+

WO2015076409A1 - Optical member and display device - Google Patents

Optical member and display device Download PDF

Info

Publication number
WO2015076409A1
WO2015076409A1 PCT/JP2014/081067 JP2014081067W WO2015076409A1 WO 2015076409 A1 WO2015076409 A1 WO 2015076409A1 JP 2014081067 W JP2014081067 W JP 2014081067W WO 2015076409 A1 WO2015076409 A1 WO 2015076409A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
regions
optical member
retardation
polarization state
Prior art date
Application number
PCT/JP2014/081067
Other languages
French (fr)
Japanese (ja)
Inventor
修央 出口
康弘 羽場
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2015549223A priority Critical patent/JPWO2015076409A1/en
Priority to CN201480063648.1A priority patent/CN105874360A/en
Priority to KR1020167009903A priority patent/KR20160090285A/en
Publication of WO2015076409A1 publication Critical patent/WO2015076409A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value

Definitions

  • the present invention relates to an optical member and a display device.
  • the present application is filed on November 25, 2013 in Japanese Patent Application Nos. 2013-242898, 2013-242899, 2013-242900, 2013-242901, and 2013-242902. , And the priority based on Japanese Patent Application No. 2013-242903, the contents of which are incorporated herein.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a 3D liquid crystal display device.
  • the polarizer layer 2 is disposed on the display surface side of the liquid crystal panel P, and the patterned retardation layer 3 is further disposed on the viewing side. Is placed.
  • a polarizing film F11 is disposed on the backlight side of the liquid crystal panel P.
  • the polarizer layer 2 is a layer having an optical function of absorbing a polarization component of a vibration plane parallel to the absorption axis of the polarizer layer 2 and transmitting a polarization component of a vibration plane orthogonal to the incident light.
  • the transmitted light immediately after passing through is linearly polarized light.
  • the patterned retardation layer 3 is usually formed on a base film and is called an FPR film together with the base film.
  • the base film is disposed on the viewer side with respect to the patterned retardation layer 3 and functions also as a protective layer for protecting the patterned retardation layer 3.
  • FIG. 6 is a plan view for explaining alignment between the liquid crystal panel P and the patterned retardation layer 3 in the 3D liquid crystal display device. As shown in FIG. 6, in the liquid crystal panel P, the right-eye image and the left-eye image are alternately displayed for each pixel row L in which pixels are arranged in a line in the left-right direction.
  • the patterned retardation layer 3 includes a first region 32a and a second region 32b.
  • the first region 32a displays the left-eye image on the viewing side of the pixel row L that displays the right-eye image.
  • the second region 32b is arranged on the viewing side of the pixel row L to be displayed.
  • the first region 32a and the second region 32b have different phase differences, and the right-eye image and the left-eye image are displayed on the viewer side in different polarization states (for example, patents). Reference 1).
  • the user views the display image through so-called polarizing glasses having optical elements having different optical characteristics between the right-eye lens and the left-eye lens. Then, the images for the left eye are selectively visually recognized. Accordingly, the user can recognize a stereoscopic image obtained by fusing the images of both eyes.
  • Patent Document 2 As a member used for such a 3D liquid crystal display device, an optical member in which an FPR film and a polarizer layer are integrated has been proposed (for example, see Patent Document 2).
  • An optical member as described in Patent Document 2 may deteriorate the image quality of a stereoscopic display image due to various causes.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an optical member capable of displaying a good stereoscopic image. It is another object of the present invention to provide a display device including the above-described optical member and capable of displaying a favorable stereoscopic image.
  • the optical member described in Patent Document 2 may deteriorate the quality of the stereoscopic display image due to the following causes.
  • an optical member as described in Patent Document 2 may form an antiglare layer having an uneven shape on the surface on the viewing side. Thereby, reflection of ambient light on the surface on the viewing side when mounted on the 3D liquid crystal display device can be suppressed, and visibility can be improved.
  • image light is slightly scattered in the antiglare layer.
  • the polarization state of the image light from the patterned retardation layer changes.
  • the boundary between the image for the right eye and the image for the left eye cannot be sufficiently distinguished, and for example, the image for the right eye that should originally be recognized only by the right eye is also recognized by the left eye. So-called crosstalk occurs, and there is a risk of deteriorating the image quality of the stereoscopic display image, such as lack of realism and stereoscopic effect.
  • an optical member as described in Patent Document 2 may be provided with a protective layer for protecting the polarizing film on the side opposite to the viewing side with respect to the polarizer layer.
  • a protective layer is typically formed using a resin film.
  • the resin film used for such a protective layer may have a phase difference. If the protective layer has a retardation, the polarization state of linearly polarized light emitted through the polarizer layer changes, and there is a possibility that polarized light having a polarization state different from the design may enter the patterned retardation layer of the FPR film. is there. Then, the image light emitted from the FPR film does not have a desired polarization state, which affects the color tone, brightness, contrast, and the like, and may deteriorate the image quality of the stereoscopic display image.
  • the optical member described in Patent Document 2 may form a hard coat layer, which is a relatively hard resin layer, on the surface in order to protect the surface on the viewing side.
  • a hard coat layer is typically formed by polymerizing monomers or oligomers on the surface of a base film (protective layer) on the viewing side of the FPR film.
  • the hard coat layer When forming the hard coat layer, it is expected that stress due to curing shrinkage is applied to the FPR film. When the hard coat layer is thick, the effect of protecting the surface is high. However, when the hard coat layer is thick, the shrinkage of curing at the time of formation increases.
  • the image light emitted from the FPR film is not in a desired polarization state by forming the hard coat layer.
  • a right-eye image that should originally be recognized only by the right eye is also recognized by the left eye. So-called crosstalk may occur, and the image quality of the stereoscopic display image may be reduced.
  • the optical member as described in Patent Document 2 is formed by laminating a plurality of layers, the overall thickness tends to be thick.
  • the image light for the right eye emitted from the pixels enters the corresponding area in the FPR film, and is emitted as polarized image light for the right eye, and the image for the left eye is emitted in the FPR film. By entering the corresponding area, it is emitted as polarized image light for the left eye.
  • the optical member becomes thick, there is a possibility that image light emitted obliquely upward or obliquely downward from the pixel may enter a region different from the region that should originally be incident on the FPR film.
  • the image light emitted obliquely may cause a so-called crosstalk in which an image for the right eye that should be recognized only by the right eye, for example, is recognized by the left eye, and may reduce the image quality of the stereoscopic display image. is there.
  • This fear is particularly noticeable when the image is looked down obliquely from above at an angle of 30 degrees or more with respect to the horizontal plane, or when the image is looked up obliquely from below at an angle of 30 degrees or more.
  • the optical member described in Patent Document 2 may form a hard coat layer, which is a relatively hard resin layer, on the surface in order to protect the surface on the viewing side.
  • a hard coat layer is typically formed by polymerizing monomers or oligomers on the surface of a base film (protective layer) on the FPR film viewing side.
  • the hard coat layer When forming the hard coat layer, it is expected that stress due to curing shrinkage is applied to the FPR film. When the hard coat layer is thick, the effect of protecting the surface is high. However, when the hard coat layer is thick, the shrinkage of curing at the time of formation increases.
  • the image light emitted from the FPR film is not in a desired polarization state by forming the hard coat layer.
  • a right-eye image that should originally be recognized only by the right eye is also recognized by the left eye. So-called crosstalk may occur, and the image quality of the stereoscopic display image may be reduced.
  • a first aspect of the present invention includes a plurality of first regions that change incident linearly polarized light into a first polarization state, and a plurality of second regions that change into a second polarization state.
  • a retardation layer in which the first region and the plurality of second regions are arranged in a predetermined pattern in plan view, a polarizer layer provided on one surface side of the retardation layer, and the other of the retardation layer An anti-glare layer provided on the surface of the anti-glare layer, the arithmetic average height Pa in an arbitrary cross-sectional curve of the uneven surface of the anti-glare layer is 0.15 ⁇ m or less, and the maximum cross-sectional height Pt is An optical member having a size of 1.5 ⁇ m or less is provided.
  • the ratio of the inclination angle of the surface of the antiglare layer being 2 ° or more may be 30% or less.
  • the second aspect of the present invention includes a plurality of first regions that change the incident linearly polarized light into the first polarization state, and a plurality of second regions that change into the second polarization state.
  • An antiglare layer provided on the surface of the other surface of the optical disc, and the surface of the antiglare layer is an optical comb having widths of 0.5 mm, 1.0 mm and 2.0 mm based on JIS K 7374.
  • An optical member having a sum of image sharpness measured by a reflection method of 30% or more and 200% or less is provided.
  • the light transmitted from the polarizer layer side is transmitted using an optical comb having a width of 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm based on JIS K 7374.
  • the sum of the measured image sharpnesses may be 150% or more and 350% or less.
  • the third aspect of the present invention has a plurality of first regions that change the incident linearly polarized light into the first polarization state and a plurality of second regions that change into the second polarization state.
  • a retardation layer in which the first region and the plurality of second regions are arranged in a predetermined pattern in plan view, a polarizer layer provided on one surface side of the retardation layer, and the polarizer layer anda polarizer protecting layer provided on the side opposite to the retardation layer to the in-plane retardation R o of the polarizer layer protective layer, provides an optical member is 10nm or less.
  • a thickness direction retardation Rth of the polarizer layer protective layer may be 10 nm or less.
  • the polarizer layer protective layer may have an Nz coefficient of 10 or less.
  • the 4th aspect of this invention has several 1st area
  • the hard coat layer may be a polymer of an active energy ray-curable resin composition.
  • a retardation layer protective layer may be provided between the retardation layer and the hard coat layer.
  • the 5th aspect of this invention has several 1st area
  • the sixth aspect of the present invention includes a plurality of first regions that change the incident linearly polarized light to the first polarization state, and a plurality of second regions that change the second polarization state.
  • An optical member having a thickness of 35 ⁇ m or more is provided.
  • Another embodiment of the present invention provides a display device having a display panel and the optical member provided on the display surface side of the display panel.
  • an optical member capable of displaying a favorable stereoscopic image can be provided.
  • a display device that includes the above-described optical member and can display a favorable stereoscopic image.
  • FIG. 1 It is a schematic sectional drawing which shows the optical member of this embodiment. It is a schematic enlarged view of the surface of the hard-coat layer 5 of the optical member 1 of this embodiment. It is a schematic diagram for demonstrating the measuring method of the inclination angle of the glare-proof layer surface. It is a top view which shows schematic structure of the display apparatus of this embodiment. It is sectional drawing which shows schematic structure of the display apparatus of this embodiment. It is a top view for demonstrating position alignment at the time of bonding with liquid crystal panel P and the optical member 1.
  • FIG. 1 is a schematic cross-sectional view showing an optical member of the present embodiment.
  • the optical member 1 of the present embodiment is a member in which a polarizer layer 2 and a patterned retardation layer 3 are integrated, and has a rectangular shape in a plan view, for example.
  • the optical member 1 is bonded to the surface on the viewing side of a liquid crystal panel (not shown) via an adhesive layer 9.
  • the polarizer layer 2 side of the optical member 1 may be referred to as a panel side
  • the patterned retardation layer 3 side may be referred to as a viewing side.
  • one surface side of the retardation layer in the present invention refers to the panel side of the patterned retardation layer 3 in the optical member 1.
  • the other surface side of the retardation layer in the present invention refers to the viewing side of the patterned retardation layer 3 in the optical member 1.
  • the first protective layer 4 and the hard coat layer 5 are laminated in this order on the viewing side of the patterned retardation layer 3.
  • the second protective layer 6 is provided on the panel side of the polarizer layer 2. Further, the patterned retardation layer 3 and the polarizer layer 2 are bonded via an adhesive layer 7. Similarly, the polarizer layer 2 and the second protective layer 6 are bonded via an adhesive layer 8.
  • the first protective layer 4 corresponds to the retardation layer protective layer in the present invention.
  • the second protective layer 6 corresponds to the polarizer layer protective layer in the present invention.
  • the optical member 1 may have a protective film Pf that covers the hard coat layer 5. Moreover, you may have peeling film Sf through the adhesive layer 9 provided so that the 2nd protective layer 6 was covered.
  • a protective film Pf that covers the hard coat layer 5.
  • the polarizer layer 2 has a property of transmitting light having a vibration surface in a certain direction out of incident light and absorbing light having a vibration surface perpendicular to the light. Light emitted through the polarizer layer 2 is linearly polarized light.
  • the polarizer layer 2 includes a step of uniaxially stretching a polyvinyl alcohol resin film, a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol resin film with a dichroic dye, and an adsorption of the dichroic dye.
  • the polarizing film manufactured through the process of processing the made polyvinyl alcohol-type resin film with a boric acid aqueous solution, and the process of washing with water after the process with a boric acid aqueous solution can be used.
  • the polyvinyl alcohol resin can be obtained by saponifying a polyvinyl acetate resin.
  • the polyvinyl acetate resin may be a copolymer of vinyl acetate and another monomer copolymerizable therewith in addition to polyvinyl acetate, which is a homopolymer of vinyl acetate.
  • Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the dichroic dye iodine or a dichroic organic dye is used.
  • iodine a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide can be employed.
  • Uniaxial stretching of the polyvinyl alcohol resin film may be performed before dyeing with the dichroic dye, may be performed simultaneously with dyeing with the dichroic dye, or after dyeing with the dichroic dye, It may be performed during the acid treatment.
  • a polarizing film having a dichroic dye adsorbed and oriented on a polyvinyl alcohol resin film can be produced.
  • the obtained polarizing film is used as the polarizer layer 2 constituting the optical member 1.
  • the thickness of the polarizer layer 2 can be, for example, 5 ⁇ m or more and 40 ⁇ m or less. In the present embodiment, the thickness of the polarizer layer 2 is 30 ⁇ m.
  • the patterned retardation layer 3 has a property of emitting incident linearly polarized light as light of two types of polarization states.
  • the patterned retardation layer 3 has a photo-alignment layer 31 and a retardation layer 32.
  • the photo-alignment layer 31 has an alignment regulating force of a material having liquid crystallinity (hereinafter referred to as a liquid crystal material).
  • the photo-alignment layer 31 is formed using a polymerizable photo-alignment material.
  • a material that expresses alignment regulating force when exposed to polarized light is used.
  • the photo-alignment layer 31 retaining the alignment regulating force can be formed by exposing the photo-alignment material to polarized light and polymerizing it after expressing the alignment regulating force.
  • a polymerizable photo-alignment material a conventionally known material can be used.
  • the photo-alignment layer 31 of the present embodiment has two alignment regions 31a and 31b in which the direction in which the alignment regulating force works is 90 degrees different in plan view.
  • Each of the alignment regions 31a and 31b is a strip-like region extending in the same direction as one side of the optical member 1 having a rectangular shape in a plan view, and in the direction that should be the left-right direction in a liquid crystal display device that is normally incorporated.
  • the alignment regions 31a and 31b are alternately provided in a direction intersecting with the extending direction of the alignment regions 31a and 31b.
  • the retardation layer 32 has a first region 32a corresponding to the alignment region 31a of the photo-alignment layer 31, and a second region 32b corresponding to the alignment region 31b. That is, the first region 32a and the second region 32b are band-like regions extending in the same direction as one side of the optical member 1 that is rectangular in plan view, and alternately in a direction intersecting with the extending direction of the first region 32a and the second region 32b. Is provided.
  • FIG. 1 is a cross-sectional view of the alignment regions 31a and 31b of the photo-alignment layer 31 and a cross section intersecting with the extending direction of the first region 32a and the second region 32b of the retardation layer 32.
  • FIG. 1 for easy understanding, the alignment regions 31a and 31b of the photo-alignment layer 31 and the first region 32a and the second region 32b of the retardation layer 32 are clearly shown.
  • the first region 32a and the second region 32b exhibit different refractive index anisotropies. Therefore, the retardation layer 32 changes the linearly polarized light incident on the first region 32a to light in the first polarization state. Further, the linearly polarized light incident on the second region 32b is changed to light in the second polarization state.
  • Light in the first polarization state and “light in the second polarization state” are, for example, two types of linearly polarized light that indicates vibration directions orthogonal to each other, and two types of circularly polarized light (right circularly polarized light and left circularly polarized light). Polarization).
  • Such a retardation layer 32 is formed using a liquid crystal material having a polymerizable functional group. That is, the retardation layer 32 arranges the liquid crystal material in two directions according to the alignment regulating force of the alignment regions 31a and 31b of the photo-alignment layer 31, and further reacts the polymerizable functional group of the liquid crystal material. It is obtained by maintaining and curing the liquid crystal phase of the liquid crystal material to be used.
  • a polymerizable liquid crystal material a conventionally known material can be used.
  • the first protective layer 4 has a function of protecting the patterned retardation layer 3. Moreover, when using the retardation film which the patterned phase difference layer 3 and the 1st protective layer 4 laminated
  • FIG. 1 A first protective layer
  • Examples of the material for forming the first protective layer 4 include triacetyl cellulose (TAC) resin, polycarbonate resin, polyvinyl alcohol resin, polystyrene resin, (meth) acrylate resin, cyclic polyolefin resin, and polypropylene resin. Include polyolefin resins, polyarylate resins, polyimide resins, polyamide resins, and the like.
  • TAC triacetyl cellulose
  • the thickness of the first protective layer 4 is preferably 35 ⁇ m or more, more preferably 50 ⁇ m or more, and further preferably 70 ⁇ m or more. Moreover, it is preferable that the thickness of the 1st protective layer 4 shall be 100 micrometers or less, for example.
  • the thickness of the 1st protective layer 4 used for the optical member 1 can be measured based on the enlarged photograph which imaged the cross section of the optical member 1 with the electron microscope, for example. In the present embodiment, the thickness of the first protective layer 4 is 57 ⁇ m.
  • the hard coat layer 5 of the optical member 1 is provided with a curable resin as a forming material. Therefore, when the hard coat layer 5 is formed, it is expected that curing shrinkage of the curable resin occurs and stress due to the curing shrinkage is applied to the retardation layer 32. When such a hard coat layer 5 is thickened, the effect of protecting the patterned retardation layer 3 is high. On the other hand, when the hard coat layer 5 is thickened, curing shrinkage during formation increases. Therefore, when the hard coat layer 5 is thickened, it is expected that the stress applied to the retardation layer 32 increases due to curing shrinkage.
  • phase difference of the retardation layer 32 is easily changed by the stress applied to the retardation layer 32. Therefore, the formation of the hard coat layer 5 may cause an unexpected retardation shift in the retardation layer 32. If the phase difference layer 32 has such a phase difference, the image light emitted from the phase difference layer 32 is not in a desired polarization state, which may cause crosstalk and reduce the image quality of the stereoscopic display image. is there.
  • the thickness of the first protective layer 4 is 35 ⁇ m or more, the stress at the time of forming the hard coat layer 5 is not easily applied to the retardation layer 32, and the retardation of the retardation layer 32. Can be maintained. Thereby, the polarization state of the image light emitted from the retardation layer 32 can be set to a desired state, and crosstalk can be suppressed.
  • the hard coat layer 5 is a layer of a curable resin and has a function of suppressing scratches on the surface of the optical member 1.
  • a resin composition containing an active energy ray-curable resin that is polymerized and cured by irradiation with active energy rays and a polymerization initiator that generates radicals by irradiation with active energy rays is formed. It can be.
  • the active energy ray-curable resin contains, for example, a polyfunctional (meth) acrylate compound.
  • the polyfunctional (meth) acrylate compound is a compound having at least two (meth) acryloyloxy groups in the molecule.
  • polyfunctional (meth) acrylate compound examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tri Methylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaglycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate , Pentaerythritol tetra (meth) acrylate, glycerin tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol Tetra (meth) acryl
  • the active energy ray-curable resin may contain a monofunctional (meth) acrylate resin in addition to the polyfunctional (meth) acrylate compound.
  • the active energy ray-curable resin may contain a polymerizable oligomer. By including a polymerizable oligomer, the hardness of the hard coat layer can be adjusted.
  • terminal (meth) acrylate polymethyl methacrylate, terminal styryl poly (meth) acrylate, terminal (meth) acrylate polystyrene, terminal (meth) acrylate polyethylene glycol, terminal (meth) acrylate acrylonitrile-styrene copolymer examples thereof include macromonomers such as a terminal (meth) acrylate styrene-methyl (meth) acrylate copolymer. These oligomers may be used alone or in combination of two or more.
  • the polymerization initiator contained in the active energy ray-curable resin composition is a photopolymerization initiator that generates radicals upon irradiation with active energy rays.
  • the polymerization initiator those usually known can be used. Only one polymerization initiator may be used, or two or more polymerization initiators may be used in combination.
  • the polymerization initiator may be used in combination with a dye sensitizer. Thereby, even when light having a wavelength different from the absorption wavelength of the polymerization initiator is used, the polymerization of the active energy ray-curable resin composition can be promoted as long as the light can be absorbed by the dye sensitizer. Can do.
  • the hard coat layer 5 is formed by coating such an active energy ray-curable resin composition on the surface of the first protective layer 4 to form a coating film, and irradiating the coating film with an active energy ray for polymerization and curing. Can be formed by.
  • the thickness of the hard coat layer 5 is preferably 1 ⁇ m or more.
  • the thickness of the hard coat layer is preferably 10 ⁇ m or less. In the present embodiment, the thickness of the hard coat layer 5 is 4 ⁇ m.
  • the hardness of the hard coat layer 5 is preferably F or higher and 2H or lower in pencil hardness measured with a load of 500 g.
  • pencil hardness refers to a value measured based on the ASTM D3363 standard.
  • the pencil hardness of the hard coat layer 5 is 2H.
  • the hard coat layer 5 is provided with a curable resin as a forming material. Therefore, when the hard coat layer 5 is formed, it is expected that curing shrinkage of the curable resin occurs and stress due to the curing shrinkage is applied to the retardation layer 32. Further, when the hard coat layer 5 is as thick as 1 ⁇ m or more, the effect of surface protection is high. On the other hand, when the hard coat layer 5 is thickened, curing shrinkage at the time of formation increases.
  • phase difference of the retardation layer 32 is easily changed by the stress applied to the retardation layer 32. Therefore, the formation of the hard coat layer 5 may cause an unexpected retardation shift in the retardation layer 32. If the phase difference layer 32 has such a phase difference, the image light emitted from the phase difference layer 32 is not in a desired polarization state, which may cause crosstalk and reduce the image quality of the stereoscopic display image. is there.
  • the hard coat layer having a high pencil hardness is more curable resin than the hard coat layer having a low pencil hardness.
  • the degree of polymerization is relatively high. Therefore, it is considered that the hard coat layer having a high pencil hardness has a larger curing shrinkage and a stronger stress than the hard coat layer having a low pencil hardness.
  • the pencil hardness of the hard coat layer 5 is F or more and 2H or less.
  • Such a hard coat layer 5 has a hardness sufficient as a hard coat layer and suppresses the degree of polymerization of the curable resin. Therefore, it is possible to suppress the stress during the formation of the hard coat layer 5 while suppressing the curing shrinkage that occurs during the formation of the hard coat layer 5, and to maintain the retardation of the retardation layer 32. Thereby, the polarization state of the image light emitted from the retardation layer 32 can be set to a desired state, and crosstalk can be suppressed.
  • the pencil hardness of the hard coat layer 5 can be controlled by adjusting the degree of polymerization of the curable resin.
  • the degree of polymerization of the active energy ray-curable resin composition can be controlled by changing the irradiation time of the active energy ray and the intensity of the active energy ray to be irradiated. When the irradiation time of the active energy ray becomes longer, the degree of polymerization of the active energy ray curable resin composition increases. Moreover, when the intensity
  • the pencil hardness of the hard coat layer 5 can be controlled by adding a polymerizable oligomer to the active energy ray-curable resin composition.
  • the content of the polymerizable oligomer increases, the pencil hardness of the hard coat layer 5 tends to decrease.
  • the hard coat layer 5 has a plurality of irregularities formed on the surface, or has particles inside, thereby reflecting external light irregularly and suppressing glare and glare. Functions are granted.
  • the hard coat layer 5 imparted with the antiglare property may be referred to as an “antiglare layer”.
  • the fine particles to be used those having various shapes such as a spherical shape, an elliptical shape, and an irregular shape can be adopted.
  • the fine particles may be those in which primary particles are dispersed, or may be aggregates of secondary particles or more.
  • the fine particles used preferably have an average particle size of 0.3 ⁇ m or more and 10 ⁇ m or less.
  • the upper limit of the average particle diameter of the fine particles is preferably 8 ⁇ m or less, and more preferably 6 ⁇ m or less.
  • the lower limit of the average particle diameter of the fine particles is preferably 0.5 ⁇ m or more, and more preferably 1.0 ⁇ m or more.
  • the “average particle size” means the average particle size if the fine particles are monodisperse particles (particles having a single shape), and the particle size distribution if the particles have a broad particle size distribution. By measurement, the particle size of the most abundant particles represents the average particle size.
  • the particle size of the fine particles can be measured by a Coulter counter method.
  • fine particles those using an inorganic material or an organic material as a forming material can be used.
  • the fine particles to be used are preferably those having light transmittance in the visible light region.
  • An example of an organic material that forms fine particles is a resin material.
  • a resin material For example, polystyrene (refractive index 1.60), melamine resin (refractive index 1.57), acrylic resin (refractive index 1.49 to 1.535), acrylic-styrene resin (refractive index 1.54 to 1.58).
  • Benzoguanamine-formaldehyde condensate (refractive index 1.66), benzoguanamine / melamine / formaldehyde condensate (refractive index 1.52-1.66), melamine / formaldehyde condensate (refractive index 1.66), polycarbonate, polyethylene, etc. Is mentioned.
  • the fine particles having an organic material as a forming material preferably have a hydrophobic group on the surface, and examples thereof include fine particles having polystyrene as a forming material.
  • examples of the inorganic material forming the fine particles include metal oxides such as aluminum oxide and silica.
  • the fine particles made of an inorganic material may be subjected to a hydrophobic treatment on the surface. Hydrophobizing treatment is performed by a method of chemically bonding a compound to the surface of the fine particle or a physical method of penetrating a void in the composition that forms the fine particle without chemically bonding to the surface of the fine particle. Can be mentioned.
  • These fine particles may be used alone or in combination of two or more.
  • fine particles having two or more different refractive indexes it is preferable to use fine particles having two or more different refractive indexes.
  • an average value corresponding to the refractive index and the use ratio of each fine particle can be regarded as the refraction of the fine particles to be used. Therefore, the refractive index of the fine particles can be easily controlled by adjusting the mixing ratio of the fine particles.
