+

WO2014066969A1 - Breathing circuit for an anesthesia apparatus - Google Patents

Breathing circuit for an anesthesia apparatus Download PDF

Info

Publication number
WO2014066969A1
WO2014066969A1 PCT/BR2013/000465 BR2013000465W WO2014066969A1 WO 2014066969 A1 WO2014066969 A1 WO 2014066969A1 BR 2013000465 W BR2013000465 W BR 2013000465W WO 2014066969 A1 WO2014066969 A1 WO 2014066969A1
Authority
WO
WIPO (PCT)
Prior art keywords
anesthesia apparatus
patient
gas mixture
flow
gas
Prior art date
Application number
PCT/BR2013/000465
Other languages
French (fr)
Portuguese (pt)
Other versions
WO2014066969A8 (en
Inventor
Toru MIYAGI KINJO
Wataru Ueda
Tatsuo Suzuki
Original Assignee
Magnamed Tecnologia Médica S/A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnamed Tecnologia Médica S/A filed Critical Magnamed Tecnologia Médica S/A
Publication of WO2014066969A1 publication Critical patent/WO2014066969A1/en
Publication of WO2014066969A8 publication Critical patent/WO2014066969A8/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/01Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes specially adapted for anaesthetising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0883Circuit type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/104Preparation of respiratory gases or vapours specially adapted for anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0078Breathing bags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0883Circuit type
    • A61M16/0891Closed circuit, e.g. for anaesthesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/18Vaporising devices for anaesthetic preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • A61M16/209Relief valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/22Carbon dioxide-absorbing devices ; Other means for removing carbon dioxide

Definitions

  • the present invention relates to an anesthesia circuit used in inhalation anesthesia apparatus having no gas stagnation points as it utilizes a turbine and a pressure control valve in addition to a long tube reservoir. in contact with outside air.
  • the patient In various types of surgery, the patient should be cured to avoid muscle contractions that may hinder or cause accidents during the operation.
  • the use of respiratory circuits in anesthesia devices is indispensable, since they allow the breathing of anesthetized patients with total paralysis of the muscles, and therefore without control of their respiratory system.
  • Anesthesia devices generally comprise a part called the continuous flow section and another part called the breathing circuit.
  • the continuous flow section is the section of the circuit in which gases, usually oxygen, nitrous oxide or air, are dosed and mixed, and then conveyed to the calibrated vaporizer, where anesthetic is added, thereby forming a fresh gas flow.
  • the breathing circuit is the place where the patient's breathing cycle is generated.
  • the continuous flow section generally comprises rotameters and an anesthetic vaporizer
  • the respiratory circuit generally comprises an inspiratory valve connected to an inspiratory branch, an expiratory valve connected to an expiratory branch, a Y-piece in contact. with the inspiratory branch and the expiatory branch, as well as the patient's respiratory system, a balloon / ventilator toggle switch, a balloon, a soda lime filter, a pressure limit valve, a bell comprising a ventilator-operated bellows external.
  • the gas flow is intermittent, so that the patient You should inhale a mixture of anesthetic gases with oxygen, and exhale a mixture of residual oxygen, residual anesthetic in addition to the carbon dioxide produced in your lungs.
  • the patient is induced to the anesthesia state, usually manually, with the balloon / ventilator switch in the "balloon" position.
  • This process is called induction, in which the anesthesiologist pumps the gas mixture through the balloon with a high anesthetic concentration (up to 8% volumetric) until the patient is unconscious.
  • the anesthetic concentration is reduced to a maintenance level of the anesthetic plane (usually to about 2%, depending on the patient and anesthetic agent), and device-controlled respiration is initiated upon modification. the position of the balloon / fan switch switch to the "fan" position.
  • the patient's exhaled gas should be filtered to remove carbon dioxide, and fresh gas should be added to the remainder of the gas mixture, replenishing the oxygen consumed by the patient's breath, to be subsequently returned to the gas. patient's lung, thus taking advantage of anesthetic gases and residual breathing oxygen.
  • conventional anesthesia systems generally utilize a cyclic breathing circuit, called the rebreathing circular breathing circuit, wherein the carbon dioxide from the gas mixture within the circuit is withdrawn via the soda lime filter and the rest - te of the gas mixture is recirculated.
  • the gas exhaled by the patient is directed into the bellows, which is a passive element mounted within the bell.
  • the bellows inflates (rises) as the exhaled gas enters.
  • a renewed gas mixture inflates the patient's lungs by injecting propellant gas into the bell, outside the bellows, through the external ventilator, thereby deflating the bellows (pushing the gas from the bellows downward) and forming a flow of the gas mixture, which passes through the soda lime filter, where the carbon dioxide is absorbed, and is then directed to the patient.
  • an external fan is required, which generates the propulsion gas to propel the bellows.
  • Another type of anesthesia device uses, instead of the bell and bellows, a cylinder and piston system, which has a piston coupled to a spindle and a motor (linear actuator).
  • This system generates the breathing cycle, using electricity as a source of energy for motor movement.
  • this system does not comprise an external fan, as the breathing cycle is generated by the piston.
  • U.S. Patent 4,989,597 discloses a breathing circuit in which instead of bellows and bell uses a pressure transmission system, called the inventor of a exchanger, made of corrugated tube, between the external fan and the gases of the circuit. anesthesia, avoiding dilution of anesthetic gases. This system, however, does not eliminate the need for an external fan.
  • the volume of anesthetic gases stagnant in the circuit is large, and there is a long delay in the renewal of the gas. anesthetic gas mixture co in the circuit.
  • the anesthetist changes the anesthetic concentration in the vaporizer, the gas stagnation points due to the presence of large residual bellows volumes such as; reservoir or piston jacket, this change does not occur immediately in patient-inspired gases.
  • anesthesia superficialization which is usually detected by the increase of blood pressure and heart rate, being signs of stress caused by the pain felt by the patient, which can have irreversible consequences such as post-neurological disorders.
  • -surgists who manifest in various ways. Decreasing anesthetic concentration in the circuit is therefore desirable, but a superficial anesthetic should be corrected as soon as possible given the first sign of stress. In the prior art, however, such correction is performed by increasing the anesthetic concentration of fresh gas in the vaporizer, however the result is only appreciated after a long period of stabilization of the new plateau.
  • a first object of the present invention is to provide a breathing circuit for anesthesia apparatus which has few building elements, reducing production and maintenance costs.
  • anesthesia Apparatus comprising at least one rotameter, connected to an anesthetic vaporizer, which is connected to contact elements with a patient's respiratory system.
  • the breathing system contact elements are connected to a toggle switch, which in turn is connected to a balloon connected to a carbon dioxide filter.
  • This carbon dioxide filter is also connected to the anesthetic vaporizer.
  • the anesthesia apparatus further comprises a turbine connected to the carbon dioxide filter, the balloon and a long tube reservoir, which is connected to the toggle switch.
  • the anesthesia apparatus according to the present invention is configured to create a flow of a gas mixture towards the patient's respiratory system.
  • a respiratory circuit for an anesthesia apparatus comprising contact elements with a patient's respiratory system, and further comprising a turbine, connected to a long tube reservoir.
  • the breathing circuit is configured to create a flow of a gas mixture toward the patient's respiratory system.
  • Figure 1 is a representation of the state of the art anesthesia apparatus
  • Figure 2 is a representation of a preferred embodiment of the present invention showing the inspiration cycle in the induction phase
  • Figure 3 is a representation of a preferred embodiment of the present invention showing the expiration cycle in the induction phase
  • Figure 4 is a representation of a preferred embodiment of the present invention showing the inspiratory cycle in the apparatus controlled breathing phase
  • Figure 5 is a representation of a preferred embodiment of the present invention showing the expiration cycle in the apparatus controlled breathing phase.
