WO2013133265A1 - Cell balancing device - Google Patents
Cell balancing device Download PDFInfo
- Publication number
- WO2013133265A1 WO2013133265A1 PCT/JP2013/055975 JP2013055975W WO2013133265A1 WO 2013133265 A1 WO2013133265 A1 WO 2013133265A1 JP 2013055975 W JP2013055975 W JP 2013055975W WO 2013133265 A1 WO2013133265 A1 WO 2013133265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- block
- voltage
- block voltage
- value
- Prior art date
Links
- 238000000034 method Methods 0.000 description 14
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 230000033228 biological regulation Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 230000005674 electromagnetic induction Effects 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002902 ferrimagnetic material Substances 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000652 nickel hydride Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J5/00—Circuit arrangements for transfer of electric power between AC networks and DC networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0016—Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0019—Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a cell balance device that equalizes the voltages of a plurality of battery cells constituting an assembled battery, and more particularly to an active cell balance device that transfers power between battery cells via a transformer.
- a battery block configured by connecting a plurality of battery cells such as lithium ion batteries mounted in a hybrid vehicle or an electric vehicle in series is an assembled battery in which a plurality of battery blocks are connected in series in order to obtain a high voltage. in use.
- each block voltage When the voltage of each battery block constituting such an assembled battery (hereinafter referred to as a block voltage) varies, the deterioration of each battery cell constituting the battery block progresses at an accelerated rate or can be obtained from the battery block. The amount of energy is reduced. Therefore, it is desirable that each block voltage is equal.
- variations in the block voltages may occur due to non-uniform capacity, internal resistance, self-discharge rate, etc. of each battery block. Therefore, conventionally, it has been proposed to eliminate variations in the block voltages by using a cell balance device which is a device for equalizing the block voltages.
- a switch and a resistor are connected to each battery block constituting the assembled battery, and when there is a battery block with a high block voltage in each battery block, A passive system that equalizes the voltage of each battery block by discharging the battery block is used.
- the conventional active type cell balance device has a configuration in which one battery block is connected to each tap of the transformer, the number of taps increases as the number of battery blocks in series increases. As a result, the active type cell balance device has a problem that the variation in characteristics between taps increases as the number of battery blocks increases.
- an object of the present invention is to suppress variation in characteristics between taps due to an increase in the number of battery cells included in an assembled battery in an active cell balance device.
- a cell balance device of the present invention is a cell balance device that equalizes each cell voltage of a battery pack in which a plurality of battery cells are connected in series, and is connected in series to each other and in parallel to the battery pack.
- a plurality of primary coils, a plurality of secondary coils connected in parallel to each battery cell, and a switching circuit connected in series with the plurality of primary coils, the plurality of primary coils comprising:
- Each of the plurality of battery cells is transformer-coupled to a plurality of secondary coils connected to at least two of the battery cells.
- the active cell balance device in the active cell balance device, it is possible to suppress variations in characteristics between taps due to an increase in the number of battery cells included in the assembled battery.
- FIG. 1 is a configuration diagram illustrating a cell balance device according to a first embodiment of the present invention.
- the cell balance device of Embodiment 1 of the present invention that equalizes each block voltage of a battery pack in which 2n battery blocks 11a, 11b to 1na, and 1nb are connected in series includes, for example, 2n secondary coils 21a, 21b to 2na, 2nb, 2n rectifier circuits 31a, 31b to 3na, 3nb, 2n voltmeters 41a, 41b to 4na, 4nb, n primary coils 51 to 5n, and one switching
- the circuit 6 includes n cores 71 to 7n, a control unit 8, and a storage unit 9.
- the cell balance device includes two secondary coils, one primary coil, and one core that are transformer-coupled to each other from the above configurations.
- the transformer coupling circuits 101 to 10n are configured.
- a set of battery blocks connected to each transformer coupling circuit will be referred to as battery stacks 201 to 20n, respectively.
- n is an integer of 2 or more. 2n is the number obtained by multiplying 2 by n.
- Each of the battery blocks 11a, 11b to 1na, and 1nb has a configuration in which a plurality of battery cells including storage batteries such as lithium ion batteries, lead batteries, nickel cadmium batteries, and nickel hydride batteries are connected in series. And each battery block comprises an assembled battery by mutually connecting in series.
- the power line PL1 and the ground line NL1 connected to the assembled battery are connected to a load such as an inverter circuit for driving a motor via a terminal A and a terminal A ′, respectively.
- the assembled battery is used in the state electrically insulated from the vehicle body.
- Each battery block may be replaced with one battery cell.
- the secondary coils 21a, 21b to 2na, 2nb have a configuration in which an electric wire such as a copper wire is wound, for example.
- Each secondary coil is connected in parallel to one different battery block.
- each secondary coil supplies the battery block with an induced current generated by electromagnetic induction when the current flowing through the transformer-coupled primary coil changes.
- the number of turns of each secondary coil and the number of turns of the primary coil connected to each secondary coil are set so as to obtain an induced voltage suitable for charging the battery block to be connected.
- an induced voltage having an amplitude of the block voltage average value which is an average value of the block voltage values (hereinafter referred to as block voltage values) calculated by the following formula (1), is supplied to each battery block. be able to.
- Block voltage average value total of each block voltage value constituting the assembled battery / 2n (1)
- the coupling coefficient between each primary coil and each secondary coil is 1, and there is no loss other than leakage flux. In the following description, the same conditions are assumed unless otherwise specified.
- the rectifier circuits 31a, 31b to 3na, 3nb are composed of semiconductor elements such as diodes, for example.
- the diodes of each rectifier circuit are connected in series between the positive side of each battery block and each secondary coil so that the direction of current flow from the secondary coil to the positive side of the battery block is the forward direction. It is connected. Thereby, each rectifier circuit rectifies the induced current generated in each secondary coil and supplies the current to each battery block.
- FIG. 1 shows an example in which each rectifier circuit is composed of one diode, a known rectifier circuit to which a smoothing capacitor or the like is added may be used. When a smoothing capacitor is added, each battery block and the smoothing capacitor are connected in parallel.
