+

WO2014098333A1 - Optical film and liquid crystal display including same - Google Patents

Optical film and liquid crystal display including same Download PDF

Info

Publication number
WO2014098333A1
WO2014098333A1 PCT/KR2013/005191 KR2013005191W WO2014098333A1 WO 2014098333 A1 WO2014098333 A1 WO 2014098333A1 KR 2013005191 W KR2013005191 W KR 2013005191W WO 2014098333 A1 WO2014098333 A1 WO 2014098333A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
liquid crystal
thickness
surface layer
Prior art date
Application number
PCT/KR2013/005191
Other languages
French (fr)
Korean (ko)
Inventor
유소희
김란
이승규
이범덕
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014098333A1 publication Critical patent/WO2014098333A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133632Birefringent elements, e.g. for optical compensation with refractive index ellipsoid inclined relative to the LC-layer surface
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/10Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate
    • G02F2413/105Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate with varying inclination in thickness direction, e.g. hybrid oriented discotic LC

Definitions

  • the present invention relates to an optical film and a liquid crystal display including the same. More specifically, the present invention relates to an optical film and a liquid crystal display including the same, in which the inclination orientation angle according to the thickness has a specific profile and can significantly improve the viewing angle and the front contrast ratio.
  • Liquid crystal displays are one of the most widely used flat panel displays.
  • a liquid crystal display has a structure in which a liquid crystal cell layer is enclosed between a TFT thin film transistor array substrate and a color filter substrate.
  • a polarizing film (polarizing plate) is provided outside the array substrate and the color filter substrate.
  • the polarizer may control polarization by selectively transmitting light in a specific direction among light incident from the backlight and light passing through the liquid crystal cell layer.
  • the polarizing plate generally includes a polarizer, a protective layer, and a compensation film capable of polarizing light in a specific direction.
  • the liquid crystal display Due to the refractive anisotropy of the liquid crystal, the liquid crystal display has a fundamental problem of a viewing angle.
  • Wide viewing angle technologies such as vertical alignment (VA) mode or horizontal alignment mode (IPS, FFS), which improve the viewing angle of the conventional TN twisted nematic mode, are adopted.
  • One object of the present invention is to provide an optical film and a liquid crystal display including the same that can greatly improve the viewing angle of the liquid crystal display.
  • Still another object of the present invention is to provide an optical film and a liquid crystal including the same, which can improve light leakage mura and contrast ratio (CR) generated from liquid crystal compensation.
  • CR contrast ratio
  • the optical film is a non-liquid crystalline thermoplastic single film, the film comprising a first and a low 12 surface layer located on the surface in the thickness direction; And a film inner layer positioned between the first and second surface layers, wherein the second surface layer faces the liquid crystal cell, and the film inner layer is oriented obliquely in a thickness direction, from the first surface layer.
  • the inclined orientation angle increases toward the second surface layer, thereby reducing the profile beyond the inflection point.
  • the inflection point may be closer to the second surface layer than to the first surface layer.
  • the inflection point may be located between the centerline of the film thickness and the second surface layer.
  • the inflection point may be located about 1 to 49.9% of the thickness from the second surface layer.
  • the first surface layer may oppose the polarizer
  • the first and second surface layers may not be tilted in the thickness direction of the film.
  • the first and second surface layers may have the following relationship:
  • nx, ny and nz are the refractive indices in the x- axis, y- axis and z- axis directions of the film, respectively).
  • the first and second surface layers may have a thickness from about 1.1 to about 20 from the surface.
  • the first and second surface worms may be about 1 to about 20% of the total thickness of the film.
  • the film may have a maximum film ⁇ angle of about 15 to 35 ° .
  • the ratio of the maximum ⁇ angle ( ⁇ ) and the minimum ⁇ angle ( ⁇ 2) ( ⁇ 1 / ⁇ 2) may be about 1.15-7.0.
  • thermoplastic resin cycloolefin resin, polycarbonate resin, polyolefin resin, aromatic vinyl resin, polyamide resin, polyimide resin, polyester resin, acrylic resin, etc.
  • More than one species can be applied.
  • the optical film may have an in-plane phase retardation value (Ro ′) of about 20 to about 110 nm defined by Equation 1 at 550 nm: [Equation 1]
  • nx and ny ' are the refractive indexes in the x- and y'-axis directions, respectively, and d is the thickness of the film).
  • the optical film may have a thickness direction retardation value (Rth ') of about 80 to about 190 nm at 550 nm as defined by Equation 2:
  • nx, ny ', ⁇ ⁇ ' is the refractive index in the ⁇ axis, y 'axis and z' axis direction, respectively, d is the thickness of the film).
  • the liquid crystal display includes a substrate including a liquid crystal cell; And the optical film laminated on at least one surface of the substrate.
  • a polarizing plate is formed on the other surface of the optical film, the second surface layer of the optical film may face the substrate and the first surface layer may face the polarizing plate.
  • liquid crystal display can be in TNCTwisted Nematic mode.
  • the optical film of the present invention has an effect of greatly improving the light leakage mura and contrast ratio generated in the viewing angle and liquid crystal compensation of the liquid crystal display.
  • 1 is a profile of an oblique orientation angle of the thickness term of an optical film according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an optical film according to an embodiment of the present invention.
  • 3 is a conceptual diagram for explaining the film ⁇ angle.
  • Figure 4 schematically shows the image of the polarizing microscope image according to the rotation angle when the optical film of the present invention between the orthogonal Nicole polarizing plate and rotated from 0 to 90 degrees.
  • FIG. 5 is a schematic diagram showing a process of manufacturing an optical film according to an embodiment of the present invention.
  • FIG. 7 illustrates a contour map of contrast ratios measured by an EZ contrast spectrometer for an optical film prepared in Example 5.
  • FIG. 8 shows a contour map of contrast ratios measured with an EZ contrast spectrometer for the optical film prepared in Comparative Example 9.
  • FIG. 8 shows a contour map of contrast ratios measured with an EZ contrast spectrometer for the optical film prepared in Comparative Example 9.
  • ⁇ angle oblique orientation angle
  • the optical film of the present invention is inclined in the thickness direction, and the inclination orientation angle gradually increases from the first surface layer 10a to the second surface layer 10b through the film inner layer 10c. It increases and reaches the inflection point (BP) has a maximum orientation angle, and after the inflection point (BP) is characterized by having a profile that decreases again. That is, the profile has a form of splay profile that forms a decay curve after an increase rather than a profile of progressive increase (WV DLC).
  • the position of the inflection point BP having the maximum inclination orientation angle may be closer to the second surface layer 10b than to the first surface layer 10a.
  • the inflection point BP may be located between the centerline C of the film thickness and the second surface layer 10b.
  • the inflection point BP having the maximum inclination alignment angle is located closer to the liquid crystal cell, thereby compensating for the alignment liquid crystal in the TN liquid crystal, that is, the lying liquid crystal.
  • the inflection point may be located about 1 to 49.9% of the thickness, for example about 5 to 45%, preferably about 10 to 35% of the thickness of the second surface layer. The viewing angle compensation effect is excellent at this position.
  • the optical film 10 of the present invention comprises: first and second surface layers 10a and 10b positioned on the surface in the thickness direction; And a film inner layer 10c positioned between the first and second surface layers.
  • the second surface layer 10b may face the liquid crystal cell
  • the first surface layer 10a may face the polarizer.
  • the film inner layer 10c is obliquely oriented in the thickness direction.
  • the first and second surface layers 10a, 10b are not obliquely oriented in the thickness direction of the film.
  • the film inner layer 10c increases the inclination orientation angle toward the second surface layer from the first surface layer to decrease the profile beyond the inflection point BP.
  • Have The optical film 10 is a single liquid crystal thermoplastic resin film.
  • the material that can be used as the optical film 10 of the present invention can be applied to a transparent, extrudable thermoplastic resin surface.
  • the thermoplastic resin may include cycloolefin resin, polycarbonate resin, polyolefin resin, aromatic vinyl resin, polyamide resin, polyimide resin, polyester resin, acrylic resin, and the like. It may be used alone or in combination of two or more.
  • a single film means that the surface layer and the film inner layer are formed by extrusion without forming a separate coating or adhesive layer. That is, no adhesive layer or coating layer is formed between the first and second surface layers 10a and 10b and the film inner layer 10c, and is the same component and is merely classified for convenience.
  • the optical film of the present invention is formed to have different orientations according to the surface and the interior thereof, thereby improving the viewing angle and light leakage.
  • the manufacturing of the optical film having different inclination orientations according to the surface and the inside can be performed in a single extrusion process, the process can be shortened and manufacturing cost can be reduced.
  • the system 1 and crab 2 surface layers 10a and 10b may have a thickness (tl, t2) from the surface of about 1 to about 20 ⁇ , preferably about 3 to about 10 / iii. It is possible to secure an excellent viewing angle in the above range.
  • first and second surface worms may be about 1 to about 20% of the total thickness of the film. It is possible to secure an excellent viewing angle in the above range.
  • the first and second surface layers may have the following relationship:
  • nx, ny and nz are the refractive indices in the x- axis, y-axis and z- axis directions of the film, respectively).
  • the film inner layer 10c thickness t3 may be about 5 to about 100 iffli, preferably about 10 to about 65.
  • 3 is a conceptual diagram for explaining the film ⁇ angle.
  • the film inner layer 10c may have a film ⁇ angle of about 5 ° to about 35 °, which is defined as an angle at which orthogonal nicotine transmittance is minimum.
  • the film ⁇ angle is the same as the intercept alignment angle, and as shown in FIG. 3, an angle formed between the ⁇ axis in the thickness direction and the ⁇ ′ axis perpendicular to the alignment plane. This film ⁇ angle between the polarizer Orthogonal Nicole can be observed to obtain the angle at which orthogonal nicotine transmittance is minimum.
  • the film inner layer 10c has different values of the film ⁇ angles along the z axis in the thickness direction, and forms a profile as shown in FIG. 1.
  • the maximum film ⁇ angle at the inflection point (BP) may be about 15-35 ° . It is excellent in the viewing angle improvement effect in the said range.