  • Figure 1 presents a representation of the state of the art anesthesia apparatus.
  • state-of-the-art anesthesia devices comprise a part called a continuous flow section and a part called a respiratory circuit.
  • the breathing circuit section comprises tubes or ducts that interconnect a bell 13 comprising a bellows 12, a soda lime filter 11, and contact elements with a patient's breathing system, which are preferably an inspiratory valve 3 connected to a bell. inspiratory branch 4, an expiratory valve 7 connected to an expiratory branch 6 and a Y-piece 5 in contact with the inspiratory branch 4, the expiatory branch 6, and the patient's respiratory system. Additionally, the breathing circuit section comprises an external ventilator 14 configured for generate the inspiratory and expiratory cycles that propel the bellows 12 by inserting air into the bell 13.
  • the breathing circuit section further comprises a manual breathing system having a balloon 10, a pressure limit valve 9 and a toggle switch 8, also called a balloon / ventilator switch.
  • vaporizer 7 which may be a simple anesthetic evaporator which vaporizes a predetermined amount of liquid to the amount of gases to provide the respiratory circuit with the exact anesthetic concentration adjusted by the anesthetist, in the form of a gas mixture flow, or fresh gas flow 23.
  • the gas exhaled by the patient is directed into the bellows 12, which is a passive element, mounted within the bell 13.
  • the gases from the patient's lungs are expelled by the Y 5 piece into the ramus. 6, passing also through the expiratory valve 7 and thus reaching the bellows 12, which inflates (rises) with the inlet of the expired gas.
  • a propellant gas is injected into bell 13 outside the bellows 12 via the external fan 14, deflating the bellows 12 (pushing the gas from the bellows 12 downwards), thereby forming the flow of the mixture.
  • the gas mixture flow can also be created by manually inflating or deflating the balloon 10.
  • the entire gas mixture flow is created and directed by the balloon 10 or the external fan 14.
  • Figures 2 to 5 illustrate a representation of the preferred embodiment of the present invention which further comprises at least one parameter 1, connected to the anesthetic vaporizer 2, the contact elements with the patient's respiratory system (the inspiratory valve 3). , the inspiratory branch 4, the Y-piece 5, the expiatory branch 6, the expiratory valve 7), the toggle switch 8, pressure limit valve 9, balloon 10 and soda lime filter 11, preferably a soda lime filter.
  • the present invention comprises a turbine 18, which may be a respirator turbine, and a long laminar flow tube 19, and possibly comprises an electronically controlled pressure control valve, one-way valves, and a pressure plate. microprocessor control, arranged to minimize the volume of anesthetic gases and eliminate all gas stagnation points within the circuit.
  • the anesthesia apparatus continues to have two modes of operation: the first being the balloon mode (toggle switch 8 in the "balloon” position), which is used in the induction phase, ie to perform manual ventilation, and turbine mode (toggle switch 8 in the “turbine” position), for automatic mechanical ventilation, where the turbine creates the gas flow containing a specific gas mixture toward the patient's respiratory system and is used in the maintenance phase of the patient's anesthetic state.
  • the toggle switch 8 may be a simple control valve which directs flow to balloon 10, interrupting flow through turbine 18, and vice versa.
  • FIG. 2 illustrates the inspiratory phase of balloon mode ventilation, where the switch valve 8 is open to balloon 10.
  • the anesthetist compresses balloon 10, and the contents of balloon 10 are pushed towards carbon dioxide filter 11
  • a one-way valve 17 which prevents air flow to turbine 18.
  • the exhalation valve 7 is closed and the inspiratory valve 3 is opened.
  • the gas mixture thus passes through the carbon dioxide filter 11, where the carbon dioxide is absorbed and the remainder of the gas is propelled toward the patient, passing the inspiratory valve 3 and entering the lung through the expiatory branch 4 and the part in question. Y 5.
  • the expiratory valve 7 remains closed, air enters the patient's lung by the action of pressure generated by balloon compression 10.
  • Figure 3 illustrates the expiatory phase of balloon mode ventilation, where the switch valve 8 is still open to balloon 10. In this phase the anesthetist releases balloon 10, allowing air flow containing the gas mixture to enter balloon 10. It is also envisaged to have a one-way valve 22 so that lung gas flows directly into the balloon 10 and remains there. At this stage, the exhalation valve 7 remains open and the inspiratory valve 3 remains closed, and the exhaled gas goes towards the expiratory valve 7 through the Y-piece 5 and the expiatory branch 6.
  • a pressure relief valve 9 which opens when the set inspiratory pressure is reached each cycle.
  • gas volume by adding more gas mixture from rotameter 1 and anesthetic vaporizer 2 as a fresh gas stream 23.
  • fresh gas stream 23 enters the circuit. continuously, both in the inspiratory phase and in the expiratory phase.
  • this increase in gas volume offsets the reduction in volume due to carbon dioxide absorption by the carbon dioxide filter, but for safety, fresh gas flow 23 is adjusted to be slightly higher than carbon dioxide absorption, and the excess is eliminated by pressure relief valve 9.
  • FIG. 4 illustrates the inspiratory phase in turbine mode.
  • switch valve 8 is open for turbine 18 and closed for balloon 10.
  • turbine 18 is turned on, and the gas mixture is propelled towards the carbon dioxide filter 11, where the carbon dioxide is absorbed, and the flow of the gas mixture goes towards the inspiratory valve 3, in which way fresh gas flow 23 is added.
  • the air flow follows the inspiratory branch 4 until it reaches the Y 5 piece, inflating the patient's lung.
  • the turbine mode is controlled by a microprocessor, which remains on, and maintains a linear actuator 16, closing a pressure control valve 15, configured to prevent gas flow through the expiratory branch 6 at a greater than a pressure determined by linear actuator 16, ie pressure control valve 15 determines The lung pressure rises to a limit pressure value set by the anesthetist.
  • FIG. 5 illustrates the expiratory phase in turbine mode.
  • switch valve 8 is open for turbine 18 and closed for balloon 10.
  • the microprocessor can reduce the electric current in actuator 16, and pressure control valve 15 opens, letting the lung gas out thus limiting the pressure.
  • Exhaled gas exits through the expiratory branch 6, and as turbine 18 is off, the gas flows through the long laminar flow duct 19, displacing the remaining gas in the duct until it exits through the mouth of an anti-pollution system 24, for disposal of surplus gas.
  • the cycle repeats, and in the new inspiration the turbine 18 is turned on, and the accumulated gas in the long laminar flow duct 19 is drawn.
  • the laminar flow long duct 19 is dimensioned such that the tidal volume is always smaller than the accumulated volume in the laminar flow long duct 19, and the volume increased by the amount of fresh gas entering continuously is sufficient to expel excess gas volume from the circuit at a rate greater than the diffusion of the gas mixture into the anesthetic gas within the long laminar flow duct 19. It is worth remembering that the lung volume of patients varies with their height and weight, with an average tidal volume of less than 1 liter.
  • the volume of laminar flow long duct 19 can be of the order of 1.5 liters, being larger than the tidal volume of the lung, but without allowing the stagnation of the gas mixture.
  • the long laminar flow duct 19 plays the role of a reservoir in contact with the external air, enabling the exchange of gases, whereby an exact point for the exchange of laminar flow is created within the long laminar flow duct 19. gas, which is shifted upwards during inspiration, but should not reach the end of the long laminar flow duct 19 as this would enter the breathing circuit.
  • the present invention describes a breathing circuit for anesthesia apparatus which has few building elements, reducing production and maintenance costs.
  • the Anesthesia according to the present invention may be constructed in a small physical space, increasing the useful space of the operating rooms.
  • Anesthesia apparatus constructed in accordance with the present invention also comprises easy gas exchange, ie a continuous flow of gas mixture without stagnation points throughout the circuit path, allowing for greater control of gas concentration and an improvement in the control of residual lung pressure in anesthetized patients.
  • Another advantage of the invention is that the single volume in the breathing circuit, derived from the laminar flow long tube reservoir 19, is located at the outlet of the excess gases so that at the end of the anesthesia section the entire contents of the gas mixture containing The anesthetic substance can be replaced by a completely anesthetic-free gas in a single respiratory cycle, very quickly starting the patient's exit from general anesthesia.

