WO2014026182A1 - TIME DIVISION DUPLEXING FOR EPoC - Google Patents
TIME DIVISION DUPLEXING FOR EPoC Download PDFInfo
- Publication number
- WO2014026182A1 WO2014026182A1 PCT/US2013/054500 US2013054500W WO2014026182A1 WO 2014026182 A1 WO2014026182 A1 WO 2014026182A1 US 2013054500 W US2013054500 W US 2013054500W WO 2014026182 A1 WO2014026182 A1 WO 2014026182A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phy
- layer
- delays
- delay
- epon
- Prior art date
Links
- VZCCETWTMQHEPK-QNEBEIHSSA-N gamma-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(O)=O VZCCETWTMQHEPK-QNEBEIHSSA-N 0.000 title claims abstract description 35
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 69
- 230000000295 complement effect Effects 0.000 claims abstract description 42
- 230000001934 delay Effects 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000000835 fiber Substances 0.000 claims description 55
- 230000005540 biological transmission Effects 0.000 claims description 37
- 238000012545 processing Methods 0.000 claims description 22
- 230000003287 optical effect Effects 0.000 claims description 21
- 238000007493 shaping process Methods 0.000 claims description 3
- 230000006978 adaptation Effects 0.000 claims description 2
- 238000009432 framing Methods 0.000 claims description 2
- 238000004590 computer program Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000003595 spectral effect Effects 0.000 description 9
- 229920006235 chlorinated polyethylene elastomer Polymers 0.000 description 8
- 238000000136 cloud-point extraction Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- SFVLTCAESLKEHH-WKAQUBQDSA-N (2s)-6-amino-2-[[(2s)-2-[[(2r)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]-3-(4-hydroxy-2,6-dimethylphenyl)propanoyl]amino]-n-[(2s)-1-amino-1-oxo-3-phenylpropan-2-yl]hexanamide Chemical compound CC1=CC(O)=CC(C)=C1C[C@H](NC(=O)[C@H](N)CCCN=C(N)N)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N)=O)CC1=CC=CC=C1 SFVLTCAESLKEHH-WKAQUBQDSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000007727 signaling mechanism Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0071—Provisions for the electrical-optical layer interface
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0064—Arbitration, scheduling or medium access control aspects
Definitions
- This disclosure is related to a communication system and more particularly to
- EPON Ethernet Passive Optical Networks
- EPON is an IEEE 802.3 protocol specification enabling Ethernet Passive Optical
- PONs Passive Optical Networks
- ODN Optical Distribution Network
- SLA Service Level Agreement
- OLT Optical Line Terminal
- CPE Customer Premise Equipment
- the service group for an EPON OLT often comprises up to 16 ⁇ 32 ONUs.
- the headend OLT can send messages Downstream (DS) over the ODN point-to-multipoint, and the ONUs at the CPE endpoints can send messages to the OLT multipoint-to-point over the ODN.
- DS Downstream
- the OLT produces downstream messages in the form of serial binary bitstreams that are converted to optical signals (e.g., OOK On-Off-Keying pulses produced by so-called‘digital’ laser) onto a fiber- optic cable and into the ODN to reach each ONU at the CPE endpoints.
- optical signals e.g., OOK On-Off-Keying pulses produced by so-called‘digital’ laser
- the ODN generally comprises passive optical components, so substantially the same optical signals reach all of the ONUs.
- due to ODN topology e.g., lengths of fiber and location of splitters
- there are generally differences in propagation times among all the branches in the ODN often resulting in differing arrival times and differing arrival amplitudes of the optical signal among all the ONUs.
- the OLT produces the downstream serial bitstream at some constant EPON data-rate, such as 1 Gbps or 10Gbps. If there are no messages to send downstream, then the OLT will transmit IDLE characters between data traffic. Thus, EPON downstream traffic is a continuous bitstream at some constant EPON data-rate.
- Upstream (US) transmissions are formed by ONUs as a serial binary bitstream, but are generally not continuous, so upstream traffic from a plurality of ONUs is coordinated by the OLT in order to ensure that non-continuous so-called burst transmissions from various ONUs do not collide (overlap in time) and that the OLT will observe an orderly sequential arrival of burst transmissions from different ONUs in a predictable order and at predictable times (within some tolerance of time-jitter).
- This approach is often called TDMA time-division multiple access.
- Upstream (US) traffic generally uses the same wavelength for both 1 Gbps and
- Downstream (DS) traffic generally uses different optical wavelengths for 1 Gbps and 10Gbps data-rates. It can be deduced that there is interest in supporting both symmetric and asymmetric upstream/downstream data-rates.
