路の表示階調に対応する階調データを補正するための補正データを算出し、該補正データを保持する補正データ算出/記憶部と、
前記補正データ算出/記憶部に保持されている補正データに基づいて前記階調データを補正することによって、各画素回路に書き込まれるべきデータ電圧を求める階調補正部と
を備え、
前記複数の第1の単位回路は、Nチャネル型またはPチャネル型のいずれか一方のみのトランジスタを用いて構成され、
前記複数の第2の単位回路は、Nチャネル型またはPチャネル型のうち前記複数の第1の単位回路を構成するトランジスタと同じ型のみのトランジスタを用いて構成され、
前記モニタ制御線駆動回路は、前記複数のモニタ制御線と1対1で対応する複数の第2の単位回路からなり第2のクロック信号群とモニタ許可信号とに基づいて動作するシフトレジスタであって前記第2のクロック信号群に基づいて前記複数の第2の単位回路が順次にアクティブな状態となるように構成された第2のシフトレジスタを含み、前記モニタ許可信号がアクティブになっているときにアクティブな状態の第2の単位回路に対応するモニタ制御線を選択状態にし、
1フレーム期間につき1つの行が前記測定対象行に定められ、
前記駆動制御部は、
前記第1のクロック信号群のクロックパルスの数をカウントするクロックカウンタと、
前記測定対象行を示す測定対象アドレス値を保持する測定対象アドレス値記憶部と、
前記クロックカウンタの値と前記測定対象アドレス値とが一致しているか否かを判定する一致判定回路と
を含み、
前記一致判定回路によって前記クロックカウンタの値と前記測定対象アドレス値とが一致したと判定された時点の1クロック期間後の時点から所定の期間が、前記電流測定回路による駆動電流の測定が行われる電流測定期間に定められ、
前記駆動制御部は、
前記電流測定期間の開始時点および終了時点には前記第1のクロック信号群に含まれるクロック信号のうち前記測定対象行に対応する第1の単位回路に与えられるクロック信号の電位のみが変化するよう、かつ、前記電流測定期間を通じて前記第1のクロック信号群によるクロック動作が停止するよう、前記第1のクロック信号群を制御し、
前記電流測定期間の開始時点に前記第2のクロック信号群に含まれるクロック信号の電位が変化した後、前記電流測定期間を通じて前記第2のクロック信号群によるクロック動作が停止するよう、前記第2のクロック信号群を制御し、
前記電流測定期間にのみ前記モニタ許可信号をアクティブにすることを特徴とする。
各第2の単位回路は、
前段および後段に接続され、内部状態を示す状態信号を出力する第1出力端子と、
対応するモニタ制御線に接続された第2出力端子と、
制御端子に前記モニタ許可信号が与えられ、第1導通端子が前記第1出力端子に接続され、第2導通端子が前記第2出力端子に接続された出力制御トランジスタと
を含むことを特徴とする。
前記出力制御トランジスタの制御端子に与えられる前記モニタ許可信号の電圧レベルを変換するレベルシフタ回路を更に備えることを特徴とする。
前記電流測定回路では、第1階調に基づく駆動電流の測定と第2階調に基づく駆動電流の測定とが行われ、
前記駆動制御部は、各フレーム期間において前記第1階調に基づく駆動電流の測定が行われているのか前記第2階調に基づく駆動電流の測定が行われているのかを識別するための階調識別カウンタを更に含み、
前記補正データ算出/記憶部は、前記階調識別カウンタの値を参照しつつ、前記電流測定回路によって測定された2種類の駆動電流に基づいて前記補正データを算出することを特徴とする。
連続する2フレーム期間において、同じ行の画素回路について、前記第1階調に基づく駆動電流の測定と前記第2階調に基づく駆動電流の測定とが行われることを特徴とする。
前記クロックカウンタの値と前記測定対象アドレス値とは同じビット数で表され、
前記一致判定回路は、
前記クロックカウンタの値と前記測定対象アドレス値との対応するビットどうしの排他的論理和を出力する複数の排他的論理和回路と、
前記複数の排他的論理和回路と1対1で対応するように設けられ、対応する排他的論理和回路の出力の論理否定を出力する複数の論理否定回路と、
前記複数の論理否定回路の出力の論理積を出力する論理積回路と
からなることを特徴とする。
前記クロックカウンタの値と前記測定対象アドレス値とは同じビット数で表され、
前記一致判定回路は、
前記クロックカウンタの値と前記測定対象アドレス値との対応するビットどうしの排他的論理和を出力する複数の排他的論理和回路と、
前記複数の排他的論理和回路の出力の否定論理和を出力する否定論理和回路と
からなることを特徴とする。
各第1の単位回路および各第2の単位回路は、
第1ノードと、
内部状態を示す状態信号を出力する第1出力端子と、
前段から出力される状態信号が制御端子および第1導通端子に与えられ、前記第1ノードに第2導通端子が接続された第1のトランジスタと、
前記第1ノードに制御端子が接続され、制御クロック信号が第1導通端子に与えられ、前記第1出力端子に第2導通端子が接続された第2のトランジスタと、
後段から出力される状態信号が制御端子に与えられ、前記第1出力端子に第1導通端子が接続され、オフレベルの直流電源電圧が第2導通端子に与えられた第3のトランジスタと、
後段から出力される状態信号が制御端子に与えられ、前記第1ノードに第1導通端子が接続され、オフレベルの直流電源電圧が第2導通端子に与えられた第4のトランジスタと
を含み、
各第1の単位回路に含まれる第2のトランジスタの第1導通端子には、前記制御クロック信号として、前記第1のクロック信号群のうちの1つの信号が与えられ、
各第2の単位回路に含まれる第2のトランジスタの第1導通端子には、前記制御クロック信号として、前記第2のクロック信号群のうちの1つの信号が与えられ、
各第1の単位回路に含まれる第1出力端子は、対応する書き込み制御線に接続され、
各第2の単位回路は、
対応するモニタ制御線に接続された第2出力端子と、
制御端子に前記モニタ許可信号が与えられ、第1導通端子が前記第1出力端子に接続され、第2導通端子が前記第2出力端子に接続された出力制御トランジスタと
を更に含むことを特徴とする。
前記複数の第1の単位回路および前記複数の第2の単位回路を構成するトランジスタは、酸化インジウムガリウム亜鉛を含む薄膜トランジスタであることを特徴とする。
前記表示装置の駆動動作を制御する駆動制御ステップと、
各画素回路に含まれている駆動トランジスタに供給される駆動電流を測定する電流測定ステップと、
前記電流測定ステップで測定された駆動電流に基づいて、各画素回路の表示階調に対応する階調データを補正するための補正データを算出する補正データ算出ステップと、
前記補正データ算出ステップで算出された補正データに基づいて前記階調データを補正することによって、各画素回路に書き込まれるべきデータ電圧を求める階調補正ステップと
を含み、
前記表示装置は、
各行に対応するように設けられ、対応する行の画素回路に前記データ電圧を書き込むか否かを制御するための複数の書き込み制御線と、
各行に対応するように設けられ、対応する行の画素回路に含まれている駆動トランジスタに供給される駆動電流を測定するか否かを制御するための複数のモニタ制御線と、
各列に対応するように設けられ、対応する列の画素回路に前記データ電圧を供給するための複数のデータ線と、
前記複数の書き込み制御線と1対1で対応する複数の第1の単位回路からなり第1のクロック信号群に基づいて動作するシフトレジスタであって前記第1のクロック信号群に基づいて前記複数の第1の単位回路が順次にアクティブな状態となるように構成された第1のシフトレジスタを含み、アクティブな状態の第1の単位回路に対応する書き込み制御線を選択状態にする書き込み制御線駆動回路と、