  • the ratio of the maximum ⁇ angle ( ⁇ ) and the minimum ⁇ angle ( ⁇ 2) ( ⁇ 1 / ⁇ 2) is about: ⁇ 7.0, more preferably about 1.15-7.0, preferably about 1.5-5 More preferably about 2 to 4.5.
  • the viewing angle compensation is excellent in the above range.
  • the optical film may have an in-plane phase retardation value (Ro) of about 20 to about 110 nm at 550 nm. There is an advantage of viewing angle compensation in this range.
  • the in-plane phase retardation value Ro may be about 50 to about 100 nm.
  • nx and ny ' are the refractive indexes in the x- and y'-axis directions, respectively, and d is the thickness of the film).
  • the optical film may have a thickness direction retardation value (Rth) of about 80 to about 190 nm, which is defined by Equation 2 at 550 nm. There is an advantage of viewing angle compensation in this range.
  • the thickness direction phase retardation value Rth may be about 120 to about 180 nm.
  • nx, ny ', ⁇ ' is the refractive index in the x-axis, y'-axis and z'-axis direction, respectively, d is the thickness of the film).
  • the thickness d of the film may be from about 30 to about 110, preferably from about 50 to about 100 j ⁇ rn.
  • Figure 4 schematically shows the image of the polarizing microscope image according to the rotation angle when the optical film of the present invention between the orthogonal Nicole polarizing plate and rotated from 0 to 90 degrees.
  • the black part in the figure means the darkest color (extinction) under orthogonal nicole.
  • the matte level is formed at any angle on the surface of the film, while the inner layer of the film does not exist, it can be seen that the orientation is in accordance with the thickness.
  • the optical film of the present invention melt-extruded non-liquid crystal thermoplastic resin; And manufacturing the melt-extruded thermoplastic resin in the form of a film by passing the first molding through the second molding and the second molding.
  • the surface temperature of the first and second molding is It is below the glass transition temperature (Tg) of a thermoplastic resin, It is characterized by generating the inclination angle to a film inner layer by generating a different shear force in the film surface and inside according to the run of the said 1st and 2nd forming roll.
  • Tg glass transition temperature
  • thermoplastic resin 44 melt-extruded from the die 43 is passed between the first molding roll 41 and the second molding 42 to be produced in the form of a film.
  • the film may be manufactured in a multilayer structure using a main extruder and a coextruder.
  • the main extruder is manufactured by forming a film inner layer and the sub-extruder to form a surface layer, and separately setting the extrusion temperatures of the main extruder and the sub-extruder.
  • the temperature of the surface layer coming out of the auxiliary extruder may be set low, and the temperature of the film inner layer coming out of the main extruder may be set high so as to have a higher value when the inclination angle between the rolls is generated.
  • the melt-extruded thermoplastic resin is in contact with a molding roll to form a film, whereas the inside of the film is higher than the Tg temperature, whereas the surface of the film is different from the Tg temperature.
  • the forming rolls at both ends run in a state where a difference in forming temperature between the film surface and the inside is generated, different shear forces are generated on the surface and inside of the film to have an inclination angle in the thickness direction.
  • the surface temperature Tr of the first and second moldings (41, 42) may satisfy the following Equation 3:
  • Tr is the thermoplastic resin temperature immediately after melt extrusion
  • Tr is the surface temperature of the first and second moldings
  • the first and second moldings 41 and 42 may form various film ⁇ angles by varying the elasticity of each other.
  • the first molding 41 may be larger in elasticity than the second molding roll 42.
  • a combination of rubber roll + FSR, FSR + FSR roll, SFR + FSR roll, metal roll + FSR, SFR roll + SFR, metal + rubber roll can be used.
  • the FSR is a roll in which a water layer and a steel layer are sequentially formed on a metal surface
  • the SFR is a roll in which a rubber layer and a steel layer are sequentially formed on a surface of a metal.
  • first and second moldings may vary in speed at (41, 42).
  • the speed of the first molding 41 can be faster than the second molding 42.
  • the speed of the first molding can be driven at about 0.9 to about 1.2 times the speed of the second molding roll.
  • the thermoplastic resin film passed between the first and second moldings 41 and 42 may further include stretching.
  • the stretching may be biaxial stretching, and the stretching may be performed at about 5 to 20% of the traveling direction in the opposite traveling direction (TD). In this range, the front phase difference Ro 'and the side phase difference Rth' can be secured. Preferably, the stretching may be performed at about 8 to 15% of the running direction in the opposite traveling direction (TD).
  • the stretching may be performed at a temperature lower than the glass transition temperature (Tg) of the thermoplastic resin.
  • Tg glass transition temperature
  • the stretching may be carried out at a temperature of about 1 to 20 ° C, for example about 5 to 15 ° C lower than the glass transition temperature (Tg) of the thermoplastic resin.
  • the film ⁇ angle may be reduced compared to the film ⁇ angle immediately after extrusion.
  • the film ⁇ angle after stretching may be about 1-20 degrees lower than the film: ⁇ angle immediately after extrusion.
  • Another aspect of the invention relates to a liquid crystal display comprising the optical film.
  • the liquid crystal display to which the optical film of the present invention is applied can secure an excellent viewing angle, especially in TN twisted nematic (LC) mode liquid crystals, and can improve light leakage mura and contrast ratios generated in liquid crystal compensation.
  • LC TN twisted nematic
  • the liquid crystal display comprises a substrate comprising a liquid crystal cell; And the optical film laminated on at least one surface of the substrate.
  • the other surface of the optical film may further include a polarizing plate.
  • 6 is a schematic cross-sectional view of a liquid crystal display according to one embodiment of the present invention.
  • the liquid crystal panel includes a liquid crystal cell layer 40 encapsulated between the U-substrate 30a and the second substrate 30b, and the present invention is provided on one surface of the first and second substrates 30a.
  • Optical films 10 may be laminated respectively.
  • the first substrate 30a may be a color filter (CF) substrate (upper substrate)
  • the second substrate 30b may be a TFT (Thin Film Transistor) substrate (lower substrate).
  • the upper (surface) and the lower (surface) are given names for convenience based on the upper and lower sides of the drawings and are not necessarily used as names meaning upper and lower parts.
  • the first substrate 30a and the second substrate 30b may be a glass substrate or a plastic substrate.
  • the plastic substrate can be used for a flexible display Polyethylene terephthalate (PET), polycarbonate (PC), polyimide (Pl),
  • PEN Polyethylene naphthalate
  • PES polyether sulfone
  • PARC Polyary late
  • It may be a plastic substrate such as a cycloolefin copolymer (COC), but the present invention is not limited thereto.
  • COC cycloolefin copolymer
  • the optical film 10 of the present invention may be stacked on the first substrate 30a. In addition, the optical film 10 of the present invention may be stacked below the second substrate 30b.
  • the polarizing plate 20 including a polarizer and a protective film may be formed on the optical film 10.
  • the second surface layer 10b of the optical film may face the substrates 30a and 30b, and the first surface layer 10a may face the polarizer 20.
  • a conventional pressure-sensitive adhesive layer, a reflective ring layer, a hard coating layer may be further formed.
  • the liquid crystal cell layer 40 may be a liquid crystal cell layer including a twisted nematic (TN) mode liquid crystal.
  • TN liquid crystal displays have liquid crystals standing vertically in a liquid crystal cell when a voltage is applied, while liquid crystals are laid on the surface of the alignment agent due to anchoring force with the alignment agent. At this time, the viewing angle of the TN liquid crystal display is narrowed by the lying liquid crystal, and the optical film of the present invention can compensate for the lying liquid crystal in the TN liquid crystal by having a maximum inclination orientation angle on the plane attached to the liquid crystal-display.
  • the configuration and operation of the present invention will be described in more detail with reference to preferred embodiments of the present invention. However, the following examples are provided to aid the understanding of the present invention, and the scope of the present invention is not limited to the following examples. Do not. The information that is not described here will be omitted in the technical field can be inferred by those skilled in the art. Example
  • the RX4500 thermoplastic resin manufactured by JSR was melt-extruded with a T die at 230-280 ° C., and was produced in a film form by passing an FSR between and a metal roll. At this time, the FSR was set so that the ratio of speed / metal roll speed was 1.01 to 1.03.
  • the extruded film was stretched 8 to 15% of the traveling direction in the opposite traveling direction (TD) to prepare an optical film having a thickness of 90 ⁇ .
  • the maximum ⁇ angle ( ⁇ 3) from the first surface layer to the film thickness center (C) and the maximum ⁇ angle ( ⁇ ) and ⁇ ⁇ position between the film thickness center (C) and the second surface layer were changed as shown in Table 1 below.
  • ⁇ angle maximum is 2nd of total thickness
  • the distance from the surface layer is calculated in%.
  • the film thickness was 90 ⁇ m, microtome using GLASS KNIFE so that the section thickness 10.
  • the film slices were placed on glass, sandwiched between orthogonal nicotine polarizing plates, and observed with a polarizing microscope to confirm the orientation according to the angle. Table 1]
  • Nx, ny 'and nz' were calculated using Axo scan for the prepared film, and Ro 'and Rth 'value was calculated
  • nx and ny ' are the refractive indexes in the x- and y'-axis directions, respectively, and d is the thickness of the film).
  • nx'ny 'and nz' are the refractive indices in the x-axis, y'-axis, and z'-axis directions, respectively, and d is the thickness of the film).
  • Contrast Ratio The ratio of luminance to the back and white bumps of the screen when the polarizer was attached to the liquid crystal panel was measured by EZ contrast. Contrast ratio (contrast ratio) contour maps measured with an EZ contrast spectrometer for the optical films prepared in Example 5 and Comparative Example 9 are shown in FIGS. 7 and 8, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention relates to an optical film and a liquid crystal display including same. The optical film according to the present invention is a non-liquid crystal thermoplastic resin single film. The film includes first and second surface layers that are positioned on a surface in a thickness direction; and a film inner layer that is positioned between the first and second surface layers. The second surface layer faces a liquid crystal cell. The inner layer is oriented to be inclined in the thickness direction. The inclination orientation angle increases from the first surface layer to the second surface layer to provide a profile which decreases through an inflection point.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
광학필름 및 이를 포함하는 액정 디스플레이 【기술분야】  Optical film and liquid crystal display including the same
본 발명은 광학필름 및 이를 포함하는 액정 디스플레이에 관한 것이다. 보다 구체적으로 본 발명은 두께에 따른 경사 배향 각도가 특정 프로파일을 갖도록 하여 시야각과 정면 명암비를 현저히 개선할 수 있는 광학필름 및 이를 포함하는 액정 디스플레이에 관한 것이다.  The present invention relates to an optical film and a liquid crystal display including the same. More specifically, the present invention relates to an optical film and a liquid crystal display including the same, in which the inclination orientation angle according to the thickness has a specific profile and can significantly improve the viewing angle and the front contrast ratio.
