WO2014201367A1 - Procédés et compositions de stimulation de la production d'hydrocarbures à partir de formations souterraines - Google Patents
Procédés et compositions de stimulation de la production d'hydrocarbures à partir de formations souterraines Download PDFInfo
- Publication number
- WO2014201367A1 WO2014201367A1 PCT/US2014/042326 US2014042326W WO2014201367A1 WO 2014201367 A1 WO2014201367 A1 WO 2014201367A1 US 2014042326 W US2014042326 W US 2014042326W WO 2014201367 A1 WO2014201367 A1 WO 2014201367A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solvent
- microemulsion
- branched
- group
- carbon atoms
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 99
- 238000000034 method Methods 0.000 title claims abstract description 88
- 239000000203 mixture Substances 0.000 title claims abstract description 81
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 238000005755 formation reaction Methods 0.000 title abstract description 85
- 229930195733 hydrocarbon Natural products 0.000 title abstract description 33
- 150000002430 hydrocarbons Chemical class 0.000 title abstract description 33
- 230000004936 stimulating effect Effects 0.000 title abstract description 13
- 239000004530 micro-emulsion Substances 0.000 claims abstract description 200
- 239000002904 solvent Substances 0.000 claims abstract description 156
- 239000004094 surface-active agent Substances 0.000 claims abstract description 109
- 239000000839 emulsion Substances 0.000 claims abstract description 80
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000003921 oil Substances 0.000 claims abstract description 46
- 239000010779 crude oil Substances 0.000 claims abstract description 45
- 150000003505 terpenes Chemical group 0.000 claims description 121
- 235000007586 terpenes Nutrition 0.000 claims description 100
- 125000004432 carbon atom Chemical group C* 0.000 claims description 93
- 239000012530 fluid Substances 0.000 claims description 79
- 125000002015 acyclic group Chemical group 0.000 claims description 74
- -1 dialkylether compounds Chemical class 0.000 claims description 61
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 60
- 125000004122 cyclic group Chemical group 0.000 claims description 55
- 238000006073 displacement reaction Methods 0.000 claims description 55
- 238000011282 treatment Methods 0.000 claims description 51
- 238000007710 freezing Methods 0.000 claims description 42
- 230000008014 freezing Effects 0.000 claims description 42
- 239000003795 chemical substances by application Substances 0.000 claims description 38
- 239000003849 aromatic solvent Substances 0.000 claims description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 32
- 238000009835 boiling Methods 0.000 claims description 30
- 150000001336 alkenes Chemical class 0.000 claims description 26
- 239000012071 phase Substances 0.000 claims description 24
- 150000003839 salts Chemical class 0.000 claims description 22
- 239000002253 acid Substances 0.000 claims description 19
- 125000000217 alkyl group Chemical group 0.000 claims description 19
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 claims description 14
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 13
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 claims description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 12
- 239000012267 brine Substances 0.000 claims description 11
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 11
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 claims description 10
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 claims description 10
- 239000003180 well treatment fluid Substances 0.000 claims description 10
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 claims description 9
- 239000008346 aqueous phase Substances 0.000 claims description 9
- 239000004711 α-olefin Substances 0.000 claims description 8
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 claims description 7
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 claims description 7
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 claims description 7
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 claims description 7
- ROKSAUSPJGWCSM-UHFFFAOYSA-N 2-(7,7-dimethyl-4-bicyclo[3.1.1]hept-3-enyl)ethanol Chemical compound C1C2C(C)(C)C1CC=C2CCO ROKSAUSPJGWCSM-UHFFFAOYSA-N 0.000 claims description 7
- 229960005233 cineole Drugs 0.000 claims description 7
- 239000002736 nonionic surfactant Substances 0.000 claims description 7
- JRZJOMJEPLMPRA-UHFFFAOYSA-N 1-nonene Chemical compound CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 6
- DCTOHCCUXLBQMS-UHFFFAOYSA-N 1-undecene Chemical compound CCCCCCCCCC=C DCTOHCCUXLBQMS-UHFFFAOYSA-N 0.000 claims description 6
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 claims description 6
- MOYAFQVGZZPNRA-UHFFFAOYSA-N Terpinolene Chemical compound CC(C)=C1CCC(C)=CC1 MOYAFQVGZZPNRA-UHFFFAOYSA-N 0.000 claims description 6
- 239000008365 aqueous carrier Substances 0.000 claims description 6
- YKFLAYDHMOASIY-UHFFFAOYSA-N γ-terpinene Chemical compound CC(C)C1=CCC(C)=CC1 YKFLAYDHMOASIY-UHFFFAOYSA-N 0.000 claims description 6
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 claims description 5
- NFLGAXVYCFJBMK-RKDXNWHRSA-N (+)-isomenthone Natural products CC(C)[C@H]1CC[C@@H](C)CC1=O NFLGAXVYCFJBMK-RKDXNWHRSA-N 0.000 claims description 5
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 claims description 5
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 claims description 5
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 claims description 5
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 claims description 5
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 claims description 5
- 239000005792 Geraniol Substances 0.000 claims description 5
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 claims description 5
- NFLGAXVYCFJBMK-UHFFFAOYSA-N Menthone Chemical compound CC(C)C1CCC(C)CC1=O NFLGAXVYCFJBMK-UHFFFAOYSA-N 0.000 claims description 5
- 125000000129 anionic group Chemical group 0.000 claims description 5
- 125000002091 cationic group Chemical group 0.000 claims description 5
- 229940113087 geraniol Drugs 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 229930007744 linalool Natural products 0.000 claims description 5
- 229940041616 menthol Drugs 0.000 claims description 5
- 229930007503 menthone Natural products 0.000 claims description 5
- 229920000151 polyglycol Polymers 0.000 claims description 5
- 239000010695 polyglycol Substances 0.000 claims description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 4
- 239000003945 anionic surfactant Substances 0.000 claims description 4
- 239000003093 cationic surfactant Substances 0.000 claims description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 4
- 239000002888 zwitterionic surfactant Substances 0.000 claims description 4
- 239000001763 2-hydroxyethyl(trimethyl)azanium Substances 0.000 claims description 3
- FUDNBFMOXDUIIE-UHFFFAOYSA-N 3,7-dimethylocta-1,6-diene Chemical compound C=CC(C)CCC=C(C)C FUDNBFMOXDUIIE-UHFFFAOYSA-N 0.000 claims description 3
- 235000019743 Choline chloride Nutrition 0.000 claims description 3
- SGMZJAMFUVOLNK-UHFFFAOYSA-M choline chloride Chemical compound [Cl-].C[N+](C)(C)CCO SGMZJAMFUVOLNK-UHFFFAOYSA-M 0.000 claims description 3
- 229960003178 choline chloride Drugs 0.000 claims description 3
- 229940069096 dodecene Drugs 0.000 claims description 3
- 239000004202 carbamide Substances 0.000 claims description 2
- 239000002563 ionic surfactant Substances 0.000 claims 2
- 239000007789 gas Substances 0.000 description 48
- 125000003118 aryl group Chemical group 0.000 description 30
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 24
- 235000019198 oils Nutrition 0.000 description 24
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 22
- 150000001875 compounds Chemical class 0.000 description 22
- 239000007788 liquid Substances 0.000 description 19
- 239000000654 additive Substances 0.000 description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 239000004576 sand Substances 0.000 description 12
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 11
- 239000004927 clay Substances 0.000 description 11
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical class CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 10
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- XWJBRBSPAODJER-UHFFFAOYSA-N 1,7-octadiene Chemical compound C=CCCCCC=C XWJBRBSPAODJER-UHFFFAOYSA-N 0.000 description 8
- 239000004215 Carbon black (E152) Substances 0.000 description 8
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical class CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 8
- 238000010790 dilution Methods 0.000 description 8
- 239000012895 dilution Substances 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical class CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- DEDZSLCZHWTGOR-UHFFFAOYSA-N propylcyclohexane Chemical compound CCCC1CCCCC1 DEDZSLCZHWTGOR-UHFFFAOYSA-N 0.000 description 8
- JVSWJIKNEAIKJW-UHFFFAOYSA-N 2-Methylheptane Chemical compound CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 7
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical class CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 7
- 150000001298 alcohols Chemical class 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 235000021317 phosphate Nutrition 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000003381 stabilizer Substances 0.000 description 7
- LTEQMZWBSYACLV-UHFFFAOYSA-N Hexylbenzene Chemical compound CCCCCCC1=CC=CC=C1 LTEQMZWBSYACLV-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical group CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000010452 phosphate Substances 0.000 description 6
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 5
- 238000013019 agitation Methods 0.000 description 5
- 125000002877 alkyl aryl group Chemical group 0.000 description 5
- 229920001400 block copolymer Polymers 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 125000000547 substituted alkyl group Chemical group 0.000 description 5
- WGECXQBGLLYSFP-UHFFFAOYSA-N 2,3-dimethylpentane Chemical compound CCC(C)C(C)C WGECXQBGLLYSFP-UHFFFAOYSA-N 0.000 description 4
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical class CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 4
- 241000251468 Actinopterygii Species 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 229940123973 Oxygen scavenger Drugs 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 125000003158 alcohol group Chemical group 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 125000000304 alkynyl group Chemical group 0.000 description 4
- 239000003139 biocide Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 125000002837 carbocyclic group Chemical group 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229930003658 monoterpene Natural products 0.000 description 4
- 150000002773 monoterpene derivatives Chemical class 0.000 description 4
- 235000002577 monoterpenes Nutrition 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 239000002455 scale inhibitor Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- 239000005968 1-Decanol Substances 0.000 description 3
- BPIUIOXAFBGMNB-UHFFFAOYSA-N 1-hexoxyhexane Chemical compound CCCCCCOCCCCCC BPIUIOXAFBGMNB-UHFFFAOYSA-N 0.000 description 3
- FLTJDUOFAQWHDF-UHFFFAOYSA-N 2,2-dimethylhexane Chemical compound CCCCC(C)(C)C FLTJDUOFAQWHDF-UHFFFAOYSA-N 0.000 description 3
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical class CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 3
- BZHMBWZPUJHVEE-UHFFFAOYSA-N 2,3-dimethylpentane Natural products CC(C)CC(C)C BZHMBWZPUJHVEE-UHFFFAOYSA-N 0.000 description 3
- GXDHCNNESPLIKD-UHFFFAOYSA-N 2-methylhexane Chemical compound CCCCC(C)C GXDHCNNESPLIKD-UHFFFAOYSA-N 0.000 description 3
- AEXMKKGTQYQZCS-UHFFFAOYSA-N 3,3-dimethylpentane Chemical compound CCC(C)(C)CC AEXMKKGTQYQZCS-UHFFFAOYSA-N 0.000 description 3
- LAIUFBWHERIJIH-UHFFFAOYSA-N 3-Methylheptane Chemical compound CCCCC(C)CC LAIUFBWHERIJIH-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 150000001412 amines Chemical group 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 125000000392 cycloalkenyl group Chemical group 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 150000005690 diesters Chemical group 0.000 description 3
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical class CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 3
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 3
- 238000009533 lab test Methods 0.000 description 3
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 3
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- NMRPBPVERJPACX-UHFFFAOYSA-N octan-3-ol Chemical compound CCCCCC(O)CC NMRPBPVERJPACX-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000010587 phase diagram Methods 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- ZISSAWUMDACLOM-UHFFFAOYSA-N triptane Chemical compound CC(C)C(C)(C)C ZISSAWUMDACLOM-UHFFFAOYSA-N 0.000 description 3
- OGQVROWWFUXRST-FNORWQNLSA-N (3e)-hepta-1,3-diene Chemical compound CCC\C=C\C=C OGQVROWWFUXRST-FNORWQNLSA-N 0.000 description 2
- MEBONNVPKOBPEA-UHFFFAOYSA-N 1,1,2-trimethylcyclohexane Chemical compound CC1CCCCC1(C)C MEBONNVPKOBPEA-UHFFFAOYSA-N 0.000 description 2
