+

WO2014115510A1 - Fuel injection device for internal combustion engine - Google Patents

Fuel injection device for internal combustion engine Download PDF

Info

Publication number
WO2014115510A1
WO2014115510A1 PCT/JP2014/000172 JP2014000172W WO2014115510A1 WO 2014115510 A1 WO2014115510 A1 WO 2014115510A1 JP 2014000172 W JP2014000172 W JP 2014000172W WO 2014115510 A1 WO2014115510 A1 WO 2014115510A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
fuel injection
fuel
gas fuel
cylinder
Prior art date
Application number
PCT/JP2014/000172
Other languages
French (fr)
Japanese (ja)
Inventor
優一 竹村
幸敏 信田
和田 実
溝渕 剛史
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014115510A1 publication Critical patent/WO2014115510A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0281Adapters, sockets or the like to mount injection valves onto engines; Fuel guiding passages between injectors and the air intake system or the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present disclosure relates to a fuel injection device for an internal combustion engine.
  • the transient response may be low.
  • the fuel of a plurality of cylinders is injected at the same time, there is a difference in mixing characteristics between the fuel and air for each cylinder, which may cause variations in combustion within the cylinder. For example, when using gas fuel, it is difficult for gas fuel to mix with air, and the combustion variation based on the difference in mixing property becomes remarkable.
  • An object of the present disclosure is to provide a fuel injection device for an internal combustion engine capable of realizing optimization of combustion in the internal combustion engine while simplifying the configuration.
  • a fuel injection device for an internal combustion engine is applied to an internal combustion engine having an even number of cylinders in which gas fuel is subjected to combustion, and the combustion order is continuous in the internal combustion engine.
  • a gas fuel injection valve that is provided for each cylinder group of two cylinders that injects the gas fuel into the cylinder group, a first end connected to the gas fuel injection valve, and the same cylinder group A second end connected to an intake portion of each cylinder, and a distribution portion for distributing and discharging the gas fuel injected from the gas fuel injection valve to each intake portion of the same cylinder group, and the same cylinder group
  • An injection control unit that calculates a required amount of gas fuel for two cylinders in the engine and controls fuel injection by the gas fuel injection valve for each cylinder group based on the required amount.
  • the two cylinders belonging to the same cylinder group have a continuous combustion order, and the intake strokes are continuous in these two cylinders. Therefore, in the configuration in which the gas fuel for two cylinders is collectively injected by the gas fuel injection valve, it is possible to reduce the intake delay that occurs before the cylinder flows after the fuel injection. For example, in a situation where an increase in fuel is required due to acceleration transients, even if the increase in required amount is insufficient in the post-combustion cylinder after the combustion order, the influence of the insufficient amount can be reduced.
  • the non-intake stroke period (duration) in which both the cylinders do not become the intake stroke becomes long, and the gas fuel injection period is secured. Is easy.
  • the volume of the injected fuel is larger than that of the liquid fuel, and the injection period becomes longer, so that the injection period can be easily secured.
  • compressed natural gas (CNG) as a gas fuel and gasoline as a liquid fuel are used as combustion fuels, and a bi-fuel type on-vehicle multi-cylinder engine (multi-cylinder internal combustion engine) corresponding to a multi-cylinder internal combustion engine is used.
  • the fuel injection system is applied to the engine). An overall schematic diagram of the fuel injection system is shown in FIG.
  • the engine 10 shown in FIG. 1 is an in-line four-cylinder spark ignition engine, and the first cylinder (# 1), the second cylinder (# 2), the third cylinder (# 3), and the fourth cylinder (# 4).
  • An intake system 11 and an exhaust system 12 are connected to an intake port and an exhaust port of the engine 10, respectively.
  • the intake system 11 has an intake manifold 13 and an intake pipe 14.
  • the intake manifold 13 has a plurality of first branch pipe portions 13 a connected to the intake port of the engine 10 and a first main pipe portion 13 b connected to the intake pipe 14 on the upstream side.
  • the number of the first branch pipe portions 13a is the number of cylinders of the engine 10.
  • the first branch pipe portion 13a corresponds to an intake portion.
  • the intake pipe 14 is provided with a throttle valve 15 as an air amount adjusting unit.
  • the throttle valve 15 is configured as an electronically controlled throttle valve whose opening is adjusted by a throttle actuator 15a such as a DC motor, and the opening of the throttle valve 15 is detected by a throttle opening sensor 15b built in the throttle actuator 15a. Is done.
  • the opening degree of the throttle valve 15 is the throttle opening degree.
  • the exhaust system 12 has an exhaust manifold 16 and an exhaust pipe 17.
  • the exhaust manifold 16 has a plurality of second branch pipe portions 16 a connected to the exhaust port of the engine 10 and a second main pipe portion 16 b connected to the exhaust pipe 17 on the downstream side thereof.
  • the number of the second branch pipe portions 16a is the number of cylinders of the engine 10.
  • the exhaust pipe 17 is provided with an exhaust sensor 18 for detecting exhaust components and a catalyst 19 for purifying exhaust.
  • the exhaust sensor 18 may be an air-fuel ratio sensor that detects the air-fuel ratio from the oxygen concentration in the exhaust gas.
  • Each cylinder of the engine 10 is provided with a spark plug (not shown).
  • a high voltage is applied to the ignition plug at a desired ignition timing through an ignition device 20 including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug, and the fuel introduced into the cylinder or the combustion chamber is ignited and burned.
  • the fuel injection system includes a gas fuel injection valve 21 that injects gas fuel and a liquid fuel injection valve 22 that injects liquid fuel as fuel injection units that inject and supply fuel to the engine 10. .
  • Each of these injection valves 21 and 22 injects fuel into the first branch pipe portion 13a of the intake manifold 13 in the intake system 11, and the gas fuel is injected into the intake port of each cylinder by the injection of the gas fuel injection valve 21.
  • the liquid fuel is supplied to the intake port of each cylinder by the injection of the liquid fuel injection valve 22.
  • Each of the injection valves 21 and 22 is an open / close type control valve in which the valve body is lifted from the closed position to the open position by electrically driving the electromagnetic drive unit, and the valve opening drive input from the control unit 60. Each valve is driven to open by a signal.
  • These injection valves 21 and 22 are opened by energization and closed by energization interruption.
  • An amount of fuel (gas fuel, liquid fuel) corresponding to the energization time is injected from each of the injection valves 21 and 22.
  • a fuel conduit 23 is connected to the distal end side of the gas fuel injection valve 21, and the gas fuel injected from the gas fuel injection valve 21 passes through the fuel conduit 23 to the first of the intake manifold 13. It is discharged to the branch pipe part 13a.
  • a gas tank 42 is connected to the gas fuel injection valve 21 via a gas pipe 41, and the pressure of the gas fuel supplied to the gas fuel injection valve 21 is in the middle of the gas pipe 41.
  • a regulator 43 having a pressure adjusting function for adjusting the pressure under pressure. Specifically, the regulator 43 converts the gas fuel stored in the gas tank 42 in a high pressure state (for example, a maximum of 20 MPa) to a predetermined set pressure (for example, 0.2 to 1.0 MPa) that is the injection pressure of the gas fuel injection valve 21.
  • the gas fuel after the pressure reduction adjustment is supplied to the gas fuel injection valve 21 through the gas pipe 41.
  • the upstream side of the regulator 43 is a high-pressure piping portion 41a that forms a high-pressure passage, and the downstream side is a low-pressure piping portion 41b that forms a low-pressure passage.
  • a gas fuel passage formed by the gas pipe 41 and the like further includes a tank main stop valve 44 corresponding to a tank outlet valve disposed near the fuel outlet of the gas tank 42 and a downstream side of the tank main stop valve 44. And a shutoff valve 45 disposed in the vicinity of the fuel inlet of the regulator 43.
  • the valves 44, 45 allow and shut off the flow of gas fuel in the gas pipe 41.
  • the tank main stop valve 44 and the shutoff valve 45 are both electromagnetic on-off valves, and are normally closed so that the flow of gas fuel is cut off when not energized and the flow of gas fuel is allowed when energized. Yes.
  • a first pressure sensor 46 for detecting the fuel pressure and a first temperature sensor 47 for detecting the fuel temperature are provided in the high pressure pipe 41a, and a first pressure sensor 47 for detecting the fuel pressure is provided in the low pressure pipe 41b.
  • a two-pressure sensor 48 and a second temperature sensor 49 for detecting the fuel temperature are provided.
  • the shut-off valve 45 and the first pressure sensor 46 can be provided integrally with the regulator 43.
  • a configuration in which the shut-off valve 45 and the first pressure sensor 46 are provided integrally with the regulator 43 is employed. To do.
  • a fuel tank 52 is connected to the liquid fuel injection valve 22 via a fuel pipe 51.
  • the fuel pipe 51 is provided with a fuel pump 53 that feeds the liquid fuel in the fuel tank 52 to the liquid fuel injection valve 22.
  • the control unit 60 includes a CPU 61, a ROM 62, a RAM 63, a backup RAM (BK RAM) 64, an interface 65, and a bidirectional bus 66.
  • the CPU 61, ROM 62, RAM 63, backup RAM 64, and interface 65 are connected to each other by a bidirectional bus 66.
  • the control unit 60 corresponds to an injection control unit or a transient determination unit.
  • the CPU 61 executes a routine (program) for controlling the operation of each part in the fuel injection system.
  • the ROM 62 stores in advance various types of data such as a routine executed by the CPU 61 and maps, parameters, and the like referred to when the routine is executed. In this case, the map includes a table, a relational expression, and the like.
  • the RAM 63 temporarily stores data as necessary when the CPU 61 executes the routine.
  • the backup RAM 64 appropriately stores data under the control of the CPU 61 in a state where the power is turned on, and retains the stored data even after the power is shut off.
  • the interface 65 is electrically connected to sensors provided in the fuel injection system, including the throttle opening sensor 15b, the exhaust sensor 18, the pressure sensors 46 and 48, and the temperature sensors 47 and 49 described above.
  • these sensors include a crank angle sensor, an air flow meter, a coolant temperature sensor, a vehicle speed sensor, and the like.
  • An output corresponding to detection signals from these sensors is transmitted to the CPU 61.
  • the interface 65 is electrically connected to driving units such as the throttle actuator 15a, the ignition device 20, the injection valves 21 and 22, the tank main stop valve 44, the shutoff valve 45, and the like, and drives these driving units. Therefore, the drive signal sent from the CPU 61 is output toward the drive unit. That is, the control unit 60 acquires an operating state based on the output signal of the above-described sensor and controls the above-described driving unit based on this operating state.
  • the four cylinders are designated as “# 1 and # 2” and “# 3 and # 2”. 4 ”and the second cylinder group, the fuel injection is performed from one gas fuel injection valve 21 to the first cylinder group, and another gas fuel injection is performed to the second cylinder group. Fuel injection is performed from the valve 21.
  • a distributor 24 is connected to each of the two gas fuel injection valves 21, and a fuel conduit 23 for the first cylinder group is connected to one distributor 24.
  • a fuel conduit 23 for the second cylinder group is connected to one distributor 24.
  • each distributor 24 and the fuel conduit 23 for two cylinders correspond to a distributor, and each distributor branches the gas fuel injected from the gas fuel injection valve 21 to each first branch corresponding to the same cylinder group. It is distributed and discharged to the tube portion 13a.
  • FIG. 2 is a time chart showing the relationship between the stroke order in each cylinder of the engine 10 and the injection timing of the gas fuel.
  • TX1 is the fuel injection timing of the gas fuel injection valve 21 for the first cylinder group
  • TX2 is the fuel injection timing of the gas fuel injection valve 21 for the second cylinder group.
  • gas fuel is injected from the gas fuel injection valve 21 in the # 2 expansion stroke and exhaust stroke corresponding to the pre-combustion cylinder in which the combustion order comes first, and then # 2
  • the gas fuel is sucked into each of the cylinders (# 2, # 1) in the intake stroke of # 1 and the intake stroke of # 1 corresponding to the post-combustion cylinder.
