+

WO2015053367A1 - 三次元組織体及びその製造方法 - Google Patents

三次元組織体及びその製造方法 Download PDF

Info

Publication number
WO2015053367A1
WO2015053367A1 PCT/JP2014/077083 JP2014077083W WO2015053367A1 WO 2015053367 A1 WO2015053367 A1 WO 2015053367A1 JP 2014077083 W JP2014077083 W JP 2014077083W WO 2015053367 A1 WO2015053367 A1 WO 2015053367A1
Authority
WO
WIPO (PCT)
Prior art keywords
smooth muscle
muscle cells
dimensional tissue
extracellular matrix
cell
Prior art date
Application number
PCT/JP2014/077083
Other languages
English (en)
French (fr)
Inventor
明石満
松▲崎▼典弥
石川義弘
横山詩子
Original Assignee
国立大学法人大阪大学
公立大学法人横浜市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 公立大学法人横浜市立大学 filed Critical 国立大学法人大阪大学
Priority to US15/028,204 priority Critical patent/US20160251626A1/en
Priority to JP2015541635A priority patent/JP6355212B2/ja
Publication of WO2015053367A1 publication Critical patent/WO2015053367A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0661Smooth muscle cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin

Definitions

  • the present disclosure relates to a three-dimensional tissue body and a manufacturing method thereof.
  • Non-Patent Document 1 discloses an artificial blood vessel model by culturing smooth muscle cells in a medium in which collagen is highly expressed for several weeks, then rolling after dissociation to form a blood vessel, and further culturing for several weeks. .
  • Non-Patent Document 2 uses rat cell layering technology by forming a nanofilm of fibronectin and gelatin disclosed in Patent Document 1, and uses rat neonatal vascular smooth muscle cells and human umbilical vein vascular smooth muscle cells. Are laminated to form a smooth muscle cell laminate similar to the blood vessel wall.
  • Non-Patent Document 1 shows that the obtained artificial blood vessel has rigidity, but does not show elasticity.
  • the method of Non-Patent Document 2 has a problem that elastic fiber is low in the resulting laminate and the self-supporting property after dissociating the laminate from the substrate is low.
  • the method of Non-Patent Document 1 has a problem that it takes several months to produce a transplantable blood vessel model.
  • the present disclosure provides a three-dimensional tissue having elasticity and a method capable of manufacturing the same.
  • the present disclosure relates to a three-dimensional tissue body that includes a smooth muscle cell and an extracellular matrix component, and has elasticity in which the smooth muscle cell is laminated via the extracellular matrix component.
  • the present disclosure is a method for producing a three-dimensional tissue body including stacking smooth muscle cells via an extracellular matrix component, wherein the smooth muscle cells are differentiated from an undifferentiated type.
  • the present invention relates to a production method which is a smooth muscle cell oriented in a mold.
  • a three-dimensional tissue body having elastic fibers can be provided.
  • FIG. 1A shows an image of a three-dimensional tissue body of Example 1
  • FIG. 1B shows an image of a blood vessel of a rat newborn
  • FIG. 1C shows an image of a blood vessel of an adult rat
  • FIG. 1D shows an image of a three-dimensional tissue body of Comparative Example 1.
  • FIG. 2 shows an example of a photograph of a fluorescent immunohistologic section of the blood vessel of the three-dimensional tissue body and rat neonate of Example 1.
  • FIG. 3 shows an example of an image of an elasticity evaluation experiment of the three-dimensional tissue body of Example 1.
  • a three-dimensional tissue body having elasticity by laminating smooth muscle cells oriented from an undifferentiated type to a differentiated type through three-dimensional organization through an extracellular matrix component. Based on the knowledge of.
  • smooth muscle cells oriented from an undifferentiated type to a differentiated type are laminated via extracellular matrix components to produce an elastic three-dimensional tissue structure.
  • a cell dissociating agent such as trypsin for cell recovery.
  • the laminated smooth muscle cells secrete extracellular matrix components in the three-dimensional tissue, and this secreted It is considered that an extracellular matrix component contributes to the expression of elastic fibers and a three-dimensional tissue body having elasticity can be obtained.
  • the present disclosure is not limited to this mechanism.
  • smooth muscle cells oriented from an undifferentiated type to a differentiated type means, in one or more embodiments, a smooth muscle cell exhibiting a differentiated trait, and a differentiated trait and an undifferentiated trait. Smooth muscle cells having both (so-called smooth muscle cells in the process of differentiation from undifferentiated type to differentiated type) are included. Differentiated (contracted) smooth muscle cells, in one or more embodiments, are rich in contractile proteins, specialized for contraction, and / or mitotic potential (proliferation) compared to undifferentiated (synthetic) smooth muscle cells. Smooth muscle cells with low ability).
  • whether or not “smooth muscle cells oriented from undifferentiated type to differentiated type” is determined by culturing smooth muscle cells for 1, 2, 3, 4 or 5 days. It can be determined by checking the degree of. It can also be determined using markers such as SM22, SM1, SM2, and SMemb. In cells oriented to differentiated types, SM22, SM1, and SM2 are expressed more and SMemb expression is decreased than undifferentiated cells.
  • smooth muscle cells oriented from an undifferentiated type to a differentiated type can be obtained by differentiating smooth muscle cells or transforming smooth muscle cells, and preferably smooth muscle cells. It can be obtained by transforming progenitor cells or undifferentiated or dedifferentiated smooth muscle cells into differentiated (contracted) smooth muscle cells.
  • transformation can be performed by culturing smooth muscle cells at a high density.
  • “culturing smooth muscle cells at a high density” means culturing smooth muscle cells in a substantially 100% confluent state.
  • Substantially 100% confluent includes, in one or more embodiments, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100% confluence.
  • the smooth muscle cells subcultured under normal culture conditions are usually undifferentiated smooth muscle cells having proliferation ability. Examples of normal culture conditions include culture in a confluence of 80% or less, 70% or less, or 50% or less.
  • smooth muscle cell refers to a cell that constitutes or can constitute smooth muscle.
  • smooth muscle cells include vascular smooth muscle cells and tracheal smooth muscle cells in one or more embodiments.
  • the origin of smooth muscle cells is not particularly limited, and in one or a plurality of embodiments, humans and non-human animals can be mentioned.
  • the non-human animal is not particularly limited, and examples thereof include primates (eg, rhesus monkeys), mice, rats, dogs, rabbits, and pigs. From the viewpoint of exhibiting properties and functions equivalent to those of human biological tissues, humans are preferable.
  • the smooth muscle cell which induced differentiation of the embryonic stem cell (ES cell), the human mesenchymal stem cell (MSC), or the induced pluripotent stem cell (iPS cell) may be used.
  • “having elasticity” means that the three-dimensional tissue expands when a force is applied to the three-dimensional tissue and can return to a substantially original size when unloaded.
  • Examples of the force applied to the three-dimensional tissue include a tensile force in one or a plurality of embodiments.
  • “having elasticity” means that, in one or a plurality of embodiments, it can be stretched to at least 1.2 times, preferably at least 1.3 times, 1.4 times. It means that it can be stretched to 1.5 times or 2 times, more preferably it can be returned to its original length after stretching the three-dimensional tissue.
  • “can be extended to at least 1.2 times the length” means that when the length of the three-dimensional tissue body before stretching in the stretching direction is 1, the three-dimensional tissue body in the stretching direction after stretching. Means that the length becomes 1.2 or more.
  • “having elasticity” means that, in one or a plurality of embodiments, the expression of elastic fibers in the three-dimensional tissue body is high. In one or a plurality of embodiments, the expression of elastic fibers can be evaluated by Elastica van Gieson staining or radioisotope ([ 3 H] valine).
  • smooth muscle cells are laminated via an extracellular matrix component
  • smooth muscle cells are three-dimensionally stacked via an extracellular matrix component, preferably cells containing smooth muscle cells. It means that a plurality of layers are laminated.
  • Multiple cell layers are laminated means that in one or a plurality of embodiments, the cell layer is not a single-layer cell culture.
  • the “extracellular matrix component” refers to a substance that fills the space outside the cell in a living body and performs a function such as a skeletal role, a role of providing a scaffold, and a role of holding a biological factor. . Further, the extracellular matrix component may further contain a substance capable of performing a function such as a skeletal role, a role of providing a scaffold, and a role of retaining a biological factor in in vitro cell culture, and is synthesized artificially. Or a part thereof. As the extracellular matrix component, those described in the following examples or those disclosed in Japanese Patent No. 4919464 and Japanese Patent Application Laid-Open No. 2012-115254 can be used.
  • the “three-dimensional tissue body” refers to an elastic material that includes an extracellular matrix component and smooth muscle cells laminated via the extracellular matrix component and has elasticity. It can confirm that the cell contained in a three-dimensional organization
  • tissue is a smooth muscle cell by detecting alpha SMA (smoothmuscleactin) positive in one or some embodiment.
  • the three-dimensional tissue body of the present disclosure may include cells other than smooth muscle cells. Examples of cells other than smooth muscle cells include vascular endothelial cells, fibroblasts, blood cell-derived cells and the like in one or more embodiments.
  • the origin of the cells contained in the three-dimensional tissue body of the present disclosure is not particularly limited, and in one or a plurality of embodiments, humans and non-human animals can be mentioned. Animals other than humans are as described above.
  • the present disclosure includes a smooth muscle cell and an extracellular matrix component, and the smooth muscle cell is elastically stacked with the extracellular matrix component interposed therebetween (hereinafter, referred to as “three-dimensional tissue body”). Also referred to as “three-dimensional organization of the present disclosure”.
  • the three-dimensional tissue body of the present disclosure has elasticity, and in one or a plurality of embodiments, the elastic fiber is expressed at a high level, and thus exhibits excellent self-supporting property, that is, the three-dimensional structure has no support. It is maintained and can be used as a tissue piece. For this reason, the three-dimensional tissue body of the present disclosure can be formed into a tubular shape or the like in one or a plurality of embodiments.
  • the three-dimensional tissue body of the present disclosure can be manufactured by the manufacturing method of the present disclosure described later.
  • the three-dimensional tissue body of the present disclosure includes a media layer including an extracellular matrix component and a smooth muscle cell laminated, and an inner membrane including an endothelial cell formed on the media layer. And having a layer.
  • the three-dimensional tissue body of the present disclosure includes an outer membrane layer, a middle membrane layer formed on the outer membrane layer, and an inner membrane layer formed on the middle membrane layer. The layer includes fibroblasts, the medial layer includes smooth matrix cells laminated with extracellular matrix components, and the intimal layer includes endothelial cells.
  • the three-dimensional tissue body of the present disclosure is excellent in self-sustainability, in one or a plurality of embodiments, it can be used as a blood vessel for transplantation and can be formed as an artificial blood vessel. Since the three-dimensional tissue body of the present disclosure has elasticity, in one or a plurality of embodiments, the three-dimensional tissue body can have a refracting portion such as a coronary artery or can be used as an artificial blood vessel for a blood vessel having a small diameter.
  • the three-dimensional tissue body of the present disclosure has elasticity similar to blood vessels in a living body, in one or a plurality of embodiments, it can be used as a blood vessel model for elucidating the pathological condition of vascular diseases and evaluating pharmacological effects. .
  • the present disclosure is a method for producing a three-dimensional tissue body including laminating smooth muscle cells via an extracellular matrix component, wherein the smooth muscle cells are from undifferentiated types.
  • the present invention relates to a production method that is a smooth muscle cell oriented in a differentiated form (hereinafter also referred to as “production method of the present disclosure”).
  • production method of the present disclosure a three-dimensional tissue body with high expression of elastic fibers and excellent self-sustainability can be produced in a short period of one week to several weeks from the start of cell lamination.
  • Lamination of smooth muscle cells via extracellular matrix components includes, in one or more embodiments, laminating smooth muscle cells using a cell fluid containing cells oriented from undifferentiated to differentiated. .
  • the manufacturing method of the present disclosure may include preparing a cell solution in one or a plurality of embodiments.
  • the cell fluid can be prepared by dispersing smooth muscle cells oriented from an undifferentiated type to a differentiated type in a medium or the like.
  • the preparation of the cell solution includes culturing the smooth muscle cells at a high density in order to differentiate the smooth muscle cells into differentiated forms.