駆動電流を測定する対象となっている行である測定対象行に対応するモニタ制御線を選択状態にするためのモニタ制御線駆動回路と
を備え、
前記複数の第1の単位回路は、Nチャネル型またはPチャネル型のいずれか一方のみのトランジスタを用いて構成され、
前記複数の第2の単位回路は、Nチャネル型またはPチャネル型のうち前記複数の第1の単位回路を構成するトランジスタと同じ型のみのトランジスタを用いて構成され、
前記モニタ制御線駆動回路は、前記複数のモニタ制御線と1対1で対応する複数の第2の単位回路からなり第2のクロック信号群とモニタ許可信号とに基づいて動作するシフトレジスタであって前記第2のクロック信号群に基づいて前記複数の第2の単位回路が順次にアクティブな状態となるように構成された第2のシフトレジスタを含み、前記モニタ許可信号がアクティブになっているときにアクティブな状態の第2の単位回路に対応するモニタ制御線を選択状態にし、
1フレーム期間につき1つの行が前記測定対象行に定められ、
前記駆動制御ステップは、
前記第1のクロック信号群のクロックパルスの数をカウントするクロックパルスカウントステップと、
前記クロックパルスカウントステップでカウントされた値と前記測定対象行を示す測定対象アドレス値とが一致しているか否かを判定する一致判定ステップと
を含み、
前記クロックパルスカウントステップでカウントされた値と前記測定対象アドレス値とが一致したと前記一致判定ステップにおいて判定された時点の1クロック期間後の時点から所定の期間が、前記電流測定ステップでの駆動電流の測定が行われる電流測定期間に定められ、
前記駆動制御ステップでは、
前記電流測定期間の開始時点および終了時点には前記第1のクロック信号群に含まれるクロック信号のうち前記測定対象行に対応する第1の単位回路に与えられるクロック信号の電位のみが変化するよう、かつ、前記電流測定期間を通じて前記第1のクロック信号群によるクロック動作が停止するよう、前記第1のクロック信号群が制御され、
前記電流測定期間の開始時点に前記第2のクロック信号群に含まれるクロック信号の電位が変化した後、前記電流測定期間を通じて前記第2のクロック信号群によるクロック動作が停止するよう、前記第2のクロック信号群が制御され、
前記電流測定期間にのみ前記モニタ許可信号がアクティブにされることを特徴とする。
図2は、本発明の一実施形態に係るアクティブマトリクス型の有機EL表示装置1の全体構成を示すブロック図である。この有機EL表示装置1は、表示制御回路100,データ線駆動/電流測定回路200,書き込み制御線駆動回路300,モニタ制御線駆動回路400,および表示部500を備えている。データ線駆動/電流測定回路200には、図3に示すように、データ線駆動回路210として機能する部分と電流測定回路220として機能する部分とが含まれている。なお、本実施形態においては、表示部500を含む有機ELパネル6内に書き込み制御線駆動回路300およびモニタ制御線駆動回路400が形成されている。すなわち、書き込み制御線駆動回路300およびモニタ制御線駆動回路400はモノリシック化されている。また、この有機EL表示装置1には、有機ELパネル6に各種電源電圧を供給するための構成要素として、ロジック電源610,ロジック電源620,有機EL用ハイレベル電源630,および有機EL用ローレベル電源640が設けられている。
データ線駆動/電流測定回路200は、データ線駆動回路210として機能するときには次のような動作を行う。データ線駆動/電流測定回路200は、表示制御回路100から送られるソース制御信号SCTLを受け取り、データ線DL(0)~DL(5759)に駆動用映像信号を印加する。このとき、データ線駆動/電流測定回路200では、スタートパルス信号SSPのパルスをトリガーとして、クロック信号SCKのパルスが発生するタイミングで、各データ線DLに印加すべき電圧を示すデジタル映像信号DVが順次に保持される。そして、ラッチストローブ信号LSのパルスが発生するタイミングで、上記保持されたデジタル映像信号DVがアナログ電圧に変換される。その変換されたアナログ電圧は、駆動用映像信号として全てのデータ線DL(0)~DL(5759)に一斉に印加される。データ線駆動/電流測定回路200は、電流測定回路220として機能するときには、画素回路50からデータ線DL(0)~DL(5759)に出力された駆動電流に応じたモニタ電圧Vmoを出力する。
次に、本実施形態における表示制御回路100の詳しい構成および動作について説明する。
図7は、表示制御回路100内の駆動制御部110の詳細な構成を示すブロック図である。図7に示すように、駆動制御部110には、書き込みラインカウンタ111と補償対象ラインアドレス格納メモリ112とマッチング回路113とマッチングカウンタ114とステータスマシーン115と画像データ/ソース制御信号生成回路116とゲート制御信号生成回路117とが含まれている。なお、本実施形態においては、書き込みラインカウンタ111によってクロックカウンタが実現され、補償対象ラインアドレス格納メモリ112によって測定対象アドレス値記憶部が実現され、マッチング回路113によって一致判定回路が実現され、マッチングカウンタ114によって階調識別カウンタが実現されている。
階調補正部130は、補正データ算出/記憶部120に保持されている補正データDH(オフセット値およびゲイン値)を読み出して、駆動制御部110から出力されたデータ信号DAの補正を行う。そして、階調補正部130は、補正によって得られたデータ(画素回路50に書き込まれるべきデータ電圧に相当するデータ)をデジタル映像信号DVとして出力する。階調補正部130から出力されたデジタル映像信号DVは、データ線駆動/電流測定回路200に送られる。
図18は、表示制御回路100内の補正データ算出/記憶部120の詳細な構成を示すブロック図である。図18に示すように、補正データ算出/記憶部120には、AD変換器121と補正演算回路122と不揮発性メモリ123とバッファメモリ124とが含まれている。AD変換器121は、データ線駆動/電流測定回路200から出力されたモニタ電圧Vmo(アナログ電圧)をデジタル信号Dmoに変換する。補正演算回路122は、デジタル信号Dmoに基づいて、階調補正部130での補正に用いるための補正データ(オフセット値およびゲイン値)を求める。その際、AD変換器121から出力されているデジタル信号Dmoが第1階調P1に基づくデータであるのか第2階調P2に基づくデータであるのかを判断するために、マッチングカウンタ114から出力される階調ポジション信号PSが参照される。補正演算回路132で求められた補正データDHは、不揮発性メモリ123に保持される。詳しくは、不揮発性メモリ123には、画素回路50毎に、オフセット値とゲイン値とが保持される。階調補正部130でデータ信号DAの補正が行われる際、不揮発性メモリ123から一時的にバッファメモリ124に読み出されている補正データDHが使用される。
図19は、本実施形態における書き込み制御線駆動回路300の構成を示すブロック図である。この書き込み制御線駆動回路300は、シフトレジスタ3を用いて実現されている。表示部500内の各書き込み制御線G1_WLと1対1で対応するように、シフトレジスタ3の各段が設けられている。すなわち、本実施形態においては、書き込み制御線駆動回路300には、1080段からなるシフトレジスタ3が含まれている。なお、図19には、1080段のうちの(i-1)段目から(i+1)段目までを構成する単位回路30(i-1)~30(i+1)のみを示している。説明の便宜上、iは偶数であると仮定する。シフトレジスタ3の各段(各単位回路)には、クロック信号VCLKを受け取るための入力端子と、セット信号Sを受け取るための入力端子と、リセット信号Rを受け取るための入力端子と、各段の内部状態を示す状態信号Qを出力するための出力端子とが設けられている。図9~図11における符号Qと図19における符号Qとは何ら関係がない。なお、本実施形態においては、シフトレジスタ3によって第1のシフトレジスタが実現され、単位回路30によって第1の単位回路が実現されている。