【배경기술】 Background Art
액정 디스플레이 (liquid crystal display, LCD)는 현재 가장 널리 사용되고 있는 평판 디스플레이 (flat panel display) 중 하나이다. 일반적으로 액정 디스플레이는 TFT Thin Film Transistor) 어레이 기판과 칼라필터 기판 사이에 액정셀층이 봉입된 구조를 취한다. 상기 어레이 기판과 칼라필터 기판에 존재하는 전극에 전기장을 인가하면 그 사이에 봉입된 액정셀층의 액정 분자의 배열이 변하게 되고, 이를 이용해 영상을 표시하게 된다. 한편, 어레이 기판과 칼라필터 기판의 외측에는 편광필름 (편광판)이 구비되어 있다. 편광판은 백라이트로부터 입사되는 빛 및 액정셀층을 통과한 빛 중 특정 방향의 빛을 선택적으로 투과함으로써 편광을 제어할 수 있다. 편광판은 빛을 특정 방향으로 편광시킬 수 있는 편광자 (polarizer), 보호층 및 보상필름을 포함하는 것이 일반적이다.  Liquid crystal displays (LCDs) are one of the most widely used flat panel displays. In general, a liquid crystal display has a structure in which a liquid crystal cell layer is enclosed between a TFT thin film transistor array substrate and a color filter substrate. When an electric field is applied to the electrodes on the array substrate and the color filter substrate, the arrangement of the liquid crystal molecules of the liquid crystal cell layer enclosed therebetween changes, thereby displaying an image. On the other hand, a polarizing film (polarizing plate) is provided outside the array substrate and the color filter substrate. The polarizer may control polarization by selectively transmitting light in a specific direction among light incident from the backlight and light passing through the liquid crystal cell layer. The polarizing plate generally includes a polarizer, a protective layer, and a compensation film capable of polarizing light in a specific direction.
액정의 굴절율 이방성에 기인하여 액정 디스플레이는 시야각이라는 근본적인 문제를 안고 있다. 기존의 TN Twisted Nematic) 모드의 시야각을 개선한 수직배향 (VA) 모드 또는 수평배향 모드 (IPS, FFS) 등의 광시야각 기술이 많이 채용되고 있다.  Due to the refractive anisotropy of the liquid crystal, the liquid crystal display has a fundamental problem of a viewing angle. Wide viewing angle technologies, such as vertical alignment (VA) mode or horizontal alignment mode (IPS, FFS), which improve the viewing angle of the conventional TN twisted nematic mode, are adopted.
종래에는 두께방향으로 배향된 시야각 보상필름이 개발되었으나ᅳ 콘트라스트비 (CR)가 저하되는 문제가 있다.  Conventionally, a viewing angle compensation film oriented in the thickness direction has been developed, but there is a problem in that the contrast ratio (CR) is lowered.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명의 하나의 목적은 액정 디스플레이의 시야각을 크게 개선할 수 있는 광학필름 및 이를 포함하는 액정 디스플레이를 제공하는 것이다.  One object of the present invention is to provide an optical film and a liquid crystal display including the same that can greatly improve the viewing angle of the liquid crystal display.
본 발명의 또 다른 목적은액정 보상에서 발생하는 빛샘 무라와 콘트라스트비 (CR)를 개선할 수 있는광학필름 및 이를 포함하는 액정 디스플레이를 제공하는 것이다. 【기술적 해결방법】 Still another object of the present invention is to provide an optical film and a liquid crystal including the same, which can improve light leakage mura and contrast ratio (CR) generated from liquid crystal compensation. To provide a display. Technical Solution
본 발명의 하나의 관점은 광학필름에 관한 것이다. 상기 광학필름은 비액정 열가소성 수지 단일 필름이며, 상기 필름은 두께방향으로 표면에 위치하는 제 1 및 저 12 표면층; 및 상기 제 1 및 제 2 표면층 사이에 위치하는 필름 내부층;으로 이루어지고, 상기 제 2표면층은 액정셀에 대향하며, 상기 필름 내부층은두께 방향으로 경사 배향되어 있으며, 상기 제 1 표면층에서부터 상기 제 2표면층으로 갈수록 상기 경사 배향 각도가 증가하여 변곡점을 지나 감소되는 프로파일을 갖는 것을 특징으로 한다ᅳ  One aspect of the invention relates to an optical film. The optical film is a non-liquid crystalline thermoplastic single film, the film comprising a first and a low 12 surface layer located on the surface in the thickness direction; And a film inner layer positioned between the first and second surface layers, wherein the second surface layer faces the liquid crystal cell, and the film inner layer is oriented obliquely in a thickness direction, from the first surface layer. The inclined orientation angle increases toward the second surface layer, thereby reducing the profile beyond the inflection point.
상기 변곡점은 제 1 표면층보다 제 2표면층에 가까울 수 있다.  The inflection point may be closer to the second surface layer than to the first surface layer.
상기 변곡점은 필름 두께의 중심선과 제 2표면층 사이에 위치할 수 있다. 상기 변곡점은 제 2표면층으로부터 두께의 약 1~49.9 % 지점에 위치할 수 있다.  The inflection point may be located between the centerline of the film thickness and the second surface layer. The inflection point may be located about 1 to 49.9% of the thickness from the second surface layer.
상기 제 1표면층은 편광판에 대향할 수 있다ᅳ  The first surface layer may oppose the polarizer;
상기 제 1 및 제 2 표면층은 필름의 두께 방향으로 경사 배향되지 않을 수 있다.  The first and second surface layers may not be tilted in the thickness direction of the film.
상기 제 1 및 제 2 표면층은 하기 식 4의 관계가 성립될 수 있다:  The first and second surface layers may have the following relationship:
[식 4]  [Equation 4]
nx ≠ny ≠nz  nx ≠ ny ≠ nz
(상기 식에서, nx, ny 및 nz는 각각 필름의 x 축, y축 및 z 축 방향의 굴절율이다). (Wherein nx, ny and nz are the refractive indices in the x- axis, y- axis and z- axis directions of the film, respectively).
상기 제 1 및 제 2 표면층은 표면으로부터 두께가 약.1 내지 약 20 일 수 있다.  The first and second surface layers may have a thickness from about 1.1 to about 20 from the surface.
상기 제 1 및 제 2 표면충은 필름 전체 두께중 약 1 내지 약 20% 일 수 있다. 상기 필름은 최대 필름 β각이 약 15~35°일 수 있다. The first and second surface worms may be about 1 to about 20% of the total thickness of the film. The film may have a maximum film β angle of about 15 to 35 ° .
상기 필름 내부층에서 최대 β각 (βΐ)과 최소 β각 (β2)의 비 (β1/β2)가 약 1.15-7.0 일 수 있다.  In the film inner layer, the ratio of the maximum β angle (βΐ) and the minimum β angle (β2) (β1 / β2) may be about 1.15-7.0.
상기 열가소성 수지는 사이클로 올레핀계 수지, 폴리 카보네이트계 수지, 폴리올레핀계 수지, 방향족 비닐계 수지, 폴리아미드계 수지, 폴리이미드계 수지, 폴리에스테르계 수지 및 아크릴계 수지 등이 사용될 수 있으며, 이들은 단독 또는 2종 이상 적용될 수 있다.  As the thermoplastic resin, cycloolefin resin, polycarbonate resin, polyolefin resin, aromatic vinyl resin, polyamide resin, polyimide resin, polyester resin, acrylic resin, etc. may be used. More than one species can be applied.
상기 광학필름은 550nm에서 하기 식 1로 정의되는 면내 위상 지연값 (Ro')이 약 20 내지 약 110 nm 일 수 있다: [식 1] The optical film may have an in-plane phase retardation value (Ro ′) of about 20 to about 110 nm defined by Equation 1 at 550 nm: [Equation 1]
Ro' = (nx ᅳ ny' )xd  Ro '= (nx ᅳ ny') xd
(상기 식에서, nx, ny'는각각 x축 및 y'축 방향의 굴절율 (refract ive index)이고, d는 필름의 두께이다).  (Wherein nx and ny 'are the refractive indexes in the x- and y'-axis directions, respectively, and d is the thickness of the film).
상기 광학필름은 550nm에서 하기 식 2로 정의되는두께 방향 위상 지연값 (Rth')이 약 80 내지 약 190 nm 일 수 있다: [식 2]  The optical film may have a thickness direction retardation value (Rth ') of about 80 to about 190 nm at 550 nm as defined by Equation 2:
Rth' = [(nx+ny')/2 - nz']xd  Rth '= [(nx + ny') / 2-nz '] xd
(상기에서, nx, ny' , ηζ'는 각각 χ축, y'축 및 z'축 방향의 굴절율이고, d는 필름의 두께이다). (In the above, nx, ny ', η ζ' is the refractive index in the χ axis, y 'axis and z' axis direction, respectively, d is the thickness of the film).
본 발명의 다른 관점은 액정 디스플레이에 관한 것이다. 상기 액정 디스플레이는 액정셀을 포함하는 기판; 및 상기 기판의 최소한 일면에 적층된 상기 광학필름을 포함한다.  Another aspect of the invention relates to a liquid crystal display. The liquid crystal display includes a substrate including a liquid crystal cell; And the optical film laminated on at least one surface of the substrate.
하나의 구체예에서는 상기 광학필름의 타면에는 편광판이 형성되며, 상기 광학필름의 제 2표면층은 상기 기판에 대향하고 상기 제 1표면층은 상기 편광판에 대향할 수 있다.  In one embodiment, a polarizing plate is formed on the other surface of the optical film, the second surface layer of the optical film may face the substrate and the first surface layer may face the polarizing plate.