- bitstreams can be transmitted over the ODN in both directions simultaneously and independently (i.e., full duplex). This particular duplexing strategy is called Wavelength Division Duplex (WDD), or more generally, Frequency Division Duplex (FDD).
- WDD Wavelength Division Duplex
- FDD Frequency Division Duplex
- the OLT has exclusive use and access to the downstream wavelength(s), and the OLT can coordinate/schedule use of the upstream wavelength independently from the downstream.
- OLTs use EPON’s Multipoint Control Protocol (MPCP) to coordinate and schedule the TDMA upstream bursts.
- MPCP Multipoint Control Protocol
- the MPCP protocol relies on constant Round-Trip Time (RTT) as observed and measured by the OLT.
- RTT Round-Trip Time
- the OLT may measure a different RTT for each ONU, but that RTT must remain more or less constant (within some tolerance).
- MPCP messages include timestamps to facilitate OLT’s measurement of RTT.
- Each ONU maintains its own MPCP Clock by setting its clock counter value to that of the OLT’s timestamp embedded in downstream MPCP messages received from the OLT. Since fibers to each ONU may have varying length, the MPCP Clocks among different ONUs are not necessarily synchronized.
- the RTT comprises a downstream trip plus an upstream trip, which may be different (e.g., different wavelengths may propagate at different velocities on a fiber).
- the OLT will observe/measure RTTs, but may also know (e.g., be configured for) or assume some fractional split (e.g., 50%: 50%) of the RTT into separate downstream and upstream link delays.
- ONUs hold traffic destined for the OLT in various queues often associated with particular Service Flows (e.g., an ordered sequence of Ethernet Frames with similar classification), and identified by Logical Link Identifiers (LLIDs) assigned by the OLT.
- LLIDs Logical Link Identifiers
- ONUs report the status (e.g., fullness) of their various upstream queues in the form of a MPCP REPORT message.
- the OLT receives such REPORTs from the ONUs, then the OLT’s MAC Control Client (aka Scheduler) schedules upstream traffic from the various queues of various ONUs, then issues TDMA grants to particular ONUs in the form of MPCP GATE messages. All upstream traffic is scheduled or granted in this fashion, even REPORT messages must be granted via a GATE message in the downstream. GATE messages grant a startTime and a length.
- the ONU When an ONU’s MPCP Clock reaches the GATE-specified startTime, the ONU transmits upstream at the constant EPON data-rate, from the GATE-specified LLID queue, and for a duration equal to the GATE-specified length.
- the GATE-specified grant yields an upstream transmission of some integer number of Layer 2 payload bytes (the exact number of bytes is known to both ONU transmitter and OLT receiver), which usually corresponds to some integer number of variably-sized Ethernet Frames.
- the OLT’s scheduler arranges the grants, ensuring the OLT will observe an orderly sequential arrival of burst transmissions from a plurality of ONUs, arriving in a predictable order and at predictable times (within some tolerance of time-jitter).
- the OLT’s scheduler understands that grants will depend on the RTT for each particular ONU.
- the OLT could transmit downstream two GATE messages with identical startTime and identical short grant length, destined for two different ONUs, one with 1 km effective fiber length, and the other with 20km effective fiber length; understanding that the consequent upstream transmissions will not overlap/collide with each other, due to their differing RTTs (i.e., the upstream transmission from the more distant ONU will arrive after that from the nearby ONU).
- RTTs i.e., the upstream transmission from the more distant ONU will arrive after that from the nearby ONU.
- HFC Cable Access Networks are typically deployed by multiple system operators (MSOs), which are OSPs that operate multiple HFC cable systems. They are used to provide subscribers access to a variety of services, such as pay television (TV), video on demand (VoD), voice over internet protocol (VoIP) telephony, residential cable modem internet service, and small-medium business (SMB) Business Class Internet service. These various services have been designed, and the plants engineered, to support simultaneous coexistence on the shared HFC medium.
- MSOs system operators
- TV pay television
- VoD video on demand
- VoIP voice over internet protocol
- SMB small-medium business
- the point-to- multipoint topology deployed varies according to the size and footprint of the service group of CPEs, and how distant they may be from the headend (or Hub).
- the service group is often a multiple dwelling unit (MDU) with dense concentration of the CPEs in the service group, and relatively short distance to the headend often located in the basement (e.g., Fiber-to-the-Basement (FTTB)).
- MDU multiple dwelling unit
- FTTB Fiber-to-the-Basement
- the service group may be larger and more dispersed (e.g., spanning suburban neighborhoods), and the headend might be remotely located (e.g., tens of miles away).