- each voltmeter 41a, 41b to 4na, 4nb known voltmeters can be adopted. Each voltmeter is connected in parallel to each battery block. Thereby, each voltmeter measures the block voltage of each battery block connected thereto, and outputs the obtained block voltage value to the control unit 8.
- the primary coils 51 to 5n are configured by winding an electric wire such as a copper wire, for example. And each primary coil is mutually connected in series.
- the primary coils 51 to 5n connected in series with each other are connected in parallel with the assembled battery and connected in series with the switching circuit 6.
- the switching circuit 6 can employ a switching element such as an electromagnetic relay, for example.
- the switching circuit 6 performs an on / off operation (hereinafter referred to as switching) as needed under the control of the control unit 8.
- switching an on / off operation
- the switching cycle of the switching circuit 6 may be appropriately selected as a cycle in which the power transmission efficiency is increased according to the characteristics of each secondary coil, each primary coil, and each core.
- each core for example, a ferromagnetic or ferrimagnetic material such as iron or ferrite can be used.
- a ferromagnetic or ferrimagnetic material such as iron or ferrite can be used.
- two secondary coils in the secondary coils 21a, 21b to 2na, and 2nb and one primary coil in the primary coils 51 to 5n are wound. .
- each core is increasing the coupling coefficient of the wound secondary coil and the primary coil.
- the cores 71 to 7n may be omitted.
- control unit 8 for example, a computer equipped with a memory as a work space such as an ECU (Electronic Control Unit) can be employed. And the control part 8 performs control which switches the switching circuit 6, if each block voltage measured with each voltmeter varies. This control will be described in detail in the description of the operation using the flowchart of the cell balance control in FIG. In addition to the above control, the control unit 8 may perform overall control related to the assembled battery, such as charging control of the assembled battery, output control of the assembled battery, and abnormality detection of each battery block.
- ECU Electronic Control Unit
- the variation regulation value is a value defined by the user so that the control unit 8 can determine whether or not each block voltage varies.
- An example is shown below, but the variation regulation value is not limited to the following regulation method.
- the battery block having the maximum block voltage value (hereinafter referred to as the block voltage maximum value) among the battery blocks 11a, 11b to 1na, 1nb constituting the assembled battery, and the minimum block voltage value
- a variation regulation value defined as a difference in the block voltage value (hereinafter referred to as a first block voltage difference) with the battery block (hereinafter referred to as a minimum block voltage value).
- Specified variation value ⁇ 1st block voltage difference (3) As another example of the prescribed variation value, the absolute value of the difference between the block voltage average value, the block voltage maximum value, and the block voltage minimum value (hereinafter referred to as the second block voltage difference and the third block voltage difference, respectively). There is a prescribed variation value.
- the control unit 8 acquires each block voltage value from each voltmeter. And the control part 8 substitutes each acquired block voltage value for Formula (1), and calculates a block voltage average value. Further, the control unit 8 extracts a block voltage maximum value and a block voltage minimum value from the acquired block voltage values. Further, the control unit 8 calculates the second block voltage difference by substituting the calculated block voltage average value and the extracted block voltage maximum value into the following equation (4). Further, the control unit 8 calculates the third block voltage difference by substituting the calculated block voltage average value and the extracted block voltage minimum value into the following equation (5).
- Block voltage maximum value-block voltage average value second block voltage difference (4)
- Block voltage average value-block voltage minimum value third block voltage difference (5)
- the control unit 8 compares the second block voltage difference and the third block voltage difference obtained by the equations (4) and (5) with the variation specified values, respectively.
- the control unit 8 determines that each block voltage varies when at least one of the second block voltage difference and the third block voltage difference is greater than or equal to the variation regulation value. This determination is performed by using the following equations (6) and (7) in the control unit 8.
- Variation specified value ⁇ second block voltage difference (6) Specified variation value ⁇ Third block voltage difference (7) In the above, an example of two determination methods for determining the variation of each block voltage and two specified variation values used for each block voltage is shown. Further, the present invention is not limited to this, and when using another conceivable method for determining the variation of each block voltage, a prescribed variation value suitable for the determination method may be appropriately defined.
- FIG. 2 is a flowchart of cell balance control according to the first embodiment of the present invention.
- the control unit 8 acquires the block voltage values of the battery blocks 11a, 11b to 1na, 1nb constituting the assembled battery (S201). Specifically, a periodic timing is obtained by counting a signal input by pressing an input unit such as a button type (not shown), a signal input by turning on an ignition key, and an ECU clock. A control start signal for performing cell balance control is input to the control unit 8 using the signal repeatedly input in step 1 as a trigger. Then, the control unit 8 recognizes that cell balance control is started when a control start signal is input, and outputs a block voltage value request signal to each voltmeter. Each voltmeter outputs the measured block voltage value to the control unit 8 when the block voltage value request signal is input. Thereby, the control part 8 acquires a block voltage value from each voltmeter.
- the trigger for performing cell balance control is preferably set so as to be generated at an appropriate timing.
- control unit 8 determines whether or not the block voltage value varies by comparing each acquired block voltage with a variation regulation value (S202).
- control unit 8 When determining that the block voltage does not vary (No in S202), the control unit 8 outputs a stop signal for stopping the switching circuit 6 to the switching circuit 6.
- the switching circuit 6 stops switching (S204) and ends the cell balance control.
- S204 when the switching circuit 6 is stopped, the switching circuit 6 is kept stopped.
- control unit 8 when it is determined that the block voltages vary (Yes in S202), the control unit 8 outputs a switching signal for switching the switching circuit 6 to the switching circuit 6.
- the switching circuit 6 starts switching (S203). If the switching circuit 6 has already been switched, the switching is continued as it is. Then, the process returns to S201.
- each secondary coil has the same number of turns
- each primary coil has the same number of turns
- the switching cycle of the switching circuit 6 is adjusted as appropriate, and the sum of the amplitudes of the induced voltages of the primary coils (hereinafter referred to as the first induced voltage value) It shall be equal to the voltage value (the sum of the block voltage values of 2n battery blocks).