Landscapes

  • Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pulmonology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to an anesthesia circuit used on inhalation anesthesia apparatus, which does not have gas stagnation points, since it uses a turbine (18) and a pressure controlling valve in addition to a laminar-flow long-tube reservoir (19) in contact with external air.

Description

CIRCUITO RESPIRATÓRIO PARA APARELHOS DE ANESTESIA  RESPIRATORY CIRCUIT FOR ANESTHESICS
A presente invenção refere-se a um circuito de anestesia, utili- zado em aparelhos de anestesia inalatória, que não possui pontos de estagnação de gases, visto que utiliza uma turbina e uma válvula controladora de pressão, em adição a um reservatório de tubo longo em contato com o ar externo. The present invention relates to an anesthesia circuit used in inhalation anesthesia apparatus having no gas stagnation points as it utilizes a turbine and a pressure control valve in addition to a long tube reservoir. in contact with outside air.
Descrição do Estado da Técnica  Description of the prior art
Em diversos tipos de cirurgia, o paciente deve ser curarizado, para evitar contrações musculares que podem dificultar ou causar acidentes durante a operação. Deste modo, na medicina moderna, é indispensável o uso de circuitos respiratórios em aparelhos de anestesia, pois estes possibilitam a respiração de pacientes anestesiados com paralisação total dos mús- culos, e, portanto, sem controle de seu sistema respiratório.  In various types of surgery, the patient should be cured to avoid muscle contractions that may hinder or cause accidents during the operation. Thus, in modern medicine, the use of respiratory circuits in anesthesia devices is indispensable, since they allow the breathing of anesthetized patients with total paralysis of the muscles, and therefore without control of their respiratory system.
Os aparelhos de anestesia geralmente compreendem uma parte denominada seção de fluxo contínuo e outra parte denominada de circuito respiratório. A seção de fluxo contínuo é o trecho do circuito em que gases, geralmente oxigénio, óxido nitroso ou ar, são dosados e misturados, e poste- riormente conduzidos ao vaporizador calibrado, onde o anestésico é adicionado, formando assim um fluxo de gás fresco. Já o circuito respiratório é o local em que o ciclo respiratório do paciente é gerado.  Anesthesia devices generally comprise a part called the continuous flow section and another part called the breathing circuit. The continuous flow section is the section of the circuit in which gases, usually oxygen, nitrous oxide or air, are dosed and mixed, and then conveyed to the calibrated vaporizer, where anesthetic is added, thereby forming a fresh gas flow. The breathing circuit is the place where the patient's breathing cycle is generated.
Deste modo, seção de fluxo contínuo compreende, geralmente, rotâmetros e um vaporizador de anestésico, enquanto o circuito respiratório compreende, geralmente, uma válvula inspiratória conectada a um ramo inspiratório, uma válvula expiratória conectada a um ramo expiratório, uma peça em Y em contato com o ramo inspiratório e o ramo expiatório, bem como com o sistema respiratório do paciente, uma chave comutadora balão/ventilador, um balão, um filtro de cal sodada, uma válvula de limite de pressão, uma campânula compreendendo um fole movimentado por um ventilador externo.  Thus, the continuous flow section generally comprises rotameters and an anesthetic vaporizer, whereas the respiratory circuit generally comprises an inspiratory valve connected to an inspiratory branch, an expiratory valve connected to an expiratory branch, a Y-piece in contact. with the inspiratory branch and the expiatory branch, as well as the patient's respiratory system, a balloon / ventilator toggle switch, a balloon, a soda lime filter, a pressure limit valve, a bell comprising a ventilator-operated bellows external.
Assim, o fluxo do gás é intermitente, de forma que o paciente deve inspirar uma mistura de gases anestésicos com oxigénio, e expirar uma mistura de oxigénio residual, anestésico residual em adição ao gás carbónico produzido em seus pulmões. Thus, the gas flow is intermittent, so that the patient You should inhale a mixture of anesthetic gases with oxygen, and exhale a mixture of residual oxygen, residual anesthetic in addition to the carbon dioxide produced in your lungs.
No inicio do processo de anestesia, o paciente é induzido ao es- tado de anestesia, geralmente de forma manual, com a chave comutadora balão/ventilador na posição "balão". Este processo é denominado de indução, em que o médico anestesista bombeia a mistura de gases por meio do balão, com uma concentração alta de anestésico (podendo chegar a 8% volumétrico), até que o paciente esteja inconsciente. Após desacordar o paci- ente, a concentração de anestésico é reduzida a um nível de manutenção do plano anestésico (geralmente para cerca de 2%, dependendo do paciente e do agente anestésico), e a respiração controlada por aparelhos é iniciada, ao se modificar a posição da chave comutadora balão/ventilador para a posição "ventilador".  At the beginning of the anesthesia process, the patient is induced to the anesthesia state, usually manually, with the balloon / ventilator switch in the "balloon" position. This process is called induction, in which the anesthesiologist pumps the gas mixture through the balloon with a high anesthetic concentration (up to 8% volumetric) until the patient is unconscious. After disagreeing the patient, the anesthetic concentration is reduced to a maintenance level of the anesthetic plane (usually to about 2%, depending on the patient and anesthetic agent), and device-controlled respiration is initiated upon modification. the position of the balloon / fan switch switch to the "fan" position.
Durante o processo de respiração controlada, o gás expirado pelo paciente deve ser filtrado para a retirada do gás carbónico, e ao restante da mistura de gases deve ser adicionado o gás fresco, repondo o oxigénio consumido pela respiração do paciente, para posteriormente ser reenviada ao pulmão do paciente, aproveitando-se assim de gases anestésicos e oxi- génio residual da respiração.  During the controlled breathing process, the patient's exhaled gas should be filtered to remove carbon dioxide, and fresh gas should be added to the remainder of the gas mixture, replenishing the oxygen consumed by the patient's breath, to be subsequently returned to the gas. patient's lung, thus taking advantage of anesthetic gases and residual breathing oxygen.
Assim, os sistemas de anestesia convencionais geralmente utilizam um circuito cíclico de respiração, denominado de circuito respiratório circular com reinalação, em que o gás carbónico da mistura de gases que está dentro do circuito é retirado por meio do filtro de cal sodada, e o restan- te da mistura de gases é recirculado.  Thus, conventional anesthesia systems generally utilize a cyclic breathing circuit, called the rebreathing circular breathing circuit, wherein the carbon dioxide from the gas mixture within the circuit is withdrawn via the soda lime filter and the rest - te of the gas mixture is recirculated.
Neste circuito, o gás expirado pelo paciente é direcionado para dentro do fole, que é um elemento passivo, montado dentro da campânula. Durante a expiração uma mistura de gases sai dos pulmões do paciente, o fole se infla (sobe) com a entrada do gás expirado. Durante a inspiração uma mistura renovada de gases insufla os pulmões do paciente, ao se injetar um gás de propulsão para dentro da campânula, por fora do fole, por meio do ventilador externo, consequentemente desinflando o fole (impulsionando o gás do interior do fole para baixo) e formando um fluxo da mistura de gases, que passa pelo filtro de cal sodada, onde o gás carbónico é absorvido, e é então direcionado ao paciente. Por este motivo, nestes sistemas é necessária a presença de um ventilador externo, que gera o gás de propulsão para impulsionar o fole. In this circuit, the gas exhaled by the patient is directed into the bellows, which is a passive element mounted within the bell. During exhalation a gas mixture exits the patient's lungs, the bellows inflates (rises) as the exhaled gas enters. During inhalation a renewed gas mixture inflates the patient's lungs by injecting propellant gas into the bell, outside the bellows, through the external ventilator, thereby deflating the bellows (pushing the gas from the bellows downward) and forming a flow of the gas mixture, which passes through the soda lime filter, where the carbon dioxide is absorbed, and is then directed to the patient. For this reason, in these systems an external fan is required, which generates the propulsion gas to propel the bellows.
A patente norte-americana US 5,673,688, por exemplo, descreve um circuito respiratório de anestesia convencional conforme descrito, que ainda monitora a concentração do dióxido de carbono (CO2) para controlar o fluxo de gás fresco por realimentação, de modo que a mistura de gases que é enviada aos pulmões do paciente seja isenta de C02. US 5,673,688, for example, describes a conventional anesthetic breathing circuit as described which further monitors carbon dioxide (CO 2 ) concentration to control the flow of fresh gas by feedback, so that the mixture of gas that is sent to the patient's lungs be free of C0 2.
Outro tipo de aparelho de anestesia utiliza, no lugar da campânula e fole, um sistema de cilindro e pistão, que possui um êmbolo acoplado a um fuso e um motor (atuador linear). Este sistema gera o ciclo respiratório, utilizando a eletricidade como fonte de energia para a movimentação do mo- tor. Deste modo, este sistema não compreende um ventilador externo, pois o ciclo respiratório é gerado pelo pistão.  Another type of anesthesia device uses, instead of the bell and bellows, a cylinder and piston system, which has a piston coupled to a spindle and a motor (linear actuator). This system generates the breathing cycle, using electricity as a source of energy for motor movement. Thus, this system does not comprise an external fan, as the breathing cycle is generated by the piston.
Já a patente norte-americana US 4,989,597 descreve um circuito respiratório em que, no lugar do fole e campânula utiliza um sistema de transmissão de pressão, denominado pelo inventor de trocador, feito de tubo corrugado, entre o ventilador externo e os gases do circuito de anestesia, evitando a diluição dos gases anestésicos. Este sistema, porém, não elimina a necessidade de um ventilador externo.  U.S. Patent 4,989,597 discloses a breathing circuit in which instead of bellows and bell uses a pressure transmission system, called the inventor of a exchanger, made of corrugated tube, between the external fan and the gases of the circuit. anesthesia, avoiding dilution of anesthetic gases. This system, however, does not eliminate the need for an external fan.
A grande desvantagem dos aparelhos de anestesia descritos é a imensa quantidade de elementos utilizados, como, por exemplo, campânu- las, foles e ventilador externo. Adicionalmente, estes dispositivos são complexos e necessitam de extrema precisão, possuindo um elevado custo de fabricação, que encarece demasiadamente o preço final dos aparelhos de anestesia.  The major disadvantage of the anesthetic devices described is the huge amount of elements used, such as bell rings, bellows and external ventilator. Additionally, these devices are complex and need extreme precision, having a high cost of manufacture, which makes the final price of anesthesia devices too expensive.