- CPE endpoints are connected via coax (coaxial cable), and the coax plant is driven by one or more Radio Frequency (RF) amplifiers passing a variety of modulation techniques depending on the particular service and its assigned spectral occupation in the RF band (typically within 5 ⁇ 1002MHz). Smaller plants can be serviced by coax alone, so the headend can interface the coax plant directly. Remote headends can drive the HFC via fiber, with Fiber Nodes deployed at various locations in the middle of the network to convert to/from fiber and coax.
- RF Radio Frequency
- Fiber Nodes perform a relatively direct media conversion:
- DS from RF-modulated optical signal on fiber to RF electrical signal on coax to the CPEs;
- US from RF electrical signal on coax to RF-modulated optical signal on fiber to the headend;
- the topology of the coax plant is a cascade of various active and passive components, such as amplifiers, rigid trunk-line coax, feeder-line coax, multitaps, drop-line coax (to individual customer premises), and RF splitters. Cascade lengths vary from:
- Node+0 cascades: with zero active components (e.g., no in- line amplifiers) after the Fiber Node (if any), meaning the coax plant contains only passive elements (e.g., taps or splitters).
- Node+0 plants are quite common in China. They are less common among North America MSOs, but remain a goal for the future evolution of their HFCs.
- Node+1 with one active amplifier after the Fiber Node (if any);
- Node+2 with two active amplifiers after the Fiber node (if any);
- Node+N with N amplifiers (e.g., Node+5 cascades are common among North American MSOs’ HFCs).
- N amplifiers e.g., Node+5 cascades are common among North American MSOs’ HFCs.
- Many HFC plants have been deployed with FDD operation within certain frequency bands, using diplex filters installed throughout the HFC infrastructure (e.g., within various RF amplifiers).
- This FDD infrastructure was often deployed decades ago, before the advent of widespread internet use, and MSOs now find their existing split locations to restrict future use cases. In particular, MSOs are studying the possibility of moving the split location to allocate additional spectrum for the upstream channel. Moving the split is an expensive and labor-intensive upgrade that may require thousands of truckrolls to deploy (and with consequent service disruptions), so MSOs try to anticipate the evolution of future usage.
- spectral allocations typically 5 ⁇ 42MHz
- DS spectral allocations typically from 54MHz up to 750, 860 or 1002MHz as examples
- an allowance for a so- called‘Split’ or guard band typically 42 ⁇ 54MHz
- FDD diplexing filters are used to isolate the simultaneous US & DS transmissions from each other.
- Coax plants of HFC networks outside North America might be operated with a different FDD split location in the spectrum.
- An example of a FDD service is Data Over Cable System Interface Specification (DOCSIS), wherein cable modem service may occupy one or more single-carrier‘QAM’ channels occupying 6MHz of spectrum in the DS band, and one or more QAM channels in the US band.
- DOCSIS Data Over Cable System Interface Specification
- DOCSIS headend equipment is known as a Cable Modem Termination System (CMTS).
- CMTS Cable Modem Termination System
- DOCSIS CPEs include Cable Modems, Residential Gateways and Set-Top Boxes.
- MSOs have lashed more and more fiber overlaying the existing coax infrastructure in order to locate additional Fiber Nodes deeper into the cascade. This has the effect of segmenting the cascade, thereby reducing the service group size such that each subscriber competes with fewer neighbors for shared coax resources, resulting in greater throughput capacity available to CPEs.
- DOCSIS revisions, such as version 3.1 continue to improve capacity to address the seemingly inevitable migration to‘All-IP’ (Internet Protocol packetized) delivery, including video.
- All-IP Internet Protocol packetized
- EPoC EPON Protocol over Coax
- the MSO may already offer Business Class Internet (DOCSIS) services over the existing HFC plant, but some subscribers will require strict QoS performance (such as that described by the Metro Ethernet Forum specification MEF-23.1) SLAs that may require EPON to satisfy.
- DOCSIS Business Class Internet
- MSOs desire an invention that would reduce expenses by enabling deployment of EPON-class QoS to subscribers without having to deploy fiber to the premises, but instead utilizing the existing HFC plant, or the coax portion of the HFC plant.
- EPON OLTs are significantly less expensive than DOCSIS CMTSs, which can further reduce MSO expenses.
- EPoC represents a desire for MSOs to have a lower-cost option of using the existing HFC medium for EPON- like services.
- MSOs also desire that EPoC devices be manageable in some similar way as they manage EPON (e.g., DPoE DOCSIS Provisioning of EPON specification from CableLabs).