  • the culture period at high density can be appropriately determined according to the origin of the smooth muscle cells. When smooth muscle cells are derived from rats or mice, the culture period at a high density is 6 days or more, 7 days or more, or 8 days or more, or 20 days or less or 15 days or less in one or more embodiments.
  • the culture period at a high density is 2 days or more in one or more embodiments, and is 10 days or less, 8 days or less, or 5 days or less.
  • the culture temperature is not particularly limited, and in one or more embodiments, it is 4 to 60 ° C., 20 to 40 ° C., or 30 to 37 ° C.
  • the medium includes Eagle's MEM medium, Dulbecco's Modified Eagle medium (DMEM), Modified Eagle medium (MEM), Minimum Essential medium, RDMI, GlutaMax medium, and the like.
  • the medium may be a medium supplemented with serum or a serum-free medium.
  • smooth muscle cells cultured at a high density improve the yield of elastic fibers in the three-dimensional tissue and improve the elasticity of the three-dimensional tissue.
  • Examples include synthetic smooth muscle cells, and fetal smooth muscle cells or smooth muscle cells up to childhood.
  • smooth muscle cells up to childhood are known to have a high proliferation ability, actively produce extracellular matrix, growth factors, and the like, and are of a synthetic type.
  • Smooth muscle cells can be collected from an artery or the like in one or more embodiments. Examples of the artery include aorta, coronary artery, pulmonary artery, and umbilical artery. Smooth muscle cells up to childhood can be collected from the umbilical artery or the like in one or more embodiments.
  • the preparation of the cell solution includes dissociation treatment of cells cultured at a high density.
  • the cell dissociation agent used in the dissociation treatment include trypsin and the like in one or a plurality of embodiments.
  • the dissociation treatment conditions are not particularly limited.
  • the dissociation treatment temperature is not particularly limited, and in one or more embodiments, it is 4 to 60 ° C., 20 to 40 ° C., or 30 to 37 ° C.
  • the dissociation treatment time is not particularly limited, and in one or more embodiments, it is 10 to 120 minutes, 15 to 60 minutes, or 15 to 45 minutes.
  • the preparation of the cell solution includes dispersing the dissociated cells in a medium.
  • the culture medium is as described above.
  • the lamination of smooth muscle cells via an extracellular matrix component is a cell layer containing smooth muscle cells oriented from an undifferentiated type to a differentiated type (hereinafter also simply referred to as “cell layer”). ) And a layer containing an extracellular matrix component (hereinafter also referred to as “extracellular matrix component layer”) are alternately performed (first laminating method), or coated with an extracellular matrix component It can be performed by laminating smooth muscle cells oriented from undifferentiated type to differentiated type (second laminating method).
  • the first stacking method stacks a plurality of cell layers including smooth muscle cells oriented from an undifferentiated type to a differentiated type by alternately forming a cell layer and forming an extracellular matrix component layer. Including that.
  • the cell layer is formed by placing and culturing a cell fluid containing smooth muscle cells oriented from an undifferentiated type to a differentiated type on a substrate or an extracellular matrix component layer. It can be carried out.
  • the concentration of smooth muscle cells directed from undifferentiated type to differentiated type in the cell fluid is 1 ⁇ 10 2 to 1 ⁇ 10 7 cells / mL, 1 ⁇ 10 3 to 1 ⁇ 10.
  • the density of the smooth muscle cells oriented from the undifferentiated type to the differentiated type is 1 ⁇ 10 2 to 1 ⁇ 10 9 cells / cm 2 , 1 ⁇ 10 4 to 1 ⁇ 10. 8 pieces / cm 2 , 1 ⁇ 10 5 to 1 ⁇ 10 7 pieces / cm 2, or 1 ⁇ 10 5 to 1 ⁇ 10 6 pieces / cm 2 .
  • the incubation temperature is 4-60 ° C., 20-40 ° C., or 30-37 ° C. in one or more embodiments.
  • the incubation time per cell layer formation is 1-24 hours, 3-12 hours, or 3-6 hours in one or more embodiments.
  • As a base material it does not specifically limit and what is conventionally well-known and developed in the future can be used.
  • the extracellular matrix component layer can be formed by placing a liquid containing an extracellular matrix component on the cell layer.
  • the extracellular matrix component layer is formed by, on the cell layer, a liquid containing the substance A (solution A) and a liquid containing the substance B interacting with the substance A (solution B). It can be formed by arranging them alternately.
  • the formation of the extracellular matrix component layer is preferably performed by alternately arranging the solution A and the solution B as one set, and repeating this two sets, or three or more sets.
  • a protein or polymer having an RGD sequence (hereinafter also referred to as “substance having an RGD sequence”) and a protein or polymer having the RGD sequence are used.
  • a combination with a protein or polymer that interacts with a protein (hereinafter also referred to as “substance having interaction”), or a protein or polymer that has a positive charge (hereinafter also referred to as “substance with a positive charge”).
  • a negatively charged protein or polymer hereinafter also referred to as a “negatively charged substance”).
  • the solution A (solution B) includes the substance A (substance B) and a solvent or a dispersion medium (hereinafter also simply referred to as “solvent”).
  • the content of the substance A (substance B) in the solution A (solution B) is 0.0001 to 1 mass%, 0.01 to 0.5 mass%, or 0.02 to 0. .1% by mass.
  • the solvent include an aqueous solvent such as water, phosphate buffered saline (PBS), and a buffer solution in one or more embodiments.
  • the buffer includes Tris buffer such as Tris-HCl buffer, phosphate buffer, HEPES buffer, citrate-phosphate buffer, glycylglycine-sodium hydroxide buffer. , Britton-Robinson buffer, GTA buffer, and the like.
  • Tris buffer such as Tris-HCl buffer, phosphate buffer, HEPES buffer, citrate-phosphate buffer, glycylglycine-sodium hydroxide buffer. , Britton-Robinson buffer, GTA buffer, and the like.
  • the pH of the solvent is not particularly limited, and in one or more embodiments, is 3 to 11, 6 to 8, or 7.2 to 7.4.
  • the production method of the present disclosure includes laminating a plurality of the cell layers by alternately forming a cell layer and forming an extracellular matrix component layer.
  • the number of cell layers to be laminated is not particularly limited, but is preferably 5 layers or more, 6 layers or more, or 7 layers or more, and 15 layers or less from the viewpoint of exerting properties and functions equivalent to those of living tissues such as humans. 14 layers or less, 13 layers or less, 12 layers or less, 11 layers or less, or 10 layers or less.
  • stacking method can be performed in consideration of the method disclosed by the patent 4919464 in one or some embodiment.
  • the second layering method includes three-dimensionally stacking smooth muscle cells directed from an undifferentiated type to a differentiated type by stacking smooth muscle cells coated with extracellular matrix components.
  • smooth muscle cells coated with an extracellular matrix component are smooth muscle cells oriented from an undifferentiated type to a differentiated type, and smooth muscle cells.
  • a membrane containing an extracellular matrix component hereinafter also referred to as “extracellular matrix component membrane”).
  • the extracellular matrix component membrane preferably includes a membrane containing the substance A and a membrane containing the substance B that interacts with the substance A. The combination of the substance A and the substance B is as described above.
  • the thickness of the extracellular matrix component membrane is 1 to 1 ⁇ 10 3 nm, or 2 to 1 ⁇ 10 2 nm, and the three-dimensional tissue body in which the coated cells are stacked more densely is used. From the reason that it is obtained, 3 to 1 ⁇ 10 2 nm is preferable.
  • the thickness of the extracellular matrix component membrane can be appropriately controlled by, for example, the number of membranes constituting the coating.
  • the extracellular matrix component membrane is not particularly limited, and may be a single layer, or in one or a plurality of embodiments, for example, 3, 5, 7, 9, 11, 13, 15 layers or more. It may be.
  • the lamination of the coated cells includes seeding the coated cells so that the coated cells are three-dimensionally stacked and culturing them in a medium.
  • the density of coated cells at the time of seeding can be appropriately determined according to the size and thickness of a target three-dimensional tissue body, the size of a container to be cultured, the number of cells to be stacked, and the like. In one or a plurality of embodiments, 1 ⁇ 10 2 to 1 ⁇ 10 9 pieces / cm 3 , 1 ⁇ 10 4 to 1 ⁇ 10 8 pieces / cm 3 , or 1 ⁇ 10 5 to 1 ⁇ 10 7 pieces / cm 3 3 .
  • the medium and culture conditions are as described above.
  • the coated cell is obtained by converting a solution containing the substance A (solution A) and a solution containing the substance B (solution B) into smooth muscle cells oriented from an undifferentiated type to a differentiated type. It can be prepared by alternating contact. Solution A and solution B are as described above. Note that the second stacking method can be performed in one or a plurality of embodiments in consideration of the method disclosed in Japanese Patent Application Laid-Open No. 2012-115254.
  • the manufacturing method of the present disclosure improves the expression of elastic fibers in a three-dimensional tissue body and improves the self-supporting property of the three-dimensional tissue body. It may include culturing the body for more than one day. In one or more embodiments, the period for culturing the cells is 2 days or more, 3 days or more, 4 days or more, 5 days or more, 6 days or more, 7 days or more, 10 days or more, or 15 days or more, Moreover, it is 30 days or less, 25 days or less, or 21 days or less.
  • the production method of the present disclosure provides vascular endothelial cells on a cell layer on which smooth muscle cells are laminated, from the viewpoint of exerting properties and / or functions equivalent to those of living tissues such as humans. It is preferable to arrange and culture the cell fluid containing. In one or some embodiment, it is preferable to arrange
  • the culture conditions are as described above.
  • the production method of the present disclosure is a fibroblast in which fibroblasts are laminated via an extracellular matrix component from the viewpoint of exerting properties and / or functions equivalent to those of a living tissue such as a human. It is preferable to dispose a cell solution containing the above-described smooth muscle cells on the cell layer to form a cell layer in which smooth muscle cells are laminated.
  • the present disclosure relates to an artificial blood vessel obtained by molding the three-dimensional tissue body of the present disclosure. Since the artificial blood vessel of the present disclosure is obtained by molding the three-dimensional tissue body of the present disclosure, in one or a plurality of embodiments, the artificial blood vessel is excellent in self-supporting property. In one or a plurality of embodiments, the shape of the artificial blood vessel of the present disclosure is preferably tubular.
  • the present disclosure relates to a method for evaluating an influence on a blood vessel of a test substance using the three-dimensional tissue body of the present disclosure.
  • the test substance can be evaluated in an environment close to an actual blood vessel.
  • the evaluation method of the present disclosure can be an extremely useful tool in evaluating the kinetics of drugs of various molecular weights, for example, in the creation (screening) of new drugs.
  • the evaluation method of the present disclosure includes contacting a test substance with the three-dimensional tissue body of the present disclosure, observing the influence of the test substance on the three-dimensional tissue body, and the observation result. Evaluation of the test substance based on the above.
  • the present disclosure relates to a test substance evaluation kit.
  • the kit of the present disclosure includes the three-dimensional tissue body of the present disclosure.
  • the kit of the present disclosure further includes a product including at least one of a reagent, a material, a tool, and a device used for a predetermined test, and an instruction (an instruction manual) for evaluation thereof. May be included.
  • the substance having the RGD sequence described as the extracellular matrix component the substance having an interaction, the substance having a positive charge, and the substance having a negative charge will be described with examples.
  • a substance having an RGD sequence refers to a protein or polymer having an “Arg-Gly-Asp” (RGD) sequence, which is an amino acid sequence responsible for cell adhesion activity.
  • RGD Arg-Gly-Asp
  • having an RGD sequence may originally have an RGD sequence, or may have a RGD sequence chemically bound thereto.
  • the substance having the RGD sequence is preferably biodegradable.
  • Examples of the protein having an RGD sequence include conventionally known adhesive proteins or water-soluble proteins having an RGD sequence in one or a plurality of embodiments.
  • Examples of the adhesive protein include fibronectin, vitronectin, laminin, cadherin, and collagen in one or a plurality of embodiments.
  • Examples of the water-soluble protein having an RGD sequence include, in one or more embodiments, collagen, gelatin, albumin, globulin, proteoglycan, an enzyme, an antibody, or the like to which the RGD sequence is bound.
  • Examples of the polymer having an RGD sequence include a naturally-derived polymer or a synthetic polymer in one or a plurality of embodiments.
  • Examples of the naturally-derived polymer having an RGD sequence include, in one or more embodiments, a water-soluble polypeptide, a low-molecular peptide, a polyamino acid such as ⁇ -polylysine or ⁇ -polylysine, and a sugar such as chitin or chitosan.
  • Examples of the synthetic polymer having an RGD sequence include, in one or more embodiments, a polymer or copolymer having an RGD sequence such as a linear type, graft type, comb type, dendritic type, or star type.