- QEGNUYASOUJEHD-UHFFFAOYSA-N 1,1-dimethylcyclohexane Chemical compound CC1(C)CCCCC1 QEGNUYASOUJEHD-UHFFFAOYSA-N 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N 2,2-dimethylbutane Chemical compound CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- HDGQICNBXPAKLR-UHFFFAOYSA-N 2,4-dimethylhexane Chemical compound CCC(C)CC(C)C HDGQICNBXPAKLR-UHFFFAOYSA-N 0.000 description 2
- UWNADWZGEHDQAB-UHFFFAOYSA-N 2,5-dimethylhexane Chemical compound CC(C)CCC(C)C UWNADWZGEHDQAB-UHFFFAOYSA-N 0.000 description 2
- RYPKRALMXUUNKS-UHFFFAOYSA-N 2-Hexene Natural products CCCC=CC RYPKRALMXUUNKS-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- ILPBINAXDRFYPL-UHFFFAOYSA-N 2-octene Chemical compound CCCCCC=CC ILPBINAXDRFYPL-UHFFFAOYSA-N 0.000 description 2
- KUMXLFIBWFCMOJ-UHFFFAOYSA-N 3,3-dimethylhexane Chemical compound CCCC(C)(C)CC KUMXLFIBWFCMOJ-UHFFFAOYSA-N 0.000 description 2
- RNTWWGNZUXGTAX-UHFFFAOYSA-N 3,4-dimethylhexane Chemical compound CCC(C)C(C)CC RNTWWGNZUXGTAX-UHFFFAOYSA-N 0.000 description 2
- DUPUVYJQZSLSJB-UHFFFAOYSA-N 3-ethyl-2-methylpentane Chemical compound CCC(CC)C(C)C DUPUVYJQZSLSJB-UHFFFAOYSA-N 0.000 description 2
- SFRKSDZMZHIISH-UHFFFAOYSA-N 3-ethylhexane Chemical compound CCCC(CC)CC SFRKSDZMZHIISH-UHFFFAOYSA-N 0.000 description 2
- AORMDLNPRGXHHL-UHFFFAOYSA-N 3-ethylpentane Chemical compound CCC(CC)CC AORMDLNPRGXHHL-UHFFFAOYSA-N 0.000 description 2
- VLJXXKKOSFGPHI-UHFFFAOYSA-N 3-methylhexane Chemical compound CCCC(C)CC VLJXXKKOSFGPHI-UHFFFAOYSA-N 0.000 description 2
- PFEOZHBOMNWTJB-UHFFFAOYSA-N 3-methylpentane Chemical compound CCC(C)CC PFEOZHBOMNWTJB-UHFFFAOYSA-N 0.000 description 2
- CHBAWFGIXDBEBT-UHFFFAOYSA-N 4-methylheptane Chemical compound CCCC(C)CCC CHBAWFGIXDBEBT-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- IFTRQJLVEBNKJK-UHFFFAOYSA-N Ethylcyclopentane Chemical compound CCC1CCCC1 IFTRQJLVEBNKJK-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 235000019502 Orange oil Nutrition 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Chemical class OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical class CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical class C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical compound C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- QWHNJUXXYKPLQM-UHFFFAOYSA-N dimethyl cyclopentane Natural products CC1(C)CCCC1 QWHNJUXXYKPLQM-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical group 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Natural products O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- WZHKDGJSXCTSCK-UHFFFAOYSA-N hept-3-ene Chemical compound CCCC=CCC WZHKDGJSXCTSCK-UHFFFAOYSA-N 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 235000001510 limonene Nutrition 0.000 description 2
- 229940087305 limonene Drugs 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical class OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Chemical class 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical class COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 210000002445 nipple Anatomy 0.000 description 2
- SJWFXCIHNDVPSH-UHFFFAOYSA-N octan-2-ol Chemical compound CCCCCCC(C)O SJWFXCIHNDVPSH-UHFFFAOYSA-N 0.000 description 2
- WOFPPJOZXUTRAU-UHFFFAOYSA-N octan-4-ol Chemical compound CCCCC(O)CCC WOFPPJOZXUTRAU-UHFFFAOYSA-N 0.000 description 2
- 239000010502 orange oil Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 2
- CFJYNSNXFXLKNS-UHFFFAOYSA-N p-menthane Chemical compound CC(C)C1CCC(C)CC1 CFJYNSNXFXLKNS-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 125000005561 phenanthryl group Chemical group 0.000 description 2
- XOKSLPVRUOBDEW-UHFFFAOYSA-N pinane Chemical compound CC1CCC2C(C)(C)C1C2 XOKSLPVRUOBDEW-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 150000003333 secondary alcohols Chemical class 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- 150000003509 tertiary alcohols Chemical class 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Chemical class OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- JXPOLSKBTUYKJB-UHFFFAOYSA-N xi-2,3-Dimethylhexane Chemical compound CCCC(C)C(C)C JXPOLSKBTUYKJB-UHFFFAOYSA-N 0.000 description 2
- 150000003738 xylenes Chemical class 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical compound C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- ULDHMXUKGWMISQ-SECBINFHSA-N (-)-carvone Chemical compound CC(=C)[C@@H]1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-SECBINFHSA-N 0.000 description 1
- REPVLJRCJUVQFA-UHFFFAOYSA-N (-)-isopinocampheol Natural products C1C(O)C(C)C2C(C)(C)C1C2 REPVLJRCJUVQFA-UHFFFAOYSA-N 0.000 description 1
- YHHHHJCAVQSFMJ-FNORWQNLSA-N (3e)-deca-1,3-diene Chemical class CCCCCC\C=C\C=C YHHHHJCAVQSFMJ-FNORWQNLSA-N 0.000 description 1
- VUIFFVOKIWOJBA-FNORWQNLSA-N (3e)-dodeca-1,3-diene Chemical class CCCCCCCC\C=C\C=C VUIFFVOKIWOJBA-FNORWQNLSA-N 0.000 description 1
- AHAREKHAZNPPMI-AATRIKPKSA-N (3e)-hexa-1,3-diene Chemical compound CC\C=C\C=C AHAREKHAZNPPMI-AATRIKPKSA-N 0.000 description 1
- CLNYHERYALISIR-FNORWQNLSA-N (3e)-nona-1,3-diene Chemical class CCCCC\C=C\C=C CLNYHERYALISIR-FNORWQNLSA-N 0.000 description 1
- RSLLXTJELTWVHR-FNORWQNLSA-N (3e)-undeca-1,3-diene Chemical class CCCCCCC\C=C\C=C RSLLXTJELTWVHR-FNORWQNLSA-N 0.000 description 1
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- ZGXMNEKDFYUNDQ-GQCTYLIASA-N (5e)-hepta-1,5-diene Chemical compound C\C=C\CCC=C ZGXMNEKDFYUNDQ-GQCTYLIASA-N 0.000 description 1
- YCTDZYMMFQCTEO-FNORWQNLSA-N (E)-3-octene Chemical compound CCCC\C=C\CC YCTDZYMMFQCTEO-FNORWQNLSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- WKCRXXSHXACCJV-UHFFFAOYSA-N 1,1,2-trimethylcyclobutane Chemical compound CC1CCC1(C)C WKCRXXSHXACCJV-UHFFFAOYSA-N 0.000 description 1
- OFZYBEBWCZBCPM-UHFFFAOYSA-N 1,1-dimethylcyclobutane Chemical compound CC1(C)CCC1 OFZYBEBWCZBCPM-UHFFFAOYSA-N 0.000 description 1
- CRGBHZNMDZJGAI-UHFFFAOYSA-N 1,1-dimethylcycloheptane Chemical compound CC1(C)CCCCCC1 CRGBHZNMDZJGAI-UHFFFAOYSA-N 0.000 description 1
- QTYUSOHYEPOHLV-FNORWQNLSA-N 1,3-Octadiene Chemical compound CCCC\C=C\C=C QTYUSOHYEPOHLV-FNORWQNLSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 125000002006 1,8-cineol group Chemical group 0.000 description 1
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 1
- YPJRYQGOKHKNKZ-UHFFFAOYSA-N 1-ethyl-1-methylcyclohexane Chemical compound CCC1(C)CCCCC1 YPJRYQGOKHKNKZ-UHFFFAOYSA-N 0.000 description 1
- FAMJUFMHYAFYNU-UHFFFAOYSA-N 1-methyl-4-(propan-2-yl)cyclohex-1-ene Chemical compound CC(C)C1CCC(C)=CC1 FAMJUFMHYAFYNU-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- XTDQDBVBDLYELW-UHFFFAOYSA-N 2,2,3-trimethylpentane Chemical compound CCC(C)C(C)(C)C XTDQDBVBDLYELW-UHFFFAOYSA-N 0.000 description 1
- OKVWYBALHQFVFP-UHFFFAOYSA-N 2,3,3-trimethylpentane Chemical compound CCC(C)(C)C(C)C OKVWYBALHQFVFP-UHFFFAOYSA-N 0.000 description 1
- RLPGDEORIPLBNF-UHFFFAOYSA-N 2,3,4-trimethylpentane Chemical compound CC(C)C(C)C(C)C RLPGDEORIPLBNF-UHFFFAOYSA-N 0.000 description 1
- XDUUSZQUIMHDMC-UHFFFAOYSA-N 2-(1-methyl-4-prop-1-en-2-ylcyclohexyl)acetic acid Chemical compound CC(=C)C1CCC(C)(CC(O)=O)CC1 XDUUSZQUIMHDMC-UHFFFAOYSA-N 0.000 description 1
- RGDLKJRBAWEFAV-UHFFFAOYSA-N 2-(2-hydroxypropanoyloxy)ethyl 2-hydroxypropanoate Chemical compound CC(O)C(=O)OCCOC(=O)C(C)O RGDLKJRBAWEFAV-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical class COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- IEORSVTYLWZQJQ-UHFFFAOYSA-N 2-(2-nonylphenoxy)ethanol Chemical compound CCCCCCCCCC1=CC=CC=C1OCCO IEORSVTYLWZQJQ-UHFFFAOYSA-N 0.000 description 1
- OTTZHAVKAVGASB-HYXAFXHYSA-N 2-Heptene Chemical compound CCCC\C=C/C OTTZHAVKAVGASB-HYXAFXHYSA-N 0.000 description 1
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical compound CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 1
- IKCQWKJZLSDDSS-UHFFFAOYSA-N 2-formyloxyethyl formate Chemical class O=COCCOC=O IKCQWKJZLSDDSS-UHFFFAOYSA-N 0.000 description 1
- OTTZHAVKAVGASB-UHFFFAOYSA-N 2-heptene Natural products CCCCC=CC OTTZHAVKAVGASB-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- WEPNJTDVIIKRIK-UHFFFAOYSA-N 2-methylhept-2-ene Chemical class CCCCC=C(C)C WEPNJTDVIIKRIK-UHFFFAOYSA-N 0.000 description 1
- ACBMYYVZWKYLIP-UHFFFAOYSA-N 2-methylheptan-2-ol Chemical class CCCCCC(C)(C)O ACBMYYVZWKYLIP-UHFFFAOYSA-N 0.000 description 1
- IRUDSQHLKGNCGF-UHFFFAOYSA-N 2-methylhex-1-ene Chemical class CCCCC(C)=C IRUDSQHLKGNCGF-UHFFFAOYSA-N 0.000 description 1
- BWEKDYGHDCHWEN-UHFFFAOYSA-N 2-methylhex-2-ene Chemical class CCCC=C(C)C BWEKDYGHDCHWEN-UHFFFAOYSA-N 0.000 description 1
- JMMZCWZIJXAGKW-UHFFFAOYSA-N 2-methylpent-2-ene Chemical class CCC=C(C)C JMMZCWZIJXAGKW-UHFFFAOYSA-N 0.000 description 1
- JHUUPUMBZGWODW-UHFFFAOYSA-N 3,6-dihydro-1,2-dioxine Chemical compound C1OOCC=C1 JHUUPUMBZGWODW-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- NMRPBPVERJPACX-QMMMGPOBSA-N 3-Octanol Natural products CCCCC[C@@H](O)CC NMRPBPVERJPACX-QMMMGPOBSA-N 0.000 description 1
- IXOCGRPBILEGOX-UHFFFAOYSA-N 3-[3-(dodecanoylamino)propyl-dimethylazaniumyl]-2-hydroxypropane-1-sulfonate Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC(O)CS([O-])(=O)=O IXOCGRPBILEGOX-UHFFFAOYSA-N 0.000 description 1
- GIEZWIDCIFCQPS-UHFFFAOYSA-N 3-ethyl-3-methylpentane Chemical compound CCC(C)(CC)CC GIEZWIDCIFCQPS-UHFFFAOYSA-N 0.000 description 1
- LWWJDXKGQVEZKT-UHFFFAOYSA-N 3-ethylhexan-1-ol Chemical compound CCCC(CC)CCO LWWJDXKGQVEZKT-UHFFFAOYSA-N 0.000 description 1
- PQOSNJHBSNZITJ-UHFFFAOYSA-N 3-methyl-3-heptanol Chemical class CCCCC(C)(O)CC PQOSNJHBSNZITJ-UHFFFAOYSA-N 0.000 description 1
- AAUHUDBDDBJONC-UHFFFAOYSA-N 3-methylhept-3-ene Chemical class CCCC=C(C)CC AAUHUDBDDBJONC-UHFFFAOYSA-N 0.000 description 1
- RGTDIFHVRPXHFT-UHFFFAOYSA-N 3-methylnon-3-ene Chemical class CCCCCC=C(C)CC RGTDIFHVRPXHFT-UHFFFAOYSA-N 0.000 description 1
- RRPHUUXRVVPAAY-UHFFFAOYSA-N 3-methyloct-3-ene Chemical class CCCCC=C(C)CC RRPHUUXRVVPAAY-UHFFFAOYSA-N 0.000 description 1
- YCTDZYMMFQCTEO-UHFFFAOYSA-N 3-octene Chemical class CCCCC=CCC YCTDZYMMFQCTEO-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- RLGDVTUGYZAYIX-UHFFFAOYSA-N 4-ethylhexan-1-ol Chemical compound CCC(CC)CCCO RLGDVTUGYZAYIX-UHFFFAOYSA-N 0.000 description 1
- JYCQQPHGFMYQCF-UHFFFAOYSA-N 4-tert-Octylphenol monoethoxylate Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCO)C=C1 JYCQQPHGFMYQCF-UHFFFAOYSA-N 0.000 description 1
- QYFVEEMPFRRFNN-UHFFFAOYSA-N 5,5-dimethylhexan-1-ol Chemical compound CC(C)(C)CCCCO QYFVEEMPFRRFNN-UHFFFAOYSA-N 0.000 description 1
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical class CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- LVDKZNITIUWNER-UHFFFAOYSA-N Bronopol Chemical compound OCC(Br)(CO)[N+]([O-])=O LVDKZNITIUWNER-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000005644 Dazomet Substances 0.000 description 1
- RUPBZQFQVRMKDG-UHFFFAOYSA-M Didecyldimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCC[N+](C)(C)CCCCCCCCCC RUPBZQFQVRMKDG-UHFFFAOYSA-M 0.000 description 1
- MUXOBHXGJLMRAB-UHFFFAOYSA-N Dimethyl succinate Chemical compound COC(=O)CCC(=O)OC MUXOBHXGJLMRAB-UHFFFAOYSA-N 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005526 alkyl sulfate group Chemical group 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 125000005377 alkyl thioxy group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 150000001388 alpha-terpinene derivatives Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229920000469 amphiphilic block copolymer Polymers 0.000 description 1
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 125000005165 aryl thioxy group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 150000001594 beta-terpinene derivatives Chemical class 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- CKDOCTFBFTVPSN-UHFFFAOYSA-N borneol Natural products C1CC2(C)C(C)CC1C2(C)C CKDOCTFBFTVPSN-UHFFFAOYSA-N 0.000 description 1
- 229940116229 borneol Drugs 0.000 description 1
- 229960003168 bronopol Drugs 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 1
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 description 1
- 229940073507 cocamidopropyl betaine Drugs 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- LMGZGXSXHCMSAA-UHFFFAOYSA-N cyclodecane Chemical compound C1CCCCCCCCC1 LMGZGXSXHCMSAA-UHFFFAOYSA-N 0.000 description 1
- GPTJTTCOVDDHER-UHFFFAOYSA-N cyclononane Chemical compound C1CCCCCCCC1 GPTJTTCOVDDHER-UHFFFAOYSA-N 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- QAYICIQNSGETAS-UHFFFAOYSA-N dazomet Chemical compound CN1CSC(=S)N(C)C1 QAYICIQNSGETAS-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229960004670 didecyldimethylammonium chloride Drugs 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical group [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229930004069 diterpene Natural products 0.000 description 1
- 125000000567 diterpene group Chemical group 0.000 description 1
- DTGKSKDOIYIVQL-UHFFFAOYSA-N dl-isoborneol Natural products C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- NEZRFXZYPAIZAD-UHFFFAOYSA-N ethylcyclobutane Chemical compound CCC1CCC1 NEZRFXZYPAIZAD-UHFFFAOYSA-N 0.000 description 1
- ITZHTNFXLDFAPB-UHFFFAOYSA-N ethylcycloheptane Chemical compound CCC1CCCCCC1 ITZHTNFXLDFAPB-UHFFFAOYSA-N 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000002194 fatty esters Chemical group 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Chemical class CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 239000013022 formulation composition Substances 0.000 description 1