- the IEEE EPoC effort seeks to preserve unchanged EPON’s Ethernet Medium Access Control (MAC) Sublayer within Layer 2, and to make only‘minimal augmentation’ of other sublayers in Layer 2 (e.g., in the MPCP sublayer) and higher layers (such as Operations, Administration, and Management (OAM)), by confining most of the new RF coax protocols to a Layer 1 PHY specification.
- MAC Medium Access Control
- OAM Operations, Administration, and Management
- EPoC intends to support FDD over coax.
- EPoC CPEs which connect directly to the coax plant 20, are called coax networking units (CNUs) 10, and are desired to resemble ONUs 12 at Layer 2 and above, as illustrated in Figs. 1 and 2.
- An un-augmented or minimally augmented EPON OLT 14 connects to fiber plant 16 at the headend.
- an optical-coax unit (OCU) 18, aka FCU fiber-coax unit can be located somewhere in the middle that performs bidirectional conversions from EPON’s‘digital’ fiber 16 to RF coax 20.
- OCU 18 and its conversions are desired to be transparent to OLT 14 so that the OLT can remain un-augmented or minimally augmented.
- an OCU may filter-out DS payloads (based on LLID or some other criteria) that are not intended for CNUs residing on the coax that the OCU services.
- the digital fiber may carry payloads intended for ONUs, or intended for CNUs belonging to some other OCU, and it is desirable for OCUs to filter-out these payloads out before relaying DS traffic onto the RF coax in order to avoid unnecessary traffic from consuming coax resources.
- EPoC specifically contemplates a new coax line terminal (CLT) 22 device that would resemble an OLT, but instead interface via RF signals, either to the‘analog’ fiber 24 at the headend of an HFC, or directly to the headend of an all-coax plant, as shown in Figs. 3 and 4.
- CLT coax line terminal
- Preserving the EPON MAC sublayer at both endpoints implies PHY-layer processing and transport of the serial bitstream with constant RTT, corresponding to the sum of the downstream and upstream link delays:
- EPoC In EPoC, there may be alternative ways of measuring DS and US (and hence RTT) delays, such as measuring the difference in arrival times of Ethernet frames, instead of the usual bit-for-bit delay of the serial bitstream.
- An FDD mode of operation for EPoC seems certain. In the FDD mode of operation, downstream traffic gets converted relatively directly by the OCU from WDD/FDD over digital fiber into FDD over RF coax. Such relatively direct conversion by the OCU is also known as Media Conversion (aka PHY-level Repeater), since there is little complication beyond straightforward conversion from fiber medium to coax medium.
- upstream burst traffic from CNUs gets converted by the OCU from FDD on coax to WDD/FDD on digital fiber.
- the OCU performs media conversions for both downstream and upstream traffic simultaneously, by using to two different RF channels over coax.
- PHY-layer Media Conversion can be accomplished with constant processing delay to satisfy EPON protocols’ reliance on constant RTT.
- many MSOs desire an additional TDD mode of operation for EPoC. Such a TDD mode seems quite challenging to specify because the EPON protocols that MSOs wish to preserve were specifically designed only for FDD’s simultaneously available full-duplex US & DS channels.
- TDD Time-Division Duplex
- a single wavelength or RF spectral channel-width would be used, alternating-in-time between upstream and downstream (half duplex).
- TDD single half-duplex channel alternates between US and DS traffic, which implies the DS link would be unavailable during US traffic, resulting in fluctuating delays for DS traffic while waiting for the DS phase of the TDD Cycle and vice versa, resulting in fluctuating delays for US traffic while waiting for the US phase of the TDD Cycle.
- EPON constraints outlined above such as maintaining constant RTT, and the desire to preserve unchanged the MAC sublayer.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- TDD single spectral allocation could be made as wide as the sum of FDD’s paired allocations, enabling TDD’s burst datarate capability in either direction being approximately double that of FDD in either direction (for symmetric US and DS FDD allocations).
- Use of TDD in the Access Network would have enabled fewer or no splits in some coax plants.
- FIG. 1 is an illustration of an OLT to ONU fiber connection and an OCU
- Fig. 2 illustrates the OCU conversion of Fig. 1.
- Fig. 3 illustrates a new CLT that resembles the combination of an OLT plus an
- Fig. 4 illustrates a CLT that connects directly to a coax.
- Fig. 5 illustrates a DFT/iDFT embodiment that automatically establishes the complementarity to the variable delay, wherein at least one PHY-layer delay is variable, while at least one other PHY-layer establishes a delay which is complementary to the variable delay.