図22は、本実施形態におけるモニタ制御線駆動回路400の構成を示すブロック図である。このモニタ制御線駆動回路400は、シフトレジスタ4を用いて実現されている。表示部500内の各モニタ制御線G2_Moniと1対1で対応するように、シフトレジスタ4の各段が設けられている。すなわち、本実施形態においては、モニタ制御線駆動回路400には、1080段からなるシフトレジスタ4が含まれている。なお、図22には、1080段のうちの(i-1)段目から(i+1)段目までを構成する単位回路40(i-1)~40(i+1)のみを示している。シフトレジスタ4の各段(各単位回路)には、クロック信号VCLKを受け取るための入力端子と、セット信号Sを受け取るための入力端子と、リセット信号Rを受け取るための入力端子と、状態信号Qを出力するための出力端子と、出力信号Q2を出力するための出力端子とが設けられている。なお、本実施形態においては、シフトレジスタ4によって第2のシフトレジスタが実現され、単位回路40によって第2の単位回路が実現されている。
次に、書き込み制御線駆動回路300およびモニタ制御線駆動回路400に所望の動作をさせるために表示制御回路100で行われる制御処理について説明する。各フレームにおいて、モニタイネーブル信号Moni_ENがローレベルにされ、かつ、補償対象ラインアドレス格納メモリ112に補償対象行を示す補償対象ラインアドレスAddrが設定され、かつ、書き込みラインカウンタ111が初期化された状態で、書き込み制御線駆動回路300の動作開始を指示するスタートパルス信号GSPのパルスが出力される。また、スタートパルス信号GSPのパルスが出力されてから1水平走査期間後に、モニタ制御線駆動回路400の動作開始を指示するスタートパルス信号MSPのパルスが出力される。スタートパルス信号GSPのパルスの出力後、クロック信号CLK1,CLK2に基づいて、カウント値CntWLが増加する。
(a)クロック信号CLK1,CLK2に対する制御
カウント値CntWLと補償対象ラインアドレスAddrとが一致した時点の1水平走査期間後に、クロック信号CLK1およびクロック信号CLK2の双方がローレベルにされる。その後、電流測定期間を通じて、クロック信号CLK1,CLK2によるクロック動作が停止状態にされる。電流測定期間の終了後、クロック信号CLK1,CLK2の状態が、電流測定期間開始直前の状態に戻される。
(b)クロック信号CLK3,CLK4に対する制御
カウント値CntWLと補償対象ラインアドレスAddrとが一致した時点の1水平走査期間後に、クロック信号CLK3およびクロック信号CLK4の双方が通常と同様に変化させられる。その後、電流測定期間を通じて、クロック信号CLK3,CLK4によるクロック動作が停止状態にされる。電流測定期間の終了後、クロック信号CLK3,CLK4によるクロック動作が再開される。
(c)モニタイネーブル信号Moni_ENに対する制御
カウント値CntWLと補償対象ラインアドレスAddrとが一致した時点の1水平走査期間後に、モニタイネーブル信号Moni_ENがハイレベルにされる。その後、電流測定期間を通じて、モニタイネーブル信号Moni_ENがハイレベルで維持される。電流測定期間の終了後、モニタイネーブル信号Moni_ENがローレベルにされる。
表示制御回路100での上述した制御処理の内容を踏まえつつ、特性検出処理期間近傍における書き込み制御線駆動回路300の動作について説明する。図26は、書き込み制御線駆動回路300の動作を説明するためのタイミングチャートである。なお、n行目が補償対象行に定められているものと仮定する。
表示制御回路100での上述した制御処理の内容を踏まえつつ、特性検出処理期間近傍におけるモニタ制御線駆動回路400の動作について説明する。図27は、モニタ制御線駆動回路400の動作を説明するためのタイミングチャートである。なお、ここでもn行目が補償対象行に定められているものと仮定する。
書き込み制御線駆動回路300およびモニタ制御線駆動回路400についての上述した動作を踏まえつつ、補償対象行に含まれる画素回路50の特性検出処理期間中における動作について説明する。図28は、画素回路50の動作を説明するためのタイミングチャートである。なお、ここでもn行目が補償対象行に定められているものと仮定する。
次に、図1を参照しつつ、4行目が補償対象行に定められていると仮定した場合の動作を説明する。なお、図1においては、時点t16~時点t19の期間が特性検出処理期間であり、時点t17~時点t18の期間が電流測定期間である。4行目が補償対象行であるので、補償対象ラインアドレス格納メモリ112に格納されている補償対象ラインアドレスAddrは4となっている。
図31は、特性検出処理(駆動トランジスタの特性を検出するための一連の処理)のための制御手順を示すフローチャートである。なお、書き込みラインカウンタ111およびマッチングカウンタ114は予め初期化され、補償対象ラインアドレス格納メモリ112に格納されている補償対象ラインアドレスAddrの値は補償対象行を示す値になっているものと仮定する。
図32は、1つの画素(i行j列の画素)に着目したときの補償処理(駆動トランジスタの特性のばらつきを補償するための一連の処理)の手順を説明するためのフローチャートである。まず、上述したように、特性検出処理期間に駆動電流の測定が行われる(ステップS200)。駆動電流の測定は、2種類の階調(第1階調P1および第2階調P2:P2>P1)に基づいて行われる。本実施形態では、連続する2フレームにおいて、1フレーム目に第1階調P1に基づく駆動電流の測定が行われ、2フレーム目に第2階調P2に基づく駆動電流の測定が行われる。より詳しくは、1フレーム目には、次式(1)で算出される第1測定用階調電圧VmP1を画素回路50に書き込んだことによって得られる駆動電流の測定が行われ、2フレーム目には、次式(2)で算出される第2測定用階調電圧VmP2を画素回路50に書き込んだことによって得られる駆動電流の測定が行われる。
本実施形態によれば、書き込み制御線駆動回路300の動作を制御するクロック信号CLK1,CLK2に基づいて得られるカウント値CntWL(走査対象行を表すカウント値CntWL)と補償対象行を表す補償対象ラインアドレスAddrとが一致するか否かを判定するマッチング回路113が表示制御回路100内に設けられている。そして、カウント値CntWLと補償対象ラインアドレスAddrとが一致すれば、表示制御回路100は、両者が一致した時点の1水平走査期間後から所定の期間(電流測定期間)、クロック信号CLK1,CLK2のクロック動作を停止させる。また、表示制御回路100は、電流測定期間の前後に同じクロック信号のパルスが発生するように、クロック信号CLK1,CLK2のクロック動作を制御する。これにより、特性検出処理期間に、補償対象行の書き込み制御線G1_WL(n)が2回選択状態となる。また、モニタ制御線駆動回路400を構成するシフトレジスタ4内の単位回路40には、他の段の動作を制御するための状態信号Qを出力する出力端子48とモニタ制御線G2_Moniに接続された出力端子49とが設けられ、出力端子48と出力端子49との間には、表示制御回路100から与えられるモニタイネーブル信号Moni_ENによってオン/オフが制御されるトランジスタT49が設けられている。