  • the refractive index of the active energy ray-curable resin composition and the refractive index of the fine particles the transparency and antiglare property of the antiglare layer can be easily adjusted.
  • polymerization is performed by irradiating the coating film with active energy rays in a state where the uneven shape is embossed on the coating film of the active energy ray-curable resin composition.
  • -A curing method can be employed.
  • the antiglare layer preferably has an arithmetic average height Pa of 0.15 ⁇ m or less in an arbitrary cross-sectional curve on the uneven surface and a maximum cross-sectional height Pt of 1.5 ⁇ m or less.
  • the arithmetic average height Pa is preferably 0.03 ⁇ m or more.
  • the arithmetic average height Pa is preferably 0.07 ⁇ m or less.
  • the maximum cross-sectional height Pt is preferably 0.4 ⁇ m or more.
  • the maximum cross-sectional height Pt is preferably 0.8 ⁇ m or less.
  • the arithmetic average height Pa and the maximum cross-sectional height Pt in the cross-sectional curve of the concavo-convex surface can be measured using a commercially available general contact surface roughness meter in accordance with JIS B0601. it can. It is also possible to measure the surface shape with an apparatus such as a confocal microscope, an interference microscope, an atomic force microscope (AFM), etc., and obtain it by calculation from the three-dimensional information of the surface shape. In addition, when calculating from three-dimensional information, in order to ensure sufficient reference length, it is preferable to measure three or more areas of 200 ⁇ m ⁇ 200 ⁇ m or more and use the average value as a measurement value.
  • the arithmetic average height Pa of the antiglare layer is 0.049 ⁇ m, and the maximum cross-sectional height Pt is 0.599 ⁇ m.
  • the ratio of the surface inclination angle of 2 ° or more is preferably 30% or less, more preferably 10% or less, and further preferably 5% or less. In the antiglare layer, the ratio of the surface inclination angle of 2 ° or more is preferably 1% or more, and more preferably 2% or more. These upper limit value and lower limit value can be arbitrarily combined.
  • FIG. 2 is a schematic enlarged view of the surface of the hard coat layer (antiglare layer) 5 of the optical member 1 of the present embodiment.
  • FIG. 2 shows a state where fine convex portions 51 are formed on the surface of the hard coat layer 5.
  • the average surface of the entire hard coat layer 5 is denoted by reference numeral 59
  • the normal of the average surface of the hard coat layer 5 at an arbitrary point 5P on the surface of the hard coat layer 5 is denoted by reference numeral 55
  • the arbitrary surface of the hard coat layer 5 A local normal line taking into account the unevenness of the hard coat layer 5 at the point 5P is indicated by reference numeral 56.
  • the angle that opens in the direction of the normal 55 is indicated by an angle ⁇ .
  • the inclination angle of the surface in the antiglare layer refers to the angle ⁇ .
  • the xyz coordinate system is adopted, the orthogonal direction in the plane of the average surface 59 is displayed by the x-axis and the y-axis, and the film thickness direction is displayed by the z-axis.
  • the inclination angle of the surface of the antiglare layer can be determined from the three-dimensional shape of the surface roughness measured using a non-contact three-dimensional surface shape / roughness measuring machine.
  • the horizontal resolution required for the measuring instrument is at least 5 ⁇ m or less, preferably 2 ⁇ m or less, and the vertical resolution is at least 0.1 ⁇ m or less, preferably 0.01 ⁇ m or less.
  • Non-contact three-dimensional surface shape / roughness measuring instruments suitable for measuring the angle of inclination of the surface of the antiglare layer are products of Zygo Corporation in the United States, such as the “NewView5000” series available from Zygo Corporation in Japan. Can do.
  • a larger measurement area is preferable, but at least 100 ⁇ m ⁇ 100 ⁇ m or more, preferably 500 ⁇ m ⁇ 500 ⁇ m or more.
  • FIG. 3 is a schematic diagram for explaining a method of measuring the inclination angle of the antiglare layer surface.
  • the xyz coordinate system is adopted as in FIG.
  • the point of interest A on the average surface 59 is determined.
  • the point of interest A corresponds to an arbitrary point 5P on the surface of the antiglare layer (hard coat layer 5).
  • points B and D are taken approximately symmetrically with respect to the point of interest A on the x axis passing through the point of interest A, and near the point of interest A on the y axis passing through the point of interest A.
  • the points C and E are taken almost symmetrically with respect to the point of interest A.
  • the points Q, R, S, and T on the surface of the antiglare layer corresponding to these points B, C, D, and E are determined.
  • a straight line passing through the point C and parallel to the x axis, a straight line passing through the point E and parallel to the x axis, a straight line passing through the point B and parallel to the y axis, and a straight line passing through the point D and parallel to the y axis. are set, and intersections F, G, H, and I of the respective straight lines are determined.
  • the position of the antiglare layer is drawn above the surface FGHI (that is, the average surface 59), but the position of the antiglare layer may be above the average surface 59. Yes, sometimes it goes down.
  • the inclination angle (angle ⁇ ) of the antiglare layer surface can be obtained by obtaining the polar angle of the average normal vector. That is, the direction of the obtained average normal vector coincides with the direction of the local normal 56 in consideration of the unevenness of the hard coat layer 5.
  • a histogram of the inclination angle is calculated.
  • the ratio of the surface inclination angle of 2 ° or more is 3.4%.
  • the image light is refracted and emitted in the uneven shape formed on the surface on the viewing side. For this reason, if the angle of refraction in the antiglare layer is too large, crosstalk occurs, which may reduce the image quality of the stereoscopic display image.
  • the arithmetic average height Pa in an arbitrary cross-sectional curve of the uneven surface of the antiglare layer is 0.15 ⁇ m or less, and the maximum cross-sectional height Pt is 1.5 ⁇ m or less. Therefore, excessive refraction on the surface of the antiglare layer is unlikely to occur, and crosstalk can be suppressed.
  • the arithmetic average height Pa and the inclination angle in the cross-sectional curve of the anti-glare layer are the amount of fine particles mixed, the size of the fine particles, It can be controlled by changing the particle size distribution of the fine particles.
  • the arithmetic average height Pa and the inclination angle in the cross-sectional curve can also be controlled by controlling the aggregation state.
  • the arithmetic average height Pa and inclination angle in the cross-sectional curve of the antiglare layer are the unevenness of the die to be embossed. It can be controlled by changing the shape.
  • the second protective layer 6 has a function of protecting the polarizer layer 2.
  • a material for forming the second protective layer 6 the same material as the first protective layer 4 described above can be employed.
  • TAC triacetyl cellulose
  • polycarbonate resin polyvinyl alcohol resin
  • polystyrene resin polystyrene resin
  • (meth) acrylate resin polyolefin resin including cyclic polyolefin resin and polypropylene resin
  • polyarylate resin polyimide resins
  • polyamide resins polyamide resins and the like.
  • the thickness of the second protective layer 6 is usually 5 ⁇ m or more, preferably 15 ⁇ m or more, and usually 80 ⁇ m or less, preferably 60 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the upper limit value and the lower limit value can be arbitrarily combined with the thickness of the second protective layer 6.
  • the thickness of the second protective layer 6 used in the optical member 1 can be measured based on, for example, an enlarged photograph obtained by imaging the cross section of the optical member 1 with an electron microscope. In the present embodiment, the thickness of the second protective layer 6 is 40 ⁇ m.
  • the image light for the right eye emitted from the pixels is incident on the corresponding region (for example, the first region 32a) in the retardation layer 32. It is emitted as polarized image light for the right eye.
  • the image light emitted obliquely from the pixels of the display panel is supposed to be incident on the phase difference layer 32 (for example, the first region).
  • the phase difference layer 32 for example, the first region
  • crosstalk occurs due to the image light emitted obliquely, and the image quality of the stereoscopic display image is deteriorated.
  • the thickness of the second protective layer 6 is 5 ⁇ m or more and 80 ⁇ m or less, the image light emitted obliquely from the pixel is bonded to the display panel. It is easy to enter a predetermined region in the retardation layer, and crosstalk can be suppressed.
  • the second protective layer 6 preferably has an in-plane retardation R o of 10 nm or less, and ideally 0 nm.
  • the second protective layer 6 preferably has a thickness direction retardation Rth of 10 nm or less, and ideally 0 nm.
  • the second protective layer 6 preferably has an Nz coefficient of 10 or less, and ideally 0.
  • the in-plane slow axis direction of the second protective layer 6 is the x-axis direction
  • the in-plane fast axis direction is the y-axis direction
  • the thickness direction of the second protective layer 6 is the z-axis direction.
  • the thickness direction retardation R th and the Nz coefficient are values defined by the following equations (1) to (3).
  • R o (n x ⁇ n y ) ⁇ d (1)
  • R th [(n x + n y ) / 2 ⁇ n z ] ⁇ d (2)
  • Nz (n x ⁇ n z ) / (n x ⁇ n y ) (3)
  • the in-plane retardation R o is 1.0 nm
  • the thickness direction retardation R th is 1.4 nm
  • the Nz coefficient is 1.96.
  • an unstretched film can be used as the R o , R th , and Nz coefficients exhibit such values.
  • the second protective layer 6 used in the optical member 1, R o, R th, of the Nz coefficient values, to isolate the second protective layer 6 was peeled off the layers from the optical member 1, It can be measured.
  • the light transmitted through the second protective layer 6 is in a desired polarization state, so that crosstalk hardly occurs and is good.
  • a stereoscopic display image can be displayed.
  • the material for forming the adhesive layers 7 and 8 is composed of a composition using a polyvinyl alcohol resin or a urethane resin as a main component and dissolved in water, or a water-based adhesive dispersed in water, a photo-curable resin and light.
  • a solvent-free photocurable adhesive containing a cationic polymerization initiator and the like can be mentioned. Since there is little volume shrinkage at the time of manufacture and thickness control is easy, it is preferable to use a photocurable adhesive as a material for forming the adhesive layers 7 and 8, and it is more preferable to use an ultraviolet curable adhesive. preferable.
  • the UV curable adhesive can be any of those conventionally used in the production of polarizing plates as long as it is supplied in a liquid coatable state.
  • the ultraviolet curable adhesive is a cationic polymerizable compound such as an epoxy compound, more specifically a molecule as described in Japanese Patent Application Laid-Open No. 2004-245925. What contains the epoxy compound which does not have an aromatic ring in it as one of an ultraviolet curable component is preferable.
  • Such an epoxy compound is, for example, a hydrogenated epoxy obtained by nuclear hydrogenation of an aromatic polyhydroxy compound, which is a raw material of an aromatic epoxy compound represented by diglycidyl ether of bisphenol A, and converting it to glycidyl ether.
  • the compound an alicyclic epoxy compound having at least one epoxy group bonded to the alicyclic ring in the molecule, an aliphatic epoxy compound typified by a glycidyl ether of an aliphatic polyhydroxy compound, and the like.
  • polymerization initiators In addition to cationically polymerizable compounds such as epoxy compounds as representative examples of ultraviolet curable adhesives, polymerization initiators, particularly to generate cationic species or Lewis acids upon irradiation with ultraviolet rays, initiate polymerization of cationically polymerizable compounds.
  • the photocationic polymerization initiator is blended.
  • a thermal cationic polymerization initiator that initiates polymerization by heating, and various other additives such as a photosensitizer may be blended.
  • the material for forming the adhesive layers 7 and 8 may be the same or different, but from the viewpoint of productivity, the adhesive layers 7 and 8 are bonded to each other on the premise that an appropriate adhesive force can be obtained. It is more preferable to form using an agent.
  • the thickness of the adhesive layers 7 and 8 is preferably in the range of 0.5 ⁇ m to 5 ⁇ m. When the thickness of the adhesive layers 7 and 8 is 0.5 ⁇ m or more, unevenness in adhesive strength is unlikely to occur. On the other hand, when the thickness of the adhesive layers 7 and 8 is 5 ⁇ m or less, the manufacturing cost does not increase and the hue of the polarizing plate is hardly affected.
  • the thickness of the adhesive layers 7 and 8 is more preferably in the range of 1 ⁇ m to 4 ⁇ m, and further preferably in the range of 1.5 ⁇ m to 3.5 ⁇ m. In the present embodiment, the thickness of the adhesive layers 7 and 8 is 2 ⁇ m.
  • the pressure-sensitive adhesive layer 9 is used, for example, for bonding the optical member 1 to a display surface of a liquid crystal panel (not shown).
  • an adhesive which forms the adhesive layer 9 what uses acrylic resin, silicone resin, polyester, polyurethane, polyether etc. as base resin can be mentioned, for example.
  • acrylic adhesives based on acrylic resins are excellent in optical transparency, retain moderate wettability and cohesion, and are also excellent in weather resistance and heat resistance. It is preferably used because peeling problems such as floating and peeling hardly occur under the conditions.
  • the acrylic resin constituting the acrylic pressure-sensitive adhesive includes an acrylic acid alkyl ester having an ester group having an alkyl group having 20 or less carbon atoms such as a methyl group, an ethyl group, a butyl group, or a 2-ethylhexyl group,
  • An acrylic copolymer with a functional group-containing (meth) acrylic monomer such as (meth) acrylic acid and (meth) acrylic acid-2-hydroxyethyl is preferably used.
  • the pressure-sensitive adhesive layer 9 containing such an acrylic copolymer does not cause adhesive residue or the like on the glass substrate when it is necessary to peel off after having been bonded to the liquid crystal panel. It can be peeled relatively easily.
  • the acrylic copolymer used for the pressure-sensitive adhesive layer 9 preferably has a glass transition temperature of 25 ° C. or lower, and more preferably 0 ° C. or lower.
  • the acrylic copolymer usually has a weight average molecular weight of 100,000 or more.
  • a release film Sf which will be described later, is used as a substrate, and a pressure-sensitive adhesive layer 9 is formed by applying a pressure-sensitive adhesive on the surface of the release film Sf.
  • a double-sided release film type adhesive sheet in which another release film is bonded to the adhesive layer 9 can also be used.
  • a double-sided release film-type pressure-sensitive adhesive sheet can be peeled off from the release film on one side at a necessary time and bonded to the second protective layer 6.
  • a commercial item can also be used for such a double-sided peeling film type adhesive sheet.
  • the thickness of the pressure-sensitive adhesive layer 9 is appropriately determined according to the adhesive force and the like, but is preferably 1 ⁇ m or more and 40 ⁇ m or less. In order to obtain a thin polarizing plate without impairing properties such as workability and durability, the thickness of the pressure-sensitive adhesive layer 9 is preferably 3 ⁇ m or more and 25 ⁇ m or less. By setting the thickness of the pressure-sensitive adhesive layer 9 within this range, it is possible to maintain brightness when the liquid crystal display device is viewed from the front or from an oblique direction, and to prevent bleeding and blurring of the display image.
  • a protective film Pf is bonded to the surface on the viewing side of the optical member 1.
  • the protective film Pf protects the surface of the optical member 1 and is provided to be peelable from the optical member 1.
  • a transparent resin film formed by forming an adhesive / peelable resin layer or an adhesive resin layer and imparting weak adhesiveness is used.
  • the transparent resin film include extruded films of thermoplastic resins such as polyethylene terephthalate, polyethylene naphtholate, polyethylene, and polypropylene, co-extruded films combining them, and films obtained by stretching them uniaxially or biaxially. be able to.
  • the transparent resin film it is preferable to use polyethylene terephthalate or polyethylene uniaxially or biaxially stretched film which is excellent in transparency and homogeneity and is inexpensive.
  • Examples of the adhesive / peelable resin layer include acrylic adhesives, natural rubber adhesives, styrene-butadiene copolymer resin adhesives, polyisobutylene adhesives, vinyl ether resin adhesives, and silicone resin adhesives. And so on.
  • Examples of the adhesive resin layer include an ethylene-vinyl acetate copolymer resin.
  • As the adhesive / peelable resin layer it is preferable to use an acrylic adhesive having excellent transparency.
  • the thickness of the protective film Pf is preferably 15 ⁇ m or more and 75 ⁇ m or less.
  • the thickness is 15 ⁇ m or more, handling becomes easy and the originally required surface protection performance can be secured.
  • the thickness is 75 ⁇ m or less, the rigidity does not become too strong, the handling becomes easy, and the peel strength is appropriately suppressed.
  • a release film Sf is bonded to the surface of the optical member 1 on the panel side. This release film Sf covers the pressure-sensitive adhesive layer 9 and protects the pressure-sensitive adhesive layer 9 when the optical member 1 is stored, and is provided so as to be peelable.
  • release film Sf a transparent resin film similar to the protective film Pf described above can be used.
  • Such an optical member 1 uses three types of optical combs in which the width of the dark part and the bright part is 0.5 mm, 1.0 mm, and 2.0 mm on the surface of the antiglare layer, and the incident angle of light is 45 °. It is preferable that the sum of the image clarity measured by the reflection method is 30% or more and 200% or less. The sum of image sharpness measured by the reflection method at a light incident angle of 45 ° is more preferably 100% or more.
  • image definition refers to a value measured based on JIS K 7374.
  • the ratio of the width of the dark part to the bright part is 1: 1 as an optical comb used for measuring the image definition, and the widths are 0.125 mm, 0.5 mm, 1.0 mm and 2.0 mm.
  • Four types are defined. Among these, when an optical comb having a width of 0.125 mm is used, an error in the measured value becomes large when measuring the image sharpness of the antiglare layer of the present embodiment. Therefore, an optical comb having a width of 0.125 mm is used. In this case, the measured value is not added to the sum, and image sharpness measured using three types of optical combs having widths of 0.5 mm, 1.0 mm, and 2.0 mm is adopted.
  • reflection sharpness an image measured by the reflection method at a light incident angle of 45 ° using three types of optical combs having a width of 0.5 mm, 1.0 mm, and 2.0 mm in the dark part and the bright part.
  • “Sum of sharpness” is referred to as reflection sharpness. In this definition, the maximum value of reflection sharpness is 300%. In the present embodiment, the reflection definition of the antiglare layer is 160.8%.
  • the sum of the image clarity measured by the transmission method is 150% or more and 350% or less.
  • the sum of image sharpness measured by the transmission method is more preferably 180% or more, and further preferably 250% or more. Further, the sum of image clarity measured by the transmission method is more preferably 330% or less.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • “Sum” is referred to as transmission clarity. In this definition, the maximum value of transmitted sharpness is 400%. In the present embodiment, the transmission clarity of the antiglare layer is 306.7%.
  • the optical member 1 shows such a value, when it is bonded to a display panel to obtain a 3D liquid crystal display device, a clear stereoscopic image display becomes possible.
  • the arithmetic average height Pa of the antiglare layer is 0.15 ⁇ m or less, and the maximum cross-sectional height Pt is 1.5 ⁇ m or less.
  • the arithmetic average height Pa of the antiglare layer is 0.15 ⁇ m or less, and the maximum cross-sectional height Pt is 1.5 ⁇ m or less.
  • the light transmitted through the second protective layer 6 is in a desired polarization state, so that the image quality is hardly deteriorated and a favorable stereoscopic image display is possible.
  • An optical member can be provided.
  • the hard-coat layer 5 which an optical member has becomes a thing which suppressed the polymerization degree of curable resin, having sufficient hardness as a hard-coat layer. ing. Therefore, it is possible to suppress the stress during the formation of the hard coat layer 5 while suppressing the curing shrinkage that occurs during the formation of the hard coat layer 5, and to maintain the retardation of the retardation layer 32. Thereby, the polarization state of the image light emitted from the retardation layer 32 can be set to a desired state, and an optical member capable of displaying a favorable stereoscopic image can be provided.
  • the fifth optical member having the above-described configuration, when pasted on the display panel, image light emitted obliquely from the pixels is likely to enter a predetermined region in the retardation layer. Therefore, an optical member capable of displaying a favorable stereoscopic image can be provided.
  • the sixth optical member having the above-described configuration, since the first protective layer 4 having a thickness of 35 ⁇ m or more is provided, the stress at the time of forming the hard coat layer 5 is not easily applied to the retardation layer 32, The phase difference of the phase difference layer 32 can be maintained. Thereby, the polarization state of the image light emitted from the retardation layer 32 can be set to a desired state, and an optical member capable of displaying a favorable stereoscopic image can be provided.
  • the hard coat layer 5 also serves as an antiglare layer.
  • an antiglare layer may be provided as another layer structure on the surface of the hard coat layer 5.
  • the hard coat layer 5 does not have an antiglare function and can be an optical member that does not have an antiglare property.
  • FIG. 4 is a plan view showing a schematic configuration of the display device.
  • FIG. 5 is a cross-sectional view of the display device 100 taken along the line VV shown in FIG.
  • the display device 100 of this embodiment includes a liquid crystal panel (display panel) P, a polarizing film F11, and the optical member 1 described above.
  • the liquid crystal panel P includes a first substrate P1 having a rectangular shape in plan view, and a relatively small rectangular shape arranged to face the first substrate P1. And a liquid crystal layer P3 sealed between the first substrate P1 and the second substrate P2.
  • the liquid crystal panel P has a rectangular shape that conforms to the outer shape of the first substrate P1 in a plan view, and a region that fits inside the outer periphery of the liquid crystal layer P3 in a plan view is a display region P4.
  • a polarizing film F11 is bonded on the backlight side of the liquid crystal panel P.
  • the optical member 1 described above is bonded to the display surface side of the liquid crystal panel P. 5
  • only the polarizer layer 2 and the patterned retardation layer 3 are shown in the configuration of the optical member 1 described above, and the other layer structures are omitted.
  • the liquid crystal panel P to which the polarizing film F11 and the optical member 1 are bonded becomes the display device 100 by further incorporating a drive circuit, a backlight unit, and the like (not shown).
  • the driving method of the liquid crystal panel P is known in this field, for example, TN (Twisted Nematic), STN (Super Twisted Nematic), VA (Vertical Alignment), IPS (In-Plane Switching), OCB (Optically Compensated Bend).
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Very Alignment
  • IPS In-Plane Switching
  • OCB Optically Compensated Bend
  • the polarizing film F11 is bonded to the liquid crystal panel P through an adhesive layer.
  • the optical member 1 is bonded to the liquid crystal panel P through the above-described pressure-sensitive adhesive layer 9.
  • the polarizing film F11 and the optical member 1 are bonded to the liquid crystal panel P so that the polarizing film F11 and the polarizer layer 2 of the optical member 1 are in a crossed Nicols arrangement.
  • FIG. 6 is a plan view for explaining alignment at the time of bonding between the liquid crystal panel P and the optical member 1 when the display device 100 is manufactured.
  • the pixels in the display area P4 of the liquid crystal panel P are red (indicated by a symbol R in FIG. 6), green (in FIG. 6) along the long side of the display area P4 (the horizontal direction of the liquid crystal panel P).
  • the color filters corresponding to the respective colors R, G, B of blue (indicated by reference numeral G in FIG. 6) and blue (indicated by reference numeral B in FIG. 6) are periodically arranged.
  • a large number of pixels corresponding to each color R, G, B are arranged in the left-right direction to form a pixel column L, and a large number of pixel columns L are arranged over the display area P4.
  • the optical member 1 has a plurality of first regions 32 a and a plurality of second regions 32 b extending along the long side of the optical member 1.
  • a large number of first regions 32 a and second regions 32 b are arranged in the vertical direction corresponding to each pixel column L of the liquid crystal panel P.
  • the first region 32a is a phase difference pattern sequence that forms an image for the right eye
  • the second region 32b is a phase difference pattern sequence that forms an image for the left eye.
  • the optical member 1 is bonded to the liquid crystal panel P so that the boundary line K between the first region 32a and the second region 32b is located between the pixel rows L of the display region P4.
  • An FPR type 3D liquid crystal display device (display device 100) using the above is configured.
  • Such a display device 100 it is possible to view 3D images through polarized glasses while alternately displaying images for the left and right eyes for each line extending to the left and right of the pixels of the liquid crystal panel P and displaying them simultaneously. It has become.
  • the display device 100 having such a configuration uses the optical member 1 described above, it is possible to suppress the occurrence of crosstalk and display a favorable stereoscopic image.
  • the above-described optical member 1 is used, so that the display image becomes clear and a favorable stereoscopic image display is possible.
  • a commercially available anti-glare film in which the anti-glare layer 5 is formed on a 60 ⁇ m or 80 ⁇ m triacetyl cellulose (TAC) film used as the first protective layer 4 is prepared.
  • TAC triacetyl cellulose
  • the first protective layer 4 and the antiglare layer 5 formed on the first protective layer 4 may be collectively referred to as a first protective layer with an antiglare layer.
  • the antiglare property of the antiglare layer increases in the order of Experimental Examples 1-1 to 1-7.
  • the haze (Hz) value was measured. The measurement results are shown in Table 1 described later.
  • the arithmetic average height (Pa), the maximum cross-sectional height (Pt), and the surface inclination angle ( ⁇ ) are 2 ° or more by the above method.
  • sum of image sharpness (sum of image sharpness 2) measured by the transmission method using 0.5 mm, 1.0 mm, and 2.0 mm) each value is as shown in Table 1.
  • the maximum value of “sum of image clarity 1” is 300%, and the maximum value of “sum of image clarity 2” is 400%.
  • Test pieces of Experimental Examples 1-1 to 1-7 were obtained by pasting a linearly polarizing plate with the adhesive layer 9 to the produced optical member.
  • the linearly polarizing plate is bonded to the polarizer layer 2 included in the optical member so that the absorption axes thereof are parallel to each other.
  • Each test piece mimics the configuration of a liquid crystal display.
  • the polarizer layer 2 included in the optical member corresponds to the viewing-side polarizing plate in the liquid crystal display.
  • the linear polarizing plate bonded to the optical member corresponds to the polarizing plate on the backlight side in the liquid crystal display.
  • Each of the obtained test pieces is illuminated by a surface light source device that emits white light from the linearly polarizing plate side.
  • each photo-alignment layer 31a constituting the patterned retardation layer 3 is visually observed from the antiglare layer side and the viewing position is changed in a range from the front direction of the test piece to a direction of about 90 degrees obliquely. , 31b is visually confirmed.
  • the optical members of Experimental Example 1-2 and Experimental Example 1-3 are similar to the optical member of Experimental Example 1-1 in which no antiglare layer is formed. Was confirmed visually.
  • the boundary between the photo-alignment layer 31a and the photo-alignment layer 31b could be clearly and visually confirmed in comparison with Experimental Example 1-1.
  • UV curable resin 1 pentaerythritol triacrylate (60 parts by mass)
  • UV curable resin 2 polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate) (40 parts by mass)
  • Solvent ethyl acetate (100 parts by mass)
  • Photopolymerization initiator “Irgacure 907” (2 parts by mass) manufactured by BASF
  • BASF Surfactant: BYK-UV 3510 (0.4 parts by mass) manufactured by Big Chemie
  • test pieces having pencil hardnesses of 2H (Experimental example 2-1) and 3H (Experimental example 2-2) of the hard coat layer after ultraviolet irradiation were obtained by adjusting the ultraviolet irradiation time.
  • the TAC film used corresponds to the first protective layer 4.
  • the formed hard coat layer corresponds to the hard coat layer 5.
  • test piece was placed between two orthogonal polarizing plates arranged so that the absorption axes were orthogonal to each other (crossed Nicols arrangement), and illuminated from one orthogonal polarizing plate side using a light source (fluorescent lamp). In that state, the presence / absence and distribution of transmitted light was evaluated by visual observation from the other direct polarizing plate side.
  • a light source fluorescent lamp
  • the test piece of Experimental Example 2-1 showed no brightness in the transmitted light. This is probably because birefringence does not occur in the evaluated specimen.
  • a stereoscopic image with a sense of reality and a stereoscopic effect is preferably displayed. Can do.
  • the TAC film before preparation of the test piece (before UV irradiation) is compared with the TAC film after preparation of the test piece (after UV irradiation), and the following two methods are used to determine the presence or absence of wrinkles generated on the TAC film by curing the composition It was evaluated by.
  • Evaluation method 1 Spread the test piece on the desk, place the fluorescent lamp on the ceiling in the specified elevation direction (lighting), and then the image of the fluorescent light that is regularly reflected on the surface of the test piece (fluorescent light) Observe with the naked eye.
  • the evaluation results are shown in Table 3 below.
  • the fluorescent lamp image observed in the evaluation method 1 is as clear as the TAC film before coating, and the fluorescent lamp image observed in the evaluation method 2 is coated.
  • the test piece that was clear without distortion was “Good”.
  • the image of the fluorescent lamp could not be observed, and in the evaluation method 2, the test piece in which the fluorescent lamp image was observed distorted was “Bad”.
  • a stereoscopic image with a sense of reality and a stereoscopic effect is preferably displayed. Can do.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