  • the polymer or copolymer may be polyurethane, polycarbonate, polyamide, or a copolymer thereof, polyester, poly (N-isopropylacrylamide-co-polyacrylic acid), polyamide amine dendrimer, polyethylene Examples thereof include oxide, poly ⁇ -caprolactam, polyacrylamide, or poly (methyl methacrylate- ⁇ -polyoxymethacrylate).
  • the substance having the RGD sequence is preferably fibronectin, vitronectin, laminin, cadherin, polylysine, elastin, collagen to which the RGD sequence is bound, gelatin, chitin or chitosan to which the RGD sequence is bound, and more preferably fibronectin.
  • the substance that interacts refers to a protein or polymer that interacts with a substance having an RGD sequence.
  • “interact” means, in one or more embodiments, electrostatic interaction, hydrophobic interaction, hydrogen bond, charge transfer interaction, covalent bond formation, specific interaction between proteins. , And / or a substance that interacts chemically and / or physically with a substance having an RGD sequence by van der Waals force or the like is close enough to allow bonding, adhesion, adsorption, or electron transfer.
  • the interacting substance is preferably biodegradable.
  • Examples of the protein that interacts with a substance having an RGD sequence include collagen, gelatin, proteoglycan, integrin, enzyme, or antibody in one or a plurality of embodiments.
  • Examples of the polymer that interacts with a substance having an RGD sequence include a naturally-derived polymer or a synthetic polymer in one or a plurality of embodiments.
  • the naturally-derived polymer that interacts with a substance having an RGD sequence includes, in one or more embodiments, a water-soluble polypeptide, a low-molecular peptide, a polyamino acid, elastin, heparin, a sugar such as heparan sulfate or dextran sulfate, and Examples include hyaluronic acid.
  • the polyamino acid include, in one or more embodiments, polylysine such as ⁇ -polylysine or ⁇ -polylysine, polyglutamic acid, or polyaspartic acid.
  • the synthetic polymer that interacts with a substance having an RGD sequence include those exemplified as the above-described synthetic polymer having an RGD sequence in one or more embodiments.
  • the interacting substance is preferably gelatin, dextran sulfate, heparin, hyaluronic acid, globulin, albumin, polyglutamic acid, collagen, or elastin, more preferably gelatin, dextran sulfate, heparin, hyaluronic acid, or collagen, More preferred is gelatin, dextran sulfate, heparin, or hyaluronic acid.
  • the combination of the substance having the RGD sequence and the substance that interacts is not particularly limited as long as it is a combination of different substances that interact with each other, and either one is a polymer or protein containing the RGD sequence, and the other is this. Any polymer or protein that interacts with the protein may be used.
  • the combination of the substance having an RGD sequence and the substance having an interaction includes, in one or more embodiments, fibronectin and gelatin, fibronectin and ⁇ -polylysine, fibronectin and hyaluronic acid, fibronectin and dextran sulfate, fibronectin and heparin, fibronectin And collagen, laminin and gelatin, laminin and collagen, polylysine and elastin, vitronectin and collagen, RGD-bound collagen or RGD-bound gelatin and collagen or gelatin, and the like.
  • fibronectin and gelatin fibronectin and ⁇ -polylysine, fibronectin and hyaluronic acid, fibronectin and dextran sulfate, fibronectin and heparin, or laminin and gelatin are preferable, and fibronectin and gelatin are more preferable.
  • sequence, and the substance which has interaction may be one each, respectively, and may use 2 or more types together in the range which shows interaction, respectively.
  • a substance having a positive charge refers to a protein or polymer having a positive charge.
  • the protein having a positive charge is preferably a water-soluble protein in one or a plurality of embodiments.
  • the water-soluble protein include basic collagen, basic gelatin, lysozyme, cytochrome c, peroxidase, or myoglobin in one or more embodiments.
  • the polymer having a positive charge include naturally-derived polymers and synthetic polymers in one or a plurality of embodiments.
  • Examples of the naturally-derived polymer include, in one or more embodiments, a water-soluble polypeptide, a low-molecular peptide, a polyamino acid, a sugar such as chitin or chitosan, and the like.
  • Examples of the polyamino acid include polylysine such as poly ( ⁇ -lysine) and poly ( ⁇ -lysine), polyarginine, and polyhistidine in one or more embodiments.
  • Examples of the synthetic polymer include, in one or more embodiments, a polymer or copolymer such as a linear type, a graft type, a comb type, a dendritic type, or a star type.
  • the polymer or copolymer may be polyurethane, polyamide, polycarbonate, or a copolymer thereof, polyester, polydiallyldimethylammonium chloride (PDDA), polyallylamine hydrochloride, polyethyleneimine, polyvinyl. Examples thereof include amines and polyamide amine dendrimers.
  • PDDA polydiallyldimethylammonium chloride
  • polyallylamine hydrochloride polyethyleneimine
  • polyvinyl examples thereof include amines and polyamide amine dendrimers.
  • a substance having a negative charge refers to a protein or polymer having a negative charge.
  • the protein having a negative charge is preferably a water-soluble protein in one or a plurality of embodiments.
  • the water-soluble protein include acidic collagen, acidic gelatin, albumin, globulin, catalase, ⁇ -lactoglobulin, thyroglobulin, ⁇ -lactalbumin, or ovalbumin in one or more embodiments.
  • Examples of the negatively charged polymer include naturally derived polymers and synthetic polymers.
  • Examples of the naturally-derived polymer include, in one or more embodiments, water-soluble polypeptides, low-molecular peptides, polyamino acids such as poly ( ⁇ -lysine), dextran sulfate, and the like.
  • Examples of the synthetic polymer include, in one or more embodiments, a polymer or copolymer such as a linear type, a graft type, a comb type, a dendritic type, or a star type.
  • the polymer or copolymer may be polyurethane, polyamide, polycarbonate, and a copolymer thereof, polyester, polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyacrylamide methylpropane sulfonic acid. , Terminal carboxylated polyethylene glycol, polydiallyldimethylammonium salt, polyallylamine salt, polyethyleneimine, polyvinylamine, or polyamidoamine dendrimer.
  • a combination of a positively charged substance and a negatively charged substance may be ⁇ -polylysine salt and polysulfonate, ⁇ -polylysine and polysulfonate, chitosan and dextran sulfate, poly Examples include allylamine hydrochloride and polystyrene sulfonate, polydiallyldimethylammonium chloride and polystyrene sulfonate, or polydiallyldimethylammonium chloride and polyacrylate, preferably ⁇ -polylysine salt and polysulfonate, or polydiallyl. Dimethylammonium chloride and polyacrylate.
  • polysulfonate examples include sodium polysulfonate (PSS) and the like in one or more embodiments.
  • PPS sodium polysulfonate
  • the substance having a positive charge and the substance having a negative charge may each be one kind, or two or more kinds may be used in combination within a range showing an interaction.
  • the production method according to [3] comprising preparing the smooth muscle cells by culturing smooth muscle cells at a high density.
  • [5] The production method according to [3] or [4], wherein the smooth muscle cell is a smooth muscle cell in an embryonic stage or a childhood stage.
  • the stacking is performed by alternately forming a cell layer of the smooth muscle cells and a layer containing the extracellular matrix component, or stacking smooth muscle cells coated with the extracellular matrix component.
  • the manufacturing method in any one of [3] to [5] including doing.
  • [7] An elastic three-dimensional tissue produced by the production method according to any one of [3] to [6].
  • Example 1 Preparation of smooth muscle cell (SMC) solution
  • Aortic smooth muscle cells collected from neonatal rats were cultured for 4 passages and cultured for 11 days. In addition, among 11 days of culture, 7 days of culture was performed at a confluent density of 95% or more.
  • Cells collected by trypsinization (0.05% trypsin, 0.02% EDTA) (37 ° C., 5-7 minutes) were seeded at a density of 50% confluence and cultured for 5 days. Note that the cell growth ability was extremely low in the culture for 5 days. For this reason, it was confirmed that this cell was a smooth muscle cell oriented from an undifferentiated type to a differentiated type.
  • Cells cultured for 5 days were collected by trypsin treatment under the same conditions as described above, and dispersed in a medium so as to be 4.0 ⁇ 10 4 cells / mL to prepare an SMC solution.
  • the medium was changed every 48 hours using DMEM (Dulbecco's Modified Eagle Medium) containing 10% fetal bovine serum (FBS).
  • DMEM Dulbecco's Modified Eagle Medium
  • FBS fetal bovine serum
  • Bovine plasma-derived fibronectin (Product No. F1141, manufactured by SIGMA, solution, 1 mg / mL (0.5 M NaCl, 0.05 M Tris (pH 7.5)), 0.5 M NaCl, 0.05 M Tris (pH 7.5)
  • a BFN solution was prepared by diluting to 0.2 mg / mL.
  • Gelatin solution was prepared by dissolving gelatin (Product No. 077-03155, manufactured by Wako) in 0.05 M Tris (pH 7.5) at 37 ° C. over 3-4 hours so as to be 0.2 mg / ml.
  • a cell disk (product name: Cell Disk LF, manufactured by Sumitomo Bakelite) was immersed in 2 mL of BFN solution (37 ° C., 1 minute each) to form a BFN layer on the surface of the cell disk, and then an SMC solution was placed on the BFN layer.
  • the SMC solution was placed so that SMC was seeded at 11 ⁇ 10 4 cells / cm 2 .
  • a cell culture incubator 37 ° C., 5% CO 2
  • the cells were adhered to form an SMC layer (first layer).
  • the SMC layer was immersed in 2 mL of BFN solution and 2 mL of Gelatin solution alternately for a total of 9 times (37 ° C., 1 minute each) to form a fibronectin-gelatin (FN-G) nano thin film on the surface of the SMC layer.
  • the SMC solution is quickly placed on the FN-G nanofilm (SMC: 11 ⁇ 10 4 cells / cm 2 ), and the cells are cultured for 6-12 hours in a cell culture incubator (37 ° C., 5% CO 2 ).
  • the SMC layer (second layer) was formed by bonding.
  • the SMC layer including the seven SMC layers is formed by laminating seven SMC layers in four days and then culturing for three days. A former tissue was formed.
  • As the medium DMEM containing 10% FBS was used for the seven SMC layers, and DMEM containing 1-2% FBS was used for 3 days thereafter. The medium was changed every day.
  • FIGS. 1A-D The resulting three-dimensional tissue and the expression of elastic fibers in rat blood vessels were evaluated by Elastica van Gieson staining.
  • the images are shown in FIGS. 1A-D.
  • 1A is an image of a three-dimensional tissue body of Example 1
  • FIG. 1B is an image of a blood vessel of a newborn rat
  • FIG. 1C is an image of a blood vessel of an adult rat
  • FIG. 1D is an image of a three-dimensional tissue body of Comparative Example 1.
  • the expression of fibrillin-1 and -2 important for the expression of elastic fibers was evaluated by immunostaining.
  • FIG. FIG. 2 is an example of a fluorescent immunohistochemical section photograph of the obtained three-dimensional tissue, in which the upper image is the image of the three-dimensional tissue of Example 1 and the lower image is a blood vessel of a rat newborn. It is an image.
  • the three-dimensional tissue body of Example 1 showed extremely high expression of elastic fibers as compared with the three-dimensional tissue body of Comparative Example 1. As shown in FIGS. 1A to 1C and FIG. 2, it was confirmed that the three-dimensional tissue of Example 1 expressed elastic fibers at a high level comparable to that of newborn rats and adult rats. Further, the elastic fibers in the three-dimensional tissue body of Example 1 have a thick layer like the elastic fibers of the newborn rat and adult rat. From these, it was suggested that the three-dimensional structure of Example 1 exhibits high elasticity.
  • Example 1 The elasticity of the three-dimensional structure produced in Example 1 was visually evaluated.
  • An image of the evaluation experiment is shown in FIG. That is, in FIG. 3, in order from the left, an image in which the three-dimensional tissue produced in Example 1 is dissociated from the cell disk, an image in which the dissociated three-dimensional tissue is wound around a capillary, and a state in which the three-dimensional tissue is pulled in the longitudinal direction.
  • Each image is shown.
  • the three-dimensional tissue body of Example 1 exhibited a self-supporting property capable of being formed into a tubular shape, and exhibited an elongation of about twice the longitudinal direction (extension direction). Therefore, it was confirmed that the three-dimensional structure of Example 1 exhibited sufficient self-supporting properties and excellent elasticity. Note that the three-dimensional structure of Comparative Example 1 could not be pulled.
  • Example 1 Therefore, according to the method of Example 1, it was possible to produce a three-dimensional structure exhibiting excellent elasticity in a short period of time.
  • Example 2 A three-dimensional tissue body was prepared in the same manner as in Example 1 except that the culture period of the 4th passage was changed to 11 days instead of 11 days (95% or more confluent culture: 5 days).
  • the smooth muscle cells used for lamination have high cell proliferation ability and are not differentiated from undifferentiated type to differentiated type. Although smooth muscle cells could be laminated, the obtained three-dimensional tissue body does not have elasticity. It was.
  • Example 2 [Production of three-dimensional structures] The same procedure as in Example 1 was conducted except that the SMC layer was laminated once a day, that is, seven SMC layers for 7 days (the culture time after the SMC solution was set to 12-24 hours). The formation of the SMC layer and the formation of the FN-G nano thin film were alternately repeated, followed by culturing for 3 days to form a three-dimensional structure including seven SMC layers. The elasticity of the obtained three-dimensional structure was visually evaluated. When the produced three-dimensional structure was dissociated from the cell disk and pulled in the longitudinal direction, the elongation was about twice as large as the extension direction.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Rheumatology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