- 150000002268 gamma-terpinene derivatives Chemical class 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000005241 heteroarylamino group Chemical group 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 125000005378 heteroarylthioxy group Chemical group 0.000 description 1
- AHAREKHAZNPPMI-UHFFFAOYSA-N hexa-1,3-diene Chemical compound CCC=CC=C AHAREKHAZNPPMI-UHFFFAOYSA-N 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- ITSDJMQUEGWLEU-UHFFFAOYSA-N hydroxymethylphosphanium;sulfate Chemical compound OC[PH3+].OC[PH3+].[O-]S([O-])(=O)=O ITSDJMQUEGWLEU-UHFFFAOYSA-N 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229930002839 ionone Natural products 0.000 description 1
- 150000002499 ionone derivatives Chemical class 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229940101629 l- methyl lactate Drugs 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 150000002628 limonene derivativess Chemical class 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- POCNHGFJLGYFIK-UHFFFAOYSA-N methylcyclooctane Chemical compound CC1CCCCCCC1 POCNHGFJLGYFIK-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- YCBSHDKATAPNIA-UHFFFAOYSA-N non-3-ene Chemical class CCCCCC=CCC YCBSHDKATAPNIA-UHFFFAOYSA-N 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- IRUCBBFNLDIMIK-UHFFFAOYSA-N oct-4-ene Chemical class CCCC=CCCC IRUCBBFNLDIMIK-UHFFFAOYSA-N 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- QRMPKOFEUHIBNM-UHFFFAOYSA-N p-dimethylcyclohexane Natural products CC1CCC(C)CC1 QRMPKOFEUHIBNM-UHFFFAOYSA-N 0.000 description 1
- 229930004008 p-menthane Natural products 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 150000002972 pentoses Chemical group 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229930006728 pinane Natural products 0.000 description 1
- 239000010665 pine oil Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920001522 polyglycol ester Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 1
- HPBROFGYTXOJIO-UHFFFAOYSA-N propan-2-ylcyclopropane Chemical compound CC(C)C1CC1 HPBROFGYTXOJIO-UHFFFAOYSA-N 0.000 description 1
- MWVPQZRIWVPJCA-UHFFFAOYSA-N propylcyclopropane Chemical compound CCCC1CC1 MWVPQZRIWVPJCA-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229930004725 sesquiterpene Natural products 0.000 description 1
- 150000004354 sesquiterpene derivatives Chemical class 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229930006978 terpinene Natural products 0.000 description 1
- 150000003507 terpinene derivatives Chemical class 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 150000003508 terpinolene derivatives Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 125000000464 thioxo group Chemical group S=* 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- AKUNSPZHHSNFFX-UHFFFAOYSA-M tributyl(tetradecyl)phosphanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[P+](CCCC)(CCCC)CCCC AKUNSPZHHSNFFX-UHFFFAOYSA-M 0.000 description 1
- 229940087291 tridecyl alcohol Drugs 0.000 description 1
- KJIOQYGWTQBHNH-UHFFFAOYSA-N undecanol Chemical class CCCCCCCCCCCO KJIOQYGWTQBHNH-UHFFFAOYSA-N 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/162—Injecting fluid from longitudinally spaced locations in injection well
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/64—Oil-based compositions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/72—Eroding chemicals, e.g. acids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/82—Oil-based compositions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/84—Compositions based on water or polar solvents
- C09K8/86—Compositions based on water or polar solvents containing organic compounds
Definitions
- the present invention generally provides methods and compositions for stimulating the production of hydrocarbons (e.g., formation crude oil and/or formation gas) from subterranean formations.
- hydrocarbons e.g., formation crude oil and/or formation gas
- stimulation generally refers to the treatment of geological formations to improve the recovery of liquid hydrocarbons (e.g., formation crude oil and/or formation gas).
- Common stimulation techniques include well fracturing and acidizing operations.
- Oil and natural gas are found in, and produced from, porous and permeable subterranean formations.
- the porosity and permeability of the formation determine its ability to store hydrocarbons, and the facility with which the hydrocarbons can be extracted from the formation.
- Hydraulic fracturing is commonly used to stimulate low permeability geological formations to improve the recovery of hydrocarbons.
- the process can involve suspending chemical agents in a well-treatment fluid (e.g., fracturing fluid) and injecting the fluid down the wellbore.
- fracturing fluid e.g., fracturing fluid
- the assortment of chemicals pumped down the well can cause damage to the surrounding formation by entering the reservoir rock and blocking the pore throats. It is known that fluid invasion can have a detrimental effect on gas permeability and can impair well productivity.
- fluids may become trapped in the formation due to capillary end effects in and around the vicinity of the formation fractures.
- additives have been incorporated into well- treatment fluids.
- the composition of additives comprises multi-component chemical substances and compositions that contain mutually distributed nanodomains of normally immiscible solvents, such as water and hydrocarbon-based organic solvents, stabilized by surfactants (e.g., microemulsions).
- surfactants e.g., microemulsions.
- the incorporation of additives into well-treatment fluids can increase crude oil or formation gas, for example by reducing capillary pressure and/or minimizing capillary end effects.
- hydrocarbons e.g., formation crude oil and/or formation gas
- methods of selecting a composition for treating an oil or gas well having a wellbore comprising determining whether displacement of residual aqueous treatment fluid by formation crude oil or displacement of residual aqueous treatment fluid by formation gas is preferentially stimulated for the oil or gas well having a wellbore; and selecting an emulsion or a microemulsion for injection into the wellbore to increase formation crude oil or formation gas production by the well, wherein the emulsion or the microemulsion comprises water, at least a first type of solvent, and a surfactant, wherein the solvent is selected from the group consisting of unsubstituted cyclic or acyclic, branched or unbranched alkanes having 6-12 carbon atoms, unsubstituted acyclic branched or unbranched alkenes having one or two double bonds and 6-12 carbon atoms, cyclic or acyclic, branched or unbranched alkanes having 9-12 carbon atoms and substituted with only
- methods of treating an oil or gas well having a wellbore comprising injecting an emulsion or a microemulsion into the wellbore of the oil or gas well to stimulate displacement of residual aqueous treatment fluid by formation crude oil and increase production of formation crude oil by the well, wherein the emulsion or the microemulsion comprises water, at least a first type of solvent, and a surfactant; and wherein the solvent is selected from the group consisting of unsubstituted cyclic or acyclic, branched or unbranched alkanes having 6-12 carbon atoms,
- branched or unbranched alkenes having one or two double bonds and 6-12 carbon atoms
- cyclic or acyclic, branched or unbranched alkanes having 9-12 carbon atoms and substituted with only an -OH group
- branched or unbranched dialkylether compounds having the formula C n H 2n+ iOC m H 2m+ i, wherein n + m is between 6 and 16, and aromatic solvents having a boiling point between about 300-400 °F.
- methods of treating an oil or gas well having a wellbore comprising injecting an emulsion or a microemulsion into the wellbore of the oil or gas well to stimulate displacement of residual aqueous treatment fluid by formation gas and increase production of formation gas by the well, wherein the emulsion or the microemulsion comprises water, at least a first type of solvent, and a surfactant; and wherein the solvent is selected from the group consisting of cyclic or acyclic, branched or unbranched alkanes having 8 carbon atoms and substituted with only an -OH group and aromatic solvents having a boiling point between about 175-300 °F.
- compositions for injecting into a wellbore comprising an aqueous carrier fluid and an emulsion or a microemulsion, wherein the emulsion or the microemulsion is present in an amount between about 0.1 wt and about 2 wt versus the total composition, and wherein the emulsion or microemulsion comprises an aqueous phase, a surfactant, a freezing point depression agent, and a solvent comprising an alpha-olefin.
- Figure 1 shows an exemplary plot for determining the phase inversion
- the present invention generally relates to methods and well-treatment compositions (e.g., emulsions or microemulsions) for stimulating of the production of liquid hydrocarbons (e.g., formation crude oil and/or formation gas) from subterranean formations.
- the compositions comprise an emulsion or a microemulsion, as described in more detail herein.
- the emulsions or the microemulsions may include water, a solvent, a surfactant, and optionally a freezing point depression agent or other components.
- the solvent comprises more than one type of solvent (e.g., a first type of solvent and a second type of solvent).
- the methods relate to stimulating displacement of residual aqueous treatment fluid by formation crude oil or formation gas to increase production of liquid hydrocarbons, as described in more detail below.
- methods of selecting an emulsion or a microemulsion comprising a solvent are provided, wherein the emulsion or the microemulsion is selected so as to increase liquid hydrocarbon production.
- methods of selecting an emulsion or a microemulsion comprising a solvent are provided, wherein the emulsion or the microemulsion is selected so as to increase gaseous hydrocarbon production.
- the solvent is a hydrocarbon solvent comprising between 6 and 12 carbon atoms.
- the hydrocarbon may be a linear, branched, or cyclic hydrocarbon, including aromatics, and may be optionally substituted with various functional groups, as described herein.
- microemulsions or emulsions comprising certain solvents increase the displacement (e.g., flowback) of residual aqueous treatment fluid by liquid hydrocarbons (e.g., crude oil) as compared to other solvents.
- emulsions or microemulsions comprising certain solvents increase the displacement of residual aqueous treatment fluid by gaseous hydrocarbons as compared to other solvents.
- Laboratory tests may be conducted, as described herein, to determine the displacement of residual aqueous treatment fluid by liquid hydrocarbons and/or gaseous hydrocarbons of an emulsion or a microemulsion
- Petroleum is generally recovered from subterranean reservoirs through the use of drilled wells and production equipment.
- Wells are "stimulated” using various treatments (e.g., fracturing, acidizing) of geological formations to improve the recovery of liquid hydrocarbons.
- Oil and natural gas are found in, and produced from, porous and permeable subterranean formations. Based on techniques known in the art, as well as the preference for the desired product isolated (e.g., formation crude oil or formation gas), it may be preferential to stimulate either crude oil production or gas production from each well.
- a well drilled into a subterranean formation may penetrate formations containing liquid or gaseous hydrocarbons or both, as well as connate water or brine.
- the gas-to-oil ratio is termed the GOR.
- the operator of the well may choose to complete the well in such a way as to produce (for example) predominantly liquid hydrocarbons (crude oil). Alternatively, the operator may be fracturing a tight gas shale formation containing predominantly gaseous hydrocarbons.
- incorporation of the emulsions or the microemulsions described herein into well-treatment fluids can aid in reducing fluid trapping, for example, by reducing capillary pressure and/or minimizing capillary end effects.
- incorporation of the emulsions or the microemulsions described herein into well-treatment fluids can promote increased flowback of aqueous phases following well treatment, and thus, increase production of liquid and/or gaseous hydrocarbons.
- Residual aqueous treatment fluids may include those fluids employed for fracturing (e.g., pumped into the well), as well as residual aqueous fluids originally present in the well.
- methods of treating an oil or gas well comprise injecting an emulsion or a microemulsion into the wellbore of the oil or gas well to stimulate displacement of residual aqueous treatment fluid by formation crude oil or formation gas, and increase production of liquid or gaseous hydrocarbons by the well.
- methods are provided for selecting a composition for treating an oil or gas well.
- the inventors have discovered that certain solvents are more effective at stimulating displacement of residual aqueous treatment fluid by formation crude oil and others are more effective for stimulating displacement of residual aqueous treatment fluid by formation gas for the oil or gas well.