 This optical member has: a phase-difference layer (32) that has a plurality of first regions (32a) for changing an incident linearly polarized light to a first polarization state and a plurality of second regions (32b) for making a change to a second polarization state, the first regions (32a) and the second regions (32b) being disposed in a prescribed pattern in plan view; a polarizer layer (2) provided on one side of the phase difference layer (32); and an anti-glare layer provided on the surface of the other side of the phase-difference layer (32). The arithmetic mean height (Pa) of the concavo-convex surface of the anti-glare layer on an arbitrary cross-section curve is 0.15 μm or less, and the maximum cross-section height (Pt) is 1.5 μm or less.

Description

光学部材および表示装置Optical member and display device
 本発明は、光学部材および表示装置に関する。
 本願は、2013年11月25日に、日本に出願された特願2013-242898号、特願2013-242899号、特願2013-242900号、特願2013-242901号、特願2013-242902号、及び特願2013-242903号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an optical member and a display device.
The present application is filed on November 25, 2013 in Japanese Patent Application Nos. 2013-242898, 2013-242899, 2013-242900, 2013-242901, and 2013-242902. , And the priority based on Japanese Patent Application No. 2013-242903, the contents of which are incorporated herein.
 近年、FPR(Film Patterned Retarder)方式と称されるパッシブ方式の3D(3 Dimension)液晶表示装置が開発されている。 In recent years, a passive 3D (3-dimensional) liquid crystal display device called an FPR (Film Patterned Retarder) system has been developed.
 図5は、3D液晶表示装置の概略構成を示す断面図である。図5に示すように、この方式の3D液晶表示装置(表示装置)100では、例えば、液晶パネルPの表示面側に偏光子層2が配置され、その更に視認側にパターン化位相差層3が配置される。また、液晶パネルPのバックライト側には偏光フィルムF11が配置される。 FIG. 5 is a cross-sectional view showing a schematic configuration of a 3D liquid crystal display device. As shown in FIG. 5, in the 3D liquid crystal display device (display device) 100 of this system, for example, the polarizer layer 2 is disposed on the display surface side of the liquid crystal panel P, and the patterned retardation layer 3 is further disposed on the viewing side. Is placed. A polarizing film F11 is disposed on the backlight side of the liquid crystal panel P.
 偏光子層2は、入射する光のうち、偏光子層2の吸収軸に平行な振動面の偏光成分を吸収し、直交する振動面の偏光成分を透過する光学機能を有する層であり、これを透過した直後の透過光は直線偏光光である。 The polarizer layer 2 is a layer having an optical function of absorbing a polarization component of a vibration plane parallel to the absorption axis of the polarizer layer 2 and transmitting a polarization component of a vibration plane orthogonal to the incident light. The transmitted light immediately after passing through is linearly polarized light.
 パターン化位相差層3は、通常、基材フィルム上に形成され、この基材フィルムと併せてFPRフィルムと呼ばれている。基材フィルムは、パターン化位相差層3よりも視認側に配置され、パターン化位相差層3を保護する保護層としても機能する。 The patterned retardation layer 3 is usually formed on a base film and is called an FPR film together with the base film. The base film is disposed on the viewer side with respect to the patterned retardation layer 3 and functions also as a protective layer for protecting the patterned retardation layer 3.
 図6は、3D液晶表示装置における液晶パネルPとパターン化位相差層3との位置合わせを説明するための平面図である。図6に示すように、液晶パネルPでは、左右方向に一列に画素が並んだ画素列L毎に、右眼用画像と左眼用画像とを交互に表示する。 FIG. 6 is a plan view for explaining alignment between the liquid crystal panel P and the patterned retardation layer 3 in the 3D liquid crystal display device. As shown in FIG. 6, in the liquid crystal panel P, the right-eye image and the left-eye image are alternately displayed for each pixel row L in which pixels are arranged in a line in the left-right direction.
 パターン化位相差層3は、第1領域32aと第2領域32bとを備えており、例えば右眼用画像を表示する画素列Lの視認側には第1領域32aが、左眼用画像を表示する画素列Lの視認側には第2領域32bが配置される。第1領域32aと第2領域32bとでは、位相差の方向が異なっており、右眼用画像と左眼用画像とでは、互いに異なる偏光状態となって視認側に表示される(例えば、特許文献1参照)。 The patterned retardation layer 3 includes a first region 32a and a second region 32b. For example, the first region 32a displays the left-eye image on the viewing side of the pixel row L that displays the right-eye image. The second region 32b is arranged on the viewing side of the pixel row L to be displayed. The first region 32a and the second region 32b have different phase differences, and the right-eye image and the left-eye image are displayed on the viewer side in different polarization states (for example, patents). Reference 1).
 そして使用者は、右眼用レンズと左眼用レンズとで光学特性が異なる光学素子を備えた、いわゆる偏光眼鏡を介して表示画像を見ることで、右眼では右眼用画像を、左眼では左眼用画像をそれぞれ選択的に視認する。これにより使用者は、両眼の像を融合した立体画像を認識することができる。 The user views the display image through so-called polarizing glasses having optical elements having different optical characteristics between the right-eye lens and the left-eye lens. Then, the images for the left eye are selectively visually recognized. Accordingly, the user can recognize a stereoscopic image obtained by fusing the images of both eyes.
 このような3D液晶表示装置に用いられる部材として、FPRフィルムと偏光子層とが一体化された光学部材が提案されている(例えば、特許文献2参照)。 As a member used for such a 3D liquid crystal display device, an optical member in which an FPR film and a polarizer layer are integrated has been proposed (for example, see Patent Document 2).
日本国特開2012-212033号公報Japanese Unexamined Patent Publication No. 2012-212033 韓国登録特許第1191129号Korean Patent No. 1191129
 特許文献2に記載されたような光学部材は、種々の原因により、立体表示画像の画質を低下させるおそれがある。 An optical member as described in Patent Document 2 may deteriorate the image quality of a stereoscopic display image due to various causes.
 本発明はこのような事情に鑑みてなされたものであって、良好な立体画像表示が可能な光学部材を提供することを目的とする。また、上述した光学部材を備え、良好な立体画像表示が可能な表示装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide an optical member capable of displaying a good stereoscopic image. It is another object of the present invention to provide a display device including the above-described optical member and capable of displaying a favorable stereoscopic image.
 特許文献2に記載されたような光学部材は、具体的には以下のような原因により、立体表示画像の画質を低下させるおそれがある。 Specifically, the optical member described in Patent Document 2 may deteriorate the quality of the stereoscopic display image due to the following causes.
 まず、特許文献2に記載されたような光学部材は、視認側の表面に凹凸形状を有する防眩層を形成することがある。これにより、3D液晶表示装置に実装したときの視認側の表面での環境光の反射を抑止し、視認性を向上させることができる。 First, an optical member as described in Patent Document 2 may form an antiglare layer having an uneven shape on the surface on the viewing side. Thereby, reflection of ambient light on the surface on the viewing side when mounted on the 3D liquid crystal display device can be suppressed, and visibility can be improved.
 しかし、防眩層を形成することにより、防眩層において画像光が僅かながら散乱される。画像光が散乱されると、パターン化位相差層からの画像光の偏光状態が変わる。あるいは右眼用画像と左眼用画像との境界が十分に区別できない状態となって、例えば本来は右眼のみで認識されるべき右眼用画像が左眼でも認識されてしまう。いわゆるクロストークが生じ、臨場感や立体感に欠けるなど、立体表示画像の画質を低下させるおそれがある。 However, by forming the antiglare layer, image light is slightly scattered in the antiglare layer. When the image light is scattered, the polarization state of the image light from the patterned retardation layer changes. Alternatively, the boundary between the image for the right eye and the image for the left eye cannot be sufficiently distinguished, and for example, the image for the right eye that should originally be recognized only by the right eye is also recognized by the left eye. So-called crosstalk occurs, and there is a risk of deteriorating the image quality of the stereoscopic display image, such as lack of realism and stereoscopic effect.
 また、特許文献2に記載されたような光学部材は、偏光子層に対し視認側とは反対側に、偏光フィルムを保護するための保護層が設けられることがある。このような保護層は、代表的には樹脂製のフィルムを用いて形成される。 In addition, an optical member as described in Patent Document 2 may be provided with a protective layer for protecting the polarizing film on the side opposite to the viewing side with respect to the polarizer layer. Such a protective layer is typically formed using a resin film.
 しかし、このような保護層に用いられる樹脂フィルムは、位相差を有することがある。保護層が位相差を有すると、偏光子層を介して射出される直線偏光の偏光状態が変化し、設計とは異なる偏光状態の偏光光がFPRフィルムのパターン化位相差層に入射するおそれがある。すると、FPRフィルムから射出される画像光が所望の偏光状態とならず、例えば色調、明るさ、コントラストなどに影響し、立体表示画像の画質を低下させるおそれがある。 However, the resin film used for such a protective layer may have a phase difference. If the protective layer has a retardation, the polarization state of linearly polarized light emitted through the polarizer layer changes, and there is a possibility that polarized light having a polarization state different from the design may enter the patterned retardation layer of the FPR film. is there. Then, the image light emitted from the FPR film does not have a desired polarization state, which affects the color tone, brightness, contrast, and the like, and may deteriorate the image quality of the stereoscopic display image.
 また、特許文献2に記載されたような光学部材は、視認側の表面を保護するため、表面に相対的に高硬度な樹脂層であるハードコート層を形成することがある。このようなハードコート層は、代表的にはFPRフィルムの視認側となる基材フィルム(保護層)の表面においてモノマーまたはオリゴマーを重合させて形成される。 Also, the optical member described in Patent Document 2 may form a hard coat layer, which is a relatively hard resin layer, on the surface in order to protect the surface on the viewing side. Such a hard coat layer is typically formed by polymerizing monomers or oligomers on the surface of a base film (protective layer) on the viewing side of the FPR film.
 ハードコート層の形成時には、硬化収縮による応力がFPRフィルムに加わることが予想される。このようなハードコート層は、厚くすると表面保護の効果が高いが、ハードコート層を厚くすると、形成時の硬化収縮が大きくなる。 When forming the hard coat layer, it is expected that stress due to curing shrinkage is applied to the FPR film. When the hard coat layer is thick, the effect of protecting the surface is high. However, when the hard coat layer is thick, the shrinkage of curing at the time of formation increases.
 FPRフィルムの位相差は応力により容易に変化するため、ハードコート層を形成することにより、FPRフィルムから射出される画像光が所望の偏光状態とならない。例えば本来は右眼のみで認識されるべき右眼用画像が左眼でも認識されてしまう。いわゆるクロストークが生じ、立体表示画像の画質を低下させるおそれがある。 Since the retardation of the FPR film is easily changed by stress, the image light emitted from the FPR film is not in a desired polarization state by forming the hard coat layer. For example, a right-eye image that should originally be recognized only by the right eye is also recognized by the left eye. So-called crosstalk may occur, and the image quality of the stereoscopic display image may be reduced.
 また、特許文献2に記載されたような光学部材は、複数の層が積層しているため全体の厚みが厚くなりやすい。表示装置においては、画素から射出される右眼用の画像光が、FPRフィルムにおいて対応する領域に入射することで、右眼用の偏光画像光として射出され、左眼用の画像がFPRフィルムにおいて対応する領域に入射することで、左眼用の偏光画像光として射出される。 In addition, since the optical member as described in Patent Document 2 is formed by laminating a plurality of layers, the overall thickness tends to be thick. In the display device, the image light for the right eye emitted from the pixels enters the corresponding area in the FPR film, and is emitted as polarized image light for the right eye, and the image for the left eye is emitted in the FPR film. By entering the corresponding area, it is emitted as polarized image light for the left eye.
  しかし、光学部材が厚くなると、画素から斜め上方や斜め下方に射出された画像光が、FPRフィルムにおいて本来入射すべき領域とは異なる領域に入射するおそれがある。この場合、斜めに射出された画像光により、例えば右眼でのみ認識されるべき右眼用画像が左眼でも認識されてしまう、いわゆるクロストークが生じ、立体表示画像の画質を低下させるおそれがある。このおそれは、水平面に対して30度以上の角度で斜め上方から画像を見下ろしたり、30度以上の角度で斜め下方から画像を見上げた場合には特に顕著である。 However, when the optical member becomes thick, there is a possibility that image light emitted obliquely upward or obliquely downward from the pixel may enter a region different from the region that should originally be incident on the FPR film. In this case, the image light emitted obliquely may cause a so-called crosstalk in which an image for the right eye that should be recognized only by the right eye, for example, is recognized by the left eye, and may reduce the image quality of the stereoscopic display image. is there. This fear is particularly noticeable when the image is looked down obliquely from above at an angle of 30 degrees or more with respect to the horizontal plane, or when the image is looked up obliquely from below at an angle of 30 degrees or more.
 また、特許文献2に記載されたような光学部材は、視認側の表面を保護するため、表面に相対的に高硬度な樹脂層であるハードコート層を形成することがある。このようなハードコート層は、代表的にはFPRフィルム視認側となる基材フィルム(保護層)の表面においてモノマーまたはオリゴマーを重合させて形成される。 Also, the optical member described in Patent Document 2 may form a hard coat layer, which is a relatively hard resin layer, on the surface in order to protect the surface on the viewing side. Such a hard coat layer is typically formed by polymerizing monomers or oligomers on the surface of a base film (protective layer) on the FPR film viewing side.
 ハードコート層の形成時には、硬化収縮による応力がFPRフィルムに加わることが予想される。このようなハードコート層は、厚くすると表面保護の効果が高いが、ハードコート層を厚くすると、形成時の硬化収縮が大きくなる。 When forming the hard coat layer, it is expected that stress due to curing shrinkage is applied to the FPR film. When the hard coat layer is thick, the effect of protecting the surface is high. However, when the hard coat layer is thick, the shrinkage of curing at the time of formation increases.
 FPRフィルムの位相差は応力により容易に変化するため、ハードコート層を形成することにより、FPRフィルムから射出される画像光が所望の偏光状態とならない。例えば本来は右眼でのみ認識されるべき右眼用画像が左眼でも認識されてしまう。いわゆるクロストークが生じ、立体表示画像の画質を低下させるおそれがある。 Since the retardation of the FPR film is easily changed by stress, the image light emitted from the FPR film is not in a desired polarization state by forming the hard coat layer. For example, a right-eye image that should originally be recognized only by the right eye is also recognized by the left eye. So-called crosstalk may occur, and the image quality of the stereoscopic display image may be reduced.
 本発明は以下の手段を採用した。
 本発明の第1の態様は、入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、複数の前記第1領域および複数の前記第2領域が平面視において所定のパターンで配置された位相差層と、前記位相差層の一方の面側に設けられた偏光子層と、前記位相差層の他方の面側の表面に設けられた防眩層と、を有し、前記防眩層の凹凸表面の任意の断面曲線における算術平均高さPaが0.15μm以下であり、最大断面高さPtが1.5μm以下である光学部材を提供する。
The present invention employs the following means.
A first aspect of the present invention includes a plurality of first regions that change incident linearly polarized light into a first polarization state, and a plurality of second regions that change into a second polarization state. A retardation layer in which the first region and the plurality of second regions are arranged in a predetermined pattern in plan view, a polarizer layer provided on one surface side of the retardation layer, and the other of the retardation layer An anti-glare layer provided on the surface of the anti-glare layer, the arithmetic average height Pa in an arbitrary cross-sectional curve of the uneven surface of the anti-glare layer is 0.15 μm or less, and the maximum cross-sectional height Pt is An optical member having a size of 1.5 μm or less is provided.
 本発明の一態様においては、前記防眩層の表面の傾斜角度が2°以上である割合が30%以下である構成としてもよい。 In one embodiment of the present invention, the ratio of the inclination angle of the surface of the antiglare layer being 2 ° or more may be 30% or less.
 また、本発明の第2の態様は、入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、複数の前記第1領域および複数の前記第2領域が平面視において所定のパターンで配置された位相差層と、前記位相差層の一方の面側に設けられた偏光子層と、前記位相差層の他方の面側の表面に設けられた防眩層と、を有し、前記防眩層の表面について、JIS K 7374に基づき幅0.5mm、1.0mmおよび2.0mmの光学くしを用いて反射法で測定される像鮮明度の和が30%以上200%以下である光学部材を提供する。 The second aspect of the present invention includes a plurality of first regions that change the incident linearly polarized light into the first polarization state, and a plurality of second regions that change into the second polarization state. A retardation layer in which the first region and the plurality of second regions are arranged in a predetermined pattern in plan view, a polarizer layer provided on one surface side of the retardation layer, and the retardation layer An antiglare layer provided on the surface of the other surface of the optical disc, and the surface of the antiglare layer is an optical comb having widths of 0.5 mm, 1.0 mm and 2.0 mm based on JIS K 7374. An optical member having a sum of image sharpness measured by a reflection method of 30% or more and 200% or less is provided.
 本発明の一態様においては、前記偏光子層の側から透過させる光について、JIS K 7374に基づき幅0.125mm、0.5mm、1.0mmおよび2.0mmの光学くしを用いて透過法で測定される像鮮明度の和が150%以上350%以下である構成としてもよい。 In one aspect of the present invention, the light transmitted from the polarizer layer side is transmitted using an optical comb having a width of 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm based on JIS K 7374. The sum of the measured image sharpnesses may be 150% or more and 350% or less.
 また、本発明の第3の態様は、入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、複数の前記第1領域および複数の前記第2領域が平面視において所定のパターンで配置された位相差層と、前記位相差層の一方の面側に設けられた偏光子層と、前記偏光子層に対し前記位相差層とは反対側に設けられた偏光子層保護層と、を有し、前記偏光子層保護層の面内位相差Rが、10nm以下である光学部材を提供する。 The third aspect of the present invention has a plurality of first regions that change the incident linearly polarized light into the first polarization state and a plurality of second regions that change into the second polarization state. A retardation layer in which the first region and the plurality of second regions are arranged in a predetermined pattern in plan view, a polarizer layer provided on one surface side of the retardation layer, and the polarizer layer anda polarizer protecting layer provided on the side opposite to the retardation layer to the in-plane retardation R o of the polarizer layer protective layer, provides an optical member is 10nm or less.
 本発明の一態様においては、前記偏光子層保護層の厚み方向の位相差Rthが、10nm以下である構成としてもよい。 In one embodiment of the present invention, a thickness direction retardation Rth of the polarizer layer protective layer may be 10 nm or less.
 本発明の一態様においては、前記偏光子層保護層のNz係数が、10以下である構成としてもよい。 In one embodiment of the present invention, the polarizer layer protective layer may have an Nz coefficient of 10 or less.
 また、本発明の第4の態様は、入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、複数の前記第1領域および複数の前記第2領域が平面視において所定のパターンで配置された位相差層と、前記位相差層の一方の面側に設けられた偏光子層と、前記位相差層の他方の面側の表面に設けられたハードコート層と、を有し、前記ハードコート層は、厚みが1μm以上であり、鉛筆硬度がF以上2H以下である光学部材を提供する。 Moreover, the 4th aspect of this invention has several 1st area | region which changes the incident linearly polarized light into a 1st polarization state, and several 2nd area | region which changes to 2nd polarization state, A retardation layer in which the first region and the plurality of second regions are arranged in a predetermined pattern in plan view, a polarizer layer provided on one surface side of the retardation layer, and the retardation layer A hard coat layer provided on the surface on the other surface side, wherein the hard coat layer has an thickness of 1 μm or more and a pencil hardness of F to 2H.
 本発明の一態様においては、前記ハードコート層は、活性エネルギー線硬化性樹脂組成物の重合体である構成としてもよい。 In one aspect of the present invention, the hard coat layer may be a polymer of an active energy ray-curable resin composition.
 本発明の一態様においては、前記位相差層と前記ハードコート層との間に、位相差層保護層を有する構成としてもよい。 In one embodiment of the present invention, a retardation layer protective layer may be provided between the retardation layer and the hard coat layer.
 また、本発明の第5の態様は、入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、複数の前記第1領域および複数の前記第2領域が平面視において所定のパターンで配置された位相差層と、前記位相差層の一方の面側に設けられた偏光子層と、前記偏光子層に対し前記位相差層とは反対側に設けられた偏光子層保護層と、を有し、前記偏光子層保護層は、厚みが5μm以上80μm以下である光学部材を提供する。 Moreover, the 5th aspect of this invention has several 1st area | region which changes the incident linearly polarized light into a 1st polarization state, and several 2nd area | region which changes to 2nd polarization state, A retardation layer in which the first region and the plurality of second regions are arranged in a predetermined pattern in plan view, a polarizer layer provided on one surface side of the retardation layer, and the polarizer layer A polarizer layer protective layer provided on the opposite side of the retardation layer, and the polarizer layer protective layer provides an optical member having a thickness of 5 μm to 80 μm.
 また、本発明の第6の態様は、入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、複数の前記第1領域および複数の前記第2領域が平面視において所定のパターンで配置された位相差層と、前記位相差層の一方の面側に設けられた偏光子層と、前記位相差層の他方の面側の表面に設けられたハードコート層と、前記位相差層と前記ハードコート層との間に設けられた位相差層保護層と、を有し、前記位相差層保護層は、厚みが35μm以上である光学部材を提供する。 The sixth aspect of the present invention includes a plurality of first regions that change the incident linearly polarized light to the first polarization state, and a plurality of second regions that change the second polarization state. A retardation layer in which the first region and the plurality of second regions are arranged in a predetermined pattern in plan view, a polarizer layer provided on one surface side of the retardation layer, and the retardation layer A hard coat layer provided on the surface of the other surface side, and a retardation layer protective layer provided between the retardation layer and the hard coat layer, wherein the retardation layer protective layer is An optical member having a thickness of 35 μm or more is provided.
 また、本発明の別の一態様は、表示パネルと、前記表示パネルの表示面側に設けられた上記の光学部材と、を有する表示装置を提供する。 Another embodiment of the present invention provides a display device having a display panel and the optical member provided on the display surface side of the display panel.
 本発明の各態様によれば、良好な立体画像表示が可能な光学部材を提供することができる。また、上述した光学部材を備え、良好な立体画像表示が可能な表示装置を提供することができる。 According to each aspect of the present invention, an optical member capable of displaying a favorable stereoscopic image can be provided. In addition, it is possible to provide a display device that includes the above-described optical member and can display a favorable stereoscopic image.
本実施形態の光学部材を示す概略断面図である。It is a schematic sectional drawing which shows the optical member of this embodiment. 本実施形態の光学部材1のハードコート層5の表面の概略拡大図である。It is a schematic enlarged view of the surface of the hard-coat layer 5 of the optical member 1 of this embodiment. 防眩層表面の傾斜角度の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of the inclination angle of the glare-proof layer surface. 本実施形態の表示装置の概略構成を示す平面図である。It is a top view which shows schematic structure of the display apparatus of this embodiment. 本実施形態の表示装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the display apparatus of this embodiment. 液晶パネルPと光学部材1との貼合時の位置合わせを説明するための平面図である。It is a top view for demonstrating position alignment at the time of bonding with liquid crystal panel P and the optical member 1. FIG.
[光学部材]
 以下、図を参照しながら、本発明の実施形態に係る光学部材について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
[Optical member]
Hereinafter, an optical member according to an embodiment of the present invention will be described with reference to the drawings. In all the drawings below, the dimensions and ratios of the constituent elements are appropriately changed in order to make the drawings easy to see.
 図1は、本実施形態の光学部材を示す概略断面図である。図1に示すように、本実施形態の光学部材1は、偏光子層2と、パターン化位相差層3とが一体化された部材であり、例えば平面視で矩形を呈している。光学部材1は、不図示の液晶パネルの視認側表面に粘着剤層9を介して貼合される。以下の説明においては、光学部材1の偏光子層2側をパネル側、パターン化位相差層3側を視認側と称することがある。 FIG. 1 is a schematic cross-sectional view showing an optical member of the present embodiment. As shown in FIG. 1, the optical member 1 of the present embodiment is a member in which a polarizer layer 2 and a patterned retardation layer 3 are integrated, and has a rectangular shape in a plan view, for example. The optical member 1 is bonded to the surface on the viewing side of a liquid crystal panel (not shown) via an adhesive layer 9. In the following description, the polarizer layer 2 side of the optical member 1 may be referred to as a panel side, and the patterned retardation layer 3 side may be referred to as a viewing side.
 また、本発明における「位相差層の一方の面側」とは、光学部材1においてパターン化位相差層3のパネル側のことを指す。同様に、本発明における「位相差層の他方の面側」とは、光学部材1においてパターン化位相差層3の視認側のことを指す。 Also, “one surface side of the retardation layer” in the present invention refers to the panel side of the patterned retardation layer 3 in the optical member 1. Similarly, “the other surface side of the retardation layer” in the present invention refers to the viewing side of the patterned retardation layer 3 in the optical member 1.
 本実施形態の光学部材1では、パターン化位相差層3の視認側に第1保護層4およびハードコート層5がこの順に積層している。また、光学部材1では、偏光子層2のパネル側に第2保護層6が設けられている。さらに、パターン化位相差層3と偏光子層2とは接着剤層7を介して接着されている。同様に、偏光子層2と第2保護層6とは接着剤層8を介して接着されている。第1保護層4は、本発明における位相差層保護層に該当する。第2保護層6は、本発明における偏光子層保護層に該当する。 In the optical member 1 of the present embodiment, the first protective layer 4 and the hard coat layer 5 are laminated in this order on the viewing side of the patterned retardation layer 3. In the optical member 1, the second protective layer 6 is provided on the panel side of the polarizer layer 2. Further, the patterned retardation layer 3 and the polarizer layer 2 are bonded via an adhesive layer 7. Similarly, the polarizer layer 2 and the second protective layer 6 are bonded via an adhesive layer 8. The first protective layer 4 corresponds to the retardation layer protective layer in the present invention. The second protective layer 6 corresponds to the polarizer layer protective layer in the present invention.
 図1に示すように、光学部材1は、ハードコート層5を覆う保護フィルムPfを有していてもよい。また、第2保護層6を覆って設けられた粘着剤層9を介して剥離フィルムSfを有していてもよい。
 以下、順に説明する。
As shown in FIG. 1, the optical member 1 may have a protective film Pf that covers the hard coat layer 5. Moreover, you may have peeling film Sf through the adhesive layer 9 provided so that the 2nd protective layer 6 was covered.
Hereinafter, it demonstrates in order.
(偏光子層)
 偏光子層2は、入射する光のうち、ある方向の振動面を有する光を透過し、それと直交する振動面を有する光を吸収する性質を有する。偏光子層2を介して射出される光は直線偏光となる。
(Polarizer layer)
The polarizer layer 2 has a property of transmitting light having a vibration surface in a certain direction out of incident light and absorbing light having a vibration surface perpendicular to the light. Light emitted through the polarizer layer 2 is linearly polarized light.
 偏光子層2としては、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程と、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより二色性色素を吸着させる工程と、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程と、ホウ酸水溶液による処理後に水洗する工程と、を経て製造される偏光フィルムを用いることができる。 The polarizer layer 2 includes a step of uniaxially stretching a polyvinyl alcohol resin film, a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol resin film with a dichroic dye, and an adsorption of the dichroic dye. The polarizing film manufactured through the process of processing the made polyvinyl alcohol-type resin film with a boric acid aqueous solution, and the process of washing with water after the process with a boric acid aqueous solution can be used.
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得ることができる。ポリ酢酸ビニル系樹脂は、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他にも、酢酸ビニルとそれに共重合可能な他の単量体との共重合体であってもよい。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などを挙げることができる。 The polyvinyl alcohol resin can be obtained by saponifying a polyvinyl acetate resin. The polyvinyl acetate resin may be a copolymer of vinyl acetate and another monomer copolymerizable therewith in addition to polyvinyl acetate, which is a homopolymer of vinyl acetate. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 二色性色素としては、ヨウ素や二色性の有機染料が用いられる。二色性色素としてヨウ素を用いる場合は、ヨウ素及びヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法を採用することができる。 As the dichroic dye, iodine or a dichroic organic dye is used. When iodine is used as the dichroic dye, a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide can be employed.
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素による染色の前に行なってもよいし、二色性色素による染色と同時に行なってもよいし、二色性色素による染色の後、例えばホウ酸処理中に行なってもよい。 Uniaxial stretching of the polyvinyl alcohol resin film may be performed before dyeing with the dichroic dye, may be performed simultaneously with dyeing with the dichroic dye, or after dyeing with the dichroic dye, It may be performed during the acid treatment.
 以上のようにして、ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向した偏光フィルムを製造することができる。得られる偏光フィルムは、光学部材1を構成する偏光子層2として用いられる。 As described above, a polarizing film having a dichroic dye adsorbed and oriented on a polyvinyl alcohol resin film can be produced. The obtained polarizing film is used as the polarizer layer 2 constituting the optical member 1.
 偏光子層2の厚みは、例えば、5μm以上40μm以下とすることができる。本実施形態において、偏光子層2の厚みは30μmである。 The thickness of the polarizer layer 2 can be, for example, 5 μm or more and 40 μm or less. In the present embodiment, the thickness of the polarizer layer 2 is 30 μm.
(位相差層)
 パターン化位相差層3は、入射する直線偏光を2種の偏光状態の光として射出する性質を有する。パターン化位相差層3は、光配向層31と位相差層32とを有している。
(Retardation layer)
The patterned retardation layer 3 has a property of emitting incident linearly polarized light as light of two types of polarization states. The patterned retardation layer 3 has a photo-alignment layer 31 and a retardation layer 32.
