+

WO2014171365A1 - Method for manufacturing thermoplastic film - Google Patents

Method for manufacturing thermoplastic film Download PDF

Info

Publication number
WO2014171365A1
WO2014171365A1 PCT/JP2014/060166 JP2014060166W WO2014171365A1 WO 2014171365 A1 WO2014171365 A1 WO 2014171365A1 JP 2014060166 W JP2014060166 W JP 2014060166W WO 2014171365 A1 WO2014171365 A1 WO 2014171365A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mold
film
hole
laminated structure
Prior art date
Application number
PCT/JP2014/060166
Other languages
French (fr)
Japanese (ja)
Inventor
箕浦潔
森岡聡子
廣藤誠
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201480021206.0A priority Critical patent/CN105121114B/en
Priority to JP2014523119A priority patent/JP6380102B2/en
Publication of WO2014171365A1 publication Critical patent/WO2014171365A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1692Other shaped material, e.g. perforated or porous sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing

Definitions

  • the present invention relates to a method for producing a thermoplastic film having a through hole.
  • the film having through-holes obtained by this method should be used as a member that requires micron-sized to nano-sized through-holes having functions such as filtration, cell culture, cell separation, gas permeation, and moisture permeability. Can do.
  • a thermoplastic film having through-holes whose hole shape and arrangement are controlled with high accuracy is particularly preferably used for the purpose of improving performance.
  • thermoplastic film having a through-hole As a method for producing a thermoplastic film having a through-hole in which the shape and arrangement of the holes are controlled with high accuracy, injection molding, electron beam processing on the film, etching, thermal imprinting and the like can be mentioned.
  • injection molding a film having through holes can be formed by filling a molten resin into a mold in which protrusions are formed.
  • electron beam processing through holes can be formed by applying an electron beam to the film surface and melting it from the surface toward the inside.
  • etching a through-hole is formed by chemically or physically removing the resin by bringing an etching material made of gas or liquid into contact with an opening other than a region shielded by a mask on the film surface. Can be formed.
  • Patent Documents 1 and 2 disclose a thermal imprint technique in which a through-hole is formed in a film by pressing a mold having a heated projection structure on the surface of the thermoplastic film. Furthermore, as means for improving the through hole molding accuracy, by applying a molten resin to the surface of the mold having protrusions formed on the surface, and then cooling the mold while applying pressure with a pressure plate. A method for producing a film having through holes is disclosed.
  • the manufacturing method based on the melt transfer technique disclosed in Patent Document 3 requires the steps of applying a resin to the mold, heating and cooling the mold, and taking out the product, and does not require processing into a roll-to-roll film. There is a problem that productivity is low because it is possible.
  • the present invention provides the following method for producing a thermoplastic film.
  • a protruding structure is provided on the surface of a laminated structure in which an A layer containing a thermoplastic resin P1 having a melting point Tm1 and a B layer containing a thermoplastic resin P2 having a glass transition temperature Tg2 are laminated.
  • the mold is heated to a temperature of Tm1 or more and Tg2 or more and pressed against the A layer side of the laminated structure, thereby forming a through hole in the A layer and forming a recess communicating with the through hole in the B layer.
  • a method for producing a thermoplastic film comprising: (2) A protruding structure is provided on the surface of the laminated structure in which the A layer containing the thermoplastic resin P1 having the melting point Tm1 and the B layer containing the thermoplastic resin P2 having the glass transition temperature Tg2 are laminated.
  • the mold is heated to a temperature of Tm1 or more and Tg2 or more and pressed against the A layer side of the laminated structure, thereby forming a through hole in the A layer and forming a recess communicating with the through hole in the B layer. Then, after that, the A layer and the B layer are peeled off to obtain a thermoplastic film having a through hole including the A layer.
  • thermoplastic film according to (1) or (2) wherein a difference (Tm1 ⁇ Tg2) between the melting point Tm1 and the glass transition temperature Tg2 is ⁇ 30 to 60 ° C.
  • thermoplastic film according to (3) wherein a difference (Tm1 ⁇ Tg2) between the melting point Tm1 and the glass transition temperature Tg2 is ⁇ 10 to 0 ° C.
  • thermoplastic resin P1 is polyethylene or polypropylene.
  • thermoplastic resin P2 is polymethyl methacrylate or polycarbonate.
  • thermoplastic film according to any one of (1) to (6) wherein the diameter of the through hole is 1 to 100 ⁇ m.
  • a protruding structure is formed on a laminated structure in which an A layer containing a thermoplastic resin P1 having a melting point Tm1 and a B layer containing a thermoplastic resin P2 having a glass transition temperature Tg2 are laminated.
  • the mold on the surface is heated to a temperature of Tm1 or more and Tg2 or more, and pressed against the A layer side of the laminated structure, thereby being disposed in the A layer at a desired position and density distribution and having a desired shape Holes can be formed.
  • FIG. 2 is a surface photograph of a film produced by the production method of the present invention described in Example 1 using a scanning electron microscope.
  • 2 is a cross-sectional photograph of a film produced by the production method of the present invention described in Example 1 using a scanning electron microscope.
  • 2 is a surface photograph of a film produced by the production method of the present invention described in Example 2 using a scanning electron microscope.
  • 3 is a cross-sectional photograph taken by a scanning electron microscope of a film produced by the production method of the present invention described in Example 2.
  • FIG. 2 is a surface photograph of a film produced by the production method of the present invention described in Comparative Example 1 using a scanning electron microscope.
  • 2 is a cross-sectional photograph of a film produced by the production method of the present invention described in Comparative Example 1 using a scanning electron microscope.
  • the present invention relates to a method for producing a thermoplastic film having a through hole.
  • One of the production methods according to the present invention is for a laminated structure in which an A layer containing a thermoplastic resin P1 having a melting point Tm1 and a B layer containing a thermoplastic resin P2 having a glass transition temperature Tg2 are laminated. Then, a mold having a protruding structure on the surface is heated to a temperature of Tm1 or more and Tg2 or more and pressed against the A layer side of the laminated structure, thereby forming a through hole in the A layer, and the B layer It is a manufacturing method of a thermoplastic film characterized by forming a crevice connected to a penetration hole.
  • Another manufacturing method is a laminated structure in which an A layer containing a thermoplastic resin P1 having a melting point Tm1 and a B layer containing a thermoplastic resin P2 having a glass transition temperature Tg2 are laminated.
  • a mold having a protruding structure on the surface is heated to a temperature of Tm1 or more and Tg2 or more and pressed against the A layer side of the laminated structure, thereby forming a through hole in the A layer, and the B layer Forming a recess communicating with the through hole, and then peeling off the A layer and the B layer to obtain a thermoplastic film having a through hole containing the A layer.
  • a mold having a protruding structure on the surface is heated to a temperature of Tm1 or more and Tg2 or more and pressed against the A layer side of the laminated structure, thereby forming a through hole in the A layer, and the B layer Forming a recess communicating with the through hole, and then peeling off the A layer and the
  • FIG. 1 and 2 are flowcharts showing an example of an embodiment according to the method for producing a thermoplastic film having a through hole of the present invention.
  • FIG. 3 is a perspective view showing an example of a mold applied to the manufacturing method of the present invention.
  • a laminated structure 10 in which an A layer 11 and a B layer 12 are laminated, and a mold 20 in which independent protrusion structures are arranged at predetermined positions on the surface are prepared.
  • the A layer 11 includes a thermoplastic resin P1 having a melting point Tm1
  • the B layer includes a thermoplastic resin P2 having a glass transition temperature Tg2.
  • each layer may contain an additive or a coating component for imparting moldability and releasability.
  • an upper limit is not specifically limited, 100 mass% becomes a substantial upper limit.
  • the interface between the A layer and the B layer can be peeled off, and the interface between the A layer and the B layer is laminated by using the action of an adhesive formed by coating or the like.
  • an adhesive formed by coating or the like preferable.
  • a two-layer stacked configuration of the A layer and the B layer is described, but another layer may be provided on the side opposite to the A layer with the B layer interposed therebetween. It is preferable to apply a material having the same configuration as that of the A layer to the coating on the surface of the A layer because the flatness after the molding becomes high.
  • a laminated structure refers to a structure in which two or more layers containing different components are laminated.
  • the continuous structure film conveyed by roll to roll may be sufficient as a laminated structure, and a single wafer sheet may be sufficient as it.
  • the glass transition temperature is a method according to the method described in JIS K 7244-4 (1999).
  • the sample dynamic amplitude speed (driving frequency) is 1 Hz
  • the tensile mode is 5 mm
  • the heating rate is 2 ° C. This is the temperature at which tan ⁇ is maximized when measuring the temperature dependence (temperature dispersion) in / min.
  • the melting point here is a melting point Tm in a temperature rising process (temperature rising rate: 20 ° C./min) obtained by DSC (differential calorimetry), and based on JIS K 7121 (1999) as described above.
  • Heat at a rate of temperature increase from 25 ° C. to 300 ° C. at a rate of 20 ° C./min (1stRUN), hold in that state for 5 minutes, then rapidly cool to below 25 ° C., and then increase again from room temperature to 20 ° C./min.
  • the melting point of the resin is determined by the temperature at the peak top in the 2ndRun crystal melting peak obtained by raising the temperature to 300 ° C. at a temperature rate.
  • the mold 20 having the protruding structure 21 on the surface is heated. Heating is performed so that the mold has a temperature range of Tm1 or more and Tg2 or more. Heating may be performed in a state where the mold and the laminated structure are in contact with each other. By keeping the contact, the planarity of the laminated structure can be maintained in a good state.
  • the upper limit of the heating temperature of the mold is not limited, it is preferably below the thermal decomposition point of the thermoplastic resin P1 and below the thermal decomposition point of the thermoplastic resin P2.
  • the mold 20 is pressed and pressed so that the protruding structure surface is in contact with the surface of the layer A 11 of the laminated structure 10 in a heated state.
  • the protrusion structure 21 has an appropriate height by being pressurized, the protrusion structure penetrates the A layer 11 and penetrates to the B layer 12. And as FIG.1 (c) shows, it will be in the state which the metal mold
  • the required pressure and pressing time at this time depend on the material of the film, the transfer shape, particularly the aspect ratio of the unevenness, and the preferable range of the press pressure is generally 1 to 100 MPa, and the preferable range of the molding time is 0.01. ⁇ 60 seconds.
  • a more preferable range of the pressing pressure is 10 to 80 MPa, and a more preferable range is 30 to 60 MP.
  • a more preferable range of the molding time is 1 to 50 seconds, and a more preferable range is 3 to 30 seconds.
  • the mold 20 may be pressed against the laminated structure 10 by position control. That is, the mold 20 may be moved to a preset position and pressed against the laminated structure 10.
  • the preset position is a position where the plane including the protrusion structure of the mold can be in contact with the surface of the A layer without any gap.
  • the pressure may be removed while maintaining the position of the mold, and the contact state between the mold 20 and the laminated structure 10 may be maintained.
  • the mold is cooled while maintaining the pressurized state or the contacted state. Cooling is preferably performed to a glass transition temperature Tg2 or lower of the thermoplastic resin P2 constituting the B layer. Cooling to Tg2 or less is preferable because the resin deformation after the mold 20 is peeled from the laminated structure 10 can be suppressed, and a through hole can be formed with high accuracy.
  • the laminated structure 10 is peeled from the mold 20.
  • the mold and the laminated structure are moved away from each other in the direction perpendicular to the surface of the laminated structure.
  • the B layer has a role as a cover film, and if it is peeled off immediately before use, the surface is hardly damaged, and since it can be handled as a thick and highly rigid film until just before use, it is preferable because workability is good.
  • FIG. 2 adds the peeling process mentioned above.
  • 2 (a) to 2 (d) are the same as FIGS. 1 (a) to 1 (d), and a description thereof will be omitted.
  • the A layer 11 is peeled from the B layer 12. Peeling is suppressed by applying tension to the A layer or B layer in the direction perpendicular to the surface of the A layer or B layer, and peeling so that the linear peeling position moves continuously. From the viewpoint of
  • the A layer 11 becomes a film having a through-hole whose shape is controlled with high accuracy. Due to the above manufacturing method, the A layer is in a molten state at the time of molding. Therefore, when the protruding structure is pressed, the A layer causes plastic deformation with a behavior close to that of a viscous material, and through holes with less burrs are formed at the end face of the opening. Is done. In addition, when the protrusion pattern (protrusion structure) is pushed in, the B layer causes viscoelastic deformation, and the protrusion structure can smoothly enter the inside of the B layer, so that there is no burrs at the interface between the A layer and the B layer. A few beautiful end faces can be formed.
  • Tm1 ⁇ Tg2 which is the difference between the melting point Tm1 of the thermoplastic resin P1 contained in the A layer 11 and the glass transition temperature Tg2 of the thermoplastic resin P2 contained in the B layer is ⁇ 30 to 60 ° C.
  • Tm1 ⁇ Tg2 which is the difference between the melting point Tm1 of the thermoplastic resin P1 contained in the A layer 11 and the glass transition temperature Tg2 of the thermoplastic resin P2 contained in the B layer is ⁇ 30 to 60 ° C.
  • the temperature is lower than ⁇ 30 ° C., a large force is required for deformation of the B layer, and therefore, when the through hole is formed, the protrusion structure may be prevented from smoothly entering the B layer.
  • the temperature is higher than 60 ° C., the elasticity of the B layer may be lowered, and the planarity of the interface between the A layer and the B layer may be lowered.
  • Tm1-Tg2 is 5 to 60 ° C. That is, the material of the thermoplastic resin P1 contained in the A layer 11 is preferably 5 to 60 ° C. higher than the glass transition temperature Tg2 of the thermoplastic resin P2 contained in the B layer. More preferably, it is 20 to 50 ° C., and further preferably 30 to 40 ° C. When the temperature is lower than 5 ° C., a large force is required for deformation of the B layer, and therefore, when the through hole is formed, the protrusion structure may be prevented from smoothly entering the B layer. If the temperature is higher than 60 ° C., the elasticity of the B layer may be reduced, and the planarity of the A layer and the B layer may be reduced.
  • the difference between the melting point Tm1 and the glass transition temperature Tg2 (Tm1 ⁇ Tg2). ) Is preferably ⁇ 10 to 0 ° C. If it is less than ⁇ 10 ° C., the dimensional accuracy of the opening may deteriorate. When the temperature is higher than 0 ° C., burrs may occur at the end face.
  • the B layer has a certain range of hardness at the time of molding, achieving both good flatness at the interface between the A layer and the B layer and high-precision through-hole molding in which burr is suppressed at the opening.
  • the storage elastic modulus of the resin contained in the B layer at the temperature of the mold at the time of molding is 0.005 to 0.5 GPa, more preferably 0.01 to 0.1 GPa.
  • the burr suppression can be further enhanced by the flatness of the interface of the B layer and the opening in the through hole molding.
  • the planarity of the interface between the A layer and the B layer may be deteriorated, and a through hole may not be formed in the A layer, or a burr may be easily generated at the opening of the through hole.
  • it exceeds 0.5 GPa it is difficult to deform in the B layer, the protrusion structure of the mold is not inserted to the back, and it may be difficult to form a through hole with a predetermined shape accuracy.
  • the main component of the thermoplastic resin constituting the A layer 11 is preferably a polyolefin resin such as polyethylene, polystyrene, polypropylene, polyisobutylene, polybutene, and polymethylpentene because mold releasability is good.