- the microemulsion may be diluted and/or combined with other liquid component(s) prior to and/or during injection.
- the microemulsion is diluted with an aqueous carrier fluid (e.g., water, brine, sea water, fresh water, or a well-treatment fluid (e.g., such as a fluid comprising an acid, a fracturing fluid comprising polymers, sand, etc., slickwater) prior to and/or during injection into the wellbore.
- an aqueous carrier fluid e.g., water, brine, sea water, fresh water
- a well-treatment fluid e.g., such as a fluid comprising an acid, a fracturing fluid comprising polymers, sand, etc., slickwater
- a composition for injecting into a wellbore comprising a microemulsion as described herein and an aqueous carrier fluid, wherein the microemulsion is present in an amount between about 0.1 and about 50 gallons per thousand gallons of dilution fluid ("gpt"), or between about 0.5 and about 10 gpt, or between about 0.5 and about 2 gpt.
- gpt dilution fluid
- microemulsion does not result in the breakdown of the microemulsion.
- emulsions or microemulsion are provided.
- the terms should be understood to include emulsions or microemulsions that have a water continuous phase, or that have an oil continuous phase, or microemulsions that are bicontinuous.
- the term "emulsion” is given its ordinary meaning in the art and refers to dispersions of one immiscible liquid in another, in the form of droplets, with diameters approximately in the range of 100 1,000 nanometers. Emulsions may be thermodynamically unstable and/or require high shear forces to induce their formation.
- the term "microemulsion” is given its ordinary meaning in the art and refers to dispersions of one immiscible liquid in another, in the form of droplets, with diameters approximately in the range between about 1 and about 1000 nm, or between 10 and about 1000 nanometers, or between about 10 and about 500 nm, or between about 10 and about 300 nm, or between about 10 and about 100 nm.
- Microemulsions are clear or transparent because they contain particles smaller than the wavelength of visible light.
- microemulsions are homogeneous thermodynamically stable single phases, and form spontaneously, and thus, differ markedly from thermodynamically unstable emulsions, which generally depend upon intense mixing energy for their formation.
- Microemulsions may be characterized by a variety of advantageous properties including, by not limited to, (i) clarity, (ii) very small particle size, (iii) ultra-low interfacial tensions, (iv) the ability to combine properties of water and oil in a single homogeneous fluid, (v) shelf life stability, and (vi) ease of preparation.
- the microemulsions described herein are stabilized microemulsions that are formed by the combination of a solvent- surfactant blend with an appropriate oil-based or water-based carrier fluid.
- the microemulsion forms upon simple mixing of the components without the need for high shearing generally required in the formation of ordinary emulsions.
- microemulsion is a thermodynamically stable system, and the droplets remain finely dispersed over time.
- the average droplet size ranges from about 10 nm to about 300 nm.
- the emulsion or microemulsion is a single emulsion or microemulsion.
- the emulsion or microemulsion comprises a single layer of a surfactant.
- the emulsion or microemulsion may be a double or multilamellar emulsion or microemulsion.
- the emulsion or microemulsion comprises two or more layers of a surfactant.
- the emulsion or microemulsion comprises a single layer of surfactant surrounding a core (e.g., one or more of water, oil, solvent, and/or other additives) or a multiple layers of surfactant (e.g., two or more concentric layers surrounding the core).
- the emulsion or microemulsion comprises two or more immiscible cores (e.g., one or more of water, oil, solvent, and/or other additives which have equal or about equal affinities for the surfactant).
- a microemulsion comprises water, a solvent, and a surfactant.
- the microemulsion may further comprise additional components, for example, a freezing point depression agent. Details of each of the components of the microemulsions are described in detail herein.
- the components of the microemulsions are selected so as to reduce or eliminate the hazards of the microemulsion to the environment and/or the subterranean reservoirs.
- the microemulsion generally comprises a solvent.
- the solvent, or a combination of solvents may be present in the microemulsion in any suitable amount.
- the total amount of solvent present in the microemulsion is between about 2 wt and about 60 wt , or between about 5 wt and about 40 wt , or between about 5 wt and about 30 wt , versus the total microemulsion composition.
- the water to solvent ratio in a microemulsion may be varied.
- the ratio of water to solvent, along with other parameters of the solvent may be varied so that displacement of residual aqueous treatment fluid by formation gas and/or formation crude is preferentially stimulated.
- the ratio of water to solvent is between about 15: 1 and 1: 10, or between 9: 1 and 1:4, or between 3.2: 1 and 1:4.
- the solvent when displacement of residual aqueous treatment fluid by formation crude oil is preferentially stimulated, is selected from the group consisting of unsubstituted cyclic or acyclic, branched or unbranched alkanes having 6- 12 carbon atoms, unsubstituted acyclic branched or unbranched alkenes having one or two double bonds and 6-12 carbon atoms, cyclic or acyclic, branched or unbranched alkanes having 9-12 carbon atoms and substituted with only an -OH group, branched or unbranched dialkylether compounds having the formula C n H 2n+ iOC m H 2m+ i, wherein n + m is between 6 and 16, and aromatic solvents having a boiling point between about 300- 400 °F.
- the solvent is an unsubstituted cyclic or acyclic, branched or unbranched alkane having 6-12 carbon atoms.
- the cyclic or acyclic, branched or unbranched alkane has 6-10 carbon atoms.
- unsubstituted acyclic unbranched alkanes having 6-12 carbon atoms include hexane, heptane, octane, nonane, decane, undecane, and dodecane.
- Non-limiting examples of unsubstituted acyclic branched alkanes having 6-12 carbon atoms include isomers of methylpentane (e.g., 2-methylpentane, 3-methylpentane), isomers of dimethylbutane (e.g., 2,2-dimethylbutane, 2,3-dimethylbutane), isomers of methylhexane (e.g., 2- methylhexane, 3 -methylhexane), isomers of ethylpentane (e.g., 3-ethylpentane), isomers of dimethylpentane (e.g., 2,2,-dimethylpentane, 2,3-dimethylpentane, 2,4- dimethylpentane, 3,3-dimethylpentane), isomers of trimethylbutane (e.g., 2,2,3- trimethylbutane), isomers of methylheptane (e.g
- trimethylpentane e.g., 2,2,3-trimethylpentane, 2,2,4-trimethylpentane, 2,3,3- trimethylpentane, 2,3,4-trimethylpentane
- isomers of ethylmethylpentane e.g., 3- ethyl-2-methylpentane, 3-ethyl-3-methylpentane.
- unsubstituted cyclic branched or unbranched alkanes having 6-12 carbon atoms include cyclohexane, methylcyclopentane, ethylcyclobutane, propylcyclopropane,
- the unsubstituted cyclic or acyclic, branched or unbranched alkane having 6-12 carbon is selected from the group consisting of heptane, octane, nonane, decane, 2,2,4-trimethylpentane (isooctane), and propylcyclohexane.
- the solvent is an unsubstituted acyclic branched or unbranched alkene having one or two double bonds and 6-12 carbon atoms. In some embodiments, the solvent is an unsubstituted acyclic branched or unbranched alkene having one or two double bonds and 6-10 carbon atoms.
- Non-limiting examples of unsubstituted acyclic unbranched alkenes having one or two double bonds and 6-12 carbon atoms include isomers of hexene (e.g., 1-hexene, 2-hexene), isomers of hexadiene (e.g., 1,3-hexadiene, 1,4-hexadiene), isomers of heptene (e.g., 1-heptene, 2-heptene, 3- heptene), isomers of heptadiene (e.g., 1,5-heptadiene, 1-6, heptadiene), isomers of octene (e.g., 1-octene, 2-octene, 3-octene), isomers of octadiene (e.g., 1,7-octadiene), isomers of nonene, isomers of nonadiene, isomers of decene, isomers
- the acyclic unbranched alkene having one or two double bonds and 6-12 carbon atoms is an alpha-olefin (e.g., 1-hexene, 1-heptene, 1-octene, 1-nonene, 1- decene, 1 -undecene, 1 -dodecene).
- alpha-olefin e.g., 1-hexene, 1-heptene, 1-octene, 1-nonene, 1- decene, 1 -undecene, 1 -dodecene.
- Non-limiting examples unsubstituted acyclic branched alkenes include isomers of methylpentene, isomers of dimethylpentene, isomers of ethylpentene, isomers of methylethylpentene, isomers of propylpentene, isomers of methylhexene, isomers of ethylhexene, isomers of dimethylhexene, isomers of methylethylhexene, isomers of methylheptene, isomers of ethylheptene, isomers of dimethylhexptene, and isomers of methylethylheptene.
- the unsubstituted acyclic unbranched alkene having one or two double bonds and 6-12 carbon atoms is selected from the group consisting of 1-octene and 1,7-octadiene.
- the solvent is a cyclic or acyclic, branched or unbranched alkane having 9-12 carbon atoms and substituted with only an -OH group.
- Non-limiting examples of cyclic or acyclic, branched or unbranched alkanes having 9-12 carbon atoms and substituted with only an -OH group include isomers of nonanol, isomers of decanol, isomers of undecanol, and isomers of dodecanol.
- the cyclic or acyclic, branched or unbranched alkane having 9-12 carbon atoms and substituted with only an -OH group is selected from the group consisting of 1 -nonanol and 1- decanol.
- the solvent is a branched or unbranched dialkylether compound having the formula C n H2 n+1 OC m H 2m+1 wherein n + m is between 6 and 16. In some cases, n + m is between 6 and 12, or between 6 and 10, or between 6 and 8.
- Non- limiting examples of branched or unbranched dialkylether compounds having the formula C n H2n + iOC m H 2 m + i include isomers of C3H7OC3H7, isomers of C 4 H 9 OC3H7, isomers of CsHnOC ⁇ H ?
- the branched or unbranched dialklyether is an isomer C 6 H 13 OC 6 H 13 (e.g., dihexylether).
- an emulsion or microemulsion comprises an aromatic solvent.
- the aromatic solvent includes, but is not limited to, aryl compounds including at least one aromatic carbocyclic groups.
- the aromatic solvent comprises an optionally substituted phenyl ring.
- the aromatic solvent comprises a Ce- t o aromatic hydrocarbon.
- the solvent is an aromatic solvent having a boiling point between about 300-400 °F.
- aromatic solvents having a boiling point between about 300-400 °F include butylbenzene, hexylbenzene, mesitylene, light aromatic naphtha, and heavy aromatic naphtha.
- the solvent is selected from the group consisting of cyclic or acyclic, branched or unbranched alkanes having 8 carbon atoms and substituted only with an -OH group and aromatic solvents having a boiling point between about 175-300 °F.
- the solvent is a cyclic or acyclic, branched or unbranched alkane having 8 carbon atoms and substituted with only an -OH group.
- cyclic or acyclic, branched or unbranched alkanes having 8 carbon atoms and substituted with only an -OH group include isomers of octanol (e.g., 1-octanol, 2- octanol, 3-octanol, 4-octanol), isomers of methyl heptanol, isomers of ethylhexanol (e.g., 2-ethyl-l-hexanol, 3-ethyl-l-hexanol, 4-ethyl-l-hexanol), isomers of dimethylhexanol, isomers of propylpentanol, isomers of methylethylpentanol, and
- the cyclic or acyclic, branched or unbranched alkane having 8 carbon atoms and substituted with only an -OH group is selected from the group consisting of 1-octanol and 2-ethyl-l-hexanol.
- the solvent is an aromatic solvent having a boiling point between about 175-300 °F.
- aromatic liquid solvents having a boiling point between about 175-300 °F include benzene, xylenes, and toluene.
- the solvent is not xylene.
- the microemulsion comprises a first type of solvent and a second type of solvent.
- the first type of solvent to the second type of solvent ratio in a microemulsion may be present in any suitable ratio.
- the ratio of the first type of solvent to the second type of solvent is between about 4: 1 and 1:4, or between 2: 1 and 1:2, or about 1: 1.
- the first type of solvent and the second type of solvent are different and are selected from the group consisting of unsubstituted cyclic or acyclic, branched or unbranched alkanes having 6-12 carbon atoms, unsubstituted acyclic branched or unbranched alkenes having one or two double bonds and 6-12 carbon atoms, cyclic or acyclic, branched or unbranched alkanes having 9-12 carbon atoms and substituted with only an -OH group, branched or unbranched dialkylether compounds having the formula C n H 2n+ iOC m H 2m+ i, wherein n + m is between 6 and 16, and aromatic solvents having a boiling point between about 300-400 °F.
- the first type of solvent and the second type of solvent are different and are selected from the group consisting of cyclic or acyclic, branched or unbranched alkanes having 8 carbon atoms and substituted with only an - OH group and aromatic solvents having a boiling point between about 175-300 °F.
- At least one solvent present in the microemulsion is a terpene or terpenoid.
- the first type of solvent is selected from the group consisting of unsubstituted cyclic or acyclic, branched or unbranched alkanes having 6-12 carbon atoms, unsubstituted acyclic branched or unbranched alkenes having one or two double bonds and 6-12 carbon atoms, cyclic or acyclic, branched or unbranched alkanes having 9-12 carbon atoms and substituted with only an -OH group, branched or unbranched dialkylether compounds having the formula C n H 2n+ iOC m H 2m+ i, wherein n + m is between 6 and 16, and aromatic solvents having a boiling point between about 300-400 °F and the second type of solvent is a terpene or terpenoid.
- the terpene or terpenoid may be selected so as to preferentially stimulate displacement of residual aqueous treatment fluid by formation crude oil.
- the terpene or terpenoid for preferentially stimulating displacement of residual aqueous treatment fluid by formation crude oil may have a phase inversion temperature greater than 109.4 °F, as determined by the method described herein.