弾性を有する三次元組織体及びそれを製造可能な方法を提供する。平滑筋細胞と細胞外マトリックス成分とを含み、前記平滑筋細胞が前記細胞外マトリックス成分を介して積層された弾性を有する三次元組織体に関する。また、平滑筋細胞を細胞外マトリックス成分を介して積層することを含む、三次元組織体の製造方法であって、前記平滑筋細胞が、未分化型から分化型に方向付けられた平滑筋細胞である製造方法に関する。

Description

三次元組織体及びその製造方法
 本開示は、三次元組織体及びその製造方法に関する。
 血管平滑筋細胞を三次元化した血管モデルが、外傷や動脈硬化症等といった血管疾患の外科的治療の点、及び近年見直しが求められている動物実験に代わる新たな代替手段の提供の点から広く求められている。このため血管平滑筋細胞を人工的に三次元化して血管モデルを構築するための研究が行われている(例えば、非特許文献1及び2等)。非特許文献1には、コラーゲンを高発現させた培地にて平滑筋細胞を数週間培養後、解離後にロール化して血管形状にした後にさらに数週間培養することで人工血管モデルが開示されている。また、非特許文献2には、特許文献1に開示されたフィブロネクチン及びゼラチンのナノ薄膜を形成することによる細胞の積層化の技術を用い、ラット新生児血管平滑筋細胞やヒト臍帯静脈血管平滑筋細胞を積層化して、血管壁に類似の平滑筋細胞の積層体を形成することが開示されている。
特許第4919464号
L’Heureux et al., FASEB J. 12, 47 (1998) M. Matsusaki et al., Journal of Biomaterials Science 23 (2012) 63-79
 移植のために様々な人工血管が提案されている。しかしながら、血管の中膜層、特に動脈の中膜層は伸縮性及び弾性を有するにも関わらず、弾性を有する人工血管はまだ提案されていない。例えば、非特許文献1には得られた人工血管が剛性を有することは示されているが、弾性を有することは示されていない。また、非特許文献2の方法は、得られる積層体における弾性線維の発現が低く、積層体を基材から解離した後の自立性が低いという問題がある。さらに、非特許文献1の方法は、移植可能な血管モデルの作製のためには数ヶ月の時間を要するという問題がある。
 そこで、本開示は、弾性を有する三次元組織体及びそれを製造可能な方法を提供する。
 本開示は、一又は複数の実施形態において、平滑筋細胞と細胞外マトリックス成分とを含み、前記平滑筋細胞が前記細胞外マトリックス成分を介して積層された弾性を有する三次元組織体に関する。
 本開示は、一又は複数の実施形態において、平滑筋細胞を細胞外マトリックス成分を介して積層することを含む三次元組織体の製造方法であって、前記平滑筋細胞が、未分化型から分化型に方向付けられた平滑筋細胞である製造方法に関する。
 本開示によれば、一又は複数の実施形態において、弾性線維を有する三次元組織体を提供できる。
図1Aは実施例1の三次元組織体の画像、図1Bはラット新生児の血管の画像、図1Cは成体ラットの血管の画像、図1Dは比較例1の三次元組織体の画像を示す。 図2は、実施例1の三次元組織体及びラット新生児の血管の蛍光免疫組織切片写真の一例を示す。 図3は、実施例1の三次元組織体の弾性評価実験の画像の一例を示す。
 本開示は、未分化型から分化型に方向付けられた平滑筋細胞を、細胞外マトリックス成分を介して積層して三次元組織化することによって、弾性を有する三次元組織体を製造できる、との知見に基く。
 未分化型から分化型に方向付けられた平滑筋細胞を、細胞外マトリックス成分を介して積層することによって、弾性を有する三次元組織体を製造できるメカニズムは明らかではないが、以下のように推察される。すなわち、未分化型から分化型に方向付けられた平滑筋細胞は、細胞回収のためのトリプシン等の細胞解離剤による処理後も平滑筋細胞の形質が保たれる。また、未分化型から分化型に方向付けられた平滑筋細胞を積層して培養することによって、積層された該平滑筋細胞が三次元組織体において細胞外マトリックス成分を分泌し、この分泌された細胞外マトリックス成分が弾性線維の発現に寄与し、弾性を有する三次元組織体が得られるものと考えられる。但し、本開示はこのメカニズムに限定して解釈されなくてもよい。
 本開示において「未分化型から分化型に方向付けられた平滑筋細胞」とは、一又は複数の実施形態において、分化した形質を示す平滑筋細胞、及び分化した形質と未分化な形質との双方を併せ持つ平滑筋細胞(いわゆる、未分化型から分化型に分化する過程の平滑筋細胞)を含む。分化型(収縮型)平滑筋細胞は、一又は複数の実施形態において、未分化型(合成型)平滑筋細胞と比較して、収縮タンパク質に富み、収縮に特化し、及び又は分裂能(増殖能)が低い平滑筋細胞をいう。「未分化型から分化型に方向付けられた平滑筋細胞」であるか否かは、一又は複数の実施形態において、平滑筋細胞を1、2、3、4又は5日間培養して増殖能の程度を確認することによって判別することができる。また、SM22,SM1,SM2,SMemb等のマーカーを用いて判別することもできる。分化型に方向づけられた細胞では、未分化型の細胞に比べて、SM22,SM1,SM2が多く発現し、SMembの発現は減少している。
 未分化型から分化型に方向付けられた平滑筋細胞は、一又は複数の実施形態において、平滑筋細胞を分化させること又は平滑筋細胞を形質変換させることによって得ることができ、好ましくは平滑筋前駆細胞又は未分化型若しくは脱分化型の平滑筋細胞を分化型(収縮型)の平滑筋細胞に形質変換させることによって得ることができる。形質変換は、一又は複数の実施形態において、平滑筋細胞を高密度で培養することによって行うことができる。本開示において「平滑筋細胞を高密度で培養する」とは、実質的に100%コンフルエントの状態で平滑筋細胞を培養することをいう。実質的に100%コンフルエントとしては、一又は複数の実施形態において、95%以上、96%以上、97%以上、98%以上、99%以上、又は100%コンフルエントを含む。なお、通常の培養条件で継代培養した平滑筋細胞は、通常、増殖能を有する未分化型の平滑筋細胞である。通常の培養条件としては、例えば、80%以下、70%以下、又は50%以下コンフルエントでの培養が挙げられる。
 本開示において「平滑筋細胞」とは、平滑筋を構成する又は構成しうる細胞をいう。平滑筋細胞としては、一又は複数の実施形態において、血管平滑筋細胞、及び気管平滑筋細胞等が挙げられる。平滑筋細胞の由来は特に制限されるものではなく、一又は複数の実施形態において、ヒト及びヒト以外の動物等が挙げられる。ヒト以外の動物としては、特に限定されず、例えば、霊長類(アカゲザル等)、マウス、ラット、イヌ、ウサギ、及びブタ等が挙げられる。ヒトの生体組織とより同等の性質・機能を発揮させる観点からは、ヒトが好ましい。また、胚性幹細胞(ES細胞)、ヒト間葉系幹細胞(MSC)又は人工多能性幹細胞(iPS細胞)を分化誘導した平滑筋細胞であってもよい。
 本開示において「弾性を有する」とは、三次元組織体に力を加えると三次元組織体が伸長し、除荷すれば略元の寸法に戻ることができる性質を有することをいう。三次元組織体に加える力としては、一又は複数の実施形態において、引っ張り力等が挙げられる。本開示において「弾性を有する」としては、一又は複数の実施形態において、少なくとも1.2倍の長さに伸ばすことが可能であることをいい、好ましくは少なくとも1.3倍、1.4倍、1.5倍又は2倍の長さに伸ばすことが可能であることをいい、より好ましくは三次元組織体を伸ばした後元の長さに戻ることが可能であることをいう。本開示において「少なくとも1.2倍の長さに伸ばすことが可能」とは、伸長方向における伸長前の三次元組織体の長さを1とした場合、伸長後の伸長方向における三次元組織体の長さが1.2又はそれ以上になることをいう。また、本開示において「弾性を有する」としては、一又は複数の実施形態において、三次元組織体における弾性線維の発現が高いことをいう。弾性線維の発現は、一又は複数の実施形態において、Elastica van Gieson染色や、放射性同位元素([3H]valine)で評価できる。
 本開示において「平滑筋細胞が細胞外マトリックス成分を介して積層され」とは、平滑筋細胞が細胞外マトリックス成分を介して三次元的に積み重ねられることをいい、好ましくは平滑筋細胞を含む細胞層が複数層積層されていることをいう。「細胞層が複数層積層されている」とは、一又は複数の実施形態において、細胞層が単層の細胞培養体ではないことをいう。
 本開示において「細胞外マトリックス成分」とは、生体内で細胞の外の空間を充填して骨格的役割、足場を提供する役割、及び又は生体因子を保持する役割等の機能を果たす物質をいう。また、細胞外マトリックス成分は、さらに、in vitro細胞培養において骨格的役割、足場を提供する役割及び又は生体因子を保持する役割等の機能を果たしうる物質を含んでもよく、また人工的に合成された物質やその一部を含んでもよい。細胞外マトリックス成分としては、後述の例又は特許4919464号及び特開2012-115254号に開示のものが使用できる。
 本開示において「三次元組織体」とは、細胞外マトリックス成分と、細胞外マトリックス成分を介して積層された平滑筋細胞とを含み、かつ、弾性を有するものをいう。三次元組織体に含まれる細胞が平滑筋細胞であることは、一又は複数の実施形態において、alpha SMA(smooth muscle actin)陽性を検出することで確認できる。本開示の三次元組織体は、一又は複数の実施形態において、平滑筋細胞以外の細胞を含んでいてもよい。平滑筋細胞以外の細胞としては、一又は複数の実施形態において、血管内皮細胞、線維芽細胞、及び血球由来細胞等が挙げられる。本開示の三次元組織体に含まれる細胞の由来は特に制限されるものではなく、一又は複数の実施形態において、ヒト及びヒト以外の動物等が挙げられる。ヒト以外の動物は、上記の通りである。
 [三次元組織体]
 本開示は、一又は複数の実施形態において、平滑筋細胞と細胞外マトリックス成分とを含み、前記平滑筋細胞が前記細胞外マトリックス成分を介して積層された弾性を有する三次元組織体(以下、「本開示の三次元組織体」ともいう)に関する。本開示の三次元組織体は、弾性を有し、一又は複数の実施形態において、高いレベルで弾性線維が発現しているため、優れた自立性を示す、すなわち支持体なしで三次元構造が維持され組織片として利用できるという効果を奏する。このため、本開示の三次元組織体は、一又は複数の実施形態において、管状等への成形が可能となりうる。本開示の三次元組織体は、後述する本開示の製造方法によって製造できる。