  • a main component means the component which occupies 50 mass% or more when the whole resin which comprises A layer is 100 mass%.
  • 50 mass% or more is preferable and, as for the main component, 80 mass% or more is more preferable.
  • an upper limit is not specifically limited, 100 mass% becomes a substantial upper limit.
  • thermoplastic resin P1 is polyethylene or polypropylene.
  • polyethylene or polypropylene By using polyethylene or polypropylene, it is possible to mold the through-holes at a relatively low temperature, and thus it is easy to increase productivity.
  • the main component of the thermoplastic resin constituting the B layer 12 is preferably a polyester resin such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene, polystyrene, polypropylene, poly Polyolefin resins such as isobutylene, polybutene, polymethylpentene, polyamide resins, polyimide resins, polyether resins, polyesteramide resins, polyetherester resins, acrylic resins, polyurethane resins, polycarbonate resins, or poly A vinyl chloride resin or the like is preferably used. Particularly preferred is polymethyl methacrylate.
  • a main component means the component which occupies 50 mass% or more when the whole resin which comprises B layer is 100 mass%. In addition, 50 mass% or more is preferable and, as for the main component, 80 mass% or more is more preferable.
  • the thermoplastic resin P2 is preferably polymethyl methacrylate or polycarbonate. Particularly preferred is polymethyl methacrylate. By using polymethyl methacrylate or polycarbonate, it is possible to accurately form the concave portion communicating with the through hole.
  • the A layer and the B layer may be a layer made of the above-mentioned resin alone, or may be a laminated body made of a plurality of resin layers. In this case, surface characteristics such as releasability and friction resistance can be imparted as compared with a single layer. Thus, even when it is set as the laminated body which consists of a some resin layer, in each layer of A layer and B layer, the main thermoplastic resin component should just satisfy the above-mentioned requirements.
  • thermoplastic resin film by melt extrusion.
  • a release layer, an adhesive layer, or the like is provided on the surface layer, a method of co-extrusion and processing into a film may be used, but it may be provided by coating after film formation.
  • a method of laminating by pressing with a roll and a method of heat laminating with a heated roll or the like can be applied.
  • additives can be added to the film applied to the present invention at the time of polymerization or after polymerization.
  • additives that can be added and blended include, for example, organic fine particles, inorganic fine particles, dispersants, dyes, fluorescent brighteners, antioxidants, weathering agents, antistatic agents, mold release agents, thickeners, Examples include plasticizers, pH adjusters, and salts.
  • a releasing agent low surface tension carboxylic acids such as long chain carboxylic acids or long chain carboxylates and derivatives thereof, and low surface tension alcohols such as long chain alcohols and derivatives thereof, and modified silicone oils. It is preferable to add a small amount of a compound or the like during polymerization.
  • the preferred thickness (thickness, film thickness) of the A layer applied to the present invention is preferably in the range of 5 to 50 ⁇ m, more preferably 10 to 40 ⁇ m, and still more preferably 10 to 30 ⁇ m. If it is less than 5 ⁇ m, it may be difficult to handle. On the other hand, when the thickness is larger than 50 ⁇ m, the tip temperature of the mold is likely to change when the through hole is formed, and burrs may be easily generated on the end surface during penetration.
  • the hole diameter of the through hole is preferably 1 to 100 ⁇ m. More preferably, it is 20 to 80 ⁇ m, and particularly preferably 30 to 50 ⁇ m.
  • the hole diameter is the hole diameter of the opening formed on the B layer side surface of the A layer. If it is a circle, it is the diameter, and if it is not a circle, it is the diameter when the opening is replaced with a circle of equal area. If the hole diameter is less than 1 ⁇ m, it may be difficult in terms of accuracy, and if it is larger than 100 ⁇ m, a large pressure may be required for forming the through-hole, and the apparatus may be enlarged. When the thickness is larger than 100 ⁇ m, mechanical processing such as punching is often suitable.
  • FIG. 3 is a perspective view showing an example of a mold applied to the present invention
  • FIGS. 4A and 4B are cross-sectional views showing an example of a mold applied to the present invention.
  • a protrusion structure 21 is disposed at a predetermined position on the outer surface of the mold 20.
  • the protruding structure refers to a convex structure provided on a mold, and the protruding structure may be provided with only the same shape on the mold, or may be provided with a plurality of different shapes.
  • the arrangement and density of the protrusion structure are preferably the same as the arrangement and density of the through holes required as product specifications.
  • the pitch is 100 nm to 1 mm. Note that the pitch means a repetition interval of the protrusion structure.
  • the material of the mold is preferably a metal having high strength and thermal conductivity, such as nickel, steel, stainless steel, or copper. Moreover, you may use what gave the outer surface the plating in order to improve workability.
  • the height and cross-sectional shape of the protrusion structure are determined by the required shape of the through hole and the thickness of the film.
  • the height of the protruding structure is preferably a length that penetrates the thickness of the A layer 11. That is, it is preferable to have a height that penetrates the A layer 11 when the mold 20 is in close contact with the laminated structure 10 during molding.
  • the protrusion structure shown in FIG. 4A is a protrusion structure in which a cone and a cylinder are connected.
  • the protrusion structure shown in FIG. 4B is a protrusion structure having only a cone.
  • the tip is preferably pointed rather than flat.
  • a connection structure in which the protrusion structure has a weight shape and a cylindrical shape is preferable. This is because when the tip has a weight shape, the pressure applied to the laminated structure at the start of molding is increased to facilitate deformation.
  • a through hole having a high dimensional accuracy and a constant hole diameter can be formed.
  • mold and the square pillar other than the shape quoted above may be sufficient.
  • Each mold with a protrusion structure on the surface is made by directly cutting, laser processing or electron beam processing on the metal surface, or by direct cutting, laser processing or electron beam processing on the plating film formed on the metal surface. And a method of electroforming these. Also, after applying the resist on the substrate, forming the resist with a predetermined patterning by photolithography technique, etching the substrate to form a recess, and removing the resist to obtain the inverted pattern by electroforming Etc. A cone-shaped pattern can be obtained by applying anisotropic etching. As the substrate, a silicon substrate or the like can be applied in addition to the metal plate.
  • a through-hole is a space that penetrates from one side of the layer to the other.
  • the recessed part connected to a through-hole means the recessed part of the B layer connected with the through-hole formed in the A layer by protrusion structure.
  • the film having a through hole of the present invention can be manufactured by a process through an apparatus as shown in FIGS. 5 and 6, for example.
  • 5 and 6 show a through hole made of the A layer by forming a through hole in the A layer of the film-like laminated structure formed by laminating the A layer and the B layer, and further peeling the A layer and the B layer.
  • the cross-sectional schematic of the manufacturing apparatus for manufacturing the film which has this is shown.
  • the mold 53 is pressed against the laminated structure 50 sent intermittently and pressurized, and then cooled while maintaining the contact state, thereby forming a predetermined through-hole in the A layer 50a of the laminated structure 50.
  • a concave portion communicating with the through hole is formed in the B layer by the protruding structure.
  • a peeling means 55 for peeling the laminated structure 50 attached to the mold 53 in the pressure transfer process from the mold 53, and the A layer 50a.
  • Each film is wound around each of the winding rolls 57 and 58 through a film peeling device 56 for peeling the film formed and the film formed of the B layer 50b.
  • the peeling means 55 consists of a pair of parallel arrangement rolls which hold
  • One surface of the laminated structure 50 sent intermittently is thermoformed by the die 53 in the press unit 54, and after the thermoforming, the peeling means 55 is moved toward the upstream side, whereby the die 53 is moved.
  • the laminated structure 50 that has been attached to is sequentially peeled off from the mold 53.
  • reference numeral 59 denotes a pressure plate
  • 60 and 61 denote buffer means provided to smoothly perform intermittent conveyance in the mold 53 portion of the laminated structure 50.
  • films constituting the A layer 71 and the B layer 72 are drawn from the unwinding rolls 73 and 74, and the laminated structure 70 is formed by the laminating device 75. Thereafter, the laminated structure 70 is supplied by a heating roll 76 onto an endless belt-shaped mold 77 having a protrusion structure formed on the heated surface.
  • a protrusion structure is formed on the outer surface of the mold 77 and is heated by the heating roll 76 immediately before coming into contact with the laminated structure 70.
  • the laminated structure 70 that is continuously supplied is pressed against the surface on which the protruding structure of the mold 77 is processed by the nip roll 78, and a through hole is formed in the A layer 71 of the laminated structure. At the same time, a concave portion communicating with the through hole is formed in the B layer 72.
  • the laminated structure 70 is conveyed to the outer surface position of the cooling roll 79 in a state of being in close contact with the surface of the mold 77.
  • the laminated structure 70 is cooled by heat conduction through a mold 77 by a cooling roll 79 and then peeled off from the mold 77 by a peeling roll 80 and peeled into a film composed of an A layer and a film composed of a B layer.
  • Each film is taken up by take-up rolls 82 and 83 through a peeling device 81.
  • thermoplastic film In the method for producing a thermoplastic film described above, a shape having a fine pore size ranging from a micron size to a nano size can be freely designed, and a thermoplastic film can be produced inexpensively with high productivity.
  • the thermoplastic film obtained by the production method of the present invention has micron-sized to nano-sized fine pore diameters uniformly formed. Therefore, filtration, cell culture, cell separation, gas permeation, moisture permeation that require through holes are required. Etc. are preferably used.
  • Example 1 Laminated structure A film having a thickness of 30 ⁇ m containing a polymer mainly composed of polypropylene (melting point: 144 ° C.) in the A layer, and a polymer mainly composed of polymethyl methacrylate (PMMA) in the B layer (glass transition temperature of 105 A film having a thickness of 175 ⁇ m was used.
  • One surface layer of the A layer has a 6 ⁇ m thick adhesive layer mainly composed of low density polyethylene. The adhesive layer of A layer was laminated so that it might adhere to the surface of B layer, and the laminated structure was comprised.
  • the triangular pyramid is a regular triangle whose bottom is 230 ⁇ m on a side, has a height of 70 ⁇ m, and is arranged on the entire surface without any gaps.
  • the region where the protrusion structure is processed is a region of 200 mm (film width direction) ⁇ 400 mm (film transport direction).
  • the material of the mold was a 20 mm thick copper base metal with a nickel plating film on the surface, and a triangular pyramid pattern was formed on the plating film by machining.
  • the press unit is a mechanism that is pressurized by a hydraulic pump.
  • Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively.
  • the mold is placed on the upper surface of the lower pressure plate.
  • a peeling means for peeling the film attached to the mold is installed in the press unit.
  • the mold temperature at the time of molding was 150 ° C., and the pressure was 5 MPa over the entire surface.
  • the pressurization time was 30 seconds.
  • the mold temperature at the time of peeling was 80 ° C.
  • thermoplastic film (film peeled from the mold) was continuously sent to the downstream side of the winding device, and the A layer and the B layer were peeled off and wound up. This obtained the thermoplastic film containing A layer which has a through-hole.
  • FIGS. 7 is a photograph of the A layer as seen from the mold contact surface
  • FIG. 8 is a photograph of the cross section of the A layer.
  • Through holes having a triangular opening with a side of 45 ⁇ m were uniformly formed as designed. If the triangular shape of the opening is replaced with a circle of equal area, the hole diameter is equivalent to 33 ⁇ m.
  • the film composed of the B layer was uniformly formed with recesses communicating with the through holes corresponding to the triangular pyramid protrusion shape.
  • Example 2 Laminated structure A film having a thickness of 30 ⁇ m containing a polymer (melting point: 144 ° C.) mainly composed of polypropylene in the A layer and a polymer (glass transition temperature: 146 ° C.) mainly composed of polycarbonate (PC) in the B layer. A film having a thickness of 180 ⁇ m was used.
  • One surface layer of the A layer has a 6 ⁇ m thick adhesive layer mainly composed of low density polyethylene. The adhesive layer of A layer was laminated so that it might adhere to the surface of B layer, and the laminated structure was comprised.
  • the triangular pyramid is a regular triangle whose bottom is 230 ⁇ m on a side, has a height of 70 ⁇ m, and is arranged on the entire surface without any gaps.
  • the region where the protrusion structure is processed is a region of 200 mm (film width direction) ⁇ 400 mm (film transport direction).
  • the material of the mold was a 20 mm thick copper base metal with a nickel plating film on the surface, and a triangular pyramid pattern was formed on the plating film by machining.
  • the press unit is a mechanism that is pressurized by a hydraulic pump.
  • Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively.
  • the mold is placed on the upper surface of the lower pressure plate.
  • a peeling means for peeling the film attached to the mold is installed in the press unit.
  • the mold temperature at the time of molding was 160 ° C., and the pressure was 5 MPa over the entire surface.
  • the pressurization time was 30 seconds.
  • the mold temperature at the time of peeling was 80 ° C.
  • thermoplastic film (released from the mold) was continuously sent to the downstream side of the winding device, and the A layer and the B layer were peeled off and wound up. This obtained the thermoplastic film containing A layer which has a through-hole.
  • FIGS. 9 is a photograph of the A layer viewed from the mold contact surface
  • FIG. 10 is a photograph of a cross section of the A layer. Through holes having a triangular opening with a side of 45 ⁇ m were uniformly formed as designed. When the triangular shape of the opening is replaced with a circle of equal area, the hole diameter is equivalent to 33 ⁇ m. Further, as can be seen from FIG. 10, a through-hole film having a high flatness on the lower surface of the A layer in FIG. 10 (the surface in contact with the B layer before peeling) and few burrs was obtained.
  • the film composed of the B layer was uniformly formed with recesses communicating with the through holes corresponding to the triangular pyramid protrusion shape.
  • the triangular pyramid is a regular triangle whose bottom is 230 ⁇ m on a side, has a height of 70 ⁇ m, and is arranged on the entire surface without any gaps.
  • the region where the protrusion structure is processed is a region of 200 mm (film width direction) ⁇ 400 mm (film transport direction).
  • the material of the mold was a 20 mm thick copper base metal with a nickel plating film on the surface, and a triangular pyramid pattern was formed on the plating film by machining.
  • the press unit is a mechanism that is pressurized by a hydraulic pump.
  • Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively.
  • the mold is placed on the upper surface of the lower pressure plate.
  • a peeling means for peeling the film attached to the mold is installed in the press unit.
  • the mold temperature during molding was 130 ° C., and the pressure was 5 MPa over the entire surface.
  • the pressurization time was 30 seconds.
  • the mold temperature at the time of peeling was 80 ° C.
  • the peeled film was sent to the winding device side on the downstream side, the A layer and the B layer were peeled off, and each was wound up.
  • FIGS. 11 is a photograph of the A layer viewed from the mold contact surface
  • FIG. 12 is a photograph of the cross section of the A layer. No through hole was obtained in the A layer. Further, as can be seen from FIG. 12, the flatness of the lower surface of the A layer in FIG. 12 (the surface that was in contact with the B layer before peeling) was poor.
  • Laminated structure 11 A layer 12: B layer 20: Mold 21: Protrusion structure 50: Laminated structure 50a: A layer 50b: B layer 51: Unwinding roll 52: Unwinding unit 53: Mold 54: Press unit 55: peeling means 56: film peeling device 57, 58: take-up roll 59: pressure plate 60, 61: buffer means 62: take-up unit 70: laminated structure 71: A layer 72: B layers 73, 74 : Unwinding roll 75: Laminating apparatus 76: Heating roll 77: Die 78: Nip roll 79: Cooling roll 80: Peeling roll 81: Film peeling apparatus 82, 83: Winding roll