- Fig. 6 illustrates an alternative embodiment of rate-adaptation by instead postponing or delaying the US fiber transmission until sufficiently enough of the US burst has been received at the OCU via coax, and buffered in memory, until the corresponding US fiber transmission can be made at the full fiber datarate.
- the DS delay would comprise:
- TDD operation generally involves having some traffic suffer a wait until an appropriate phase of the TDD Cycle is available for transmission. Since traffic ingress generally arrives or otherwise become available asynchronously, at any time, its delay suffered waiting for a TDD Cycle phase is not constant, but variable. Such variable delays are the antithesis of EPON, and the current state of the art for EPoC, where a transmitting PHY establishes a fixed delay onto coax, and a separate fixed delay is established by a receiving PHY. [0043]
- the DS and US channels each are comprised of several links and paths.
- the DS channel may comprise all or some of: the OLT’s Tx PHY, the digital fiber ODN, the OCU’s fiber Rx PHY (similar to an ONU’s Rx PHY), the OCU’s coax Tx PHY, the coax cable plant, and the CNU’s coax Rx PHY.
- the US channel may comprise the corresponding path links but in reverse direction: CNU’s coax Tx PHY, the coax cable plant, the OCU’s coax Rx PHY, the OCU’s fiber Tx PHY (similar to an ONU’s Tx PHY), the digital fiber ODN, and the OLT’s Rx PHY.
- the DS channel may comprise: the CLT’s coax Tx PHY, the coax cable plant, and the CNU’s coax Rx PHY, as well as the converse US channel comprising: the CNU’s coax Tx PHY, the coax cable plant, and the CLT’s coax Rx PHY.
- Fig. 5 shows an embodiment wherein at least one such PHY-layer delay is not established as constant, but allowed to remain variable 100, while at least one other PHY-layer establishes a delay which is complementary 102 to variable delay 100.
- variable delay 100 on at least one path link allows the best modes of communication technology to be used in the new coax PHY for EPoC, with complementary delay 102 enabling support for variable delay 100, while maintaining a constant US delay, a constant DS delay, and a constant RTT.
- Best modes of communication technology would mean, for example, use of modern PHY-layer techniques yielding high spectral efficiency, high throughput, high QoS, high robustness, low latency, or low-cost.
- An example of complementary delay 102 can be: EPON was designed around serial bitstreams and fixed-delay processing of those serial bitstreams.
- Block processing 104 or 133 involves more or less simultaneous processing of blocks of information bits, often hundreds or thousands of bits at a time.
- the concept of EPON’s fixed bit-for-bit PHY-layer delay vanishes because hundreds or thousands of bits first need to be accumulated, then processed together as a block substantially simultaneously, then the resultant output bits are produced together as a block, all at essentially the same time.
- RF- modulated multi-carrier transmissions 110 such as OFDM or OFDMA, may involve hundreds or thousands of subcarriers, each carrying roughly 8-to-12 bits per subcarrier per symbol, and each being transmitted concurrently.
- Block processing 104 or 133 is used in OFDM, such as the Discrete Fourier Transform (DFT) 106, and its inverse DFT (iDFT) 108.
- DFT Discrete Fourier Transform
- iDFT inverse DFT
- Bits 112 from a serial bitstream 114 are accumulated in preparation for block processing 133. Some of those bits arrive early and must wait for subsequent remaining bits to arrive before block processing 133 can begin. This comprises variable delay 100, since the early-arriving bits must wait for a longer delay period than the remaining bits in the block that arrive subsequently.
- Fig. 5 depicts this example, including accumulation of bits 112 from a serial bitstream 114
- Receiving PHY 116 also does NOT establish a constant delay, but comprises a complementary delay 102 for each bit 112’ (i.e., a delay that is complementary to the variable delay). That is, when variable delay 100 suffered by a bit 112 is short, complementary delay 102 for bit 112’ is correspondingly long. Conversely, when variable delay 100 is long, complementary delay 102 for that bit 112’ is correspondingly short.
- variable delay 100 is depicted as the vertical shift-register 118 in transmitting PHY 114 with the serial bitstream clocked-in at the bottom of shift-register 118.