 光配向層31は、液晶性を有する材料(以下、液晶材料と称する)の配向規制力を有している。光配向層31は、重合性の光配向材料を用いて形成されている。光配向材料としては、偏光光で露光されることにより配向規制力を発現するものを用いる。光配向材料に偏光光を露光し、配向規制力を発現させた上で重合させることで、配向規制力を保持した光配向層31を形成することができる。このような重合性の光配向材料としては、通常知られたものを用いることができる。 The photo-alignment layer 31 has an alignment regulating force of a material having liquid crystallinity (hereinafter referred to as a liquid crystal material). The photo-alignment layer 31 is formed using a polymerizable photo-alignment material. As the photo-alignment material, a material that expresses alignment regulating force when exposed to polarized light is used. The photo-alignment layer 31 retaining the alignment regulating force can be formed by exposing the photo-alignment material to polarized light and polymerizing it after expressing the alignment regulating force. As such a polymerizable photo-alignment material, a conventionally known material can be used.
 本実施形態の光配向層31は、配向規制力が働く方向が平面視において90度異なる2つの配向領域31a,31bを有している。配向領域31a,31bはそれぞれ、平面視で矩形を呈する光学部材1の一辺と同方向に、通常は組み込まれるべき液晶表示装置において左右方向となるべき方向に、延在する帯状の領域である。また、配向領域31a,31bは、自身の延在方向と交差する方向に、交互に設けられている。 The photo-alignment layer 31 of the present embodiment has two alignment regions 31a and 31b in which the direction in which the alignment regulating force works is 90 degrees different in plan view. Each of the alignment regions 31a and 31b is a strip-like region extending in the same direction as one side of the optical member 1 having a rectangular shape in a plan view, and in the direction that should be the left-right direction in a liquid crystal display device that is normally incorporated. In addition, the alignment regions 31a and 31b are alternately provided in a direction intersecting with the extending direction of the alignment regions 31a and 31b.
 位相差層32は、光配向層31の配向領域31aに対応する第1領域32aと、配向領域31bに対応する第2領域32bと、を有している。すなわち、第1領域32aと第2領域32bとは、平面視で矩形を呈する光学部材1の一辺と同方向に延在する帯状の領域であり、自身の延在方向と交差する方向に交互に設けられている。 The retardation layer 32 has a first region 32a corresponding to the alignment region 31a of the photo-alignment layer 31, and a second region 32b corresponding to the alignment region 31b. That is, the first region 32a and the second region 32b are band-like regions extending in the same direction as one side of the optical member 1 that is rectangular in plan view, and alternately in a direction intersecting with the extending direction of the first region 32a and the second region 32b. Is provided.
 図1は、光配向層31の配向領域31a,31b、位相差層32の第1領域32aと第2領域32bとの延在方向と交差する断面における断面図を示している。図1では、理解を容易にするために、光配向層31の配向領域31a,31bや、位相差層32の第1領域32aと第2領域32bとを明示している。 FIG. 1 is a cross-sectional view of the alignment regions 31a and 31b of the photo-alignment layer 31 and a cross section intersecting with the extending direction of the first region 32a and the second region 32b of the retardation layer 32. In FIG. 1, for easy understanding, the alignment regions 31a and 31b of the photo-alignment layer 31 and the first region 32a and the second region 32b of the retardation layer 32 are clearly shown.
 第1領域32aと第2領域32bとは、それぞれ異なる屈折率異方性を示す。そのため、位相差層32は、第1領域32aにおいて入射する直線偏光を第1の偏光状態の光に変化させる。また、第2領域32bにおいて入射する直線偏光を第2の偏光状態の光に変化させる。 The first region 32a and the second region 32b exhibit different refractive index anisotropies. Therefore, the retardation layer 32 changes the linearly polarized light incident on the first region 32a to light in the first polarization state. Further, the linearly polarized light incident on the second region 32b is changed to light in the second polarization state.
 「第1の偏光状態の光」と「第2の偏光状態の光」とは、例えば、互いに直交する振動方向を示す2種の直線偏光や、2種の円偏光(右円偏光と左円偏光)を指す。 “Light in the first polarization state” and “light in the second polarization state” are, for example, two types of linearly polarized light that indicates vibration directions orthogonal to each other, and two types of circularly polarized light (right circularly polarized light and left circularly polarized light). Polarization).
 このような位相差層32は、重合性の官能基を有する液晶材料を用いて形成される。すなわち、位相差層32は、光配向層31が有する配向領域31a,31bの配向規制力に応じて液晶材料を2方向に配列させ、さらに、液晶材料が有する重合性の官能基を反応させて、用いる液晶材料の液晶相を維持して硬化させることにより得られる。このような重合性の液晶材料としては、通常知られたものを用いることができる。 Such a retardation layer 32 is formed using a liquid crystal material having a polymerizable functional group. That is, the retardation layer 32 arranges the liquid crystal material in two directions according to the alignment regulating force of the alignment regions 31a and 31b of the photo-alignment layer 31, and further reacts the polymerizable functional group of the liquid crystal material. It is obtained by maintaining and curing the liquid crystal phase of the liquid crystal material to be used. As such a polymerizable liquid crystal material, a conventionally known material can be used.
(第1保護層)
 第1保護層4は、パターン化位相差層3を保護する機能を有している。また、光学部材1の構成材料として、パターン化位相差層3と第1保護層4とが積層した位相差フィルムを用いる場合、パターン化位相差層3を支持する基材として用いられる。
(First protective layer)
The first protective layer 4 has a function of protecting the patterned retardation layer 3. Moreover, when using the retardation film which the patterned phase difference layer 3 and the 1st protective layer 4 laminated | stacked as a constituent material of the optical member 1, it is used as a base material which supports the patterned phase difference layer 3. FIG.
 第1保護層4の形成材料としては、例えば、トリアセチルセルロース(TAC)系樹脂、ポリカーボネート系樹脂、ポリビニルアルコール系樹脂、ポリスチレン系樹脂、(メタ)アクリレート系樹脂、環状ポリオレフィン系樹脂やポリプロピレン系樹脂を包含するポリオレフィン系樹脂、ポリアリレート系樹脂、ポリイミド系樹脂、ポリアミド系樹脂などを挙げることができる。 Examples of the material for forming the first protective layer 4 include triacetyl cellulose (TAC) resin, polycarbonate resin, polyvinyl alcohol resin, polystyrene resin, (meth) acrylate resin, cyclic polyolefin resin, and polypropylene resin. Include polyolefin resins, polyarylate resins, polyimide resins, polyamide resins, and the like.
 第1保護層4の厚みは、35μm以上であると好ましく、50μm以上であるとより好ましく、70μm以上であるとさらに好ましい。また、第1保護層4の厚みは、例えば100μm以下とすることが好ましい。光学部材1に用いられている第1保護層4の厚みは、例えば、光学部材1の断面を電子顕微鏡で撮像した拡大写真に基づいて実測することができる。本実施形態においては、第1保護層4の厚みは57μmである。 The thickness of the first protective layer 4 is preferably 35 μm or more, more preferably 50 μm or more, and further preferably 70 μm or more. Moreover, it is preferable that the thickness of the 1st protective layer 4 shall be 100 micrometers or less, for example. The thickness of the 1st protective layer 4 used for the optical member 1 can be measured based on the enlarged photograph which imaged the cross section of the optical member 1 with the electron microscope, for example. In the present embodiment, the thickness of the first protective layer 4 is 57 μm.
 後述するように、光学部材1が有するハードコート層5は硬化性樹脂を形成材料として設けられる。そのため、ハードコート層5を形成する際には、硬化性樹脂の硬化収縮が生じ、硬化収縮による応力が位相差層32に加わることが予想される。このようなハードコート層5は、厚くするとパターン化位相差層3の保護の効果が高いが、一方でハードコート層5を厚くすると、形成時の硬化収縮が大きくなる。そのため、ハードコート層5を厚くすると、硬化収縮に起因して位相差層32に加わる応力が大きくなることが予想される。 As will be described later, the hard coat layer 5 of the optical member 1 is provided with a curable resin as a forming material. Therefore, when the hard coat layer 5 is formed, it is expected that curing shrinkage of the curable resin occurs and stress due to the curing shrinkage is applied to the retardation layer 32. When such a hard coat layer 5 is thickened, the effect of protecting the patterned retardation layer 3 is high. On the other hand, when the hard coat layer 5 is thickened, curing shrinkage during formation increases. Therefore, when the hard coat layer 5 is thickened, it is expected that the stress applied to the retardation layer 32 increases due to curing shrinkage.
 位相差層32の位相差は、位相差層32に加わる応力により容易に変化する。そのため、ハードコート層5を形成することにより、位相差層32に予期しない位相差のズレが生ずるおそれがある。位相差層32がこのような位相差のズレを有すると、位相差層32から射出される画像光が所望の偏光状態とならず、クロストークが生じ、立体表示画像の画質を低下させるおそれがある。 The phase difference of the retardation layer 32 is easily changed by the stress applied to the retardation layer 32. Therefore, the formation of the hard coat layer 5 may cause an unexpected retardation shift in the retardation layer 32. If the phase difference layer 32 has such a phase difference, the image light emitted from the phase difference layer 32 is not in a desired polarization state, which may cause crosstalk and reduce the image quality of the stereoscopic display image. is there.
 しかし、本実施形態の光学部材1では、第1保護層4の厚みが35μm以上であるため、ハードコート層5の形成時の応力が位相差層32に加わりにくく、位相差層32の位相差を維持することが可能となる。これにより、位相差層32から射出される画像光の偏光状態を所望の状態とすることができ、クロストークを抑制することができる。 However, in the optical member 1 of the present embodiment, since the thickness of the first protective layer 4 is 35 μm or more, the stress at the time of forming the hard coat layer 5 is not easily applied to the retardation layer 32, and the retardation of the retardation layer 32. Can be maintained. Thereby, the polarization state of the image light emitted from the retardation layer 32 can be set to a desired state, and crosstalk can be suppressed.
(ハードコート層)
 ハードコート層5は、硬化性樹脂の層であり、光学部材1の表面の傷つきを抑制する機能を有する層である。
(Hard coat layer)
The hard coat layer 5 is a layer of a curable resin and has a function of suppressing scratches on the surface of the optical member 1.
 ハードコート層5としては、例えば、活性エネルギー線の照射により重合・硬化する活性エネルギー線硬化性樹脂と、活性エネルギー線の照射によりラジカルを発生する重合開始剤とを含有する樹脂組成物を形成材料とすることができる。 As the hard coat layer 5, for example, a resin composition containing an active energy ray-curable resin that is polymerized and cured by irradiation with active energy rays and a polymerization initiator that generates radicals by irradiation with active energy rays is formed. It can be.
 活性エネルギー線硬化性樹脂は、例えば、多官能(メタ)アクリレート系化合物を含有するものである。多官能(メタ)アクリレート系化合物とは、分子中に少なくとも2個の(メタ)アクリロイルオキシ基を有する化合物である。 The active energy ray-curable resin contains, for example, a polyfunctional (meth) acrylate compound. The polyfunctional (meth) acrylate compound is a compound having at least two (meth) acryloyloxy groups in the molecule.
 多官能(メタ)アクリレート系化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタグリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス((メタ)アクリロイルオキシエチル)イソシアヌレート;
 ホスファゼン化合物のホスファゼン環に(メタ)アクリロイルオキシ基が導入されたホスファゼン系(メタ)アクリレート化合物;
 分子中に少なくとも2個のイソシアネート基を有するポリイソシアネートと少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有するポリオール化合物との反応により得られるウレタン(メタ)アクリレート化合物;
 分子中に少なくとも2個のカルボン酸ハロゲン化物と少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有するポリオール化合物との反応により得られるポリエステル(メタ)アクリレート化合物;
 上記各化合物の2量体、3量体などのオリゴマー;
を挙げることができる。これらの化合物は、1種のみ用いることとしてもよく、2種以上を併用してもよい。
Examples of the polyfunctional (meth) acrylate compound include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tri Methylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaglycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate , Pentaerythritol tetra (meth) acrylate, glycerin tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol Tetra (meth) acrylate dipentaerythritol penta (meth) acrylate dipentaerythritol hexa (meth) acrylate and tris ((meth) acryloyloxyethyl) isocyanurate;
A phosphazene-based (meth) acrylate compound in which a (meth) acryloyloxy group is introduced into the phosphazene ring of the phosphazene compound;
A urethane (meth) acrylate compound obtained by reaction of a polyisocyanate having at least two isocyanate groups in the molecule with a polyol compound having at least one (meth) acryloyloxy group and a hydroxyl group;
A polyester (meth) acrylate compound obtained by reaction of at least two carboxylic acid halides in the molecule with a polyol compound having at least one (meth) acryloyloxy group and a hydroxyl group;
Oligomers such as dimers and trimers of the above compounds;
Can be mentioned. These compounds may be used alone or in combination of two or more.
 活性エネルギー線硬化性樹脂は、上記の多官能(メタ)アクリレート系化合物のほかに、単官能(メタ)アクリレート系樹脂を含有していてもよい。 The active energy ray-curable resin may contain a monofunctional (meth) acrylate resin in addition to the polyfunctional (meth) acrylate compound.
 また、活性エネルギー線硬化性樹脂は重合性のオリゴマーを含有していてもよい。重合性のオリゴマーを含有させることにより、ハードコート層の硬度を調整することができる。 The active energy ray-curable resin may contain a polymerizable oligomer. By including a polymerizable oligomer, the hardness of the hard coat layer can be adjusted.
 重合性のオリゴマーとしては、末端(メタ)アクリレートポリメチルメタクリレート、末端スチリルポリ(メタ)アクリレート、末端(メタ)アクリレートポリスチレン、末端(メタ)アクリレートポリエチレングリコール、末端(メタ)アクリレートアクリロニトリル-スチレン共重合体、末端(メタ)アクリレートスチレン-メチル(メタ)アクリレート共重合体などのマクロモノマーを挙げることができる。これらのオリゴマーは、1種のみ用いることとしてもよく、2種以上を併用してもよい。 As the polymerizable oligomer, terminal (meth) acrylate polymethyl methacrylate, terminal styryl poly (meth) acrylate, terminal (meth) acrylate polystyrene, terminal (meth) acrylate polyethylene glycol, terminal (meth) acrylate acrylonitrile-styrene copolymer, Examples thereof include macromonomers such as a terminal (meth) acrylate styrene-methyl (meth) acrylate copolymer. These oligomers may be used alone or in combination of two or more.
 活性エネルギー線硬化性樹脂組成物に含有される重合開始剤は、活性エネルギー線の照射によりラジカルを発生する光重合開始剤である。重合開始剤としては、通常知られたものを用いることができる。重合開始剤は、1種のみ用いることとしてもよく、2種以上を併用してもよい。 The polymerization initiator contained in the active energy ray-curable resin composition is a photopolymerization initiator that generates radicals upon irradiation with active energy rays. As the polymerization initiator, those usually known can be used. Only one polymerization initiator may be used, or two or more polymerization initiators may be used in combination.
 重合開始剤は、色素増感剤と組み合わせて用いてもよい。これにより、重合開始剤の吸収波長とは異なる光を用いる場合であっても、色素増感剤が吸収可能な波長の光であれば、活性エネルギー線硬化性樹脂組成物の重合を促進することができる。 The polymerization initiator may be used in combination with a dye sensitizer. Thereby, even when light having a wavelength different from the absorption wavelength of the polymerization initiator is used, the polymerization of the active energy ray-curable resin composition can be promoted as long as the light can be absorbed by the dye sensitizer. Can do.
 ハードコート層5は、このような活性エネルギー線硬化性樹脂組成物を第1保護層4の表面に塗布して塗膜を形成し、塗膜に活性エネルギー線を照射して重合・硬化させることによる形成することができる。 The hard coat layer 5 is formed by coating such an active energy ray-curable resin composition on the surface of the first protective layer 4 to form a coating film, and irradiating the coating film with an active energy ray for polymerization and curing. Can be formed by.
 ハードコート層5の厚みは、1μm以上であると好ましい。また、ハードコート層の厚みは10μm以下であると好ましい。本実施形態においては、ハードコート層5の厚みは4μmである。 The thickness of the hard coat layer 5 is preferably 1 μm or more. The thickness of the hard coat layer is preferably 10 μm or less. In the present embodiment, the thickness of the hard coat layer 5 is 4 μm.
 このとき、ハードコート層5の硬度は、荷重500gで測定する鉛筆硬度でF以上2H以下であると好ましい。なお、本明細書において「鉛筆硬度」は、ASTMD3363規格に基づいて測定される値を指す。本実施形態においては、ハードコート層5の鉛筆硬度は2Hである。 At this time, the hardness of the hard coat layer 5 is preferably F or higher and 2H or lower in pencil hardness measured with a load of 500 g. In this specification, “pencil hardness” refers to a value measured based on the ASTM D3363 standard. In the present embodiment, the pencil hardness of the hard coat layer 5 is 2H.
 ハードコート層5は硬化性樹脂を形成材料として設けられる。そのため、ハードコート層5を形成する際には、硬化性樹脂の硬化収縮が生じ、硬化収縮による応力が位相差層32に加わることが予想される。また、ハードコート層5は、1μm以上と厚くなると表面保護の効果が高いが、一方で、ハードコート層5を厚くすると、形成時の硬化収縮が大きくなる。 The hard coat layer 5 is provided with a curable resin as a forming material. Therefore, when the hard coat layer 5 is formed, it is expected that curing shrinkage of the curable resin occurs and stress due to the curing shrinkage is applied to the retardation layer 32. Further, when the hard coat layer 5 is as thick as 1 μm or more, the effect of surface protection is high. On the other hand, when the hard coat layer 5 is thickened, curing shrinkage at the time of formation increases.
 位相差層32の位相差は、位相差層32に加わる応力により容易に変化する。そのため、ハードコート層5を形成することにより、位相差層32に予期しない位相差のズレが生ずるおそれがある。位相差層32がこのような位相差のズレを有すると、位相差層32から射出される画像光が所望の偏光状態とならず、クロストークが生じ、立体表示画像の画質を低下させるおそれがある。 The phase difference of the retardation layer 32 is easily changed by the stress applied to the retardation layer 32. Therefore, the formation of the hard coat layer 5 may cause an unexpected retardation shift in the retardation layer 32. If the phase difference layer 32 has such a phase difference, the image light emitted from the phase difference layer 32 is not in a desired polarization state, which may cause crosstalk and reduce the image quality of the stereoscopic display image. is there.
 ハードコート層5の重合度と、ハードコート層5の鉛筆硬度とは相関があるため、鉛筆硬度が高いハードコート層は、鉛筆硬度が低いハードコート層よりも、形成材料である硬化性樹脂の重合度が相対的に高いものとなっている。そのため、鉛筆硬度が高いハードコート層は、鉛筆硬度が低いハードコート層よりも、硬化収縮が大きく、強い応力が生じていると考えられる。 Since there is a correlation between the degree of polymerization of the hard coat layer 5 and the pencil hardness of the hard coat layer 5, the hard coat layer having a high pencil hardness is more curable resin than the hard coat layer having a low pencil hardness. The degree of polymerization is relatively high. Therefore, it is considered that the hard coat layer having a high pencil hardness has a larger curing shrinkage and a stronger stress than the hard coat layer having a low pencil hardness.
 しかし、本実施形態の光学部材1においては、ハードコート層5の厚みが1μm以上であっても、ハードコート層5の鉛筆硬度がF以上2H以下となっている。このようなハードコート層5は、ハードコート層として充分な硬度を有しながら、硬化性樹脂の重合度を抑制したものとなっている。そのため、ハードコート層5の形成時に生じる硬化収縮を抑制しながらも、ハードコート層5の形成時の応力を小さく抑えることができ、位相差層32の位相差を維持することが可能となる。これにより、位相差層32から射出される画像光の偏光状態を所望の状態とすることができ、クロストークを抑制することができる。 However, in the optical member 1 of the present embodiment, even when the thickness of the hard coat layer 5 is 1 μm or more, the pencil hardness of the hard coat layer 5 is F or more and 2H or less. Such a hard coat layer 5 has a hardness sufficient as a hard coat layer and suppresses the degree of polymerization of the curable resin. Therefore, it is possible to suppress the stress during the formation of the hard coat layer 5 while suppressing the curing shrinkage that occurs during the formation of the hard coat layer 5, and to maintain the retardation of the retardation layer 32. Thereby, the polarization state of the image light emitted from the retardation layer 32 can be set to a desired state, and crosstalk can be suppressed.
 ハードコート層5の鉛筆硬度は、硬化性樹脂の重合度を調整することにより制御することができる。活性エネルギー線硬化性樹脂組成物の重合度は、活性エネルギー線の照射時間、照射する活性エネルギー線の強度を変更することにより制御可能である。活性エネルギー線の照射時間が長くなると、活性エネルギー線硬化性樹脂組成物の重合度は大きくなる。また、照射する活性エネルギー線の強度が大きくなると、活性エネルギー線硬化性樹脂組成物の重合度は大きくなる。 The pencil hardness of the hard coat layer 5 can be controlled by adjusting the degree of polymerization of the curable resin. The degree of polymerization of the active energy ray-curable resin composition can be controlled by changing the irradiation time of the active energy ray and the intensity of the active energy ray to be irradiated. When the irradiation time of the active energy ray becomes longer, the degree of polymerization of the active energy ray curable resin composition increases. Moreover, when the intensity | strength of the active energy ray to irradiate becomes large, the polymerization degree of an active energy ray curable resin composition will become large.
 また、上述したように、活性エネルギー線硬化性樹脂組成物に重合性のオリゴマーを含有させることにより、ハードコート層5の鉛筆硬度を制御することができる。重合性のオリゴマーの含有量が大きくなると、ハードコート層5の鉛筆硬度は低下する傾向にある。 As described above, the pencil hardness of the hard coat layer 5 can be controlled by adding a polymerizable oligomer to the active energy ray-curable resin composition. When the content of the polymerizable oligomer increases, the pencil hardness of the hard coat layer 5 tends to decrease.
(防眩層)
 本実施形態の光学部材1においては、ハードコート層5は、表面に複数の凹凸が形成され、または内部に粒子を有することにより、外光を乱反射させ、映り込みやぎらつきを抑制する防眩機能が付与されている。以下の説明においては、防眩性を付与したハードコート層5のことを「防眩層」と称することがある。
(Anti-glare layer)
In the optical member 1 of the present embodiment, the hard coat layer 5 has a plurality of irregularities formed on the surface, or has particles inside, thereby reflecting external light irregularly and suppressing glare and glare. Functions are granted. In the following description, the hard coat layer 5 imparted with the antiglare property may be referred to as an “antiglare layer”.
 ハードコート層(防眩層)5に防眩機能を付与するためには、上述した活性エネルギー線硬化性樹脂組成物に、光を屈折させ好ましくはハードコート層の表面に凹凸形状を付与する微粒子を混合する構成を採用することができる。 In order to impart an anti-glare function to the hard coat layer (anti-glare layer) 5, fine particles that refract light to the above-described active energy ray-curable resin composition, and preferably impart an uneven shape to the surface of the hard coat layer. The structure which mixes can be employ | adopted.
 用いる微粒子は、例えば、真球状、楕円状、不定型など、種々の形状のものを採用することができる。また、微粒子は、一次粒子が分散したものであってもよく、二次粒子以上の凝集体であってもよい。 As the fine particles to be used, those having various shapes such as a spherical shape, an elliptical shape, and an irregular shape can be adopted. The fine particles may be those in which primary particles are dispersed, or may be aggregates of secondary particles or more.
 用いる微粒子は、平均粒子径が0.3μm以上10μm以下であることが好ましい。微粒子の平均粒子径は、上限が8μm以下であることが好ましく、6μm以下であることがさらに好ましい。また、微粒子の平均粒子径は、下限が、0.5μm以上であることが好ましく、1.0μm以上であることがより好ましい。これらの上限値および下限値は任意に組み合わせることができる。微粒子の平均粒子径が上記範囲に含まれることにより、防眩層に適切な凹凸を付与することができる。 The fine particles used preferably have an average particle size of 0.3 μm or more and 10 μm or less. The upper limit of the average particle diameter of the fine particles is preferably 8 μm or less, and more preferably 6 μm or less. Further, the lower limit of the average particle diameter of the fine particles is preferably 0.5 μm or more, and more preferably 1.0 μm or more. These upper limit value and lower limit value can be arbitrarily combined. When the average particle diameter of the fine particles is included in the above range, appropriate unevenness can be imparted to the antiglare layer.
 なお、「平均粒子径」とは、微粒子が、単分散型の粒子(形状が単一な粒子)であれば、その平均粒子径を表し、ブロードな粒度分布を持つ粒子であれば、粒度分布測定により、最も多く存在する粒子の粒径が平均粒子径を表す。上記微粒子の粒径は、コールターカウンター法により計測できる。 The “average particle size” means the average particle size if the fine particles are monodisperse particles (particles having a single shape), and the particle size distribution if the particles have a broad particle size distribution. By measurement, the particle size of the most abundant particles represents the average particle size. The particle size of the fine particles can be measured by a Coulter counter method.
 このような微粒子としては、無機材料または有機材料を形成材料とするものを使用することができる。用いる微粒子は、可視光領域の光の透過性を有するものが好ましい。 As such fine particles, those using an inorganic material or an organic material as a forming material can be used. The fine particles to be used are preferably those having light transmittance in the visible light region.
 微粒子を形成する有機材料としては、樹脂材料を挙げることができる。例えば、ポリスチレン(屈折率1.60)、メラミン樹脂(屈折率1.57)、アクリル樹脂(屈折率1.49~1.535)、アクリル-スチレン樹脂(屈折率1.54~1.58)、ベンゾグアナミン-ホルムアルデヒド縮合物(屈折率1.66)、ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物(屈折率1.52~1.66)、メラミン・ホルムアルデヒド縮合物(屈折率1.66)、ポリカーボネート、ポリエチレン等が挙げられる。 An example of an organic material that forms fine particles is a resin material. For example, polystyrene (refractive index 1.60), melamine resin (refractive index 1.57), acrylic resin (refractive index 1.49 to 1.535), acrylic-styrene resin (refractive index 1.54 to 1.58). , Benzoguanamine-formaldehyde condensate (refractive index 1.66), benzoguanamine / melamine / formaldehyde condensate (refractive index 1.52-1.66), melamine / formaldehyde condensate (refractive index 1.66), polycarbonate, polyethylene, etc. Is mentioned.
 有機材料を形成材料とする微粒子は、表面に疎水性基を有することが好ましく、例えば、ポリスチレンを形成材料とする微粒子を挙げることができる。 The fine particles having an organic material as a forming material preferably have a hydrophobic group on the surface, and examples thereof include fine particles having polystyrene as a forming material.
 また、微粒子を形成する無機材料としては、酸化アルミニウムやシリカなどの金属酸化物を挙げることができる。無機材料を形成材料とする微粒子は、表面を疎水化処理することとしてもよい。疎水化処理は、微粒子表面に化合物を化学的に結合させる方法や、微粒子表面と化学的な結合をせずに、微粒子を形成する組成物にあるボイドなどに浸透させるような物理的な方法を挙げることができる。 In addition, examples of the inorganic material forming the fine particles include metal oxides such as aluminum oxide and silica. The fine particles made of an inorganic material may be subjected to a hydrophobic treatment on the surface. Hydrophobizing treatment is performed by a method of chemically bonding a compound to the surface of the fine particle or a physical method of penetrating a void in the composition that forms the fine particle without chemically bonding to the surface of the fine particle. Can be mentioned.
 これらの微粒子は、1種のみ用いることとしてもよく、2種以上を併用することとしてもよい。2種以上の微粒子を併用する場合、2種以上の異なる屈折率を有する微粒子を用いることが好ましい。屈折率が異なる微粒子を混合して用いる場合、各々の微粒子の屈折率と使用比率とに応じた平均値を、用いる微粒子の屈折として見なすことができる。そのため、微粒子の混合比率の調整により、容易に微粒子の屈折率の制御が可能となる。これにより、例えば、活性エネルギー線硬化性樹脂組成物の屈折率と、微粒子の屈折率とを揃えることで、防眩層の透明性や防眩性の調整が容易となる。 These fine particles may be used alone or in combination of two or more. When two or more kinds of fine particles are used in combination, it is preferable to use fine particles having two or more different refractive indexes. In the case of using a mixture of fine particles having different refractive indexes, an average value corresponding to the refractive index and the use ratio of each fine particle can be regarded as the refraction of the fine particles to be used. Therefore, the refractive index of the fine particles can be easily controlled by adjusting the mixing ratio of the fine particles. Thereby, for example, by adjusting the refractive index of the active energy ray-curable resin composition and the refractive index of the fine particles, the transparency and antiglare property of the antiglare layer can be easily adjusted.
 また、ハードコート層5に防眩機能を付与する他の方法として、活性エネルギー線硬化性樹脂組成物の塗膜に凹凸形状を型押しした状態で、塗膜に活性エネルギー線を照射して重合・硬化させる方法を採用することができる。 In addition, as another method for imparting an antiglare function to the hard coat layer 5, polymerization is performed by irradiating the coating film with active energy rays in a state where the uneven shape is embossed on the coating film of the active energy ray-curable resin composition. -A curing method can be employed.
 防眩層は、凹凸表面の任意の断面曲線における算術平均高さPaが0.15μm以下であり、最大断面高さPtが1.5μm以下であることが好ましい。
 上記算術平均高さPaは、0.03μm以上であると好ましい。また、算術平均高さPaは、0.07μm以下であると好ましい。
 上記最大断面高さPtは、0.4μm以上であると好ましい。また、最大断面高さPtは、0.8μm以下であると好ましい。
The antiglare layer preferably has an arithmetic average height Pa of 0.15 μm or less in an arbitrary cross-sectional curve on the uneven surface and a maximum cross-sectional height Pt of 1.5 μm or less.
The arithmetic average height Pa is preferably 0.03 μm or more. The arithmetic average height Pa is preferably 0.07 μm or less.
The maximum cross-sectional height Pt is preferably 0.4 μm or more. The maximum cross-sectional height Pt is preferably 0.8 μm or less.
 なお、本実施形態において凹凸表面の断面曲線における算術平均高さPa及び最大断面高さPtは、JIS B 0601に準拠し、市販の一般的な接触式表面粗さ計を用いて測定することができる。また、共焦点顕微鏡、干渉顕微鏡、原子間力顕微鏡(Atomic Force Microscope:AFM)などの装置により表面形状を測定し、その表面形状の三次元情報から計算により求めることも可能である。なお、三次元情報から計算する場合には、十分な基準長さを確保するために、200μm×200μm以上の領域を3点以上測定し、その平均値をもって測定値とすることが好ましい。 In this embodiment, the arithmetic average height Pa and the maximum cross-sectional height Pt in the cross-sectional curve of the concavo-convex surface can be measured using a commercially available general contact surface roughness meter in accordance with JIS B0601. it can. It is also possible to measure the surface shape with an apparatus such as a confocal microscope, an interference microscope, an atomic force microscope (AFM), etc., and obtain it by calculation from the three-dimensional information of the surface shape. In addition, when calculating from three-dimensional information, in order to ensure sufficient reference length, it is preferable to measure three or more areas of 200 μm × 200 μm or more and use the average value as a measurement value.
 本実施形態においては、防眩層の算術平均高さPaは、0.049μmであり、最大断面高さPtは0.599μmである。 In the present embodiment, the arithmetic average height Pa of the antiglare layer is 0.049 μm, and the maximum cross-sectional height Pt is 0.599 μm.
 防眩層は、表面の傾斜角度が2°以上である割合が30%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることがさらに好ましい。また、防眩層は、表面の傾斜角度が2°以上である割合が1%以上であることが好ましく、2%以上であることがより好ましい。これらの上限値および下限値は、任意に組み合わせることができる。 In the antiglare layer, the ratio of the surface inclination angle of 2 ° or more is preferably 30% or less, more preferably 10% or less, and further preferably 5% or less. In the antiglare layer, the ratio of the surface inclination angle of 2 ° or more is preferably 1% or more, and more preferably 2% or more. These upper limit value and lower limit value can be arbitrarily combined.
 図2は、本実施形態の光学部材1のハードコート層(防眩層)5の表面の概略拡大図である。図2では、ハードコート層5の表面に微細な凸部51が形成されている様子を示している。 FIG. 2 is a schematic enlarged view of the surface of the hard coat layer (antiglare layer) 5 of the optical member 1 of the present embodiment. FIG. 2 shows a state where fine convex portions 51 are formed on the surface of the hard coat layer 5.
 また、図2において、ハードコート層5全体の平均面を符号59、ハードコート層5表面の任意の点5Pにおけるハードコート層5の平均面の法線を符号55、ハードコート層5の任意の点5Pにおけるハードコート層5の凹凸を加味した局所的な法線を符号56で示している。法線55と法線56とのなす角のうち、法線55方向に開く角を、角度θで示している。