Ainda, como não há um fluxo contínuo de gases em todos os elementos envolvidos (só o fole, por exemplo, compreende geralmente 2 litros de volume), o volume dos gases anestésicos estagnado no circuito é grande, e há uma grande demora na renovação da mistura do gás anestési- co no circuito. Por exemplo, quando o anestesista altera a concentração de anestésico no vaporizador, os pontos de estagnação do gás devido à presença de grandes volumes residuais do fole, como; balão reservatório ou da camisa do pistão, esta alteração não ocorre de imediato nos gases inspira- dos pelo paciente. Nestes pontos de estagnação, o gás fresco entra, mistura por difusão com o gás parado no interior dos volumes residuais, e uma nova mistura de gases sai, na mesma quantidade da mistura que entrou, porém, com a composição muito semelhante à mistura antiga do interior do volume estagnado, mantendo nos pontos de estagnação, assim, uma mistura muito semelhante à mistura antiga. Deste modo, a renovação da composição nos pontos de estagnação do gás é realizada ciclo a ciclo, de forma extremamente lenta, inclusive retardando o momento em que o paciente deve ser acordado. Matematicamente, é previsto que, o tempo de equalização da concentração antiga com a concentração nova é infinito, ou seja, mesmo que o anestesia modifique a concentração da mistura de gases, a concentração de gases nestes elementos nunca será a concentração modificada e, portanto, a mistura será continuamente modificada pelo sistema que a controla. Also, since there is no continuous flow of gases in all the elements involved (only the bellows, for example, generally comprises 2 liters of volume), the volume of anesthetic gases stagnant in the circuit is large, and there is a long delay in the renewal of the gas. anesthetic gas mixture co in the circuit. For example, when the anesthetist changes the anesthetic concentration in the vaporizer, the gas stagnation points due to the presence of large residual bellows volumes such as; reservoir or piston jacket, this change does not occur immediately in patient-inspired gases. At these stagnation points, fresh gas enters, diffusion mixed with standing gas within the residual volumes, and a new gas mixture exits, in the same amount as the incoming mixture, but with a composition very similar to the old mixture of inside the stagnant volume, thus maintaining at the stagnation points a mixture very similar to the old mixture. Thus, the renewal of the composition at the gas stagnation points is carried out cycle by cycle extremely slowly, including delaying the time when the patient must be awakened. Mathematically, it is predicted that the equalization time of the old concentration with the new concentration is infinite, that is, even if anesthesia changes the gas mixture concentration, the gas concentration in these elements will never be the modified concentration and therefore The mixture will be continuously modified by the system that controls it.
A importância de se eliminar todos os pontos de estagnação do circuito deriva da possibilidade e necessidade de se realizar a renovação do conteúdo interno do circuito de anestesia em um único ciclo respiratório, para que, ocorrendo qualquer mudança na composição da mistura de gases, o paciente receba de imediato a nova composição. Em uma anestesia geral inalatória, a concentração elevada de anestésico, que geralmente é usada na indução, não pode permanecer alta por um tempo muito longo, da ordem de alguns minutos, pois pode causar danos irreversíveis ao cérebro do paciente ou mesmo levar a óbito.  The importance of eliminating all circuit stagnation points derives from the possibility and need to renew the internal content of the anesthesia circuit in a single respiratory cycle, so that, if any change in the gas mixture composition occurs, the patient receive the new composition immediately. In general inhalation anesthesia, the high anesthetic concentration, which is usually used in induction, cannot remain high for a very long time, on the order of a few minutes, as it can cause irreversible damage to the patient's brain or even lead to death.
Por outro lado uma diminuição da concentração de anestésico pode causar a superficialização da anestesia, que normalmente é detectada pelo aumento da pressão arterial e da frequência cardíaca, sendo sinais de estresse causado pela dor sentida pelo paciente, que pode trazer consequências irreversíveis como distúrbios neurológicos pós-cirúrgicos, que se manifestam de diversas maneiras. A diminuição da concentração de anestésico no circuito, portanto, é desejável, porém uma superficialização da anestesia deve ser corrigida o mais rápido possível, dado o primeiro sinal de estresse. No estado da técnica, porém, tal correção é realizada aumentando a concentração de anestésico do gás fresco no vaporizador, contudo o resultado só é apreciado após um longo período de estabilização do novo patamar. On the other hand, a decrease in anesthetic concentration may cause anesthesia superficialization, which is usually detected by the increase of blood pressure and heart rate, being signs of stress caused by the pain felt by the patient, which can have irreversible consequences such as post-neurological disorders. -surgists who manifest in various ways. Decreasing anesthetic concentration in the circuit is therefore desirable, but a superficial anesthetic should be corrected as soon as possible given the first sign of stress. In the prior art, however, such correction is performed by increasing the anesthetic concentration of fresh gas in the vaporizer, however the result is only appreciated after a long period of stabilization of the new plateau.
Uma tentativa de solução deste problema é a patente norte- americana US 6,216,690, que descreve um aparelho de anestesia que com- preende um monitor de concentração de agente anestésico, localizado no ramo inspiratório, para atuar na concentração do vaporizador, alterando a concentração do anestésico no gás fresco para valores muito elevados, tentando atingir rapidamente o novo patamar. Esta é uma forma de melhorar o tempo de resposta do ajuste da concentração, porém necessita de um moni- tor de agente anestésico, de custo elevado. Adicionalmente, a alteração da concentração de anestésico no vaporizador acima do necessário pode ultrapassar o ponto ideal e entrar em uma oscilação, que é uma operação bastante arriscada, onde a confiabilidade do sistema é crítica.  An attempt to solve this problem is US 6,216,690, which describes an anesthesia apparatus comprising an anesthetic agent concentration monitor located on the inspiratory branch to act on vaporizer concentration by altering anesthetic concentration. in fresh gas to very high values, trying to quickly reach the new level. This is a way to improve the response time of concentration adjustment, but it requires a high cost anesthetic agent monitor. Additionally, changing the anesthetic concentration in the vaporizer above the required level may exceed the optimum point and enter an oscillation, which is a very risky operation where system reliability is critical.
Por fim, outra grande desvantagem dos aparelhos de anestesia descritos é a falta de controle exato da pressão residual no pulmão, ou seja, a falta de controle da pressão positiva ao fim da expiração (positive end- expiratory pressure - PEEP), causada pela necessidade de uma válvula de escape de excesso de gases anestésicos, que é aberta pela ação da pressão residual no circuito. Esta pressão deve ser controlada de modo exato, para que o paciente não apresente quadro de retenção de gás carbónico durante uma cirurgia longa.  Finally, another major disadvantage of the described anesthesia devices is the lack of exact control of residual lung pressure, ie the lack of positive end-expiratory pressure (PEEP) control, caused by the need for of an excess anesthetic gas relief valve, which is opened by the action of residual pressure in the circuit. This pressure should be precisely controlled so that the patient does not have carbon dioxide retention during long surgery.
Sendo assim, não existe no estado da técnica um circuito de respiração para aparelhos de anestesia simples, com poucos elementos construtivos, de baixo custo de produção e manutenção, e que compreenda ainda uma fácil troca de gases, permitindo um maior controle da concentração dos gases, bem como o controle exato da pressão pulmonar residual. Obietivos da invenção Um primeiro objetivo da presente invenção é prover um circuito de respiração para aparelhos de anestesia que possua poucos elementos construtivos, diminuindo os custos de produção e manutenção. Thus, there is no state of the art breathing circuit for simple anesthesia apparatus with few building elements, low production and maintenance costs, and easy gas exchange, allowing greater control of gas concentration. as well as accurate control of residual pulmonary pressure. Objectives of the invention A first object of the present invention is to provide a breathing circuit for anesthesia apparatus which has few building elements, reducing production and maintenance costs.
É outro objetivo da presente invenção prover um circuito de res- piração para aparelhos de anestesia que compreenda um fluxo contínuo sem pontos de estagnação em toda trajetória do circuito, permitindo um maior controle da concentração dos gases.  It is another object of the present invention to provide a breathing circuit for anesthesia apparatus comprising a continuous flow with no stagnation points throughout the circuit path, allowing greater control of gas concentration.
Por fim, é um terceiro objetivo da presente invenção a melhoria no controle da pressão residual no pulmão dos pacientes anestesiados.  Finally, it is a third object of the present invention to improve the control of residual pressure in the lung of anesthetized patients.
Breve Descrição da Invenção Brief Description of the Invention
Os objetivos são alcançados por meio de um Aparelho de anestesia compreendendo ao menos um rotâmetro, conectado a um vaporizador de anestésico, que é conectado a elementos de contato com um sistema respiratório de um paciente. Os elementos de contato com o sistema respira- tório são conectados a uma chave comutadora, que por sua vez é conectada a um balão conectado a um filtro de gás carbónico. Este filtro de gás carbónico é, ainda, conectado ao vaporizador de anestésico. O aparelho de anestesia compreende, ainda, uma turbina conectada ao filtro de gás carbónico, ao balão e a um reservatório de tubo longo, que é conectado a chave comu- tadora. O aparelho de anestesia de acordo com a presente invenção é configurado de modo a criar um fluxo de uma mistura de gases em direção ao sistema respiratório do paciente.  The objectives are achieved by means of an Anesthesia Apparatus comprising at least one rotameter, connected to an anesthetic vaporizer, which is connected to contact elements with a patient's respiratory system. The breathing system contact elements are connected to a toggle switch, which in turn is connected to a balloon connected to a carbon dioxide filter. This carbon dioxide filter is also connected to the anesthetic vaporizer. The anesthesia apparatus further comprises a turbine connected to the carbon dioxide filter, the balloon and a long tube reservoir, which is connected to the toggle switch. The anesthesia apparatus according to the present invention is configured to create a flow of a gas mixture towards the patient's respiratory system.
Outro modo de concretização da presente invenção que alcança os objetivos determinados é um circuito respiratório para um aparelho de anestesia compreendendo elementos de contato com um sistema respiratório de um paciente, e compreendendo ainda uma turbina, conectada a um reservatório de tubo longo. O circuito respiratório é configurado de modo a criar um fluxo de uma mistura de gases em direção ao sistema respiratório do paciente.  Another embodiment of the present invention that achieves the stated objectives is a respiratory circuit for an anesthesia apparatus comprising contact elements with a patient's respiratory system, and further comprising a turbine, connected to a long tube reservoir. The breathing circuit is configured to create a flow of a gas mixture toward the patient's respiratory system.