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

In the present invention, with respect to a laminated structural body wherein at least an A-layer mainly formed of a thermoplastic resin (P1) having a melting point (Tm1), and a B-layer mainly formed of a thermoplastic resin (P2) having a glass-transition temperature (Tg2) are formed, a molding die having a protruding structure on the surface is pressed to the A-layer side of the laminated structural body, in a state wherein the molding die is heated to a temperature equal to or higher than a higher one of the temperature (Tm1) and the temperature (Tg2), thereby forming through holes, which are disposed at desired positions and density distribution in the A-layer, and which have desired shapes.

Description

熱可塑性フィルムの製造方法Method for producing thermoplastic film
 本発明は、貫通孔を有する熱可塑性フィルムの製造方法に関する。本方法により得られた貫通孔を有するフィルムは、濾過、細胞培養、細胞分離、ガス透過、透湿等の機能を有するミクロンサイズからナノサイズの微細な貫通孔を必要とする部材として使用することができる。また、そのような用途においては高性能化を図る目的で、孔形状や配置が高精度に制御された貫通孔を有する熱可塑性フィルムが特に好適に使用される。 The present invention relates to a method for producing a thermoplastic film having a through hole. The film having through-holes obtained by this method should be used as a member that requires micron-sized to nano-sized through-holes having functions such as filtration, cell culture, cell separation, gas permeation, and moisture permeability. Can do. In such applications, a thermoplastic film having through-holes whose hole shape and arrangement are controlled with high accuracy is particularly preferably used for the purpose of improving performance.
 孔の形状や配置が高精度に制御された貫通孔を有する熱可塑性フィルムの製造方法として、射出成形やフィルムへの電子線加工、エッチング、熱インプリント等が挙げられる。射出成形では溶融した樹脂を、突起が形成された型の中に充填することにより貫通孔を有するフィルムを成形することができる。また、電子線加工では、フィルム表面に電子ビームを当てて表面から内部に向かって溶融させることにより貫通孔を形成することができる。また、エッチングでは、フィルム表面においてマスクで遮蔽された領域以外の開口部に対して、ガスまたは液体からなるエッチング材料を接触させて、樹脂を化学的または物理的に除去していくことにより貫通孔を形成できる。 As a method for producing a thermoplastic film having a through-hole in which the shape and arrangement of the holes are controlled with high accuracy, injection molding, electron beam processing on the film, etching, thermal imprinting and the like can be mentioned. In injection molding, a film having through holes can be formed by filling a molten resin into a mold in which protrusions are formed. In the electron beam processing, through holes can be formed by applying an electron beam to the film surface and melting it from the surface toward the inside. In etching, a through-hole is formed by chemically or physically removing the resin by bringing an etching material made of gas or liquid into contact with an opening other than a region shielded by a mask on the film surface. Can be formed.
 また、特許文献1、特許文献2には熱可塑性フィルムに加熱した突起構造を表面に有した金型を押し当てて、フィルムに貫通孔を形成する熱インプリント技術が開示されている。さらに、貫通孔成形精度を向上させる手段として、特許文献3に、表面に突起が形成された金型表面に溶融した樹脂を塗布し、その後、加圧板で加圧しつつ金型を冷却することにより貫通孔を有するフィルムを製造する方法が開示されている。 Patent Documents 1 and 2 disclose a thermal imprint technique in which a through-hole is formed in a film by pressing a mold having a heated projection structure on the surface of the thermoplastic film. Furthermore, as means for improving the through hole molding accuracy, by applying a molten resin to the surface of the mold having protrusions formed on the surface, and then cooling the mold while applying pressure with a pressure plate. A method for producing a film having through holes is disclosed.
特開2010-154852号公報JP 2010-154852 A 特開2013-30605号公報JP 2013-30605 A 特開2011-230396号公報JP 2011-230396 A
 射出成形ではフィルムの薄型化または貫通孔の微細化が困難である。また、型への樹脂充填および取り出しの工程が必要であり、ロールツーロール状のフィルムへの処理が不可能であることから生産性が低いという問題がある。また、電子線加工では多大な加工時間を要するために生産性が低く、量産適用が困難という問題がある。また、エッチングでは深さ方向に均一な孔径を形成することが困難であるという問題がある。さらに、特許文献1や特許文献2に開示されているインプリント技術では、開口部端面にバリの少ない貫通孔を形成することは困難である。理由として、樹脂変形が粘弾性特性により支配されており、孔を開ける塑性変形には適さないことが挙げられる。特許文献3に開示されている溶融転写技術による製造方法では、型への樹脂の塗布、および、型の加熱冷却、製品の取り出しの工程が必要であり、ロールツーロール状フィルムへの処理が不可能であることから生産性が低いという問題がある。 In injection molding, it is difficult to make the film thinner or make the through holes finer. In addition, there is a problem that productivity is low because a process of filling and taking out a resin from a mold is necessary, and processing into a roll-to-roll film is impossible. In addition, since electron beam processing requires a great amount of processing time, there is a problem that productivity is low and mass production is difficult. In addition, there is a problem that it is difficult to form a uniform hole diameter in the depth direction by etching. Furthermore, with the imprint technique disclosed in Patent Document 1 and Patent Document 2, it is difficult to form a through hole with few burrs on the end face of the opening. The reason is that the resin deformation is governed by the viscoelastic properties and is not suitable for plastic deformation that opens a hole. The manufacturing method based on the melt transfer technique disclosed in Patent Document 3 requires the steps of applying a resin to the mold, heating and cooling the mold, and taking out the product, and does not require processing into a roll-to-roll film. There is a problem that productivity is low because it is possible.
 上記課題を解決するために、本発明では以下の熱可塑性フィルムの製造方法を提供する。
(1)融点Tm1を有する熱可塑性樹脂P1を含むA層、および、ガラス転移温度Tg2を有する熱可塑性樹脂P2を含むB層が少なくとも積層された積層構造体に対して、突起構造を表面に有する金型を、Tm1以上かつTg2以上の温度まで加熱し、該積層構造体のA層側に押し当てることにより、A層に貫通孔を形成し、B層に前記貫通孔に連通する凹部を形成することを特徴とする熱可塑性フィルムの製造方法。
(2)融点Tm1を有する熱可塑性樹脂P1を含むA層、および、ガラス転移温度Tg2を有する熱可塑性樹脂P2を含むB層が少なくとも積層された積層構造体に対して、突起構造を表面に有する金型を、Tm1以上かつTg2以上の温度まで加熱し、該積層構造体のA層側に押し当てることにより、A層に貫通孔を形成し、B層に前記貫通孔に連通する凹部を形成し、さらにその後、前記A層と前記B層を剥離し、前記A層を含む貫通孔を有する熱可塑性フィルムを得ることを特徴とする熱可塑性フィルムの製造方法。
(3)前記融点Tm1と前記ガラス転移温度Tg2との差(Tm1-Tg2)が-30~60℃であることを特徴とする(1)または(2)に記載の熱可塑性フィルムの製造方法。
(4)前記融点Tm1と前記ガラス転移温度Tg2との差(Tm1-Tg2)が-10~0℃であることを特徴とする(3)に記載の熱可塑性フィルムの製造方法。
(5)前記熱可塑性樹脂P1がポリエチレンまたはポリプロピレンであることを特徴とする(1)~(4)のいずれかに記載の熱可塑性フィルムの製造方法。
(6)前記熱可塑性樹脂P2がポリメタクリル酸メチルまたはポリカーネートであることを特徴とする(1)~(5)のいずれかに記載の熱可塑性フィルムの製造方法。
(7)前記貫通孔の孔径が1~100μmであることを特徴とする(1)~(6)のいずれかに記載の熱可塑性フィルムの製造方法。
(8)前記A層の厚みが5~50μmであることを特徴とする(1)~(7)のいずれかに記載の熱可塑性フィルムの製造方法。
(9)前記突起構造が錘形状と円柱形状とを連結させた構造であることを特徴とする(1)~(8)のいずれかに記載の熱可塑性フィルムの製造方法。    
In order to solve the above problems, the present invention provides the following method for producing a thermoplastic film.
(1) A protruding structure is provided on the surface of a laminated structure in which an A layer containing a thermoplastic resin P1 having a melting point Tm1 and a B layer containing a thermoplastic resin P2 having a glass transition temperature Tg2 are laminated. The mold is heated to a temperature of Tm1 or more and Tg2 or more and pressed against the A layer side of the laminated structure, thereby forming a through hole in the A layer and forming a recess communicating with the through hole in the B layer. A method for producing a thermoplastic film, comprising:
(2) A protruding structure is provided on the surface of the laminated structure in which the A layer containing the thermoplastic resin P1 having the melting point Tm1 and the B layer containing the thermoplastic resin P2 having the glass transition temperature Tg2 are laminated. The mold is heated to a temperature of Tm1 or more and Tg2 or more and pressed against the A layer side of the laminated structure, thereby forming a through hole in the A layer and forming a recess communicating with the through hole in the B layer. Then, after that, the A layer and the B layer are peeled off to obtain a thermoplastic film having a through hole including the A layer.
(3) The method for producing a thermoplastic film according to (1) or (2), wherein a difference (Tm1−Tg2) between the melting point Tm1 and the glass transition temperature Tg2 is −30 to 60 ° C.
(4) The method for producing a thermoplastic film according to (3), wherein a difference (Tm1−Tg2) between the melting point Tm1 and the glass transition temperature Tg2 is −10 to 0 ° C.
(5) The method for producing a thermoplastic film as described in any one of (1) to (4), wherein the thermoplastic resin P1 is polyethylene or polypropylene.
(6) The method for producing a thermoplastic film according to any one of (1) to (5), wherein the thermoplastic resin P2 is polymethyl methacrylate or polycarbonate.
(7) The method for producing a thermoplastic film according to any one of (1) to (6), wherein the diameter of the through hole is 1 to 100 μm.
(8) The method for producing a thermoplastic film according to any one of (1) to (7), wherein the thickness of the A layer is 5 to 50 μm.
(9) The method for producing a thermoplastic film according to any one of (1) to (8), wherein the protrusion structure is a structure in which a weight shape and a columnar shape are connected.
 本発明によれば、融点Tm1を有する熱可塑性樹脂P1を含むA層、および、ガラス転移温度Tg2を有する熱可塑性樹脂P2を含むB層が少なくとも積層された積層構造体に対して、突起構造を表面に有する金型をTm1以上かつTg2以上の温度に加熱し、該積層構造体のA層側に押し当てることにより、A層に所望の位置及び密度分布で配置され、所望の形状を有する貫通孔を形成することができる。 According to the present invention, a protruding structure is formed on a laminated structure in which an A layer containing a thermoplastic resin P1 having a melting point Tm1 and a B layer containing a thermoplastic resin P2 having a glass transition temperature Tg2 are laminated. The mold on the surface is heated to a temperature of Tm1 or more and Tg2 or more, and pressed against the A layer side of the laminated structure, thereby being disposed in the A layer at a desired position and density distribution and having a desired shape Holes can be formed.
本発明の貫通孔を有する熱可塑性フィルムの製造方法にかかる実施態様の一例を示したフロー図である。It is the flowchart which showed an example of the embodiment concerning the manufacturing method of the thermoplastic film which has a through-hole of this invention. 本発明の貫通孔を有する熱可塑性フィルムの製造方法にかかる実施態様の一例を示したフロー図である。It is the flowchart which showed an example of the embodiment concerning the manufacturing method of the thermoplastic film which has a through-hole of this invention. 本発明の製造方法に適用する金型の一例を示す斜視図である。It is a perspective view which shows an example of the metal mold | die applied to the manufacturing method of this invention. 本発明に適用する金型の一例を示す断面図である。It is sectional drawing which shows an example of the metal mold | die applied to this invention. 本発明の貫通孔を有するフィルムの製造方法を実現する装置の一例を示す断面概略図である。It is a section schematic diagram showing an example of a device which realizes a manufacturing method of a film which has a penetration hole of the present invention. 本発明の貫通孔を有するフィルムの製造方法を実現する装置の一例を示す断面概略図である。It is a section schematic diagram showing an example of a device which realizes a manufacturing method of a film which has a penetration hole of the present invention. 実施例1に記載の本発明の製造方法により製造したフィルムの走査型電子顕微鏡による表面写真である。2 is a surface photograph of a film produced by the production method of the present invention described in Example 1 using a scanning electron microscope. 実施例1に記載の本発明の製造方法により製造したフィルムの走査型電子顕微鏡による断面写真である。2 is a cross-sectional photograph of a film produced by the production method of the present invention described in Example 1 using a scanning electron microscope. 実施例2に記載の本発明の製造方法により製造したフィルムの走査型電子顕微鏡による表面写真である。2 is a surface photograph of a film produced by the production method of the present invention described in Example 2 using a scanning electron microscope. 実施例2に記載の本発明の製造方法により製造したフィルムの走査型電子顕微鏡による断面写真である。3 is a cross-sectional photograph taken by a scanning electron microscope of a film produced by the production method of the present invention described in Example 2. FIG. 比較例1に記載の本発明の製造方法により製造したフィルムの走査型電子顕微鏡による表面写真である。2 is a surface photograph of a film produced by the production method of the present invention described in Comparative Example 1 using a scanning electron microscope. 比較例1に記載の本発明の製造方法により製造したフィルムの走査型電子顕微鏡による断面写真である。2 is a cross-sectional photograph of a film produced by the production method of the present invention described in Comparative Example 1 using a scanning electron microscope.
 本発明は、貫通孔を有する熱可塑性フィルムの製造方法に関する。 The present invention relates to a method for producing a thermoplastic film having a through hole.
 本発明に係る製造方法の一つは、融点Tm1を有する熱可塑性樹脂P1を含むA層、および、ガラス転移温度Tg2を有する熱可塑性樹脂P2を含むB層が少なくとも積層された積層構造体に対して、突起構造を表面に有する金型を、Tm1以上かつTg2以上の温度まで加熱し、該積層構造体のA層側に押し当てることにより、A層に貫通孔を形成し、B層に前記貫通孔に連通する凹部を形成することを特徴とする熱可塑性フィルムの製造方法である。 One of the production methods according to the present invention is for a laminated structure in which an A layer containing a thermoplastic resin P1 having a melting point Tm1 and a B layer containing a thermoplastic resin P2 having a glass transition temperature Tg2 are laminated. Then, a mold having a protruding structure on the surface is heated to a temperature of Tm1 or more and Tg2 or more and pressed against the A layer side of the laminated structure, thereby forming a through hole in the A layer, and the B layer It is a manufacturing method of a thermoplastic film characterized by forming a crevice connected to a penetration hole.
 また、本発明に係るもう一つの製造方法は、融点Tm1を有する熱可塑性樹脂P1を含むA層、および、ガラス転移温度Tg2を有する熱可塑性樹脂P2を含むB層が少なくとも積層された積層構造体に対して、突起構造を表面に有する金型を、Tm1以上かつTg2以上の温度まで加熱し、該積層構造体のA層側に押し当てることにより、A層に貫通孔を形成し、B層に前記貫通孔に連通する凹部を形成し、さらにその後、前記A層と前記B層を剥離し、前記A層を含む貫通孔を有する熱可塑性フィルムを得ることを特徴とする熱可塑性フィルムの製造方法である。 Another manufacturing method according to the present invention is a laminated structure in which an A layer containing a thermoplastic resin P1 having a melting point Tm1 and a B layer containing a thermoplastic resin P2 having a glass transition temperature Tg2 are laminated. On the other hand, a mold having a protruding structure on the surface is heated to a temperature of Tm1 or more and Tg2 or more and pressed against the A layer side of the laminated structure, thereby forming a through hole in the A layer, and the B layer Forming a recess communicating with the through hole, and then peeling off the A layer and the B layer to obtain a thermoplastic film having a through hole containing the A layer. Is the method.
 以下に、本発明の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1、図2は本発明の貫通孔を有する熱可塑性フィルムの製造方法にかかる実施態様の一例を示したフロー図である。図3は本発明の製造方法に適用する金型の一例を示す斜視図である。 1 and 2 are flowcharts showing an example of an embodiment according to the method for producing a thermoplastic film having a through hole of the present invention. FIG. 3 is a perspective view showing an example of a mold applied to the manufacturing method of the present invention.
 最初に、図1(a)に示すようにA層11とB層12が積層された積層構造体10と、表面に独立した突起構造が所定位置に配置された金型20を準備する。A層11は融点Tm1の熱可塑性樹脂P1を含み、B層はガラス転移温度Tg2の熱可塑性樹脂P2を含む。 First, as shown in FIG. 1 (a), a laminated structure 10 in which an A layer 11 and a B layer 12 are laminated, and a mold 20 in which independent protrusion structures are arranged at predetermined positions on the surface are prepared. The A layer 11 includes a thermoplastic resin P1 having a melting point Tm1, and the B layer includes a thermoplastic resin P2 having a glass transition temperature Tg2.