 本開示の三次元組織体は、一又は複数の実施形態において、細胞外マトリックス成分と積層された平滑筋細胞とを含む中膜層と、中膜層上に形成された内皮細胞を含む内膜層とを有する。本開示の三次元組織体は、一又は複数の実施形態において、外膜層、外膜層上に形成された中膜層、及び中膜層上に形成された内膜層を含み、外膜層は線維芽細胞を含み、中膜層は細胞外マトリックス成分と積層された平滑筋細胞とを含み、内膜層は内皮細胞を含む。
 本開示の三次元組織体は、自立性に優れることから、一又は複数の実施形態において、移植用血管として利用でき、また人工血管としての形成が可能となるという効果を奏する。本開示の三次元組織体は、弾性を有することから、一又は複数の実施形態において、冠動脈等の屈折部を有していたり、管径の細い血管のための人工血管としても利用できる。また、本開示の三次元組織体は、生体内の血管と同様に弾性を有することから、一又は複数の実施形態において、血管疾患の病態解明や薬理効果評価のための血管モデルとしても使用できる。
 [三次元組織体の製造方法]
 本開示は、一又は複数の実施形態において、平滑筋細胞を細胞外マトリックス成分を介して積層することを含む、三次元組織体の製造方法であって、前記平滑筋細胞が、未分化型から分化型に方向付けられた平滑筋細胞である製造方法(以下、「本開示の製造方法」ともいう)に関する。本開示の製造方法によれば、一又は複数の実施形態において、細胞の積層開始から1週間~数週間といった短い期間で、弾性線維の発現が高く自立性に優れる三次元組織体を製造できる。
 細胞外マトリックス成分を介した平滑筋細胞の積層は、一又は複数の実施形態において、未分化型から分化型に方向付けられた細胞を含む細胞液を用いて平滑筋細胞を積層することを含む。
 本開示の製造方法は、一又は複数の実施形態において、細胞液を調製することを含んでもよい。細胞液は、一又は複数の実施形態において、未分化型から分化型に方向付けられた平滑筋細胞を培地等に分散させることによって調製することができる。細胞液の調製は、一又は複数の実施形態において、平滑筋細胞を分化型に分化させる点から、高密度で平滑筋細胞を培養することを含む。高密度での培養期間は、平滑筋細胞の由来に応じて適宜決定できる。平滑筋細胞がラット又はマウス由来の場合、高密度での培養期間は、一又は複数の実施形態において、6日以上、7日以上、若しくは8日以上であり、又は20日以下若しくは15日以下である。また、平滑筋細胞がヒト由来の場合、高密度での培養期間は、一又は複数の実施形態において、2日以上であり、又10日以下、8日以下又は5日以下である。培養温度は特に制限されるものではなく、一又は複数の実施形態において、4~60℃、20~40℃、又は30~37℃である。培地は、一又は複数の実施形態において、Eagle’s MEM培地、Dulbecco’s Modified Eagle培地(DMEM)、Modified Eagle培地(MEM)、Minimum Essential培地、RDMI、及びGlutaMax培地等が挙げられる。培地は、一又は複数の実施形態において、血清を添加した培地であってもよいし、無血清培地であってもよい。
 高密度で培養する平滑筋細胞は、三次元組織体における弾性線維の産生量を向上させ、三次元組織体の弾性を向上させる点から、一又は複数の実施形態において、平滑筋前駆細胞、及び合成型の平滑筋細胞が挙げられ、また、胎児期の平滑筋細胞又は幼年期までの平滑筋細胞等が挙げられる。幼年期までの平滑筋細胞は、一又は複数の実施形態において、増殖能が高く、細胞外基質や増殖因子などを盛んに産生し、合成型であることが知られている。平滑筋細胞は、一又は複数の実施形態において、動脈等から採取できる。動脈としては、大動脈、冠状動脈、肺動脈、及び臍帯動脈等が挙げられる。幼年期までの平滑筋細胞は、一又は複数の実施形態において、臍帯動脈等から採取できる。
 細胞液の調製は、一又は複数の実施形態において、高密度で培養した細胞を解離処理することを含む。解離処理に用いる細胞解離剤としては、一又は複数の実施形態において、トリプシン等が挙げられる。解離処理条件は特に制限されるものではない。解離処理温度は、特に限定されるものではなく、一又は複数の実施形態において、4~60℃、20~40℃、又は30~37℃である。解離処理時間は、特に限定されるものではなく、一又は複数の実施形態において、10~120分、15~60分、又は15~45分である。細胞液の調製は、一又は複数の実施形態において、解離処理した細胞を培地に分散させることを含む。培地は上述の通りである。
 細胞外マトリックス成分を介した平滑筋細胞の積層は、一又は複数の実施形態において、未分化型から分化型に方向付けられた平滑筋細胞を含む細胞層(以下、単に「細胞層」ともいう)の形成と細胞外マトリックス成分を含む層(以下、「細胞外マトリックス成分層」ともいう)の形成とを交互に行うこと(第1の積層方法)、又は、細胞外マトリックス成分で被覆された未分化型から分化型に方向付けられた平滑筋細胞を積層すること(第2の積層方法)によって行うことができる。
 [第1の積層方法]
 第1の積層方法は、細胞層の形成と細胞外マトリックス成分層の形成とを交互に行うことによって、未分化型から分化型に方向付けられた平滑筋細胞を含む細胞層を複数層積層することを含む。細胞層の形成は、一又は複数の実施形態において、未分化型から分化型に方向付けられた平滑筋細胞を含む細胞液を基材又は細胞外マトリックス成分層上に配置し、培養することによって行うことができる。細胞液における未分化型から分化型に方向付けられた平滑筋細胞の濃度は、一又は複数の実施形態において、1×102~1×107個/mL、1×103~1×106個/mL、又は1×103~1×105個/mLである。配置する未分化型から分化型に方向付けられた平滑筋細胞の密度は、一又は複数の実施形態において、1×102~1×109個/cm2、1×104~1×108個/cm2、1×105~1×107個/cm2又は1×105~1×106個/cm2である。インキュベーション温度は、一又は複数の実施形態において、4~60℃、20~40℃、又は30~37℃である。細胞層1層形成あたりのインキュベーション時間は、一又は複数の実施形態において、1~24時間、3~12時間、又は3~6時間である。基材としては、特に限定されるものではなく、従来公知及び今後開発されるものが使用できる。
 細胞外マトリックス成分層の形成は、一又は複数の実施形態において、細胞層上に、細胞外マトリックス成分を含む液を配置することによって形成できる。細胞外マトリックス成分層の形成は、一又は複数の実施形態において、細胞層上に、物質Aを含む液(溶液A)と、物質Aと相互作用する物質Bを含む液(溶液B)とを交互に配置することによって形成できる。細胞外マトリックス成分層の形成は、一又は複数の実施形態において、溶液Aと溶液Bとを交互に配置することを1セットとして、これを2セット、又は3セット以上繰返し行うことが好ましい。物質Aと物質Bとの組み合わせとしては、一又は複数の実施形態において、RGD配列を有するタンパク質又は高分子(以下、「RGD配列を有する物質」ともいう)と前記RGD配列を有するタンパク質又は高分子と相互作用するタンパク質又は高分子(以下、「相互作用を有する物質」ともいう)との組み合わせ、又は、正の電荷を有するタンパク質又は高分子(以下、「正の電荷を有する物質」ともいう)と負の電荷を有するタンパク質又は高分子(以下、「負の電荷を有する物質」ともいう)との組み合わせである。溶液A(溶液B)は、一又は複数の実施形態において、物質A(物質B)と溶媒又は分散媒体(以下、単に「溶媒」ともいう)とを含む。溶液A(溶液B)における物質A(物質B)の含有量は、一又は複数の実施形態において、0.0001~1質量%、0.01~0.5質量%、又は0.02~0.1質量%である。溶媒としては、一又は複数の実施形態において、水、リン酸緩衝生理食塩水(PBS)及び緩衝液等の水性溶媒が挙げられる。緩衝液としては、一又は複数の実施形態において、Tris-HCl緩衝液等のTris緩衝液、リン酸緩衝液、HEPES緩衝液、クエン酸-リン酸緩衝液、グリシルグリシン-水酸化ナトリウム緩衝液、Britton-Robinson緩衝液、又はGTA緩衝液等が挙げられる。溶媒のpHは、特に制限されず、一又は複数の実施形態において、3~11、6~8、又は7.2~7.4である。
 本開示の製造方法は、細胞層の形成と細胞外マトリックス成分層の形成とを交互に行うことによって前記細胞層を複数層積層することを含む。積層する細胞層の数は、特に制限されないが、ヒト等の生体組織とより同等の性質・機能を発揮させる観点から、5層以上、6層以上、又は7層以上が好ましく、また15層以下、14層以下、13層以下、12層以下、11層以下、又は10層以下が好ましい。なお、第1の積層方法は、一又は複数の実施形態において、特許4919464号に開示された方法を参酌して行うことができる。
 [第2の積層方法]
 第2の積層方法は、細胞外マトリックス成分で被覆された平滑筋細胞を積層することによって、未分化型から分化型に方向付けられた平滑筋細胞を三次元的に積み重ねることを含む。
 細胞外マトリックス成分で被覆された平滑筋細胞(以下、「被覆細胞」ともいう)は、一又は複数の実施形態において、未分化型から分化型に方向付けられた平滑筋細胞と、平滑筋細胞を覆う細胞外マトリックス成分を含む膜(以下、「細胞外マトリックス成分膜」ともいう)とを含む。細胞外マトリックス成分膜は、物質Aを含む膜と、前記物質Aと相互作用する物質Bを含む膜とを含むことが好ましい。物質Aと物質Bとの組み合わせとしては、上述の通りである。
 細胞外マトリックス成分膜の厚みは、一又は複数の実施形態において、1~1×103nm、又は2~1×102nmであり、被覆細胞がより密に積層された三次元組織体が得られるという理由から、3~1×102nmが好ましい。細胞外マトリックス成分膜の厚みは、例えば、被膜を構成する膜の数によって適宜制御することができる。細胞外マトリックス成分膜は、特に制限されず、1層であってもよいし、一又は複数の実施形態において、例えば、3、5、7、9、11、13、15層又はそれ以上の多層であってもよい。