- complementary delay 102 is depicted as vertical shift-register 120 in receiving PHY 116 with the serial bitstream clocked-out from the top of shift-register 120. Both registers shift vertically, in the same direction, and at the same serial bitrate, so it is apparent from the depiction that those bits 112 that suffer a longer delay shifting through transmitting PHY 114 will incur a correspondingly shorter complementary delay shifting through receiving PHY 116, and vice versa. According to this particular example of the presently-described embodiment, it is this combination of variable delay 100 in transmitting PHY 114, plus a complementary delay 102 in receiving PHY 116, which together comprise a constant delay over a given coax path link for each bit:
- Complementary Delay Constant Delay– Variable Delay
- Modern PHY-layers such as those commonly used over coax, specify other best mode block-processing steps, such as Forward Error Correction (FEC), Scramblers, Interleavers, Ciphers, and/or other processes, that share similar characteristics to that of the example above. These characteristics include: An accumulation of bits, followed by block processing before transmission, with individual bits no longer necessarily having a unique transmission times like they would on EPON digital fiber. Some of these PHY-layer block- processes change the amount of data bits, such as FEC encoding which generates additional parity bits to be transmitted, thereby generating additional variability of delay.
- FEC Forward Error Correction
- the transmitting PHY-layer need not equalize these variable delays, and can instead freely allow them to incur, because a receiving PHY-layer will establish a complementary delay.
- the TDD mode of operation is analogous to the example described above.
- Ingress traffic may arrive at most any time, and perhaps thousands of bits of such information must in general be accumulated while waiting for an appropriate period within an appropriate phase of a TDD Cycle to become available for transmission. Some of those bits arrive early and other subsequent bits arrive later so this difference in waiting time comprises a variable delay.
- the transmitting PHY can transmit this ingress traffic onto coax with variable delay, with the receiving PHY establishing a complementary delay. The resulting sum of variable delay (for a transmitting PHY) plus
- the upstream may comprise a pair of such compensating PHYs: a transmitting PHY in the CNU, and a receiving PHY in the CLT or OCU; while the downstream may comprise a pair of such compensating PHYs: a transmitting PHY in the CLT or OCU, and a receiving PHY in the CNU.
- the sum of a constant delay for the US, plus a constant delay for DS, comprises a constant RTT.
- There are still other PHY-layer delays that must be suffered that are variable in duration. For example, there may be a need to perform rate-adaptation in an OCU between the EPON fiber datarate, and whatever datarate can be achieved over the coax segments.
- An alternative embodiment comprises rate-adaptation by instead postponing or delaying the US fiber transmission until sufficiently enough of the US burst has been received at the OCU via coax, and buffered in memory, until the corresponding US fiber transmission can be made at the full fiber datarate. This postponement or delay waiting for sufficiently enough of the US burst, is shown in Fig.
- MinDelay 120 > (#Bytes) ⁇ (CoaxDataRate) 122– (#Bytes) ⁇ (EPON FiberDataRate) 124.
- MinDelay time 120 is a variable delay, which depends on the length of each burst (#Bytes 126) as well as the coax 132 and digital fiber datarates 130.
- MinDelay 120 GATEmax ⁇ ⁇ (EPON FiberDataRate 130) ⁇ (CoaxDataRate 132)– 1 ⁇ , which describes MinDelay times that could easily exceed EPoC’s target latency and QoS requirements from MSOs.
- the OLT scheduler limits the duration of its GATE lengths in order to limit the variability of MinDelay duration, and thereby improve latency and QoS.
- the embodiment for rate-adaptation closely corresponds to that described for the upstream, comprising a variable delay time in the OCU before launching the DS transmission onto coax described by: MinDelay 120 > (#Bytes 126) ⁇ (EPON FiberDataRate 130)– (#Bytes 126) ⁇ (CoaxDataRate 132), with the receiving PHY in the CNU establishing the complementary delay.
- the OLT scheduler shapes its DS traffic destined for CNUs serviced by an OCU, avoiding long uninterrupted DS fiber transmissions, in order to limit the variability of the OCU’s MinDelay duration.
- Shaping controls the duration and occurrence rate of traffic, thereby limiting the variability of the #Bytes parameter, and hence the variability of the OCU’s MinDelay duration. This in-turn reduces the variability of the complementary delay established by the CNU’s receiving PHY, thereby improving EPoC’s DS latency and QoS.
- the OLT could implement such traffic shaping by scheduling so-called Pause or Idle symbols to interrupt DS fiber transmissions destined for CNUs serviced by an OCU, while maintaining the constant serial bitrate at the EPON MAC sub-layers.
- the complementarity between two PHY-layers one incurring a variable delay; the other a complementary delay; can be established by design of the two PHY-layers according to the presently- described embodiments.
- the DFT/iDFT example described in Fig. 5 is one such example, where the design, as depicted, automatically establishes the complementarity. In other cases, it may not be possible to cost-effectively establish such automatic complementarity.
- the transmitting PHY-layer includes in its transmission some indication comprising information to facilitate a receiving PHY-layer in establishing a complementary delay.