Descrição Resumida dos Desenhos Brief Description of the Drawings
A presente invenção será descrita a seguir em maiores detalhes, com referência aos desenhos anexos, nos quais: Figura 1 - é uma representação dos aparelhos de anestesia do estado da técnica; The present invention will be described in more detail below with reference to the accompanying drawings in which: Figure 1 is a representation of the state of the art anesthesia apparatus;
Figura 2 - é uma representação de uma construção preferencial da presente invenção, apresentando o ciclo de inspiração na fase de indu- ção;  Figure 2 is a representation of a preferred embodiment of the present invention showing the inspiration cycle in the induction phase;
Figura 3 - é uma representação de uma construção preferencial da presente invenção, apresentando o ciclo de expiração na fase de indução;  Figure 3 is a representation of a preferred embodiment of the present invention showing the expiration cycle in the induction phase;
Figura 4 - é uma representação de uma construção preferencial da presente invenção, apresentando o ciclo de inspiração na fase de respiração controlada por aparelhos; e  Figure 4 is a representation of a preferred embodiment of the present invention showing the inspiratory cycle in the apparatus controlled breathing phase; and
Figura 5 - é uma representação de uma construção preferencial da presente invenção, apresentando o ciclo de expiração na fase de respiração controlada por aparelhos.  Figure 5 is a representation of a preferred embodiment of the present invention showing the expiration cycle in the apparatus controlled breathing phase.
Descrição Detalhada das Figuras Detailed Description of the Figures
A figura 1 apresenta uma representação dos aparelhos de anestesia do estado da técnica. Como previamente explanado, os aparelhos de anestesia do estado da técnica compreendem uma parte denominada seção de fluxo contínuo e outra parte denominada de circuito respiratório.  Figure 1 presents a representation of the state of the art anesthesia apparatus. As previously explained, state-of-the-art anesthesia devices comprise a part called a continuous flow section and a part called a respiratory circuit.
Como pode ser visto na figura 1 , no sistema convencional, na seção de fluxo contínuo os gases, preferencialmente oxido nitroso e oxigénio ou ar e oxigénio, são dosados por rotâmetros 1 que permitem o ajuste e a medição da vazão de cada um dos gases, mais o vaporizador de anestésico 2, que adiciona o anestésico vaporizado à mistura.  As can be seen from figure 1, in the conventional system, in the continuous flow section the gases, preferably nitrous oxide and oxygen or air and oxygen, are dosed by rotameters 1 which allow the adjustment and measurement of the flow of each gas, plus anesthetic vaporizer 2, which adds the vaporized anesthetic to the mixture.
A seção do circuito respiratório compreende tubos ou dutos que interligam uma campânula 13 compreendendo um fole 12, um filtro de cal sodada 11 , e elementos de contato com o sistema respiratório de um paciente, que são, preferencialmente, uma válvula inspiratória 3 conectada a um ramo inspiratório 4, uma válvula expiratória 7 conectada a um ramo expirató- rio 6 e uma peça em Y 5 em contato com o ramo inspiratório 4, o ramo expiatório 6 e o sistema respiratório do paciente. Adicionalmente, a seção do circuito respiratório compreende um ventilador externo 14, configurado para gerar os ciclos inspiratórios e expiratórios que impulsionam o fole 12 ao inserir ar na campânula 13. The breathing circuit section comprises tubes or ducts that interconnect a bell 13 comprising a bellows 12, a soda lime filter 11, and contact elements with a patient's breathing system, which are preferably an inspiratory valve 3 connected to a bell. inspiratory branch 4, an expiratory valve 7 connected to an expiratory branch 6 and a Y-piece 5 in contact with the inspiratory branch 4, the expiatory branch 6, and the patient's respiratory system. Additionally, the breathing circuit section comprises an external ventilator 14 configured for generate the inspiratory and expiratory cycles that propel the bellows 12 by inserting air into the bell 13.
A seção de circuito respiratório compreende, ainda, um sistema manual de respiração, que possui um balão 10, uma válvula de limite de pressão 9 e uma chave comutadora 8, também denominada de chave balão/ventilador.  The breathing circuit section further comprises a manual breathing system having a balloon 10, a pressure limit valve 9 and a toggle switch 8, also called a balloon / ventilator switch.
Durante o funcionamento, a mistura de gases passa pelo vaporizador 7, que pode ser um simples evaporador de anestésicos que vaporiza uma quantidade pré-determinada de líquido para a quantidade de gases, de modo a fornecer ao circuito respiratório a concentração exata de anestésico, ajustada pelo anestesista, em forma de um fluxo de uma mistura de gases, ou fluxo de gases frescos 23.  During operation, the gas mixture passes through vaporizer 7, which may be a simple anesthetic evaporator which vaporizes a predetermined amount of liquid to the amount of gases to provide the respiratory circuit with the exact anesthetic concentration adjusted by the anesthetist, in the form of a gas mixture flow, or fresh gas flow 23.
Neste circuito, o gás expirado pelo paciente é direcionado para dentro do fole 12, que é um elemento passivo, montado dentro da campânu- la 13. Durante a expiração, os gases dos pulmões do paciente são expelidos pela peça em Y 5 para o ramo expiatório 6, passando também pela válvula expiratória 7 e chegando assim ao fole 12, que se infla (sobe) com a entrada do gás expirado. Durante a inspiração, um gás de propulsão é injetado para dentro da campânula 13 por fora do fole 12 por meio do ventilador externo 14, desinflando o fole 12 (impulsionando o gás do interior do fole 12 para baixo), formando assim o fluxo da mistura de gases que passa pelo filtro de gás carbónico 11 , para a retirada de gás carbónico, e é então direcionado ao paciente por meio da válvula inspiratória 3, do ramo inspiratório 4 e da peça em Y 5. Dependendo da posição da chave comutadora 8, o fluxo da mistura de gases pode também ser criado por meio da atuação manual de inflar ou desinflar o balão 10. Deste modo, todo o fluxo da mistura de gases é criado e direcionado pelo balão 10 ou pelo ventilador externo 14.  In this circuit, the gas exhaled by the patient is directed into the bellows 12, which is a passive element, mounted within the bell 13. During exhalation, the gases from the patient's lungs are expelled by the Y 5 piece into the ramus. 6, passing also through the expiratory valve 7 and thus reaching the bellows 12, which inflates (rises) with the inlet of the expired gas. During inspiration, a propellant gas is injected into bell 13 outside the bellows 12 via the external fan 14, deflating the bellows 12 (pushing the gas from the bellows 12 downwards), thereby forming the flow of the mixture. which passes through the carbon dioxide filter 11 for carbon dioxide removal and is then directed to the patient via the inspiratory valve 3, inspiratory branch 4 and Y-piece 5. Depending on the position of the toggle switch 8, The gas mixture flow can also be created by manually inflating or deflating the balloon 10. Thus, the entire gas mixture flow is created and directed by the balloon 10 or the external fan 14.
As figuras 2 a 5 ilustram uma representação da concretização preferencial da presente invenção, que ainda compreende ao menos um ro- tâmetro 1 , conectado ao vaporizador de anestésico 2, os elementos de con- tato com o sistema respiratório do paciente (a válvula inspiratória 3, o ramo inspiratório 4, a peça em Y 5, o ramo expiatório 6, a válvula expiratória 7), a chave comutadora 8, a válvula de limite de pressão 9, o balão 10 e o filtro de cal sodada 11 , preferencialmente um filtro de cal sodada. Diferentemente do estado da técnica, a presente invenção compreende uma turbina 18, que pode ser uma turbina usada em respiradores, e um tubo longo 19 de fluxo laminar, além de possivelmente compreender uma válvula controladora de pressão comandada eletronicamente, válvulas unidirecionais e uma placa de controle microprocessado, dispostos de forma a reduzir ao mínimo o volume de gases anestésicos e eliminar todos os pontos de estagnação de gases dentro do circuito. Figures 2 to 5 illustrate a representation of the preferred embodiment of the present invention which further comprises at least one parameter 1, connected to the anesthetic vaporizer 2, the contact elements with the patient's respiratory system (the inspiratory valve 3). , the inspiratory branch 4, the Y-piece 5, the expiatory branch 6, the expiratory valve 7), the toggle switch 8, pressure limit valve 9, balloon 10 and soda lime filter 11, preferably a soda lime filter. Unlike the prior art, the present invention comprises a turbine 18, which may be a respirator turbine, and a long laminar flow tube 19, and possibly comprises an electronically controlled pressure control valve, one-way valves, and a pressure plate. microprocessor control, arranged to minimize the volume of anesthetic gases and eliminate all gas stagnation points within the circuit.
Assim, o aparelho de anestesia de acordo com a presente invenção continua apresentando dois modos de funcionamento: o primeiro sendo o modo balão (chave comutadora 8 na posição "balão"), que é utilizado na fase de indução, ou seja, para se realizar a ventilação manual, e o modo turbina (chave comutadora 8 na posição "turbina"), para ventilação mecânica automática, em que a turbina cria o fluxo de gases contendo uma mistura de gases específica em direção ao sistema respiratório do paciente, e é utilizada na fase de manutenção do estado de anestesia do paciente. Obviamente, a chave comutadora 8 pode ser uma simples válvula de controle, que direciona o fluxo para o balão 10, interrompendo o fluxo pela turbina 18, e vice-versa.  Thus, the anesthesia apparatus according to the present invention continues to have two modes of operation: the first being the balloon mode (toggle switch 8 in the "balloon" position), which is used in the induction phase, ie to perform manual ventilation, and turbine mode (toggle switch 8 in the "turbine" position), for automatic mechanical ventilation, where the turbine creates the gas flow containing a specific gas mixture toward the patient's respiratory system and is used in the maintenance phase of the patient's anesthetic state. Of course, the toggle switch 8 may be a simple control valve which directs flow to balloon 10, interrupting flow through turbine 18, and vice versa.