 被覆細胞の積層は、一又は複数の実施形態において、被覆細胞が三次元的に積み重ねられた状態となるように被覆細胞を播種し、培地で培養することを含む。播種時の被覆細胞の密度は、一又は複数の実施形態において、目的とする三次元組織体の大きさ及び厚み、培養する容器の大きさならびに積層される細胞の数等に応じて適宜決定でき、一又は複数の実施形態において、1×102~1×109個/cm3、1×104~1×108個/cm3、又は1×105~1×107個/cm3である。培地及び培養条件は上述の通りである。
 被覆細胞は、一又は複数の実施形態において、物質Aを含む溶液(溶液A)と、物質Bを含む溶液(溶液B)とを、未分化型から分化型に方向付けられた平滑筋細胞に交互に接触させることにより調製することができる。溶液A及び溶液Bは上述の通りである。なお、第2の積層方法は、一又は複数の実施形態において、特開2012-115254号公報に開示された方法を参酌して行うことができる。
 本開示の製造方法は、三次元組織体における弾性線維の発現を向上させ、三次元組織体の自立性を向上させる点から、一又は複数の実施形態において、細胞を積層して得られた積層体を1日間以上培養することを含んでいてもよい。細胞を培養する期間は、一又は複数の実施形態において、2日以上、3日以上、4日以上、5日以上、6日以上、7日以上、10日以上、又は15日以上であり、また30日以下、25日以下、又は21日以下である。
 本開示の製造方法は、ヒト等の生体組織とより同等の性質及び又は機能を発揮させる観点から、一又は複数の実施形態において、平滑筋細胞が積層された細胞層上に、血管内皮細胞を含む細胞液を配置し培養することが好ましい。一又は複数の実施形態において、血管内皮細胞の細胞層が1層となるように細胞液を配置することが好ましい。培養条件は上述の通りである。
 本開示の製造方法は、ヒト等の生体組織とより同等の性質及び又は機能を発揮させる観点から、一又は複数の実施形態において、線維芽細胞が細胞外マトリックス成分を介して積層された線維芽細胞層上に、上述の平滑筋細胞を含む細胞液を配置し、平滑筋細胞が積層された細胞層を形成することが好ましい。
 [人工血管]
 本開示は、一又は複数の実施形態において、本開示の三次元組織体を成形することによって得られた人工血管に関する。本開示の人工血管は、本開示の三次元組織体を成形したものであるため、一又は複数の実施形態において、自立性に優れる。本開示の人工血管の形状は、一又は複数の実施形態において、管状であることが好ましい。
 [評価方法]
 本開示は、一又は複数の実施形態において、本開示の三次元組織体を用いた被検物質の血管に対する影響を評価する方法に関する。本開示の評価方法によれば、一又は複数の実施形態において、実際の血管に近い環境で被検物質の評価を行うことができる。本開示の評価方法は、例えば、新薬の創出(スクリーニング)等における各種分子量の薬物の動態評価において極めて有用なツールとなりうる。
 本開示の評価方法は、一又は複数の実施形態において、被検物質を本開示の三次元組織体に接触させること、被検物質の三次元組織体への影響を観察すること、及び観察結果に基づいて被検物質を評価することを含む。
 [評価キット]
 本開示は、一又は複数の実施形態において、被検物質の評価キットに関する。本開示のキットは、本開示の三次元組織体を含む。本開示のキットは、一又は複数の実施形態において、所定の検査に用いる試薬、材料、用具、及び装置、並びに、その評価についての説明書(取扱説明書)の少なくとも1つを含む製品をさらに含んでもよい。
 以下に、細胞外マトリックス成分として記載したRGD配列を有する物質、相互作用を有する物質、正の電荷を有する物質、及び負の電荷を有する物質について、例を挙げて説明する。
 (RGD配列を有する物質)
 RGD配列を有する物質とは、細胞接着活性を担うアミノ酸配列である「Arg-Gly-Asp」(RGD)配列をするタンパク質又は高分子をいう。本明細書において「RGD配列を有する」とは、元来RGD配列を有するものでもよいし、RGD配列が化学的に結合されたものでもよい。RGD配列を有する物質は、生分解性であることが好ましい。
 RGD配列を有するタンパク質としては、一又は複数の実施形態において、従来公知の接着性タンパク質、又はRGD配列を有する水溶性タンパク質等が挙げられる。接着性タンパク質としては、一又は複数の実施形態において、フィブロネクチン、ビトロネクチン、ラミニン、カドヘリン、又はコラーゲン等が挙げられる。RGD配列を有する水溶性タンパク質としては、一又は複数の実施形態において、RGD配列を結合させたコラーゲン、ゼラチン、アルブミン、グロブリン、プロテオグリカン、酵素、又は抗体等が挙げられる。
 RGD配列を有する高分子としては、一又は複数の実施形態において、天然由来高分子、又は合成高分子が挙げられる。RGD配列を有する天然由来高分子としては、一又は複数の実施形態において、水溶性ポリペプチド、低分子ペプチド、α-ポリリジン又はε-ポリリジン等のポリアミノ酸、キチン又はキトサン等の糖等が挙げられる。RGD配列を有する合成高分子としては、一又は複数の実施形態において、直鎖型、グラフト型、くし型、樹状型、又は星型等のRGD配列を有するポリマー又は共重合体が挙げられる。ポリマー又は共重合体としては、一又は複数の実施形態において、ポリウレタン、ポリカーボネート、ポリアミド、又はこれらの共重合体、ポリエステル、ポリ(N-イソプロピルアクリルアミド-co-ポリアクリル酸)、ポリアミドアミンデンドリマー、ポリエチレンオキサイド、ポリε-カプロラクタム、ポリアクリルアミド、又はポリ(メタクリル酸メチル-γ-ポリメタクリル酸オキシエチレン)等が挙げられる。
 RGD配列を有する物質は、これらの中でも、フィブロネクチン、ビトロネクチン、ラミニン、カドヘリン、ポリリジン、エラスチン、RGD配列を結合させたコラーゲン、RGD配列を結合させたゼラチン、キチン、又はキトサンが好ましく、より好ましくはフィブロネクチン、ビトロネクチン、ラミニン、ポリリジン、RGD配列を結合させたコラーゲン、又はRGD配列を結合させたゼラチンである。
 (相互作用する物質)
 相互作用する物質とは、RGD配列を有する物質と相互作用するタンパク質若しくは高分子をいう。本明細書において「相互作用する」とは、一又は複数の実施形態において、静電的相互作用、疎水性相互作用、水素結合、電荷移動相互作用、共有結合形成、タンパク質間の特異的相互作用、及び又はファンデルワールス力等によって化学的及び又は物理的にRGD配列を有する物質と相互作用する物質とが結合、接着、吸着又は電子の授受が可能な程度に近接することを意味する。相互作用する物質は、生分解性であることが好ましい。
 RGD配列を有する物質と相互作用するタンパク質としては、一又は複数の実施形態において、コラーゲン、ゼラチン、プロテオグリカン、インテグリン、酵素、又は抗体等が挙げられる。RGD配列を有する物質と相互作用する高分子としては、一又は複数の実施形態において、天然由来高分子、又は合成高分子が挙げられる。RGD配列を有する物質と相互作用する天然由来高分子としては、一又は複数の実施形態において、水溶性ポリペプチド、低分子ペプチド、ポリアミノ酸、エラスチン、ヘパリン、ヘパラン硫酸又はデキストラン硫酸等の糖、及びヒアルロン酸等が挙げられる。ポリアミノ酸としては、一又は複数の実施形態において、α-ポリリジン又はε-ポリリジン等のポリリジン、ポリグルタミン酸、又はポリアスパラギン酸等が挙げられる。RGD配列を有する物質と相互作用する合成高分子としては、一又は複数の実施形態において、上述のRGD配列を有する合成高分子として例示したものが挙げられる。
 相互作用する物質は、これらの中でも、ゼラチン、デキストラン硫酸、ヘパリン、ヒアルロン酸、グロブリン、アルブミン、ポリグルタミン酸、コラーゲン、又はエラスチンが好ましく、より好ましくはゼラチン、デキストラン硫酸、ヘパリン、ヒアルロン酸、又はコラーゲン、さらに好ましくはゼラチン、デキストラン硫酸、ヘパリン、又はヒアルロン酸である。
 RGD配列を有する物質と相互作用する物質との組み合わせは、特に制限されず、相互作用する異なる物質の組み合わせであればよく、いずれか一方がRGD配列を含む高分子又はタンパク質であり、他方がこれと相互作用する高分子又はタンパク質であればよい。RGD配列を有する物質と相互作用を有する物質との組み合わせとしては、一又は複数の実施形態において、フィブロネクチンとゼラチン、フィブロネクチンとε-ポリリジン、フィブロネクチンとヒアルロン酸、フィブロネクチンとデキストラン硫酸、フィブロネクチンとヘパリン、フィブロネクチンとコラーゲン、ラミニンとゼラチン、ラミニンとコラーゲン、ポリリジンとエラスチン、ビトロネクチンとコラーゲン、RGD結合コラーゲン又はRGD結合ゼラチンとコラーゲン又はゼラチン等が挙げられる。中でも、フィブロネクチンとゼラチン、フィブロネクチンとε-ポリリジン、フィブロネクチンとヒアルロン酸、フィブロネクチンとデキストラン硫酸、フィブロネクチンとヘパリン、又はラミニンとゼラチンが好ましく、より好ましくはフィブロネクチンとゼラチンである。なお、RGD配列を有する物質及び相互作用を有する物質は、それぞれ一種類ずつでもよいし、相互作用を示す範囲で二種類以上をそれぞれ併用してもよい。
 (正の電荷を有する物質)
 正の電荷を有する物質とは、正の電荷を有するタンパク質又は高分子をいう。正の電荷を有するタンパク質としては、一又は複数の実施形態において、水溶性タンパク質が好ましい。水溶性タンパク質としては、一又は複数の実施形態において、塩基性コラーゲン、塩基性ゼラチン、リゾチーム、シトクロムc、ペルオキシダーゼ、又はミオグロビン等が挙げられる。正の電荷を有する高分子としては、一又は複数の実施形態において、天然由来高分子及び合成高分子が挙げられる。天然由来高分子としては、一又は複数の実施形態において、水溶性ポリペプチド、低分子ペプチド、ポリアミノ酸、キチン又はキトサン等の糖等が挙げられる。ポリアミノ酸としては、一又は複数の実施形態において、ポリ(α-リジン)、ポリ(ε-リジン)等のポリリジン、ポリアルギニン、又はポリヒスチジン等が挙げられる。合成高分子としては、一又は複数の実施形態において、直鎖型、グラフト型、くし型、樹状型、又は星型等のポリマー又は共重合体が挙げられる。前記ポリマー又は共重合体としては、一又は複数の実施形態において、ポリウレタン、ポリアミド、ポリカーボネート、又はこれらの共重合体、ポリエステル、ポリジアリルジメチルアンモニウムクロライド(PDDA)、ポリアリルアミンハイドロクロライド、ポリエチレンイミン、ポリビニルアミン、又はポリアミドアミンデンドリマー等が挙げられる。