- the first type of solvent is selected from the group consisting of cyclic or acyclic, branched or unbranched alkanes having 8 carbon atoms and substituted with only an -OH group and aromatic solvents having a boiling point between about 175-300 °F and the second type of solvent is a terpene or terpenoid.
- the terpene or terpenoid may be selected so as to preferentially stimulate displacement of residual aqueous treatment fluid by formation gas.
- the terpene or terpenoid for preferentially stimulating displacement of residual aqueous treatment fluid by formation gas may have a phase inversion
- microemulsions comprising more than two types of solvents may be utilized in the methods, compositions, and systems described herein.
- the microemulsion may comprise more than one or two types of solvent, for example, three, four, five, six, or more, types of solvents.
- the microemulsion may comprise one or more solvents selected from the group consisting of unsubstituted cyclic or acyclic, branched or unbranched alkanes having 6-12 carbon atoms, unsubstituted acyclic branched or unbranched alkenes having one or two double bonds and 6-12 carbon atoms, cyclic or acyclic, branched or unbranched alkanes having 9-12 carbon atoms and substituted with only an -OH group, branched or unbranched dialkylether compounds having the formula C n H 2n+ iOC m H 2m+ i, wherein n + m is between 6 and 16, and aromatic solvents having a boiling point between about 300-400 °F and one or more terpenes or terpenoids.
- solvents selected from the group consisting of unsubstituted cyclic or acyclic, branched or unbranched alkanes having 6-12 carbon atoms, unsubstitute
- the microemulsion may comprise one or more solvents selected from the group consisting of cyclic or acyclic, branched or unbranched alkanes having 8 carbon atoms and substituted with only an - OH group and aromatic solvents having a boiling point between about 175-300 °F and one or more terpenes or terpenoids.
- At least one of the solvents present in the microemulsion is a terpene or a terpenoid.
- the terpene or terpenoid comprises a first type of terpene or terpenoid and a second type of terpene or terpenoid.
- Terpenes may be generally classified as monoterpenes (e.g., having two isoprene units), sesquiterpenes (e.g., having 3 isoprene units), diterpenes, or the like.
- terpenoid also includes natural degradation products, such as ionones, and natural and synthetic derivatives, e.g., terpene alcohols, aldehydes, ketones, acids, esters, epoxides, and hydrogenation products (e.g., see Ullmann's Encyclopedia of Industrial Chemistry, 2012, pages 29-45, herein incorporated by reference). It should be understood, that while much of the description herein focuses on terpenes, this is by no means limiting, and terpenoids may be employed where appropriate. In some cases, the terpene is a naturally occurring terpene.
- the terpene is a non-naturally occurring terpene and/or a chemically modified terpene (e.g., saturated terpene, terpene amine, fluorinated terpene, or silylated terpene).
- a chemically modified terpene e.g., saturated terpene, terpene amine, fluorinated terpene, or silylated terpene.
- the terpene is a monoterpene.
- Monoterpenes may be further classified as acyclic, monocyclic, and bicyclic (e.g., with a total number of carbons between 18 and 20), as well as whether the monoterpene comprises one or more oxygen atoms (e.g., alcohol groups, ester groups, carbonyl groups, etc.).
- the terpene is an oxygenated terpene, for example, a terpene comprising an alcohol, an aldehyde, and/or a ketone group.
- the terpene comprises an alcohol group.
- Non-limiting examples of terpenes comprising an alcohol group are linalool, geraniol, nopol, a-terpineol, and menthol.
- the terpene comprises an ether-oxygen, for example, eucalyptol, or a carbonyl oxygen, for example, menthone.
- the terpene does not comprise an oxygen atom, for example, d-limonene.
- Non-limiting examples of terpenes include linalool, geraniol, nopol, a-terpineol, menthol, eucalyptol, menthone, d-limonene, terpinolene, ⁇ -occimene, ⁇ -terpinene, a-pinene, and citronellene.
- the terpene is selected from the group consisting of a-terpeneol, a-pinene, nopol, and eucalyptol.
- the terpene is nopol.
- the terpene is eucalyptol.
- the terpene is not limonene (e.g., d-limonene).
- the emulsion is free of limonene.
- the terpene is a non-naturally occurring terpene and/or a chemically modified terpene (e.g., saturated terpene). In some cases, the terpene is a partially or fully saturated terpene (e.g., p-menthane, pinane). In some cases, the terpene is a non-naturally occurring terpene.
- Non-limiting examples of non-naturally occurring terpenes include, menthene, p-cymene, r-carvone, terpinenes (e.g., alpha- terpinenes, beta-terpinenes, gamma-terpinenes), dipentenes, terpinolenes, borneol, alpha- terpinamine, and pine oils.
- the terpene may be classified in terms of its phase inversion temperature (" ⁇ ").
- phase inversion temperature is given its ordinary meaning in the art and refers to the temperature at which an oil in water microemulsion inverts to a water in oil microemulsion (or vice versa).
- the PIT values described herein were determined using a 1: 1 ratio of terpene (e.g., one or more terpenes):de-ionized water and varying amounts (e.g., between about 20 wt and about 60 wt ; generally, between 3 and 9 different amounts are employed) of a 1: 1 blend of surfactant comprising linear C 12 -C 15 alcohol ethoxylates with on average 7 moles of ethylene oxide (e.g., Neodol 25-7):isopropyl alcohol wherein the upper and lower temperature boundaries of the microemulsion region can be determined and a phase diagram may be generated.
- terpene e.g., one or more terpenes
- de-ionized water varying amounts (e.g., between about 20 wt and about 60 wt ; generally, between 3 and 9 different amounts are employed) of a 1: 1 blend of surfactant comprising linear C 12 -C 15 alcohol ethoxylates with on average
- phase diagram e.g., a plot of temperature against surfactant concentration at a constant oil-to-water ratio
- fish a plot of temperature against surfactant concentration at a constant oil-to-water ratio
- the temperature at the vertex is the ⁇ .
- An exemplary fish diagram indicating the PIT is shown in Figure 1.
- PITs for non-limiting examples of terpenes determined using this experimental procedure outlined above are given in Table 1.
- Table 1 Phase inversion temperatures for non-limiting examples of terpenes.
- the terpene has a PIT greater than and/or less than 43 °C, as determined by the method described herein. In some embodiments, the terpene has a PIT greater than 43 °C, as determined by the method described herein. In some embodiments, the terpene has a PIT less than 43 °C, as determined by the method described herein. In some embodiments, the terpene has a PIT greater than 32 °C, as determined by the method described herein. In some embodiments, the terpene has a PIT less than 32 °C, as determined by the method described herein.
- the PIT is between about -10 °C and about 70 °C, or between about -4 °C and about 60 °C, as determined by the method described herein. In some embodiments, the minimum PIT is -10 °C, or -4 °C, as determined by the method described herein. In some embodiments, the maximum PIT is 70 °C, or 60 °C, as determined by the method described herein.
- the terpene may be selected to have a phase inversion temperature greater than 109.4 °F, as determined by the method described herein.
- the terpene may be selected to have a phase inversion temperature less than 109.4 °F, as determined by the method described herein.
- the solvent utilized in the emulsion or microemulsion herein may comprise one or more impurities.
- a solvent e.g., a terpene
- a natural source e.g., citrus
- impurities present from the extraction process.
- the solvent comprises a crude cut (e.g., uncut crude oil, for example, made by settling, separation, heating, etc.).
- the solvent is a crude oil
- the solvent is a citrus extract (e.g., crude orange oil, orange oil, etc.).
- the terpene may be present in the microemulsion in any suitable amount. In some embodiments, terpene is present in an amount between about In some
- terpene is present in an amount between about 2 wt and about 60 wt , or between about 5 wt and about 40 wt , or between about 5 wt and about 30 wt , versus the total microemulsion composition.
- the terpene is present in an amount between about 1 wt and about 99 wt%, or between about 2 wt and about 90 wt %, or between about 1 wt and about 60 wt%, or between about 2 wt and about 60 wt%, or between about 1 wt and about 50 wt%, or between about 1 wt and about 30 wt%, or between about 5 wt and about 40 wt%, or between about 5 wt and about 30 wt%, or between about 2 wt and about 25 wt%, or between about 5 wt and about 25 wt%, or between about 60 wt and about 95 wt%, or between about 70 wt or about 95 wt%, or between about 75 wt and about 90 wt%, or between about 80 wt and about 95 wt%, versus the total microemulsion composition.
- the water to terpene ratio in a microemulsion may be varied.
- the ratio of water to terpene by weight is between about 3: 1 and about 1:2, or between about 2: 1 and about 1: 1.5.
- the ratio of water to terpene is between about 10: 1 and about 3: 1, or between about 6: 1 and about 5: 1.
- the microemulsion comprises an aqueous phase comprising water.
- the water may be provided from any suitable source (e.g., sea water, fresh water, deionized water, reverse osmosis water, water from field production).
- the water may be present in any suitable amount.
- the total amount of water present in the microemulsion is between about 1 wt about 95 wt , or between about 1 wt about 90 wt , or between about 1 wt and about 60 wt , or between about 5 wt and about 60 wt or between about 10 and about 55 wt , or between about 15 and about 45 wt , versus the total microemulsion composition.
- At the emulsion or microemulsion may comprise mutual solvent which is miscible together with the water and the non-aqueous solvent.
- the mutual solvent is present in an amount between about at 0.5 wt to about 30% of mutual solvent.
- suitable mutual solvents include ethyleneglycolmonobutyl ether (EGMBE), dipropylene glycol monomethyl ether, short chain alcohols (e.g., isopropanol), tetrahydrofuran, dioxane, dimethylformamide, and dimethylsulfoxide.
- the microemulsion comprises a surfactant.
- the microemulsion may comprise a single surfactant or a combination of two or more surfactants.
- the surfactant comprises a first type of surfactant and a second type of surfactant.
- surfactant is given its ordinary meaning in the art and refers to compounds having an amphiphilic structure which gives them a specific affinity for oil/water-type and water/oil-type interfaces which helps the compounds to reduce the free energy of these interfaces and to stabilize the dispersed phase of a microemulsion.
- surfactant encompasses cationic surfactants, anionic surfactants, amphoteric surfactants, nonionic surfactants, zwitterionic surfactants, and mixtures thereof.
- the surfactant is a nonionic surfactant.
- Nonionic surfactants generally do not contain any charges.
- Amphoteric surfactants generally have both positive and negative charges, however, the net charge of the surfactant can be positive, negative, or neutral, depending on the pH of the solution.
- Anionic surfactants generally possess a net negative charge.
- Cationic surfactants generally possess a net positive charge.
- Zwitterionic surfactants are generally no pH dependent, not pH dependent.
- a zwitterion is a neutral molecule with a positive and a negative electrical charge, though multiple positive and negative charges can be present. Zwitterions are distinct from dipole, at different locations within that molecule.
- the surfactant is an amphiphilic block copolymer where one block is hydrophobic and one block is hydrophilic. In some cases, the total molecular weight of the polymer is greater than 5000 daltons.
- the hydrophilic block of these polymers can be nonionic, anionic, cationic, amphoteric, or zwitterionic.
- surface energy is given its ordinary meaning in the art and refers to the extent of disruption of intermolecular bonds that occur when the surface is created (e.g., the energy excess associated with the surface as compared to the bulk).
- surface energy is also referred to as surface tension (e.g., for liquid-gas interfaces) or interfacial tension (e.g., for liquid-liquid interfaces).
- surfactants generally orient themselves across the interface to minimize the extent of disruption of intermolecular bonds (i.e. lower the surface energy).
- a surfactant at an interface between polar and non-polar phases orient themselves at the interface such that the difference in polarity is minimized.
- the surfactant(s) are matched to and/or optimized for the particular oil or solvent in use.
- the surfactant(s) are selected by mapping the phase behavior of the microemulsion and choosing the surfactant(s) that gives the desired range of stability.
- the stability of the microemulsion over a wide range of temperatures is targeted as the microemulsion may be subject to a wide range of temperatures due to the environmental conditions present at the subterranean formation and/or reservoir.
- the surfactant is an alkyl polyglycol ether, for example, having 2-250 ethylene oxide (EO) (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40) units and alkyl groups of 4-20 carbon atoms.
- the surfactant is an alkylaryl polyglycol ether having 2-250 EO units (e.g., or 2-200, or 2- 150, or 2-100, or 2-50, or 2-40) and 8-20 carbon atoms in the alkyl and aryl groups.
- the surfactant is an ethylene oxide/propylene oxide (EO/PO) block copolymer having 2-250 EO or PO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40).
- the surfactant is a fatty acid polyglycol ester having 6-24 carbon atoms and 2-250 EO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40).
- the surfactant is a polyglycol ether of hydroxyl-containing triglycerides (e.g., castor oil).
- the surfactant is an ethylene oxide/propylene oxide block copolymer having 2-250 EO or PO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40).
- the surfactant is a fatty acid polyglycol ester having 6-24 carbon atoms and 2-250 EO units (e.g., or 2-200, or 2-150, or 2-
- the surfactant is a fatty ester of glycerol, sorbitol, or pentaerythritol.
- the surfactant is an amine oxide (e.g., dodecyldimethylamine oxide).
- the surfactant is an alkyl sulfate, for example having a chain length of 8-18 carbon atoms, alkyl ether sulfates having 8-18 carbon atoms in the hydrophobic group and 1-40 ethylene oxide (EO) or propylene oxide (PO) units.