A figura 2 ilustra a fase inspiratória da ventilação no modo balão, onde a válvula comutadora 8 está aberta para o balão 10. Nesta fase o anestesista comprime o balão 10, e o conteúdo do balão 10 é impulsionado em direção ao filtro de gás carbónico 11. É previsto também a existência de uma válvula unidirecional 17, que impede a passagem de fluxo de ar para a turbina 18. Adicionalmente, e a válvula expiratória 7 é fechada, e a válvula inspiratória 3 é aberta. A mistura de gases passa, assim, pelo filtro de gás carbónico 11 , onde o gás carbónico é absorvido e o restante do gás é impulsionado em direção ao paciente, passando pela válvula inspiratória 3 e adentrando o pulmão pelo ramo expiatório 4 e pela peça em Y 5. Como a válvula expiratória 7 permanece fechada, o ar adentra o pulmão do paciente pela ação da pressão gerada pela compressão do balão 10. A figura 3 ilustra a fase expiatória da ventilação no modo balão, onde a válvula comutadora 8 ainda está aberta para o balão 10. Nesta fase o anestesista solta o balão 10, deixando o fluxo de ar contendo a mistura de gases adentrar o balão 10. É prevista também a existência de uma válvula unidirecional 22, para que o gás do pulmão escoe diretamente ao balão 10 e lá permaneça. Nesta fase, a válvula expiratória 7 permanece aberta e a válvula inspiratória 3 permanece fechada, e o gás expirado vai em direção à válvula expiratória 7 por meio da peça em Y 5 e do ramo expiatório 6. Figure 2 illustrates the inspiratory phase of balloon mode ventilation, where the switch valve 8 is open to balloon 10. At this stage the anesthetist compresses balloon 10, and the contents of balloon 10 are pushed towards carbon dioxide filter 11 Also provided is a one-way valve 17 which prevents air flow to turbine 18. In addition, the exhalation valve 7 is closed and the inspiratory valve 3 is opened. The gas mixture thus passes through the carbon dioxide filter 11, where the carbon dioxide is absorbed and the remainder of the gas is propelled toward the patient, passing the inspiratory valve 3 and entering the lung through the expiatory branch 4 and the part in question. Y 5. As the expiratory valve 7 remains closed, air enters the patient's lung by the action of pressure generated by balloon compression 10. Figure 3 illustrates the expiatory phase of balloon mode ventilation, where the switch valve 8 is still open to balloon 10. In this phase the anesthetist releases balloon 10, allowing air flow containing the gas mixture to enter balloon 10. It is also envisaged to have a one-way valve 22 so that lung gas flows directly into the balloon 10 and remains there. At this stage, the exhalation valve 7 remains open and the inspiratory valve 3 remains closed, and the exhaled gas goes towards the expiratory valve 7 through the Y-piece 5 and the expiatory branch 6.
Adicionalmente, é prevista uma válvula limitadora de pressão 9, que se abre ao atingir, a cada ciclo, a pressão inspiratória ajustada. Ainda, há um acréscimo de volume de gás, por meio da adição de mais mistura de gases advinda do rotâmetro 1 e do vaporizador de anestésico 2, como um fluxo de gás fresco 23. Deste modo, o fluxo de gás fresco 23 entra no circuito respiratório continuamente, tanto na fase inspiratória quanto na fase expi- ratória. Em parte este acréscimo de volume de gás compensa a redução do volume devido à absorção do gás carbónico pelo filtro de gás carbónico, porém, por segurança, o fluxo de gás fresco 23 é ajustado para que seja ligeiramente superior à absorção do gás carbónico, e o excesso é eliminado pela válvula limitadora de pressão 9.  Additionally, a pressure relief valve 9 is provided, which opens when the set inspiratory pressure is reached each cycle. In addition, there is an increase in gas volume by adding more gas mixture from rotameter 1 and anesthetic vaporizer 2 as a fresh gas stream 23. Thus, fresh gas stream 23 enters the circuit. continuously, both in the inspiratory phase and in the expiratory phase. In part this increase in gas volume offsets the reduction in volume due to carbon dioxide absorption by the carbon dioxide filter, but for safety, fresh gas flow 23 is adjusted to be slightly higher than carbon dioxide absorption, and the excess is eliminated by pressure relief valve 9.
A figura 4 ilustra a fase inspiratória no modo turbina. Neste modo válvula comutadora 8 está aberta para a turbina 18 e fechada para o balão 10. Nesta fase de inspiração, a turbina 18 é ligada, e a mistura de gases é impelida em direção ao filtro de gás carbónico 11 , onde o gás carbónico é absorvido, e o fluxo da mistura de gases segue em direção a válvula inspira- tória 3, sendo neste trajeto adicionado o fluxo de gás fresco 23. Deste modo, o fluxo de ar segue pelo ramo inspiratório 4 até chegar na peça em Y 5, insuflando o pulmão do paciente. É previsto ainda que o modo turbina seja controlado por um microprocessador, que permanece ligado, e mantém um atu- ador linear 16 energizado, fechando uma válvula controladora de pressão 15, configurada de modo a impedir o fluxo de gases pelo ramo expiratório 6 a uma pressão maior que uma pressão determinada pelo atuador linear 16, ou seja, a válvula controladora de pressão 15 determina que a pressão posi- tiva no pulmão se eleve até atingir um valor de pressão limite ajustado pelo médico anestesista. Figure 4 illustrates the inspiratory phase in turbine mode. In this mode switch valve 8 is open for turbine 18 and closed for balloon 10. In this inspiratory phase, turbine 18 is turned on, and the gas mixture is propelled towards the carbon dioxide filter 11, where the carbon dioxide is absorbed, and the flow of the gas mixture goes towards the inspiratory valve 3, in which way fresh gas flow 23 is added. Thus, the air flow follows the inspiratory branch 4 until it reaches the Y 5 piece, inflating the patient's lung. It is further envisaged that the turbine mode is controlled by a microprocessor, which remains on, and maintains a linear actuator 16, closing a pressure control valve 15, configured to prevent gas flow through the expiratory branch 6 at a greater than a pressure determined by linear actuator 16, ie pressure control valve 15 determines The lung pressure rises to a limit pressure value set by the anesthetist.
A figura 5 ilustra a fase expiratória no modo turbina. Neste modo válvula comutadora 8 está aberta para a turbina 18 e fechada para o balão 10. Nesta fase, o microprocessador pode reduzir a corrente elétrica no atua- dor 16, e a válvula controladora de pressão 15 se abre, deixando o gás do pulmão sair, limitando assim a pressão. O gás expirado sai pelo ramo expiratório 6, e, como a turbina 18 está desligada, o gás flui pelos duto longo 19 de fluxo laminar, deslocando o gás remanescente no duto até que saia pelo bo- cal de um sistema anti-poluição 24, para eliminação do gás excedente.  Figure 5 illustrates the expiratory phase in turbine mode. In this mode switch valve 8 is open for turbine 18 and closed for balloon 10. At this stage, the microprocessor can reduce the electric current in actuator 16, and pressure control valve 15 opens, letting the lung gas out thus limiting the pressure. Exhaled gas exits through the expiratory branch 6, and as turbine 18 is off, the gas flows through the long laminar flow duct 19, displacing the remaining gas in the duct until it exits through the mouth of an anti-pollution system 24, for disposal of surplus gas.
Terminada esta fase, o ciclo se repete, e na nova inspiração a turbina 18 é ligada, e o gás acumulado no duto longo 19 de fluxo laminar é aspirado. Para evitar que o ar externo entre no circuito diluindo o gás anestésico o duto longo 19 de fluxo laminar é dimensionado de tal forma que o volume corrente é sempre menor que o volume acumulado no duto longo 19 de fluxo laminar, e o volume acrescido pela quantidade de gás fresco que entra continuamente seja suficiente para expulsar o excesso de volume de gás do circuito com velocidade maior que a difusão da mistura de gases no gás anestésico, no interior do duto longo 19 de fluxo laminar. Cabe lembrar que o volume do pulmão dos pacientes varia com sua altura e peso possuindo em média um volume corrente menor que 1 litro. Assim, o volume do duto longo 19 de fluxo laminar pode ser da ordem de 1 ,5 litros, sendo maior que o volume corrente do pulmão, porém sem possibilitar a estagnação da mistura de gases. Deste modo, o duto longo 19 de fluxo laminar apresenta o papel de um reservatório em contato com o ar externo, possibilitando a troca de gases, em que é criado, dentro do duto longo 19 de fluxo laminar, um ponto exato para a troca de gases, que é deslocado para cima durante a inspiração, porém não deve chegar até o final do duto longo 19 de fluxo laminar, pois adentraria assim o circuito respiratório.  At the end of this phase, the cycle repeats, and in the new inspiration the turbine 18 is turned on, and the accumulated gas in the long laminar flow duct 19 is drawn. To prevent external air from entering the circuit by diluting the anesthetic gas the laminar flow long duct 19 is dimensioned such that the tidal volume is always smaller than the accumulated volume in the laminar flow long duct 19, and the volume increased by the amount of fresh gas entering continuously is sufficient to expel excess gas volume from the circuit at a rate greater than the diffusion of the gas mixture into the anesthetic gas within the long laminar flow duct 19. It is worth remembering that the lung volume of patients varies with their height and weight, with an average tidal volume of less than 1 liter. Thus, the volume of laminar flow long duct 19 can be of the order of 1.5 liters, being larger than the tidal volume of the lung, but without allowing the stagnation of the gas mixture. Thus, the long laminar flow duct 19 plays the role of a reservoir in contact with the external air, enabling the exchange of gases, whereby an exact point for the exchange of laminar flow is created within the long laminar flow duct 19. gas, which is shifted upwards during inspiration, but should not reach the end of the long laminar flow duct 19 as this would enter the breathing circuit.
Assim presente invenção descreve um circuito de respiração para aparelhos de anestesia que com poucos elementos construtivos, diminuindo os custos de produção e manutenção. Adicionalmente, o aparelho de anestesia de acordo com a presente invenção pode ser construído em um pequeno espaço físico, aumentando o espaço útil das salas de cirurgia. Thus the present invention describes a breathing circuit for anesthesia apparatus which has few building elements, reducing production and maintenance costs. In addition, the Anesthesia according to the present invention may be constructed in a small physical space, increasing the useful space of the operating rooms.
Os aparelhos de anestesia construídos de acordo com a presente invenção também compreendem uma fácil troca de gases, ou seja, um fluxo contínuo da mistura de gases sem pontos de estagnação em toda traje- tória do circuito, permitindo um maior controle da concentração dos gases e uma melhoria no controle da pressão residual no pulmão dos pacientes anestesiados.  Anesthesia apparatus constructed in accordance with the present invention also comprises easy gas exchange, ie a continuous flow of gas mixture without stagnation points throughout the circuit path, allowing for greater control of gas concentration and an improvement in the control of residual lung pressure in anesthetized patients.
Outra vantagem da invenção é que o volume único no circuito respiratório, derivado do reservatório de tubo longo 19 de fluxo laminar, fica localizado na saída do excesso de gases de maneira que, ao término da seção de anestesia todo o conteúdo da mistura de gases contendo a substancia anestésica pode ser substituído por um gás completamente sem anestésico, em um único ciclo respiratório, iniciando de maneira muito rápida o pro- cesso de saída do paciente da anestesia geral.  Another advantage of the invention is that the single volume in the breathing circuit, derived from the laminar flow long tube reservoir 19, is located at the outlet of the excess gases so that at the end of the anesthesia section the entire contents of the gas mixture containing The anesthetic substance can be replaced by a completely anesthetic-free gas in a single respiratory cycle, very quickly starting the patient's exit from general anesthesia.
Tendo sido descrito exemplos de concretizações preferidos, deve ser entendido que o escopo da presente invenção abrange outras possíveis variações, sendo limitados tão somente pelo teor das reivindicações apensas, aí incluídos os possíveis equivalentes.  Having described examples of preferred embodiments, it should be understood that the scope of the present invention encompasses other possible variations, being limited only by the content of the appended claims, including the possible equivalents thereof.