 (負の電荷を有する物質)
 負の電荷を有する物質とは、負の電荷を有するタンパク質又は高分子をいう。負の電荷を有するタンパク質としては、一又は複数の実施形態において、水溶性タンパク質が好ましい。水溶性タンパク質としては、一又は複数の実施形態において、酸性コラーゲン、酸性ゼラチン、アルブミン、グロブリン、カタラーゼ、β-ラクトグロブリン、チログロブリン、α-ラクトアルブミン、又は卵白アルブミン等が挙げられる。負の電荷を有する高分子としては、天然由来高分子及び合成高分子が挙げられる。天然由来高分子としては、一又は複数の実施形態において、水溶性ポリペプチド、低分子ペプチド、ポリ(βリジン)等のポリアミノ酸、又はデキストラン硫酸等が挙げられる。合成高分子としては、一又は複数の実施形態において、直鎖型、グラフト型、くし型、樹状型、又は星型等のポリマー又は共重合体が挙げられる。前記ポリマー又は共重合体としては、一又は複数の実施形態において、ポリウレタン、ポリアミド、ポリカーボネート、及びこれらの共重合体、ポリエステル、ポリアクリル酸、ポリメタクリル酸、ポリスチレンスルホン酸、ポリアクリルアミドメチルプロパンスルホン酸、末端カルボキシ化ポリエチレングリコール、ポリジアリルジメチルアンモニウム塩、ポリアリルアミン塩、ポリエチレンイミン、ポリビニルアミン、又はポリアミドアミンデンドリマー等が挙げられる。
 正の電荷を有する物質と負の電荷を有する物質との組み合わせとしては、一又は複数の実施形態において、ε-ポリリジン塩とポリスルホン酸塩、ε-ポリリジンとポリスルホン酸塩、キトサンとデキストラン硫酸、ポリアリルアミンハイドロクロライドとポリスチレンスルホン酸塩、ポリジアリルジメチルアンモニウムクロライドとポリスチレンスルホン酸塩、又はポリジアリルジメチルアンモニウムクロライドとポリアクリル酸塩等が挙げられ、好ましくはε-ポリリジン塩とポリスルホン酸塩、又はポリジアリルジメチルアンモニウムクロライドとポリアクリル酸塩である。ポリスルホン酸塩としては、一又は複数の実施形態において、ポリスルホン酸ナトリウム(PSS)等が挙げられる。なお、正の電荷を有する物質及び負の電荷を有する物質は、それぞれ、一種類ずつでもよいし、相互作用を示す範囲で二種類以上をそれぞれ併用してもよい。
 本開示は、以下の一又は複数の実施形態に関しうる。
〔1〕 平滑筋細胞と細胞外マトリックス成分とを含み、前記平滑筋細胞が前記細胞外マトリックス成分を介して積層された弾性を有する三次元組織体。
〔2〕 前記三次元組織体は、少なくとも1.2倍の長さに伸ばすことが可能である、〔1〕記載の三次元組織体。
〔3〕 平滑筋細胞を細胞外マトリックス成分を介して積層することを含む、三次元組織体の製造方法であって、
 前記平滑筋細胞が、未分化型から分化型に方向付けられた平滑筋細胞である、製造方法。
〔4〕 平滑筋細胞を高密度で培養することによって、前記平滑筋細胞を調製することを含む、〔3〕記載の製造方法。
〔5〕 前記平滑筋細胞は、胎児期又は幼年期の平滑筋細胞である、〔3〕又は〔4〕記載の製造方法。
〔6〕 前記積層は、前記平滑筋細胞の細胞層の形成と前記細胞外マトリックス成分を含む層の形成とを交互に行うこと、又は、前記細胞外マトリックス成分で被覆された平滑筋細胞を積層することを含む、〔3〕から〔5〕のいずれかに記載の製造方法。
〔7〕 〔3〕から〔6〕のいずれかに記載の製造方法により製造された、弾性を有する三次元組織体。
 以下に、実施例及び比較例を用いて本開示をさらに説明する。但し、本開示は以下の実施例に限定して解釈されない。
 (実施例1)
 [平滑筋細胞(SMC)液の調製]
 ラット新生児より回収した大動脈平滑筋細胞を4継代培養したものを11日間培養した。なお、11日間の培養のうち、7日間の培養を95%以上コンフルエントの密度で行った。トリプシン処理(0.05%トリプシン、0.02%EDTA)(37℃、5-7分間)して回収した細胞を、50%コンフルエントの密度で播種し5日間培養した。なお、この5日間の培養では細胞の増殖能は極めて低かった。このため、この細胞は、未分化型から分化型に方向付けられた平滑筋細胞であることが確認できた。5日間培養した細胞を上記と同様の条件でトリプシン処理して回収し、4.0×104cells/mLとなるように培地に分散させてSMC液を調製した。なお、培地は10%fetal bovine serum(FBS)を含むDMEM(Dulbecco’s Modified Eagle Medium)を用い、培地交換は48時間ごとに行った。
 [フィブロネクチン溶液(BFN溶液)の調製]
 ウシ血漿由来フィブロネクチン(製品番号F1141、SIGMA製、溶液、1mg/mL(0.5M NaCl、0.05M Tris(pH7.5))を、0.5M NaCl、0.05M Tris(pH7.5)で0.2mg/mLに希釈してBFN溶液を調製した。
 [Gelatin溶液の調製]
 ゼラチン(製品番号077-03155、Wako製)を0.2mg/ml となるように、0.05M Tris(pH7.5)で37℃で3-4時間かけて溶解してGelatin溶液を調製した。
 [三次元組織体の作製]
 セルディスク(品名セルディスクLF、住友ベークライト製)をBFN溶液2mLに浸漬(37℃、各1分)しセルディスク表面にBFN層を形成した後、BFN層上にSMC液を配置した。SMC液の配置は、SMCが11×104cells/cm2播種されるように行った。細胞培養インキュベーター(37℃、5%CO2)で半日培養することで細胞を接着させてSMC層(第1層)を形成した。つぎに、SMC層を、BFN溶液2mLとGelatin溶液2mLとに交互に計9回浸漬(37℃、各1分)してSMC層表面にフィブロネクチン-ゼラチン(FN-G)ナノ薄膜を形成した。FN-Gナノ薄膜上に速やかにSMC液を配置し(SMC:11×104cells/cm2)、細胞培養インキュベーター(37℃、5%CO2)で6-12時間培養することで細胞を接着させてSMC層(第2層)を形成した。このSMC層の形成とFN-Gナノ薄膜との形成とを交互に繰返し行うことによって、4日間で7層のSMC層を積層した後、3日間培養することによって7層のSMC層を含む三次元組織体を形成した。なお、培地は、7層のSMC層を積層する間は10%FBSを含むDMEMを用い、その後3日間は1-2%FBSを含むDMEMを用いた。培地交換は1日ごとに行った。
 (比較例1)
 [細胞液の調製]
 ラット新生児より回収した大動脈平滑筋細胞を5-7継代培養したものを、80%コンフルエントの密度の状態でトリプシン処理(0.05%トリプシン、0.02%EDTA)(37℃、5-7分間)して細胞を回収した。回収した細胞を、4.0×104cells/mLとなるように、培地(10%FBSを含むDMEM)に分散させて細胞液を調製した。なお、培地交換は48時間ごとに行った。
 [三次元組織体の作製]
 SMC液に代えて上記の細胞液を使用した以外は、実施例1と同様の手順で、4日間で7層のSMC層を積層した。その後、1-2%FBSを含むDMEMで37℃で48時間培養することによって7層のSMC層を含む三次元組織体を形成した。
 [組織染色による評価]
 得られた三次元組織体及びラットの血管の弾性線維の発現をElastica van Gieson染色にて評価した。その画像を図1A~Dに示す。図1Aは実施例1の三次元組織体の画像、図1Bはラット新生児の血管の画像、図1Cは成体ラットの血管の画像、図1Dは比較例1の三次元組織体の画像である。
 また、弾性線維の発現に重要なfibrillin-1,-2の発現を免疫染色で評価した。その画像を図2に示す。図2は、得られた三次元組織体の蛍光免疫組織切片写真の一例であって、上側の画像が実施例1の三次元組織体の画像であり、下側の画像がラット新生児の血管の画像である。
 図1A及びDに示すように、実施例1の三次元組織体は、比較例1の三次元組織体と比較して弾性線維の発現が極めて高かった。図1A~C及び図2に示すように、実施例1の三次元組織体は、ラット新生児及び成体ラットに匹敵する高いレベルで弾性線維が発現していることが確認できた。また、実施例1の三次元組織体における弾性線維は、ラット新生児及び成体ラットの弾性線維と同様に厚い層状となっている。これらのことから、実施例1の三次元組織体は、高い弾性を示すことが示唆された。
 [目視による弾性評価]
 実施例1で作製した三次元組織体の弾性を目視により評価した。その評価実験の画像を図3に示す。すなわち、図3において、左から順に、実施例1で作製した三次元組織体をセルディスクから解離した画像、解離した三次元組織体を毛細管に巻きつけた画像、それを長手方向に引っ張った様子の画像をそれぞれ示す。図3に示すように、実施例1の三次元組織体は、管状に成形可能な程度の自立性を示し、かつ長手方向(伸長方向)に対して2倍程度の伸びを示した。よって、実施例1の三次元組織体は、十分な自立性を示すと共に、優れた弾性を示すことが確認できた。なお、比較例1の三次元組織体は、引っ張ることができなかった。
 したがって、実施例1の方法によれば、優れた弾性を示す三次元組織体を短期間で製造することができた。
 (比較例2)
 細胞液の調製において、4継代の培養期間を11日間に代えて9日間(95%以上コンフルエント培養:5日間)とした以外は実施例1と同様にして三次元組織体を作製した。積層に用いた平滑筋細胞は、細胞増殖能が高く、未分化型から分化型に分化されておらず、平滑筋細胞を積層できたものの、得られた三次元組織体は弾性を有さなかった。
 (実施例2)
 [三次元組織体の作製]
 SMC層を1日に1層、つまり7日間で7層のSMC層の積層を行った(SMC液配置後の培養時間を12-24時間とした)以外には、実施例1と同様にしてSMC層の形成とFN-Gナノ薄膜との形成とを交互に繰返し行い、その後、3日間培養することによって7層のSMC層を含む三次元組織体を形成した。
 得られた三次元組織体について弾性を目視により評価した。作製した三次元組織体をセルディスクから解離し、それを長手方向に引っ張ったところ、伸長方向に対して2倍程度の伸びを示した。