구체예에서는 상기 액정 디스플레이는 TNCTwisted Nematic) 모드일 수 있다. 【유리한 효과】  In an embodiment the liquid crystal display can be in TNCTwisted Nematic mode. Advantageous Effects
본 발명의 광학필름은 액정 디스플레이의 시야각과 액정 보상에서 발생하는 빛샘 무라와 명암비를 크게 개선할 수 있는 효과를 갖는다. 【도면의 간단한 설명】  The optical film of the present invention has an effect of greatly improving the light leakage mura and contrast ratio generated in the viewing angle and liquid crystal compensation of the liquid crystal display. [Brief Description of Drawings]
도 1은 본 발명의 한 구체에에 따른 광학필름의 두께 방항의 경사 배향 각도의 프로파일이다.  1 is a profile of an oblique orientation angle of the thickness term of an optical film according to one embodiment of the present invention.
도 2는 본 발명의 한 구체예에 따른 광학필름을 개략적으로 나타낸 단면도이다ᅳ  2 is a cross-sectional view schematically showing an optical film according to an embodiment of the present invention.
도 3은필름 β각을 설명하기 위한 개념도이다.  3 is a conceptual diagram for explaining the film β angle.
도 4는 본 발명의 광학필름을 직교 니콜 편광판 사이에 놓고 0~90도 회전시 회전 각도에 따라 편광 현미경 화상의 이미지를 개략적으로 도시한 것이다.  Figure 4 schematically shows the image of the polarizing microscope image according to the rotation angle when the optical film of the present invention between the orthogonal Nicole polarizing plate and rotated from 0 to 90 degrees.
도 5는 본 발명의 한 구체예에 따라 광학필름을 제조하는 과정을 나타낸 모식도이다ᅳ  5 is a schematic diagram showing a process of manufacturing an optical film according to an embodiment of the present invention.
도 6은 본 발명의 하나의 구체예에 따른 액정 디스플레이를 개략적으로 도시한 단면도이다. 6 schematically illustrates a liquid crystal display according to one embodiment of the invention It is sectional drawing.
도 7은 실시예 5에서 제조된 광학필름에 대해 EZ contrast분광기로 측정한 명암비의 contour map 를 나타낸 것이다.  FIG. 7 illustrates a contour map of contrast ratios measured by an EZ contrast spectrometer for an optical film prepared in Example 5. FIG.
도 8은 비교예 9에서 제조된 광학필름에 대해 EZ contrast 분광기로 측정한 명암비의 contour map 를 나타낸 것이다.  8 shows a contour map of contrast ratios measured with an EZ contrast spectrometer for the optical film prepared in Comparative Example 9. FIG.
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
광학필름  Optical film
도 1은 본 발명의 한 구체에에 따른 광학필름의 두께 방항의 경사 배향 각도 (β각)의 프로파일이다.  1 is a profile of an oblique orientation angle (β angle) of a thickness term of an optical film according to one embodiment of the present invention.
도 1에 도시된 것과 같이, 본 발명의 광학필름은 두께 방향으로 경사 배향되어 있으며, 제 1 표면층 (10a) 에서부터 필름 내부층 (10c)을 지나 제 2표면층 (10b)으로 갈수록 경사 배향 각도가 점차 증가하다가 변곡점 (BP)에 이르러 최대 배향각도를 갖고, 상기 변곡점 (BP)을 지나면 다시 감소되는 프로파일을 갖는 것을 특징으로 한다. 즉, 상기 프로파일은 점진적 증가형태의 프로파일 (WV DLC)이 아닌 증가 후 감소 곡선을 이루는 splay 프로파일 형태를 갖는다.  As shown in FIG. 1, the optical film of the present invention is inclined in the thickness direction, and the inclination orientation angle gradually increases from the first surface layer 10a to the second surface layer 10b through the film inner layer 10c. It increases and reaches the inflection point (BP) has a maximum orientation angle, and after the inflection point (BP) is characterized by having a profile that decreases again. That is, the profile has a form of splay profile that forms a decay curve after an increase rather than a profile of progressive increase (WV DLC).
이때 최대 경사 배향각도를 갖는 변곡점 (BP)의 위치는 제 1 표면층 (10a)보다 제 2표면층 (10b)에 가까을 수 있다. 바람직하게는 상기 변곡점 (BP)은 필름 두께의 중심선 (C)과 제 2표면층 (10b) 사이에 위치할 수 있다. 이처럼 최대 경사 배향각도를 갖는 변곡점 (BP)이 액정셀에 보다 가깝게 위치하도록 하여 TN 액정내의 배향제 쪽, 즉 누워있는 액정을 보상할 수 있는 것이다. 보다 바람직하게는 상기 변곡점은 제 2표면층으로부터 두께의 약 1~49.9 % 지점, 예를 들면 약 5~45 % 지점, 바람직하게는 약 10~35 % 지점에 위치할 수 있다. 상기 위치에서 시야각 보상 효과가 탁월하다.  In this case, the position of the inflection point BP having the maximum inclination orientation angle may be closer to the second surface layer 10b than to the first surface layer 10a. Preferably, the inflection point BP may be located between the centerline C of the film thickness and the second surface layer 10b. As such, the inflection point BP having the maximum inclination alignment angle is located closer to the liquid crystal cell, thereby compensating for the alignment liquid crystal in the TN liquid crystal, that is, the lying liquid crystal. More preferably, the inflection point may be located about 1 to 49.9% of the thickness, for example about 5 to 45%, preferably about 10 to 35% of the thickness of the second surface layer. The viewing angle compensation effect is excellent at this position.
도 2는 본 발명의 한 구체예에 따른 광학필름을 개략적으로 나타낸 단면도이다. 도 2에 도시된 바와 같이, 본 발명의 광학필름 (10)은 두께방향으로 표면에 위치하는 제 1 및 제 2 표면층 (10a, 10b); 및 상기 제 1 및 제 2 표면층 사이에 위치하는 필름 내부층 (10c);으로 이루어진다. 이 때 상기 제 2표면층 (10b)은 액정셀에 대향하며, 상기 제 1 표면층 (10a)은 편광판에 대향할 수 있다.  2 is a cross-sectional view schematically showing an optical film according to an embodiment of the present invention. As shown in Fig. 2, the optical film 10 of the present invention comprises: first and second surface layers 10a and 10b positioned on the surface in the thickness direction; And a film inner layer 10c positioned between the first and second surface layers. In this case, the second surface layer 10b may face the liquid crystal cell, and the first surface layer 10a may face the polarizer.
상기 필름 내부층 (10c)은두께 방향으로 경사 배향되어 있다. 구체예에서 상기 제 1 및 제 2 표면층 (10a, 10b)은 필름의 두께 방향으로 경사 배향되지 않는다. 이 때 상기 제 1 표면층에서부터 상기 제 2표면층으로 갈수록 상기 필름 내부층 (10c)은경사 배향 각도가 증가하여 변곡점 (BP)을 지나 감소되는 프로파일을 갖는다. 상기 광학필름 (10)은 비액정 열가소성 수지 단일 필름이다. The film inner layer 10c is obliquely oriented in the thickness direction. In the embodiment the first and second surface layers 10a, 10b are not obliquely oriented in the thickness direction of the film. At this time, the film inner layer 10c increases the inclination orientation angle toward the second surface layer from the first surface layer to decrease the profile beyond the inflection point BP. Have The optical film 10 is a single liquid crystal thermoplastic resin film.
구체예에서 본 발명의 광학필름 (10)으로 사용될 수 있는 재료는 투명하며, 압출 가능한 열가소성 수지면 적용될 수 있다. 구체예에서 상기 열가소성 수지는 사이클로 올레핀계 수지, 폴리카보네이트계 수지, 폴리올레핀계 수지, 방향족 비닐계 수지, 폴리아미드계 수지, 폴리이미드계 수지, 폴리에스테르계 수지 및 아크릴계 수지 등이 사용될 수 있으며, 이들은 단독 또는 2종 이상 흔합하여 사용될 수 있다.  In an embodiment the material that can be used as the optical film 10 of the present invention can be applied to a transparent, extrudable thermoplastic resin surface. In embodiments, the thermoplastic resin may include cycloolefin resin, polycarbonate resin, polyolefin resin, aromatic vinyl resin, polyamide resin, polyimide resin, polyester resin, acrylic resin, and the like. It may be used alone or in combination of two or more.
본 발명에서 단일 필름은 별도의 코팅충이나 접착층 등의 형성없이 표면층과 필름 내부층이 압출에 의해 형성된 것을 의미한다. 즉, 상기 제 1 및 제 2 표면층 (10a, 10b)과 상기 필름 내부층 (10c) 간에는 어떠한 접착층이나 코팅층이 형성되지 않으며, 동일한 성분이며, 단지 배향여부에 따라 편의상 구분한 것이다. 이처럼 본 발명의 광학필름은 표면과 내부에 따라 배향이 다르게 형성되어 시야각과 빛샘 등을 개선할 수 있는 것이다. 또한 이와 같이 표면 및 내부에 따라 경사배향을 달리한 광학필름의 제조를 단일 압출공정에서 수행할 수 있으므로 공정이 단축되고 제조원가를 절감할 수 있다.  In the present invention, a single film means that the surface layer and the film inner layer are formed by extrusion without forming a separate coating or adhesive layer. That is, no adhesive layer or coating layer is formed between the first and second surface layers 10a and 10b and the film inner layer 10c, and is the same component and is merely classified for convenience. As described above, the optical film of the present invention is formed to have different orientations according to the surface and the interior thereof, thereby improving the viewing angle and light leakage. In addition, since the manufacturing of the optical film having different inclination orientations according to the surface and the inside can be performed in a single extrusion process, the process can be shortened and manufacturing cost can be reduced.
상기 계 1 및 게 2 표면층 (10a, 10b)은 표면으로부터 두께 (tl, t2)가 약 1 내지 약 20 μη, 바람직하게는 약 3 내지 약 10 /iii일 수 있다. 상기 범위에서 우수한 시야각을 확보할 수 있다.  The system 1 and crab 2 surface layers 10a and 10b may have a thickness (tl, t2) from the surface of about 1 to about 20 μηι, preferably about 3 to about 10 / iii. It is possible to secure an excellent viewing angle in the above range.