Claims

REIVINDICAÇÕES
1. Aparelho de anestesia compreendendo ao menos um rotâme- tro (1) conectado a um vaporizador de anestésico (2), que é conectado a elementos de contato com um sistema respiratório de um paciente, que são conectados a uma chave comutadora (8) que é conectada a um balão (10), que é conectado a um filtro de gás carbónico (11), que é conectado ao vaporizador de anestésico (2), o aparelho de anestesia sendo caracterizado pelo fato de compreender ainda uma turbina (18) conectada ao filtro de gás carbónico (11), ao balão (10) e a um reservatório de tubo longo (19), que é conectado a chave comutadora (8), o aparelho de anestesia sendo configurado de modo a criar um fluxo de uma mistura de gases em direção ao sistema respiratório do paciente.  1. Anesthesia apparatus comprising at least one rotameter (1) connected to an anesthetic vaporizer (2), which is connected to contact elements with a patient's respiratory system, which are connected to a toggle switch (8). which is connected to a balloon (10), which is connected to a carbon dioxide filter (11), which is connected to the anesthetic vaporizer (2), the anesthesia apparatus further comprising a turbine (18) connected to the carbon dioxide filter (11), the balloon (10) and a long tube reservoir (19), which is connected to the toggle switch (8), the anesthesia apparatus being configured to create a flow of a gas mixture towards the patient's respiratory system.
2. Aparelho de anestesia de acordo com a reivindicação 1 , caracterizado pelo fato de as conexões entre os elementos serem dutos que permitem a passagem do fluxo da mistura de gases.  Anesthesia apparatus according to claim 1, characterized in that the connections between the elements are ducts which allow the flow of the gas mixture to pass through.
3. Aparelho de anestesia de acordo com a reivindicação 1 , caracterizado pelo fato de a chave comutadora (8) ser configurada de modo a selecionar entre o balão (10) e a turbina (18) como elemento de criação do fluxo da mistura de gases.  Anesthesia apparatus according to claim 1, characterized in that the toggle switch (8) is configured to select between the balloon (10) and the turbine (18) as a gas mixture flow creating element. .
4. Aparelho de anestesia de acordo com a reivindicação 1 , caracterizado pelo fato de os elementos de contato o sistema respiratório do paciente serem uma válvula inspiratória (3) conectada a um ramo inspiratório (4), uma válvula expiratória (7) conectada a um ramo expiratório (6) e uma peça em Y (11) em contato com o ramo inspiratório (4), o ramo expiatório (6) e o sistema respiratório do paciente.  Anesthesia apparatus according to claim 1, characterized in that the contact elements in the patient's respiratory system are an inspiratory valve (3) connected to an inspiratory branch (4), an expiratory valve (7) connected to a expiratory branch (6) and a Y-piece (11) in contact with the inspiratory branch (4), the expiatory branch (6) and the patient's respiratory system.
5. Aparelho de anestesia de acordo com a reivindicação 4, caracterizado pelo fato de compreender ainda um atuador linear (16) que controla uma válvula controladora de pressão (15), a válvula de pressão (15) sendo configurada de modo a impedir que o fluxo da mistura de gases flua pelo ramo expiratório (12) a uma pressão maior que uma pressão determinada pelo atuador linear (16).  Anesthesia apparatus according to claim 4, characterized in that it further comprises a linear actuator (16) controlling a pressure controlling valve (15), the pressure valve (15) being configured to prevent the flow of the gas mixture flows through the expiratory branch (12) at a pressure greater than a pressure determined by the linear actuator (16).
6. Aparelho de anestesia de acordo com a reivindicação 1 , ca- racterízado pelo fato de o reservatório de tubo longo (19) estar em contato com o ar atmosférico. Anesthesia apparatus according to claim 1, capable of characterized by the fact that the long tube reservoir (19) is in contact with atmospheric air.
7. Aparelho de anestesia de acordo com a reivindicação 6, caracterizado pelo fato de o reservatório de tubo longo (19) ser configurado de modo a eliminar o excesso de gases do fluxo da mistura de gases.  Anesthesia apparatus according to claim 6, characterized in that the long tube reservoir (19) is configured to eliminate excess gas from the gas mixture flow.
8. Aparelho de anestesia de acordo com a reivindicação 1 , caracterizado pelo fato de o filtro de gás carbónico ( 1) ser um filtro de cal sodada.  Anesthesia apparatus according to claim 1, characterized in that the carbon dioxide filter (1) is a soda lime filter.
9. Circuito respiratório para um aparelho de anestesia compre- endendo elementos de contato com um sistema respiratório de um paciente, o circuito respiratório sendo caracterizado pelo fato de compreender uma turbina (18) conectada a um reservatório de tubo longo (19), o circuito respiratório sendo configurado de modo a criar um fluxo de uma mistura de gases em direção ao sistema respiratório do paciente.  9. Respiratory circuit for an anesthesia apparatus comprising elements of contact with a patient's respiratory system, the respiratory circuit being characterized by the fact that it comprises a turbine (18) connected to a long tube reservoir (19), the circuit respiratory system being configured to create a flow of a gas mixture toward the patient's respiratory system.
10. Circuito respiratório para um aparelho de anestesia de acordo com a reivindicação 10, caracterizado pelo fato de as conexões entre os elementos serem dutos que permitem a passagem do fluxo da mistura de gases.  Respiratory circuit for an anesthesia apparatus according to claim 10, characterized in that the connections between the elements are ducts which allow the flow of the gas mixture to pass through.
11. Circuito respiratório para um aparelho de anestesia de acor- do com a reivindicação 10, caracterizado pelo fato de compreender ainda uma chave comutadora (8) que é conectada a um balão (10), a turbina (18) e ao reservatório de tubo longo (19), a chave comutadora (8) ser configurada de modo a selecionar entre o balão (10) e a turbina (18) como elemento de criação do fluxo da mistura de gases.  Respiratory circuit for an anesthesia apparatus according to claim 10, characterized in that it further comprises a toggle switch (8) which is connected to a balloon (10), the turbine (18) and the tube reservoir. Long (19), the toggle switch (8) is configured to select between the balloon (10) and the turbine (18) as the gas mixture flow creating element.
12. Circuito respiratório para um aparelho de anestesia de acordo com a reivindicação 10, caracterizado pelo fato de os elementos de contato o sistema respiratório do paciente serem uma válvula inspiratória (3) conectada a um ramo inspiratório (4), uma válvula expiratória (7) conectada a um ramo expiratório (6) e uma peça em Y (11) em contato com o ramo inspiratório (4), o ramo expiatório (6) e o sistema respiratório do paciente.  Respiratory circuit for an anesthesia apparatus according to claim 10, characterized in that the contact elements in the patient's respiratory system are an inspiratory valve (3) connected to an inspiratory branch (4), an expiratory valve (7 ) connected to an expiratory branch (6) and a Y-piece (11) in contact with the inspiratory branch (4), the expiatory branch (6) and the patient's respiratory system.
13. Circuito respiratório para um aparelho de anestesia de acordo com a reivindicação 13, caracterizado pelo fato de compreender ainda um atuador linear (16) que controla uma válvula controladora de pressão (15), a válvula de pressão (15) sendo configurada de modo a impedir que o fluxo da mistura de gases flua pelo ramo expiratório (12) a uma pressão maior que uma pressão determinada pelo atuador linear (16). Respiratory circuit for an anesthesia apparatus according to claim 13, characterized in that it further comprises a linear actuator (16) controlling a pressure controlling valve (15), the pressure valve (15) being configured to prevent the flow of the gas mixture from flowing through the exhalation branch (12) at a pressure greater than one. pressure determined by the linear actuator (16).
14. Circuito respiratório para um aparelho de anestesia de acordo com a reivindicação 10, caracterizado pelo fato de o reservatório de tubo longo (19) estar em contato com o ar atmosférico.  Respiratory circuit for an anesthesia apparatus according to claim 10, characterized in that the long tube reservoir (19) is in contact with atmospheric air.
15. Circuito respiratório para um aparelho de anestesia de acordo com a reivindicação 10, caracterizado pelo fato de o reservatório de tubo longo (19) ser configurado de modo a eliminar o excesso de gases do fluxo da mistura de gases.  Respiratory circuit for an anesthesia apparatus according to claim 10, characterized in that the long tube reservoir (19) is configured to eliminate excess gas from the gas mixture flow.
PCT/BR2013/000465 2012-11-05 2013-11-05 Breathing circuit for an anesthesia apparatus WO2014066969A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102012028313-1A BR102012028313B1 (en) 2012-11-05 2012-11-05 ANESTHESIA APPLIANCE
BRBR1020120283131 2012-11-05