 ここで、各層に含まれる各熱可塑性樹脂の割合としては、層全体を100質量%としたときにその熱可塑性樹脂を60質量%以上含むことが好ましい。さらには、80質量%以上含むことがより好ましい。また各層には、熱可塑性樹脂P1または熱可塑性樹脂P2以外に、成形性や離型性を付与するための添加物やコーティング成分が含まれていてもよい。なお、上限値は特に限定されるものではないが、100質量%が実質的な上限となる。 Here, as a ratio of each thermoplastic resin included in each layer, it is preferable that 60% by mass or more of the thermoplastic resin is included when the entire layer is 100% by mass. Furthermore, it is more preferable to contain 80 mass% or more. In addition to the thermoplastic resin P1 or the thermoplastic resin P2, each layer may contain an additive or a coating component for imparting moldability and releasability. In addition, although an upper limit is not specifically limited, 100 mass% becomes a substantial upper limit.
 また、A層とB層との界面は剥離が可能であることが好ましく、A層とB層との界面は、コーティング等により形成された粘着剤の作用を利用してラミネートされていることが好ましい。また、本実施態様ではA層とB層の2層積層構成を説明しているが、B層を挟んでA層と反対側に別の層を設けてもよい。A層表面のコーティングにA層と同じ構成の材料を適用すれば、成形後の平面性が高くなるため好ましい。 In addition, it is preferable that the interface between the A layer and the B layer can be peeled off, and the interface between the A layer and the B layer is laminated by using the action of an adhesive formed by coating or the like. preferable. In addition, in this embodiment, a two-layer stacked configuration of the A layer and the B layer is described, but another layer may be provided on the side opposite to the A layer with the B layer interposed therebetween. It is preferable to apply a material having the same configuration as that of the A layer to the coating on the surface of the A layer because the flatness after the molding becomes high.
 積層構造体とは、異なる成分を含む層が2層以上積層された構造体をいう。なお、積層構造体はロールツーロールで搬送される連続体フィルムであってもよいし、枚葉体シートであってもよい。 A laminated structure refers to a structure in which two or more layers containing different components are laminated. In addition, the continuous structure film conveyed by roll to roll may be sufficient as a laminated structure, and a single wafer sheet may be sufficient as it.
 ガラス転移温度とは、JIS K 7244-4(1999)に記載の方法に準じた方法により、試料動的振幅速さ(駆動周波数)は1Hz、引張りモード、チャック間距離5mm、昇温速度2℃/分での温度依存性(温度分散)を測定したときに、tanδが極大となる温度のことである。 The glass transition temperature is a method according to the method described in JIS K 7244-4 (1999). The sample dynamic amplitude speed (driving frequency) is 1 Hz, the tensile mode, the distance between chucks is 5 mm, and the heating rate is 2 ° C. This is the temperature at which tan δ is maximized when measuring the temperature dependence (temperature dispersion) in / min.
 また、ここでいう融点とはDSC(示差熱量分析)により得られる、昇温過程(昇温速度:20℃/分)における融点Tmであり、上述と同様にJIS K 7121(1999)に基づいた方法により、25℃から300℃まで20℃/分の昇温速度で加熱(1stRUN)、その状態で5分間保持し、次いで25℃以下となるよう急冷し、再度室温から20℃/分の昇温速度で300℃まで昇温を行って得られた2ndRunの結晶融解ピークにおけるピークトップの温度でもってその樹脂の融点とする。 The melting point here is a melting point Tm in a temperature rising process (temperature rising rate: 20 ° C./min) obtained by DSC (differential calorimetry), and based on JIS K 7121 (1999) as described above. Heat at a rate of temperature increase from 25 ° C. to 300 ° C. at a rate of 20 ° C./min (1stRUN), hold in that state for 5 minutes, then rapidly cool to below 25 ° C., and then increase again from room temperature to 20 ° C./min. The melting point of the resin is determined by the temperature at the peak top in the 2ndRun crystal melting peak obtained by raising the temperature to 300 ° C. at a temperature rate.
 本発明では、表面に突起構造21を有する金型20を加熱しておく。加熱は金型がTm1以上かつTg2以上の温度範囲となるように行う。加熱は金型と積層構造体が接触している状態で行ってもよい。接触させておくことにより、積層構造体の平面性を良好な状態で保持させておくことができる。 In the present invention, the mold 20 having the protruding structure 21 on the surface is heated. Heating is performed so that the mold has a temperature range of Tm1 or more and Tg2 or more. Heating may be performed in a state where the mold and the laminated structure are in contact with each other. By keeping the contact, the planarity of the laminated structure can be maintained in a good state.
 なお、金型の加熱温度の上限値は限定されるものではないが、熱可塑性樹脂P1の熱分解点以下であり、かつ、熱可塑性樹脂P2の熱分解点以下であることが好ましい。 Although the upper limit of the heating temperature of the mold is not limited, it is preferably below the thermal decomposition point of the thermoplastic resin P1 and below the thermal decomposition point of the thermoplastic resin P2.
 次に、図1(b)に示すように、加熱した状態の積層構造体10のA層11の表面に、突起構造面が接触するように金型20を加圧して押し当てる。加圧されることにより、突起構造21が適正な高さを有すれば、突起構造がA層11を突き抜けて、B層12まで突き刺さる。そして、図1(c)に示されるように、金型20と積層構造体10とが隙間なく当接した状態となる。 Next, as shown in FIG. 1B, the mold 20 is pressed and pressed so that the protruding structure surface is in contact with the surface of the layer A 11 of the laminated structure 10 in a heated state. When the protrusion structure 21 has an appropriate height by being pressurized, the protrusion structure penetrates the A layer 11 and penetrates to the B layer 12. And as FIG.1 (c) shows, it will be in the state which the metal mold | die 20 and the laminated structure 10 contact | abutted without gap.
 この時の必要な圧力と加圧時間はフィルムの材質、転写形状、特に凹凸のアスペクト比に依存するものであり、概ねプレス圧力の好ましい範囲は1~100MPa、成形時間の好ましい範囲は0.01~60秒である。 The required pressure and pressing time at this time depend on the material of the film, the transfer shape, particularly the aspect ratio of the unevenness, and the preferable range of the press pressure is generally 1 to 100 MPa, and the preferable range of the molding time is 0.01. ~ 60 seconds.
 プレス圧力のより好ましい範囲は10~80MPaであり、さらに好ましい範囲は30~60MPである。また、成形時間のより好ましい範囲は1~50秒であり、さらに好ましい範囲は3~30秒である。 A more preferable range of the pressing pressure is 10 to 80 MPa, and a more preferable range is 30 to 60 MP. A more preferable range of the molding time is 1 to 50 seconds, and a more preferable range is 3 to 30 seconds.
 また、位置制御によって金型20を積層構造体10に押し当ててもよい。すなわち、あらかじめ設定された位置に金型20を移動させて積層構造体10に押し当ててもよい。あらかじめ設定された位置とは、A層の表面に金型の突起構造を含む平面が隙間無く当接できる位置のことである。 Further, the mold 20 may be pressed against the laminated structure 10 by position control. That is, the mold 20 may be moved to a preset position and pressed against the laminated structure 10. The preset position is a position where the plane including the protrusion structure of the mold can be in contact with the surface of the A layer without any gap.
 なお、昇圧後に金型の位置を保持したまま除圧して金型20と積層構造体10の接触状態を保持してもよい。      It should be noted that after the pressure is increased, the pressure may be removed while maintaining the position of the mold, and the contact state between the mold 20 and the laminated structure 10 may be maintained.
 次に、図1(c)に示すように、加圧した状態または接触した状態を保持したままで、金型を冷却する。冷却はB層を構成する熱可塑性樹脂P2のガラス転移温度Tg2以下まで行うことが好ましい。Tg2以下まで冷却することにより、金型20を積層構造体10から剥離した後での樹脂変形を抑制することができ、精度の高い貫通孔形成が可能となるため好ましい。 Next, as shown in FIG. 1 (c), the mold is cooled while maintaining the pressurized state or the contacted state. Cooling is preferably performed to a glass transition temperature Tg2 or lower of the thermoplastic resin P2 constituting the B layer. Cooling to Tg2 or less is preferable because the resin deformation after the mold 20 is peeled from the laminated structure 10 can be suppressed, and a through hole can be formed with high accuracy.
 次に、図1(d)に示すように、積層構造体10を金型20から剥離する。剥離は、積層構造体の表面に対して垂直方向に金型や積層構造体を離間するように移動させる。積層構造体が連続体のフィルムの場合には連続的に積層構造体の表面に対して垂直方向に張力を与えて、線状の剥離位置が連続的に移動するようにして剥離することが好ましい。この状態で保持して、貫通孔を有するフィルムを使用する直前でB層を剥離することにしてもよい。B層はカバーフィルムとして役割を持ち、使用する直前で剥離すれば表面に傷がつきにくく、また、使用直前まで厚く剛性の高いフィルムとして扱えるので作業性が良いため好ましい。 Next, as shown in FIG. 1 (d), the laminated structure 10 is peeled from the mold 20. In peeling, the mold and the laminated structure are moved away from each other in the direction perpendicular to the surface of the laminated structure. In the case where the laminated structure is a continuous film, it is preferable to continuously apply a tension in the direction perpendicular to the surface of the laminated structure so that the linear peeling position moves continuously. . You may hold | maintain in this state and may decide to peel B layer just before using the film which has a through-hole. The B layer has a role as a cover film, and if it is peeled off immediately before use, the surface is hardly damaged, and since it can be handled as a thick and highly rigid film until just before use, it is preferable because workability is good.
 また、図2は、上述した剥離工程を追加したものである。図2(a)~(d)は図1(a)~(d)と同じであるので説明を省略する。図2(e)ではA層11をB層12から剥離する。剥離は、A層またはB層の表面に対して垂直方向にA層またはB層に張力を与えて、線状の剥離位置が連続的に移動するようにして剥離することが、剥離跡を抑制する観点から好ましい。 Moreover, FIG. 2 adds the peeling process mentioned above. 2 (a) to 2 (d) are the same as FIGS. 1 (a) to 1 (d), and a description thereof will be omitted. In FIG. 2 (e), the A layer 11 is peeled from the B layer 12. Peeling is suppressed by applying tension to the A layer or B layer in the direction perpendicular to the surface of the A layer or B layer, and peeling so that the linear peeling position moves continuously. From the viewpoint of
 図1または図2を用いて説明した上記の工程を実施することにより、A層11が高精度に形状が制御された貫通孔を有するフィルムとなる。上記の製造方法により、A層は成形時には溶融状態であるので、突起構造を押し付けたときのA層は粘性材料に近い挙動で塑性変形を引き起こし、開口部端面でのバリの少ない貫通孔が形成される。また、さらに、突起パターン(突起構造)が押し込まれた時に、B層では粘弾性変形を引き起こし、B層の内部に突起構造がスムーズに進入できるので、A層とB層との界面でもバリの少ない綺麗な端面を形成できる。 By carrying out the above-described steps described with reference to FIG. 1 or FIG. 2, the A layer 11 becomes a film having a through-hole whose shape is controlled with high accuracy. Due to the above manufacturing method, the A layer is in a molten state at the time of molding. Therefore, when the protruding structure is pressed, the A layer causes plastic deformation with a behavior close to that of a viscous material, and through holes with less burrs are formed at the end face of the opening. Is done. In addition, when the protrusion pattern (protrusion structure) is pushed in, the B layer causes viscoelastic deformation, and the protrusion structure can smoothly enter the inside of the B layer, so that there is no burrs at the interface between the A layer and the B layer. A few beautiful end faces can be formed.
 また、本発明において、A層11に含まれる熱可塑性樹脂P1の融点Tm1とB層に含まれる熱可塑性樹脂P2のガラス転移温度Tg2との差であるTm1-Tg2が、-30~60℃であることが好ましい。-30℃未満ではB層の変形に大きな力を要するために、貫通孔形成時において、突起構造のスムーズなB層への進入が妨げられる場合がある。60℃より高くなるとB層の弾性が低下する場合があり、A層とB層の界面の平面性が低下する場合がある。 In the present invention, Tm1−Tg2 which is the difference between the melting point Tm1 of the thermoplastic resin P1 contained in the A layer 11 and the glass transition temperature Tg2 of the thermoplastic resin P2 contained in the B layer is −30 to 60 ° C. Preferably there is. When the temperature is lower than −30 ° C., a large force is required for deformation of the B layer, and therefore, when the through hole is formed, the protrusion structure may be prevented from smoothly entering the B layer. When the temperature is higher than 60 ° C., the elasticity of the B layer may be lowered, and the planarity of the interface between the A layer and the B layer may be lowered.
 本発明において、Tm1-Tg2が5~60℃であることも好ましい態様の一つである。つまり、A層11に含まれる熱可塑性樹脂P1の材質としては融点Tmが、B層に含まれる熱可塑性樹脂P2のガラス転移温度Tg2よりも5~60℃高いことが好ましい。より好ましくは20~50℃であり、さらに好ましくは30~40℃である。5℃未満ではB層の変形に大きな力を要するために、貫通孔形成時において、突起構造のスムーズなB層への進入が妨げられる場合がある。60℃より高くなるとB層の弾性が低下する場合があり、A層およびB層の平面性が低下する場合がある。 In the present invention, it is also one of preferred embodiments that Tm1-Tg2 is 5 to 60 ° C. That is, the material of the thermoplastic resin P1 contained in the A layer 11 is preferably 5 to 60 ° C. higher than the glass transition temperature Tg2 of the thermoplastic resin P2 contained in the B layer. More preferably, it is 20 to 50 ° C., and further preferably 30 to 40 ° C. When the temperature is lower than 5 ° C., a large force is required for deformation of the B layer, and therefore, when the through hole is formed, the protrusion structure may be prevented from smoothly entering the B layer. If the temperature is higher than 60 ° C., the elasticity of the B layer may be reduced, and the planarity of the A layer and the B layer may be reduced.
 また、A層とB層の境界面におけるA層の開口部でバリを極限まで抑制し、かつ、高精度で成形するという観点からは、融点Tm1とガラス転移温度Tg2との差(Tm1-Tg2)が-10~0℃であることが好ましい。-10℃未満では開口の寸法精度が低下する場合がある。0℃より高くなると端面でのバリが発生する場合がある。 Further, from the viewpoint of suppressing burrs to the limit at the opening portion of the A layer at the boundary surface between the A layer and the B layer and molding with high accuracy, the difference between the melting point Tm1 and the glass transition temperature Tg2 (Tm1−Tg2). ) Is preferably −10 to 0 ° C. If it is less than −10 ° C., the dimensional accuracy of the opening may deteriorate. When the temperature is higher than 0 ° C., burrs may occur at the end face.
 すなわち、成形時においてB層は一定の範囲の固さであることが、A層とB層の界面の良好な平面性と、開口部でバリの抑制された高精度な貫通孔成形を両立する上で好ましい。また、成形時の金型の温度におけるB層に含まれる樹脂の貯蔵弾性率が0.005~0.5GPa、さらに好ましくは、0.01~0.1GPaの範囲であることにより、A層とB層の界面の平面性と、貫通孔成形における開口部でバリ抑制をより高めることができる。0.005GPa未満では、A層とB層の界面の平面性が低下し、A層に貫通孔が形成されなかったり、貫通孔の開口部にバリが発生しやすくなったりする場合がある。一方、0.5GPaを超えると、B層で変形しにくくなり、金型の突起構造が奥まで挿入されず、所定の形状精度の貫通孔成形が難しくなる場合がある。 In other words, the B layer has a certain range of hardness at the time of molding, achieving both good flatness at the interface between the A layer and the B layer and high-precision through-hole molding in which burr is suppressed at the opening. Preferred above. Further, the storage elastic modulus of the resin contained in the B layer at the temperature of the mold at the time of molding is 0.005 to 0.5 GPa, more preferably 0.01 to 0.1 GPa. The burr suppression can be further enhanced by the flatness of the interface of the B layer and the opening in the through hole molding. If it is less than 0.005 GPa, the planarity of the interface between the A layer and the B layer may be deteriorated, and a through hole may not be formed in the A layer, or a burr may be easily generated at the opening of the through hole. On the other hand, when it exceeds 0.5 GPa, it is difficult to deform in the B layer, the protrusion structure of the mold is not inserted to the back, and it may be difficult to form a through hole with a predetermined shape accuracy.
 A層11を構成する熱可塑性樹脂の主たる成分としては、具体的に好ましくは、ポリエチレン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブテン、ポリメチルペンテン等のポリオレフィン系樹脂が金型の離型性が良いので好ましく用いられる。なお、主たる成分とはA層を構成する樹脂全体を100質量%としたときに50質量%以上を占める成分をいう。なお、主たる成分は50質量%以上が好ましく、80質量%以上がより好ましい。なお、上限値は特に限定されるものではないが、100質量%が実質的な上限となる。 Specifically, the main component of the thermoplastic resin constituting the A layer 11 is preferably a polyolefin resin such as polyethylene, polystyrene, polypropylene, polyisobutylene, polybutene, and polymethylpentene because mold releasability is good. Preferably used. In addition, a main component means the component which occupies 50 mass% or more when the whole resin which comprises A layer is 100 mass%. In addition, 50 mass% or more is preferable and, as for the main component, 80 mass% or more is more preferable. In addition, although an upper limit is not specifically limited, 100 mass% becomes a substantial upper limit.