- the transmitting PHY-layer includes some indication of how much variable delay or Lateness was incurred waiting for a transmission to be launched onto the coax.
- the receiving PHY-layer uses said indication to help calculate how much complementary delay it will establish in order to equalize to some constant delay.
- the transmitting PHY-layer includes some indication for each of one or more Ethernet Frames aggregated or encapsulated in a transmission.
- the transmitting PHY based on whatever variable delay it has suffered, pre-calculates the corresponding complementary delay that will be required at the receiving PHY, and transmits some corresponding indication. This pre-calculation by the transmitting PHY has the benefit of simplifying the receiving PHY-layer by relieving it from having to calculate a complementary delay.
- the value of the complementary delay is calculated by the same PHY in which the variable delay was incurred, using the same clock (e.g., the transmitter’s MPCP clock) to measure both, thereby alleviating any clocking errors that might otherwise occur if two different clocks with differing counts or drift-rates were used.
- Such indications could be included in the transmissions in various ways, such as inside the data payload itself, in a header field, in a tag, via framing bits, via pilot tones, via timestamp(s), via preamble, via side-channel, via control- channel, via out-of-band channel, or any similar signaling mechanism known to those skilled in the art.
- the US path, or the DS path may comprise multiple segments, such as digital fiber, analog fiber, coax, or some other transmission medium, or various combinations of one or more of these, each with a transmitting PHY-layer and a receiving PHY-layer, often resulting in a plurality of PHY-layers for each path.
- variable delays may be suffered in one or more PHY-layers, and that complementary delays may be established or distributed in one or more PHY-layers, and that the presently- described invention teaches how to accommodate such embodiments, resulting in constant delay for any of: the US path, the DS path, or the RTT.
- the presently-described invention teaches about complementary delays
- An OCU might include some additional processing of US traffic that occurs after its coax PHY-layer receives a CNU’s transmission, but before the processed traffic is relayed onto digital fiber destined for the OLT.
- these additional processing steps it would be possible for these additional processing steps to establish the complementary delay, as described herein.
- someone skilled in the art will recognize that such examples are equivalent embodiments of this disclosure.
- While various embodiments of the disclosed method and apparatus have been described above, it should be understood that they have been presented by way of example only, and should not limit the claimed invention.
- the various diagrams may depict an example architectural or other configuration for the disclosed method and apparatus. This is done to aid in understanding the features and functionality that can be included in the disclosed method and apparatus.
- the term“including” should be read as meaning“including, without limitation” or the like; the term“example” is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof; the terms“a” or“an” should be read as meaning“at least one,”“one or more” or the like; and adjectives such as “conventional,”“traditional,”“normal,”“standard,”“known” and terms of similar meaning should not be construed as limiting the item described to a given time period or to an item available as of a given time, but instead should be read to encompass conventional, traditional, normal, or standard technologies that may be available or known now or at any time in the future.
- any or all of the various components of a module can be combined in a single package or separately maintained and can further be distributed in multiple groupings or packages or across multiple locations.
- the various embodiments set forth herein are described in terms of exemplary block diagrams, flow charts and other illustrations. As will become apparent to one of ordinary skill in the art after reading this document, the illustrated embodiments and their various alternatives can be implemented without confinement to the illustrated examples. For example, block diagrams and their accompanying description should not be construed as mandating a particular architecture or configuration.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Small-Scale Networks (AREA)
- Computer And Data Communications (AREA)
- Ropes Or Cables (AREA)
- Credit Cards Or The Like (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Stored Programmes (AREA)
- Information Transfer Between Computers (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380041510.7A CN104584470A (en) | 2012-08-10 | 2013-08-12 | Time division duplexing for epoc |
EP13828319.7A EP2883318A4 (en) | 2012-08-10 | 2013-08-12 | TIME DIVISION DUPLEXING FOR EPoC |
BR112015001359A BR112015001359A2 (en) | 2012-08-10 | 2013-08-12 | time division duplex for epoc |