- the voltage value is obtained by dividing the first induced voltage by 2. That is, as is clear from the equations (8) and (9), the second induced voltage value is a block voltage average value.
- each battery block discharges power from the power line PL1 side while the switching circuit 6 is switching.
- the battery block more than a block voltage average value is performing only discharge of electric power, the electric power discharged from an assembled battery is distributed with the battery block below a voltage average value. Therefore, the charge / discharge amount of the battery block less than the voltage average value is larger in the charge amount. Therefore, as a result, electric power is supplied to the battery block below the voltage average value, and the block voltage increases.
- each block voltage is automatically equalized.
- separate transformer coupling circuits are connected to the battery stacks 201 to 20n. This suppresses an increase in the number of coils wound around one transformer. Therefore, an increase in the number of taps included in one transformer can be suppressed, and variations in characteristics between taps can be suppressed. Furthermore, when increasing or decreasing the number of battery blocks in series, it is only necessary to increase or decrease the number of series of transformer coupling circuits without changing the transformer in the cell balance device.
- the cell balance device has a configuration in which each block voltage can be equalized only by switching the switching circuit 6.
- each block voltage can be equalized only by controlling one switching circuit, so that the control of the switching circuit can be simplified.
- the number of switching circuits required for the cell balance device is only one regardless of the number of battery blocks, the cost can be suppressed.
- each transformer coupling circuit has been described as having two secondary coils, one primary coil, and one core. Not limited. The number of each may be changed as appropriate within the range in which the object of Embodiment 1 of the present invention can be achieved.
- Embodiment 1 of this invention when each battery block which comprises an assembled battery is replaced with one battery cell, the cell voltage which is the voltage of a battery cell can be equalized.
- Embodiment 2 an active cell balance apparatus according to a second embodiment of the present invention will be described with reference to the drawings. Unless otherwise specified, the cell balance device described in Embodiment 2 of the present invention is assumed to be an active method.
- FIG. 3 is a configuration diagram showing a cell balance device according to the second embodiment of the present invention.
- FIG. 3 the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
- the cell balance device includes a system power supply 30, a charging device 40, and changeover switches 50a and 50b in addition to the configuration of the first embodiment of the present invention illustrated in FIG. It is a configuration.
- the second embodiment of the present invention can charge the assembled battery while controlling the cell balance of each battery block by the electric power supplied from the system power supply 30.
- the charging device 40 includes an AC / DC converter and a DC / DC converter. Charging device 40 is connected to system power supply 30 via power line PL2 and ground line NL2. Charging device 40 is connected to changeover switch 50a via power line PL3. Furthermore, the charging device 40 is connected to the changeover switch 50b via the ground line NL3. As described above, when the changeover switch 50a is connected to the power line PL3 and the changeover switch 50b is connected to the ground line NL3, a direct current is supplied to the primary coils 51 to 5n connected in series.
- a switch element such as an electromagnetic relay can be employed as the changeover switch 50a.
- the changeover switch 50a is connected to a terminal B which is a connection terminal to the outside of the primary coils 51 to 5n connected in series with each other, and the connection destination can be switched between the power line PL1 and the power line PL3.
- a switching signal for switching the connection destinations of primary coils 51 to 5n connected in series with each other is input from control unit 8, the connection destination of terminal B is switched between power line PL1 and power line PL3.
- a switch element such as an electromagnetic relay can be employed as the changeover switch 50b.
- the changeover switch 50b is connected to a terminal B ′ that is a connection terminal of the primary coils 51 to 5n connected in series with each other, and the connection destination is switched between the ground line NL1 and the ground line NL3. It is configured to be possible.
- the connection destination of the terminal B ′ is set between the ground line NL1 and the installation line NL3. Switch with.
- the changeover switch 50a when the changeover switch 50a is connected to the power line PL1 under the control of the control unit 8, the changeover switch 50b is connected to the ground line NL1. Further, when the changeover switch 50a is connected to the power line PL3 under the control of the control unit 8, the changeover switch 50b is connected to the ground line NL3. In this way, the changeover switch 50a and the changeover switch 50b are switched in synchronization under the control of the control unit 8.
- the changeover switches 50a and 50b are connected to the control unit 8 in order to charge the assembled battery when the charging device 40 is connected to the system power supply 30.
- the connection destination can be switched to the power line PL3 and the ground line NL3, respectively.
- the charging device 40 is controlled by the control unit 8 to convert the alternating current of the system power supply 30 into a direct current and supply it to the primary coils 51 to 5n. Thereafter, the control unit 8 switches the switching circuit 6.
- each transformer coupling circuit an induced current is generated from each primary coil to each secondary coil by electromagnetic induction.
- each battery block which comprises an assembled battery can be charged with the induced current. That is, the cell balance device according to the second embodiment of the present invention can equalize each block voltage while charging the assembled battery using the power from the system power supply 30.
- the voltage supplied from the system power supply 30 to the primary coils 51 to 5n connected in series via the charging device 40 and the switching cycle of the switching circuit may be appropriately adjusted by the control unit 8. .
- the control unit 8 when each of the induced voltages and induced currents generated in the secondary coils 21a, 21b to 2na, 2nb is adjusted by the control unit 8 so as to have a magnitude suitable for charging each battery block. good.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
In an active-type cell balancing device, a plurality of primary coils which are mutually connected in series are connected in parallel to an assembled battery. Further, a secondary coil is connected in parallel to each battery cell forming the assembled battery. Also, a switching circuit is connected in series to the plurality of primary coils. Then, the plurality of primary coils are transformer-coupled with the plurality of secondary coils which are connected to at least two battery cells of the respective plurality of battery cells.
Description
本発明は、組電池を構成する複数の電池セルの電圧を均等化するセルバランス装置に関し、特には、トランスを介して各電池セルの間で電力の受け渡しをするアクティブ方式のセルバランス装置に関する。
The present invention relates to a cell balance device that equalizes the voltages of a plurality of battery cells constituting an assembled battery, and more particularly to an active cell balance device that transfers power between battery cells via a transformer.