そして、カウント値CntWLと補償対象ラインアドレスAddrとが一致すれば、表示制御回路100は、両者が一致した時点の1水平走査期間後から所定の期間(電流測定期間)だけモニタイネーブル信号Moni_ENをハイレベルにするとともに、電流測定期間にはクロック信号CLK3,CLK4のクロック動作を停止させる。これにより、各フレームにおいて、特性検出処理期間中の電流測定期間に補償対象行のモニタ制御線G2_Moni(n)が選択状態となり、それ以外の期間には全てのモニタ制御線G2_Moniが非選択状態で維持される。以上のように書き込み制御線G1_WLおよびモニタ制御線G2_Moniが駆動されることにより、各フレームにおいて、駆動トランジスタの特性を検出するための駆動電流の測定が行われる。そして、駆動電流の測定値に基づいて補正データが求められ、当該補正データに基づいて階調電圧の補正が行われる。その結果、駆動トランジスタの特性のばらつきが補償される。ここで、上述の動作を実現するゲートドライバ回路(書き込み制御線駆動回路300およびモニタ制御線駆動回路400)内のシフトレジスタは、Nチャネル型のみのTFTを用いて構成されている。以上より、本実施形態によれば、片チャネルのTFTで形成されたゲートドライバ回路を採用している有機EL表示装置1において、駆動トランジスタの特性のばらつきを補償することが可能となる。
以下、上記実施形態の変形例について説明する。
図34は、上記実施形態の第1の変形例におけるマッチング回路113の構成を示す論理回路図である。本変形例においては、上記実施形態におけるインバータ72(1)~72(4)およびAND回路73(図15参照)に代えて、NOR回路(否定論理和回路)74が設けられている。NOR回路74は、EXOR回路71(1)~71(4)から出力される4つの第1出力データOUT(c)の否定論理和を示す値をマッチング信号MSとして出力する。
上記実施形態においては、図25に示すように、遅延回路1151から出力されたモニタイネーブル信号Moni_ENがトランジスタT49に与えられていた。この場合、トランジスタT49には、モニタイネーブル信号Moni_ENとして、ロジック電源の電圧しか与えることができない。このため、トランジスタT49に与えられる電圧のレベルが、モニタ制御線G2_Moniを選択状態にするために充分なレベルにまで達しないことがある。そこで、本変形例においては、図36に示すように、遅延回路1151の後段にレベルシフタ回路118が設けられている。
本発明は、上述の実施形態および変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、上記実施形態においては有機EL表示装置を例に挙げて説明したが、電流で駆動される自発光型表示素子を備えた表示装置であれば、有機EL表示装置以外の表示装置にも本発明を適用することができる。また、上記実施形態においてはNチャネル型だけのTFTを用いてゲートドライバ回路が構成されている例を挙げて説明したが、Pチャネル型だけのTFTを用いてゲートドライバ回路が構成されている場合にも本発明を適用することができる。
3,4…シフトレジスタ
6…有機ELパネル
30,40…(シフトレジスタ内の)単位回路
50…画素回路
100…表示制御回路
110…駆動制御部
111…書き込みラインカウンタ
112…補償対象ラインアドレス格納メモリ
113…マッチング回路
114…マッチングカウンタ
115…ステータスマシーン
116…画像データ/ソース制御信号生成回路
117…ゲート制御信号生成回路
120…補正データ算出/記憶部
130…階調補正部
200…データ線駆動/電流測定回路
300…書き込み制御線駆動回路
400…モニタ制御線駆動回路
500…表示部
T1…入力トランジスタ
T2…駆動トランジスタ
T3…モニタ制御トランジスタ
Cst…コンデンサ
DL,DL(0)~DL(5978)…データ線
G1_WL,G1_WL(0)~G1_WL(1079)…書き込み制御線
G2_Moni,G2_Moni(0)~G2_Moni(1079)…モニタ制御線
CLK1~CLK4…クロック信号
Moni_EN…モニタイネーブル信号
MS…マッチング信号
Addr…補償対象ラインアドレス
CntWL…書き込みラインカウンタから出力されるカウント値
Claims (10)
- 電流によって輝度が制御される電気光学素子および前記電気光学素子に供給すべき電流を制御するための駆動トランジスタをそれぞれが含むマトリクス状に形成された複数の画素回路を有する表示装置であって、
各行に対応するように設けられ、対応する行の画素回路にデータ電圧を書き込むか否かを制御するための複数の書き込み制御線と、
各行に対応するように設けられ、対応する行の画素回路に含まれている駆動トランジスタに供給される駆動電流を測定するか否かを制御するための複数のモニタ制御線と、
各列に対応するように設けられ、対応する列の画素回路に前記データ電圧を供給するための複数のデータ線と、
前記複数の書き込み制御線と1対1で対応する複数の第1の単位回路からなり第1のクロック信号群に基づいて動作するシフトレジスタであって前記第1のクロック信号群に基づいて前記複数の第1の単位回路が順次にアクティブな状態となるように構成された第1のシフトレジスタを含み、アクティブな状態の第1の単位回路に対応する書き込み制御線を選択状態にする書き込み制御線駆動回路と、
駆動電流を測定する対象となっている行である測定対象行に対応するモニタ制御線を選択状態にするためのモニタ制御線駆動回路と、
前記複数のデータ線に前記データ電圧を印加するデータ線駆動回路と、
前記複数の画素回路から供給される駆動電流を測定する電流測定回路と、
前記書き込み制御線駆動回路,前記モニタ制御線駆動回路,前記データ線駆動回路,および前記電流測定回路の動作を制御する駆動制御部と、
前記電流測定回路によって測定された駆動電流に基づいて、各画素回路の表示階調に対応する階調データを補正するための補正データを算出し、該補正データを保持する補正データ算出/記憶部と、
前記補正データ算出/記憶部に保持されている補正データに基づいて前記階調データを補正することによって、各画素回路に書き込まれるべきデータ電圧を求める階調補正部と
を備え、
前記複数の第1の単位回路は、Nチャネル型またはPチャネル型のいずれか一方のみのトランジスタを用いて構成され、
前記複数の第2の単位回路は、Nチャネル型またはPチャネル型のうち前記複数の第1の単位回路を構成するトランジスタと同じ型のみのトランジスタを用いて構成され、
前記モニタ制御線駆動回路は、前記複数のモニタ制御線と1対1で対応する複数の第2の単位回路からなり第2のクロック信号群とモニタ許可信号とに基づいて動作するシフトレジスタであって前記第2のクロック信号群に基づいて前記複数の第2の単位回路が順次にアクティブな状態となるように構成された第2のシフトレジスタを含み、前記モニタ許可信号がアクティブになっているときにアクティブな状態の第2の単位回路に対応するモニタ制御線を選択状態にし、
1フレーム期間につき1つの行が前記測定対象行に定められ、
前記駆動制御部は、
前記第1のクロック信号群のクロックパルスの数をカウントするクロックカウンタと、
前記測定対象行を示す測定対象アドレス値を保持する測定対象アドレス値記憶部と、
前記クロックカウンタの値と前記測定対象アドレス値とが一致しているか否かを判定する一致判定回路と
を含み、