  • the delay time corresponding to the intake delay from the fuel injection by the gas fuel injection valve 21 to the fuel intake in each cylinder is TXd2 in # 2, and TXd1 in # 1.
  • the fuel injection timing is determined based on the injection end timing. Specifically, a predetermined timing or a predetermined crank angle position in the exhaust stroke of # 2 which is the previous combustion cylinder in the first cylinder group is determined as the injection end timing, and the injection is performed based on the required injection amount at each time. The injection start timing ahead of the end timing is determined.
  • gas fuel is injected from the gas fuel injection valve 21 in the expansion stroke and exhaust stroke of # 3 corresponding to the pre-combustion cylinder in which the combustion order comes first, and then the # 3 In the intake stroke of # 4 corresponding to the intake stroke and the post-combustion cylinder, gas fuel is sucked into each of the cylinders (# 3, # 4).
  • the delay time corresponding to the intake delay from the fuel injection by the gas fuel injection valve 21 to the fuel intake in each cylinder is TXd3 in # 3 and TXd4 in # 4.
  • the fuel injection of the gas fuel injection valve 21 is performed so that the fuel injection is completed in the exhaust stroke of the pre-combustion cylinders (# 2, # 3) in each cylinder group.
  • the fuel injection of the gas fuel injection valve 21 may be performed so that the fuel injection ends in the first half of the intake stroke of the pre-combustion cylinders (# 2, # 3).
  • the gas fuel may flow into the cylinder reliably in the intake stroke of the pre-combustion cylinder.
  • FIG. 3 shows a case in which the combustion order is divided into two cylinder groups each having two cylinders, and gas fuel is injected from the same gas fuel injection valve 21 to each cylinder group.
  • the four cylinders are divided into a two-cylinder group including a third cylinder group “# 1 and # 4” and a fourth cylinder group “# 2 and # 3”.
  • TY1 is the fuel injection timing for the third cylinder group
  • TY2 is the fuel injection timing for the fourth cylinder group.
  • gas fuel is injected from the gas fuel injection valve 21 in the # 1 expansion stroke and exhaust stroke, and in the subsequent # 1 intake stroke and # 4 intake stroke, respectively.
  • Gas fuel is sucked into the cylinders (# 1, # 4). Since the fuel injection timing TY1 also reaches the intake stroke of # 4, it is assumed that a part of the injected fuel is sucked into # 4 before the intake stroke of # 1.
  • the delay time corresponding to the intake delay from the fuel injection by the gas fuel injection valve 21 to the fuel intake in each cylinder is TYd1 for # 1, and TYd4 for # 4.
  • gas fuel is injected from the gas fuel injection valve 21 in the expansion stroke and exhaust stroke of # 2, and each of the cylinders in the subsequent intake stroke of # 2 and intake stroke of # 3. Gas fuel is sucked into (# 2, # 3).
  • the delay time corresponding to the intake delay from the fuel injection by the gas fuel injection valve 21 to the fuel intake in each cylinder is TYd2 for # 2, and TYd3 for # 3.
  • the longest intake delay is TXd1 and TXd4, and in FIG. 3, the longest intake delay is TYd3 and TYd4. Comparing the case of FIG. 2 and the case of FIG. 3, the case of FIG. 2 has a shorter intake air delay and is superior in transient response. That is, in the case of FIG. 2, each cylinder belonging to the same cylinder group has a continuous intake stroke, and therefore it is possible to shorten the intake delay.
  • FIG. 4 is a flowchart showing the procedure of the gas fuel injection control process, and this process is repeatedly performed by the control unit 60 at predetermined time intervals or at predetermined crank angles.
  • the control unit 60 calculates the intake air amount and the engine rotation speed (NE) from the detection values of the air flow meter and the crank angle sensor. In subsequent S12, the control unit 60 calculates the required injection amount based on the intake air amount and the engine speed. At this time, the control unit 60 calculates the fuel amount for the two cylinders as the required injection amount by combining the first cylinder group and “the second cylinder group. After that, in S13, the control unit 60 now calculates the required injection amount.
  • the fuel injection corresponds to the first injection, and in this embodiment, from the expansion stroke of the pre-combustion cylinder among the two cylinders of the same cylinder group.
  • the set timing of the first injection is determined so that the fuel injection corresponding to the required injection amount can be performed during the exhaust stroke, and the set timing of the first injection corresponds to the first timing.
  • the control unit 60 proceeds to S14 and sets the injection pulse of the gas fuel injection valve 21 for injecting the required injection amount.
  • the injection pulse of the gas fuel injection valve 21 corresponds to the injection pulse of the first injection. Further, the injection pulse is set so that the first injection is completed in the first half of the exhaust stroke or the intake stroke of the pre-combustion cylinder.
  • S14 corresponds to the first control unit.
  • the control unit 60 proceeds to S15, and determines whether or not the present time is the fuel injection based on acceleration transient (set timing of the fuel injection in this case.
  • the fuel injection in this case is the second injection.
  • the set timing of the second injection is determined so that the additional fuel injection can be performed, and the set timing of the second injection corresponds to the second timing.
  • the control unit 60 proceeds to S16 and determines whether or not the current state is an acceleration transient state.
  • the determination of acceleration transient is made based on the change amount of the intake air amount from the set timing of the first injection to the set timing of the second injection. If the change amount is equal to or greater than a predetermined amount, the acceleration transient state is indicated. Determine.
  • the control unit 60 proceeds to S17 and calculates an additional fuel amount corresponding to the increase in the intake air amount. At this time, it is also possible to take into account the amount of change in the engine speed.
  • the injection pulse of the gas fuel injection valve 21 for injecting the additional fuel amount is set.
  • the injection pulse of the gas fuel injection valve 21 corresponds to the injection pulse of the second injection. Further, the injection pulse is set so that the second injection is completed in the first half of the exhaust stroke or the intake stroke of the post-combustion cylinder.
  • S17 and S18 correspond to a second control unit.
  • the control unit 60 ends this process as it is without performing S17 and S18.
  • S15 and S16 correspond to a switching unit.
  • the additional amount of gas fuel injected from the gas fuel injection valve 21 is distributed to the two fuel conduits 23 communicated by the distributor 24, respectively.
  • the post-combustion cylinder since the second injection is performed in the exhaust stroke or the first half of the intake stroke of the post-combustion cylinder of the cylinder group, the post-combustion cylinder immediately enters the cylinder in the intake stroke before, after, or overlaps with the execution of the second injection. However, for the pre-combustion cylinder, additional fuel remains in the fuel conduit 23 and the inflow into the cylinder is carried over next time.
  • control unit 60 calculates the fuel amount of the first injection in consideration of the fuel amount of the previous second injection (residual amount in the fuel conduit 23) at the next first injection set timing. Good. For example, the control unit 60 calculates the fuel amount of the first injection by subtracting 1 ⁇ 2 of the fuel amount of the previous second injection from the required injection amount.
  • FIG. 5 is a time chart for explaining the injection control of gas fuel more specifically.
  • the engine 10 is in a steady operation before the timing ta, and the intake air amount is increased by the acceleration operation that is the accelerator depression operation at the timing ta. As the intake air amount increases, the fuel amount necessary for combustion in each cylinder is increased.
  • the intake amount is Q1
  • the first injection which is the injection of the gas fuel for the first cylinder group is performed with the required injection amount based on the intake amount Q1.
  • time t2 which is the set timing of the second injection
  • an increase in fuel with respect to the previous required injection amount, which is generated due to acceleration transient is calculated.
  • the second injection is performed.
  • the timing t2 corresponds to the determination timing of the additional injection.
  • additional injection based on the difference (Q2 ⁇ Q1) between the intake air amount Q1 at the previous timing t1 and the intake air amount Q2 at the timing t2 is performed.
  • the first injection based on the required injection amount and the second injection based on the acceleration transient are performed so as to end in the first half of the exhaust stroke or the first half of the intake stroke of the first cylinder group. Specifically, in FIG. 5, the first injection based on the required injection amount is performed so as to end in the exhaust stroke of # 2 which is the pre-combustion cylinder, and the second injection based on the acceleration transient is performed in the post-combustion cylinder. It is carried out so as to end in the first half of a certain # 1 intake stroke.
  • the first injection which is the injection of the gas fuel for the first cylinder group, is performed again with the required injection amount based on the intake amount Q3 at that time.
  • second injection which is additional injection based on the difference (Q4-Q3) between the intake air amount Q3 at the previous timing t3 and the intake air amount Q4 at the timing t4, is performed.
  • the same processing is performed in the second cylinder group. Specifically, as the injection of gas fuel for the second cylinder group, at timing t11, the first injection, which is the injection of gas fuel, is performed at the required injection amount based on the intake air amount Q11 at that time. Thereafter, at timing t12, the second injection that is the additional injection based on the difference (Q12 ⁇ Q11) between the intake air amount Q11 at the previous timing t11 and the intake air amount Q12 at the timing t12 is performed.
  • fuel injection is performed at the same time as the first cylinder group. Specifically, in FIG. 5, the first injection based on the required injection amount is performed so as to end in the exhaust stroke of # 3 which is the pre-combustion cylinder, and the second injection based on the acceleration transient is performed in the post-combustion cylinder. It is executed so as to end in the first half of a certain # 4 intake stroke.
  • a gas fuel injection valve 21 is provided for each cylinder group of two cylinders in which the combustion order is continuous, and the gas fuel injected from the gas fuel injection valve 21 is distributed via a distributor 24 and a distributor corresponding to the fuel conduit 23. It was made to supply to each cylinder of the same cylinder group. Then, the control unit 60 calculates the required amount of gas fuel for two cylinders in the same cylinder group, and controls the fuel injection by the gas fuel injection valve 21 for each cylinder group based on the required amount. In such a configuration, since the fuel injection is performed collectively for the two cylinders by the same gas fuel injection valve 21, the configuration can be simplified.
  • the two cylinders belonging to the same cylinder group have a continuous combustion order, and the intake strokes are continuous in these two cylinders. Therefore, in the configuration in which the gas fuel for two cylinders is collectively injected by the gas fuel injection valve 21, it is possible to reduce the intake air delay that occurs before the cylinder flows after the fuel injection. For example, in a situation where an increase in fuel is required due to acceleration transients, even if the increase in required amount is insufficient in the post-combustion cylinder after the combustion order, the influence of the insufficient amount can be reduced.
  • the duration of the non-intake stroke period in which neither of the cylinders is in the intake stroke is lengthened, and the gas fuel injection period is secured. Is easy.
  • the volume of the injected fuel is larger than that of the liquid fuel and the injection period is longer, it is easy to ensure the injection period.
  • the first injection which is the fuel injection by the gas fuel injection valve 21 is controlled so that the fuel injection is completed in the first half of the exhaust stroke or the intake stroke of the pre-combustion cylinder among the two cylinders in the same cylinder group.
  • the injected fuel for two cylinders sequentially flows into the cylinders in the intake stroke of each cylinder in the same cylinder group that continues after the injection.
  • in-cylinder inflow can be accelerated with respect to fuel injection, and transient response can be improved.
  • the fuel injection of the gas fuel injection valve 21 is performed so that the fuel injection is completed in the first half of the exhaust stroke or the intake stroke of the pre-combustion cylinder among the two cylinders in the same cylinder group.
  • the fuel injection of the gas fuel injection valve 21 is performed so that the fuel injection ends in the first half of the exhaust stroke or the intake stroke of the post-combustion cylinder.
  • the case where only the first injection is required and the case where both the first and second injections are required can vary depending on the operating state of the engine 10. Since the first injection and the second injection are appropriately performed based on the engine operating state, it is possible to realize appropriate fuel injection control according to the engine operating state.
  • the fuel injection by the gas fuel injection valve 21 is controlled so that both the first injection and the second injection are performed when it is determined that the state is an acceleration transient state.
  • acceleration transient occurs, the intake air amount increases with time, and the required amount of fuel in the engine 10 increases accordingly. In such a case, the required amount of fuel increase can be supplemented by the second injection.
  • requirement with respect to the acceleration transient of the engine 10 can be respond
  • the second injection which is an additional injection that is performed so that the fuel injection is completed in the first half of the exhaust stroke or the intake stroke of the post-combustion cylinder.