- EO ethylene oxide
- PO propylene oxide
- the surfactant is a sulfonate, for example, an alkyl sulfonate having 8-18 carbon atoms, an alkylaryl sulfonate having 8-18 carbon atoms, an ester or half ester of sulfosuccinic acid with monohydric alcohols or alkylphenols having 4-15 carbon atoms, or a multisulfonate (e.g., comprising two, three, four, or more, sulfonate groups).
- the alcohol or alkylphenol can also be ethoxylated with 1 250 EO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40).
- 1 250 EO units e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40.
- the surfactant is an alkali metal salt or ammonium salt of a carboxylic acid or poly(alkylene glycol) ether carboxylic acid having 8-20 carbon atoms in the alkyl, aryl, alkaryl or aralkyl group and 1-250 EO or PO units (e.g., or 2-200, or 2-150, or 2- 100, or 2-50, or 2-40).
- the surfactant is a partial phosphoric ester or the corresponding alkali metal salt or ammonium salt, e.g., an alkyl and alkaryl phosphate having 8-20 carbon atoms in the organic group, an alkylether phosphate or alkarylether phosphate having 8-20 carbon atoms in the alkyl or alkaryl group and 1-250 EO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40).
- the surfactant is a salt of primary, secondary, or tertiary fatty amine having 8-24 carbon atoms with acetic acid, sulfuric acid, hydrochloric acid, and phosphoric acid.
- the surfactant is a quaternary alkyl- and alkylbenzylammonium salt, whose alkyl groups have 1-24 carbon atoms (e.g., a halide, sulfate, phosphate, acetate, or hydroxide salt).
- the surfactant is an alkylpyridinium, an alkylimidazolinium, or an alkyloxazolinium salt whose alkyl chain has up to 18 carbons atoms (e.g., a halide, sulfate, phosphate, acetate, or hydroxide salt).
- the surfactant is amphoteric or zwitterionic, including sultaines (e.g., cocamidopropyl hydroxy sultaine), betaines (e.g., cocamidopropyl betaine), or phosphates (e.g., lecithin).
- sultaines e.g., cocamidopropyl hydroxy sultaine
- betaines e.g., cocamidopropyl betaine
- phosphates e.g., lecithin
- Non limiting examples of specific surfactants include a linear C12-C15 ethoxylated alcohols with 5-12 moles of EO, lauryl alcohol ethoxylate with 4-8 moles of EO, nonyl phenol ethoxylate with 5-9 moles of EO, octyl phenol ethoxylate with 5-9 moles of EO, tridecyl alcohol ethoxylate with 5-9 moles of EO, Pluronic® matrix of EO/PO copolymers, ethoxylated cocoamide with 4-8 moles of EO, ethoxylated coco fatty acid with 7-11 moles of EO, and cocoamidopropyl amine oxide.
- the surfactant is a siloxane surfactant as described in U.S. Patent Application Serial No. 13/831,410, filed March 14, 2014, herein incorporated by reference.
- the surfactant is a Gemini surfactant.
- Gemini surfactants generally have the structure of multiple amphiphilic molecules linked together by one or more covalent spacers.
- the surfactant is an extended surfactant, wherein the extended surfactats has the structure where a non-ionic hydrophilic spacer (e.g. ethylene oxide or propylene oxide) connects an ionic hydrophilic group (e.g.
- the surfactant is an alkoxylated polyimine with a relative solubility number (RSN) in the range of 5-20.
- RSN values are generally determined by titrating water into a solution of surfactant in l,4dioxane. The RSN values is generally defined as the amount of distilled water necessary to be added to produce persistent turbidity.
- the surfactant is an alkoxylated novolac resin (also known as a phenolic resin) with a relative solubility number in the range of 5-20.
- the surfactant is a block copolymer surfactant with a total molecular weight greater than 5000 daltons.
- the block copolymer may have a hydrophobic block that is comprised of a polymer chain that is linear, branched, hyperbranched, dendritic or cyclic.
- monomeric repeat units in the hydrophobic chains of block copolymer surfactants are isomers of acrylic, methacrylic, styrenic, isoprene, butadiene, acrylamide, ethylene, propylene and norbornene.
- the block copolymer may have a hydrophilic block that is comprised of a polymer chain that is linear, branched, hyper branched, dendritic or cyclic.
- monomeric repeat units in the hydrophilic chains of the block copolymer surfactants are isomers of acrylic acid, maleic acid, methacrylic acid, ethylene oxide, and acrylamine.
- the surfactant has a structure as in Formula I:
- R 12 is hydrogen or Ci_6 alkyl. In some embodiments, for a compound of Formula (I), R 12 is H, methyl, or ethyl. In some embodiments, for a compound of Formula (I), R 12 is H.
- the surfactant has a structure as in Formula II:
- X + is a metal cation or N(R 13 ) 4 , wherein each R 13 is independently selected from the group consisting of hydrogen, optionally substituted alkyl, or optionally substituted aryl.
- X + is NH 4 .
- Non-limiting examples of metal cations are Na + , K + , Mg +2 , and Ca +2 .
- Y " is -O " , -S0 2 0 ⁇ , or -OS0 2 0 ⁇ .
- the surfactant has a structure as in Formula III:
- Z + is N(R 13 ) 3 , wherein each R 13 is independent selected from the group consisting of hydrogen, optionally substituted alkyl, or optionally substituted aryl.
- Ar is phenyl.
- each m is 1.
- each m is 2.
- n is 6-100, or 1-50, or 6-50, or 6-25, or 1-25, or 5-50, or 5-25, or 5-20.
- the surfactant(s) are matched to and/or optimized for the particular oil or solvent in use.
- the surfactant(s) are selected by mapping the phase behavior of the microemulsion and choosing the surfactant(s) that gives the desired range of stability.
- the stability of the microemulsion over a wide range of temperatures is targeting as the microemulsion may be subject to a wide range of temperatures due to the environmental conditions present at the subterranean formation.
- the emulsion or microemulsion may comprise one or more additives in addition to water, solvent (e.g., one or more types of solvents), and surfactant (e.g., one or more types of surfactants).
- the additive is an alcohol, a freezing point depression agent, an acid, a salt, a proppant, a scale inhibitor, a friction reducer, a biocide, a corrosion inhibitor, a buffer, a viscosifier, a clay swelling inhibitor, an oxygen scavenger, and/or a clay stabilizer.
- the surfactant may be present in the microemulsion in any suitable amount. In some embodiments, the surfactant is present in an amount between about 10 wt and about 70 wt , or between about 15 wt and about 55 wt versus the total
- the surfactant is present in an amount between about 0 wt and about 99 wt , or between about 10 wt and about 70 wt , or between about 0 wt and about 60 wt , or between about 1 wt and about 60 wt , or between about 5 wt and about 60 wt , or between about 10 wt and about 60 wt , or between 5 wt and about 65 wt , or between 5 wt and about 55 wt , or between about 0 wt and about 40 wt , or between about 15 wt and about 55 wt , or between about 20 wt and about 50 wt , versus the total microemulsion composition.
- the microemulsion comprises an alcohol.
- the alcohol may serve as a coupling agent between the solvent and the surfactant and aid in the stabilization of the microemulsion.
- the alcohol may also lower the freezing point of the microemulsion
- the microemulsion may comprise a single alcohol or a combination of two or more alcohols.
- the alcohol is selected from primary, secondary and tertiary alcohols having between 1 and 20 carbon atoms.
- the alcohol comprises a first type of alcohol and a second type of alcohol.
- Non-limiting examples of alcohols include methanol, ethanol, isopropanol, n-propanol, n-butanol, i-butanol, sec-butanol, iso-butanol, and t-butanol.
- the alcohol is ethanol or isopropanol.
- the alcohol is isopropanol.
- the alcohol may be present in the emulsion in any suitable amount. In some embodiments, the alcohol is present in an amount between about 0 wt and about 50 wt , or between about 0.1 wt and about 50 wt , or between about 1 wt and about 50 wt , or between about 5 wt and about 40 wt , or between about 5 wt and 35 wt , versus the total microemulsion composition.
- the microemulsion comprises a freezing point depression agent.
- the microemulsion may comprise a single freezing point depression agent or a combination of two or more freezing point depression agents.
- the freezing point depression agent comprises a first type of freezing point depression agent and a second type of freezing point depression agent.
- freeze point depression agent is given its ordinary meaning in the art and refers to a compound which is added to a solution to reduce the freezing point of the solution. That is, a solution comprising the freezing point depression agent has a lower freezing point as compared to an essentially identical solution not comprising the freezing point depression agent.
- suitable freezing point depression agents include primary, secondary, and tertiary alcohols with between 1 and 20 carbon atoms. In some embodiments, the alcohol comprises at least 2 carbon atoms, alkylene glycols including polyalkylene glycols, and salts.
- Non-limiting examples of alcohols include methanol, ethanol, i-propanol, n-propanol, t-butanol, n-butanol, n-pentanol, n-hexanol, and 2-ethyl-hexanol.
- the freezing point depression agent is not methanol (e.g., due to toxicity).
- alkylene glycols include ethylene glycol (EG), polyethylene glycol (PEG), propylene glycol (PG), and triethylene glycol (TEG).
- the freezing point depression agent is not ethylene oxide (e.g., due to toxicity).
- salts include salts comprising K, Na, Br, Cr, Cr, Cs, or Bi, for example, halides of these metals, including NaCl, KC1, CaCl 2 , and MgCl.
- the freezing point depression agent comprises an alcohol and an alkylene glycol.
- the freezing point depression agent comprises a carboxycyclic acid salt and/or a di-carboxycylic acid salt.
- Another non-limiting example of a freezing point depression agent is a combination of choline chloride and urea.
- the microemulsion comprising the freezing point depression agent is stable over a wide range of temperatures, for example, between about 25 °F to 150 °F, or between about 50 °F to 200 °F.
- the freezing point depression agent may be present in the microemulsion in any suitable amount. In some embodiments, the freezing point depression agent is present in an amount between about 1 wt and about 40 wt , or between about 3 wt and about 20 wt , or between about 8 wt and about 16 wt , versus the total microemulsion composition.
- the freezing point depression agent is present in an amount between about 0 wt and about 70 wt , or between about 1 wt and about 40 wt , or between about 0 wt and about 25 wt , or between about 1 wt and about 25 wt , or between about 1 wt and about 20 wt , or between about 3 wt and about 20 wt , or between about 8 wt and about 16 wt , versus the total microemulsion composition.
- additives include proppants, scale inhibitors, friction reducers, biocides, corrosion inhibitors, buffers, viscosifiers, clay swelling inhibitors, paraffin dispersing additives, asphaltene dispersing additives, and oxygen scavengers.
- proppants include grains of sand, glass beads, crystalline silica (e.g., Quartz), hexamethylenetetramine, ceramic proppants (e.g., calcined clays), resin coated sands, and resin coated ceramic proppants.
- crystalline silica e.g., Quartz
- ceramic proppants e.g., calcined clays
- resin coated sands e.g., calcined clays
- resin coated ceramic proppants e.g., resin coated ceramic proppants.
- Other proppants are also possible and will be known to those skilled in the art.
- Non-limiting examples of scale inhibitors include one or more of methyl alcohol, organic phosphonic acid salts (e.g., phosphonate salt), polyacrylate, ethane- 1,2-diol, calcium chloride, and sodium hydroxide.
- organic phosphonic acid salts e.g., phosphonate salt
- polyacrylate e.g., polyacrylate
- ethane- 1,2-diol calcium chloride
- sodium hydroxide sodium hydroxide
- Non-limiting examples of buffers include acetic acid, acetic anhydride, potassium hydroxide, sodium hydroxide, and sodium acetate.
- Other buffers are also possible and will be known to those skilled in the art.
- Non-limiting examples of corrosion inhibitors include isopropanol, quaternary ammonium compounds, thiourea/formaldehyde copolymers, propargyl alcohol and methanol.
- Other corrosion inhibitors are also possible and will be known to those skilled in the art.
- biocides include didecyl dimethyl ammonium chloride, gluteral, Dazomet, bronopol, tributyl tetradecyl phosphonium chloride, tetrakis
- Non-limiting examples of clay swelling inhibitors include quaternary ammonium chloride and tetramethylammonium chloride. Other clay swelling inhibitors are also possible and will be known to those skilled in the art.
- friction reducers include petroleum distillates, ammonium salts, polyethoxylated alcohol surfactants, and anionic polyacrylamide copolymers. Other friction reducers are also possible and will be known to those skilled in the art.
- oxygen scavengers include sulfites, and bisulfites. Other oxygen scavengers are also possible and will be known to those skilled in the art.
- paraffin dispersing additives and asphaltene dispersing additives include active acidic copolymers, active alkylated polyester, active alkylated polyester amides, active alkylated polyester imides, aromatic naphthas, and active amine sulfonates.
- Other paraffin dispersing additives are also possible and will be known to those skilled in the art.
- the other additives are present in an amount between about 0 wt about 70 wt , or between about 0 wt % and about 30 wt , or between about 1 wt and about 30 wt , or between about 1 wt and about 25 wt , or between about 1 and about 20 wt , versus the total microemulsion composition.
- the microemulsion comprises an acid or an acid precursor.
- the microemulsion may comprise an acid when used during acidizing operations.
- the microemulsion may comprise a single acid or a combination of two or more acids.
- the acid comprises a first type of acid and a second type of acid.
- acids or di-acids include
- the microemulsion comprises an organic acid or organic di-acid in the ester (or di-ester) form, whereby the ester (or diester) is hydrolyzed in the wellbore and/or reservoir to form the parent organic acid and an alcohol in the wellbore and/or reservoir.