ハイブリッド車や電気自動車等に搭載されるリチウムイオン電池等の複数の電池セルを直列に接続して構成される電池ブロックは、高電圧を得るために、複数の電池ブロックを直列接続した組電池として使用されている。
A battery block configured by connecting a plurality of battery cells such as lithium ion batteries mounted in a hybrid vehicle or an electric vehicle in series is an assembled battery in which a plurality of battery blocks are connected in series in order to obtain a high voltage. in use.
このような組電池を構成する各電池ブロックの電圧(以下、ブロック電圧という。)がばらつくと、電池ブロックを構成する各電池セルの劣化が加速的に進行したり、電池ブロックから得られる利用可能なエネルギー量が低下したりする。したがって、各ブロック電圧は均等であることが望ましい。しかし、各電池ブロックの容量、内部抵抗及び自己放電率等が不均一であることに起因して、各ブロック電圧にばらつきが発生することがある。そこで、従来から、各ブロック電圧を均等化するための装置であるセルバランス装置を用いて、各ブロック電圧のばらつきを解消することが提案されている。
When the voltage of each battery block constituting such an assembled battery (hereinafter referred to as a block voltage) varies, the deterioration of each battery cell constituting the battery block progresses at an accelerated rate or can be obtained from the battery block. The amount of energy is reduced. Therefore, it is desirable that each block voltage is equal. However, variations in the block voltages may occur due to non-uniform capacity, internal resistance, self-discharge rate, etc. of each battery block. Therefore, conventionally, it has been proposed to eliminate variations in the block voltages by using a cell balance device which is a device for equalizing the block voltages.
そして、セルバランス装置の構成としては、従来から、組電池を構成する各電池ブロックにスイッチと抵抗とを接続しておき、各電池ブロックの中でブロック電圧の高い電池ブロックがある場合に、その電池ブロックを放電させることで、各電池ブロックの電圧を均等化するパッシブ方式が用いられている。
And, as a configuration of the cell balance device, conventionally, a switch and a resistor are connected to each battery block constituting the assembled battery, and when there is a battery block with a high block voltage in each battery block, A passive system that equalizes the voltage of each battery block by discharging the battery block is used.
しかし、パッシブ方式は原理的に電池ブロックの電力を放電することになるので、電力を無駄に消費してしまうことになる。
However, since the passive method in principle discharges the power of the battery block, it consumes power wastefully.
そこで、セルバランス装置の構成として、トランスを介して各電池ブロックの間で電力の受け渡しをするアクティブ方式が注目されている。このアクティブ方式は、各電池ブロックの間で電力の受け渡しをする方式なので、パッシブ方式と比べて少ない電力消費で、各ブロック電圧を均等化することができる。
Therefore, attention has been paid to an active method for transferring power between each battery block via a transformer as a configuration of the cell balance device. Since this active method is a method of transferring power between the battery blocks, each block voltage can be equalized with less power consumption than the passive method.
ただし、従来のアクティブ方式のセルバランス装置は、トランスの各タップにそれぞれ電池ブロックが1個ずつ接続される構成のため、電池ブロックの直列数が増えると、タップ数が増えることになる。これにより、アクティブ方式のセルバランス装置では、電池ブロックの個数が増えると、タップ間の特性のばらつきが大きくなるという問題があった。
However, since the conventional active type cell balance device has a configuration in which one battery block is connected to each tap of the transformer, the number of taps increases as the number of battery blocks in series increases. As a result, the active type cell balance device has a problem that the variation in characteristics between taps increases as the number of battery blocks increases.
また、セルバランス装置に関する技術に関しては、下記の特許文献1~4等に開示されている。
Further, the technology relating to the cell balance device is disclosed in the following Patent Documents 1 to 4 and the like.
本発明は、上記の事情に鑑み、アクティブ方式のセルバランス装置において、組電池が備える電池セル数の増大による、タップ間の特性のばらつきを抑制することを目的とする。
In view of the above circumstances, an object of the present invention is to suppress variation in characteristics between taps due to an increase in the number of battery cells included in an assembled battery in an active cell balance device.
上述した課題を解決するため、本発明のセルバランス装置は、複数の電池セルを直列接続した組電池の各セル電圧を均等化するセルバランス装置において、互いに直列、かつ、前記組電池に並列接続された複数の1次コイルと、前記各電池セルに並列接続された複数の2次コイルと、前記複数の1次コイルと直列接続されたスイッチング回路と、を備え、前記複数の1次コイルは、それぞれ前記複数の電池セルの中の少なくとも2以上の電池セルに接続された複数の2次コイルとトランス結合することを特徴とする。
In order to solve the above-described problems, a cell balance device of the present invention is a cell balance device that equalizes each cell voltage of a battery pack in which a plurality of battery cells are connected in series, and is connected in series to each other and in parallel to the battery pack. A plurality of primary coils, a plurality of secondary coils connected in parallel to each battery cell, and a switching circuit connected in series with the plurality of primary coils, the plurality of primary coils comprising: Each of the plurality of battery cells is transformer-coupled to a plurality of secondary coils connected to at least two of the battery cells.
本発明によれば、アクティブ方式のセルバランス装置において、組電池が備える電池セル数の増大による、タップ間の特性のばらつきを抑制することができる。
According to the present invention, in the active cell balance device, it is possible to suppress variations in characteristics between taps due to an increase in the number of battery cells included in the assembled battery.
[実施形態1]
以下、本発明の実施形態1のアクティブ方式のセルバランス装置について、図面を参照しながら説明する。なお、以下の説明において、本発明の実施形態1のセルバランス装置は、アクティブ方式であるものとする。 [Embodiment 1]
Hereinafter, an active cell balance device according to a first embodiment of the present invention will be described with reference to the drawings. In the following description, it is assumed that the cell balance device according to the first embodiment of the present invention is an active method.
以下、本発明の実施形態1のアクティブ方式のセルバランス装置について、図面を参照しながら説明する。なお、以下の説明において、本発明の実施形態1のセルバランス装置は、アクティブ方式であるものとする。 [Embodiment 1]
Hereinafter, an active cell balance device according to a first embodiment of the present invention will be described with reference to the drawings. In the following description, it is assumed that the cell balance device according to the first embodiment of the present invention is an active method.