 防眩層における表面の傾斜角度とは、角度θのことを指す。
2, the average surface of the entire hard coat layer 5 is denoted by reference numeral 59, the normal of the average surface of the hard coat layer 5 at an arbitrary point 5P on the surface of the hard coat layer 5 is denoted by reference numeral 55, and the arbitrary surface of the hard coat layer 5 A local normal line taking into account the unevenness of the hard coat layer 5 at the point 5P is indicated by reference numeral 56. Of the angles formed by the normal 55 and the normal 56, the angle that opens in the direction of the normal 55 is indicated by an angle θ.
The inclination angle of the surface in the antiglare layer refers to the angle θ.
 また、図2では、xyz座標系を採用し、平均面59の面内の直交方向をx軸およびy軸で表示し、フィルム厚み方向をz軸で表示している。 In FIG. 2, the xyz coordinate system is adopted, the orthogonal direction in the plane of the average surface 59 is displayed by the x-axis and the y-axis, and the film thickness direction is displayed by the z-axis.
 防眩層の表面の傾斜角度は、非接触3次元表面形状・粗さ測定機を用いて測定される表面粗さの3次元形状から求めることができる。測定機に要求される水平分解能は、少なくとも5μm以下、好ましくは2μm以下であり、また垂直分解能は、少なくとも0.1μm以下、好ましくは0.01μm以下である。 The inclination angle of the surface of the antiglare layer can be determined from the three-dimensional shape of the surface roughness measured using a non-contact three-dimensional surface shape / roughness measuring machine. The horizontal resolution required for the measuring instrument is at least 5 μm or less, preferably 2 μm or less, and the vertical resolution is at least 0.1 μm or less, preferably 0.01 μm or less.
 防眩層の表面の傾斜角度の測定に好適な非接触3次元表面形状・粗さ測定機としては、米国ZygoCorporationの製品で、日本ではザイゴ(株)から入手できる“NewView5000”シリーズ等を挙げることができる。測定面積は広いほうが好ましいが、少なくとも100μm×100μm以上、好ましくは500μm×500μm以上である。 Non-contact three-dimensional surface shape / roughness measuring instruments suitable for measuring the angle of inclination of the surface of the antiglare layer are products of Zygo Corporation in the United States, such as the “NewView5000” series available from Zygo Corporation in Japan. Can do. A larger measurement area is preferable, but at least 100 μm × 100 μm or more, preferably 500 μm × 500 μm or more.
 図3は、防眩層表面の傾斜角度の測定方法を説明するための模式図である。図3では、図2と同様にxyz座標系を採用している。 FIG. 3 is a schematic diagram for explaining a method of measuring the inclination angle of the antiglare layer surface. In FIG. 3, the xyz coordinate system is adopted as in FIG.
 防眩層表面の傾斜角度の測定においては、まず、平均面59上の着目点Aを決定する。着目点Aは、防眩層(ハードコート層5)表面の任意の点5Pに対応している。
 次いで、着目点Aを通るx軸上において着目点Aの近傍に、着目点Aに対してほぼ対称に点B及びDをとり、そして着目点Aを通るy軸上において着目点Aの近傍に、着目点Aに対してほぼ対称に点C及びEをとる。
 次いで、これらの点B,C,D,Eに対応する防眩層表面の点Q,R,S,Tを決定する。
In measuring the inclination angle of the antiglare layer surface, first, the point of interest A on the average surface 59 is determined. The point of interest A corresponds to an arbitrary point 5P on the surface of the antiglare layer (hard coat layer 5).
Next, points B and D are taken approximately symmetrically with respect to the point of interest A on the x axis passing through the point of interest A, and near the point of interest A on the y axis passing through the point of interest A. The points C and E are taken almost symmetrically with respect to the point of interest A.
Next, the points Q, R, S, and T on the surface of the antiglare layer corresponding to these points B, C, D, and E are determined.
 一方、平均面59において、点Cを通りx軸に平行な直線、点Eを通りx軸に平行な直線、点Bを通りy軸に平行な直線、点Dを通りy軸に平行な直線をそれぞれ設定し、それぞれの直線の交点F,G,H,Iを決定する。 On the other hand, in the average plane 59, a straight line passing through the point C and parallel to the x axis, a straight line passing through the point E and parallel to the x axis, a straight line passing through the point B and parallel to the y axis, and a straight line passing through the point D and parallel to the y axis. Are set, and intersections F, G, H, and I of the respective straight lines are determined.
 なお、図3では、面FGHI(すなわち平均面59)に対して、防眩層の位置が上方にくるように描かれているが、防眩層の位置が平均面59の上方にくることもあるし、下方にくることもある。 In FIG. 3, the position of the antiglare layer is drawn above the surface FGHI (that is, the average surface 59), but the position of the antiglare layer may be above the average surface 59. Yes, sometimes it goes down.
 そして、着目点Aに対応する実際の防眩層上の点5P、および4点B,C,D,Eに対応する実際のフィルム面上の点Q,R,S,Tの合計5点により描かれる4つの三角形PQR,PRS,PST,PTQを想定する。
 次いで、各三角形PQR,PRS,PST,PTQの法線方向の単位ベクトル56a,56b,56c,56dを求める。
 次いで、単位ベクトル56a,56b,56c,56dを平均したベクトル(以下、平均法線ベクトル)を求める。防眩層表面の傾斜角度(角度θ)は、平均法線ベクトルの極角を求めることにより求めることができる。すなわち、求めた平均法線ベクトルの方向が、ハードコート層5の凹凸を加味した局所的な法線56の方向と一致する。
And by the point 5P on the actual anti-glare layer corresponding to the point of interest A and the points Q, R, S, T on the actual film surface corresponding to the four points B, C, D, E, a total of 5 points Assume four triangles PQR, PRS, PST and PTQ to be drawn.
Next, unit vectors 56a, 56b, 56c, and 56d in the normal direction of each triangle PQR, PRS, PST, and PTQ are obtained.
Next, a vector obtained by averaging the unit vectors 56a, 56b, 56c, and 56d (hereinafter referred to as an average normal vector) is obtained. The inclination angle (angle θ) of the antiglare layer surface can be obtained by obtaining the polar angle of the average normal vector. That is, the direction of the obtained average normal vector coincides with the direction of the local normal 56 in consideration of the unevenness of the hard coat layer 5.
 同様に、各測定点について傾斜角度を求めた後、傾斜角度のヒストグラムを計算する。
 本実施形態においては、表面の傾斜角度が2°以上である割合は3.4%である。
Similarly, after obtaining the inclination angle for each measurement point, a histogram of the inclination angle is calculated.
In the present embodiment, the ratio of the surface inclination angle of 2 ° or more is 3.4%.
 防眩層においては、視認側の表面に形成される凹凸形状において画像光が屈折して射出される。そのため、防眩層における屈折の角度が大きすぎると、クロストークが生じ、立体表示画像の画質を低下させるおそれがある。 In the antiglare layer, the image light is refracted and emitted in the uneven shape formed on the surface on the viewing side. For this reason, if the angle of refraction in the antiglare layer is too large, crosstalk occurs, which may reduce the image quality of the stereoscopic display image.
 これに対し、本実施形態の光学部材1においては、防眩層の凹凸表面の任意の断面曲線における算術平均高さPaが0.15μm以下であり、最大断面高さPtが1.5μm以下であるため、防眩層表面での過剰な屈折が生じにくく、クロストークを抑制することができる。 On the other hand, in the optical member 1 of the present embodiment, the arithmetic average height Pa in an arbitrary cross-sectional curve of the uneven surface of the antiglare layer is 0.15 μm or less, and the maximum cross-sectional height Pt is 1.5 μm or less. Therefore, excessive refraction on the surface of the antiglare layer is unlikely to occur, and crosstalk can be suppressed.
 活性エネルギー線硬化性樹脂組成物に微粒子を混合して防眩層を形成する場合、防眩層の断面曲線における算術平均高さPaや傾斜角は、混入する微粒子の量、微粒子の大きさ、微粒子の粒度分布を変更することにより制御することができる。また、微粒子が凝集体である場合、凝集状態を制御することによっても断面曲線における算術平均高さPaや傾斜角を制御することができる。 When the anti-glare layer is formed by mixing fine particles with the active energy ray-curable resin composition, the arithmetic average height Pa and the inclination angle in the cross-sectional curve of the anti-glare layer are the amount of fine particles mixed, the size of the fine particles, It can be controlled by changing the particle size distribution of the fine particles. When the fine particles are aggregates, the arithmetic average height Pa and the inclination angle in the cross-sectional curve can also be controlled by controlling the aggregation state.
 活性エネルギー線硬化性樹脂組成物の塗膜に凹凸形状を型押しして防眩層を形成する場合、防眩層の断面曲線における算術平均高さPaや傾斜角は、型押しする型の凹凸形状を変更することで制御することができる。 When an antiglare layer is formed by embossing an uneven shape on the coating film of the active energy ray-curable resin composition, the arithmetic average height Pa and inclination angle in the cross-sectional curve of the antiglare layer are the unevenness of the die to be embossed. It can be controlled by changing the shape.
(第2保護層)
 第2保護層6は、偏光子層2を保護する機能を有している。
 第2保護層6の形成材料としては、上述の第1保護層4と同様のものを採用することができる。例えば、トリアセチルセルロース(TAC)系樹脂、ポリカーボネート系樹脂、ポリビニルアルコール系樹脂、ポリスチレン系樹脂、(メタ)アクリレート系樹脂、環状ポリオレフィン系樹脂やポリプロピレン系樹脂を包含するポリオレフィン系樹脂、ポリアリレート系樹脂、ポリイミド系樹脂、ポリアミド系樹脂などを挙げることができる。
(Second protective layer)
The second protective layer 6 has a function of protecting the polarizer layer 2.
As a material for forming the second protective layer 6, the same material as the first protective layer 4 described above can be employed. For example, triacetyl cellulose (TAC) resin, polycarbonate resin, polyvinyl alcohol resin, polystyrene resin, (meth) acrylate resin, polyolefin resin including cyclic polyolefin resin and polypropylene resin, polyarylate resin , Polyimide resins, polyamide resins and the like.
 第2保護層6の厚みは通常5μm以上、好ましくは15μm以上であり、通常80μm以下、好ましくは60μm以下、さらに好ましくは50μm以下である。第2保護層6の厚みに上限値および下限値は、任意に組み合わせることができる。光学部材1に用いられている第2保護層6の厚みは、例えば、光学部材1の断面を電子顕微鏡で撮像した拡大写真に基づいて実測することができる。本実施形態においては、第2保護層6の厚みは40μmである。 The thickness of the second protective layer 6 is usually 5 μm or more, preferably 15 μm or more, and usually 80 μm or less, preferably 60 μm or less, more preferably 50 μm or less. The upper limit value and the lower limit value can be arbitrarily combined with the thickness of the second protective layer 6. The thickness of the second protective layer 6 used in the optical member 1 can be measured based on, for example, an enlarged photograph obtained by imaging the cross section of the optical member 1 with an electron microscope. In the present embodiment, the thickness of the second protective layer 6 is 40 μm.
 光学部材1が表示面に貼合された表示装置においては、画素から射出される右眼用の画像光が、位相差層32において対応する領域(例えば第1領域32a)に入射することで、右眼用の偏光画像光として射出される。 In the display device in which the optical member 1 is bonded to the display surface, the image light for the right eye emitted from the pixels is incident on the corresponding region (for example, the first region 32a) in the retardation layer 32. It is emitted as polarized image light for the right eye.
 しかし、光学部材1においてパネル側の表面から位相差層32までの厚みが厚くなると、表示パネルの画素から斜めに射出された画像光が、位相差層32において本来入射すべき領域(例えば第1領域32a)とは異なる領域(例えば第2領域32b)に入射するおそれがある。この場合、斜めに射出された画像光によりクロストークが生じ、立体表示画像の画質を低下させてしまう。 However, when the thickness of the optical member 1 from the surface on the panel side to the phase difference layer 32 is increased, the image light emitted obliquely from the pixels of the display panel is supposed to be incident on the phase difference layer 32 (for example, the first region). There is a risk of entering a region (for example, the second region 32b) different from the region 32a). In this case, crosstalk occurs due to the image light emitted obliquely, and the image quality of the stereoscopic display image is deteriorated.
 これに対し、本実施形態の光学部材1においては、第2保護層6の厚みが5μm以上80μm以下となっているため、表示パネルに貼合した場合、画素から斜めに射出された画像光は、位相差層における所定の領域に入射しやすく、クロストークを抑制することができる。 On the other hand, in the optical member 1 of the present embodiment, since the thickness of the second protective layer 6 is 5 μm or more and 80 μm or less, the image light emitted obliquely from the pixel is bonded to the display panel. It is easy to enter a predetermined region in the retardation layer, and crosstalk can be suppressed.
 また、第2保護層6は、面内位相差Rが、10nm以下であると好ましく、理想的には0nmである。また、第2保護層6は、厚み方向の位相差Rthが、10nm以下であると好ましく、理想的には0nmである。さらに、第2保護層6は、Nz係数が、10以下であると好ましく、理想的には0である。 Further, the second protective layer 6 preferably has an in-plane retardation R o of 10 nm or less, and ideally 0 nm. The second protective layer 6 preferably has a thickness direction retardation Rth of 10 nm or less, and ideally 0 nm. Further, the second protective layer 6 preferably has an Nz coefficient of 10 or less, and ideally 0.
 ここで、第2保護層6の面内遅相軸方向をx軸方向、面内進相軸方向をy軸方向、第2保護層6の厚み方向をz軸方向とし、x軸方向の屈折率をn、y軸方向の屈折率をn、z軸方向の屈折率をn、第2保護層6の厚みをd(単位:nm)としたとき、面内位相差R、厚み方向の位相差Rth、Nz係数は、以下の式(1)~(3)で定義される値を指す。
 R=(n-n)×d       …(1)
 Rth=〔(n+n)/2-n〕×d …(2)
 Nz=(n-n)/(n-n)  …(3)
Here, the in-plane slow axis direction of the second protective layer 6 is the x-axis direction, the in-plane fast axis direction is the y-axis direction, and the thickness direction of the second protective layer 6 is the z-axis direction. the rate n x, the refractive index in the y-axis direction n y, the refractive index in the z-axis direction n z, the thickness of the second protective layer 6 d (unit: nm) when the in-plane retardation R o, The thickness direction retardation R th and the Nz coefficient are values defined by the following equations (1) to (3).
R o = (n x −n y ) × d (1)
R th = [(n x + n y ) / 2−n z ] × d (2)
Nz = (n x −n z ) / (n x −n y ) (3)
 本実施形態においては、面内位相差Rは1.0nmであり、厚み方向の位相差Rthは1.4nmであり、Nz係数は1.96である。 In the present embodiment, the in-plane retardation R o is 1.0 nm, the thickness direction retardation R th is 1.4 nm, and the Nz coefficient is 1.96.
 R、Rth、Nz係数がこのような値を示すものとして、第2保護層6の形成材料としては、例えば未延伸フィルムを用いることができる。 As a material for forming the second protective layer 6, for example, an unstretched film can be used as the R o , R th , and Nz coefficients exhibit such values.
 また、光学部材1に用いられている第2保護層6について、R、Rth、Nz係数の値は、光学部材1から各層を剥離して第2保護層6を単離することで、実測することができる。 Also, the second protective layer 6 used in the optical member 1, R o, R th, of the Nz coefficient values, to isolate the second protective layer 6 was peeled off the layers from the optical member 1, It can be measured.
 R、Rth、Nz係数が上述のような値を示す第2保護層6では、第2保護層6を透過する光が、所望の偏光状態となるため、クロストークが生じにくく、良好な立体表示画像を表示することが可能となる。 In the second protective layer 6 in which the R o , R th , and Nz coefficients have the values as described above, the light transmitted through the second protective layer 6 is in a desired polarization state, so that crosstalk hardly occurs and is good. A stereoscopic display image can be displayed.
(接着剤層)
 接着剤層7,8の形成材料は、ポリビニルアルコール系樹脂またはウレタン樹脂を用いた組成物を主成分として水に溶解したもの、または水に分散させた水系接着剤や、光硬化性樹脂と光カチオン重合開始剤などを含有する無溶剤の光硬化性接着剤が挙げられる。製造時の体積収縮が少なく、厚さの制御が容易であるため、接着剤層7,8の形成材料としては光硬化性接着剤を用いることが好ましく、紫外線硬化型接着剤を用いることがより好ましい。
(Adhesive layer)
The material for forming the adhesive layers 7 and 8 is composed of a composition using a polyvinyl alcohol resin or a urethane resin as a main component and dissolved in water, or a water-based adhesive dispersed in water, a photo-curable resin and light. A solvent-free photocurable adhesive containing a cationic polymerization initiator and the like can be mentioned. Since there is little volume shrinkage at the time of manufacture and thickness control is easy, it is preferable to use a photocurable adhesive as a material for forming the adhesive layers 7 and 8, and it is more preferable to use an ultraviolet curable adhesive. preferable.
 紫外線硬化型接着剤は、液状の塗布可能な状態で供給される限りにおいて、従来から偏光板の製造に使用されている各種のものであることができる。耐候性や重合性などの観点から、紫外線硬化型接着剤は、カチオン重合性の化合物、例えばエポキシ化合物、より具体的には、日本国特開2004-245925号公報に記載されるような、分子内に芳香環を有しないエポキシ化合物を、紫外線硬化性成分の一つとして含有するものが好ましい。 The UV curable adhesive can be any of those conventionally used in the production of polarizing plates as long as it is supplied in a liquid coatable state. From the viewpoint of weather resistance and polymerizability, the ultraviolet curable adhesive is a cationic polymerizable compound such as an epoxy compound, more specifically a molecule as described in Japanese Patent Application Laid-Open No. 2004-245925. What contains the epoxy compound which does not have an aromatic ring in it as one of an ultraviolet curable component is preferable.
 このようなエポキシ化合物は、例えば、ビスフェノールAのジグリシジルエーテルを代表例とする芳香族エポキシ化合物の原料である芳香族ポリヒドロキシ化合物を核水添し、それをグリシジルエーテル化して得られる水素化エポキシ化合物、脂環式環に結合するエポキシ基を分子内に少なくとも1個有する脂環式エポキシ化合物、脂肪族ポリヒドロキシ化合物のグリシジルエーテルを代表例とする脂肪族エポキシ化合物などであることができる。 Such an epoxy compound is, for example, a hydrogenated epoxy obtained by nuclear hydrogenation of an aromatic polyhydroxy compound, which is a raw material of an aromatic epoxy compound represented by diglycidyl ether of bisphenol A, and converting it to glycidyl ether. The compound, an alicyclic epoxy compound having at least one epoxy group bonded to the alicyclic ring in the molecule, an aliphatic epoxy compound typified by a glycidyl ether of an aliphatic polyhydroxy compound, and the like.
 紫外線硬化型接着剤には、エポキシ化合物を代表例とするカチオン重合性化合物のほか、重合開始剤、特に紫外線の照射によりカチオン種またはルイス酸を発生し、カチオン重合性化合物の重合を開始させるための光カチオン重合開始剤が配合される。さらに、加熱によって重合を開始させる熱カチオン重合開始剤、その他、光増感剤などの各種添加剤が配合されていてもよい。 In addition to cationically polymerizable compounds such as epoxy compounds as representative examples of ultraviolet curable adhesives, polymerization initiators, particularly to generate cationic species or Lewis acids upon irradiation with ultraviolet rays, initiate polymerization of cationically polymerizable compounds. The photocationic polymerization initiator is blended. Further, a thermal cationic polymerization initiator that initiates polymerization by heating, and various other additives such as a photosensitizer may be blended.
 接着剤層7,8の形成材料は、同じであっても異なっていてもよいが、生産性の観点からは、適度の接着力が得られるという前提で、接着剤層7,8を同じ接着剤を用いて形成するほうが好ましい。 The material for forming the adhesive layers 7 and 8 may be the same or different, but from the viewpoint of productivity, the adhesive layers 7 and 8 are bonded to each other on the premise that an appropriate adhesive force can be obtained. It is more preferable to form using an agent.
 接着剤層7,8の厚みは、0.5μm以上5μm以下の範囲であると好ましい。接着剤層7,8の厚みが0.5μm以上であると、接着強度にムラを生じにくい。一方、接着剤層7,8の厚みが5μm以下であると、製造コストが増大せず偏光板の色相に影響しにくい。接着剤層7,8の厚みは、1μm以上4μm以下の範囲であるとより好ましく、1.5μm以上3.5μm以下の範囲であるとさらに好ましい。本実施形態においては、接着剤層7,8の厚みは2μmである。 The thickness of the adhesive layers 7 and 8 is preferably in the range of 0.5 μm to 5 μm. When the thickness of the adhesive layers 7 and 8 is 0.5 μm or more, unevenness in adhesive strength is unlikely to occur. On the other hand, when the thickness of the adhesive layers 7 and 8 is 5 μm or less, the manufacturing cost does not increase and the hue of the polarizing plate is hardly affected. The thickness of the adhesive layers 7 and 8 is more preferably in the range of 1 μm to 4 μm, and further preferably in the range of 1.5 μm to 3.5 μm. In the present embodiment, the thickness of the adhesive layers 7 and 8 is 2 μm.
(粘着剤層)
 粘着剤層9は、例えば光学部材1を不図示の液晶パネルの表示面に貼合するために用いられる。粘着剤層9を形成する粘着剤としては、例えば、アクリル系樹脂、シリコーン系樹脂、ポリエステル、ポリウレタン、ポリエーテルなどをベース樹脂とするものを挙げることができる。その中でも、アクリル系樹脂をベース樹脂とするアクリル系粘着剤は、光学的な透明性に優れ、適度の濡れ性や凝集力を保持し、さらに耐候性や耐熱性などに優れ、加熱や加湿の条件下で浮きや剥がれなどの剥離問題が生じにくいため、好適に用いられる。
(Adhesive layer)
The pressure-sensitive adhesive layer 9 is used, for example, for bonding the optical member 1 to a display surface of a liquid crystal panel (not shown). As an adhesive which forms the adhesive layer 9, what uses acrylic resin, silicone resin, polyester, polyurethane, polyether etc. as base resin can be mentioned, for example. Among them, acrylic adhesives based on acrylic resins are excellent in optical transparency, retain moderate wettability and cohesion, and are also excellent in weather resistance and heat resistance. It is preferably used because peeling problems such as floating and peeling hardly occur under the conditions.
 アクリル系粘着剤を構成するアクリル系樹脂には、エステル部分が、メチル基、エチル基、ブチル基、又は2-エチルヘキシル基のような炭素数20以下のアルキル基を有するアクリル酸アルキルエステルと、(メタ)アクリル酸や(メタ)アクリル酸-2-ヒドロキシエチルのような官能基含有(メタ)アクリル系モノマーとのアクリル系共重合体が好適に用いられる。 The acrylic resin constituting the acrylic pressure-sensitive adhesive includes an acrylic acid alkyl ester having an ester group having an alkyl group having 20 or less carbon atoms such as a methyl group, an ethyl group, a butyl group, or a 2-ethylhexyl group, An acrylic copolymer with a functional group-containing (meth) acrylic monomer such as (meth) acrylic acid and (meth) acrylic acid-2-hydroxyethyl is preferably used.
 このようなアクリル系共重合体を含む粘着剤層9は、液晶パネルに貼合した後で何らかの不具合があって剥離する必要が生じた場合に、ガラス基板に糊残りなどを生じさせることなく、比較的容易に剥離することができる。粘着剤層9に用いるアクリル系共重合体は、そのガラス転移温度が25℃以下であることが好ましく、0℃以下であることがより好ましい。また、このアクリル系共重合体は、通常10万以上の重量平均分子量を有する。 The pressure-sensitive adhesive layer 9 containing such an acrylic copolymer does not cause adhesive residue or the like on the glass substrate when it is necessary to peel off after having been bonded to the liquid crystal panel. It can be peeled relatively easily. The acrylic copolymer used for the pressure-sensitive adhesive layer 9 preferably has a glass transition temperature of 25 ° C. or lower, and more preferably 0 ° C. or lower. The acrylic copolymer usually has a weight average molecular weight of 100,000 or more.
 粘着剤層の形成方法としては、例えば、基材として後述する剥離フィルムSfを用い、この剥離フィルムSfの面上に粘着剤を塗布して粘着剤層9を形成した後、得られた粘着剤層9を第2保護層6に貼合する方法や、第2保護層6の表面に粘着剤を直接塗布して粘着剤層9を形成した後、その上に剥離フィルムSfを貼り合わせる方法などがある。 As a method for forming the pressure-sensitive adhesive layer, for example, a release film Sf, which will be described later, is used as a substrate, and a pressure-sensitive adhesive layer 9 is formed by applying a pressure-sensitive adhesive on the surface of the release film Sf. A method of bonding the layer 9 to the second protective layer 6, a method of directly applying a pressure-sensitive adhesive on the surface of the second protective layer 6 to form the pressure-sensitive adhesive layer 9, and then bonding a release film Sf thereon. There is.
 また、剥離フィルムSfの面上に粘着剤層9を形成した後、その粘着剤層9にもう1枚の剥離フィルムを貼合した両面剥離フィルム型粘着剤シートとすることもできる。このような両面剥離フィルム型粘着剤シートは、必要な時期に片側の剥離フィルムを剥離し、第2保護層6に貼合することができる。このような両面剥離フィルム型粘着剤シートには、市販品を用いることもできる。 Moreover, after forming the adhesive layer 9 on the surface of the release film Sf, a double-sided release film type adhesive sheet in which another release film is bonded to the adhesive layer 9 can also be used. Such a double-sided release film-type pressure-sensitive adhesive sheet can be peeled off from the release film on one side at a necessary time and bonded to the second protective layer 6. A commercial item can also be used for such a double-sided peeling film type adhesive sheet.
 粘着剤層9の厚みは、接着力などに応じて適宜決定されるが、1μm以上40μm以下であることが好ましい。加工性や耐久性などの特性を損なうことなく、薄型の偏光板を得るためには、粘着剤層9の厚さを3μm以上25μm以下とすることが好ましい。粘着剤層9の厚みをこの範囲とすることにより、液晶表示装置を正面から見た場合や斜めから見た場合の明るさを保ち、表示像のにじみやボケが起こりにくくすることができる。 The thickness of the pressure-sensitive adhesive layer 9 is appropriately determined according to the adhesive force and the like, but is preferably 1 μm or more and 40 μm or less. In order to obtain a thin polarizing plate without impairing properties such as workability and durability, the thickness of the pressure-sensitive adhesive layer 9 is preferably 3 μm or more and 25 μm or less. By setting the thickness of the pressure-sensitive adhesive layer 9 within this range, it is possible to maintain brightness when the liquid crystal display device is viewed from the front or from an oblique direction, and to prevent bleeding and blurring of the display image.
(保護フィルム)
 光学部材1の視認側の面には、保護フィルムPfが貼合されている。この保護フィルムPfは、光学部材1の表面を保護するものであり、光学部材1に対して剥離自在に設けられている。
(Protective film)
A protective film Pf is bonded to the surface on the viewing side of the optical member 1. The protective film Pf protects the surface of the optical member 1 and is provided to be peelable from the optical member 1.
 保護フィルムPfは、透明樹脂フィルムに粘着・剥離性の樹脂層又は付着性の樹脂層を形成して、弱い粘着性を付与したものが用いられる。透明樹脂フィルムとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフトレート、ポリエチレン、及びポリプロピレンのような熱可塑性樹脂の押出フィルム、それらを組み合わせた共押出フィルム、それらを一軸又は二軸に延伸したフィルムなどを挙げることができる。透明樹脂フィルムとしては、透明性及び均質性に優れ、廉価であるポリエチレンテレフタレート又はポリエチレンの一軸又は二軸延伸フィルムを用いることが好ましい。 As the protective film Pf, a transparent resin film formed by forming an adhesive / peelable resin layer or an adhesive resin layer and imparting weak adhesiveness is used. Examples of the transparent resin film include extruded films of thermoplastic resins such as polyethylene terephthalate, polyethylene naphtholate, polyethylene, and polypropylene, co-extruded films combining them, and films obtained by stretching them uniaxially or biaxially. be able to. As the transparent resin film, it is preferable to use polyethylene terephthalate or polyethylene uniaxially or biaxially stretched film which is excellent in transparency and homogeneity and is inexpensive.
 粘着・剥離性の樹脂層としては、例えば、アクリル系粘着剤、天然ゴム系粘着剤、スチレン-ブタジエン共重合樹脂系粘着剤、ポリイソブチレン系粘着剤、ビニルエーテル系樹脂粘着剤、シリコーン系樹脂粘着剤などを挙げることができる。また、付着性の樹脂層としては、例えば、エチレン-酢酸ビニル共重合樹脂などを挙げることができる。粘着・剥離性の樹脂層としては、透明性に優れるアクリル系粘着剤を用いることが好ましい。 Examples of the adhesive / peelable resin layer include acrylic adhesives, natural rubber adhesives, styrene-butadiene copolymer resin adhesives, polyisobutylene adhesives, vinyl ether resin adhesives, and silicone resin adhesives. And so on. Examples of the adhesive resin layer include an ethylene-vinyl acetate copolymer resin. As the adhesive / peelable resin layer, it is preferable to use an acrylic adhesive having excellent transparency.
 保護フィルムPfの厚みは、15μm以上75μm以下であることが好ましい。この厚みが15μm以上であると、取扱いが容易となり、本来求められる表面保護性能を確保することができる。一方、この厚さが75μm以下であると剛性が強くなりすぎず、取扱いが容易となり、剥離強度が適切に抑えられる。 The thickness of the protective film Pf is preferably 15 μm or more and 75 μm or less. When the thickness is 15 μm or more, handling becomes easy and the originally required surface protection performance can be secured. On the other hand, when the thickness is 75 μm or less, the rigidity does not become too strong, the handling becomes easy, and the peel strength is appropriately suppressed.
(剥離フィルム)
 光学部材1のパネル側の面には、剥離フィルムSfが貼合されている。この剥離フィルムSfは、粘着剤層9を覆って光学部材1の保管時に粘着剤層9を保護するものであり、剥離自在に設けられている。
(Peeling film)
A release film Sf is bonded to the surface of the optical member 1 on the panel side. This release film Sf covers the pressure-sensitive adhesive layer 9 and protects the pressure-sensitive adhesive layer 9 when the optical member 1 is stored, and is provided so as to be peelable.
 剥離フィルムSfとしては、上述の保護フィルムPfと同様の透明樹脂フィルムを用いることができる。 As the release film Sf, a transparent resin film similar to the protective film Pf described above can be used.
 このような光学部材1は、防眩層の表面について、暗部と明部の幅が0.5mm、1.0mm及び2.0mmである3種類の光学くしを用い、光の入射角45°で反射法にて測定される像鮮明度の和が30%以上200%以下であることが好ましい。また、光の入射角45°で反射法にて測定される像鮮明度の和は、100%以上であるとより好ましい。本実施形態において、「像鮮明度」とは、JIS K 7374に基づいて測定される値を指す。 Such an optical member 1 uses three types of optical combs in which the width of the dark part and the bright part is 0.5 mm, 1.0 mm, and 2.0 mm on the surface of the antiglare layer, and the incident angle of light is 45 °. It is preferable that the sum of the image clarity measured by the reflection method is 30% or more and 200% or less. The sum of image sharpness measured by the reflection method at a light incident angle of 45 ° is more preferably 100% or more. In the present embodiment, “image definition” refers to a value measured based on JIS K 7374.
 JIS K 7374では、像鮮明度の測定に用いる光学くしとして、暗部と明部の幅の比が1:1で、その幅が0.125mm、0.5mm、1.0mm及び2.0mmである4種類が規定されている。このうち、幅0.125mmの光学くしを用いた場合、本実施形態の防眩層について像鮮明度を測定すると、その測定値の誤差が大きくなることから、幅0.125mmの光学くしを用いた場合の測定値は和に加えないこととし、幅が0.5mm、1.0mm及び2.0mmである3種類の光学くしを用いて測定された像鮮明度を採用する。 In JIS K 7374, the ratio of the width of the dark part to the bright part is 1: 1 as an optical comb used for measuring the image definition, and the widths are 0.125 mm, 0.5 mm, 1.0 mm and 2.0 mm. Four types are defined. Among these, when an optical comb having a width of 0.125 mm is used, an error in the measured value becomes large when measuring the image sharpness of the antiglare layer of the present embodiment. Therefore, an optical comb having a width of 0.125 mm is used. In this case, the measured value is not added to the sum, and image sharpness measured using three types of optical combs having widths of 0.5 mm, 1.0 mm, and 2.0 mm is adopted.
 以下の説明においては、「暗部と明部の幅が0.5mm、1.0mm及び2.0mmである3種類の光学くしを用い、光の入射角45°で反射法にて測定される像鮮明度の和」を反射鮮明度と称する。この定義において、反射鮮明度の最大値は300%である。
 本実施形態においては、防眩層の反射鮮明度は160.8%である。
In the following description, “an image measured by the reflection method at a light incident angle of 45 ° using three types of optical combs having a width of 0.5 mm, 1.0 mm, and 2.0 mm in the dark part and the bright part. “Sum of sharpness” is referred to as reflection sharpness. In this definition, the maximum value of reflection sharpness is 300%.
In the present embodiment, the reflection definition of the antiglare layer is 160.8%.
 また、光学部材1の偏光子層の側(パネル側)から透過させる光について、暗部と明部の幅が0.125mm、0.5mm、1.0mm及び2.0mmである4種類の光学くしを用い、透過法にて測定される像鮮明度の和が150%以上350%以下であることが好ましい。透過法にて測定される像鮮明度の和は、180%以上であることがより好ましく、250%以上であることが更に好ましい。また、透過法にて測定される像鮮明度の和は、330%以下であることがより好ましい。透過法にて測定される像鮮明度の和について、上限値および下限値は、任意に組み合わせることができる。 In addition, for the light transmitted from the polarizer layer side (panel side) of the optical member 1, four types of optical combs in which the widths of the dark part and the bright part are 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm. It is preferable that the sum of the image clarity measured by the transmission method is 150% or more and 350% or less. The sum of image sharpness measured by the transmission method is more preferably 180% or more, and further preferably 250% or more. Further, the sum of image clarity measured by the transmission method is more preferably 330% or less. Regarding the sum of image sharpness measured by the transmission method, the upper limit value and the lower limit value can be arbitrarily combined.