  • this may be changed.
  • the engine operating state is a high load state and the required injection amount of gas fuel is increased, the fuel injection is completed in the exhaust stroke or the first half of the intake stroke of the pre-combustion cylinder. In this case, it may be difficult to perform the first injection which is the first injection.
  • an amount of fuel that can be completed in the exhaust stroke or the first half of the intake stroke of the pre-combustion cylinder among the required injection amounts is injected, and then as the second injection.
  • the remaining amount of the requested injection amount is injected.
  • the second injection may be performed.
  • a request for enrichment for example, there is a risk of enrichment for removal of adsorbed oxygen in an exhaust purification catalyst.
  • the present disclosure is applied to a bi-fuel engine that uses gas fuel and liquid fuel as combustion fuel.
  • the present disclosure is changed to a gas engine that uses only gas fuel. It is also possible to apply.
  • the CNG fuel is used as the gas fuel.
  • gas fuels that are gases in the standard state can be used.
  • methane, ethane, propane, butane, hydrogen, DME, etc. are the main components.
  • the fuel may be used.
  • the liquid fuel is not limited to gasoline fuel, and for example, light oil or the like may be used.
  • an in-line four-cylinder engine is exemplified as a multi-cylinder engine.
  • the invention is widely applied to engines having an even number of cylinders such as a six-cylinder engine and an eight-cylinder engine. Applicable.
  • the present invention can be applied to a V-type engine and a horizontally opposed engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

In an engine (10), a gas fuel injection valve (21) is provided for each cylinder group having two cylinders each, said cylinders having a continuous combustion order. A distributor (24) is connected to each gas fuel injection valve (21) for each cylinder group, and a fuel-guiding pipe (23) is connected for each cylinder, to the distributor (24). Gas fuel injected from the gas fuel injection valves (21) is ejected to each intake section in the same cylinder group, via the distributor (24) and the fuel-guiding pipe (23). A control unit (60) calculates the amount of gas fuel required for two cylinders in the same cylinder group, and controls fuel injection by the gas fuel injection valves (21), for each cylinder group and on the basis of the amount required.

Description

内燃機関の燃料噴射装置Fuel injection device for internal combustion engine 関連出願の相互参照Cross-reference of related applications
 本開示は、2013年1月25日に出願された日本出願番号2013-012088号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Application No. 2013-012088 filed on January 25, 2013, the contents of which are incorporated herein by reference.
 本開示は、内燃機関の燃料噴射装置に関する。 The present disclosure relates to a fuel injection device for an internal combustion engine.
 従来から、圧縮天然ガス(CNG)等のガス燃料を燃焼させるようにした内燃機関が実用化されている。また、内燃機関において、構成の簡素化を図るべく気筒数よりも少ない数の燃料噴射弁を用いて各気筒への燃料供給を実施する技術が知られている。例えば特許文献1では、6気筒エンジンにおいて位相が240°CAずれている3気筒ずつの気筒群を個別に吸気マニホールドで結合させ、その吸気マニホールドごとに燃料噴射弁による燃料噴射を実施する。 Conventionally, an internal combustion engine in which gas fuel such as compressed natural gas (CNG) is combusted has been put into practical use. In addition, in an internal combustion engine, a technique is known in which fuel is supplied to each cylinder using a smaller number of fuel injection valves than the number of cylinders in order to simplify the configuration. For example, in Patent Document 1, three cylinder groups each having a phase shift of 240 ° CA in a 6-cylinder engine are individually coupled by an intake manifold, and fuel injection by a fuel injection valve is performed for each intake manifold.
 しかしながら、気筒数よりも少ない数の燃料噴射弁を用いる構成では、過渡応答性が低いおそれがある。また、複数気筒の燃料を同時噴射するため、気筒ごとに燃料と空気とのミキシング性に差異が生じ、それに起因して気筒内で燃焼のばらつきが生じるおそれがある。例えばガス燃料を用いる場合には、空気に対してガス燃料がミキシングしにくく、ミキシング性の差異に基づく燃焼ばらつきが顕著になる。 However, in a configuration that uses a smaller number of fuel injection valves than the number of cylinders, the transient response may be low. In addition, since the fuel of a plurality of cylinders is injected at the same time, there is a difference in mixing characteristics between the fuel and air for each cylinder, which may cause variations in combustion within the cylinder. For example, when using gas fuel, it is difficult for gas fuel to mix with air, and the combustion variation based on the difference in mixing property becomes remarkable.
特開昭54-152712号公報JP-A-54-152712
 本開示は、構成の簡素化を図りつつ、内燃機関において燃焼の適正化を実現することができる内燃機関の燃料噴射装置を提供することを目的とする。 An object of the present disclosure is to provide a fuel injection device for an internal combustion engine capable of realizing optimization of combustion in the internal combustion engine while simplifying the configuration.
 本開示の第一の様態による内燃機関の燃料噴射装置は、偶数個の気筒を有し、該気筒内においてガス燃料が燃焼に供される内燃機関に適用され、前記内燃機関において燃焼順序が連続する2気筒ずつの気筒グループごとに設けられ、前記気筒グループに対して前記ガス燃料を噴射するガス燃料噴射弁と、前記ガス燃料噴射弁に接続された第一端と、同一の前記気筒グループにおける各気筒の吸気部に接続された第二端とを有し、前記ガス燃料噴射弁から噴射されたガス燃料を同一気筒グループの各吸気部に分配して放出する分配部と、同一の気筒グループにおける2気筒分のガス燃料の要求量を算出し、その要求量に基づいて前記気筒グループごとに前記ガス燃料噴射弁による燃料噴射を制御する噴射制御部と、備える。 A fuel injection device for an internal combustion engine according to a first aspect of the present disclosure is applied to an internal combustion engine having an even number of cylinders in which gas fuel is subjected to combustion, and the combustion order is continuous in the internal combustion engine. A gas fuel injection valve that is provided for each cylinder group of two cylinders that injects the gas fuel into the cylinder group, a first end connected to the gas fuel injection valve, and the same cylinder group A second end connected to an intake portion of each cylinder, and a distribution portion for distributing and discharging the gas fuel injected from the gas fuel injection valve to each intake portion of the same cylinder group, and the same cylinder group An injection control unit that calculates a required amount of gas fuel for two cylinders in the engine and controls fuel injection by the gas fuel injection valve for each cylinder group based on the required amount.
 上記構成では、ガス燃料噴射弁からガス燃料が噴射されると、そのガス燃料は分配部を介して、同一気筒グループに属する各気筒の吸気部に放出される。そして、それら各気筒の吸気行程においてガス燃料が気筒内に流入し、燃焼に供される。この場合、2つの気筒に対して1つのガス燃料噴射弁が設けられる構成であるため、構成の簡素化を図ることができる。 In the above configuration, when gas fuel is injected from the gas fuel injection valve, the gas fuel is discharged to the intake portions of the respective cylinders belonging to the same cylinder group via the distribution portion. In the intake stroke of each cylinder, gas fuel flows into the cylinder and is used for combustion. In this case, since one gas fuel injection valve is provided for two cylinders, the configuration can be simplified.
 また、同一気筒グループに属する2つの気筒は燃焼順序が連続するものであり、それら2つの気筒では吸気行程が連続する。したがって、2気筒分のガス燃料をまとめてガス燃料噴射弁により噴射する構成において、燃料噴射後に気筒流入までに生じる吸気遅れを少なくすることができる。例えば加速過渡により燃料増量が要求される状況下において、燃焼順序が後になる後燃焼気筒で増量要求分が不足したとしても、その不足分による影響を少なくすることができる。 Also, the two cylinders belonging to the same cylinder group have a continuous combustion order, and the intake strokes are continuous in these two cylinders. Therefore, in the configuration in which the gas fuel for two cylinders is collectively injected by the gas fuel injection valve, it is possible to reduce the intake delay that occurs before the cylinder flows after the fuel injection. For example, in a situation where an increase in fuel is required due to acceleration transients, even if the increase in required amount is insufficient in the post-combustion cylinder after the combustion order, the influence of the insufficient amount can be reduced.
 また、同一気筒グループに属する2つの気筒では吸気行程が連続してまとまるため、それら両気筒で共に吸気行程にならない非吸気行程の期間(継続時間)が長くなり、ガス燃料の噴射期間を確保することが容易である。特にガス燃料の場合には、液体燃料に比べて噴射燃料の体積が大きく、その噴射期間が長めになることから、噴射期間の確保が容易となる。さらに、同一気筒グループに属する2気筒についてガス燃料と空気とのミキシング性に差が生じることを抑制でき、燃焼のばらつきを抑える。以上により、構成の簡素化を図りつつ、内燃機関において燃焼の適正化を実現することができる。 In addition, since the intake strokes of two cylinders belonging to the same cylinder group are continuously gathered, the non-intake stroke period (duration) in which both the cylinders do not become the intake stroke becomes long, and the gas fuel injection period is secured. Is easy. In particular, in the case of gas fuel, the volume of the injected fuel is larger than that of the liquid fuel, and the injection period becomes longer, so that the injection period can be easily secured. Furthermore, it is possible to suppress a difference in mixing performance between the gas fuel and the air for the two cylinders belonging to the same cylinder group, thereby suppressing variations in combustion. As described above, it is possible to achieve appropriate combustion in the internal combustion engine while simplifying the configuration.
 以下、本開示の実施例について図に基づいて説明する。なお、以下の各実施例相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
エンジンの燃料噴射システムの構成を示す概略図であり、 各気筒の行程順序とガス燃料の噴射時期との関係を示すタイムチャートであり、 比較例において各気筒の行程順序とガス燃料の噴射時期との関係を示すタイムチャートであり、 ガス燃料の噴射制御処理の手順を示すフローチャートであり、 ガス燃料の噴射制御をより具体的に説明するためのタイムチャートである。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
It is the schematic which shows the structure of the fuel injection system of an engine, It is a time chart showing the relationship between the stroke order of each cylinder and the injection timing of gas fuel, In the comparative example is a time chart showing the relationship between the stroke order of each cylinder and the injection timing of gas fuel, It is a flowchart showing a procedure of injection control processing of gas fuel, It is a time chart for explaining injection control of gas fuel more concretely.
 以下、本開示の実施例について図に基づいて説明する。なお、以下の各実施例相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 以下、本開示を具体化した一実施例を図面を参照しつつ説明する。本実施例は、ガス燃料である圧縮天然ガス(CNG)と液体燃料であるガソリンとを燃焼用の燃料として使用し、多気筒内燃機関に相当するバイフューエルタイプの車載多気筒エンジン(多気筒内燃機関)に適用される燃料噴射システムとして具体化するものとしている。燃料噴射システムの全体概略図を図1に示す。 Hereinafter, an embodiment embodying the present disclosure will be described with reference to the drawings. In this embodiment, compressed natural gas (CNG) as a gas fuel and gasoline as a liquid fuel are used as combustion fuels, and a bi-fuel type on-vehicle multi-cylinder engine (multi-cylinder internal combustion engine) corresponding to a multi-cylinder internal combustion engine is used. The fuel injection system is applied to the engine). An overall schematic diagram of the fuel injection system is shown in FIG.