図1は、本発明の実施形態1のセルバランス装置を示す構成図である。
FIG. 1 is a configuration diagram illustrating a cell balance device according to a first embodiment of the present invention.
図1を参照して、本発明の実施形態1のセルバランス装置について説明する。
With reference to FIG. 1, the cell balance apparatus of Embodiment 1 of this invention is demonstrated.
2n個の電池ブロック11a、11b~1na、1nbを直列に接続した組電池の各ブロック電圧を均等化する、本発明の実施形態1のセルバランス装置は、例えば、2n個の2次コイル21a、21b~2na、2nbと、2n個の整流回路31a、31b~3na、3nbと、2n個の電圧計41a、41b~4na、4nbと、n個の1次コイル51~5nと、1個のスイッチング回路6と、n個のコア71~7nと、制御部8と、記憶部9と、を備えて構成される。
The cell balance device of Embodiment 1 of the present invention that equalizes each block voltage of a battery pack in which 2n battery blocks 11a, 11b to 1na, and 1nb are connected in series includes, for example, 2n secondary coils 21a, 21b to 2na, 2nb, 2n rectifier circuits 31a, 31b to 3na, 3nb, 2n voltmeters 41a, 41b to 4na, 4nb, n primary coils 51 to 5n, and one switching The circuit 6 includes n cores 71 to 7n, a control unit 8, and a storage unit 9.
また、本発明の実施形態1のセルバランス装置は、上記の構成の中から、2個の2次コイルと、1個の1次コイルと、1個のコアと、をトランス結合して、2n個のトランス結合回路101~10nを構成する。また、各トランス結合回路に接続される電池ブロックの組を、それぞれ電池スタック201~20nと言うことにする。なお、上記の符号において、nとは2以上の整数とする。また、2n個とは2にnを乗算した個数である。
In addition, the cell balance device according to the first embodiment of the present invention includes two secondary coils, one primary coil, and one core that are transformer-coupled to each other from the above configurations. The transformer coupling circuits 101 to 10n are configured. A set of battery blocks connected to each transformer coupling circuit will be referred to as battery stacks 201 to 20n, respectively. In the above code, n is an integer of 2 or more. 2n is the number obtained by multiplying 2 by n.
電池ブロック11a、11b~1na、1nbはそれぞれ、例えば、リチウムイオン電池、鉛電池、ニッカド電池及びニッケル水素電池等の蓄電池で構成される電池セルを複数直列に接続した構成である。そして、各電池ブロックは、互いに直列に接続されることで組電池を構成する。この組電池に接続される電力線PL1及び接地線NL1は、それぞれ端子A及び端子A′を介してモータ駆動用のインバータ回路等の負荷に接続されている。そして、組電池は車両ボディから電気的に絶縁された状態で使用されている。また、各電池ブロックを1個の電池セルに置き換えても良い。
Each of the battery blocks 11a, 11b to 1na, and 1nb has a configuration in which a plurality of battery cells including storage batteries such as lithium ion batteries, lead batteries, nickel cadmium batteries, and nickel hydride batteries are connected in series. And each battery block comprises an assembled battery by mutually connecting in series. The power line PL1 and the ground line NL1 connected to the assembled battery are connected to a load such as an inverter circuit for driving a motor via a terminal A and a terminal A ′, respectively. And the assembled battery is used in the state electrically insulated from the vehicle body. Each battery block may be replaced with one battery cell.
2次コイル21a、21b~2na、2nbは、例えば、銅線等の電線を巻き回した構成である。そして、各2次コイルは、それぞれ異なる1個の電池ブロックに並列に接続されている。これにより、各2次コイルは、トランス結合された1次コイルに流れる電流が変化したときに、電磁誘導により発生した誘導電流を電池ブロックに供給する。
The secondary coils 21a, 21b to 2na, 2nb have a configuration in which an electric wire such as a copper wire is wound, for example. Each secondary coil is connected in parallel to one different battery block. Thus, each secondary coil supplies the battery block with an induced current generated by electromagnetic induction when the current flowing through the transformer-coupled primary coil changes.
また、各2次コイルの巻数と、それぞれに接続される1次コイルの巻数は、接続される電池ブロックの充電に適した誘導電圧が得られるように設定されている。一例としては、1個の1次コイルと1個の2次コイルとの巻線比を、それぞれ1次コイル:2次コイル=2:1に設定すると良い。これにより、下記式(1)により算出される各ブロック電圧の値(以下、ブロック電圧値という。)の平均値である、ブロック電圧平均値の振幅を持つ誘導電圧を、各電池ブロックに供給することができる。
ブロック電圧平均値=組電池を構成する各ブロック電圧値の合計/2n (1)
なお、上記では、各1次コイルと、各2次コイルとの結合係数が1であり、漏れ磁束以外の損失がないものとした。以下の説明においても、特に断らない限り同じ条件であるものとする。 Further, the number of turns of each secondary coil and the number of turns of the primary coil connected to each secondary coil are set so as to obtain an induced voltage suitable for charging the battery block to be connected. As an example, the winding ratio of one primary coil and one secondary coil may be set to primary coil: secondary coil = 2: 1, respectively. Accordingly, an induced voltage having an amplitude of the block voltage average value, which is an average value of the block voltage values (hereinafter referred to as block voltage values) calculated by the following formula (1), is supplied to each battery block. be able to.
Block voltage average value = total of each block voltage value constituting the assembled battery / 2n (1)
In the above description, the coupling coefficient between each primary coil and each secondary coil is 1, and there is no loss other than leakage flux. In the following description, the same conditions are assumed unless otherwise specified.
ブロック電圧平均値=組電池を構成する各ブロック電圧値の合計/2n (1)
なお、上記では、各1次コイルと、各2次コイルとの結合係数が1であり、漏れ磁束以外の損失がないものとした。以下の説明においても、特に断らない限り同じ条件であるものとする。 Further, the number of turns of each secondary coil and the number of turns of the primary coil connected to each secondary coil are set so as to obtain an induced voltage suitable for charging the battery block to be connected. As an example, the winding ratio of one primary coil and one secondary coil may be set to primary coil: secondary coil = 2: 1, respectively. Accordingly, an induced voltage having an amplitude of the block voltage average value, which is an average value of the block voltage values (hereinafter referred to as block voltage values) calculated by the following formula (1), is supplied to each battery block. be able to.