前記一致判定回路によって前記クロックカウンタの値と前記測定対象アドレス値とが一致したと判定された時点の1クロック期間後の時点から所定の期間が、前記電流測定回路による駆動電流の測定が行われる電流測定期間に定められ、
前記駆動制御部は、
前記電流測定期間の開始時点および終了時点には前記第1のクロック信号群に含まれるクロック信号のうち前記測定対象行に対応する第1の単位回路に与えられるクロック信号の電位のみが変化するよう、かつ、前記電流測定期間を通じて前記第1のクロック信号群によるクロック動作が停止するよう、前記第1のクロック信号群を制御し、
前記電流測定期間の開始時点に前記第2のクロック信号群に含まれるクロック信号の電位が変化した後、前記電流測定期間を通じて前記第2のクロック信号群によるクロック動作が停止するよう、前記第2のクロック信号群を制御し、
前記電流測定期間にのみ前記モニタ許可信号をアクティブにすることを特徴とする、表示装置。 - 各第2の単位回路は、
前段および後段に接続され、内部状態を示す状態信号を出力する第1出力端子と、
対応するモニタ制御線に接続された第2出力端子と、
制御端子に前記モニタ許可信号が与えられ、第1導通端子が前記第1出力端子に接続され、第2導通端子が前記第2出力端子に接続された出力制御トランジスタと
を含むことを特徴とする、請求項1に記載の表示装置。 - 前記出力制御トランジスタの制御端子に与えられる前記モニタ許可信号の電圧レベルを変換するレベルシフタ回路を更に備えることを特徴とする、請求項2に記載の表示装置。
- 前記電流測定回路では、第1階調に基づく駆動電流の測定と第2階調に基づく駆動電流の測定とが行われ、
前記駆動制御部は、各フレーム期間において前記第1階調に基づく駆動電流の測定が行われているのか前記第2階調に基づく駆動電流の測定が行われているのかを識別するための階調識別カウンタを更に含み、
前記補正データ算出/記憶部は、前記階調識別カウンタの値を参照しつつ、前記電流測定回路によって測定された2種類の駆動電流に基づいて前記補正データを算出することを特徴とする、請求項1に記載の表示装置。 - 連続する2フレーム期間において、同じ行の画素回路について、前記第1階調に基づく駆動電流の測定と前記第2階調に基づく駆動電流の測定とが行われることを特徴とする、請求項4に記載の表示装置。
- 前記クロックカウンタの値と前記測定対象アドレス値とは同じビット数で表され、
前記一致判定回路は、
前記クロックカウンタの値と前記測定対象アドレス値との対応するビットどうしの排他的論理和を出力する複数の排他的論理和回路と、
前記複数の排他的論理和回路と1対1で対応するように設けられ、対応する排他的論理和回路の出力の論理否定を出力する複数の論理否定回路と、
前記複数の論理否定回路の出力の論理積を出力する論理積回路と
からなることを特徴とする、請求項1に記載の表示装置。 - 前記クロックカウンタの値と前記測定対象アドレス値とは同じビット数で表され、
前記一致判定回路は、
前記クロックカウンタの値と前記測定対象アドレス値との対応するビットどうしの排他的論理和を出力する複数の排他的論理和回路と、
前記複数の排他的論理和回路の出力の否定論理和を出力する否定論理和回路と
からなることを特徴とする、請求項1に記載の表示装置。 - 各第1の単位回路および各第2の単位回路は、
第1ノードと、
内部状態を示す状態信号を出力する第1出力端子と、
前段から出力される状態信号が制御端子および第1導通端子に与えられ、前記第1ノードに第2導通端子が接続された第1のトランジスタと、
前記第1ノードに制御端子が接続され、制御クロック信号が第1導通端子に与えられ、前記第1出力端子に第2導通端子が接続された第2のトランジスタと、
後段から出力される状態信号が制御端子に与えられ、前記第1出力端子に第1導通端子が接続され、オフレベルの直流電源電圧が第2導通端子に与えられた第3のトランジスタと、
後段から出力される状態信号が制御端子に与えられ、前記第1ノードに第1導通端子が接続され、オフレベルの直流電源電圧が第2導通端子に与えられた第4のトランジスタと
を含み、
各第1の単位回路に含まれる第2のトランジスタの第1導通端子には、前記制御クロック信号として、前記第1のクロック信号群のうちの1つの信号が与えられ、
各第2の単位回路に含まれる第2のトランジスタの第1導通端子には、前記制御クロック信号として、前記第2のクロック信号群のうちの1つの信号が与えられ、
各第1の単位回路に含まれる第1出力端子は、対応する書き込み制御線に接続され、
各第2の単位回路は、
対応するモニタ制御線に接続された第2出力端子と、
制御端子に前記モニタ許可信号が与えられ、第1導通端子が前記第1出力端子に接続され、第2導通端子が前記第2出力端子に接続された出力制御トランジスタと
を更に含むことを特徴とする、請求項1に記載の表示装置。 - 前記複数の第1の単位回路および前記複数の第2の単位回路を構成するトランジスタは、酸化インジウムガリウム亜鉛を含む薄膜トランジスタであることを特徴とする、請求項1に記載の表示装置。
- 電流によって輝度が制御される電気光学素子および前記電気光学素子に供給すべき電流を制御するための駆動トランジスタをそれぞれが含むマトリクス状に形成された複数の画素回路を有する表示装置の駆動方法であって、
前記表示装置の駆動動作を制御する駆動制御ステップと、
各画素回路に含まれている駆動トランジスタに供給される駆動電流を測定する電流測定ステップと、
前記電流測定ステップで測定された駆動電流に基づいて、各画素回路の表示階調に対応する階調データを補正するための補正データを算出する補正データ算出ステップと、
前記補正データ算出ステップで算出された補正データに基づいて前記階調データを補正することによって、各画素回路に書き込まれるべきデータ電圧を求める階調補正ステップと
を含み、
前記表示装置は、
各行に対応するように設けられ、対応する行の画素回路に前記データ電圧を書き込むか否かを制御するための複数の書き込み制御線と、
各行に対応するように設けられ、対応する行の画素回路に含まれている駆動トランジスタに供給される駆動電流を測定するか否かを制御するための複数のモニタ制御線と、
各列に対応するように設けられ、対応する列の画素回路に前記データ電圧を供給するための複数のデータ線と、
前記複数の書き込み制御線と1対1で対応する複数の第1の単位回路からなり第1のクロック信号群に基づいて動作するシフトレジスタであって前記第1のクロック信号群に基づいて前記複数の第1の単位回路が順次にアクティブな状態となるように構成された第1のシフトレジスタを含み、アクティブな状態の第1の単位回路に対応する書き込み制御線を選択状態にする書き込み制御線駆動回路と、
駆動電流を測定する対象となっている行である測定対象行に対応するモニタ制御線を選択状態にするためのモニタ制御線駆動回路と
を備え、
前記複数の第1の単位回路は、Nチャネル型またはPチャネル型のいずれか一方のみのトランジスタを用いて構成され、
前記複数の第2の単位回路は、Nチャネル型またはPチャネル型のうち前記複数の第1の単位回路を構成するトランジスタと同じ型のみのトランジスタを用いて構成され、
前記モニタ制御線駆動回路は、前記複数のモニタ制御線と1対1で対応する複数の第2の単位回路からなり第2のクロック信号群とモニタ許可信号とに基づいて動作するシフトレジスタであって前記第2のクロック信号群に基づいて前記複数の第2の単位回路が順次にアクティブな状態となるように構成された第2のシフトレジスタを含み、前記モニタ許可信号がアクティブになっているときにアクティブな状態の第2の単位回路に対応するモニタ制御線を選択状態にし、
1フレーム期間につき1つの行が前記測定対象行に定められ、