 本発明において、熱可塑性樹脂P1がポリエチレンまたはポリプロピレンであることが好ましい。ポリエチレンまたはポリプロピレンを用いることによって、比較的低い温度で貫通孔を成形することが可能となるため、生産性を高めやすい。 In the present invention, it is preferable that the thermoplastic resin P1 is polyethylene or polypropylene. By using polyethylene or polypropylene, it is possible to mold the through-holes at a relatively low temperature, and thus it is easy to increase productivity.
 B層12を構成する熱可塑性樹脂の主たる成分としては具体的に好ましくは、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリエチレン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブテン、ポリメチルペンテン等のポリオレフィン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂ポリエーテル系樹脂、ポリエステルアミド系樹脂、ポリエーテルエステル系樹脂、アクリル系樹脂、ポリウレタン系樹脂、ポリカーボネート系樹脂、またはポリ塩化ビニル系樹脂などが好ましく用いられる。特に好ましくは、ポリメタクリル酸メチルである。なお、主たる成分とはB層を構成する樹脂全体を100質量%としたときに50質量%以上を占める成分をいう。なお、主たる成分は50質量%以上が好ましく、80質量%以上がより好ましい。 Specifically, the main component of the thermoplastic resin constituting the B layer 12 is preferably a polyester resin such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene, polystyrene, polypropylene, poly Polyolefin resins such as isobutylene, polybutene, polymethylpentene, polyamide resins, polyimide resins, polyether resins, polyesteramide resins, polyetherester resins, acrylic resins, polyurethane resins, polycarbonate resins, or poly A vinyl chloride resin or the like is preferably used. Particularly preferred is polymethyl methacrylate. In addition, a main component means the component which occupies 50 mass% or more when the whole resin which comprises B layer is 100 mass%. In addition, 50 mass% or more is preferable and, as for the main component, 80 mass% or more is more preferable.
 本発明において、熱可塑性樹脂P2はポリメタクリル酸メチルまたはポリカーボネートであることが好ましい。特に好ましくは、ポリメタクリル酸メチルである。ポリメタクリル酸メチルまたはポリカーボネートを用いることによって、貫通孔に連通する凹部を精度良く成形することが可能となる。 In the present invention, the thermoplastic resin P2 is preferably polymethyl methacrylate or polycarbonate. Particularly preferred is polymethyl methacrylate. By using polymethyl methacrylate or polycarbonate, it is possible to accurately form the concave portion communicating with the through hole.
 A層やB層は上述の樹脂の単体からなる層であっても構わないし、複数の樹脂層からなる積層体であってもよい。この場合、単体の層と比べて離型性や耐摩擦性などの表面特性等を付与することができる。このように複数の樹脂層からなる積層体とした場合でも、A層およびB層の各層において、主たる熱可塑性樹脂成分が前述の要件を満たせばよい。 The A layer and the B layer may be a layer made of the above-mentioned resin alone, or may be a laminated body made of a plurality of resin layers. In this case, surface characteristics such as releasability and friction resistance can be imparted as compared with a single layer. Thus, even when it is set as the laminated body which consists of a some resin layer, in each layer of A layer and B layer, the main thermoplastic resin component should just satisfy the above-mentioned requirements.
 また、A層およびB層の製造方法としては、熱可塑性樹脂を溶融押出により製膜するのが良い。表層に離型層や粘着層などを設ける場合は、共押し出ししてフィルム状に加工する方法を用いれば良いが、製膜後にコーティングにより設けてもよい。また、単膜で作製したフィルムに表層原料を押出ラミネートする方法を用いてもよい。また、A層とB層との積層は、ロールで挟圧してラミネートする方法の他、加熱されたロールなどにより熱ラミネートする方法等を適用することができる。 Further, as a method for producing the A layer and the B layer, it is preferable to form a thermoplastic resin film by melt extrusion. When a release layer, an adhesive layer, or the like is provided on the surface layer, a method of co-extrusion and processing into a film may be used, but it may be provided by coating after film formation. Moreover, you may use the method of carrying out extrusion lamination of the surface layer raw material to the film produced with the single film. As the lamination of the A layer and the B layer, a method of laminating by pressing with a roll and a method of heat laminating with a heated roll or the like can be applied.
 さらに、本発明に適用するフィルムには、重合時または重合後に各種の添加剤を加えることができる。添加配合することができる添加剤の例としては、例えば、有機微粒子、無機微粒子、分散剤、染料、蛍光増白剤、酸化防止剤、耐候剤、帯電防止剤、離型剤、増粘剤、可塑剤、pH調整剤および塩などが挙げられる。特に、離型剤として、長鎖カルボン酸、もしくは長鎖カルボン酸塩、などの低表面張力のカルボン酸やその誘導体、および、長鎖アルコールやその誘導体、変性シリコーンオイルなどの低表面張力のアルコール化合物等を重合時に少量添加することが好ましく行われる。 Furthermore, various additives can be added to the film applied to the present invention at the time of polymerization or after polymerization. Examples of additives that can be added and blended include, for example, organic fine particles, inorganic fine particles, dispersants, dyes, fluorescent brighteners, antioxidants, weathering agents, antistatic agents, mold release agents, thickeners, Examples include plasticizers, pH adjusters, and salts. In particular, as a releasing agent, low surface tension carboxylic acids such as long chain carboxylic acids or long chain carboxylates and derivatives thereof, and low surface tension alcohols such as long chain alcohols and derivatives thereof, and modified silicone oils. It is preferable to add a small amount of a compound or the like during polymerization.
 また、本発明に適用されるA層の好ましい厚さ(厚み、膜厚)としては5~50μmの範囲内にあることが好ましく、より好ましくは10~40μm、さらに好ましくは10~30μmである。5μm未満ではハンドリングするのが困難となる場合がある。また、50μmより大きい場合、貫通孔形成時に金型の先端温度が変化しやすく、貫通時に端面にバリが発生しやすくなる場合がある。 The preferred thickness (thickness, film thickness) of the A layer applied to the present invention is preferably in the range of 5 to 50 μm, more preferably 10 to 40 μm, and still more preferably 10 to 30 μm. If it is less than 5 μm, it may be difficult to handle. On the other hand, when the thickness is larger than 50 μm, the tip temperature of the mold is likely to change when the through hole is formed, and burrs may be easily generated on the end surface during penetration.
 また、貫通孔の孔径は1~100μmが好ましい。より好ましくは20~80μmであり、特に好ましくは30~50μmである。ここで、孔径とは、A層のB層側表面に形成された開口部の孔径である。円であれば直径であり、円でない場合は、開口部を等面積の円に置き換えたときの直径である。孔径が1μm未満では精度上困難な場合があり、また、100μmより大きい場合では、貫通孔形成に大きな加圧力を必要とし、装置が大型化する場合がある。なお、100μmより大きい場合は打ち抜き等、機械的な加工が適していることが多い。 Further, the hole diameter of the through hole is preferably 1 to 100 μm. More preferably, it is 20 to 80 μm, and particularly preferably 30 to 50 μm. Here, the hole diameter is the hole diameter of the opening formed on the B layer side surface of the A layer. If it is a circle, it is the diameter, and if it is not a circle, it is the diameter when the opening is replaced with a circle of equal area. If the hole diameter is less than 1 μm, it may be difficult in terms of accuracy, and if it is larger than 100 μm, a large pressure may be required for forming the through-hole, and the apparatus may be enlarged. When the thickness is larger than 100 μm, mechanical processing such as punching is often suitable.
 次に、金型形状について図3、図4を用いて説明する。図3は本発明に適用する金型の一例を示す斜視図であり、図4(a)(b)は本発明に適用する金型の一例を示す断面図である。 Next, the mold shape will be described with reference to FIGS. FIG. 3 is a perspective view showing an example of a mold applied to the present invention, and FIGS. 4A and 4B are cross-sectional views showing an example of a mold applied to the present invention.
 金型20の外表面には、突起構造21が所定位置に配置されている。突起構造とは、金型上に設けられた凸部構造をいい、突起構造は同一の形状のみが金型上に設けられていてもよいし、複数の異なる形状が設けられていてもよい。 A protrusion structure 21 is disposed at a predetermined position on the outer surface of the mold 20. The protruding structure refers to a convex structure provided on a mold, and the protruding structure may be provided with only the same shape on the mold, or may be provided with a plurality of different shapes.
 突起構造の配置や密度は、製品仕様として求められる貫通孔の配置や密度と同じとするのが好ましい。一般的には100nm~1mmのピッチである。なお、ピッチとは突起構造の繰り返し間隔のことをいう。 The arrangement and density of the protrusion structure are preferably the same as the arrangement and density of the through holes required as product specifications. Generally, the pitch is 100 nm to 1 mm. Note that the pitch means a repetition interval of the protrusion structure.
 金型の材質は、強度と熱伝導率が高い金属が好ましく、例えばニッケルや鋼、ステンレス鋼、銅などが好ましい。また、外表面に加工性を向上させるために鍍金を施したものを使用してもよい。 The material of the mold is preferably a metal having high strength and thermal conductivity, such as nickel, steel, stainless steel, or copper. Moreover, you may use what gave the outer surface the plating in order to improve workability.
 突起構造の高さや断面形状は、要求される貫通孔の形状やフィルムの厚みによって決定される。突起構造の高さについては、A層11の厚みを突き抜ける長さであることが好ましい。すなわち、成形時に金型20が積層構造体10に密着した時に、A層11を突き抜ける高さであることが好ましい。 The height and cross-sectional shape of the protrusion structure are determined by the required shape of the through hole and the thickness of the film. The height of the protruding structure is preferably a length that penetrates the thickness of the A layer 11. That is, it is preferable to have a height that penetrates the A layer 11 when the mold 20 is in close contact with the laminated structure 10 during molding.
 具体的な形状の例を図4(a)(b)で説明する。図4(a)において示される突起構造は円錐と円柱を連結させた突起構造である。図4(b)において示される突起構造は円錐のみの突起構造である。いずれの形状であっても先端は平坦よりも尖っている方が好ましい。特に、突起構造が錘形状と円柱形状の連結構造が好ましい。先端が錘形状であることにより、成形開始時に積層構造体に加わる圧力を高くして変形しやすくするためである。また、途中から円柱形状になることにより、寸法精度の高い、孔径が一定の貫通孔を形成することができる。なお、上記に挙げた形状以外に角錐型と四角柱とを組み合わせた構成などでもよい。 Examples of specific shapes will be described with reference to FIGS. The protrusion structure shown in FIG. 4A is a protrusion structure in which a cone and a cylinder are connected. The protrusion structure shown in FIG. 4B is a protrusion structure having only a cone. In any shape, the tip is preferably pointed rather than flat. In particular, a connection structure in which the protrusion structure has a weight shape and a cylindrical shape is preferable. This is because when the tip has a weight shape, the pressure applied to the laminated structure at the start of molding is increased to facilitate deformation. Further, by forming a cylindrical shape in the middle, a through hole having a high dimensional accuracy and a constant hole diameter can be formed. In addition, the structure etc. which combined the pyramid type | mold and the square pillar other than the shape quoted above may be sufficient.
 表面に突起構造を有する各金型の作成方法は、金属表面に直接切削やレーザー加工や電子線加工を施工する方法、金属表面に形成した鍍金皮膜に直接切削やレーザー加工や電子線加工を施工する方法、これらを電気鋳造を施す方法などが挙げられる。また、レジストを基板の上に塗布した後、フォトリソグラフィー手法によって所定のパターンニングでレジストを形成した後、基板をエッチング処理して凹部を形成し、レジスト除去後に電気鋳造でその反転パターンを得る方法などが挙げられる。異方性エッチングを適用することにより錐状のパターンを得ることができる。基板としては金属板の他にシリコン基板等も適用できる。 Each mold with a protrusion structure on the surface is made by directly cutting, laser processing or electron beam processing on the metal surface, or by direct cutting, laser processing or electron beam processing on the plating film formed on the metal surface. And a method of electroforming these. Also, after applying the resist on the substrate, forming the resist with a predetermined patterning by photolithography technique, etching the substrate to form a recess, and removing the resist to obtain the inverted pattern by electroforming Etc. A cone-shaped pattern can be obtained by applying anisotropic etching. As the substrate, a silicon substrate or the like can be applied in addition to the metal plate.
 貫通孔とは、層の一方の面から他方の面まで突き抜けている空間のことをいう。また、貫通孔に連通する凹部とは、突起構造によりA層に形成された貫通孔に連結するB層の凹部をいう。 A through-hole is a space that penetrates from one side of the layer to the other. Moreover, the recessed part connected to a through-hole means the recessed part of the B layer connected with the through-hole formed in the A layer by protrusion structure.
 本発明の貫通孔を有するフィルムは、例えば図5、図6に示すような装置を介したプロセスによって製造することが可能である。図5、図6は、A層とB層の積層からなるフィルム状積層構造体のA層に貫通孔を形成し、さらにA層とB層とを剥離することにより、A層からなる貫通孔を有するフィルムを製造するための製造装置の断面概略図を示している。 The film having a through hole of the present invention can be manufactured by a process through an apparatus as shown in FIGS. 5 and 6, for example. 5 and 6 show a through hole made of the A layer by forming a through hole in the A layer of the film-like laminated structure formed by laminating the A layer and the B layer, and further peeling the A layer and the B layer. The cross-sectional schematic of the manufacturing apparatus for manufacturing the film which has this is shown.
 図5に示す例では、あらかじめA層からなるフィルムとB層からなるフィルムを積層した積層構造体50を巻出ロール51から引き出す巻出ユニット52と、表面に突起構造が形成され加熱された金型53を、間欠的に送られてくる積層構造体50に押し付けて加圧し、その後、接触状態を保持したまま冷却することにより、積層構造体50のA層50aに所定の貫通孔を形成する。同時にB層には突起構造により貫通孔に連通する凹部が形成される。 In the example shown in FIG. 5, an unwinding unit 52 for pulling out a laminated structure 50 in which a film made of an A layer and a film made of a B layer are laminated in advance from an unwinding roll 51, and heated gold having a protrusion structure formed on the surface. The mold 53 is pressed against the laminated structure 50 sent intermittently and pressurized, and then cooled while maintaining the contact state, thereby forming a predetermined through-hole in the A layer 50a of the laminated structure 50. . At the same time, a concave portion communicating with the through hole is formed in the B layer by the protruding structure.
 所定の貫通孔を形成する加圧転写工程用のプレスユニット54と、加圧転写工程で金型53に貼り付いた積層構造体50を金型53から剥離する剥離手段55と、A層50aからなるフィルムとB層50bからなるフィルムとを剥離するフィルム剥がし装置56を経て、各フィルムは各巻取ロール57、58に巻き取られる。剥離手段55は、積層構造体50をS字状に抱き付かせるように把持する一対の平行配置ロールからなる。間欠的に送られてきた積層構造体50の一面がプレスユニット54内で金型53によって熱成形され、熱成形後に、上記剥離手段55が上流側に向けて移動されることにより、金型53に貼り付いていた積層構造体50が金型53から順次剥離されるようになっている。 From a press unit 54 for a pressure transfer process for forming a predetermined through hole, a peeling means 55 for peeling the laminated structure 50 attached to the mold 53 in the pressure transfer process from the mold 53, and the A layer 50a. Each film is wound around each of the winding rolls 57 and 58 through a film peeling device 56 for peeling the film formed and the film formed of the B layer 50b. The peeling means 55 consists of a pair of parallel arrangement rolls which hold | grip so that the laminated structure 50 may be held in S shape. One surface of the laminated structure 50 sent intermittently is thermoformed by the die 53 in the press unit 54, and after the thermoforming, the peeling means 55 is moved toward the upstream side, whereby the die 53 is moved. The laminated structure 50 that has been attached to is sequentially peeled off from the mold 53.
 なお、図5において、59は加圧プレート、60、61は積層構造体50の金型53部分における間欠搬送を円滑に行わせるために設けられたバッファ手段を示している。このようなプロセスにより、A層への貫通孔形成とB層への凹部の形成(熱成形)を、間欠的に高い生産性をもって、行うことが可能になる。 In FIG. 5, reference numeral 59 denotes a pressure plate, and 60 and 61 denote buffer means provided to smoothly perform intermittent conveyance in the mold 53 portion of the laminated structure 50. By such a process, it becomes possible to perform the formation of through holes in the A layer and the formation of recesses in the B layer (thermoforming) intermittently with high productivity.
 図6に示す例では、A層71とB層72を構成するフィルムが各巻出ロール73、74から引き出され、ラミネート装置75により積層構造体70を形成する。その後、積層構造体70は、加熱ロール76により、加熱された表面に突起構造が形成されたエンドレスベルト状の金型77上に供給される。 In the example shown in FIG. 6, films constituting the A layer 71 and the B layer 72 are drawn from the unwinding rolls 73 and 74, and the laminated structure 70 is formed by the laminating device 75. Thereafter, the laminated structure 70 is supplied by a heating roll 76 onto an endless belt-shaped mold 77 having a protrusion structure formed on the heated surface.