- esters or di-esters include isomers of methyl formate, ethyl formate, ethylene glycol diformate, a,a-4-trimethyl-3-cyclohexene-l-methylformate, methyl lactate, ethyl lactate, ⁇ , ⁇ -4- trimethyl 3-cyclohexene-l-methyllactate, ethylene glycol dilactate, ethylene glycol diacetate, methyl acetate, ethyl acetate, a,a,-4-trimethyl-3-cyclohexene-l-methylacetate, dimethyl succinate, dimethyl maleate, di(a,a-4-trimethyl-3-cyclohexene-l- methyl) succinate, l-methyl-4-(l-methylethenyl)-cyclohexylformate, l-methyl-4-(l- ethylethenyl)cyclohexylactate, 1 -methyl-4- ( 1 -methylethenyl
- the microemulsion comprises a salt.
- the presence of the salt may reduce the amount of water needed as a carrier fluid, and in addition, may lower the freezing point of the microemulsion.
- the microemulsion may comprise a single salt or a combination of two or more salts.
- the salt comprises a first type of salt and a second type of salt.
- Non-limiting examples of salts include salts comprising K, Na, Br, Cr, Cs, or Li, for example, halides of these metals, including NaCl, KC1, CaCl 2 , and MgCl 2 .
- the microemulsion comprises a clay stabilizer.
- the microemulsion may comprise a single clay stabilizer or a combination of two or more clay stabilizers.
- the salt comprises a first type of clay stabilizer and a second type of clay stabilizer.
- Non-limiting examples of clay stabilizers include salts above, polymers (PAC, PHPA, etc.), glycols, sulfonated asphalt, lignite, sodium silicate, and choline chloride.
- the other additives are present in an amount between about 0 wt about 70 wt , or between about 1 wt and about 30 wt , or between about 1 wt and about 25 wt , or between about 1 and about 20 wt , versus the total microemulsion composition.
- the components of the microemulsion and/or the amounts of the components may be selected so that the microemulsion is stable over a wide-range of temperatures.
- the microemulsion may exhibit stability between about -40 °F and about 400 °F, or between about -40 °F and about 300 °F or between about -40 °F and about 150 °F.
- the lower boundary may be determined by the freezing point and the upper boundary may be determined by the cloud point and/or using spectroscopy methods.
- Stability over a wide range of temperatures may be important in embodiments where the microemulsions are being employed in applications comprising environments wherein the temperature may vary significantly, or may have extreme highs (e.g., desert) or lows (e.g., artic).
- emulsions or microemulsions comprising water, a solvent, and a surfactant, wherein the solvents and surfactants may be as described herein.
- the solvent comprises more than one type of solvent, for example, two, three, four, five, six, or more, types of solvents.
- At least one solvent is selected from the group consisting of unsubstituted cyclic or acyclic, branched or unbranched alkanes having 6-12 carbon atoms, unsubstituted acyclic branched or unbranched alkenes having one or two double bonds and 6-12 carbon atoms, cyclic or acyclic, branched or unbranched alkanes having 9-12 carbon atoms and substituted with only an -OH group, branched or unbranched dialkylether compounds having the formula C n H2 n+1 OC m H 2m+1 , wherein n + m is between 6 and 16, and aromatic solvents having a boiling point between about 300-400 °F.
- At least one solvent is selected from the group consisting of cyclic or acyclic, branched or unbranched alkanes having 8 carbon atoms and substituted with only an -OH group and aromatic solvents having a boiling point between about 175-300 °F.
- at least one solvent is a terpene.
- the microemulsion may further comprise addition components, for example, a freezing point depression agent.
- at least one solvent is selected from the group consisting of butylbenzene, heavy aromatic naphtha, light aromatic naphtha, 1-nonanol,
- propylcyclohexane 1-decanol, dihexylether, 1,7-octadiene, hexylbenzene, nonane, decane, 1-octene, isooctane, octane, heptane, mesitylene, xylenes, toluene, 2-ethyl-l- hexanol, 1-octanol.
- At least one solvent is selected from the group consisting of butylbenzene, heavy aromatic naphtha, light aromatic naphtha, 1-nonanol, propylcyclohexane, 1-decanol, dihexylether, 1,7-octadiene, hexylbenzene, nonane, decane, 1-octene, isooctane, octane, heptane, mesitylene, toluene, 2-ethyl-l -hexanol, 1- octanol.
- the at least one solvent is not xylene.
- at least one solvent is an alpha-olefin.
- composition for injecting into a wellbore comprising an aqueous carrier fluid, and an emulsion or a microemulsion as described herein, wherein the emulsion or the microemulsion is present in an amount between about 0.1 wt and about 2 wt versus the total composition.
- the emulsion or microemulsion comprises an aqueous phase, a surfactant, a freezing point depression agent, and a solvent as described herein.
- the solvent is as described herein.
- the solvent comprises an alpha-olefin, for example, having between 6-12 carbon atoms.
- the solvent comprises a cyclic or acyclic, branched or unbranched alkane having 8-12, or 9-12, or 8, or 9, or 10, or 11, or 12 carbon atoms and substituted with only an -OH group.
- the total amount of solvent present in the emulsion or microemulsion is between about 2 wt and about 60 wt and/or the ratio of the aqueous phase to solvent in the emulsion or microemulsion is between 15: 1 and 1: 10.
- the composition may comprise more than one type of solvent.
- the solvent comprises an alpha- olefin and a terpene.
- the solvent comprises a cyclic or acyclic, branched or unbranched alkane having 8-12 carbon atoms and substituted with only an -OH group and a terpene.
- microemulsions described herein may be formed using methods known to those of ordinary skill in the art.
- the aqueous and non-aqueous phases may be combined (e.g., the water and the solvent(s)), followed by addition of a surfactant(s) and optionally other components (e.g., freezing point depression agent(s)) and agitation.
- a surfactant(s) and optionally other components e.g., freezing point depression agent(s)
- agitation e.g., freezing point depression agent(s)
- the strength, type, and length of the agitation may be varied as known in the art depending on various factors including the components of the microemulsion, the quantity of the microemulsion, and the resulting type of microemulsion formed.
- Agitation may be provided by any suitable source, for example, a vortex mixer, a stirrer (e.g., magnetic stirrer), etc.
- any suitable method for injecting the microemulsion e.g., a diluted microemulsion
- microemulsion into a wellbore
- the microemulsion may be injected into a subterranean formation by injecting it into a well or wellbore in the zone of interest of the formation and thereafter pressurizing it into the formation for the selected distance.
- Methods for achieving the placement of a selected quantity of a mixture in a subterranean formation are known in the art.
- the well may be treated with the microemulsion for a suitable period of time.
- the microemulsion and/or other fluids may be removed from the well using known techniques, including producing the well.
- experiments may be carried out to determine displacement of residual aqueous treatment fluid by formation crude oil or formation gas by a microemulsion (e.g., a diluted microemulsion).
- a microemulsion e.g., a diluted microemulsion
- displacement of residual aqueous treatment fluid by formation crude oil may be determined using the method described in Example 2 and/or displacement of residual aqueous treatment fluid by formation gas may be determined using the method described in Example 3.
- Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms.
- the present invention contemplates all such compounds, including cis- and iraws-isomers, R- and S-enantiomers, diastereomers, (D)-isomers, (L)- isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention.
- Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
- Isomeric mixtures containing any of a variety of isomer ratios may be utilized in accordance with the present invention. For example, where only two isomers are combined, mixtures containing 50:50, 60:40, 70:30, 80:20, 90: 10, 95:5, 96:4, 97:3, 98:2, 99: 1, or 100:0 isomer ratios are all contemplated by the present invention. Those of ordinary skill in the art will readily appreciate that analogous ratios are contemplated for more complex isomer mixtures.
- aliphatic includes both saturated and unsaturated, nonaromatic, straight chain (i.e., unbranched), branched, acyclic, and cyclic (i.e., carbocyclic) hydrocarbons, which are optionally substituted with one or more functional groups.
- aliphatic is intended herein to include, but is not limited to, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and cycloalkynyl moieties.
- alkyl includes straight, branched and cyclic alkyl groups.
- alkenyl alkynyl
- alkynyl alkenyl
- alkynyl alkynyl
- aliphatic is used to indicate those aliphatic groups (cyclic, acyclic, substituted, unsubstituted, branched or unbranched) having 1-20 carbon atoms.
- Aliphatic group substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety ⁇ e.g., aliphatic, alkyl, alkenyl, alkynyl, heteroaliphatic, heterocyclic, aryl, heteroaryl, acyl, oxo, imino, thiooxo, cyano, isocyano, amino, azido, nitro, hydroxyl, thiol, halo, aliphaticamino, heteroaliphaticamino, alkylamino, heteroalkylamino, arylamino, heteroarylamino, alkylaryl, arylalkyl, aliphaticoxy, heteroaliphaticoxy, alkyloxy, heteroalkyloxy, aryloxy, heteroaryloxy, aliphaticthioxy, heteroaliphaticthioxy, alkylthioxy, heteroalkylthioxy, arylthioxy, heteroarylthioxy,
- alkane is given its ordinary meaning in the art and refers to a saturated hydrocarbon molecule.
- branched alkane refers to an alkane that includes one or more branches, while the term “unbranched alkane” refers to an alkane that is straight-chained.
- cyclic alkane refers to an alkane that includes one or more ring structures, and may be optionally branched.
- acyclic alkane refers to an alkane that does not include any ring structures, and may be optionally branched.
- alkene is given its ordinary meaning in the art and refers to an unsaturated hydrocarbon molecule that includes one or more carbon-carbon double bonds.
- branched alkene refers to an alkene that includes one or more branches, while the term “unbranched alkene” refers to an alkene that is straight-chained.
- cyclic alkene refers to an alkene that includes one or more ring structures, and may be optionally branched.
- acyclic alkene refers to an alkene that does not include any ring structures, and may be optionally branched.
- aromatic is given its ordinary meaning in the art and refers to aromatic carbocyclic groups, having a single ring (e.g., phenyl), multiple rings (e.g., biphenyl), or multiple fused rings in which at least one is aromatic (e.g., 1,2,3,4- tetrahydronaphthyl, naphthyl, anthryl, or phenanthryl). That is, at least one ring may have a conjugated pi electron system, while other, adjoining rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls.
- aryl is given its ordinary meaning in the art and refers to aromatic carbocyclic groups, optionally substituted, having a single ring (e.g., phenyl), multiple rings (e.g., biphenyl), or multiple fused rings in which at least one is aromatic (e.g.,
- At least one ring may have a conjugated pi electron system, while other, adjoining rings can be
- aryl group may be optionally substituted, as described herein.
- Substituents include, but are not limited to, any of the previously mentioned substitutents, i.e., the substituents recited for aliphatic moieties, or for other moieties as disclosed herein, resulting in the formation of a stable compound.
- an aryl group is a stable mono- or polycyclic unsaturated moiety having preferably 3-14 carbon atoms, each of which may be substituted or unsubstituted.
- microemulsions in Table 2 were prepared by mixing 46 parts by weight of this blend with 27 parts by weight a solvent as shown in Table 2 and 27 parts by weight of water, with the exception of nonane and decane, which were prepared by mixing 50 parts of the blend with 25 parts by weight of solvent and 25 parts per weight of water.
- Two emulsions were also prepared using the same method comprising a mixture of a hydrocarbon solvent and a terpene (1: 1 ratio of hydrocarbon:terpene). The solvents were obtained through commercial sources.
- the heavy aromatic naphtha employed was Exxon Aromatic 150 Fluid which comprises C 10-12 alkyl benzenes and has a distillation temperature between 363-396 °F and the light aromatic naphtha employed was Exxon Aromatic 100 Fluid which comprises C ⁇ o dialkyl and trialkylbenzenes and has a distillation temperature between 322-340 °F.
- the mixtures were identified as a microemulsion based on the spontaneous formation with minimal mechanical energy input to form a clear dispersion from an immiscible mixture of water and solvent upon addition of an appropriate amount of surfactant.
- the order of mixing of this and other compositions described in this example were not necessary, but for convenience, a procedure was generally followed in which a mixture of the surfactant and the isopropyl alcohol was first prepared then combined that with a mixture of the solvent and water. With small samples, in the laboratory, a few seconds of gentle mixing yielded a transparent dispersion.
- gallons per thousand (gpt) dilutions of the microemulsions were prepared and tested.
- the dilutions comprise 0.2 wt% of the microemulsion in 2 wt% KC1 solution.
- the process employed dispensing 200 microliters of the microemulsion into a vortex of a vigorously stirred beaker containing 100 mL of 2 wt% KC1, generally at room temperature (e.g., about 25 °C).
- Table 2 2 gallons per thousand
- Tables 3 and 4 provide data related to microemulsions comprising octane wherein the water to oil ratio and the surfactant were varied.
- the components of the formulation are given in Table 4 and the results are provided in Table 3.
- the greater efficacy of displacement of residual aqueous treatment fluid for the microemulsions comprising octane by crude oil compared with gaseous hydrocarbon was maintained over the range of water to oil ratio of 3.2: 1 to 1:4 or surf actant/co- solvent concentrations from 40-50.
- Table 3 Effectiveness of brine displacement by gas and oil using a microemulsion
- This example described a non-limiting experiment for determining displacement of residual aqueous treatment fluid by formation crude oil.
- a 25 cm long, 2.5 cm diameter capped glass chromatography column was packed with 77 grams of 100 mesh sand. The column was left open on one end and a PTFE insert containing a recessed bottom, 3.2 mm diameter outlet, and nipple was placed into the other end. Prior to placing the insert into the column, a 3 cm diameter filter paper disc (Whatman, #40) was pressed firmly into the recessed bottom of the insert to prevent leakage of 100 mesh sand. A 2" piece of vinyl tubing was placed onto the nipple of the insert and a clamp was fixed in place on the tubing prior to packing.