Block voltage average value = total of each block voltage value constituting the assembled battery / 2n (1)
In the above description, the coupling coefficient between each primary coil and each secondary coil is 1, and there is no loss other than leakage flux. In the following description, the same conditions are assumed unless otherwise specified.
整流回路31a、31b~3na、3nbは、例えば、ダイオード等の半導体素子で構成される。そして、各整流回路が有するダイオードは、2次コイルから電池ブロックの正極側へ電流が流れる方向が順方向となるように、各電池ブロックの正極側と、各2次コイルとの間に直列に接続されている。これにより、各整流回路は、各2次コイルに発生する誘導電流を整流し、各電池ブロックに電流を供給する。なお、図1では、各整流回路をダイオード1個で構成している例を示しているが、平滑コンデンサ等を加えた公知の整流回路を用いても良い。また、平滑コンデンサを加える場合には、各電池ブロックと平滑コンデンサとを並列に接続する。
The rectifier circuits 31a, 31b to 3na, 3nb are composed of semiconductor elements such as diodes, for example. The diodes of each rectifier circuit are connected in series between the positive side of each battery block and each secondary coil so that the direction of current flow from the secondary coil to the positive side of the battery block is the forward direction. It is connected. Thereby, each rectifier circuit rectifies the induced current generated in each secondary coil and supplies the current to each battery block. Although FIG. 1 shows an example in which each rectifier circuit is composed of one diode, a known rectifier circuit to which a smoothing capacitor or the like is added may be used. When a smoothing capacitor is added, each battery block and the smoothing capacitor are connected in parallel.
電圧計41a、41b~4na、4nbには、公知の電圧計を採用することができる。そして、各電圧計は、それぞれ各電池ブロックに並列に接続される。これにより、各電圧計は、それぞれ接続された電池ブロックのブロック電圧を測定し、得られたブロック電圧値を制御部8に出力する。
As the voltmeters 41a, 41b to 4na, 4nb, known voltmeters can be adopted. Each voltmeter is connected in parallel to each battery block. Thereby, each voltmeter measures the block voltage of each battery block connected thereto, and outputs the obtained block voltage value to the control unit 8.
1次コイル51~5nは、例えば、銅線等の電線を巻き回すことで構成される。そして、各1次コイルは、互いに直列に接続されている。また、互いに直列に接続された1次コイル51~5nは、組電池と並列に接続され、かつ、スイッチング回路6と直列に接続されている。
The primary coils 51 to 5n are configured by winding an electric wire such as a copper wire, for example. And each primary coil is mutually connected in series. The primary coils 51 to 5n connected in series with each other are connected in parallel with the assembled battery and connected in series with the switching circuit 6.
スイッチング回路6には、例えば、電磁リレー等のスイッチ素子を採用することができる。そして、スイッチング回路6は、制御部8の制御により、必要に応じてオンオフ動作(以下、スイッチングという。)をする。このように、スイッチング回路6がスイッチングすることで、互いに直列に接続された1次コイル51~5nに、組電池から間欠的な電流を供給する。なお、スイッチング回路6のスイッチングの周期は、各2次コイル、各1次コイル及び各コアの特性に応じて、電力電送効率が高くなる周期を適宜選択すると良い。
The switching circuit 6 can employ a switching element such as an electromagnetic relay, for example. The switching circuit 6 performs an on / off operation (hereinafter referred to as switching) as needed under the control of the control unit 8. As described above, when the switching circuit 6 is switched, intermittent current is supplied from the assembled battery to the primary coils 51 to 5n connected in series. Note that the switching cycle of the switching circuit 6 may be appropriately selected as a cycle in which the power transmission efficiency is increased according to the characteristics of each secondary coil, each primary coil, and each core.
コア71~7nには、例えば、鉄やフェライトなどの強磁性またはフェリ磁性の素材を採用することができる。そして、各コアには、2次コイル21a、21b~2na、2nbの中の2個の2次コイルと、1次コイル51~5nの中の1個の1次コイルとが巻きまわされている。これにより、各コアは、巻き回された2次コイルと1次コイルとの結合係数を増加させている。なお、2次コイルと1次コイルとの間の電力電送効率を向上させるためには、上記のように各トランス結合回路にコアを用いることで、結合係数を増加させることが望ましい。ただし、用途によって、空芯コイルの電力電送効率で十分な場合には、コア71~7nを省略しても良い。
For the cores 71 to 7n, for example, a ferromagnetic or ferrimagnetic material such as iron or ferrite can be used. In each core, two secondary coils in the secondary coils 21a, 21b to 2na, and 2nb and one primary coil in the primary coils 51 to 5n are wound. . Thereby, each core is increasing the coupling coefficient of the wound secondary coil and the primary coil. In order to improve the power transmission efficiency between the secondary coil and the primary coil, it is desirable to increase the coupling coefficient by using the core in each transformer coupling circuit as described above. However, if the power transmission efficiency of the air-core coil is sufficient depending on the application, the cores 71 to 7n may be omitted.
制御部8には、例えば、ECU(Electronic Control Unit)等のワークスペースとしてメモリを搭載するコンピュータを採用することができる。そして、制御部8は、各電圧計で測定された各ブロック電圧がばらつくと、スイッチング回路6をスイッチングさせる制御をする。この制御については、図2のセルバランス制御のフローチャートを用いた動作説明において、詳細に説明する。なお、制御部8は、上記の制御以外にも、組電池の充電制御、組電池の出力制御及び各電池ブロックの異常検出等、組電池に係わる制御全般を行なうようにしても良い。
As the control unit 8, for example, a computer equipped with a memory as a work space such as an ECU (Electronic Control Unit) can be employed. And the control part 8 performs control which switches the switching circuit 6, if each block voltage measured with each voltmeter varies. This control will be described in detail in the description of the operation using the flowchart of the cell balance control in FIG. In addition to the above control, the control unit 8 may perform overall control related to the assembled battery, such as charging control of the assembled battery, output control of the assembled battery, and abnormality detection of each battery block.