또한 상기 제 1 및 제 2 표면충은 필름 전체 두께중 약 1 내지 약 20 % 일 수 있다. 상기 범위에서 우수한 시야각을 확보할 수 있다.  In addition, the first and second surface worms may be about 1 to about 20% of the total thickness of the film. It is possible to secure an excellent viewing angle in the above range.
상기 제 1 및 제 2 표면층은 하기 식 4의 관계가 성립될 수 있다:  The first and second surface layers may have the following relationship:
[식 4]  [Equation 4]
nx ≠ny ≠nz  nx ≠ ny ≠ nz
(상기 식에서, nx, ny 및 nz는 각각 필름의 x 축, y축 및 z 축 방향의 굴절율이다). (Wherein nx, ny and nz are the refractive indices in the x- axis, y-axis and z- axis directions of the film, respectively).
상기 필름 내부층 (10c) 두께 (t3)는 약 5 내지 약 100 iffli, 바람직하게는 약 10 내지 약 65 일 수 있다. 도 3은 필름 β각을 설명하기 위한 개념도이다. 상기 필름 내부층 (10c)은 직교 니콜 투과도가 최소가 되는 각도로 정의되는 필름 β각이 약 5~35 ° 일 수 있다. 상기 필름 β각은 절편배향각과 동일하몌 도 3에 도시된 바와 같이, 두께 방향인 τ 축과 배향면에 수직인 ζ' 축간 이루는 각이다. 이러한 필름 β각은 편광판 사이에 놓고 직교 니콜을 관찰하여 직교 니콜 투과도가 최소가 되는 각도로 구할 수 있다. 상기 필름 내부층 (10c)은 두께 방향인 z 축에 따라 필름 β각이 서로 다른 값을 가지며, 도 1과 같은 프로파일을 형성한다. 구체예에서는 변곡점 (BP)에서 최대 필름 β각이 약 15~35°일 수 있다. 상기 범위에서 시야각 개선 효과가 우수하다. 또한 필름 내부층 (10c)에서 최대 β각 (βΐ)과 최소 β각 (β2)의 비 (β1/β2)가 약 :卜 7.0, 보다 바람직하게는 약 1.15-7.0, 바람직하게는 약 1.5~5, 보다 바람직하게는 약 2~4.5 일 수 있다. 상기 범위에서 시야각 보상이 우수하다. The film inner layer 10c thickness t3 may be about 5 to about 100 iffli, preferably about 10 to about 65. 3 is a conceptual diagram for explaining the film β angle. The film inner layer 10c may have a film β angle of about 5 ° to about 35 °, which is defined as an angle at which orthogonal nicotine transmittance is minimum. The film β angle is the same as the intercept alignment angle, and as shown in FIG. 3, an angle formed between the τ axis in the thickness direction and the ζ ′ axis perpendicular to the alignment plane. This film β angle between the polarizer Orthogonal Nicole can be observed to obtain the angle at which orthogonal nicotine transmittance is minimum. The film inner layer 10c has different values of the film β angles along the z axis in the thickness direction, and forms a profile as shown in FIG. 1. In embodiments, the maximum film β angle at the inflection point (BP) may be about 15-35 ° . It is excellent in the viewing angle improvement effect in the said range. In addition, in the film inner layer 10c, the ratio of the maximum β angle (βΐ) and the minimum β angle (β2) (β1 / β2) is about: 卜 7.0, more preferably about 1.15-7.0, preferably about 1.5-5 More preferably about 2 to 4.5. The viewing angle compensation is excellent in the above range.
상기 광학필름은 550nm에서 하기 식으로 정의되는 면내 위상 지연값 (Ro)이 약 20 내지 약 110 nm일 수 있다. 상기 범위에서 시야각 보상의 장점이 있다. 바람직하게는 면내 위상 지연값 (Ro)이 약 50내지 약 100 nm일 수 있다.  The optical film may have an in-plane phase retardation value (Ro) of about 20 to about 110 nm at 550 nm. There is an advantage of viewing angle compensation in this range. Preferably, the in-plane phase retardation value Ro may be about 50 to about 100 nm.
[식 1]  [Equation 1]
Ro' = (nx - ny ' ) xd  Ro '= (nx-ny') xd
(상기 식에서 , nx, ny'는 각각 x축 및 y'축 방향의 굴절율 (refract ive index)이고, d는 필름의 두께이다).  (Wherein nx and ny 'are the refractive indexes in the x- and y'-axis directions, respectively, and d is the thickness of the film).
상기 광학필름은 550nm에서 하기 식 2로 정의되는 두께 방향 위상 지연값 (Rth)이 약 80 내지 약 190 nm일 수 있다. 상기 범위에서 시야각 보상의 장점이 있다. 바람직하게는 두께 방향 위상 지연값 (Rth)이 약 120내지 약 180 nm일 수 있다. ' The optical film may have a thickness direction retardation value (Rth) of about 80 to about 190 nm, which is defined by Equation 2 at 550 nm. There is an advantage of viewing angle compensation in this range. Preferably, the thickness direction phase retardation value Rth may be about 120 to about 180 nm. '
[식 2]  [Equation 2]
Rth' = [(nx+ny' )/2 - nz' ]xd  Rth '= [(nx + ny') / 2-nz '] xd
(상기에서, nx, ny' , ηζ'는 각각 x축, y'축 및 z'축 방향의 굴절율이고, d는 필름의 두께이다).  (In the above, nx, ny ', ηζ' is the refractive index in the x-axis, y'-axis and z'-axis direction, respectively, d is the thickness of the film).
구체예에서 상기 필름의 두께 (d)는 약 30 내지 약 110 , 바람직하게는 약 50 내지 약 100 j^rn 일 수 있다.  In embodiments the thickness d of the film may be from about 30 to about 110, preferably from about 50 to about 100 j ^ rn.
도 4는 본 발명의 광학필름을 직교 니콜 편광판 사이에 놓고 0~90도 회전시 회전 각도에 따라 편광 현미경 화상의 이미지를 개략적으로 도시한 것이다. 도면에서 검은색 부분은 직교 니콜하에서 가장 어둡게 나타나는 것 (소광위)을 의미한다. 도시된 바와 같이, 필름의 표면에는 어느 각도이든 소광위가 형성되어 있는 반면, 필름의 내부층은 소광위가 존재하지 않으며, 두께에 따라 배향되어 있는 것을 알 수 있다. 본 발명의 광학필름은 비액정 열가소성 수지를 용융압출하고; 그리고 상기 용융압출된 열가소성 수지를 게 1성형를과 제 2성형를 사이로 통과시켜 필름 형태로 제조하는 단계를 포함하여 제조된다. 상기 제 1 및 제 2성형를의 표면온도는 상기 열가소성 수지의 유리전이온도 (Tg) 이하이며, 상기 제 1 및 제 2성형롤의 주행에 따라 필름 표면과 내부에 상이한 전단력을 발생시켜 필름 내부층에 경사각도를 부여하는 것을 특징으로 한다. Figure 4 schematically shows the image of the polarizing microscope image according to the rotation angle when the optical film of the present invention between the orthogonal Nicole polarizing plate and rotated from 0 to 90 degrees. The black part in the figure means the darkest color (extinction) under orthogonal nicole. As shown, the matte level is formed at any angle on the surface of the film, while the inner layer of the film does not exist, it can be seen that the orientation is in accordance with the thickness. The optical film of the present invention melt-extruded non-liquid crystal thermoplastic resin; And manufacturing the melt-extruded thermoplastic resin in the form of a film by passing the first molding through the second molding and the second molding. The surface temperature of the first and second molding is It is below the glass transition temperature (Tg) of a thermoplastic resin, It is characterized by generating the inclination angle to a film inner layer by generating a different shear force in the film surface and inside according to the run of the said 1st and 2nd forming roll.
도 5는 본 발명의 한 구체예에 따라 광학필름을 제조하는 과정을 나타낸 모식도이다. 도시된 바와 같이, 다이 (43)에서 용융압출된 열가소성 수지 (44)는 제 1성형롤 (41)과 제 2성형를 (42) 사이로 통과되어 필름 형태로 제조된다.  5 is a schematic diagram showing a process of manufacturing an optical film according to an embodiment of the present invention. As shown, the thermoplastic resin 44 melt-extruded from the die 43 is passed between the first molding roll 41 and the second molding 42 to be produced in the form of a film.
다른 구체예에서는 주압출기와 보조압출기를 사용하여 상기 필름을 다층구조로 제조할 수 있다. 예를 들면 주압출기는 필름 내부층과 보조압출기는 표면층을 형성하도록 하고, 상기 주압출기와 보조압출기의 압출 온도를 별도로 설정하여 제조한다. 구체예에서는 보조 압출기로부터 나오는 표면층의 온도는 낮게하고, 주 압출기로부터 나오는 필름 내부층의 온도는 높게 설정하여 롤간 주속차를 활용하여 두께 방향 경사각을 발생시킬 때 좀 더 높은 값을 갖도록 할 수 있다.  In another embodiment, the film may be manufactured in a multilayer structure using a main extruder and a coextruder. For example, the main extruder is manufactured by forming a film inner layer and the sub-extruder to form a surface layer, and separately setting the extrusion temperatures of the main extruder and the sub-extruder. In embodiments, the temperature of the surface layer coming out of the auxiliary extruder may be set low, and the temperature of the film inner layer coming out of the main extruder may be set high so as to have a higher value when the inclination angle between the rolls is generated.
상기와 같이 용융 압출된 열가소성 수지가 성형롤 접촉하여 필름 성형시 필름 내부는 Tg 온도 이상인 반면, 필름 표면은 Tg 온도 이하로 다르게 된다. 필름표면과 내부의 성형 온도 차이를 발생시킨 상태에서 양단부의 성형롤이 주행하게 되면 필름의 표면과 내부에 상이한 전단력을 발생하게 되어 두께 방향으로 경사 각도를 갖게 되는 것이다.  As described above, the melt-extruded thermoplastic resin is in contact with a molding roll to form a film, whereas the inside of the film is higher than the Tg temperature, whereas the surface of the film is different from the Tg temperature. When the forming rolls at both ends run in a state where a difference in forming temperature between the film surface and the inside is generated, different shear forces are generated on the surface and inside of the film to have an inclination angle in the thickness direction.