 金型77の外表面には突起構造が形成されて、積層構造体70と接触する直前に加熱ロール76によって加熱される。連続的に供給される積層構造体70はニップロール78により金型77の突起構造が加工された表面に押し付けられ、積層構造体のA層71に貫通孔が形成される。同時にB層72に貫通孔に連通する凹部が形成される。 A protrusion structure is formed on the outer surface of the mold 77 and is heated by the heating roll 76 immediately before coming into contact with the laminated structure 70. The laminated structure 70 that is continuously supplied is pressed against the surface on which the protruding structure of the mold 77 is processed by the nip roll 78, and a through hole is formed in the A layer 71 of the laminated structure. At the same time, a concave portion communicating with the through hole is formed in the B layer 72.
 その後、積層構造体70は、金型77の表面と密着された状態で冷却ロール79の外表面位置まで搬送される。積層構造体70は、冷却ロール79によって金型77を介して熱伝導により冷却された後、剥離ロール80によって金型77から剥離され、A層からなるフィルムとB層からなるフィルムに剥離するフィルム剥がし装置81を経て、各フィルムは巻取ロール82、83に巻き取られる。このようなプロセスにより、貫通孔が形成されたA層からなるフィルムを連続的に高い生産性をもって熱成形していくことが可能になる。 Thereafter, the laminated structure 70 is conveyed to the outer surface position of the cooling roll 79 in a state of being in close contact with the surface of the mold 77. The laminated structure 70 is cooled by heat conduction through a mold 77 by a cooling roll 79 and then peeled off from the mold 77 by a peeling roll 80 and peeled into a film composed of an A layer and a film composed of a B layer. Each film is taken up by take-up rolls 82 and 83 through a peeling device 81. By such a process, it becomes possible to thermoform a film composed of the A layer in which the through holes are formed continuously with high productivity.
 [用途例]
 以上の熱可塑性フィルムの製造方法では、ミクロンサイズからナノサイズの微細な孔径の形状を自由に設計することができ、さらに熱可塑性フィルムを安価に生産性良く製造することができる。本発明の製造方法により得られた熱可塑性フィルムは、ミクロンサイズからナノサイズの微細な孔径が均一に形成されているため、通孔が必要な濾過、細胞培養、細胞分離、ガス透過、透湿等において好適に用いられる。
[Application example]
In the method for producing a thermoplastic film described above, a shape having a fine pore size ranging from a micron size to a nano size can be freely designed, and a thermoplastic film can be produced inexpensively with high productivity. The thermoplastic film obtained by the production method of the present invention has micron-sized to nano-sized fine pore diameters uniformly formed. Therefore, filtration, cell culture, cell separation, gas permeation, moisture permeation that require through holes are required. Etc. are preferably used.
 (実施例1)
 (1)積層構造体
 A層にポリプロピレンを主体としたポリマー(融点が144℃)を含む厚み30μmのフィルムを、B層にポリメタクリル酸メチル(PMMA)を主体としたポリマー(ガラス転移温度が105℃)を含む厚み175μmのフィルムを用いた。なお、A層の一方の表層には低密度ポリエチレンを主体とした厚さ6μmの粘着層を有する。A層の粘着層をB層の表面に貼り合わせるようにラミネートし、積層構造体を構成した。
(Example 1)
(1) Laminated structure A film having a thickness of 30 μm containing a polymer mainly composed of polypropylene (melting point: 144 ° C.) in the A layer, and a polymer mainly composed of polymethyl methacrylate (PMMA) in the B layer (glass transition temperature of 105 A film having a thickness of 175 μm was used. One surface layer of the A layer has a 6 μm thick adhesive layer mainly composed of low density polyethylene. The adhesive layer of A layer was laminated so that it might adhere to the surface of B layer, and the laminated structure was comprised.
 (2)金型
 三角錐の突起構造が全面に配置された金型を用いた。三角錐は底面が一辺が230μmの正三角形で、高さが70μmであり、全面に隙間なく配置されている。突起構造が加工されている領域は200mm(フィルム幅方向)×400mm(フィルム搬送方向)の領域である。金型の材質は厚さ20mmの銅を母材として表面にニッケル鍍金膜を施したものに、鍍金膜に三角錐パターンを機械加工により形成した。
(2) Mold A mold having a triangular pyramid protrusion structure disposed on the entire surface was used. The triangular pyramid is a regular triangle whose bottom is 230 μm on a side, has a height of 70 μm, and is arranged on the entire surface without any gaps. The region where the protrusion structure is processed is a region of 200 mm (film width direction) × 400 mm (film transport direction). The material of the mold was a 20 mm thick copper base metal with a nickel plating film on the surface, and a triangular pyramid pattern was formed on the plating film by machining.
 (3)成形装置および条件
 装置は図5に示すような装置を適用した。プレスユニットは油圧ポンプで加圧される機構で、内部に加圧プレートが上下に2枚取り付けられ、それぞれ、加熱装置、冷却装置に連結されている。金型は下側の加圧プレートの上面に設置される。また、金型に貼りついたフィルムを剥離するための剥離手段がプレスユニット内に設置されている。
(3) Molding apparatus and conditions The apparatus as shown in FIG. 5 was applied. The press unit is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively. The mold is placed on the upper surface of the lower pressure plate. A peeling means for peeling the film attached to the mold is installed in the press unit.
 成形時の金型温度は150℃とし、加圧力としては全面で5MPaの圧力がかかるようにした。加圧時間としては30秒であった。また、剥離時の金型温度は80℃であった。金型からフィルムを剥離することによって、A層とB層を有する熱可塑性フィルムであって、A層に貫通孔を有し、B層に前記貫通孔に連通する凹部を有する熱可塑性フィルムを得た。 The mold temperature at the time of molding was 150 ° C., and the pressure was 5 MPa over the entire surface. The pressurization time was 30 seconds. The mold temperature at the time of peeling was 80 ° C. By peeling the film from the mold, a thermoplastic film having an A layer and a B layer, the A layer having a through hole, and the B layer having a recess communicating with the through hole is obtained. It was.
 かかる熱可塑性フィルム(金型から剥離したフィルム)を、引き続き連続的に、下流側の巻き取り装置側に送り出し、A層とB層を剥離し、各々巻き取った。これによって、貫通孔を有するA層を含む熱可塑性フィルムを得た。 The thermoplastic film (film peeled from the mold) was continuously sent to the downstream side of the winding device, and the A layer and the B layer were peeled off and wound up. This obtained the thermoplastic film containing A layer which has a through-hole.
 (4)成形結果
 成形したフィルム(A層)の走査型電子顕微鏡((株)キーエンス VE-7800)で撮影した写真を図7、図8に示す。図7はA層を金型接触面から見た写真で、図8はA層の断面を見た写真である。設計どおり一辺が45μmの三角形の開口部を有する貫通孔が均一に形成された。開口部の三角形の形状を等面積の円に置き換えると孔径は33μm相当となる。また、B層からなるフィルムには、三角錐の突起形状に対応した貫通孔に連通する凹部が均一に形成されていた。
(4) Molding results Photographs taken with a scanning electron microscope (Keyence VE-7800, Inc.) of the molded film (A layer) are shown in FIGS. FIG. 7 is a photograph of the A layer as seen from the mold contact surface, and FIG. 8 is a photograph of the cross section of the A layer. Through holes having a triangular opening with a side of 45 μm were uniformly formed as designed. If the triangular shape of the opening is replaced with a circle of equal area, the hole diameter is equivalent to 33 μm. Further, the film composed of the B layer was uniformly formed with recesses communicating with the through holes corresponding to the triangular pyramid protrusion shape.
 (実施例2)
 (1)積層構造体
 A層にポリプロピレンを主体としたポリマー(融点が144℃)を含む厚み30μmのフィルムを、B層にポリカーボネート(PC)を主体としたポリマー(ガラス転移温度が146℃)を含む厚み180μmのフィルムを用いた。なお、A層の一方の表層には低密度ポリエチレンを主体とした厚さ6μmの粘着層を有する。A層の粘着層をB層の表面に貼り合わせるようにラミネートし、積層構造体を構成した。
(Example 2)
(1) Laminated structure A film having a thickness of 30 μm containing a polymer (melting point: 144 ° C.) mainly composed of polypropylene in the A layer and a polymer (glass transition temperature: 146 ° C.) mainly composed of polycarbonate (PC) in the B layer. A film having a thickness of 180 μm was used. One surface layer of the A layer has a 6 μm thick adhesive layer mainly composed of low density polyethylene. The adhesive layer of A layer was laminated so that it might adhere to the surface of B layer, and the laminated structure was comprised.
 (2)金型
 三角錐の突起構造が全面に配置された金型を用いた。三角錐は底面が一辺が230μmの正三角形で、高さが70μmであり、全面に隙間なく配置されている。突起構造が加工されている領域は200mm(フィルム幅方向)×400mm(フィルム搬送方向)の領域である。金型の材質は厚さ20mmの銅を母材として表面にニッケル鍍金膜を施したものに、鍍金膜に三角錐パターンを機械加工により形成した。
(2) Mold A mold having a triangular pyramid protrusion structure disposed on the entire surface was used. The triangular pyramid is a regular triangle whose bottom is 230 μm on a side, has a height of 70 μm, and is arranged on the entire surface without any gaps. The region where the protrusion structure is processed is a region of 200 mm (film width direction) × 400 mm (film transport direction). The material of the mold was a 20 mm thick copper base metal with a nickel plating film on the surface, and a triangular pyramid pattern was formed on the plating film by machining.
 (3)成形装置および条件
 装置は図5に示すような装置を適用した。プレスユニットは油圧ポンプで加圧される機構で、内部に加圧プレートが上下に2枚取り付けられ、それぞれ、加熱装置、冷却装置に連結されている。金型は下側の加圧プレートの上面に設置される。また、金型に貼りついたフィルムを剥離するための剥離手段がプレスユニット内に設置されている。
(3) Molding apparatus and conditions The apparatus as shown in FIG. 5 was applied. The press unit is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively. The mold is placed on the upper surface of the lower pressure plate. A peeling means for peeling the film attached to the mold is installed in the press unit.
 成形時の金型温度は160℃とし、加圧力としては全面で5MPaの圧力がかかるようにした。加圧時間としては30秒であった。また、剥離時の金型温度は80℃であった。金型からフィルムを剥離することによって、A層とB層を有する熱可塑性フィルムであって、A層に貫通孔を有し、B層に前記貫通孔に連通する凹部を有する熱可塑性フィルムを得た。 The mold temperature at the time of molding was 160 ° C., and the pressure was 5 MPa over the entire surface. The pressurization time was 30 seconds. The mold temperature at the time of peeling was 80 ° C. By peeling the film from the mold, a thermoplastic film having an A layer and a B layer, the A layer having a through hole, and the B layer having a recess communicating with the through hole is obtained. It was.
 かかる熱可塑性フィルム(金型から剥離した)フィルムを、引き続き連続的に、下流側の巻き取り装置側に送り出し、A層とB層を剥離し、各々巻き取った。これによって、貫通孔を有するA層を含む熱可塑性フィルムを得た。 The thermoplastic film (released from the mold) was continuously sent to the downstream side of the winding device, and the A layer and the B layer were peeled off and wound up. This obtained the thermoplastic film containing A layer which has a through-hole.
 (4)成形結果
 成形したフィルム(A層)の走査型電子顕微鏡((株)キーエンス VE-7800)で撮影した写真を図9、図10に示す。図9はA層を金型接触面から見た写真で、図10はA層の断面をみた写真である。設計どおり一辺が45μmの三角形の開口部を有する貫通孔が均一に形成された。開口部の三角形の形状を等面積の円に置き換えると孔径は33μm相当となる。また、図10からわかるように、図10におけるA層の下側の表面(剥離前にB層と接触していた面)の平面性が高く、バリの少ない貫通孔フィルムが得られた。
(4) Molding results Photographs taken with a scanning electron microscope (Keyence VE-7800, Inc.) of the molded film (A layer) are shown in FIGS. FIG. 9 is a photograph of the A layer viewed from the mold contact surface, and FIG. 10 is a photograph of a cross section of the A layer. Through holes having a triangular opening with a side of 45 μm were uniformly formed as designed. When the triangular shape of the opening is replaced with a circle of equal area, the hole diameter is equivalent to 33 μm. Further, as can be seen from FIG. 10, a through-hole film having a high flatness on the lower surface of the A layer in FIG. 10 (the surface in contact with the B layer before peeling) and few burrs was obtained.
 また、B層からなるフィルムには、三角錐の突起形状に対応した貫通孔に連通する凹部が均一に形成されていた。 Further, the film composed of the B layer was uniformly formed with recesses communicating with the through holes corresponding to the triangular pyramid protrusion shape.
 (比較例1)
 (1)積層構造体
 A層にポリプロピレンを主体としたポリマー(融点が144℃)を含む厚み30μmのフィルムを、B層にポリメタクリル酸メチル(PMMA)を主体としたポリマー(ガラス転移温度が105℃)を含む厚み175μmのフィルムを用いた。なお、A層の一方の表層には低密度ポリエチレンを主体とした厚さ6μmの粘着層を有する。A層の粘着層をB層の表面に貼り合わせるようにラミネートし、積層構造体を構成した。
(Comparative Example 1)
(1) Laminated structure A film having a thickness of 30 μm containing a polymer mainly composed of polypropylene (melting point: 144 ° C.) in the A layer, and a polymer mainly composed of polymethyl methacrylate (PMMA) in the B layer (glass transition temperature of 105 A film having a thickness of 175 μm was used. One surface layer of the A layer has a 6 μm thick adhesive layer mainly composed of low density polyethylene. The adhesive layer of A layer was laminated so that it might adhere to the surface of B layer, and the laminated structure was comprised.
 (2)金型
 三角錐の突起構造が全面に配置された金型を用いた。三角錐は底面が一辺が230μmの正三角形で、高さが70μmであり、全面に隙間なく配置されている。突起構造が加工されている領域は200mm(フィルム幅方向)×400mm(フィルム搬送方向)の領域である。金型の材質は厚さ20mmの銅を母材として表面にニッケル鍍金膜を施したものに、鍍金膜に三角錐パターンを機械加工により形成した。
(2) Mold A mold having a triangular pyramid protrusion structure disposed on the entire surface was used. The triangular pyramid is a regular triangle whose bottom is 230 μm on a side, has a height of 70 μm, and is arranged on the entire surface without any gaps. The region where the protrusion structure is processed is a region of 200 mm (film width direction) × 400 mm (film transport direction). The material of the mold was a 20 mm thick copper base metal with a nickel plating film on the surface, and a triangular pyramid pattern was formed on the plating film by machining.
 (3)成形装置および条件
 装置は図5に示すような装置を適用した。プレスユニットは油圧ポンプで加圧される機構で、内部に加圧プレートが上下に2枚取り付けられ、それぞれ、加熱装置、冷却装置に連結されている。金型は下側の加圧プレートの上面に設置される。また、金型に貼りついたフィルムを剥離するための剥離手段がプレスユニット内に設置されている。
(3) Molding apparatus and conditions The apparatus as shown in FIG. 5 was applied. The press unit is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively. The mold is placed on the upper surface of the lower pressure plate. A peeling means for peeling the film attached to the mold is installed in the press unit.
 成形時の金型温度は130℃とし、加圧力としては全面で5MPaの圧力がかかるようにした。加圧時間としては30秒であった。また、剥離時の金型温度は80℃であった。剥離したフィルムを下流側の巻き取り装置側に送り出し、A層とB層を剥離し、各々巻き取った。 The mold temperature during molding was 130 ° C., and the pressure was 5 MPa over the entire surface. The pressurization time was 30 seconds. The mold temperature at the time of peeling was 80 ° C. The peeled film was sent to the winding device side on the downstream side, the A layer and the B layer were peeled off, and each was wound up.
 (4)成形結果
 成形したフィルム(A層)の走査型電子顕微鏡((株)キーエンス VE-7800)で撮影した写真を図11、図12に示す。図11はA層を金型接触面から見た写真で、図12はA層の断面を見た写真である。A層に貫通孔が得られなかった。また、図12からわかるように、図12におけるA層の下側の表面(剥離前にB層と接触していた面)の平面性が不良であった。
(4) Molding results Photographs taken with a scanning electron microscope (Keyence VE-7800, Inc.) of the molded film (A layer) are shown in FIGS. FIG. 11 is a photograph of the A layer viewed from the mold contact surface, and FIG. 12 is a photograph of the cross section of the A layer. No through hole was obtained in the A layer. Further, as can be seen from FIG. 12, the flatness of the lower surface of the A layer in FIG. 12 (the surface that was in contact with the B layer before peeling) was poor.
10:積層構造体
11:A層
12:B層
20:金型
21:突起構造
50:積層構造体
50a:A層
50b:B層
51:巻出ロール
52:巻出ユニット
53:金型
54:プレスユニット
55:剥離手段
56:フィルム剥がし装置
57、58:巻取ロール
59:加圧プレート
60、61:バッファ手段
62:巻取ユニット
70:積層構造体
71:A層
72:B層
73、74:巻出ロール
75:ラミネート装置
76:加熱ロール
77:金型
78:ニップロール
79:冷却ロール
80:剥離ロール
81:フィルム剥がし装置
82、83:巻取ロール
10: Laminated structure 11: A layer 12: B layer 20: Mold 21: Protrusion structure 50: Laminated structure 50a: A layer 50b: B layer 51: Unwinding roll 52: Unwinding unit 53: Mold 54: Press unit 55: peeling means 56: film peeling device 57, 58: take-up roll 59: pressure plate 60, 61: buffer means 62: take-up unit 70: laminated structure 71: A layer 72: B layers 73, 74 : Unwinding roll 75: Laminating apparatus 76: Heating roll 77: Die 78: Nip roll 79: Cooling roll 80: Peeling roll 81: Film peeling apparatus 82, 83: Winding roll