- the columns were gravity-packed by pouring approximately 25 grams of the diluted microemulsions (e.g., the microemulsions described in Example 1, and diluted with 2% KC1, e.g., to about 2 gpt, or about 1 gpt) into the column followed by a slow, continuous addition of sand. After the last portion of sand had been added and was allowed to settle, the excess of brine was removed from the column so that the level of liquid exactly matched the level of sand. Pore volume in the packed column was calculated as the difference in mass of fluid prior to column packing and after the column had been packed. Three additional pore volumes of brine were passed through the column.
- inner-diameter capped glass chromatography column was filled with approximately 410 + 20 g of 20/40 mesh Ottawa sand and the diluted microemulsions (e.g., the microemulsions described in Example 1, and diluted with 2% KC1, e.g., to about 2 gpt, or about 1 gpt).
- the diluted microemulsions e.g., the microemulsions described in Example 1, and diluted with 2% KC1, e.g., to about 2 gpt, or about 1 gpt.
- This example describes a method for determining the phase inversion
- a solvent e.g., a terpene
- the methods are described in the literature (e.g., see Strey, Microemulsion micro structure and interfacial curvature. Colloid & Polymer Science, 1994. 272(8): p. 1005-1019; Kahlweit et al., Phase Behavior of Ternary Systems of the Type HiO-Oil-Nonionic Amphiphile (Microemulsions).
- the phase inversion temperature was determined as the point on the "fish-tail" at which the temperature range of one-phase microemulsion closes to a vertex.
- the temperature at the vertex was selected as the PIT.
- An exemplary fish diagram indicating the PIT is shown in Figure 1.
- the PIT values which were measured using this above-described procedure are shown in Table 1. Those terpenes containing alcohol groups (linalool, geraniol, nopol, a-terpineol and menthol), gave PIT values between -4 °C and 16 °C.
- Example 2 A series of laboratory tests similar to as described in Example 1 were conducted to characterize the effectiveness of a series of microemulsions incorporating a range of terpenes.
- the phase inversion temperatures of the terpenes were determined as described in Example 4.
- Table 5 shows results for displacement of residual aqueous treatment fluid by oil and gas for formulations (e.g., using the experimental procedures outlined in Examples 2 and 3) using dilutions of the microemulsions comprising 46 parts of 1: 1 Neodol 25-7, 27 parts deionized water, and 27 parts terpene solvent).
- the dilutions were prepared of each microemulsion in 2% KC1, at 2 gpt.
- Table 5 shows displacement by gas results for the dilutions that demonstrates that terpene solvents with ⁇ values higher than 109.4 °F give approximately 40% recovery, while those with ⁇ values below 109.4 °F give significantly higher recovery.
- Displacement results for 2 gpt dilution of microemulsions comprising 46:27:27 surfactant:water:terpene + isopropanol formulations.
- T/S/W stands for terpene weight %/l: l surfactant- IP A weight /deionized water wt
- a reference to "A and/or B,” when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A without B (optionally including elements other than B); in another embodiment, to B without A (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
- At least one of A and B can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Colloid Chemistry (AREA)
- Cosmetics (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Detergent Compositions (AREA)
Abstract
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14811591.8A EP3008283A4 (fr) | 2013-06-14 | 2014-06-13 | Procédés et compositions de stimulation de la production d'hydrocarbures à partir de formations souterraines |
CN201480002623.0A CN104769214B (zh) | 2013-06-14 | 2014-06-13 | 用于刺激从地下地层中生产烃类的方法和组合物 |
AU2014278002A AU2014278002B2 (en) | 2013-06-14 | 2014-06-13 | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
CA2915351A CA2915351C (fr) | 2013-06-14 | 2014-06-13 | Procedes et compositions de stimulation de la production d'hydrocarbures a partir de formations souterraines |
AU2017261565A AU2017261565B2 (en) | 2013-06-14 | 2017-11-16 | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/918,166 | 2013-06-14 | ||
US13/918,155 US9321955B2 (en) | 2013-06-14 | 2013-06-14 | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
US13/918,166 US20140371115A1 (en) | 2013-06-14 | 2013-06-14 | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
US13/918,155 | 2013-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014201367A1 true WO2014201367A1 (fr) | 2014-12-18 |
Family
ID=52022803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/042326 WO2014201367A1 (fr) | 2013-06-14 | 2014-06-13 | Procédés et compositions de stimulation de la production d'hydrocarbures à partir de formations souterraines |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3008283A4 (fr) |
CN (2) | CN104769214B (fr) |
AU (2) | AU2014278002B2 (fr) |
CA (1) | CA2915351C (fr) |
WO (1) | WO2014201367A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015157156A1 (fr) * | 2014-04-08 | 2015-10-15 | Fu Xuebing | Systèmes et procédés pour accélérer la production d'hydrocarbures visqueux dans un réservoir souterrain avec des émulsions comprenant des agents chimiques |
EP2970750A4 (fr) * | 2013-03-14 | 2017-04-19 | Flotek Chemistry, LLC | Procédés et compositions pour la stimulation de la production d'hydrocarbures à partir de formations souterraines |
AU2015227467B2 (en) * | 2015-09-17 | 2018-11-08 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol |
US10377942B2 (en) | 2017-04-06 | 2019-08-13 | Nissan Chemical America Corporation | Hydrocarbon formation treatment micellar solutions |
US10563117B2 (en) | 2017-09-13 | 2020-02-18 | Nissan Chemical America Corporation | Crude oil recovery chemical fluids |
US10801310B2 (en) | 2017-09-26 | 2020-10-13 | Nissan Chemcial America Corporation | Using gases and hydrocarbon recovery fluids containing nanoparticles to enhance hydrocarbon recovery |
US10870794B2 (en) | 2017-11-03 | 2020-12-22 | Nissan Chemical America Corporation | Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery |
US10934478B2 (en) | 2018-11-02 | 2021-03-02 | Nissan Chemical America Corporation | Enhanced oil recovery using treatment fluids comprising colloidal silica with a proppant |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11168244B2 (en) | 2016-10-26 | 2021-11-09 | Championx Usa Inc. | Compositions for enhanced oil recovery |
MX2021012448A (es) * | 2019-05-23 | 2021-11-12 | Rhodia Operations | Estructuras de polimero asociativas y metodos de uso de las mismas. |
CN116144338B (zh) * | 2023-04-19 | 2023-07-07 | 太原理工大学 | 一种提高煤层气抽采效率的柠檬烯溶浸液 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4233165A (en) * | 1978-05-24 | 1980-11-11 | Exxon Production Research Company | Well treatment with emulsion dispersions |
US20030166472A1 (en) * | 2002-03-01 | 2003-09-04 | Cesi Chemical, A Flotek Company | Composition and process for well cleaning |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0692021B1 (fr) * | 1993-04-02 | 2002-05-15 | The Dow Chemical Company | Compositions de microemulsion et d'emulsion nettoyantes |
MY117988A (en) * | 1995-10-03 | 2004-08-30 | Nor Ind Inc | Cleaning compositions for oil and gas well, lines, casings, formations and equipment and methods of use |
US20080287324A1 (en) * | 2002-03-01 | 2008-11-20 | Cesi Chemical, Inc., A Flotek Company | Process for well cleaning |
MY153425A (en) * | 2006-03-21 | 2015-02-13 | Akzo Nobel Nv | Additive for preserving the fluidity of fluids containing gas hydrates |
US7754657B2 (en) * | 2006-07-20 | 2010-07-13 | Ineos Usa Llc | Method for removing asphaltene deposits |
US7989404B2 (en) * | 2008-02-11 | 2011-08-02 | Clearwater International, Llc | Compositions and methods for gas well treatment |
US7893010B2 (en) * | 2008-05-08 | 2011-02-22 | Schlumberger Technology Corporation | Composition and method for fluid recovery from well |
US20110021386A1 (en) * | 2009-07-27 | 2011-01-27 | Ali Syed A | Microemulsion to improve shale gas production by controlling water imbibition |
US9102860B2 (en) * | 2011-06-16 | 2015-08-11 | Baker Hughes Incorporated | Method of inhibiting or controlling release of well treatment agent |
-
2014
- 2014-06-13 EP EP14811591.8A patent/EP3008283A4/fr not_active Withdrawn
- 2014-06-13 CA CA2915351A patent/CA2915351C/fr active Active
- 2014-06-13 CN CN201480002623.0A patent/CN104769214B/zh active Active
- 2014-06-13 AU AU2014278002A patent/AU2014278002B2/en active Active
- 2014-06-13 WO PCT/US2014/042326 patent/WO2014201367A1/fr active Application Filing
- 2014-06-13 CN CN201810239667.5A patent/CN108587590A/zh active Pending
-
2017
- 2017-11-16 AU AU2017261565A patent/AU2017261565B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4233165A (en) * | 1978-05-24 | 1980-11-11 | Exxon Production Research Company | Well treatment with emulsion dispersions |
US20030166472A1 (en) * | 2002-03-01 | 2003-09-04 | Cesi Chemical, A Flotek Company | Composition and process for well cleaning |
Non-Patent Citations (1)
Title |
---|
See also references of EP3008283A4 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2970750A4 (fr) * | 2013-03-14 | 2017-04-19 | Flotek Chemistry, LLC | Procédés et compositions pour la stimulation de la production d'hydrocarbures à partir de formations souterraines |
WO2015157156A1 (fr) * | 2014-04-08 | 2015-10-15 | Fu Xuebing | Systèmes et procédés pour accélérer la production d'hydrocarbures visqueux dans un réservoir souterrain avec des émulsions comprenant des agents chimiques |
AU2015227467B2 (en) * | 2015-09-17 | 2018-11-08 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol |
US10975289B2 (en) | 2017-04-06 | 2021-04-13 | Nissan Chemical America Corporation | Hydrocarbon formation treatment micellar solutions |
US10377942B2 (en) | 2017-04-06 | 2019-08-13 | Nissan Chemical America Corporation | Hydrocarbon formation treatment micellar solutions |
US10557078B2 (en) | 2017-04-06 | 2020-02-11 | Nissan Chemical America Corporation | Brine resistant silica sol |
US11401454B2 (en) | 2017-04-06 | 2022-08-02 | Nissan Chemical America Corporation | Hydrocarbon formation treatment micellar solutions |
US11130906B2 (en) | 2017-04-06 | 2021-09-28 | Nissan Chemical America Corporation | Brine resistant silica sol |
US10570331B2 (en) | 2017-09-13 | 2020-02-25 | Nissan Chemical America Corporation | Crude oil recovery chemical fluid |
US10563117B2 (en) | 2017-09-13 | 2020-02-18 | Nissan Chemical America Corporation | Crude oil recovery chemical fluids |
US10801310B2 (en) | 2017-09-26 | 2020-10-13 | Nissan Chemcial America Corporation | Using gases and hydrocarbon recovery fluids containing nanoparticles to enhance hydrocarbon recovery |
US10870794B2 (en) | 2017-11-03 | 2020-12-22 | Nissan Chemical America Corporation | Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery |
US11180692B2 (en) | 2017-11-03 | 2021-11-23 | Nissan Chemical America Corporation | Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery |
US11274244B2 (en) | 2017-11-03 | 2022-03-15 | Nissan Chemical America Corporation | Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery |
US10934478B2 (en) | 2018-11-02 | 2021-03-02 | Nissan Chemical America Corporation | Enhanced oil recovery using treatment fluids comprising colloidal silica with a proppant |
Also Published As
Publication number | Publication date |
---|---|
CA2915351A1 (fr) | 2014-12-18 |
AU2017261565B2 (en) | 2019-05-30 |
CN104769214B (zh) | 2018-04-24 |
EP3008283A4 (fr) | 2017-04-19 |
AU2014278002A1 (en) | 2016-01-07 |
AU2017261565A1 (en) | 2017-12-07 |
EP3008283A1 (fr) | 2016-04-20 |
AU2014278002B2 (en) | 2017-08-17 |
CN108587590A (zh) | 2018-09-28 |
CN104769214A (zh) | 2015-07-08 |
CA2915351C (fr) | 2020-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11034879B2 (en) | Methods and compositions for use in oil and/or gas wells | |
US10703960B2 (en) | Methods and compositions for use in oil and/or gas wells | |
AU2017261565B2 (en) | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations | |
US9790414B2 (en) | Methods and compositions for use in oil and/or gas wells | |
US10287483B2 (en) | Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol | |
US9957779B2 (en) | Methods and compositions related to gelled layers in oil and/or gas wells | |
US10577531B2 (en) | Polymers and emulsions for use in oil and/or gas wells | |
US10717919B2 (en) | Methods and compositions for use in oil and/or gas wells | |
US20160017204A1 (en) | Methods and compositions comprising particles for use in oil and/or gas wells | |
AU2014236272B2 (en) | Methods and compositions for use in oil and/or gas wells | |
US20190264094A1 (en) | Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol | |
US20200332177A1 (en) | Methods and compositions for use in oil and/or gas wells | |
EP3144366A1 (fr) | Procédés et compositions destinés à être utilisés dans des puits de pétrole ou de gaz comprenant un alcool terpénique | |
AU2014236331B2 (en) | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations | |
CA2904728A1 (fr) | Polymeres et emulsions destines aux puits de petrole et de gaz | |
AU2015227467B2 (en) | Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14811591 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014811591 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2915351 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014278002 Country of ref document: AU Date of ref document: 20140613 Kind code of ref document: A |