구체예에서 상기 제 1 및 제 2성형를 (41, 42)의 표면온도 (Tr)는 하기 식 3을 만족할 수 있다:  In embodiments, the surface temperature Tr of the first and second moldings (41, 42) may satisfy the following Equation 3:
[식 3]  [Equation 3]
Te X 0.4 < Tr < Te X 0.5  Te X 0.4 <Tr <Te X 0.5
(Te는 용융압출 직후 열가소성 수지 온도, Tr은 제 1 및 제 2성형를의 표면온도).  (Te is the thermoplastic resin temperature immediately after melt extrusion, and Tr is the surface temperature of the first and second moldings).
만일 상기 제 1 및 제 2성형롤 (41, 42)의 표면온도가 상기 범위를 벗어날 경우, 표면은 배향되지 않고 필름 내부층만 경사배향된 구조를 가지기 어렵다.  If the surface temperature of the first and second forming rolls 41 and 42 is out of the above range, it is difficult to have a structure in which the surface is not oriented and only the film inner layer is inclined.
구체예에서 상기 제 1 및 제 2성형를 (41, 42)은 서로 탄성도를 다르게 하여 다양한 필름 β각을 형성시킬 수 있다. 예를 들면, 상기 제 1성형를 (41)은 상기 제 2 성형롤 (42)보다 탄성이 더 클 수 있다. 구체예에서는 고무롤 +FSR를, FSR를 +FSR롤, SFR를 +FSR롤, 금속롤 +FSR를, SFR롤 +SFR를, 금속 를 +고무 Roll 등의 조합이 사용될 수 있다. 상기 FSR를은 금속를 표면에 물층과 스틸층이 순차적으로 형성된 롤이며, 상기 SFR를은 금속를 표면에 고무층과 스틸층이 순차적으로 형성된 를이다.  In embodiments, the first and second moldings 41 and 42 may form various film β angles by varying the elasticity of each other. For example, the first molding 41 may be larger in elasticity than the second molding roll 42. In a specific embodiment, a combination of rubber roll + FSR, FSR + FSR roll, SFR + FSR roll, metal roll + FSR, SFR roll + SFR, metal + rubber roll can be used. The FSR is a roll in which a water layer and a steel layer are sequentially formed on a metal surface, and the SFR is a roll in which a rubber layer and a steel layer are sequentially formed on a surface of a metal.
또한, 상기 제 1 및 제 2성형를 (41, 42)의 속도를 달리할 수도 있다. 예를 들면 상기 제 1성형를 (41)의 속도는 상기 제 2 성형를 (42)보다 빠르게 할 수 있다. 구체예에서는 상기 제 1성형를의 속도는 상기 제 2성형롤 대비 약 0.9 내지 약 1.2 배 속도로 주행하게 할 수 있다. Further, the first and second moldings may vary in speed at (41, 42). For example, the speed of the first molding 41 can be faster than the second molding 42. In embodiments, the speed of the first molding can be driven at about 0.9 to about 1.2 times the speed of the second molding roll.
상기 제 1 및 제 2성형를 (41, 42) 사이로 통과된 열가소성 수지 필름은 연신하는 단계를 더 포함할 수 있다. 구체예에서는 상기 연신은 2축연신으로 하며, 주행 반대 방향 (TD)으로 주행 방향 대비 약 5~20%로 연신할 수 있다. 상기 범위에서 정면 위상차 (Ro') 및 측면 위상차 (Rth') 특성을 확보할 수 있다. 바람직하게는 상기 연신은 주행 반대 방향 (TD)으로 주행 방향 대비 약 8~15 % 로 연신할 수 있다.  The thermoplastic resin film passed between the first and second moldings 41 and 42 may further include stretching. In the specific example, the stretching may be biaxial stretching, and the stretching may be performed at about 5 to 20% of the traveling direction in the opposite traveling direction (TD). In this range, the front phase difference Ro 'and the side phase difference Rth' can be secured. Preferably, the stretching may be performed at about 8 to 15% of the running direction in the opposite traveling direction (TD).
바람직하게는 상기 연신은 상기 열가소성 수지의 유리전이온도 (Tg) 보다 낮은 온도에서 연신할 수 있다. 예를 들면., 상기 연신은 열가소성 수지의 유리전이온도 (Tg) 보다 약 1~20 °C, 예를 들면 약 5~15 °C 낮은 온도에서 수행할 수 있다. 상기 범위에서 명암비를 증가시킬 수 있는 장점이 있다. Preferably, the stretching may be performed at a temperature lower than the glass transition temperature (Tg) of the thermoplastic resin. For example . , The stretching may be carried out at a temperature of about 1 to 20 ° C, for example about 5 to 15 ° C lower than the glass transition temperature (Tg) of the thermoplastic resin. There is an advantage that can increase the contrast ratio in the above range.
이와 같이 연신과정을 거친 후 필름 β각은 압출 직후 필름 β각에 비해 감소할 수 있다. 구체예에서는 연신 후 필름 β각은 압출 직후 필름: β각 보다 약 1~20 도 정도 낮을 수 있다. 액정 디스플레이  After the stretching process, the film β angle may be reduced compared to the film β angle immediately after extrusion. In embodiments, the film β angle after stretching may be about 1-20 degrees lower than the film: β angle immediately after extrusion. Liquid crystal display
본 발명의 다른 관점은 상기 광학필름을 포함하는 액정 디스플레이에 관한 것이다. 본 발명의 광학필름을 적용한 액정 디스플레이는 특히 TN Twisted Nematic) 모드 액정에서 우수한 시야각을 확보할 수 있으며, 액정 보상에서 발생하는 빛샘 무라와 명암비를 개선할 수 있다.  Another aspect of the invention relates to a liquid crystal display comprising the optical film. The liquid crystal display to which the optical film of the present invention is applied can secure an excellent viewing angle, especially in TN twisted nematic (LC) mode liquid crystals, and can improve light leakage mura and contrast ratios generated in liquid crystal compensation.
한 구체예에서는 상기 액정 디스플레이는 액정셀을 포함하는 기판; 및 상기 기판의 최소한 일면에 적층된 상기 광학필름을 포함한다.  In one embodiment the liquid crystal display comprises a substrate comprising a liquid crystal cell; And the optical film laminated on at least one surface of the substrate.
상기 광학필름의 타면에는 편광판을 더 포함할 수 있다. 도 6은 본 발명의 하나의 구체예에 따른 액정 디스플레이를 개략적으로 도시한 단면도이다. 도시된 바와 같이, 겨 U기판 (30a)과제 2기판 (30b) 사이에 봉입된 액정셀층 (40)을 포함하는 액정패널을 포함하며, 상기 제 1 및 제 2기판 (30a)의 일면에 본 발명의 광학필름 (10)이 각각 적층될 수 있다. 한 구체예에서는 상기 제 1기판 (30a)은 칼라필터 (CF) 기판 (상부 기판), 제 2기판 (30b)은 TFT(Thin Film Transistor) 기판 (하부 기판)일 수 있다. 본 발명에서 상부 (면), 하부 (면)은 도면 상의 상, 하를 기준으로 편의상 붙여진 명칭이며 반드시 상부와 하부를 의미하는 명칭으로 사용하는 것은 아니다.  The other surface of the optical film may further include a polarizing plate. 6 is a schematic cross-sectional view of a liquid crystal display according to one embodiment of the present invention. As shown, the liquid crystal panel includes a liquid crystal cell layer 40 encapsulated between the U-substrate 30a and the second substrate 30b, and the present invention is provided on one surface of the first and second substrates 30a. Optical films 10 may be laminated respectively. In one embodiment, the first substrate 30a may be a color filter (CF) substrate (upper substrate), and the second substrate 30b may be a TFT (Thin Film Transistor) substrate (lower substrate). In the present invention, the upper (surface) and the lower (surface) are given names for convenience based on the upper and lower sides of the drawings and are not necessarily used as names meaning upper and lower parts.
상기 제 1기판 (30a)과제 2기판 (30b)은 유리 기판 또는 플라스틱 기판일 수 있다. 상기 플라스틱 기판은 플렉서블 (flexible) 디스플레이에 사용될 수 있는 PET(polyethylene terephthalate) , PC(polycarbonate) , Pl(polyimide) ,The first substrate 30a and the second substrate 30b may be a glass substrate or a plastic substrate. The plastic substrate can be used for a flexible display Polyethylene terephthalate (PET), polycarbonate (PC), polyimide (Pl),
PEN(polyethylene naphthalate) , PES(polyether sulfone) , PARC polyary late) 및Polyethylene naphthalate (PEN), polyether sulfone (PES), PARC polyary late)
COC(cycloolefin copolymer) 등의 플라스틱 기판일 수 있으나 본 발명이 이에 제한되는 것은 아니다. It may be a plastic substrate such as a cycloolefin copolymer (COC), but the present invention is not limited thereto.
상기 제 1기판 (30a) 상부에는 본 발명의 광학필름 (10)이 적층될 수 있다. 또한 제 2기판 (30b) 하부에도 본 발명의 광학필름 (10)이 적층될 수 있다.  The optical film 10 of the present invention may be stacked on the first substrate 30a. In addition, the optical film 10 of the present invention may be stacked below the second substrate 30b.
상기 광학필름 (10) 상에는 편광자와 보호필름을 포함하는 편광판 (20)이 형성될 수 있다. 이때 상기 광학필름의 제 2표면층 (10b)은 상기 기판 (30a, 30b)에 대향하고 상기 제 1표면층 (10a)은 상기 편광판 (20)에 대향할 수 있다.  The polarizing plate 20 including a polarizer and a protective film may be formed on the optical film 10. In this case, the second surface layer 10b of the optical film may face the substrates 30a and 30b, and the first surface layer 10a may face the polarizer 20.