前記駆動制御ステップは、
前記第1のクロック信号群のクロックパルスの数をカウントするクロックパルスカウントステップと、
前記クロックパルスカウントステップでカウントされた値と前記測定対象行を示す測定対象アドレス値とが一致しているか否かを判定する一致判定ステップと
を含み、
前記クロックパルスカウントステップでカウントされた値と前記測定対象アドレス値とが一致したと前記一致判定ステップにおいて判定された時点の1クロック期間後の時点から所定の期間が、前記電流測定ステップでの駆動電流の測定が行われる電流測定期間に定められ、
前記駆動制御ステップでは、
前記電流測定期間の開始時点および終了時点には前記第1のクロック信号群に含まれるクロック信号のうち前記測定対象行に対応する第1の単位回路に与えられるクロック信号の電位のみが変化するよう、かつ、前記電流測定期間を通じて前記第1のクロック信号群によるクロック動作が停止するよう、前記第1のクロック信号群が制御され、
前記電流測定期間の開始時点に前記第2のクロック信号群に含まれるクロック信号の電位が変化した後、前記電流測定期間を通じて前記第2のクロック信号群によるクロック動作が停止するよう、前記第2のクロック信号群が制御され、
前記電流測定期間にのみ前記モニタ許可信号がアクティブにされることを特徴とする、駆動方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015553395A JP6116706B2 (ja) | 2013-12-19 | 2014-08-28 | 表示装置およびその駆動方法 |
CN201480067584.2A CN105830143B (zh) | 2013-12-19 | 2014-08-28 | 显示装置及其驱动方法 |
US15/039,098 US9824618B2 (en) | 2013-12-19 | 2014-08-28 | Display device and method for driving same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013262378 | 2013-12-19 | ||
JP2013-262378 | 2013-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093100A1 true WO2015093100A1 (ja) | 2015-06-25 |
Family
ID=53402457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/072536 WO2015093100A1 (ja) | 2013-12-19 | 2014-08-28 | 表示装置およびその駆動方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9824618B2 (ja) |
JP (1) | JP6116706B2 (ja) |
CN (1) | CN105830143B (ja) |
WO (1) | WO2015093100A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015190407A1 (ja) * | 2014-06-10 | 2015-12-17 | シャープ株式会社 | 表示装置およびその駆動方法 |
JPWO2015199051A1 (ja) * | 2014-06-23 | 2017-04-20 | シャープ株式会社 | 表示装置およびその駆動方法 |
US20170162122A1 (en) * | 2015-12-04 | 2017-06-08 | Samsung Display Co., Ltd. | Gate driving circuit and organic light emitting display device having the same |
WO2017115713A1 (ja) * | 2015-12-29 | 2017-07-06 | シャープ株式会社 | 画素回路ならびに表示装置およびその駆動方法 |
KR20180025399A (ko) * | 2016-08-30 | 2018-03-09 | 엘지디스플레이 주식회사 | 유기전계발광표시장치 및 이의 구동방법 |
JP2021039365A (ja) * | 2015-08-07 | 2021-03-11 | 株式会社半導体エネルギー研究所 | 表示パネル |
CN114429744A (zh) * | 2022-02-28 | 2022-05-03 | 北京京东方显示技术有限公司 | 控制电路及其控制方法、显示装置、存储介质 |
JP2023097335A (ja) * | 2021-12-27 | 2023-07-07 | エルジー ディスプレイ カンパニー リミテッド | ゲート駆動回路および電界発光表示装置 |
US11874997B2 (en) | 2020-11-27 | 2024-01-16 | Sharp Kabushiki Kaisha | Display device equipped with touch panel and control method therefor |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6421535B2 (ja) * | 2014-10-14 | 2018-11-14 | 日亜化学工業株式会社 | 発光装置及び表示部並びに制御回路 |
US10657895B2 (en) * | 2015-07-24 | 2020-05-19 | Ignis Innovation Inc. | Pixels and reference circuits and timing techniques |
US10360827B2 (en) * | 2015-10-09 | 2019-07-23 | Apple Inc. | Systems and methods for indirect threshold voltage sensing in an electronic display |
KR102485572B1 (ko) * | 2016-05-18 | 2023-01-09 | 삼성디스플레이 주식회사 | 표시 장치 및 이의 구동 방법 |
WO2018193912A1 (ja) * | 2017-04-17 | 2018-10-25 | シャープ株式会社 | 走査信号線駆動回路およびそれを備える表示装置 |
US10193011B1 (en) * | 2017-07-14 | 2019-01-29 | Globalfoundries Inc. | Method of manufacturing a 3 color LED integrated Si CMOS driver wafer using die to wafer bonding approach |
JP6781116B2 (ja) * | 2017-07-28 | 2020-11-04 | 株式会社Joled | 表示パネル、表示パネルの制御装置、および表示装置 |
CN107742493B (zh) * | 2017-11-13 | 2020-03-17 | 深圳市华星光电技术有限公司 | 一种驱动电路及驱动方法 |
CN109949771B (zh) * | 2017-12-20 | 2022-09-30 | 矽创电子股份有限公司 | 显示面板驱动电路及其耐高压电路 |