MX2014014222A MX2014014222A (en) | 2012-08-10 | 2013-08-12 | TIME DIVISION DUPLEXING FOR EPoC. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261681808P | 2012-08-10 | 2012-08-10 | |
US61/681,808 | 2012-08-10 | ||
US201261692610P | 2012-08-23 | 2012-08-23 | |
US61/692,610 | 2012-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014026182A1 true WO2014026182A1 (en) | 2014-02-13 |
Family
ID=50068619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/054500 WO2014026182A1 (en) | 2012-08-10 | 2013-08-12 | TIME DIVISION DUPLEXING FOR EPoC |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2883318A4 (en) |
CN (1) | CN104584470A (en) |
BR (1) | BR112015001359A2 (en) |
MX (1) | MX2014014222A (en) |
WO (1) | WO2014026182A1 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101296229B (en) * | 2008-06-10 | 2012-12-12 | 杭州初灵信息技术股份有限公司 | Device for implementing dynamic time-slot TDMA distribution |
CN201533369U (en) * | 2009-05-05 | 2010-07-21 | 上海傲蓝通信技术有限公司 | Ethernet user end access device suitable for coaxial cable |
WO2014063014A1 (en) * | 2012-10-18 | 2014-04-24 | Entropic Communications, Inc. | TIME DIVISION DUPLEXING FOR EPoC |
-
2013
- 2013-08-12 WO PCT/US2013/054500 patent/WO2014026182A1/en active Application Filing
- 2013-08-12 MX MX2014014222A patent/MX2014014222A/en unknown
- 2013-08-12 EP EP13828319.7A patent/EP2883318A4/en not_active Withdrawn
- 2013-08-12 BR BR112015001359A patent/BR112015001359A2/en not_active IP Right Cessation
- 2013-08-12 CN CN201380041510.7A patent/CN104584470A/en active Pending
Non-Patent Citations (2)
Title |
---|
BOYD, ED.: "EPoC Delay", IEEE 802.3 EPOC STUDY GROUP, July 2012 (2012-07-01), XP055174995 * |
MELIA, VICTOR COBOS: "Design and Performance Evaluation of Passive Optical Networks", MASTER IN SCIENCE IN TELECOMMUNICATION ENGINEERING & MANAGEMENT, 14 June 2011 (2011-06-14), XP008175393 * |
Also Published As
Publication number | Publication date |
---|---|
MX2014014222A (en) | 2015-02-17 |
EP2883318A4 (en) | 2016-04-13 |
EP2883318A1 (en) | 2015-06-17 |
BR112015001359A2 (en) | 2017-07-04 |
CN104584470A (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130315595A1 (en) | TIME DIVISION DUPLEXING FOR EPoC | |
Ansari et al. | Media access control and resource allocation: For next generation passive optical networks | |
CN104541518B (en) | A kind of method and apparatus of the coaxial convergence-level of structure Ethernet passive optical network | |
EP2462751B1 (en) | Ethernet passive optical network over coaxial (epoc) | |
CN102577181B (en) | Via the EPON data-over-cable systems interface specifications upstream agent framework of optical fiber-coaxial cable hybrid network of future generation | |
US8848523B2 (en) | Method for sub-rating an ethernet passive optical network (EPON) medium access control (MAC) based communication link | |
US9319171B2 (en) | Method and apparatus of managing bandwidth allocation for upstream transmission in a unified optical-coaxial network | |
US9793993B2 (en) | Method and apparatus of delivering upstream data in ethernet passive optical network over coaxial network | |
US20080310842A1 (en) | Docsis compatible pon architecture | |
EP2624588A2 (en) | Ethernet passive optical network over coaxial physical layer and tuning | |
CN1312865C (en) | FTTH system for broadcast/communication convergence using IEEE 1394 | |
EP2248348B1 (en) | System, method and computer readable medium for providing dual rate transmission on a gigabit passive optical network | |
CN103026678B (en) | Hybrid orthogonal frequency division multiplexing time domain multiplexing passive optical network | |
US20190141422A1 (en) | Method And Apparatus For Unifying An Epon Access Network And A Coax-Based Access Network | |
US20150280816A1 (en) | Optical beat interference detection and mitigation | |
US9860617B2 (en) | Upstream frame configuration for ethernet passive optical network protocol over coax (EPoC) networks | |
WO2014063014A1 (en) | TIME DIVISION DUPLEXING FOR EPoC | |
EP2883318A1 (en) | TIME DIVISION DUPLEXING FOR EPoC | |
Song | Long-reach passive optical networks | |
EP2795817A2 (en) | System and method for providing resilience in communication networks | |
Saha | Efficient DBA Algorithms for Delay Reduction and Solving the Over-granting Problem of Long Reach PON | |
HK1185469A (en) | Ethernet passive optical network over coaxial (epoc) physical layer (phy) link up and tuning | |
HK1169769A (en) | Physical layer chip and method for distributing rates of epon mac traffic | |
HK1193293A (en) | Ethernet passive optical network over coaxial (epoc) physical layer link and auto-negotiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13828319 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/014222 Country of ref document: MX |
|
REEP | Request for entry into the european phase |
Ref document number: 2013828319 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013828319 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015001359 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015001359 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150121 |