그 밖에 도면에는 도시하지 않았으나, 통상의 점착제층, 반사반지층, 하드 코팅층 등이 더 형성될 수 있다.  In addition, although not shown in the drawings, a conventional pressure-sensitive adhesive layer, a reflective ring layer, a hard coating layer may be further formed.
상기 액정셀층 (40)은 TN(Twisted Nematic) 모드액정을 포함하는 액정셀층일 수 있다. 통상적으로, TN 액정디스플레이는 전압을 인가했을 때 액정셀 내에서는 액정이 수직으로 서 있는 반면, 배향제면에는 배향제와의 anchoring force에 꾀해 액정이 누워 있는 형태이다. 이 때 누워있는 액정으로 TN 액정디스플레이의 시야각이 좁아지게 되는데, 본 발명의 광학필름은 액정—디스플레이에 부착되는 면으로 최대의 경사 배향 각도를 갖도록 하여 TN 액정내의 누워있는 액정을 보상할 수 있다. 이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로, 본 발명의 범위가 하기 실시예에 한정되지는 않는다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 층분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다. 실시예 The liquid crystal cell layer 40 may be a liquid crystal cell layer including a twisted nematic (TN) mode liquid crystal. In general, TN liquid crystal displays have liquid crystals standing vertically in a liquid crystal cell when a voltage is applied, while liquid crystals are laid on the surface of the alignment agent due to anchoring force with the alignment agent. At this time, the viewing angle of the TN liquid crystal display is narrowed by the lying liquid crystal, and the optical film of the present invention can compensate for the lying liquid crystal in the TN liquid crystal by having a maximum inclination orientation angle on the plane attached to the liquid crystal-display. Hereinafter, the configuration and operation of the present invention will be described in more detail with reference to preferred embodiments of the present invention. However, the following examples are provided to aid the understanding of the present invention, and the scope of the present invention is not limited to the following examples. Do not. The information that is not described here will be omitted in the technical field can be inferred by those skilled in the art. Example
실시예 1~8  Examples 1-8
JSR에서 제조된 RX4500 열가소성 수지를 230~280°C에서 T 다이로 용융압출하고 FSR를과 금속 롤 사이로 통과시켜 필름형태로 제조하였다. 이 때 FSR를 속도 / 금속 롤 속도의 비율을 1.01~1.03 으로 주행하도록 하였다. 압출된 필름을 주행 반대 방향 (TD)으로 주행 방향 대비 8~15% 연신하여 두께 90 Ά 인 광학필름을 제조하였다. 제 1 표면층에서 필름 두께 중심 (C)까지의 최대 β각 (β3)과 필름 두께 중심 (C)에서 제 2 표면층 사이에 최대 β각 (βΐ) 및 βΐ 위치를하기 표 1과 같이 변화시켰다. 최대 β각위치는 전체두께 중 제 2 표면층으로부터의 거리를 %로 산출한 것이다. The RX4500 thermoplastic resin manufactured by JSR was melt-extruded with a T die at 230-280 ° C., and was produced in a film form by passing an FSR between and a metal roll. At this time, the FSR was set so that the ratio of speed / metal roll speed was 1.01 to 1.03. The extruded film was stretched 8 to 15% of the traveling direction in the opposite traveling direction (TD) to prepare an optical film having a thickness of 90 Ά. The maximum β angle (β 3) from the first surface layer to the film thickness center (C) and the maximum β angle (βΐ) and β β position between the film thickness center (C) and the second surface layer were changed as shown in Table 1 below. Β angle maximum is 2nd of total thickness The distance from the surface layer is calculated in%.
제조된광학필름에 대해 에폭시 몰딩 후 필름두께 90 ^m, 절편두께 10 이 되도록 GLASS KNIFE를 사용하여 microtome 하였다. 글라스에 상기 필름절편을 놓고 이를 직교 니콜 편광판 사이에 끼워 편광현미경으로 관찰하여 각도에 따라 배향을 확인하였다. 표 1】  After the epoxy molding of the prepared optical film, the film thickness was 90 ^ m, microtome using GLASS KNIFE so that the section thickness 10. The film slices were placed on glass, sandwiched between orthogonal nicotine polarizing plates, and observed with a polarizing microscope to confirm the orientation according to the angle. Table 1]
Figure imgf000012_0001
비교예 1-9
Figure imgf000012_0001
Comparative Example 1-9
제 1 표면층에서 필름 두께 중심 (C)까지의 최대 β각 (β3)과 필름 두께 중심 (C)에서 제 2 표면층 사이에 최대 β각 (βΐ) 및 최대 β각위치를 하기 표 2와 같이 변화시켰다. 비교예 1은 전체 두께 방향 내에서 경사배향이 평행을 이루고 있는 경우이다. 표 2]  The maximum β angle (βΐ) and the maximum β angle position between the maximum surface angle (β3) from the first surface layer to the film thickness center (C) and the second surface layer at the film thickness center (C) were changed as shown in Table 2 below. . Comparative Example 1 is a case where the inclination orientation is parallel in the entire thickness direction. Table 2]
Figure imgf000012_0002
물성평가방법
Figure imgf000012_0002
Property evaluation method
제조된 필름에 대해 Axo scan을 이용하여 nx, ny' 및 nz'를 구하고, Ro'와 Rth' 값을 하기 식 1 및 2에 의해 구하였다. Nx, ny 'and nz' were calculated using Axo scan for the prepared film, and Ro 'and Rth 'value was calculated | required by following formula (1) and (2).
[식 1] [Equation 1]
Ro ' = (nx - ny ' ) χ d Ro '= (nx-ny') χ d
(상기 식에서, nx, ny'는각각 x축 및 y'축 방향의 굴절율 (refract ive index)이고, d는 필름의 두께이다).  (Wherein nx and ny 'are the refractive indexes in the x- and y'-axis directions, respectively, and d is the thickness of the film).
[식 2]  [Equation 2]
Rth' = [(nx+ny' )/2 - nz']xd  Rth '= [(nx + ny') / 2-nz '] xd
(상기에서, nxᅳ ny' , nz'는 각각 x축, y'축 및 z'축 방향의 굴절율이고, d는 필름의 두께아다).  (In the above, nx'ny 'and nz' are the refractive indices in the x-axis, y'-axis, and z'-axis directions, respectively, and d is the thickness of the film).
(2) β각 : Axo scan을 이용하여 측정하였다. 두께 방향 내의 상세한 두께 프로파일을 보기 위해 이미지 분석 프로그램을 사용하여 각도별로 편광현미경 이미지의 휘도 분포를 분석하였다.  (2) β angle: It measured using Axo scan. In order to see the detailed thickness profile in the thickness direction, an image analysis program was used to analyze the luminance distribution of the polarizing microscope image by angle.
(3) 시야각: polar angle 80°에서 CR 을 상 /하 /좌 /우로 EZ contrast를 통해 측정하였다. (3) Viewing angle: CR was measured by EZ contrast up / down / left / right at a polar angle of 80 ° .
(4) 명암비 (CR: Contrast Ratio) : 편광판을액정패널에 부착한 상태에서 화면의 백과 혹에 대한 휘도 비율로서, EZ contrast를 통해 측정하였다. 실시예 5 및 비교예 9에서 제조된광학필름에 대해 EZ contrast분광기로 측정한 contrast ratio (명암비) contour map를 도 7 및 8에 각각 나타내었다.  (4) Contrast Ratio (CR): The ratio of luminance to the back and white bumps of the screen when the polarizer was attached to the liquid crystal panel was measured by EZ contrast. Contrast ratio (contrast ratio) contour maps measured with an EZ contrast spectrometer for the optical films prepared in Example 5 and Comparative Example 9 are shown in FIGS. 7 and 8, respectively.
상기 표 1 및 2에 나타낸 것과 같이, 실시예 1~8의 광학필름은 비교예 1~10에서 제조된 광학필름에 비해 시야각이 우수한 것을 알 수 있다. 또한 도 7 및 8에 나타난 바와 같이 도면 8에 비해 도면 7의 정면 명암비 및 시야각이 우수한 것을 확인할 수 있다.  As shown in Tables 1 and 2, it can be seen that the optical film of Examples 1 to 8 has an excellent viewing angle compared to the optical film prepared in Comparative Examples 1 to 10. In addition, as shown in FIGS. 7 and 8, it is confirmed that the front contrast ratio and the viewing angle of FIG. 7 are superior to those of FIG. 8.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
비액정 열가소성 수지 단일 필름이며,  Non-liquid-crystalline thermoplastic single film,
상기 필름은 두께방향으로 표면에 위치하는 제 1 및 제 2 표면층; 및 상기 제 1 및 제 2 표면층 사이에 위치하는 필름 내부층;으로 이루어지고,  The film includes first and second surface layers positioned on the surface in the thickness direction; And a film inner layer positioned between the first and second surface layers;
상기 제 2표면층은 액정셀에 대향하며 ,  The second surface layer is opposite to the liquid crystal cell,
상기 필름 내부층은두께 방향으로 경사 배향되어 있으며, 상기 제 1 표면층에서부터 상기 제 2표면층으로 갈수록 상기 경사 배향 각도가 증가하여 변곡점을 지나 감소되는 프로파일을 갖는 것을 특징으로 하는 광학필름.  The film inner layer is oriented obliquely in the thickness direction, the inclined orientation angle increases from the first surface layer to the second surface layer has a profile that decreases past the inflection point.
【청구항 2】 [Claim 2]
제 1항에 있어서, 상기 변곡점은 제 1 표면층보다 제 2표면층에 가까운 것을 특징으로 하는 광학필름.  The optical film of claim 1, wherein the inflection point is closer to the second surface layer than to the first surface layer.
【청구항 3】 [Claim 3]
제 2항에 있어서, 상기 변곡점은 필름 두께의 중심선과 게 2표면층 사이에 위치하는 것을 특징으로 하는 광학필름.  3. The optical film of claim 2, wherein the inflection point is located between the centerline of the film thickness and the two surface layers of the crab.
【청구항 4] [Claim 4]
제 3항에 있어서, 상기 변곡점은 제 2표면층으로부터 전체 두께의 약 1~49.9 % 지점에 위치하는 것을 특징으로 하는 광학필름.  The optical film of claim 3, wherein the inflection point is located about 1 to 49.9% of the total thickness from the second surface layer.