Publications (2)

Publication Number Publication Date
WO2014066969A1 true WO2014066969A1 (en) 2014-05-08
WO2014066969A8 WO2014066969A8 (en) 2014-07-24

Family

ID=49911071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000465 WO2014066969A1 (en) 2012-11-05 2013-11-05 Breathing circuit for an anesthesia apparatus

Country Status (2)

Country Link
BR (1) BR102012028313B1 (en)
WO (1) WO2014066969A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517615A (en) * 2014-12-02 2016-04-20 深圳迈瑞生物医疗电子股份有限公司 Anesthesia machine and anesthesia machine respiratory system thereof
CN110420370A (en) * 2019-08-22 2019-11-08 河南科技大学第一附属医院 A kind of Anesthesia machine
CN111840745A (en) * 2020-07-31 2020-10-30 王美健 Clinical anesthesia branch of academic or vocational study is with supplying medicine anesthesia device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989597A (en) 1987-03-09 1991-02-05 Olof Werner Apparatus for administration of at least two gases to a patient
US5094235A (en) * 1989-05-10 1992-03-10 Dragerwerk Aktiengesellschaft Anesthesia ventilating apparatus having a breathing circuit and control loops for anesthetic gas components
US5673688A (en) 1996-09-26 1997-10-07 Ohmeda Inc. Anesthesia system with CO2 monitor to suppress CO2 breakthrough
WO2000078380A1 (en) * 1999-06-23 2000-12-28 Graham Cameron Grant Respiration assistor
US6216690B1 (en) 1997-10-15 2001-04-17 Datex-Ohmeda, Inc. Method and apparatus for rapid control of set inspired gas concentration in anesthesia delivery systems
US20050103338A1 (en) * 2003-11-13 2005-05-19 Drager Medical Ag & Co. Kgaa, De, Germany Apparatus and method for supplying respiratory gas to a patient
WO2007071756A1 (en) * 2005-12-21 2007-06-28 Maquet Critical Care Ab Manual ventilation with electronically controlled exhalation valv
EP2008679A1 (en) * 2007-06-28 2008-12-31 General Electric Company Patient breathing system
US20110000488A1 (en) * 2007-11-12 2011-01-06 Maquet Critical Care Ab Regulation of delivery of multiple anesthetic agents to a patient from an anesthetic breathing apparatus
DE202011102764U1 (en) * 2011-07-02 2011-12-05 Dräger Medical GmbH ventilation system
EP2431065A1 (en) * 2010-09-15 2012-03-21 General Electric Company Valve to relieve a gaseous pressure and arrangement for ventilating lungs

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989597A (en) 1987-03-09 1991-02-05 Olof Werner Apparatus for administration of at least two gases to a patient
US5094235A (en) * 1989-05-10 1992-03-10 Dragerwerk Aktiengesellschaft Anesthesia ventilating apparatus having a breathing circuit and control loops for anesthetic gas components
US5673688A (en) 1996-09-26 1997-10-07 Ohmeda Inc. Anesthesia system with CO2 monitor to suppress CO2 breakthrough
US6216690B1 (en) 1997-10-15 2001-04-17 Datex-Ohmeda, Inc. Method and apparatus for rapid control of set inspired gas concentration in anesthesia delivery systems
WO2000078380A1 (en) * 1999-06-23 2000-12-28 Graham Cameron Grant Respiration assistor
US20050103338A1 (en) * 2003-11-13 2005-05-19 Drager Medical Ag & Co. Kgaa, De, Germany Apparatus and method for supplying respiratory gas to a patient
WO2007071756A1 (en) * 2005-12-21 2007-06-28 Maquet Critical Care Ab Manual ventilation with electronically controlled exhalation valv
EP2008679A1 (en) * 2007-06-28 2008-12-31 General Electric Company Patient breathing system
US20110000488A1 (en) * 2007-11-12 2011-01-06 Maquet Critical Care Ab Regulation of delivery of multiple anesthetic agents to a patient from an anesthetic breathing apparatus
EP2431065A1 (en) * 2010-09-15 2012-03-21 General Electric Company Valve to relieve a gaseous pressure and arrangement for ventilating lungs
DE202011102764U1 (en) * 2011-07-02 2011-12-05 Dräger Medical GmbH ventilation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517615A (en) * 2014-12-02 2016-04-20 深圳迈瑞生物医疗电子股份有限公司 Anesthesia machine and anesthesia machine respiratory system thereof
WO2016086352A1 (en) * 2014-12-02 2016-06-09 深圳迈瑞生物医疗电子股份有限公司 Anesthesia machine and anesthesia machine respiratory system thereof
CN110420370A (en) * 2019-08-22 2019-11-08 河南科技大学第一附属医院 A kind of Anesthesia machine
CN111840745A (en) * 2020-07-31 2020-10-30 王美健 Clinical anesthesia branch of academic or vocational study is with supplying medicine anesthesia device

Also Published As

Publication number Publication date
BR102012028313A2 (en) 2014-08-19
WO2014066969A8 (en) 2014-07-24
BR102012028313B1 (en) 2021-04-13

Similar Documents

Publication Publication Date Title
US9295795B2 (en) System for providing flow-targeted ventilation synchronized to a patients breathing cycle
US11311693B2 (en) Apparatus and method to provide breathing support
Ho et al. Use of heliox in critical upper airway obstruction.: Physical and physiologic considerations in choosing the optimal helium: oxygen mix
WO2014066969A1 (en) Breathing circuit for an anesthesia apparatus
Chevrolet Helium oxygen mixtures in the intensive care unit
PT1409054E (en) Device for isolating bias flow
CN106166318A (en) A kind of respirator airway pressure control method
JP2023521584A (en) Devices and systems for respiratory assistance
ZEBROWSKI et al. Low flow continuous positive airway pressure with a modified fresh gas reservoir
Milner Anaesthetic breathing systems
Karunarathna et al. Classification and clinical significance of anesthesia breathing systems
Roberts et al. Anaesthetic breathing systems
Ruben Anaesthesia system with eliminated spill valve adjustment and without lung rupture risk
Putowski et al. Basics of mechanical ventilation for non-anaesthetists. Part 1: Theoretical aspects
DE10107917C2 (en) Arrangement for low-consumption application of gaseous substances
Kuch et al. Respiratory Care Equipment
Mattila et al. Clinical and experimental evaluation of the Loosco Baby Respirator
CN113573761A (en) Apparatus and method for compensating for air leakage in an anesthesia circulation loop
Nandalan et al. Cost-effectiveness of basal flow sevoflurane anaesthesia using the Komesaroff vaporizer inside the circle system
Liu et al. Sevoflurane anaesthesia with an Oxford Miniature Vaporizer in vaporizer inside circle mode.
BR102020010789A2 (en) CONTINUOUS FLOW VENTILATION SYSTEM AND METHOD
BR102012008716A2 (en) GAS FLOW ENTRY IN PEDIATRIC RESPIRATORY CIRCUITS, FOR ANESTHESIA PULMONARY VENTILATION SYSTEM
Widder of the Asthma Patient
Young Ventilatory Support
Crooke et al. Modification of the Bird ventilator for use during spontaneous respiration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13815370

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13815370

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载