 図1に示すエンジン10は直列4気筒の火花点火式エンジンよりなり、1番気筒(#1)と、2番気筒(#2)と、3番気筒(#3)と、4番気筒(#4)とを有している。エンジン10の吸気ポート及び排気ポートには吸気系統11、排気系統12がそれぞれ接続されている。吸気系統11は、吸気マニホールド13と吸気管14とを有している。吸気マニホールド13は、エンジン10の吸気ポートに接続される複数の第一分岐管部13aと、その上流側であって吸気管14に接続される第一メイン管部13bとを有している。この場合、第一分岐管部13aの数はエンジン10の気筒数分である。第一分岐管部13aは吸気部に相当する。吸気管14には空気量調整部としてのスロットル弁15が設けられている。スロットル弁15は、DCモータ等のスロットルアクチュエータ15aにより開度調節される電子制御式のスロットル弁として構成され、スロットル弁15の開度は、スロットルアクチュエータ15aに内蔵されたスロットル開度センサ15bにより検出される。この場合、スロットル弁15の開度はスロットル開度である。 The engine 10 shown in FIG. 1 is an in-line four-cylinder spark ignition engine, and the first cylinder (# 1), the second cylinder (# 2), the third cylinder (# 3), and the fourth cylinder (# 4). An intake system 11 and an exhaust system 12 are connected to an intake port and an exhaust port of the engine 10, respectively. The intake system 11 has an intake manifold 13 and an intake pipe 14. The intake manifold 13 has a plurality of first branch pipe portions 13 a connected to the intake port of the engine 10 and a first main pipe portion 13 b connected to the intake pipe 14 on the upstream side. In this case, the number of the first branch pipe portions 13a is the number of cylinders of the engine 10. The first branch pipe portion 13a corresponds to an intake portion. The intake pipe 14 is provided with a throttle valve 15 as an air amount adjusting unit. The throttle valve 15 is configured as an electronically controlled throttle valve whose opening is adjusted by a throttle actuator 15a such as a DC motor, and the opening of the throttle valve 15 is detected by a throttle opening sensor 15b built in the throttle actuator 15a. Is done. In this case, the opening degree of the throttle valve 15 is the throttle opening degree.
 また、排気系統12は、排気マニホールド16と排気管17とを有している。排気マニホールド16は、エンジン10の排気ポートに接続される複数の第二分岐管部16aと、その下流側であって排気管17に接続される第二メイン管部16bとを有している。この場合、第二分岐管部16aの数はエンジン10の気筒数分である。排気管17には、排気の成分を検出する排気センサ18と、排気を浄化する触媒19とが設けられている。排気センサ18として具体的には、排気中の酸素濃度から空燃比を検出する空燃比センサでも良い。 Further, the exhaust system 12 has an exhaust manifold 16 and an exhaust pipe 17. The exhaust manifold 16 has a plurality of second branch pipe portions 16 a connected to the exhaust port of the engine 10 and a second main pipe portion 16 b connected to the exhaust pipe 17 on the downstream side thereof. In this case, the number of the second branch pipe portions 16a is the number of cylinders of the engine 10. The exhaust pipe 17 is provided with an exhaust sensor 18 for detecting exhaust components and a catalyst 19 for purifying exhaust. Specifically, the exhaust sensor 18 may be an air-fuel ratio sensor that detects the air-fuel ratio from the oxygen concentration in the exhaust gas.
 エンジン10の各気筒には点火プラグ(図示略)が設けられている。点火プラグには、点火コイル等よりなる点火装置20を通じて、所望とする点火時期に高電圧が印加される。この高電圧の印加により、各点火プラグの対向電極間に火花放電が発生し、気筒内或いは燃焼室内に導入した燃料が着火され燃焼する。 Each cylinder of the engine 10 is provided with a spark plug (not shown). A high voltage is applied to the ignition plug at a desired ignition timing through an ignition device 20 including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug, and the fuel introduced into the cylinder or the combustion chamber is ignited and burned.
 また、燃料噴射システムは、エンジン10に対して燃料を噴射供給する燃料噴射部として、ガス燃料を噴射するガス燃料噴射弁21と、液体燃料を噴射する液体燃料噴射弁22とを有している。これら各噴射弁21,22は、吸気系統11において吸気マニホールド13の第一分岐管部13aにそれぞれ燃料を噴射するものであり、ガス燃料噴射弁21の噴射によりガス燃料が各気筒の吸気ポートに供給され、液体燃料噴射弁22の噴射により液体燃料が各気筒の吸気ポートに供給される。 Further, the fuel injection system includes a gas fuel injection valve 21 that injects gas fuel and a liquid fuel injection valve 22 that injects liquid fuel as fuel injection units that inject and supply fuel to the engine 10. . Each of these injection valves 21 and 22 injects fuel into the first branch pipe portion 13a of the intake manifold 13 in the intake system 11, and the gas fuel is injected into the intake port of each cylinder by the injection of the gas fuel injection valve 21. The liquid fuel is supplied to the intake port of each cylinder by the injection of the liquid fuel injection valve 22.
 各噴射弁21,22は、電磁駆動部が電気的に駆動されることで弁体が閉位置から開位置にリフトされる開閉タイプの制御弁であり、制御部60から入力される開弁駆動信号によりそれぞれ開弁駆動される。これら各噴射弁21,22は、通電により開弁し、通電遮断により閉弁する。そして、通電時間に応じた量の燃料(ガス燃料、液体燃料)が各噴射弁21,22から噴射される。なお、本実施例では、ガス燃料噴射弁21の先端部側に燃料導管23が接続されており、ガス燃料噴射弁21から噴射されたガス燃料は燃料導管23を介して吸気マニホールド13の第一分岐管部13aに放出される。 Each of the injection valves 21 and 22 is an open / close type control valve in which the valve body is lifted from the closed position to the open position by electrically driving the electromagnetic drive unit, and the valve opening drive input from the control unit 60. Each valve is driven to open by a signal. These injection valves 21 and 22 are opened by energization and closed by energization interruption. An amount of fuel (gas fuel, liquid fuel) corresponding to the energization time is injected from each of the injection valves 21 and 22. In this embodiment, a fuel conduit 23 is connected to the distal end side of the gas fuel injection valve 21, and the gas fuel injected from the gas fuel injection valve 21 passes through the fuel conduit 23 to the first of the intake manifold 13. It is discharged to the branch pipe part 13a.
 次に、ガス燃料噴射弁21に対してガス燃料を供給するガス燃料供給部40の構成と、液体燃料噴射弁22に対して液体燃料を供給する液体燃料供給部50の構成とを説明する。 Next, the configuration of the gas fuel supply unit 40 that supplies gas fuel to the gas fuel injection valve 21 and the configuration of the liquid fuel supply unit 50 that supplies liquid fuel to the liquid fuel injection valve 22 will be described.
 ガス燃料供給部40において、ガス燃料噴射弁21にはガス配管41を介してガスタンク42が接続されており、そのガス配管41の途中には、ガス燃料噴射弁21に供給されるガス燃料の圧力を減圧調整する圧力調整機能を有するレギュレータ43が設けられている。具体的に、レギュレータ43は、ガスタンク42内に貯蔵された高圧状態(例えば最大20MPa)のガス燃料を、ガス燃料噴射弁21の噴射圧である所定の設定圧(例えば0.2~1.0MPa)に減圧調整するものであり、減圧調整後のガス燃料がガス配管41を通ってガス燃料噴射弁21に供給される。なお、ガス配管41において、レギュレータ43よりも上流側が高圧通路を形成する高圧配管部41a、下流側が低圧通路を形成する低圧配管部41bとなっている。 In the gas fuel supply unit 40, a gas tank 42 is connected to the gas fuel injection valve 21 via a gas pipe 41, and the pressure of the gas fuel supplied to the gas fuel injection valve 21 is in the middle of the gas pipe 41. There is provided a regulator 43 having a pressure adjusting function for adjusting the pressure under pressure. Specifically, the regulator 43 converts the gas fuel stored in the gas tank 42 in a high pressure state (for example, a maximum of 20 MPa) to a predetermined set pressure (for example, 0.2 to 1.0 MPa) that is the injection pressure of the gas fuel injection valve 21. The gas fuel after the pressure reduction adjustment is supplied to the gas fuel injection valve 21 through the gas pipe 41. In the gas piping 41, the upstream side of the regulator 43 is a high-pressure piping portion 41a that forms a high-pressure passage, and the downstream side is a low-pressure piping portion 41b that forms a low-pressure passage.
 また、ガス配管41等により形成されるガス燃料通路には更に、ガスタンク42の燃料出口の付近に配置されたタンク出口弁に相当するタンク主止弁44と、そのタンク主止弁44よりも下流側であってレギュレータ43の燃料入口の付近に配置された遮断弁45とが設けられており、これら各弁44,45によって、ガス配管41におけるガス燃料の流通が許容及び遮断される。例えば、タンク主止弁44及び遮断弁45はいずれも電磁式の開閉弁であり、非通電時においてガス燃料の流通が遮断され、通電時においてガス燃料の流通が許容される常閉式となっている。 A gas fuel passage formed by the gas pipe 41 and the like further includes a tank main stop valve 44 corresponding to a tank outlet valve disposed near the fuel outlet of the gas tank 42 and a downstream side of the tank main stop valve 44. And a shutoff valve 45 disposed in the vicinity of the fuel inlet of the regulator 43. The valves 44, 45 allow and shut off the flow of gas fuel in the gas pipe 41. For example, the tank main stop valve 44 and the shutoff valve 45 are both electromagnetic on-off valves, and are normally closed so that the flow of gas fuel is cut off when not energized and the flow of gas fuel is allowed when energized. Yes.
 ガス配管41において、高圧配管部41aには燃料圧力を検出する第一圧力センサ46と、燃料温度を検出する第一温度センサ47とが設けられ、低圧配管部41bには燃料圧力を検出する第二圧力センサ48と、燃料温度を検出する第二温度センサ49とが設けられている。 In the gas pipe 41, a first pressure sensor 46 for detecting the fuel pressure and a first temperature sensor 47 for detecting the fuel temperature are provided in the high pressure pipe 41a, and a first pressure sensor 47 for detecting the fuel pressure is provided in the low pressure pipe 41b. A two-pressure sensor 48 and a second temperature sensor 49 for detecting the fuel temperature are provided.
 なお、遮断弁45と第一圧力センサ46とはレギュレータ43に一体に設けることが可能であり、本実施例では、レギュレータ43に一体に遮断弁45と第一圧力センサ46とを設ける構成を採用する。 The shut-off valve 45 and the first pressure sensor 46 can be provided integrally with the regulator 43. In this embodiment, a configuration in which the shut-off valve 45 and the first pressure sensor 46 are provided integrally with the regulator 43 is employed. To do.
 また、液体燃料供給部50において、液体燃料噴射弁22には、燃料配管51を介して燃料タンク52が接続されている。また、燃料配管51には、燃料タンク52内の液体燃料を液体燃料噴射弁22に給送する燃料ポンプ53が設けられている。 In the liquid fuel supply unit 50, a fuel tank 52 is connected to the liquid fuel injection valve 22 via a fuel pipe 51. The fuel pipe 51 is provided with a fuel pump 53 that feeds the liquid fuel in the fuel tank 52 to the liquid fuel injection valve 22.
 制御部60は、CPU61と、ROM62と、RAM63と、バックアップRAM(BK RAM)64と、インターフェース65と、双方向バス66とを備えている。CPU61、ROM62、RAM63、バックアップRAM64、及びインターフェース65は、双方向バス66によって互いに接続されている。制御部60は、噴射制御部又は過渡判定部に相当する。 The control unit 60 includes a CPU 61, a ROM 62, a RAM 63, a backup RAM (BK RAM) 64, an interface 65, and a bidirectional bus 66. The CPU 61, ROM 62, RAM 63, backup RAM 64, and interface 65 are connected to each other by a bidirectional bus 66. The control unit 60 corresponds to an injection control unit or a transient determination unit.
 CPU61は、燃料噴射システムにおける各部の動作を制御するためのルーチン(プログラム)を実行する。ROM62には、CPU61が実行するルーチン、及びこのルーチン実行の際に参照されるマップ、パラメータ、等の各種データが予め格納されている。この場合、マップはテーブルや関係式等も含む。RAM63は、CPU61がルーチンを実行する際に、必要に応じてデータを一時的に格納する。バックアップRAM64は、電源が投入された状態でCPU61の制御下でデータを適宜格納するとともに、この格納されたデータを電源遮断後も保持する。 The CPU 61 executes a routine (program) for controlling the operation of each part in the fuel injection system. The ROM 62 stores in advance various types of data such as a routine executed by the CPU 61 and maps, parameters, and the like referred to when the routine is executed. In this case, the map includes a table, a relational expression, and the like. The RAM 63 temporarily stores data as necessary when the CPU 61 executes the routine. The backup RAM 64 appropriately stores data under the control of the CPU 61 in a state where the power is turned on, and retains the stored data even after the power is shut off.