【청구항 5] [Claim 5]
제 1항에 있어서, 상기 제 1표면층은 편광판에 대향하는 것을 특징으로 하는 광학필름.  The optical film of claim 1, wherein the first surface layer opposes the polarizing plate.
【청구항 6】 [Claim 6]
저 U항에 있어서, 상기 제 1 및 제 2 표면층은 필름의 두께 방향으로 경사 배향되지 않는 것을 특징으로 하는 광학필름.  The optical film of claim U wherein the first and second surface layers are not obliquely oriented in the thickness direction of the film.
【청구항 7】 [Claim 7]
저 U항에 있어서, 상기 제 1 및 제 2 표면층은 하기 식 4의 관계가 성립되는 것을 특징으로 하는 광학필름:  The optical film according to claim U, wherein the first and second surface layers have a relationship of Equation 4 below:
[식 4] nx ≠ny ≠nz [Equation 4] nx ≠ ny ≠ nz
(상기 식 에서, nx , ny 및 nz는 각각 필름의 x 축, y축 및 z 축 방향의 굴절율이 다) . Where nx, ny and nz are the refractive indices in the x- , y- and z- axis directions of the film, respectively.
【청구항 8】 [Claim 8]
제 1항에 있어서, 상기 제 1 및 제 2 표면층은 표면으로부터 두께가 약 1 내지 약 20 인 것을 특징으로 하는 광학필름 .  The optical film of claim 1, wherein the first and second surface layers have a thickness from about 1 to about 20 from the surface.
【청구항 9】 [Claim 9]
제 1 항에 있어서, 상기 제 1 및 제 2 표면층은 필름 전체 두께중 약 1 내지 약 20 <¾ 인 것을 특징으로 하는 광학필름. The optical film of claim 1, wherein the first and second surface layers are from about 1 to about 20 < ¾ of the overall thickness of the film.
【청구항 10】 [Claim 10]
제 1 항에 있어서, 상기 필름은 최 대 필름 β각이 약 15~35 。인 광학필름.  The optical film of claim 1, wherein the film has a maximum film β angle of about 15 to 35 degrees.
[청구항 11】 [Claim 11]
제 1 항에 있어서, 상기 필름 내부층에서 최 대 β각 (βΐ)과 최소 β각 (β2)의 비 (β1/β2)가 약 1.15-7.0 인 광학필름.  The optical film of claim 1, wherein a ratio (β1 / β2) of maximum β angle (βΐ) and minimum β angle (β2) in the film inner layer is about 1.15-7.0.
【청구항 12】 [Claim 12]
계 1 항에 있어서, 상기 열가소성 수지는 사이클로 을레핀계 수지, 폴리 카보네이트계 수지, 폴리올레핀계 수지 , 방향족 비 닐계 수지, 폴리아미드계 수지, 폴리 이 미드계 수지, 폴리에스테르계 수지 및 아크릴계 수지로 이루어진 군으로부터 선택된 수지를 하나 이상 포함하는 광학필름.  The method of claim 1, wherein the thermoplastic resin is a group consisting of cycloulphine resin, polycarbonate resin, polyolefin resin, aromatic vinyl resin, polyamide resin, polyimide resin, polyester resin and acrylic resin. Optical film comprising at least one resin selected from.
【청구항 13】 [Claim 13]
제 1 항에 있어서, 상기 광학필름은 550nm 에서 하기 식으로 정의되는 면내 위상 지 연값 (Ro')이 약 20 내지 약 110 nm 인 광학필름:  The optical film of claim 1, wherein the optical film has an in-plane retardation value (Ro ′) of about 20 to about 110 nm at 550 nm:
[식 1 ]  Equation 1
Ro' = (nx - ny')xd  Ro '= (nx-ny') xd
(상기 식에서, nx, ny'는 각각 χ 축 및 y'축 방향의 굴절율 (refractive index)이고, d 는 필름의 두께이다).  (Wherein nx and ny 'are refractive indexes in the χ and y' axis directions, respectively, and d is the thickness of the film).
【청구항 14】 제 1항에 있어서, 상기 광학필름은 550nm에서 하기 식 2로 정의되는 두께 방향 위상 지연값 (Rth')이 약 80 내지 약 190 nm인 광학필름: [Claim 14] The optical film of claim 1, wherein the optical film has a thickness direction phase retardation value (Rth ′) of about 80 to about 190 nm at 550 nm.
[식 2] [Equation 2]
Rth' = [(nx+ ny')/2 - nz']xd  Rth '= [(nx + ny') / 2-nz '] xd
(상기에서, nx, ny', nz'는 각각 x축, y'축 및 z'축 방향의 굴절율이고 d는 필름의 두께이다).  (In the above, nx, ny 'and nz' are the refractive indices in the x-axis, y'-axis and z'-axis directions, respectively, and d is the thickness of the film).
【청구항 15] [Claim 15]
액정셀을 포함하는 기판; 및  A substrate including a liquid crystal cell; And
상기 기판의 최소한 일면에 적층된 제 1항 내지 제 14항증 어느 한 항의 광학필름;  Claim 1 to claim 14 of any one of the optical film laminated on at least one surface of the substrate;
을 포함하는 액정 디스플레이. 【청구항 16】  Liquid crystal display comprising a. [Claim 16]
제 15항에 있어서, 상기 광학필름의 타면에는 편광판이 형성되며, 상기 광학필름의 제 2표면층은 상기 기판에 대향하고 상기 제 1표면층은 상기 편광판에 대향하는 것을 특징으로 하는 액정 디스플레이. [청구항 17】  The liquid crystal display of claim 15, wherein a polarizing plate is formed on the other surface of the optical film, the second surface layer of the optical film faces the substrate, and the first surface layer faces the polarizing plate. [Claim 17]
제 15항에 있어서, 상기 액정 디스플레이는 TN Twisted Nematic) 모드인 것을 특징으로 하는 액정 디스플레이.  The liquid crystal display of claim 15, wherein the liquid crystal display is in TN Twisted Nematic mode.
PCT/KR2013/005191 2012-12-20 2013-06-12 Optical film and liquid crystal display including same WO2014098333A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120150064A KR101542621B1 (en) 2012-12-20 2012-12-20 Optical film and liquid crystal display comprising the same
KR10-2012-0150064 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014098333A1 true WO2014098333A1 (en) 2014-06-26

Family

ID=50978619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005191 WO2014098333A1 (en) 2012-12-20 2013-06-12 Optical film and liquid crystal display including same

Country Status (2)

Country Link
KR (1) KR101542621B1 (en)
WO (1) WO2014098333A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236216A (en) * 2000-07-21 2002-08-23 Konica Corp Optical compensation film and polarizing plate and liquid crystal display device which uses the same
KR20040077814A (en) * 2002-02-19 2004-09-06 닛토덴코 가부시키가이샤 Graded optical compensation film, process for producing the same and liquid crystal display including the same
JP2004334010A (en) * 2003-05-09 2004-11-25 Casio Comput Co Ltd Liquid crystal display device and method of driving liquid crystal display element
US20060103797A1 (en) * 2004-11-16 2006-05-18 Nec Lcd Technologies, Ltd. Normally-white TN-mode LCD device
KR20070059131A (en) * 2004-09-07 2007-06-11 후지필름 가부시키가이샤 Optical films, polarizers and liquid crystal display devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044485B2 (en) * 2003-05-02 2008-02-06 日東電工株式会社 Optical film, method for producing the same, and polarizing plate using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236216A (en) * 2000-07-21 2002-08-23 Konica Corp Optical compensation film and polarizing plate and liquid crystal display device which uses the same
KR20040077814A (en) * 2002-02-19 2004-09-06 닛토덴코 가부시키가이샤 Graded optical compensation film, process for producing the same and liquid crystal display including the same
JP2004334010A (en) * 2003-05-09 2004-11-25 Casio Comput Co Ltd Liquid crystal display device and method of driving liquid crystal display element
KR20070059131A (en) * 2004-09-07 2007-06-11 후지필름 가부시키가이샤 Optical films, polarizers and liquid crystal display devices
US20060103797A1 (en) * 2004-11-16 2006-05-18 Nec Lcd Technologies, Ltd. Normally-white TN-mode LCD device

Also Published As

Publication number Publication date
KR101542621B1 (en) 2015-08-06
KR20140080362A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP4790890B2 (en) Retardation film and continuous production method thereof
TWI413810B (en) Transmissive liquid crystal display device
KR101292544B1 (en) Ecb-lcd having a excellent viewing angle and color property
CN108027535A (en) Liquid crystal display device
CN101960343A (en) Polarizing plate with built-in viewing angle compensation film and IPS-LCD comprising same
CN114397724A (en) Polarizing plate and liquid crystal display device comprising same
KR20100031690A (en) Transmissive liquid crystal display device
KR20080096753A (en) LCD Display
JP5261346B2 (en) Liquid crystal panel and liquid crystal display device
KR20130053539A (en) Liquid crystal display
KR20120077196A (en) Optical film and liquid crystal display including the same
TWI718290B (en) Liquid crystal display device
JP5633960B2 (en) Optical compensation film
KR101566077B1 (en) Optical film, method for preparing thereof and liquid crystal display comprising the same
TWI725167B (en) Liquid crystal display device
KR20090117641A (en) Planar switching liquid crystal display device comprising a biaxial retardation film having negative refractive index characteristics and a biaxial retardation film having positive refractive index characteristics
TWI719194B (en) Liquid crystal display device
JP2012145732A (en) Liquid crystal panel and liquid crystal display device
WO2017183498A1 (en) Liquid crystal display device
WO2013015080A1 (en) Manufacturing method for optical compensation film
KR101542621B1 (en) Optical film and liquid crystal display comprising the same
JP4935878B2 (en) Optical laminate manufacturing method, optical element, and liquid crystal display device
TW201938364A (en) Composite retardation film, and polarizing film, liquid crystal panel and display using the same
CN102576109A (en) Wave plate, method for producing same, and liquid crystal display device
KR101549739B1 (en) Optical film and liquid crystal display comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865830

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载