Claims (9)

  1.  融点Tm1を有する熱可塑性樹脂P1を含むA層、および、ガラス転移温度Tg2を有する熱可塑性樹脂P2を含むB層が少なくとも積層された積層構造体に対して、突起構造を表面に有する金型を、Tm1以上かつTg2以上の温度まで加熱し、該積層構造体のA層側に押し当てることにより、A層に貫通孔を形成し、B層に前記貫通孔に連通する凹部を形成することを特徴とする熱可塑性フィルムの製造方法。 A mold having a protruding structure on the surface of a laminated structure in which an A layer containing a thermoplastic resin P1 having a melting point Tm1 and a B layer containing a thermoplastic resin P2 having a glass transition temperature Tg2 are laminated. Heating to a temperature of Tm1 or higher and Tg2 or higher and pressing against the A layer side of the laminated structure, thereby forming a through hole in the A layer and forming a recess in the B layer communicating with the through hole. A method for producing a thermoplastic film.
  2.  融点Tm1を有する熱可塑性樹脂P1を含むA層、および、ガラス転移温度Tg2を有する熱可塑性樹脂P2を含むB層が少なくとも積層された積層構造体に対して、突起構造を表面に有する金型を、Tm1以上かつTg2以上の温度まで加熱し、該積層構造体のA層側に押し当てることにより、A層に貫通孔を形成し、B層に前記貫通孔に連通する凹部を形成し、さらにその後、前記A層と前記B層を剥離し、前記A層を含む貫通孔を有する熱可塑性フィルムを得ることを特徴とする熱可塑性フィルムの製造方法。 A mold having a protruding structure on the surface of a laminated structure in which an A layer containing a thermoplastic resin P1 having a melting point Tm1 and a B layer containing a thermoplastic resin P2 having a glass transition temperature Tg2 are laminated. Heating to a temperature of Tm1 or higher and Tg2 or higher, and pressing the laminated structure against the A layer side, thereby forming a through hole in the A layer, forming a recess in the B layer communicating with the through hole, and Then, the said A layer and the said B layer are peeled, The thermoplastic film which has a through-hole containing the said A layer is obtained, The manufacturing method of the thermoplastic film characterized by the above-mentioned.
  3.  前記融点Tm1と前記ガラス転移温度Tg2との差(Tm1-Tg2)が-30~60℃であることを特徴とする請求項1または2に記載の熱可塑性フィルムの製造方法。 3. The method for producing a thermoplastic film according to claim 1, wherein a difference (Tm1−Tg2) between the melting point Tm1 and the glass transition temperature Tg2 is −30 to 60 ° C.
  4.  前記融点Tm1と前記ガラス転移温度Tg2との差(Tm1-Tg2)が-10~0℃であることを特徴とする請求項3に記載の熱可塑性フィルムの製造方法。 The method for producing a thermoplastic film according to claim 3, wherein the difference (Tm1-Tg2) between the melting point Tm1 and the glass transition temperature Tg2 is -10 to 0 ° C.
  5.  前記熱可塑性樹脂P1がポリエチレンまたはポリプロピレンであることを特徴とする請求項1~4のいずれかに記載の熱可塑性フィルムの製造方法。 The method for producing a thermoplastic film according to any one of claims 1 to 4, wherein the thermoplastic resin P1 is polyethylene or polypropylene.
  6.  前記熱可塑性樹脂P2がポリメタクリル酸メチルまたはポリカーボネートであることを特徴とする請求項1~5のいずれかに記載の熱可塑性フィルムの製造方法。 The method for producing a thermoplastic film according to any one of claims 1 to 5, wherein the thermoplastic resin P2 is polymethyl methacrylate or polycarbonate.
  7.  前記貫通孔の孔径が1~100μmであることを特徴とする請求項1~6のいずれかに記載の熱可塑性フィルムの製造方法。 The method for producing a thermoplastic film according to any one of claims 1 to 6, wherein the through-hole has a diameter of 1 to 100 µm.
  8.  前記A層の厚みが5~50μmであることを特徴とする請求項1~7のいずれかに記載の熱可塑性フィルムの製造方法。 The method for producing a thermoplastic film according to any one of claims 1 to 7, wherein the layer A has a thickness of 5 to 50 袖 m.
  9.  前記突起構造が錘形状と円柱形状とを連結させた構造であることを特徴とする請求項1~8のいずれかに記載の熱可塑性フィルムの製造方法。 The method for producing a thermoplastic film according to any one of claims 1 to 8, wherein the protrusion structure is a structure in which a weight shape and a columnar shape are connected.
PCT/JP2014/060166 2013-04-18 2014-04-08 Method for manufacturing thermoplastic film WO2014171365A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480021206.0A CN105121114B (en) 2013-04-18 2014-04-08 The manufacture method of thermoplastic film
JP2014523119A JP6380102B2 (en) 2013-04-18 2014-04-08 Method for producing thermoplastic film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-087076 2013-04-18
JP2013087076 2013-04-18