Claims (7)

  1.  平滑筋細胞と細胞外マトリックス成分とを含み、前記平滑筋細胞が前記細胞外マトリックス成分を介して積層された弾性を有する三次元組織体。
  2.  前記三次元組織体は、少なくとも1.2倍の長さに伸ばすことが可能である、請求項1記載の三次元組織体。
  3.  平滑筋細胞を細胞外マトリックス成分を介して積層することを含む、三次元組織体の製造方法であって、
     前記平滑筋細胞が、未分化型から分化型に方向付けられた平滑筋細胞である、製造方法。
  4.  平滑筋細胞を高密度で培養することによって、前記平滑筋細胞を調製することを含む、請求項3記載の製造方法。
  5.  前記平滑筋細胞は、胎児期又は幼年期の平滑筋細胞である、請求項3又は4記載の製造方法。
  6.  前記積層は、前記平滑筋細胞の細胞層の形成と前記細胞外マトリックス成分を含む層の形成とを交互に行うこと、又は、前記細胞外マトリックス成分で被覆された平滑筋細胞を積層することを含む、請求項3から5のいずれかに記載の製造方法。
  7.  請求項3から6のいずれかに記載の製造方法により製造された、弾性を有する三次元組織体。
PCT/JP2014/077083 2013-10-10 2014-10-09 三次元組織体及びその製造方法 WO2015053367A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/028,204 US20160251626A1 (en) 2013-10-10 2014-10-09 Three-dimensional tissue and production method therefor
JP2015541635A JP6355212B2 (ja) 2013-10-10 2014-10-09 三次元組織体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-212966 2013-10-10
JP2013212966 2013-10-10

Publications (1)

Publication Number Publication Date
WO2015053367A1 true WO2015053367A1 (ja) 2015-04-16

Family

ID=52813182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077083 WO2015053367A1 (ja) 2013-10-10 2014-10-09 三次元組織体及びその製造方法

Country Status (3)

Country Link
US (1) US20160251626A1 (ja)
JP (1) JP6355212B2 (ja)
WO (1) WO2015053367A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189786A1 (ja) * 2018-03-29 2019-10-03 凸版印刷株式会社 細胞培養用シート並びに三次元組織体及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6712016B2 (ja) 2017-01-31 2020-06-17 凸版印刷株式会社 三次元組織体及びその製造方法、並びに、三次元組織体の形成剤

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KEN'ICHIRO HAYASHI ET AL.: "Roles of vascular smooth muscle cells in vascular remodeling", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 221, no. 13, 30 June 2007 (2007-06-30), pages 1150 - 1155 *
MICHIYA MATSUSAKI ET AL.: "Nano Hakumaku Gijutsu ni yoru Sekisoka Soshiki Model no Kochiku", BRAIN 21, vol. 11, no. 4, 2008, pages 94 - 486 - 100-492 *
UTAKO YOKOYAMA ET AL.: "Elucidation of Molecular Mechanisms of Atherosclerosis by Three-Dimensional (3D)-Layered Blood Vessel Constructs", KAGAKU TO KOGYO, vol. 86, no. 9, 20 September 2012 (2012-09-20), pages 329 - 335 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189786A1 (ja) * 2018-03-29 2019-10-03 凸版印刷株式会社 細胞培養用シート並びに三次元組織体及びその製造方法
JPWO2019189786A1 (ja) * 2018-03-29 2021-03-25 凸版印刷株式会社 細胞培養用シート並びに三次元組織体及びその製造方法
JP7531158B2 (ja) 2018-03-29 2024-08-09 Toppanホールディングス株式会社 細胞培養用シート並びに三次元組織体及びその製造方法

Also Published As

Publication number Publication date
JP6355212B2 (ja) 2018-07-11
JPWO2015053367A1 (ja) 2017-03-09
US20160251626A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
US8137964B2 (en) Method of producing three-dimensional tissue and method of producing extracellular matrix used in the same
JP5850419B2 (ja) 細胞の三次元構造体、及び、これを製造する方法
JP6427836B2 (ja) 立体的細胞組織の製造方法
Boudou et al. Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications
WO2012133629A1 (ja) 人工皮膚モデルの製造方法、及び人工皮膚モデル
JP6218238B2 (ja) 人工皮膚及びその製造方法
Nishiguchi et al. Basement membrane mimics of biofunctionalized nanofibers for a bipolar-cultured human primary alveolar-capillary barrier model
JP6608281B2 (ja) 薬剤候補化合物のスクリーニングに用いる心筋組織チップの製造方法
CN110709503B (zh) 细胞层叠体的制造方法
JP6519050B2 (ja) 人工皮膚組織、人工皮膚モデル及びそれらの製造方法
JP6341553B2 (ja) 三次元組織体及びその製造方法
JP6355212B2 (ja) 三次元組織体及びその製造方法
US12180446B2 (en) Native extracellular matrix-derived membrane inserts for organs-on-chips, multilayer microfluidics microdevices, bioreactors, tissue culture inserts, and two-dimensional and three-dimensional cell culture systems
Li et al. Cellular response to gelatin-and fibronectin-coated multilayer polyelectrolyte nanofilms
WO2015025958A1 (ja) ペースメーカー組織片の製造方法
JP5819056B2 (ja) 細胞培養用基材
US20150247118A1 (en) Method for producing 3d cell culture
US20230087578A1 (en) Device and methods for engineering 3d complex tissues
JP5920749B2 (ja) 人工皮膚モデルの製造方法、及び人工皮膚モデル
JP6315604B2 (ja) 人工皮膚モデルの製造方法、及び人工皮膚モデル
Sorkio Biomaterial substrates and transplantation materials for human embryonic stem cell derived retinal pigment epithelial cells: Biomimetic approaches for retinal tissue engineering, University of Tampere
Shaik et al. Growth and behaviour of bovine articular chondrocytes on nanoengineered surfaces: Part I
Hatano Towards the Fabrication of Three-Dimensional Cardiac Tissue Derived from Stem Cells
Gu Functional tissues from intelligent materials, 3D printing and stem cells
Shaik Growth and behavior of chondrocytes on nano engineered surfaces and construction of micropatterned co-culture platforms using layer-by-layer platforms using layer-by-layer assembly lift-off method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852137

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015541635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15028204

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14852137

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载