US11250787B2 (en) | 2018-02-02 | 2022-02-15 | Chengdu Boe Optoelectronics Technology Co., Ltd. | Signal control apparatus and method, display control apparatus and method, and display apparatus |
CN109427292B (zh) * | 2018-02-02 | 2021-04-02 | 京东方科技集团股份有限公司 | 一种信号控制装置及方法、显示控制装置及方法、显示装置 |
US10573210B2 (en) * | 2018-04-19 | 2020-02-25 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Test circuit, array substrate, and light-emitting display apparatus |
KR102522536B1 (ko) * | 2018-07-12 | 2023-04-17 | 엘지디스플레이 주식회사 | 게이트클럭 생성부 및 이를 포함하는 표시장치 |
CN111489703B (zh) * | 2019-01-29 | 2021-07-27 | 上海和辉光电股份有限公司 | 一种像素电路及其驱动方法和显示面板 |
CN109742134B (zh) * | 2019-03-15 | 2022-07-05 | 合肥京东方卓印科技有限公司 | 有机发光二极管显示装置及其驱动方法 |
US11587506B2 (en) * | 2020-03-30 | 2023-02-21 | BOE MLED Technology Co., Ltd. | Pixel structure, driving method thereof and display device |
CN112164366B (zh) * | 2020-11-11 | 2024-06-18 | 福州京东方光电科技有限公司 | 移位寄存器及栅极驱动电路 |
CN115394264B (zh) * | 2022-08-29 | 2023-09-12 | 深圳创维-Rgb电子有限公司 | Dlg模式切换电路以及切换方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004004673A (ja) * | 2002-03-29 | 2004-01-08 | Seiko Epson Corp | 電子装置、電子装置の駆動方法、電気光学装置及び電子機器 |
JP2006284959A (ja) * | 2005-03-31 | 2006-10-19 | Casio Comput Co Ltd | 表示装置及びその駆動制御方法 |
JP2008523448A (ja) * | 2004-12-15 | 2008-07-03 | イグニス・イノベイション・インコーポレーテッド | 発光デバイス表示器をプログラミング、校正及び駆動する方法並びにシステム |
WO2009087746A1 (ja) * | 2008-01-07 | 2009-07-16 | Panasonic Corporation | 表示装置、電子装置及び駆動方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6806497B2 (en) * | 2002-03-29 | 2004-10-19 | Seiko Epson Corporation | Electronic device, method for driving the electronic device, electro-optical device, and electronic equipment |
KR100497246B1 (ko) * | 2003-04-01 | 2005-06-23 | 삼성에스디아이 주식회사 | 발광 표시 장치 및 그 표시 패널과 구동 방법 |
JP2005128040A (ja) * | 2003-10-21 | 2005-05-19 | Hitachi Displays Ltd | 表示装置 |
KR20060104531A (ko) * | 2005-03-30 | 2006-10-09 | 삼성에스디아이 주식회사 | 발광표시장치의 제조방법 |
US7907137B2 (en) * | 2005-03-31 | 2011-03-15 | Casio Computer Co., Ltd. | Display drive apparatus, display apparatus and drive control method thereof |
KR100707602B1 (ko) * | 2005-10-20 | 2007-04-13 | 삼성에스디아이 주식회사 | 유기 전계 발광 표시장치 및 그의 제조방법 |
KR100671669B1 (ko) | 2006-02-28 | 2007-01-19 | 삼성에스디아이 주식회사 | 데이터 구동부 및 이를 이용한 유기 발광 표시장치와 그의구동방법 |
KR100875103B1 (ko) * | 2007-11-16 | 2008-12-19 | 삼성모바일디스플레이주식회사 | 유기 발광 디스플레이 장치 |
-
2014
- 2014-08-28 WO PCT/JP2014/072536 patent/WO2015093100A1/ja active Application Filing
- 2014-08-28 US US15/039,098 patent/US9824618B2/en active Active
- 2014-08-28 CN CN201480067584.2A patent/CN105830143B/zh active Active
- 2014-08-28 JP JP2015553395A patent/JP6116706B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004004673A (ja) * | 2002-03-29 | 2004-01-08 | Seiko Epson Corp | 電子装置、電子装置の駆動方法、電気光学装置及び電子機器 |
JP2008523448A (ja) * | 2004-12-15 | 2008-07-03 | イグニス・イノベイション・インコーポレーテッド | 発光デバイス表示器をプログラミング、校正及び駆動する方法並びにシステム |
JP2006284959A (ja) * | 2005-03-31 | 2006-10-19 | Casio Comput Co Ltd | 表示装置及びその駆動制御方法 |
WO2009087746A1 (ja) * | 2008-01-07 | 2009-07-16 | Panasonic Corporation | 表示装置、電子装置及び駆動方法 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015190407A1 (ja) * | 2014-06-10 | 2015-12-17 | シャープ株式会社 | 表示装置およびその駆動方法 |
JPWO2015199051A1 (ja) * | 2014-06-23 | 2017-04-20 | シャープ株式会社 | 表示装置およびその駆動方法 |
US9792858B2 (en) | 2014-06-23 | 2017-10-17 | Sharp Kabushiki Kaisha | Display device and method for driving same |