Publications (1)

Publication Number Publication Date
WO2014171365A1 true WO2014171365A1 (en) 2014-10-23

Family

ID=51731309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060166 WO2014171365A1 (en) 2013-04-18 2014-04-08 Method for manufacturing thermoplastic film

Country Status (4)

Country Link
JP (1) JP6380102B2 (en)
CN (1) CN105121114B (en)
TW (1) TWI624370B (en)
WO (1) WO2014171365A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166725A1 (en) * 2014-04-28 2015-11-05 シャープ株式会社 Filter having sterilizing activity, and container
JP2016517362A (en) * 2013-03-12 2016-06-16 スリーエム イノベイティブ プロパティズ カンパニー Polymer multilayer film and method for producing the same
JP2017030357A (en) * 2015-07-31 2017-02-09 東レ株式会社 Method for producing thermoplastic resin film
WO2017111148A1 (en) 2015-12-26 2017-06-29 東レ・メディカル株式会社 Cell sorting, culture, and growth vessel; and cell sorting, culture, and growth method
US9781926B2 (en) 2014-04-22 2017-10-10 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
US10251393B2 (en) 2014-11-20 2019-04-09 Sharp Kabushiki Kaisha Synthetic polymer film having surface provided with bactericidal activity
JP2019084744A (en) * 2017-11-07 2019-06-06 東レ株式会社 Mold, method of producing thermoplastic resin film using the same, and thermoplastic film
US10375953B2 (en) 2015-07-17 2019-08-13 Sharp Kabushiki Kaisha Synthetic polymer film having surface that is provided with bactericidal action, and film comprising same
JP2020515369A (en) * 2017-04-03 2020-05-28 ザ・ユナイテッド・ステイツ・ガバメント・アズ・リプレゼンティッド・バイ・ザ・デパートメント・オヴ・ヴェテランズ・アフェアズ Microfluidic diffusion devices and systems, and methods of making and using same
US10907019B2 (en) 2015-06-23 2021-02-02 Sharp Kabushiki Kaisha Synthetic polymer film provided with surface having sterilizing activity
US10934405B2 (en) 2018-03-15 2021-03-02 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, plastic product which includes synthetic polymer film, sterilization method with use of surface of synthetic polymer film, photocurable resin composition, and manufacturing method of synthetic polymer film
US10968292B2 (en) 2017-09-26 2021-04-06 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, manufacturing method of synthetic polymer film, and sterilization method with use of surface of synthetic polymer film
US10980255B2 (en) 2014-12-25 2021-04-20 Sharp Kabushiki Kaisha Food preservation method, food film, food container, and food handling method
US11364673B2 (en) 2018-02-21 2022-06-21 Sharp Kabushiki Kaisha Synthetic polymer film and production method of synthetic polymer film
US11883999B2 (en) 2015-09-17 2024-01-30 Sharp Kabushiki Kaisha Synthetic polymer film provided with surface having sterilizing effect, method for manufacturing synthetic polymer film and sterilization method using surface of synthetic polymer film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209388796U (en) * 2017-10-30 2019-09-13 伊利诺斯工具制品有限公司 A kind of insulated compound film and electric component
CN116100738A (en) * 2023-01-03 2023-05-12 嘉兴和雄服饰有限公司 A kind of preparation method of metal texture label

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050118393A1 (en) * 2002-01-18 2005-06-02 Corcoran Craig S. Sheet having microsized architecture
JP2006326860A (en) * 2005-05-23 2006-12-07 Asia Genshi Kk Perforated film and its manufacturing method
JP2009090538A (en) * 2007-10-09 2009-04-30 Sumitomo Electric Ind Ltd Plastic thin film manufacturing method
JP2009090615A (en) * 2007-10-12 2009-04-30 Sumitomo Electric Ind Ltd Manufacturing method of plastic thin film
JP2009113461A (en) * 2007-10-18 2009-05-28 Ricoh Elemex Corp Apparatus for manufacturing fine through-hole structural body, method for manufacturing fine through-hole structural body, fine through-hole structural body, liquid droplet nozzle, liquid droplet filter, liquid droplet head and liquid droplet apparatus
JP2010046598A (en) * 2008-08-21 2010-03-04 Panasonic Corp Method for manufacturing gas adsorbing filter and gas adsorbing filter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015523A (en) * 2004-06-30 2006-01-19 Konica Minolta Holdings Inc Molding method and molding apparatus
JP4591053B2 (en) * 2004-11-22 2010-12-01 住友電気工業株式会社 Processing method and processing apparatus
JP2010125843A (en) * 2008-12-01 2010-06-10 Ricoh Elemex Corp Manufacturing method for minute through hole structure, minute through hole structure, liquid droplet ejection head, and liquid droplet ejector
US20100193469A1 (en) * 2009-02-05 2010-08-05 National Cheng Kung University Method for manufacturing micro/nano three-dimensional structure
JP5072899B2 (en) * 2009-04-17 2012-11-14 株式会社日本製鋼所 Manufacturing method and manufacturing apparatus for microstructured body having through hole
JP5152935B2 (en) * 2010-04-28 2013-02-27 株式会社日本製鋼所 Manufacturing method of microstructured molded body having through-hole and microstructured molded body material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050118393A1 (en) * 2002-01-18 2005-06-02 Corcoran Craig S. Sheet having microsized architecture
JP2006326860A (en) * 2005-05-23 2006-12-07 Asia Genshi Kk Perforated film and its manufacturing method
JP2009090538A (en) * 2007-10-09 2009-04-30 Sumitomo Electric Ind Ltd Plastic thin film manufacturing method
JP2009090615A (en) * 2007-10-12 2009-04-30 Sumitomo Electric Ind Ltd Manufacturing method of plastic thin film
JP2009113461A (en) * 2007-10-18 2009-05-28 Ricoh Elemex Corp Apparatus for manufacturing fine through-hole structural body, method for manufacturing fine through-hole structural body, fine through-hole structural body, liquid droplet nozzle, liquid droplet filter, liquid droplet head and liquid droplet apparatus
JP2010046598A (en) * 2008-08-21 2010-03-04 Panasonic Corp Method for manufacturing gas adsorbing filter and gas adsorbing filter

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016517362A (en) * 2013-03-12 2016-06-16 スリーエム イノベイティブ プロパティズ カンパニー Polymer multilayer film and method for producing the same
US10278387B2 (en) 2014-04-22 2019-05-07 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
US11641854B2 (en) 2014-04-22 2023-05-09 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
US11638423B2 (en) 2014-04-22 2023-05-02 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
US9781926B2 (en) 2014-04-22 2017-10-10 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
US9781924B2 (en) 2014-04-22 2017-10-10 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
US9781925B2 (en) 2014-04-22 2017-10-10 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
US10136638B2 (en) 2014-04-22 2018-11-27 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
JP5851076B1 (en) * 2014-04-28 2016-02-03 シャープ株式会社 Bactericidal filter
US10071175B2 (en) 2014-04-28 2018-09-11 Sharp Kabushiki Kaisha Filter and container having microbicidal activity
WO2015166725A1 (en) * 2014-04-28 2015-11-05 シャープ株式会社 Filter having sterilizing activity, and container
US10251393B2 (en) 2014-11-20 2019-04-09 Sharp Kabushiki Kaisha Synthetic polymer film having surface provided with bactericidal activity
US10980255B2 (en) 2014-12-25 2021-04-20 Sharp Kabushiki Kaisha Food preservation method, food film, food container, and food handling method
US10907019B2 (en) 2015-06-23 2021-02-02 Sharp Kabushiki Kaisha Synthetic polymer film provided with surface having sterilizing activity
US10375953B2 (en) 2015-07-17 2019-08-13 Sharp Kabushiki Kaisha Synthetic polymer film having surface that is provided with bactericidal action, and film comprising same
JP2017030357A (en) * 2015-07-31 2017-02-09 東レ株式会社 Method for producing thermoplastic resin film
US11883999B2 (en) 2015-09-17 2024-01-30 Sharp Kabushiki Kaisha Synthetic polymer film provided with surface having sterilizing effect, method for manufacturing synthetic polymer film and sterilization method using surface of synthetic polymer film
WO2017111148A1 (en) 2015-12-26 2017-06-29 東レ・メディカル株式会社 Cell sorting, culture, and growth vessel; and cell sorting, culture, and growth method
JP2020515369A (en) * 2017-04-03 2020-05-28 ザ・ユナイテッド・ステイツ・ガバメント・アズ・リプレゼンティッド・バイ・ザ・デパートメント・オヴ・ヴェテランズ・アフェアズ Microfluidic diffusion devices and systems, and methods of making and using same
US10968292B2 (en) 2017-09-26 2021-04-06 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, manufacturing method of synthetic polymer film, and sterilization method with use of surface of synthetic polymer film
JP2019084744A (en) * 2017-11-07 2019-06-06 東レ株式会社 Mold, method of producing thermoplastic resin film using the same, and thermoplastic film
US11364673B2 (en) 2018-02-21 2022-06-21 Sharp Kabushiki Kaisha Synthetic polymer film and production method of synthetic polymer film
US10934405B2 (en) 2018-03-15 2021-03-02 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, plastic product which includes synthetic polymer film, sterilization method with use of surface of synthetic polymer film, photocurable resin composition, and manufacturing method of synthetic polymer film

Also Published As

Publication number Publication date
TWI624370B (en) 2018-05-21
TW201446517A (en) 2014-12-16
CN105121114B (en) 2016-11-30
JP6380102B2 (en) 2018-08-29
CN105121114A (en) 2015-12-02
JPWO2014171365A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6380102B2 (en) Method for producing thermoplastic film
JP5833592B2 (en) Protective film with release surface
TW200831274A (en) A device for intermittently forming films and a method of forming films
JP4135768B2 (en) Intermittent film forming apparatus and method
JP5622733B2 (en) Molding method
JP6787779B2 (en) Method for manufacturing polymer multilayer film
JP2015051629A (en) Method for producing laminate substrate and laminate substrate
JP6786930B2 (en) Manufacturing method of thermoplastic resin film
TW201219181A (en) Optical sheet with laminated double-sided light guide plate
TW200824882A (en) Method for manufacturing a sheet having transferred minute shape and apparatus for manufacturing the same
Melentiev et al. Large-scale hot embossing of 1 µm high-aspect-ratio textures on ABS polymer
TW201223742A (en) Optical sheet manufactured with micro-patterned carrier
JP4135769B2 (en) Intermittent film forming apparatus and forming method
JP5104228B2 (en) Fine shape transfer sheet manufacturing apparatus and fine shape transfer sheet manufacturing method
WO2009084615A1 (en) Die member, method for manufacturing the die member and method for forming light controlling member by using the die member
JP5167583B2 (en) Pattern forming method and pattern forming sheet
JP5469364B2 (en) Embossed transfer thermoplastic resin sheet, thermoplastic resin embossed sheet, and thermoplastic resin embossed sheet manufacturing method
JP2010030192A (en) Minute shape transfer sheet and method of manufacturing minute shape transfer sheet
JP5328040B2 (en) Laminated body having fine structure and method for producing the same
JP2019084744A (en) Mold, method of producing thermoplastic resin film using the same, and thermoplastic film
JP2015188576A (en) Method for manufacturing flake
WO2019159792A1 (en) Resin structure and method for manufacturing resin structure
JP2017164906A (en) Laminate having projection and method for producing the same
JP2008120073A (en) Manufacturing process and apparatus of detailed configuration transfer sheet
JP6095447B2 (en) Hollow structure plate manufacturing method and hollow structure plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021206.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014523119

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14786003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14786003

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载