記憶部9には、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)等を採用することができる。そして、記憶部9には、OSのプログラムやアプリケーションのプログラムと、組電池の制御に必要な各種データが記憶されている。この各種データには、少なくとも、各ブロック電圧がばらついているか否かを判定するための規定値(以下、ばらつき規定値という。)が含まれている。
The storage unit 9 can employ, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like. The storage unit 9 stores an OS program, an application program, and various data necessary for controlling the assembled battery. The various data includes at least a specified value (hereinafter referred to as a variation specified value) for determining whether or not each block voltage varies.
ここで、ばらつき規定値とは、制御部8で各ブロック電圧がばらついているか否かを判定することができるように、ユーザにより規定された値である。下記に一例を示すが、ばらつき規定値は、下記の規定方法に限定されるものではない。
Here, the variation regulation value is a value defined by the user so that the control unit 8 can determine whether or not each block voltage varies. An example is shown below, but the variation regulation value is not limited to the following regulation method.
ばらつき規定値の一例としては、組電池を構成する電池ブロック11a、11b~1na、1nbの中で最大のブロック電圧値(以下、ブロック電圧最大値という。)の電池ブロックと、最小のブロック電圧値(以下、ブロック電圧最小値という。)の電池ブロックとのブロック電圧値の差(以下、第1のブロック電圧差という。)として規定される、ばらつき規定値がある。
As an example of the variation regulation value, the battery block having the maximum block voltage value (hereinafter referred to as the block voltage maximum value) among the battery blocks 11a, 11b to 1na, 1nb constituting the assembled battery, and the minimum block voltage value There is a variation regulation value defined as a difference in the block voltage value (hereinafter referred to as a first block voltage difference) with the battery block (hereinafter referred to as a minimum block voltage value).
このばらつき規定値を使用した、制御部8における各ブロック電圧のばらつき判定方法を説明する。まず、制御部8は、各電圧計から各ブロック電圧値を取得する。そして、制御部8は、取得したブロック電圧値の中から、ブロック電圧最大値と、ブロック電圧最小値とを抽出する。また、制御部8は、抽出したブロック電圧最大値と、ブロック電圧最小値とを下記式(2)に代入して、第1のブロック電圧差を算出する。
ブロック電圧最大値-ブロック電圧最小値=第1のブロック電圧差 (2)
そして、制御部8は、式(2)により得られた第1のブロック電圧差と、ばらつき規定値とを比較して、第1のブロック電圧差がばらつき規定値以上の大きさであるときに、各ブロック電圧がばらついていると判定する。この判定は、制御部8において、下記式(3)を用いることで行なわれる。
ばらつき規定値≦第1のブロック電圧差 (3)
他のばらつき規定値の一例としては、ブロック電圧平均値とブロック電圧最大値及びブロック電圧最小値との差の絶対値(以下、それぞれ第2のブロック電圧差及び第3のブロック電圧差という。)として、規定されるばらつき規定値がある。 A method of determining the variation of each block voltage in thecontrol unit 8 using the specified variation value will be described. First, the control unit 8 acquires each block voltage value from each voltmeter. Then, the control unit 8 extracts the block voltage maximum value and the block voltage minimum value from the acquired block voltage values. Further, the control unit 8 calculates the first block voltage difference by substituting the extracted block voltage maximum value and block voltage minimum value into the following equation (2).
Block voltage maximum value-block voltage minimum value = first block voltage difference (2)
Then, thecontrol unit 8 compares the first block voltage difference obtained by Equation (2) with the variation prescribed value, and when the first block voltage difference is greater than the variation prescribed value. Then, it is determined that each block voltage varies. This determination is performed in the control unit 8 by using the following formula (3).
Specified variation value ≤ 1st block voltage difference (3)
As another example of the prescribed variation value, the absolute value of the difference between the block voltage average value, the block voltage maximum value, and the block voltage minimum value (hereinafter referred to as the second block voltage difference and the third block voltage difference, respectively). There is a prescribed variation value.
ブロック電圧最大値-ブロック電圧最小値=第1のブロック電圧差 (2)
そして、制御部8は、式(2)により得られた第1のブロック電圧差と、ばらつき規定値とを比較して、第1のブロック電圧差がばらつき規定値以上の大きさであるときに、各ブロック電圧がばらついていると判定する。この判定は、制御部8において、下記式(3)を用いることで行なわれる。
ばらつき規定値≦第1のブロック電圧差 (3)
他のばらつき規定値の一例としては、ブロック電圧平均値とブロック電圧最大値及びブロック電圧最小値との差の絶対値(以下、それぞれ第2のブロック電圧差及び第3のブロック電圧差という。)として、規定されるばらつき規定値がある。 A method of determining the variation of each block voltage in the
Block voltage maximum value-block voltage minimum value = first block voltage difference (2)
Then, the
Specified variation value ≤ 1st block voltage difference (3)
As another example of the prescribed variation value, the absolute value of the difference between the block voltage average value, the block voltage maximum value, and the block voltage minimum value (hereinafter referred to as the second block voltage difference and the third block voltage difference, respectively). There is a prescribed variation value.