 以下の説明においては、「暗部と明部の幅が0.125mm、0.5mm、1.0mm及び2.0mmである4種類の光学くしを用い、透過法にて測定される像鮮明度の和」を透過鮮明度と称する。この定義において、透過鮮明度の最大値は400%である。
 本実施形態においては、防眩層の透過鮮明度は306.7%である。
In the following description, “the image sharpness measured by the transmission method using four types of optical combs in which the width of the dark part and the bright part is 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm”. “Sum” is referred to as transmission clarity. In this definition, the maximum value of transmitted sharpness is 400%.
In the present embodiment, the transmission clarity of the antiglare layer is 306.7%.
 光学部材1がこのような値を示すと、表示パネルに貼合して3D液晶表示装置としたときに、鮮明な立体画像表示が可能となる。 When the optical member 1 shows such a value, when it is bonded to a display panel to obtain a 3D liquid crystal display device, a clear stereoscopic image display becomes possible.
 以上のような構成の第1の光学部材によれば、防眩層の算術平均高さPaが0.15μm以下であり、最大断面高さPtが1.5μm以下であるため、防眩層表面での過剰な散乱が生じにくく、偏光状態が保たれる結果、画質の低下を抑制することができる。そのため、良好な立体画像表示が可能な光学部材を提供することができる。 According to the first optical member configured as described above, the arithmetic average height Pa of the antiglare layer is 0.15 μm or less, and the maximum cross-sectional height Pt is 1.5 μm or less. As a result of maintaining the polarization state, it is possible to suppress deterioration in image quality. Therefore, an optical member capable of displaying a favorable stereoscopic image can be provided.
 また、以上のような構成の第2の光学部材によれば、JIS K 7374に基づき幅0.5mm、1.0mmおよび2.0mmの光学くしを用いて反射法で測定される像鮮明度の和が30%以上200%以下であるため、鮮明な表示画像が得られ、良好な立体画像表示が可能な光学部材を提供することができる。 In addition, according to the second optical member having the above-described configuration, the image sharpness measured by the reflection method using optical combs having widths of 0.5 mm, 1.0 mm, and 2.0 mm based on JIS K 7374. Since the sum is 30% or more and 200% or less, a clear display image can be obtained, and an optical member capable of displaying a favorable stereoscopic image can be provided.
 また、以上のような構成の第3の光学部材によれば、第2保護層6を透過する光が、所望の偏光状態となるため、画質の低下が生じにくく、良好な立体画像表示が可能な光学部材を提供することができる。 Further, according to the third optical member having the above-described configuration, the light transmitted through the second protective layer 6 is in a desired polarization state, so that the image quality is hardly deteriorated and a favorable stereoscopic image display is possible. An optical member can be provided.
 また、以上のような構成の第4の光学部材によれば、光学部材が有するハードコート層5はハードコート層として充分な硬度を有しながら、硬化性樹脂の重合度を抑制したものとなっている。そのため、ハードコート層5の形成時に生じる硬化収縮を抑制しながらも、ハードコート層5の形成時の応力を小さく抑えることができ、位相差層32の位相差を維持することが可能となる。これにより、位相差層32から射出される画像光の偏光状態を所望の状態とすることができ、良好な立体画像表示が可能な光学部材を提供することができる。 Moreover, according to the 4th optical member of the above structures, the hard-coat layer 5 which an optical member has becomes a thing which suppressed the polymerization degree of curable resin, having sufficient hardness as a hard-coat layer. ing. Therefore, it is possible to suppress the stress during the formation of the hard coat layer 5 while suppressing the curing shrinkage that occurs during the formation of the hard coat layer 5, and to maintain the retardation of the retardation layer 32. Thereby, the polarization state of the image light emitted from the retardation layer 32 can be set to a desired state, and an optical member capable of displaying a favorable stereoscopic image can be provided.
 また、以上のような構成の第5の光学部材によれば、表示パネルに貼合した場合、画素から斜めに射出された画像光が、位相差層における所定の領域に入射しやすい。そのため、良好な立体画像表示が可能な光学部材を提供することができる。 Further, according to the fifth optical member having the above-described configuration, when pasted on the display panel, image light emitted obliquely from the pixels is likely to enter a predetermined region in the retardation layer. Therefore, an optical member capable of displaying a favorable stereoscopic image can be provided.
 また、以上のような構成の第6の光学部材によれば、35μm以上の厚みの第1保護層4を有するため、ハードコート層5の形成時の応力が位相差層32に加わりにくく、位相差層32の位相差を維持することが可能となる。これにより、位相差層32から射出される画像光の偏光状態を所望の状態とすることができ、良好な立体画像表示が可能な光学部材を提供することができる。 Further, according to the sixth optical member having the above-described configuration, since the first protective layer 4 having a thickness of 35 μm or more is provided, the stress at the time of forming the hard coat layer 5 is not easily applied to the retardation layer 32, The phase difference of the phase difference layer 32 can be maintained. Thereby, the polarization state of the image light emitted from the retardation layer 32 can be set to a desired state, and an optical member capable of displaying a favorable stereoscopic image can be provided.
 なお、本実施形態においては、ハードコート層5が防眩層を兼ねる構成としたが、これに限らず、ハードコート層5の表面にさらに別の層構造として防眩層を設けることとしてもよい。
 また、第3~第6の光学部材においては、ハードコート層5が防眩機能を有さず、防眩性を有さない光学部材とすることもできる。
In the present embodiment, the hard coat layer 5 also serves as an antiglare layer. However, the present invention is not limited to this, and an antiglare layer may be provided as another layer structure on the surface of the hard coat layer 5. .
Further, in the third to sixth optical members, the hard coat layer 5 does not have an antiglare function and can be an optical member that does not have an antiglare property.
[表示装置]
 図4~6は、本実施形態の表示装置を示す説明図である。図4は、表示装置の概略構成を示す平面図である。図5は、図4中に示す線分V-Vにおける表示装置100の断面図である。
[Display device]
4 to 6 are explanatory views showing the display device of this embodiment. FIG. 4 is a plan view showing a schematic configuration of the display device. FIG. 5 is a cross-sectional view of the display device 100 taken along the line VV shown in FIG.
 図5に示すように、本実施形態の表示装置100は、液晶パネル(表示パネル)Pと、偏光フィルムF11と、上述の光学部材1とを有している。 As shown in FIG. 5, the display device 100 of this embodiment includes a liquid crystal panel (display panel) P, a polarizing film F11, and the optical member 1 described above.
 液晶パネルPは、図4及び図5に示すように、平面視で長方形状をなす第1の基板P1と、第1の基板P1に対向して配置される比較的小形の長方形状をなす第2の基板P2と、第1の基板P1と第2の基板P2との間に封入された液晶層P3とを備える。液晶パネルPは、平面視で第1の基板P1の外形状に沿う長方形状をなし、平面視で液晶層P3の外周の内側に収まる領域を表示領域P4とする。 As shown in FIGS. 4 and 5, the liquid crystal panel P includes a first substrate P1 having a rectangular shape in plan view, and a relatively small rectangular shape arranged to face the first substrate P1. And a liquid crystal layer P3 sealed between the first substrate P1 and the second substrate P2. The liquid crystal panel P has a rectangular shape that conforms to the outer shape of the first substrate P1 in a plan view, and a region that fits inside the outer periphery of the liquid crystal layer P3 in a plan view is a display region P4.
 液晶パネルPのバックライト側には、偏光フィルムF11が貼合されている。一方、この液晶パネルPの表示面側には、上述の光学部材1が貼合されている。図5においては、上述の光学部材1の構成のうち、偏光子層2とパターン化位相差層3のみ示し、他の層構造については省略している。偏光フィルムF11および光学部材1が貼合された液晶パネルPは、不図示の駆動回路やバックライトユニットなどがさらに組み込まれることによって、表示装置100となる。 On the backlight side of the liquid crystal panel P, a polarizing film F11 is bonded. On the other hand, the optical member 1 described above is bonded to the display surface side of the liquid crystal panel P. 5, only the polarizer layer 2 and the patterned retardation layer 3 are shown in the configuration of the optical member 1 described above, and the other layer structures are omitted. The liquid crystal panel P to which the polarizing film F11 and the optical member 1 are bonded becomes the display device 100 by further incorporating a drive circuit, a backlight unit, and the like (not shown).
 液晶パネルPの駆動方式については、例えば、TN(Twisted Nematic)、STN(Super Twisted Nematic)、VA(Vertical Alignment)、IPS(In-Plane Switching)、OCB(Optically Compensated Bend)など、この分野で知られている各種モードを採用することができる。中でも、IPS方式の液晶パネルPを好適に用いることができる。 The driving method of the liquid crystal panel P is known in this field, for example, TN (Twisted Nematic), STN (Super Twisted Nematic), VA (Vertical Alignment), IPS (In-Plane Switching), OCB (Optically Compensated Bend). Various modes can be adopted. Among these, an IPS liquid crystal panel P can be preferably used.
 偏光フィルムF11は、粘着剤層を介して液晶パネルPに貼合される。また、光学部材1は、上述の粘着剤層9を介して液晶パネルPに貼合される。例えば、偏光フィルムF11および光学部材1は、偏光フィルムF11と、光学部材1の偏光子層2とがクロスニコル配置となるように液晶パネルPに貼合される。 The polarizing film F11 is bonded to the liquid crystal panel P through an adhesive layer. Moreover, the optical member 1 is bonded to the liquid crystal panel P through the above-described pressure-sensitive adhesive layer 9. For example, the polarizing film F11 and the optical member 1 are bonded to the liquid crystal panel P so that the polarizing film F11 and the polarizer layer 2 of the optical member 1 are in a crossed Nicols arrangement.
 図6は、表示装置100を製造する際の、液晶パネルPと光学部材1との貼合時の位置合わせを説明するための平面図である。
 図6に示すように、液晶パネルPの表示領域P4の画素は、表示領域P4の長辺(液晶パネルPの左右方向)に沿って、赤(図6中符号Rで示す)、緑(図6中符号Gで示す)、青(図6中符号Bで示す)の各色R,G,Bに対応したカラーフィルタが周期的に並んで配置されている。そして、各色R,G,Bに対応した画素が左右方向に沿って多数並んで画素列Lとなり、この画素列Lが表示領域P4の上下に渡って多数配列されている。
FIG. 6 is a plan view for explaining alignment at the time of bonding between the liquid crystal panel P and the optical member 1 when the display device 100 is manufactured.
As shown in FIG. 6, the pixels in the display area P4 of the liquid crystal panel P are red (indicated by a symbol R in FIG. 6), green (in FIG. 6) along the long side of the display area P4 (the horizontal direction of the liquid crystal panel P). The color filters corresponding to the respective colors R, G, B of blue (indicated by reference numeral G in FIG. 6) and blue (indicated by reference numeral B in FIG. 6) are periodically arranged. A large number of pixels corresponding to each color R, G, B are arranged in the left-right direction to form a pixel column L, and a large number of pixel columns L are arranged over the display area P4.
 一方、光学部材1は、光学部材1の長辺に沿って延在する複数の第1領域32aおよび複数の第2領域32bを有している。第1領域32aおよび第2領域32bは、液晶パネルPの各画素列Lに対応して上下に渡って多数配列されている。例えば、第1領域32aは右眼用画像を形成する位相差パターン列であり、第2領域32bは、左眼用画像を形成する位相差パターン列である。 On the other hand, the optical member 1 has a plurality of first regions 32 a and a plurality of second regions 32 b extending along the long side of the optical member 1. A large number of first regions 32 a and second regions 32 b are arranged in the vertical direction corresponding to each pixel column L of the liquid crystal panel P. For example, the first region 32a is a phase difference pattern sequence that forms an image for the right eye, and the second region 32b is a phase difference pattern sequence that forms an image for the left eye.
 そして、光学部材1は、第1領域32aと第2領域32bとの境界線Kが表示領域P4の各画素列Lの間に位置するように液晶パネルPに対して貼合され、液晶パネルPを用いたFPR方式の3D液晶表示装置(表示装置100)を構成している。 The optical member 1 is bonded to the liquid crystal panel P so that the boundary line K between the first region 32a and the second region 32b is located between the pixel rows L of the display region P4. An FPR type 3D liquid crystal display device (display device 100) using the above is configured.
 このような表示装置100では、液晶パネルPの画素の左右に延びる1ライン毎に、左右の眼用の映像を交互に織り込んでこれらを同時に表示しながら、偏光眼鏡を通して3D映像を見ることが可能となっている。 In such a display device 100, it is possible to view 3D images through polarized glasses while alternately displaying images for the left and right eyes for each line extending to the left and right of the pixels of the liquid crystal panel P and displaying them simultaneously. It has become.
 このような構成の表示装置100では、上述の光学部材1を用いているため、クロストークの発生を抑制し、良好な立体画像表示が可能となる。 Since the display device 100 having such a configuration uses the optical member 1 described above, it is possible to suppress the occurrence of crosstalk and display a favorable stereoscopic image.
 または、このような構成の表示装置100では、上述の光学部材1を用いているため、表示画像が鮮明となり、良好な立体画像表示が可能となる。 Alternatively, in the display device 100 having such a configuration, the above-described optical member 1 is used, so that the display image becomes clear and a favorable stereoscopic image display is possible.
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 As described above, the preferred embodiments according to the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例においては、図1で説明した光学部材と同様の構成の光学部材を作製して本願発明の効果を確認した。そのため、以下の説明では、適宜図1で示した符号を用いる。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples. In the following examples, an optical member having the same configuration as the optical member described with reference to FIG. 1 was produced to confirm the effect of the present invention. Therefore, in the following description, the reference numerals shown in FIG. 1 are used as appropriate.
[水準1]
(光学部材の作製)
 以下のようにして、図1に示す構成の光学部材を作製し、評価を行った。
[Level 1]
(Production of optical member)
An optical member having the configuration shown in FIG. 1 was produced and evaluated as follows.
 第1保護層4として用いる厚み60μmまたは80μmのトリアセチルセルロール(TAC)フィルム上に防眩層5が形成された市販の防眩フィルムを準備する。以下、第1保護層4と、第1保護層4上に形成された防眩層5とを合わせて、防眩層付き第1保護層と称することがある。 A commercially available anti-glare film in which the anti-glare layer 5 is formed on a 60 μm or 80 μm triacetyl cellulose (TAC) film used as the first protective layer 4 is prepared. Hereinafter, the first protective layer 4 and the antiglare layer 5 formed on the first protective layer 4 may be collectively referred to as a first protective layer with an antiglare layer.
 防眩層の防眩性は、実験例1-1~1-7の順に高くなる。
 各防眩層付き第1保護層については、ヘイズ(Hz)値を測定した。測定結果については、後述の表1に示す。
The antiglare property of the antiglare layer increases in the order of Experimental Examples 1-1 to 1-7.
About each 1st protective layer with an anti-glare layer, the haze (Hz) value was measured. The measurement results are shown in Table 1 described later.
 防眩層付き第1保護層の他に下記材料を用い、積層することで、実験例1-1~1-7の光学部材を作製した。
 偏光子層2
 パターン化位相差層3
 第2保護層6(厚み60μmのトリアセチルセルロール(TAC)フィルム)
 接着剤層7,8
 粘着剤層9
In addition to the first protective layer with the antiglare layer, the following materials were used and laminated to produce optical members of Experimental Examples 1-1 to 1-7.
Polarizer layer 2
Patterned retardation layer 3
Second protective layer 6 (60 μm thick triacetyl cellulose (TAC) film)
Adhesive layer 7, 8
Adhesive layer 9
 得られた実験例1-1~1-7の光学部材について、上記方法により、算術平均高さ(Pa)、最大断面高さ(Pt)、表面の傾斜角度(θ)が2°以上である割合、光学くし(幅0.5mm、1.0mmおよび2.0mm)を用いて反射法で測定される像鮮明度の和(像鮮明度の和1)、および光学くし(幅0.125mm、0.5mm、1.0mmおよび2.0mm)を用いて透過法で測定される像鮮明度の和(像鮮明度の和2)について測定すると、各値は表1の通りとなる。なお、「像鮮明度の和1」の最大値は300%であり、「像鮮明度の和2」の最大値は400%である。 With respect to the obtained optical members of Experimental Examples 1-1 to 1-7, the arithmetic average height (Pa), the maximum cross-sectional height (Pt), and the surface inclination angle (θ) are 2 ° or more by the above method. Ratio, sum of image sharpness (sum of image sharpness 1) measured by reflection method using optical comb (width 0.5 mm, 1.0 mm and 2.0 mm), and optical comb (width 0.125 mm, When the sum of image sharpness (sum of image sharpness 2) measured by the transmission method using 0.5 mm, 1.0 mm, and 2.0 mm) is measured, each value is as shown in Table 1. The maximum value of “sum of image clarity 1” is 300%, and the maximum value of “sum of image clarity 2” is 400%.
(評価)
 作製した光学部材に、粘着剤層9により直線偏光板を貼合することで、実験例1-1~1-7の試験片を得た。これらの試験片においては、直線偏光板は、光学部材に含まれる偏光子層2と、互いの吸収軸が平行となるように貼合する。
(Evaluation)
Test pieces of Experimental Examples 1-1 to 1-7 were obtained by pasting a linearly polarizing plate with the adhesive layer 9 to the produced optical member. In these test pieces, the linearly polarizing plate is bonded to the polarizer layer 2 included in the optical member so that the absorption axes thereof are parallel to each other.
 各試験片は、液晶ディスプレイの構成を模したものである。光学部材に含まれる偏光子層2は、液晶ディスプレイにおける視認側の偏光板に対応する。光学部材に貼合した直線偏光板は、液晶ディスプレイにおけるバックライト側の偏光板に対応する。 Each test piece mimics the configuration of a liquid crystal display. The polarizer layer 2 included in the optical member corresponds to the viewing-side polarizing plate in the liquid crystal display. The linear polarizing plate bonded to the optical member corresponds to the polarizing plate on the backlight side in the liquid crystal display.
 得られた各試験片について、直線偏光板側から白色光を照射する面光源装置により照明する。その状態で、防眩層側から目視観察し、試験片の正面方向から斜め約90度までの方向までの範囲で目視位置を変えながら、パターン化位相差層3を構成する各光配向層31a、31bの境界を目視で確認する。 Each of the obtained test pieces is illuminated by a surface light source device that emits white light from the linearly polarizing plate side. In this state, each photo-alignment layer 31a constituting the patterned retardation layer 3 is visually observed from the antiglare layer side and the viewing position is changed in a range from the front direction of the test piece to a direction of about 90 degrees obliquely. , 31b is visually confirmed.
 評価結果を下記表1に示す。表1の評価結果において、光配向層31aと光配向層31bとの境界を目視で鮮明に確認できた試験片については「Good」、境界がやや不鮮明であったが確認できた試験片については「Fair」、境界が曖昧であり確認できなかった試験片については「Bad」として示した。 Evaluation results are shown in Table 1 below. In the evaluation results of Table 1, “Good” was obtained for the test piece in which the boundary between the photo-alignment layer 31a and the photo-alignment layer 31b could be clearly observed visually, and the test piece that was confirmed although the boundary was slightly unclear. “Fair”, and the test piece whose boundary was ambiguous and could not be confirmed was indicated as “Bad”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 評価の結果、実験例1-2および実験例1-3の光学部材は、防眩層を形成しない実験例1-1の光学部材と同様に、光配向層31aと光配向層31bとの境界を目視で確認することができた。特に、実験例1-2の光学部材においては、実験例1-1と遜色なく、光配向層31aと光配向層31bとの境界を目視で鮮明に確認することができた。 As a result of the evaluation, the optical members of Experimental Example 1-2 and Experimental Example 1-3 are similar to the optical member of Experimental Example 1-1 in which no antiglare layer is formed. Was confirmed visually. In particular, in the optical member of Experimental Example 1-2, the boundary between the photo-alignment layer 31a and the photo-alignment layer 31b could be clearly and visually confirmed in comparison with Experimental Example 1-1.
 このような光学部材を表示パネルPの表示面側に貼合した3D液晶表示装置では、好適に臨場感や立体感のある立体画像を表示することができる。 In the 3D liquid crystal display device in which such an optical member is bonded to the display surface side of the display panel P, it is possible to display a stereoscopic image with a sense of reality and a stereoscopic effect.
 対して、実験例1-6および実験例1-7の光学部材で、光配向層31aと光配向層31bとの境界を目視で確認することができなかった。このような光学部材を表示パネルPの表示面側に貼合した3D液晶表示装置では、表示する立体画像が臨場感や立体感に欠けるものとなる。 On the other hand, in the optical members of Experimental Example 1-6 and Experimental Example 1-7, the boundary between the photo-alignment layer 31a and the photo-alignment layer 31b could not be visually confirmed. In the 3D liquid crystal display device in which such an optical member is bonded to the display surface side of the display panel P, a stereoscopic image to be displayed lacks a sense of reality and a stereoscopic effect.
[水準2]
(試験片の作製)
 厚み60μmのトリアセチルセルロール(TAC)フィルム(200mm×300mm)上に、以下の活性エネルギー線硬化性樹脂を塗布し乾燥させた。得られた塗膜に対し、塗布した側(TACフィルム側とは反対側)から紫外線(UVランプ)を照射して、組成物を硬化させ、ハードコート層を形成した。組成物は、硬化後のハードコート層の厚みが約5μmとなるように塗布した。
[Level 2]
(Preparation of test piece)
The following active energy ray-curable resin was applied onto a 60 μm thick triacetyl cellulose (TAC) film (200 mm × 300 mm) and dried. The obtained coating film was irradiated with ultraviolet rays (UV lamp) from the coated side (the side opposite to the TAC film side) to cure the composition, thereby forming a hard coat layer. The composition was applied such that the thickness of the hard coat layer after curing was about 5 μm.
(活性エネルギー線硬化性樹脂)
 紫外線硬化性樹脂1:ペンタエリスリトールトリアクリレート(60質量部)
 紫外線硬化性樹脂2:多官能ウレタン化アクリレート(ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートの反応生成物)(40質量部)
 溶剤       :酢酸エチル(100質量部)
 光重合開始剤   :BASF社製「Irgacure 907」(2質量部)
 界面活性剤    :ビックケミー社製「BYK-UV 3510」(0.4質量部)
(Active energy ray curable resin)
UV curable resin 1: pentaerythritol triacrylate (60 parts by mass)
UV curable resin 2: polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate) (40 parts by mass)
Solvent: ethyl acetate (100 parts by mass)
Photopolymerization initiator: “Irgacure 907” (2 parts by mass) manufactured by BASF
Surfactant: BYK-UV 3510 (0.4 parts by mass) manufactured by Big Chemie
 このとき、紫外線照射時間を調整することで、紫外線照射後のハードコート層の鉛筆硬度が2H(実験例2-1)および3H(実験例2-2)となる試験片を得た。紫外線照射時間が長いほど、ハードコート層の鉛筆硬度は高くなる。 At this time, test pieces having pencil hardnesses of 2H (Experimental example 2-1) and 3H (Experimental example 2-2) of the hard coat layer after ultraviolet irradiation were obtained by adjusting the ultraviolet irradiation time. The longer the ultraviolet irradiation time, the higher the pencil hardness of the hard coat layer.
 用いたTACフィルムは、第1保護層4に対応するものである。また、形成したハードコート層は、ハードコート層5に対応するものである。 The TAC film used corresponds to the first protective layer 4. The formed hard coat layer corresponds to the hard coat layer 5.
(評価)
 得られた試験片を、吸収軸が互いに直交するように配置した(クロスニコル配置した)2枚の直交偏光板の間に置き、一方の直交偏光板側から光源(蛍光灯)を用いて照明した。その状態で、他方の直行偏光板側から目視で観察して、透過光の明暗の有無および分布を評価した。
(Evaluation)
The obtained test piece was placed between two orthogonal polarizing plates arranged so that the absorption axes were orthogonal to each other (crossed Nicols arrangement), and illuminated from one orthogonal polarizing plate side using a light source (fluorescent lamp). In that state, the presence / absence and distribution of transmitted light was evaluated by visual observation from the other direct polarizing plate side.
 評価結果を下記表2に示す。表2の評価結果において、透過光に明暗がなかった試験片については「Good」、僅かに明暗が認められた試験片については「Fair」、明確な明暗が認められた試験片については「Bad」として示した。 Evaluation results are shown in Table 2 below. In the evaluation results of Table 2, “Good” is obtained for the test piece in which the transmitted light is not bright and dark, “Fair” is given for the test piece in which the light and darkness is slightly observed, ".
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 評価の結果、実験例2-1の試験片では、透過光に明暗が認められなかった。評価した試験片に複屈折が生じていないためと考えられる。このような第1保護層4、ハードコート層5を有する光学部材を表示パネルPの表示面側に貼合した3D液晶表示装置では、好適に臨場感や立体感のある立体画像を表示することができる。 As a result of the evaluation, the test piece of Experimental Example 2-1 showed no brightness in the transmitted light. This is probably because birefringence does not occur in the evaluated specimen. In a 3D liquid crystal display device in which such an optical member having the first protective layer 4 and the hard coat layer 5 is bonded to the display surface side of the display panel P, a stereoscopic image with a sense of reality and a stereoscopic effect is preferably displayed. Can do.
 対して、実験例2-2の試験片では、透過光に明暗が見られた。評価した試験片に複屈折が生じたためと考えられる。このような第1保護層4、ハードコート層5を有する光学部材を表示パネルPの表示面側に貼合した3D液晶表示装置では、表示する立体画像が臨場感や立体感に欠けるものとなる。 On the other hand, in the test piece of Experimental Example 2-2, light and darkness was observed in the transmitted light. This is probably because birefringence occurred in the evaluated specimen. In the 3D liquid crystal display device in which the optical member having the first protective layer 4 and the hard coat layer 5 is bonded to the display surface side of the display panel P, the stereoscopic image to be displayed lacks a sense of reality and a stereoscopic effect. .
[水準3]
(試験片の作製)
 TACフィルムの厚みを変更すること以外は、上記水準2の実験例2-1と同様にして、ハードコート層を形成し、実験例3-1、実験例3-2、実験例3-3の試験片を作製した。用いたTACフィルムの厚みについては、後述の表3に示す。なお、実験例3-3の試験片は、上述の実験例2-1の試験片と同等のものである。
[Level 3]
(Preparation of test piece)
Except for changing the thickness of the TAC film, a hard coat layer was formed in the same manner as in Experimental Example 2-1 of Level 2 above, and in Experimental Example 3-1, Experimental Example 3-2, and Experimental Example 3-3 A test piece was prepared. About the thickness of the used TAC film, it shows in Table 3 mentioned later. The test piece of Experimental Example 3-3 is equivalent to the test piece of Experimental Example 2-1.
(評価)
 試験片の作製前(紫外線照射前)のTACフィルムと、試験片作成後(紫外線照射後)のTACフィルムとを比較し、組成物の硬化によりTACフィルムに生ずるシワの有無を下記2種類の方法により評価した。
(Evaluation)
The TAC film before preparation of the test piece (before UV irradiation) is compared with the TAC film after preparation of the test piece (after UV irradiation), and the following two methods are used to determine the presence or absence of wrinkles generated on the TAC film by curing the composition It was evaluated by.
(評価方法1)
 試験片を机の上に広げて置き、所定の仰角方向に天井の蛍光灯(点灯中)が位置するようにした後、試験片表面で正反射される蛍光灯の像(蛍光灯の光)を肉眼で観察。
(Evaluation method 1)
Spread the test piece on the desk, place the fluorescent lamp on the ceiling in the specified elevation direction (lighting), and then the image of the fluorescent light that is regularly reflected on the surface of the test piece (fluorescent light) Observe with the naked eye.
(評価方法2)
 試験片を通して天井の蛍光灯(点灯中)を肉眼で観察。
(Evaluation method 2)
Fluorescent light on the ceiling (lit) is observed with the naked eye through the test piece.
 評価結果を下記表3に示す。
 表3の評価結果において、評価方法1において観察される蛍光灯の像が、塗工前のTACフィルムと同程度に鮮明であり、且つ評価方法2において観察される蛍光灯の像が、塗工前のTACフィルムと同様に歪むことなく鮮明である試験片については「Good」とした。
The evaluation results are shown in Table 3 below.
In the evaluation results of Table 3, the fluorescent lamp image observed in the evaluation method 1 is as clear as the TAC film before coating, and the fluorescent lamp image observed in the evaluation method 2 is coated. As with the previous TAC film, the test piece that was clear without distortion was “Good”.
 評価方法1においては蛍光灯の像が観察できなかったが、評価方法2において観察される蛍光灯の像が、塗工前のTACフィルムと同様に歪むことなく鮮明である試験片については「Fair」とした。 In the evaluation method 1, an image of a fluorescent lamp could not be observed, but the test piece in which the image of the fluorescent lamp observed in the evaluation method 2 is clear without distortion like the TAC film before coating is “Fair "
 評価方法1においては蛍光灯の像が観察できず、評価方法2において蛍光灯像が歪んで観察された試験片については「Bad」とした。 In the evaluation method 1, the image of the fluorescent lamp could not be observed, and in the evaluation method 2, the test piece in which the fluorescent lamp image was observed distorted was “Bad”.
 評価結果が「Good」「Fair」のものを合格、「Bad」であったものを不合格とした。 評 価 Evaluation results of “Good” and “Fair” were accepted, and those of “Bad” were rejected.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 評価の結果、実験例3-2および実験例3-3の試験片では、評価方法2において観察される蛍光灯の像に歪みが認められなかった。評価した試験片に、視認できるほどのシワが生じていなかったためと考えられる。特に、実験例3-3の光学部材においては、評価方法1で観察される蛍光灯の像もTACフィルムと遜色ない鮮明なものとなり、TACフィルムのシワが少なかったものと考えられる。 As a result of the evaluation, in the test pieces of Experimental Example 3-2 and Experimental Example 3-3, no distortion was observed in the fluorescent lamp image observed in Evaluation Method 2. This is probably because wrinkles that could be visually recognized did not occur in the evaluated test piece. In particular, in the optical member of Experimental Example 3-3, it is considered that the fluorescent lamp image observed by the evaluation method 1 is as clear as the TAC film, and the TAC film has few wrinkles.
 このような第1保護層4、ハードコート層5を有する光学部材を表示パネルPの表示面側に貼合した3D液晶表示装置では、好適に臨場感や立体感のある立体画像を表示することができる。 In a 3D liquid crystal display device in which such an optical member having the first protective layer 4 and the hard coat layer 5 is bonded to the display surface side of the display panel P, a stereoscopic image with a sense of reality and a stereoscopic effect is preferably displayed. Can do.
 対して、実験例3-1の試験片では、評価方法1においては蛍光灯の像が観察できず、評価方法2で観察される蛍光灯の像に歪みが見られた。評価した試験片に、視認に影響するほどのシワが生じていたためと考えられる。このような第1保護層4.ハードコート層5を有する光学部材を表示パネルPの表示面側に貼合した3D液晶表示装置では、表示する立体画像が臨場感や立体感に欠けるものとなる。 On the other hand, in the test piece of Experimental Example 3-1, the image of the fluorescent lamp could not be observed in Evaluation Method 1, and the image of the fluorescent lamp observed in Evaluation Method 2 was distorted. This is probably because the evaluated test piece was wrinkled enough to affect visual recognition. Such first protective layer 4. In the 3D liquid crystal display device in which the optical member having the hard coat layer 5 is bonded to the display surface side of the display panel P, the displayed stereoscopic image lacks a sense of reality and a stereoscopic effect.
 1  光学部材
 2  偏光子層
 3  パターン化位相差層
 4  第1保護層(位相差層保護層)
 5  ハードコート層(防眩層)
 6  第2保護層(偏光子層保護層)
 P  液晶パネル(表示パネル)
 32  位相差層
 32a  第1領域
 32b  第2領域
 100  表示装置
DESCRIPTION OF SYMBOLS 1 Optical member 2 Polarizer layer 3 Patterned phase difference layer 4 1st protective layer (retardation layer protective layer)
5 Hard coat layer (antiglare layer)
6 Second protective layer (polarizer layer protective layer)
P Liquid crystal panel (display panel)
32 retardation layer 32a first region 32b second region 100 display device