 インターフェース65は、上述したスロットル開度センサ15b、排気センサ18、圧力センサ46,48、温度センサ47,49を含む、燃料噴射システムに設けられたセンサと電気的に接続されている。この場合、これらのセンサにはクランク角センサ、エアフロメータ、冷却水温センサ、車速センサ等も含む。これらのセンサからの検出信号に相当する出力をCPU61に伝達する。また、インターフェース65は、スロットルアクチュエータ15a、点火装置20、各噴射弁21,22、タンク主止弁44、遮断弁45等の駆動部と電気的に接続されていて、これらの駆動部を駆動させるためにCPU61から送出された駆動信号を当該駆動部に向けて出力する。すなわち、制御部60は、上述のセンサの出力信号等に基づいて運転状態を取得し、この運転状態に基づいて上述の駆動部を制御する。 The interface 65 is electrically connected to sensors provided in the fuel injection system, including the throttle opening sensor 15b, the exhaust sensor 18, the pressure sensors 46 and 48, and the temperature sensors 47 and 49 described above. In this case, these sensors include a crank angle sensor, an air flow meter, a coolant temperature sensor, a vehicle speed sensor, and the like. An output corresponding to detection signals from these sensors is transmitted to the CPU 61. The interface 65 is electrically connected to driving units such as the throttle actuator 15a, the ignition device 20, the injection valves 21 and 22, the tank main stop valve 44, the shutoff valve 45, and the like, and drives these driving units. Therefore, the drive signal sent from the CPU 61 is output toward the drive unit. That is, the control unit 60 acquires an operating state based on the output signal of the above-described sensor and controls the above-described driving unit based on this operating state.
 ところで、本実施例のように、エンジン10の気筒数よりも少ない数のガス燃料噴射弁21を用いて吸気部に対するガス燃料の供給を行う構成では、過渡応答の点で応答遅れが生じるおそれがある。つまり、複数気筒分のガス燃料を一斉に噴射する場合、次の噴射時期が到来する前に過渡変化が生じると、その過渡変化に応じた燃料増量を直ちに実施できず、過渡要求に対する応答が遅れることがある。この点、本実施例では、エンジン10の全気筒(#1~#4)を、燃焼順序(行程)が連続する2つずつの気筒でグループ分けし、その2つずつの気筒に対して同じガス燃料噴射弁21からそれぞれガス燃料を噴射する。そしてこれにより、過渡要求に対する応答の遅れを抑制する。 By the way, in the configuration in which the gas fuel is supplied to the intake portion by using a smaller number of gas fuel injection valves 21 than the number of cylinders of the engine 10 as in this embodiment, there is a possibility that a response delay may occur in terms of transient response. is there. In other words, when gas fuel for multiple cylinders is injected all at once, if a transient change occurs before the next injection timing arrives, fuel increase according to the transient change cannot be performed immediately, and the response to the transient request is delayed. Sometimes. In this regard, in this embodiment, all the cylinders (# 1 to # 4) of the engine 10 are grouped into two cylinders having consecutive combustion orders (strokes), and the same is applied to the two cylinders. Gas fuel is injected from each gas fuel injection valve 21. This suppresses a delay in response to the transient request.
 具体的には、エンジン10の燃焼順序が#1→#3→#4→#2である場合に、4つの気筒を「#1及び#2」である第一気筒グループと「#3及び#4」である第二気筒グループとの2気筒グループに分け、第一気筒グループに対して一つのガス燃料噴射弁21から燃料噴射を行うとともに、第二気筒グループに対してもう一つのガス燃料噴射弁21から燃料噴射を行う。この場合、図1に示すように、2つのガス燃料噴射弁21のそれぞれに分配器24が接続されており、一つの分配器24には第一気筒グループ用の燃料導管23が接続され、もう一つの分配器24には第二気筒グループ用の燃料導管23が接続されている。各気筒グループにおいて分配器24と2気筒分の燃料導管23とが分配部に相当し、この分配部により、ガス燃料噴射弁21から噴射されたガス燃料が同一気筒グループに対応する各第一分岐管部13aに分配して放出される。 Specifically, when the combustion order of the engine 10 is # 1 → # 3 → # 4 → # 2, the four cylinders are designated as “# 1 and # 2” and “# 3 and # 2”. 4 ”and the second cylinder group, the fuel injection is performed from one gas fuel injection valve 21 to the first cylinder group, and another gas fuel injection is performed to the second cylinder group. Fuel injection is performed from the valve 21. In this case, as shown in FIG. 1, a distributor 24 is connected to each of the two gas fuel injection valves 21, and a fuel conduit 23 for the first cylinder group is connected to one distributor 24. A fuel conduit 23 for the second cylinder group is connected to one distributor 24. In each cylinder group, the distributor 24 and the fuel conduit 23 for two cylinders correspond to a distributor, and each distributor branches the gas fuel injected from the gas fuel injection valve 21 to each first branch corresponding to the same cylinder group. It is distributed and discharged to the tube portion 13a.
 図2は、エンジン10の各気筒における行程順序とガス燃料の噴射時期との関係を示すタイムチャートである。 FIG. 2 is a time chart showing the relationship between the stroke order in each cylinder of the engine 10 and the injection timing of the gas fuel.
 図2において、TX1は、第一気筒グループに対するガス燃料噴射弁21の燃料噴射時期であり、TX2は、第二気筒グループに対するガス燃料噴射弁21の燃料噴射時期である。この場合、第一気筒グループに対しては、そのうち燃焼順序が先になる先燃焼気筒に相当する#2の膨張行程及び排気行程においてガス燃料噴射弁21からガス燃料が噴射され、その後の#2の吸気行程及び後燃焼気筒に相当する#1の吸気行程においてそれら各気筒(#2,#1)にガス燃料が吸入される。ガス燃料噴射弁21による燃料噴射から各気筒での燃料吸入までの吸気遅れに相当する遅れ時間は、#2ではTXd2、#1ではTXd1となっている。 2, TX1 is the fuel injection timing of the gas fuel injection valve 21 for the first cylinder group, and TX2 is the fuel injection timing of the gas fuel injection valve 21 for the second cylinder group. In this case, for the first cylinder group, gas fuel is injected from the gas fuel injection valve 21 in the # 2 expansion stroke and exhaust stroke corresponding to the pre-combustion cylinder in which the combustion order comes first, and then # 2 The gas fuel is sucked into each of the cylinders (# 2, # 1) in the intake stroke of # 1 and the intake stroke of # 1 corresponding to the post-combustion cylinder. The delay time corresponding to the intake delay from the fuel injection by the gas fuel injection valve 21 to the fuel intake in each cylinder is TXd2 in # 2, and TXd1 in # 1.
 なお、燃料噴射時期は、噴射終了タイミングを基準として定められる。具体的に、第一気筒グループのうち先の燃焼気筒である#2の排気行程における所定タイミングもしくは所定のクランク角度位置が噴射終了タイミングとして定められており、都度の要求噴射量に基づいて、噴射終了タイミングよりも先の噴射開始タイミングが決定される。 The fuel injection timing is determined based on the injection end timing. Specifically, a predetermined timing or a predetermined crank angle position in the exhaust stroke of # 2 which is the previous combustion cylinder in the first cylinder group is determined as the injection end timing, and the injection is performed based on the required injection amount at each time. The injection start timing ahead of the end timing is determined.
 また、第二気筒グループに対しては、そのうち燃焼順序が先になる先燃焼気筒に相当する#3の膨張行程及び排気行程においてガス燃料噴射弁21からガス燃料が噴射され、その後の#3の吸気行程及び後燃焼気筒に相当する#4の吸気行程においてそれら各気筒(#3,#4)にガス燃料が吸入される。ガス燃料噴射弁21による燃料噴射から各気筒での燃料吸入までの吸気遅れに相当する遅れ時間は、#3ではTXd3、#4ではTXd4となっている。 For the second cylinder group, gas fuel is injected from the gas fuel injection valve 21 in the expansion stroke and exhaust stroke of # 3 corresponding to the pre-combustion cylinder in which the combustion order comes first, and then the # 3 In the intake stroke of # 4 corresponding to the intake stroke and the post-combustion cylinder, gas fuel is sucked into each of the cylinders (# 3, # 4). The delay time corresponding to the intake delay from the fuel injection by the gas fuel injection valve 21 to the fuel intake in each cylinder is TXd3 in # 3 and TXd4 in # 4.
 なお、図2では、各気筒グループにおいて先燃焼気筒(#2,#3)の排気行程にて燃料噴射が終了するようにしてガス燃料噴射弁21の燃料噴射が実施されるが、これを変更し、各気筒グループにおいて先燃焼気筒(#2,#3)の吸気行程前半にて燃料噴射が終了するようにしてガス燃料噴射弁21の燃料噴射が実施されてもよい。換言すれば、気筒グループごとに燃料噴射が実施される場合に、そのガス燃料が、先燃焼気筒の吸気行程にて気筒内に確実に流入すればよい。 In FIG. 2, the fuel injection of the gas fuel injection valve 21 is performed so that the fuel injection is completed in the exhaust stroke of the pre-combustion cylinders (# 2, # 3) in each cylinder group. In each cylinder group, the fuel injection of the gas fuel injection valve 21 may be performed so that the fuel injection ends in the first half of the intake stroke of the pre-combustion cylinders (# 2, # 3). In other words, when fuel injection is performed for each cylinder group, the gas fuel may flow into the cylinder reliably in the intake stroke of the pre-combustion cylinder.
 図3には、図2に比較するために、燃焼順序が連続しない2気筒ずつの2気筒グループに分け、それら各気筒グループに対して同じガス燃料噴射弁21からそれぞれガス燃料を噴射する場合について示している。具体的には、4つの気筒を「#1及び#4」である第三気筒グループと「#2及び#3」である第四気筒グループとの2気筒グループに分けている。図3において、TY1は、第三気筒グループに対する燃料噴射時期であり、TY2は、第四気筒グループに対する燃料噴射時期である。この場合、第三気筒グループに対しては、そのうち#1の膨張行程及び排気行程においてガス燃料噴射弁21からガス燃料が噴射され、その後の#1の吸気行程及び#4の吸気行程においてそれら各気筒(#1,#4)にガス燃料が吸入される。なお、燃料噴射時期TY1は#4の吸気行程にも差し掛かるため、#1の吸気行程以前に噴射燃料の一部が#4に吸入されることが想定される。ガス燃料噴射弁21による燃料噴射から各気筒での燃料吸入までの吸気遅れに相当する遅れ時間は、#1ではTYd1、#4ではTYd4となっている。 For comparison with FIG. 2, FIG. 3 shows a case in which the combustion order is divided into two cylinder groups each having two cylinders, and gas fuel is injected from the same gas fuel injection valve 21 to each cylinder group. Show. Specifically, the four cylinders are divided into a two-cylinder group including a third cylinder group “# 1 and # 4” and a fourth cylinder group “# 2 and # 3”. In FIG. 3, TY1 is the fuel injection timing for the third cylinder group, and TY2 is the fuel injection timing for the fourth cylinder group. In this case, for the third cylinder group, gas fuel is injected from the gas fuel injection valve 21 in the # 1 expansion stroke and exhaust stroke, and in the subsequent # 1 intake stroke and # 4 intake stroke, respectively. Gas fuel is sucked into the cylinders (# 1, # 4). Since the fuel injection timing TY1 also reaches the intake stroke of # 4, it is assumed that a part of the injected fuel is sucked into # 4 before the intake stroke of # 1. The delay time corresponding to the intake delay from the fuel injection by the gas fuel injection valve 21 to the fuel intake in each cylinder is TYd1 for # 1, and TYd4 for # 4.
 また、第四気筒グループに対しては、そのうち#2の膨張行程及び排気行程においてガス燃料噴射弁21からガス燃料が噴射され、その後の#2の吸気行程及び#3の吸気行程においてそれら各気筒(#2,#3)にガス燃料が吸入される。ガス燃料噴射弁21による燃料噴射から各気筒での燃料吸入までの吸気遅れに相当する遅れ時間は、#2ではTYd2、#3ではTYd3となっている。 For the fourth cylinder group, gas fuel is injected from the gas fuel injection valve 21 in the expansion stroke and exhaust stroke of # 2, and each of the cylinders in the subsequent intake stroke of # 2 and intake stroke of # 3. Gas fuel is sucked into (# 2, # 3). The delay time corresponding to the intake delay from the fuel injection by the gas fuel injection valve 21 to the fuel intake in each cylinder is TYd2 for # 2, and TYd3 for # 3.