JP2021039365A (ja) * | 2015-08-07 | 2021-03-11 | 株式会社半導体エネルギー研究所 | 表示パネル |
US20170162122A1 (en) * | 2015-12-04 | 2017-06-08 | Samsung Display Co., Ltd. | Gate driving circuit and organic light emitting display device having the same |
KR20170066733A (ko) * | 2015-12-04 | 2017-06-15 | 삼성디스플레이 주식회사 | 게이트 구동 회로 및 이를 포함하는 유기 발광 표시 장치 |
KR102595263B1 (ko) * | 2015-12-04 | 2023-10-30 | 삼성디스플레이 주식회사 | 게이트 구동 회로 및 이를 포함하는 유기 발광 표시 장치 |
US10109239B2 (en) * | 2015-12-04 | 2018-10-23 | Samsung Display Co., Ltd. | Organic light emitting display device having a gate driving circuit for outputting a sensing signal |
WO2017115713A1 (ja) * | 2015-12-29 | 2017-07-06 | シャープ株式会社 | 画素回路ならびに表示装置およびその駆動方法 |
KR20180025399A (ko) * | 2016-08-30 | 2018-03-09 | 엘지디스플레이 주식회사 | 유기전계발광표시장치 및 이의 구동방법 |
KR102741699B1 (ko) | 2016-08-30 | 2024-12-13 | 엘지디스플레이 주식회사 | 유기전계발광표시장치 및 이의 구동방법 |
US11874997B2 (en) | 2020-11-27 | 2024-01-16 | Sharp Kabushiki Kaisha | Display device equipped with touch panel and control method therefor |
JP2023097335A (ja) * | 2021-12-27 | 2023-07-07 | エルジー ディスプレイ カンパニー リミテッド | ゲート駆動回路および電界発光表示装置 |
JP7531554B2 (ja) | 2021-12-27 | 2024-08-09 | エルジー ディスプレイ カンパニー リミテッド | ゲート駆動回路および電界発光表示装置 |
US12277894B2 (en) | 2021-12-27 | 2025-04-15 | Lg Display Co., Ltd. | Gate driving circuit and electroluminescence display device using the same |
CN114429744A (zh) * | 2022-02-28 | 2022-05-03 | 北京京东方显示技术有限公司 | 控制电路及其控制方法、显示装置、存储介质 |
CN114429744B (zh) * | 2022-02-28 | 2024-03-22 | 北京京东方显示技术有限公司 | 控制电路及其控制方法、显示装置、存储介质 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015093100A1 (ja) | 2017-03-16 |
US9824618B2 (en) | 2017-11-21 |
US20170162101A1 (en) | 2017-06-08 |
CN105830143A (zh) | 2016-08-03 |
JP6116706B2 (ja) | 2017-04-19 |
CN105830143B (zh) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6116706B2 (ja) | 表示装置およびその駆動方法 | |
WO2017115713A1 (ja) | 画素回路ならびに表示装置およびその駆動方法 | |
CN110520922B (zh) | 显示驱动电路、方法、以及显示设备 | |
US10565933B2 (en) | Pixel circuit, driving method thereof, array substrate, display device | |
EP2093748B1 (en) | Display device and its driving method | |
JPWO2017010286A1 (ja) | 画素回路ならびに表示装置およびその駆動方法 | |
EP2595140A1 (en) | Display device and method for driving same | |
CN107068052B (zh) | 有机发光二极管显示装置及其驱动方法 | |
WO2019186857A1 (ja) | 表示装置およびその駆動方法 | |
KR20160073928A (ko) | 유기발광다이오드 표시장치 및 이의 구동방법 | |
US10109237B2 (en) | Pixel and organic light emitting display device having the same | |
EP3159881A1 (en) | Pixel circuit and driving method therefor, and display device | |
CN107533825B (zh) | 显示装置 | |
US10388217B2 (en) | Display device and method of driving same | |
JP2023115015A (ja) | 表示装置およびその駆動方法 | |
US8810488B2 (en) | Display device and method for driving the same | |
US9542886B2 (en) | Organic light emitting display device and method for driving the same | |
US9361826B2 (en) | Display device and drive method therefor | |
CN109599063B (zh) | 一种7T2C的Em驱动电路 | |
US11810506B2 (en) | Pixel circuit, driving method for same, and display apparatus | |
WO2023201589A9 (zh) | 发光控制电路及其控制方法、栅极驱动电路及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14872604 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015553395 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15039098 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14872604 Country of ref document: EP Kind code of ref document: A1 |