Claims (13)

  1.  入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、
     複数の前記第1領域および複数の前記第2領域が平面視において所定のパターンで配置された位相差層と、
     前記位相差層の一方の面側に設けられた偏光子層と、
     前記位相差層の他方の面側の表面に設けられた防眩層と、を有し、
     前記防眩層の凹凸表面の任意の断面曲線における算術平均高さPaが0.15μm以下であり、最大断面高さPtが1.5μm以下である光学部材。
    A plurality of first regions that change the incident linearly polarized light into a first polarization state; and a plurality of second regions that change into a second polarization state;
    A plurality of the first regions and a plurality of the second regions arranged in a predetermined pattern in a plan view;
    A polarizer layer provided on one surface side of the retardation layer;
    An anti-glare layer provided on the surface of the other surface side of the retardation layer,
    An optical member having an arithmetic average height Pa in an arbitrary cross-sectional curve of the uneven surface of the antiglare layer of 0.15 μm or less and a maximum cross-section height Pt of 1.5 μm or less.
  2.  前記防眩層の表面の傾斜角度が2°以上である割合が30%以下である請求項1に記載の光学部材。 The optical member according to claim 1, wherein the ratio of the inclination angle of the surface of the antiglare layer being 2 ° or more is 30% or less.
  3.  入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、
     複数の前記第1領域および複数の前記第2領域が平面視において所定のパターンで配置された位相差層と、
     前記位相差層の一方の面側に設けられた偏光子層と、
     前記位相差層の他方の面側の表面に設けられた防眩層と、を有し、
     前記防眩層の表面について、JIS K 7374に基づき幅0.5mm、1.0mmおよび2.0mmの光学くしを用いて反射法で測定される像鮮明度の和が30%以上200%以下である光学部材。
    A plurality of first regions that change the incident linearly polarized light into a first polarization state; and a plurality of second regions that change into a second polarization state;
    A plurality of the first regions and a plurality of the second regions arranged in a predetermined pattern in a plan view;
    A polarizer layer provided on one surface side of the retardation layer;
    An anti-glare layer provided on the surface of the other surface side of the retardation layer,
    With respect to the surface of the antiglare layer, the sum of image sharpness measured by a reflection method using optical combs having a width of 0.5 mm, 1.0 mm and 2.0 mm based on JIS K 7374 is 30% or more and 200% or less. An optical member.
  4.  前記偏光子層の側から透過させる光について、JIS K 7374に基づき幅0.125mm、0.5mm、1.0mmおよび2.0mmの光学くしを用いて透過法で測定される像鮮明度の和が150%以上350%以下である請求項3に記載の光学部材。 The sum of image sharpness measured by the transmission method using optical combs having widths of 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm based on JIS K 7374 for light transmitted from the polarizer layer side The optical member according to claim 3, wherein is 150% or more and 350% or less.
  5.  入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、
     複数の前記第1領域および複数の前記第2領域が平面視において所定のパターンで配置された位相差層と、
     前記位相差層の一方の面側に設けられた偏光子層と、
     前記偏光子層に対し前記位相差層とは反対側に設けられた偏光子層保護層と、を有し、
     前記偏光子層保護層の面内位相差Rが、10nm以下である光学部材。
    A plurality of first regions that change the incident linearly polarized light into a first polarization state; and a plurality of second regions that change into a second polarization state;
    A plurality of the first regions and a plurality of the second regions arranged in a predetermined pattern in a plan view;
    A polarizer layer provided on one surface side of the retardation layer;
    A polarizer layer protective layer provided on the opposite side of the retardation layer with respect to the polarizer layer,
    The in-plane retardation R o of the polarizer layer protective layer, the optical member is 10nm or less.
  6.  前記偏光子層保護層の厚み方向の位相差Rthが、10nm以下である請求項5に記載の光学部材。 The optical member according to claim 5, wherein the thickness direction retardation R th of the polarizer layer protective layer is 10 nm or less.
  7.  前記偏光子層保護層のNz係数が、10以下である請求項5または6に記載の光学部材。 The optical member according to claim 5 or 6, wherein the polarizer layer protective layer has an Nz coefficient of 10 or less.
  8.  入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、
     複数の前記第1領域および複数の前記第2領域が平面視において所定のパターンで配置された位相差層と、
     前記位相差層の一方の面側に設けられた偏光子層と、
     前記位相差層の他方の面側の表面に設けられたハードコート層と、を有し、
     前記ハードコート層は、厚みが1μm以上であり、鉛筆硬度がF以上2H以下である光学部材。
    A plurality of first regions that change the incident linearly polarized light into a first polarization state; and a plurality of second regions that change into a second polarization state;
    A plurality of the first regions and a plurality of the second regions arranged in a predetermined pattern in a plan view;
    A polarizer layer provided on one surface side of the retardation layer;
    A hard coat layer provided on the surface of the other surface side of the retardation layer,
    The hard member is an optical member having a thickness of 1 μm or more and a pencil hardness of F to 2H.
  9.  前記ハードコート層は、活性エネルギー線硬化性樹脂組成物の重合体である請求項8に記載の光学部材。 The optical member according to claim 8, wherein the hard coat layer is a polymer of an active energy ray-curable resin composition.
  10.  前記位相差層と前記ハードコート層との間に、位相差層保護層を有する請求項8または9に記載の光学部材。 The optical member according to claim 8 or 9, further comprising a retardation layer protective layer between the retardation layer and the hard coat layer.
  11.  入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、
     複数の前記第1領域および複数の前記第2領域が平面視において所定のパターンで配置された位相差層と、
     前記位相差層の一方の面側に設けられた偏光子層と、
     前記偏光子層に対し前記位相差層とは反対側に設けられた偏光子層保護層と、を有し、
     前記偏光子層保護層は、厚みが5μm以上80μm以下である光学部材。
    A plurality of first regions that change the incident linearly polarized light into a first polarization state; and a plurality of second regions that change into a second polarization state;
    A plurality of the first regions and a plurality of the second regions arranged in a predetermined pattern in a plan view;
    A polarizer layer provided on one surface side of the retardation layer;
    A polarizer layer protective layer provided on the opposite side of the retardation layer with respect to the polarizer layer,
    The polarizer layer protective layer is an optical member having a thickness of 5 μm or more and 80 μm or less.
  12.  入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、
     複数の前記第1領域および複数の前記第2領域が平面視において所定のパターンで配置された位相差層と、
     前記位相差層の一方の面側に設けられた偏光子層と、
     前記位相差層の他方の面側の表面に設けられたハードコート層と、
     前記位相差層と前記ハードコート層との間に設けられた位相差層保護層と、を有し、
     前記位相差層保護層は、厚みが35μm以上である光学部材。
    A plurality of first regions that change the incident linearly polarized light into a first polarization state; and a plurality of second regions that change into a second polarization state;
    A plurality of the first regions and a plurality of the second regions arranged in a predetermined pattern in a plan view;
    A polarizer layer provided on one surface side of the retardation layer;
    A hard coat layer provided on the surface of the other side of the retardation layer;
    A retardation layer protective layer provided between the retardation layer and the hard coat layer,
    The retardation layer protective layer is an optical member having a thickness of 35 μm or more.
  13.  表示パネルと、
     前記表示パネルの表示面側に設けられた請求項1から12のいずれか1項に記載の光学部材と、を有する表示装置。
    A display panel;
    A display device comprising: the optical member according to claim 1 provided on a display surface side of the display panel.
PCT/JP2014/081067 2013-11-25 2014-11-25 Optical member and display device WO2015076409A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015549223A JPWO2015076409A1 (en) 2013-11-25 2014-11-25 Optical member and display device
CN201480063648.1A CN105874360A (en) 2013-11-25 2014-11-25 Optical member and display device
KR1020167009903A KR20160090285A (en) 2013-11-25 2014-11-25 Optical member and display device