 ここで、図2では吸気遅れの最長がTXd1,TXd4であり、図3では吸気遅れの最長がTYd3,TYd4である。これら図2の場合と図3の場合とを比べると、図2の場合の方が吸気遅れが短くなり、過渡応答に優れている。つまり、図2の場合には、同一の気筒グループに属する各気筒は吸気行程が連続するものであり、それ故に吸気遅れの短縮が可能となっている。 Here, in FIG. 2, the longest intake delay is TXd1 and TXd4, and in FIG. 3, the longest intake delay is TYd3 and TYd4. Comparing the case of FIG. 2 and the case of FIG. 3, the case of FIG. 2 has a shorter intake air delay and is superior in transient response. That is, in the case of FIG. 2, each cylinder belonging to the same cylinder group has a continuous intake stroke, and therefore it is possible to shorten the intake delay.
 また、上記図2の場合には、吸気遅れが短いことから、ガス燃料噴射弁21から噴射されたガス燃料が燃料導管23内に滞留している時間が短くなっており、ガス燃料噴射弁21から噴射されたガス燃料は早期に各気筒に流入する。つまり、ガス燃料が燃料導管23から他の部品や空間に流出してしまい、結果として空燃比が乱れるといった不都合が生じにくくなっている。 In the case of FIG. 2 described above, since the intake air delay is short, the time during which the gas fuel injected from the gas fuel injection valve 21 stays in the fuel conduit 23 is short, and the gas fuel injection valve 21 The gas fuel injected from the fuel flows into each cylinder at an early stage. That is, it is difficult for gas fuel to flow out from the fuel conduit 23 to other parts or spaces, resulting in a problem that the air-fuel ratio is disturbed.
 一方、車両の加速過渡時には、エンジン負荷の増加に伴い、同一の気筒グループの2気筒のうち燃焼順序が後になる気筒において燃料不足が生じるおそれがある。そこで、加速過渡時には、吸気量の変化から後の気筒の燃料不足を予測し、必要に応じて追加噴射することで、過渡時の燃料不足を解消する。 On the other hand, at the time of acceleration acceleration of the vehicle, there is a risk that fuel shortage may occur in the cylinders in the same cylinder group whose combustion order is later, as the engine load increases. Therefore, during acceleration transition, the fuel shortage of the subsequent cylinder is predicted from the change in the intake air amount, and additional fuel injection is performed as necessary, so that the fuel shortage during the transition is resolved.
 図4は、ガス燃料の噴射制御処理の手順を示すフローチャートであり、本処理は制御部60により所定時間周期で、又は所定クランク角ごとに繰り返し実施される。 FIG. 4 is a flowchart showing the procedure of the gas fuel injection control process, and this process is repeatedly performed by the control unit 60 at predetermined time intervals or at predetermined crank angles.
 図4において、S11では、制御部60がエアフロメータやクランク角センサの検出値から吸気量及びエンジン回転速度(NE)を算出する。続くS12では、制御部60がこれら吸気量やエンジン回転速度に基づいて要求噴射量を算出する。このとき、制御部60が第一気筒グループ、「第二気筒グループの組み合わせで2気筒分の燃料量が要求噴射量として算出される。その後、S13では、制御部60が今現在が要求噴射量に基づく燃料噴射のセットタイミングであるか否かを判定する。この場合の燃料噴射は第1噴射に相当する。本実施例では、同一の気筒グループの2気筒のうち先燃焼気筒の膨張行程から排気行程の期間で、要求噴射量分の燃料噴射を行うことが可能となるように、第1噴射のセットタイミングが定められている。この第1噴射のセットタイミングが第1タイミングに相当する。 4, in S11, the control unit 60 calculates the intake air amount and the engine rotation speed (NE) from the detection values of the air flow meter and the crank angle sensor. In subsequent S12, the control unit 60 calculates the required injection amount based on the intake air amount and the engine speed. At this time, the control unit 60 calculates the fuel amount for the two cylinders as the required injection amount by combining the first cylinder group and “the second cylinder group. After that, in S13, the control unit 60 now calculates the required injection amount. In this embodiment, the fuel injection corresponds to the first injection, and in this embodiment, from the expansion stroke of the pre-combustion cylinder among the two cylinders of the same cylinder group. The set timing of the first injection is determined so that the fuel injection corresponding to the required injection amount can be performed during the exhaust stroke, and the set timing of the first injection corresponds to the first timing.
 S13の判定がYESの場合、制御部60がS14に進んで、要求噴射量を噴射するためのガス燃料噴射弁21の噴射パルスをセットする。この場合、ガス燃料噴射弁21の噴射パルスは第1噴射の噴射パルスに相当する。さらに、噴射パルスは、先燃焼気筒の排気行程又は吸気行程前半に第1噴射が終了されるようにしてセットされる。S14は第1制御部に相当する。 If the determination in S13 is YES, the control unit 60 proceeds to S14 and sets the injection pulse of the gas fuel injection valve 21 for injecting the required injection amount. In this case, the injection pulse of the gas fuel injection valve 21 corresponds to the injection pulse of the first injection. Further, the injection pulse is set so that the first injection is completed in the first half of the exhaust stroke or the intake stroke of the pre-combustion cylinder. S14 corresponds to the first control unit.
 S13の判定がNOの場合には、制御部60がS15に進んで、今現在が加速過渡に基づく燃料噴射(のセットタイミングであるか否かを判定する。この場合の燃料噴射は第2噴射に相当する。本実施例では、同一の気筒グループの2気筒のうち後燃焼気筒の排気行程から吸気行程前半の期間或いは先燃焼気筒の吸気行程後半から後燃焼気筒の吸気行程前半の期間で、追加分の燃料噴射を行うことが可能となるように、第2噴射のセットタイミングが定められている。この第2噴射のセットタイミングが第2タイミングに相当する。 When the determination in S13 is NO, the control unit 60 proceeds to S15, and determines whether or not the present time is the fuel injection based on acceleration transient (set timing of the fuel injection in this case. The fuel injection in this case is the second injection. In this embodiment, of the two cylinders in the same cylinder group, the period from the exhaust stroke of the rear combustion cylinder to the first half of the intake stroke or the second half of the intake stroke of the pre-combustion cylinder to the first half of the intake stroke of the rear combustion cylinder, The set timing of the second injection is determined so that the additional fuel injection can be performed, and the set timing of the second injection corresponds to the second timing.
 S15の判定がYESの場合、制御部60がS16に進み、今現在が加速過渡の状態であるか否かを判定する。加速過渡の判定は、第1噴射のセットタイミングから第2噴射のセットタイミングまでの吸気量の変化量に基づき行われ、その変化量が、所定量以上であれば、加速過渡の状態である旨を判定する。 If the determination in S15 is YES, the control unit 60 proceeds to S16 and determines whether or not the current state is an acceleration transient state. The determination of acceleration transient is made based on the change amount of the intake air amount from the set timing of the first injection to the set timing of the second injection. If the change amount is equal to or greater than a predetermined amount, the acceleration transient state is indicated. Determine.
 S16の判定がYESの場合、制御部60がS17に進んで、吸気量の増加分に相当する追加燃料量を算出する。このとき、エンジン回転速度の変化量を加味することも可能である。続くS18では、追加燃料量を噴射するためのガス燃料噴射弁21の噴射パルスをセットする。この場合、ガス燃料噴射弁21の噴射パルスは第2噴射の噴射パルスに相当する。さらに、噴射パルスは、後燃焼気筒の排気行程又は吸気行程前半に第2噴射が終了されるようにしてセットされる。S17とS18とは第2制御部に相当する。 If the determination in S16 is YES, the control unit 60 proceeds to S17 and calculates an additional fuel amount corresponding to the increase in the intake air amount. At this time, it is also possible to take into account the amount of change in the engine speed. In subsequent S18, the injection pulse of the gas fuel injection valve 21 for injecting the additional fuel amount is set. In this case, the injection pulse of the gas fuel injection valve 21 corresponds to the injection pulse of the second injection. Further, the injection pulse is set so that the second injection is completed in the first half of the exhaust stroke or the intake stroke of the post-combustion cylinder. S17 and S18 correspond to a second control unit.
 また、S15やS16の判定がNOの場合には、制御部60がS17,S18を実施することなく、そのまま本処理を終了する。換言すればエンジン運転状態に基づいて、第1噴射及び第2噴射のうち第1噴射のみを実施する状態とそれら両噴射を実施する状態とが切り替えられる。この場合、S15やS16は切替部に相当する。 Further, if the determination in S15 or S16 is NO, the control unit 60 ends this process as it is without performing S17 and S18. In other words, based on the engine operating state, a state in which only the first injection among the first injection and the second injection is performed and a state in which both the injections are performed are switched. In this case, S15 and S16 correspond to a switching unit.
 加速過渡に基づき第2噴射が実施される場合、ガス燃料噴射弁21から噴射された追加分のガス燃料は、分配器24で連通されている2つの燃料導管23にそれぞれ分配される。この場合、第2噴射は、気筒グループの後燃焼気筒の排気行程又は吸気行程前半にて実施されるため、後燃焼気筒については、第2噴射の実施と前後又は重複する吸気行程で直ちに気筒内に流入するが、先燃焼気筒については、追加分の燃料が燃料導管23内に残留し、気筒内への流入が次回に持ち越される。そのため、S14では、制御部60が次回の第1噴射のセットタイミングにおいて、前回の第2噴射の燃料分(燃料導管23内の残留分)を加味して、第1噴射の燃料量を算出するとよい。例えば、制御部60が要求噴射量から、前回の第2噴射の燃料量の1/2を差し引いて第1噴射の燃料量を算出する。 When the second injection is performed based on the acceleration transient, the additional amount of gas fuel injected from the gas fuel injection valve 21 is distributed to the two fuel conduits 23 communicated by the distributor 24, respectively. In this case, since the second injection is performed in the exhaust stroke or the first half of the intake stroke of the post-combustion cylinder of the cylinder group, the post-combustion cylinder immediately enters the cylinder in the intake stroke before, after, or overlaps with the execution of the second injection. However, for the pre-combustion cylinder, additional fuel remains in the fuel conduit 23 and the inflow into the cylinder is carried over next time. Therefore, in S14, when the control unit 60 calculates the fuel amount of the first injection in consideration of the fuel amount of the previous second injection (residual amount in the fuel conduit 23) at the next first injection set timing. Good. For example, the control unit 60 calculates the fuel amount of the first injection by subtracting ½ of the fuel amount of the previous second injection from the required injection amount.
 図5は、ガス燃料の噴射制御をより具体的に説明するためのタイムチャートである。図5では、タイミングta以前においてエンジン10が定常運転されており、タイミングtaにおいてアクセルの踏込み操作である加速操作により吸気量が増加している。そして、吸気量の増加に伴い、各気筒において燃焼に必要な燃料量が増量される。 FIG. 5 is a time chart for explaining the injection control of gas fuel more specifically. In FIG. 5, the engine 10 is in a steady operation before the timing ta, and the intake air amount is increased by the acceleration operation that is the accelerator depression operation at the timing ta. As the intake air amount increases, the fuel amount necessary for combustion in each cylinder is increased.
 さて、タイミングta以前におけるタイミングt1では、吸気量はQ1であり、その吸気量Q1に基づく要求噴射量で第一気筒グループ用のガス燃料の噴射である第1噴射が行われる。その後、タイミングtaで加速操作が生じると、第2噴射のセットタイミングであるタイミングt2で、加速過渡により生じた、先の要求噴射量に対する燃料の増量分が算出され、その燃料増量分のガス燃料の噴射である第2噴射が行われる。この場合、タイミングt2は追加噴射の判定タイミングに相当する。さらに、先のタイミングt1での吸気量Q1と、タイミングt2での吸気量Q2との差(Q2-Q1)に基づく追加噴射が実施される。 Now, at the timing t1 before the timing ta, the intake amount is Q1, and the first injection which is the injection of the gas fuel for the first cylinder group is performed with the required injection amount based on the intake amount Q1. Thereafter, when an acceleration operation occurs at timing ta, at time t2, which is the set timing of the second injection, an increase in fuel with respect to the previous required injection amount, which is generated due to acceleration transient, is calculated. The second injection is performed. In this case, the timing t2 corresponds to the determination timing of the additional injection. Further, additional injection based on the difference (Q2−Q1) between the intake air amount Q1 at the previous timing t1 and the intake air amount Q2 at the timing t2 is performed.
 要求噴射量に基づく第1噴射と加速過渡に基づく第2噴射とは、第一気筒グループのそれぞれの排気行程又は吸気行程前半にて終了するようにして実施される。具体的に、図5において、要求噴射量に基づく第1噴射は、先燃焼気筒である#2の排気行程で終了するようにして実施され、加速過渡に基づく第2噴射は、後燃焼気筒である#1の吸気行程前半に終了するようにして実施される。 The first injection based on the required injection amount and the second injection based on the acceleration transient are performed so as to end in the first half of the exhaust stroke or the first half of the intake stroke of the first cylinder group. Specifically, in FIG. 5, the first injection based on the required injection amount is performed so as to end in the exhaust stroke of # 2 which is the pre-combustion cylinder, and the second injection based on the acceleration transient is performed in the post-combustion cylinder. It is carried out so as to end in the first half of a certain # 1 intake stroke.
 その後、タイミングt3では、再びその時の吸気量Q3に基づく要求噴射量で第一気筒グループ用のガス燃料の噴射である第1噴射が行われる。その後、タイミングt4では、先のタイミングt3での吸気量Q3と、タイミングt4での吸気量Q4との差(Q4-Q3)に基づく追加噴射である第2噴射が実施される。 Thereafter, at timing t3, the first injection, which is the injection of the gas fuel for the first cylinder group, is performed again with the required injection amount based on the intake amount Q3 at that time. Thereafter, at timing t4, second injection, which is additional injection based on the difference (Q4-Q3) between the intake air amount Q3 at the previous timing t3 and the intake air amount Q4 at the timing t4, is performed.
 第二気筒グループでも同様の処理が実施される。具体的に、第二気筒グループ用のガス燃料の噴射として、タイミングt11では、その時の吸気量Q11に基づく要求噴射量でガス燃料の噴射である第1噴射が行われる。その後、タイミングt12では、先のタイミングt11での吸気量Q11と、タイミングt12での吸気量Q12との差(Q12-Q11)に基づく追加噴射である第2噴射が実施される。 The same processing is performed in the second cylinder group. Specifically, as the injection of gas fuel for the second cylinder group, at timing t11, the first injection, which is the injection of gas fuel, is performed at the required injection amount based on the intake air amount Q11 at that time. Thereafter, at timing t12, the second injection that is the additional injection based on the difference (Q12−Q11) between the intake air amount Q11 at the previous timing t11 and the intake air amount Q12 at the timing t12 is performed.
 第二気筒グループにおいても、第一気筒グループと同様の時期で燃料噴射が実施される。具体的に、図5において、要求噴射量に基づく第1噴射は、先燃焼気筒である#3の排気行程で終了するようにして実施され、加速過渡に基づく第2噴射は、後燃焼気筒である#4の吸気行程前半に終了するようにして実施される。 In the second cylinder group, fuel injection is performed at the same time as the first cylinder group. Specifically, in FIG. 5, the first injection based on the required injection amount is performed so as to end in the exhaust stroke of # 3 which is the pre-combustion cylinder, and the second injection based on the acceleration transient is performed in the post-combustion cylinder. It is executed so as to end in the first half of a certain # 4 intake stroke.
 以上詳述した本実施例によれば、以下の優れた効果が得られる。 According to the embodiment described in detail above, the following excellent effects can be obtained.
 燃焼順序が連続する2気筒ずつの気筒グループごとにガス燃料噴射弁21を設け、そのガス燃料噴射弁21から噴射されたガス燃料を、分配器24及び燃料導管23に相当する分配部を介して同一気筒グループの各気筒に供給するようにした。そして、制御部60が同一の気筒グループにおける2気筒分のガス燃料の要求量を算出し、その要求量に基づいて気筒グループごとにガス燃料噴射弁21による燃料噴射を制御するようにした。かかる構成では、2つの気筒について同一のガス燃料噴射弁21によりまとめて燃料噴射が実施されるため、構成の簡素化を図ることができる。 A gas fuel injection valve 21 is provided for each cylinder group of two cylinders in which the combustion order is continuous, and the gas fuel injected from the gas fuel injection valve 21 is distributed via a distributor 24 and a distributor corresponding to the fuel conduit 23. It was made to supply to each cylinder of the same cylinder group. Then, the control unit 60 calculates the required amount of gas fuel for two cylinders in the same cylinder group, and controls the fuel injection by the gas fuel injection valve 21 for each cylinder group based on the required amount. In such a configuration, since the fuel injection is performed collectively for the two cylinders by the same gas fuel injection valve 21, the configuration can be simplified.
 また、同一気筒グループに属する2つの気筒は燃焼順序が連続するものであり、それら2つの気筒では吸気行程が連続する。したがって、2気筒分のガス燃料をまとめてガス燃料噴射弁21により噴射する構成において、燃料噴射後に気筒流入までに生じる吸気遅れを少なくすることができる。例えば加速過渡により燃料増量が要求される状況下において、燃焼順序が後になる後燃焼気筒で増量要求分が不足したとしても、その不足分による影響を少なくすることができる。 Also, the two cylinders belonging to the same cylinder group have a continuous combustion order, and the intake strokes are continuous in these two cylinders. Therefore, in the configuration in which the gas fuel for two cylinders is collectively injected by the gas fuel injection valve 21, it is possible to reduce the intake air delay that occurs before the cylinder flows after the fuel injection. For example, in a situation where an increase in fuel is required due to acceleration transients, even if the increase in required amount is insufficient in the post-combustion cylinder after the combustion order, the influence of the insufficient amount can be reduced.
 また、同一気筒グループに属する2つの気筒では吸気行程が連続してまとまるため、それら両気筒で共に吸気行程にならない非吸気行程の期間である継続時間が長くなり、ガス燃料の噴射期間を確保することが容易である。特にガス燃料の場合には、液体燃料に比べて噴射燃料の体積が大きく、その噴射期間が長めになることから、噴射期間の確保が容易となる。さらに、同一気筒グループに属する2気筒についてガス燃料と空気とのミキシング性に差が生じることを抑制でき、燃焼のばらつきを抑える。以上により、構成の簡素化を図りつつ、エンジン10において燃焼の適正化を実現することができる。 In addition, since the intake strokes of two cylinders belonging to the same cylinder group are continuously gathered, the duration of the non-intake stroke period in which neither of the cylinders is in the intake stroke is lengthened, and the gas fuel injection period is secured. Is easy. In particular, in the case of gas fuel, since the volume of the injected fuel is larger than that of the liquid fuel and the injection period is longer, it is easy to ensure the injection period. Further, it is possible to suppress a difference in mixing performance between the gas fuel and the air for the two cylinders belonging to the same cylinder group, thereby suppressing variation in combustion. As described above, it is possible to achieve proper combustion in the engine 10 while simplifying the configuration.
 同一の気筒グループにおける2気筒のうち先燃焼気筒の排気行程又は吸気行程前半にて燃料噴射が終了するように、ガス燃料噴射弁21による燃料噴射である第1噴射を制御するようにした。これにより、2気筒分の噴射燃料は、その噴射後に引き続く同一気筒グループの各気筒の吸気行程で気筒内に順次流入する。この場合、燃料噴射に対して筒内流入を早めることができ、過渡応答にも向上できる。 The first injection which is the fuel injection by the gas fuel injection valve 21 is controlled so that the fuel injection is completed in the first half of the exhaust stroke or the intake stroke of the pre-combustion cylinder among the two cylinders in the same cylinder group. Thereby, the injected fuel for two cylinders sequentially flows into the cylinders in the intake stroke of each cylinder in the same cylinder group that continues after the injection. In this case, in-cylinder inflow can be accelerated with respect to fuel injection, and transient response can be improved.
 第1噴射として、同一気筒グループにおける2気筒のうち先燃焼気筒の排気行程又は吸気行程前半にて燃料噴射が終了するように、ガス燃料噴射弁21の燃料噴射を実施し、第2噴射として、後燃焼気筒の排気行程又は吸気行程前半にて燃料噴射が終了するように、ガス燃料噴射弁21の燃料噴射を実施する構成とした。これにより、第1噴射の後に燃料増量の要求が生じた場合において、その増量要求に対応させつつ後燃焼気筒の燃料噴射を好適に実施できる。 As the first injection, the fuel injection of the gas fuel injection valve 21 is performed so that the fuel injection is completed in the first half of the exhaust stroke or the intake stroke of the pre-combustion cylinder among the two cylinders in the same cylinder group. The fuel injection of the gas fuel injection valve 21 is performed so that the fuel injection ends in the first half of the exhaust stroke or the intake stroke of the post-combustion cylinder. Thereby, when the request | requirement of fuel increase arises after 1st injection, the fuel injection of a post-combustion cylinder can be implemented suitably, responding to the increase request.
 第1噴射のみが必要となる場合と、第1及び第2の両噴射が必要となる場合とは、エンジン10の運転状態に応じて変わりうる。エンジン運転状態に基づいて、第1噴射と第2噴射とを適宜実施するようにしたため、都度のエンジン運転状態に応じた適正な燃料噴射制御を実現できる。 The case where only the first injection is required and the case where both the first and second injections are required can vary depending on the operating state of the engine 10. Since the first injection and the second injection are appropriately performed based on the engine operating state, it is possible to realize appropriate fuel injection control according to the engine operating state.
 加速過渡の状態であることが判定された場合に、第1噴射及び第2噴射の両方が実施されるようガス燃料噴射弁21による燃料噴射を制御するようにした。加速過渡が生じる場合には、吸気量が時間経過とともに上昇し、それに伴いエンジン10における燃料の要求量が増える。かかる場合において、燃料増量の要求分を第2噴射にて補うことができる。これにより、エンジン10の加速過渡に対する要求に好適に対応することができる。 The fuel injection by the gas fuel injection valve 21 is controlled so that both the first injection and the second injection are performed when it is determined that the state is an acceleration transient state. When acceleration transient occurs, the intake air amount increases with time, and the required amount of fuel in the engine 10 increases accordingly. In such a case, the required amount of fuel increase can be supplemented by the second injection. Thereby, the request | requirement with respect to the acceleration transient of the engine 10 can be respond | corresponded suitably.
 (他の実施例)
 上記実施例を例えば次のように変更してもよい。
(Other examples)
For example, the above embodiment may be modified as follows.
 (a)上記実施例では、加速過渡であると判定された場合に、後燃焼気筒の排気行程又は吸気行程前半にて燃料噴射が終了するように実施される追加噴射である第2噴射を実施する構成としたが、これを変更してもよい。例えば、エンジン運転状態が高負荷状態であって、ガス燃料の要求噴射量が多くなっていると、その要求噴射量の全てを先燃焼気筒の排気行程又は吸気行程前半にて燃料噴射が終了するように実施される先噴射である第1噴射で噴射することが困難な場合が生じうる。かかる場合に、第1噴射として、要求噴射量のうち、先燃焼気筒の排気行程又は吸気行程前半にて燃料噴射が終了することが可能な量の燃料量を噴射し、その後、第2噴射として、要求噴射量の残りの量を噴射する。 (A) In the above embodiment, when it is determined that the acceleration is transient, the second injection, which is an additional injection that is performed so that the fuel injection is completed in the first half of the exhaust stroke or the intake stroke of the post-combustion cylinder, is performed. However, this may be changed. For example, when the engine operating state is a high load state and the required injection amount of gas fuel is increased, the fuel injection is completed in the exhaust stroke or the first half of the intake stroke of the pre-combustion cylinder. In this case, it may be difficult to perform the first injection which is the first injection. In such a case, as the first injection, an amount of fuel that can be completed in the exhaust stroke or the first half of the intake stroke of the pre-combustion cylinder among the required injection amounts is injected, and then as the second injection. The remaining amount of the requested injection amount is injected.