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2013242902 2013-11-25
JP2013-242901 2013-11-25
JP2013242901 2013-11-25
JP2013242899 2013-11-25
JP2013-242902 2013-11-25
JP2013242900 2013-11-25
JP2013-242898 2013-11-25
JP2013-242903 2013-11-25
JP2013-242899 2013-11-25
JP2013242898 2013-11-25
JP2013242903 2013-11-25
JP2013-242900 2013-11-25

Publications (1)

Publication Number Publication Date
WO2015076409A1 true WO2015076409A1 (en) 2015-05-28

Family

ID=53179668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081067 WO2015076409A1 (en) 2013-11-25 2014-11-25 Optical member and display device

Country Status (5)

Country Link
JP (1) JPWO2015076409A1 (en)
KR (1) KR20160090285A (en)
CN (1) CN105874360A (en)
TW (1) TW201527800A (en)
WO (1) WO2015076409A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166942A1 (en) * 2020-02-20 2021-08-26
WO2022014574A1 (en) * 2020-07-13 2022-01-20 日東電工株式会社 Laminate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959531A (en) * 2017-03-31 2017-07-18 深圳市华星光电技术有限公司 Display device, liquid crystal display grating and preparation method
JP7408346B2 (en) * 2019-10-25 2024-01-05 住友化学株式会社 optical laminate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181548A (en) * 2003-12-17 2005-07-07 Sekisui Chem Co Ltd Optical film and polarizing plate using the same
JP2007003917A (en) * 2005-06-24 2007-01-11 Konica Minolta Opto Inc Transmissive liquid crystal display apparatus
JP2007163971A (en) * 2005-12-15 2007-06-28 Fujifilm Corp Antireflection film, and polarizing plate and liquid crystal display device using the same
JP2009098658A (en) * 2007-09-25 2009-05-07 Fujifilm Corp Optical film, polarizing plate and image display device
JP2010102072A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Anti-glare film, anti-glare polarizing sheet, and image display device
JP2012013847A (en) * 2010-06-30 2012-01-19 Sumitomo Chemical Co Ltd Set of rolled polarizing plates, method for manufacturing the same, and method for manufacturing liquid crystal panel
JP2012068474A (en) * 2010-09-24 2012-04-05 Sumitomo Chemical Co Ltd Liquid crystal display device
JP2013024964A (en) * 2011-07-19 2013-02-04 Konica Minolta Advanced Layers Inc Antiglare film, method of manufacturing antiglare film, polarizer, and stereoscopic image display device
JP2013068924A (en) * 2011-03-29 2013-04-18 Fujifilm Corp Optical film for 3d image display, 3d image display device, and 3d image display system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101240812B1 (en) 2010-11-10 2013-03-11 주식회사 엘지화학 Optical elemet
JP5462830B2 (en) 2011-03-31 2014-04-02 富士フイルム株式会社 3D image display device, manufacturing method thereof, phase difference plate, 3D image display system, and adhesive composition for 3D image display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181548A (en) * 2003-12-17 2005-07-07 Sekisui Chem Co Ltd Optical film and polarizing plate using the same
JP2007003917A (en) * 2005-06-24 2007-01-11 Konica Minolta Opto Inc Transmissive liquid crystal display apparatus
JP2007163971A (en) * 2005-12-15 2007-06-28 Fujifilm Corp Antireflection film, and polarizing plate and liquid crystal display device using the same
JP2009098658A (en) * 2007-09-25 2009-05-07 Fujifilm Corp Optical film, polarizing plate and image display device
JP2010102072A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Anti-glare film, anti-glare polarizing sheet, and image display device
JP2012013847A (en) * 2010-06-30 2012-01-19 Sumitomo Chemical Co Ltd Set of rolled polarizing plates, method for manufacturing the same, and method for manufacturing liquid crystal panel
JP2012068474A (en) * 2010-09-24 2012-04-05 Sumitomo Chemical Co Ltd Liquid crystal display device
JP2013068924A (en) * 2011-03-29 2013-04-18 Fujifilm Corp Optical film for 3d image display, 3d image display device, and 3d image display system
JP2013024964A (en) * 2011-07-19 2013-02-04 Konica Minolta Advanced Layers Inc Antiglare film, method of manufacturing antiglare film, polarizer, and stereoscopic image display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166942A1 (en) * 2020-02-20 2021-08-26
WO2021166942A1 (en) * 2020-02-20 2021-08-26 富士フイルム株式会社 Phase contrast film, circular-polarizing plate, and display device
JP7472260B2 (en) 2020-02-20 2024-04-22 富士フイルム株式会社 Retardation film, circular polarizing plate, display device
WO2022014574A1 (en) * 2020-07-13 2022-01-20 日東電工株式会社 Laminate

Also Published As

Publication number Publication date
JPWO2015076409A1 (en) 2017-03-16
CN105874360A (en) 2016-08-17
KR20160090285A (en) 2016-07-29
TW201527800A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
JP7056701B2 (en) Optical laminate and its manufacturing method, front plate, and image display device
JP5850585B2 (en) Optical element
US8982300B2 (en) Viewing angle controlling system, and image display device using the same
KR101727871B1 (en) Set of polarizing plates and front plate-integrated liquid crystal display panel
TWI647492B (en) Optical laminate and graphic display device
TWI502220B (en) Optical device and stereoscopic image display device somprising the same
KR101727870B1 (en) Set of polarizing plates and front plate-integrated liquid crystal display panel
JP2019109407A (en) Optical film and aerial image display device using the same
JP6677722B2 (en) Horizontal alignment type liquid crystal display
KR20170021755A (en) Convex plane side polarizing plate for curved image display panel
TWI784150B (en) Polarizing plate and display device
WO2015076409A1 (en) Optical member and display device
KR101822699B1 (en) Optical sheet and liquid crystal display comprising the same
JP5828204B2 (en) Paint, retardation element, display device, and method of manufacturing retardation element
WO2015008850A1 (en) Optical film, circularly-polarizing film, and 3d image display device
KR20090101630A (en) Polarizing film for 3 dimensional liquid crystal display
JP2009036860A (en) Liquid crystal display
TWI746623B (en) Depolarization element
WO2013114960A1 (en) Laminate body, polarizing plate using same, 3d image display device, and 3d image display system
JP2014164142A (en) Method for manufacturing laminate of alignment substrate and retardation film, laminate, retardation film, and liquid crystal display device
JP5711071B2 (en) LAMINATE, LOW REFLECTIVE LAMINATE, POLARIZING PLATE, IMAGE DISPLAY DEVICE, AND 3D IMAGE DISPLAY SYSTEM
JP2012073514A (en) Retardation film, retardation film with polarizer, laminated patterned retardation plate, and liquid crystal display device
TWI806819B (en) Polarizing plate and liquid crystal panel
JP2020052276A (en) Design material
JPWO2020017544A1 (en) Partial optical rotation, and partial optical rotation film using it, interlayer film laminate, functional glass and head-up display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167009903

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015549223

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864060

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载