 また、第1噴射の後にリッチ化の要求が生じた場合に、第2噴射を実施するようにしてもよい。リッチ化の要求としては、例えば、排気浄化用の触媒において吸着酸素の除去のためのリッチ化などのおそれがある。 Further, when a request for enrichment occurs after the first injection, the second injection may be performed. As a request for enrichment, for example, there is a risk of enrichment for removal of adsorbed oxygen in an exhaust purification catalyst.
 (b)上記実施例では、ガス燃料と液体燃料とを燃焼用の燃料として使用するバイフューエルエンジンにて本開示を適用したが、これを変更し、ガス燃料のみを用いるガスエンジンにて本開示を適用することも可能である。 (B) In the above embodiment, the present disclosure is applied to a bi-fuel engine that uses gas fuel and liquid fuel as combustion fuel. However, the present disclosure is changed to a gas engine that uses only gas fuel. It is also possible to apply.
 (c)上記実施例では、ガス燃料としてCNG燃料を用いたが、標準状態で気体となるその他のガス燃料を用いることもでき、例えばメタン、エタン、プロパン、ブタン、水素、DMEなどを主成分とする燃料を用いる構成としてもよい。また、液体燃料についてもガソリン燃料に限らず、例えば軽油などを用いる構成としてもよい。 (C) In the above embodiment, the CNG fuel is used as the gas fuel. However, other gas fuels that are gases in the standard state can be used. For example, methane, ethane, propane, butane, hydrogen, DME, etc. are the main components. The fuel may be used. Further, the liquid fuel is not limited to gasoline fuel, and for example, light oil or the like may be used.
 (d)上記実施例では、多気筒エンジンとして直列4気筒エンジンを例示したが、これ以外にも具体化が可能であり、6気筒エンジンや8気筒エンジンなど、偶数個の気筒を有するエンジンに広く適用可能である。また、直列エンジン以外に、V型エンジンや水平対向エンジンにも適用可能である。 (D) In the above embodiment, an in-line four-cylinder engine is exemplified as a multi-cylinder engine. However, other embodiments can be realized, and the invention is widely applied to engines having an even number of cylinders such as a six-cylinder engine and an eight-cylinder engine. Applicable. In addition to the in-line engine, the present invention can be applied to a V-type engine and a horizontally opposed engine.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (6)

  1.  偶数個の気筒を有し、該気筒内においてガス燃料が燃焼に供される内燃機関(10)に適用される燃料噴射装置であって、
     前記内燃機関において燃焼順序が連続する2気筒ずつの気筒グループごとに設けられ、前記気筒グループに対して前記ガス燃料を噴射するガス燃料噴射弁(21)と、
     前記ガス燃料噴射弁に接続された第一端と、同一の前記気筒グループにおける各気筒の吸気部(13a)に接続された第二端とを有し、前記ガス燃料噴射弁から噴射されたガス燃料を同一気筒グループの各吸気部に分配して放出する分配部(23,24)と、
     同一の気筒グループにおける2気筒分のガス燃料の要求量を算出し、その要求量に基づいて前記気筒グループごとに前記ガス燃料噴射弁による燃料噴射を制御する噴射制御部(60)と、
    を備える内燃機関の燃料噴射装置。
    A fuel injection device applied to an internal combustion engine (10) having an even number of cylinders, in which gas fuel is used for combustion,
    A gas fuel injection valve (21) that is provided for each cylinder group of two cylinders in which the combustion order continues in the internal combustion engine, and injects the gas fuel into the cylinder group;
    Gas injected from the gas fuel injection valve, having a first end connected to the gas fuel injection valve and a second end connected to an intake portion (13a) of each cylinder in the same cylinder group A distribution section (23, 24) for distributing and releasing fuel to each intake section of the same cylinder group;
    An injection control unit (60) for calculating a required amount of gas fuel for two cylinders in the same cylinder group and controlling fuel injection by the gas fuel injection valve for each cylinder group based on the required amount;
    A fuel injection device for an internal combustion engine.
  2.  前記噴射制御部は、前記同一の気筒グループにおける2気筒のうち燃焼順序が先となる先燃焼気筒の排気行程又は吸気行程前半にて燃料噴射が終了するように、前記ガス燃料噴射弁による燃料噴射を制御する請求項1に記載の内燃機関の燃料噴射装置。 The injection control unit is configured to perform fuel injection by the gas fuel injection valve so that fuel injection is completed in an exhaust stroke or a first half of an intake stroke of a pre-combustion cylinder that has the first combustion order among the two cylinders in the same cylinder group. The fuel injection device for an internal combustion engine according to claim 1, which controls the engine.
  3.  前記噴射制御部は、前記同一の気筒グループにおける2気筒のうち燃焼順序が先になる先燃焼気筒の排気行程又は吸気行程前半にて燃料噴射が終了するように、前記ガス燃料噴射弁による燃料噴射を実施する第1噴射と、燃焼順序が後になる後燃焼気筒の排気行程又は吸気行程前半にて燃料噴射が終了するように、前記ガス燃料噴射弁による燃料噴射を実施する第2噴射とを実施する請求項1又は2に記載の内燃機関の燃料噴射装置。 The injection control unit is configured to perform fuel injection by the gas fuel injection valve so that fuel injection ends in an exhaust stroke or a first half of an intake stroke of a pre-combustion cylinder that has a first combustion order among the two cylinders in the same cylinder group. And the second injection for performing the fuel injection by the gas fuel injection valve so that the fuel injection ends in the exhaust stroke or the first half of the intake stroke of the post-combustion cylinder after the combustion order. The fuel injection device for an internal combustion engine according to claim 1 or 2.
  4.  前記噴射制御部は、前記内燃機関の運転状態に基づいて、前記第1噴射及び前記第2噴射のうち第1噴射のみを実施する状態と、それら両噴射を実施する状態とを切り替える切替部(60、S15、S16)を有する請求項3に記載の内燃機関の燃料噴射装置。 The injection control unit is a switching unit that switches between a state in which only the first injection of the first injection and the second injection is performed and a state in which both the injections are performed based on the operating state of the internal combustion engine. The fuel injection device for an internal combustion engine according to claim 3, having 60, S15, S16).
  5.  前記内燃機関において加速過渡の状態になったかを判定する過渡判定部(60、S16)を備え、
     前記噴射制御部は、前記過渡判定部により加速過渡の状態であることが判定された場合に、前記第1噴射及び前記第2噴射の両方が実施されるよう前記ガス燃料噴射弁による燃料噴射を制御する請求項4に記載の内燃機関の燃料噴射装置。
    A transient determination unit (60, S16) for determining whether the internal combustion engine is in an acceleration transient state;
    The injection control unit performs fuel injection by the gas fuel injection valve so that both the first injection and the second injection are performed when the transient determination unit determines that the state is an acceleration transient state. The fuel injection device for an internal combustion engine according to claim 4 to be controlled.
  6.  前記噴射制御部は、
     前記第1噴射の開始前の第1タイミングにおいて前記内燃機関の運転状態に基づいて要求噴射量を算出し、その要求噴射量に基づいて前記第1噴射を実施する第1制御部と、
     前記第2噴射の開始前の第2タイミングにおいて前記第1タイミングとの前記運転状態の差異に基づいて追加噴射量を算出し、その追加噴射量に基づいて前記第2噴射を実施する第2制御部と、
    を有している請求項5に記載の内燃機関の燃料噴射装置。
    The injection control unit
    A first control unit that calculates a required injection amount based on an operating state of the internal combustion engine at a first timing before the start of the first injection, and implements the first injection based on the required injection amount;
    Second control for calculating the additional injection amount based on the difference in the operating state from the first timing at the second timing before the start of the second injection, and performing the second injection based on the additional injection amount. And
    The fuel injection device for an internal combustion engine according to claim 5, comprising:
PCT/JP2014/000172 2013-01-25 2014-01-16 Fuel injection device for internal combustion engine WO2014115510A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013012088A JP2014141952A (en) 2013-01-25 2013-01-25 Internal combustion engine fuel injection device
JP2013-012088 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014115510A1 true WO2014115510A1 (en) 2014-07-31

Family

ID=51227306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000172 WO2014115510A1 (en) 2013-01-25 2014-01-16 Fuel injection device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2014141952A (en)
WO (1) WO2014115510A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012166A1 (en) * 2016-07-12 2018-01-18 日立オートモティブシステムズ株式会社 Device for controlling fuel injection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109275A (en) * 1986-10-24 1988-05-13 Yanmar Diesel Engine Co Ltd Safety device of auxiliary chamber type large scale gas engine
JPH08270472A (en) * 1995-03-31 1996-10-15 Mazda Motor Corp Fuel supply device for gas fuel engine
JP2011102547A (en) * 2009-11-10 2011-05-26 Aisan Industry Co Ltd Intake manifold
JP2012211524A (en) * 2011-03-30 2012-11-01 Keihin Corp Fuel injection control device
JP2012237249A (en) * 2011-05-12 2012-12-06 Toyota Industries Corp Sub-chamber type gas engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109275A (en) * 1986-10-24 1988-05-13 Yanmar Diesel Engine Co Ltd Safety device of auxiliary chamber type large scale gas engine
JPH08270472A (en) * 1995-03-31 1996-10-15 Mazda Motor Corp Fuel supply device for gas fuel engine
JP2011102547A (en) * 2009-11-10 2011-05-26 Aisan Industry Co Ltd Intake manifold
JP2012211524A (en) * 2011-03-30 2012-11-01 Keihin Corp Fuel injection control device
JP2012237249A (en) * 2011-05-12 2012-12-06 Toyota Industries Corp Sub-chamber type gas engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012166A1 (en) * 2016-07-12 2018-01-18 日立オートモティブシステムズ株式会社 Device for controlling fuel injection device
CN109415988A (en) * 2016-07-12 2019-03-01 日立汽车系统株式会社 The control device of fuel injection device
JPWO2018012166A1 (en) * 2016-07-12 2019-03-14 日立オートモティブシステムズ株式会社 Control device for fuel injection device
US10876492B2 (en) 2016-07-12 2020-12-29 Hitachi Automotive Systems, Ltd. Device for controlling fuel injection device
CN109415988B (en) * 2016-07-12 2021-06-18 日立汽车系统株式会社 Control device for fuel injection device

Also Published As

Publication number Publication date
JP2014141952A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
US9169789B2 (en) System and method for adjusting fuel mass for minimum fuel injector pulse widths in multiple fuel system engines
US9388761B2 (en) Combined fueling strategy for gaseous fuel
WO2015095137A1 (en) Load shedding techniques for dual fuel engines
US8695575B2 (en) Control device for internal combustion engine
US10677175B2 (en) Ventilation controls for dual-fuel engines
US9470169B2 (en) Control device for internal combustion engine
WO2013025835A1 (en) System and method for controlling multiple fuel systems
WO2015064527A1 (en) Auxiliary-chamber-type gas engine
WO2014091679A1 (en) Fuel injection control device for internal combustion engine
US20140069383A1 (en) Controller for engine
WO2014115510A1 (en) Fuel injection device for internal combustion engine
WO2014073154A1 (en) Fuel supply device
JP2011241758A (en) Fuel supply device for internal combustion engine
WO2014115503A1 (en) Control device for internal combustion engine
JP5614296B2 (en) Dual fuel engine fuel supply system
JP6305106B2 (en) Fuel injection control device
WO2016132708A1 (en) Fuel injection control device
JP2016217331A (en) Fuel injection control device of internal combustion engine
JP2016217330A (en) Fuel injection controller of internal combustion engine
JP7428467B2 (en) engine
WO2014208009A1 (en) Injection control apparatus for internal combustion engine
WO2017130543A1 (en) Bifuel engine system
JP6697179B2 (en) Engine fuel injector
JP2014152657A (en) Fuel injection control device of internal combustion engine
WO2012168793A1 (en) Control unit and control method for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743684

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载