このばらつき規定値を使用した、制御部8における各ブロック電圧のばらつき判定方法を説明する。まず、制御部8は、各電圧計から各ブロック電圧値を取得する。そして、制御部8は、取得した各ブロック電圧値を式(1)に代入して、ブロック電圧平均値を算出する。また、制御部8は、取得したブロック電圧値の中から、ブロック電圧最大値と、ブロック電圧最小値とを抽出する。さらに、制御部8は、算出したブロック電圧平均値と、抽出したブロック電圧最大値とを下記式(4)に代入して、第2のブロック電圧差を算出する。また、制御部8は、算出したブロック電圧平均値と、抽出したブロック電圧最小値とを下記式(5)に代入して、第3のブロック電圧差を算出する。
ブロック電圧最大値-ブロック電圧平均値=第2のブロック電圧差 (4)
ブロック電圧平均値-ブロック電圧最小値=第3のブロック電圧差 (5)
そして、制御部8は、式(4)、(5)により得られた第2のブロック電圧差と、第3のブロック電圧差とを、それぞればらつき規定値と比較する。そして、制御部8は、第2のブロック電圧差及び第3のブロック電圧差の少なくとも一つが、ばらつき規定値以上の大きさであるときに、各ブロック電圧がばらついていると判定する。この判定は、制御部8において、それぞれ下記式(6)、(7)を用いることで行なわれる。
ばらつき規定値≦第2のブロック電圧差 (6)
ばらつき規定値≦第3のブロック電圧差 (7)
以上には、各ブロック電圧がばらつきを判定するための2つの判定方法と、それぞれに使用される2つのばらつき規定値の一例を示した。また、これに限らず、他に考えられる各ブロック電圧のばらつきの判定方法を用いる場合には、その判定方法に適合したばらつき規定値を適宜規定すれば良い。 A method of determining the variation of each block voltage in thecontrol unit 8 using the specified variation value will be described. First, the control unit 8 acquires each block voltage value from each voltmeter. And the control part 8 substitutes each acquired block voltage value for Formula (1), and calculates a block voltage average value. Further, the control unit 8 extracts a block voltage maximum value and a block voltage minimum value from the acquired block voltage values. Further, the control unit 8 calculates the second block voltage difference by substituting the calculated block voltage average value and the extracted block voltage maximum value into the following equation (4). Further, the control unit 8 calculates the third block voltage difference by substituting the calculated block voltage average value and the extracted block voltage minimum value into the following equation (5).
Block voltage maximum value-block voltage average value = second block voltage difference (4)
Block voltage average value-block voltage minimum value = third block voltage difference (5)
Then, thecontrol unit 8 compares the second block voltage difference and the third block voltage difference obtained by the equations (4) and (5) with the variation specified values, respectively. Then, the control unit 8 determines that each block voltage varies when at least one of the second block voltage difference and the third block voltage difference is greater than or equal to the variation regulation value. This determination is performed by using the following equations (6) and (7) in the control unit 8.
Variation specified value ≦ second block voltage difference (6)
Specified variation value ≤ Third block voltage difference (7)
In the above, an example of two determination methods for determining the variation of each block voltage and two specified variation values used for each block voltage is shown. Further, the present invention is not limited to this, and when using another conceivable method for determining the variation of each block voltage, a prescribed variation value suitable for the determination method may be appropriately defined.
ブロック電圧最大値-ブロック電圧平均値=第2のブロック電圧差 (4)
ブロック電圧平均値-ブロック電圧最小値=第3のブロック電圧差 (5)
そして、制御部8は、式(4)、(5)により得られた第2のブロック電圧差と、第3のブロック電圧差とを、それぞればらつき規定値と比較する。そして、制御部8は、第2のブロック電圧差及び第3のブロック電圧差の少なくとも一つが、ばらつき規定値以上の大きさであるときに、各ブロック電圧がばらついていると判定する。この判定は、制御部8において、それぞれ下記式(6)、(7)を用いることで行なわれる。
ばらつき規定値≦第2のブロック電圧差 (6)
ばらつき規定値≦第3のブロック電圧差 (7)
以上には、各ブロック電圧がばらつきを判定するための2つの判定方法と、それぞれに使用される2つのばらつき規定値の一例を示した。また、これに限らず、他に考えられる各ブロック電圧のばらつきの判定方法を用いる場合には、その判定方法に適合したばらつき規定値を適宜規定すれば良い。 A method of determining the variation of each block voltage in the
Block voltage maximum value-block voltage average value = second block voltage difference (4)
Block voltage average value-block voltage minimum value = third block voltage difference (5)
Then, the
Variation specified value ≦ second block voltage difference (6)
Specified variation value ≤ Third block voltage difference (7)
In the above, an example of two determination methods for determining the variation of each block voltage and two specified variation values used for each block voltage is shown. Further, the present invention is not limited to this, and when using another conceivable method for determining the variation of each block voltage, a prescribed variation value suitable for the determination method may be appropriately defined.
図2は、本発明の実施形態1のセルバランス制御のフローチャートである。
FIG. 2 is a flowchart of cell balance control according to the first embodiment of the present invention.
図2を用いて、本発明の実施形態1の各ブロック電圧を均等化するセルバランス制御を説明する。
The cell balance control for equalizing each block voltage according to the first embodiment of the present invention will be described with reference to FIG.
まず、制御部8は、組電池を構成する電池ブロック11a、11b~1na、1nbの各ブロック電圧値を取得する(S201)。具体的には、図示しないボタン式などの入力部を押下げされることにより入力される信号、イグニッションキーがオンされることで入力される信号及びECUのクロックをカウントすることで定期的なタイミングで繰り返し入力される信号等をトリガとして、セルバランス制御を行なう制御開始信号が制御部8に入力される。すると、制御部8は、制御開始信号が入力されるとセルバランス制御を開始することを認識し、各電圧計にブロック電圧値要求信号を出力する。また、各電圧計は、ブロック電圧値要求信号が入力されると測定したブロック電圧値を制御部8に出力する。これにより、制御部8は、各電圧計からブロック電圧値を取得する。なお、セルバランス制御を行なうトリガは、上記に示した以外にも、適宜好適なタイミングで発生するように設定されることが望ましい。
First, the control unit 8 acquires the block voltage values of the battery blocks 11a, 11b to 1na, 1nb constituting the assembled battery (S201). Specifically, a periodic timing is obtained by counting a signal input by pressing an input unit such as a button type (not shown), a signal input by turning on an ignition key, and an ECU clock. A control start signal for performing cell balance control is input to the control unit 8 using the signal repeatedly input in step 1 as a trigger. Then, the control unit 8 recognizes that cell balance control is started when a control start signal is input, and outputs a block voltage value request signal to each voltmeter. Each voltmeter outputs the measured block voltage value to the control unit 8 when the block voltage value request signal is input. Thereby, the control part 8 acquires a block voltage value from each voltmeter. In addition to the above, the trigger for performing cell balance control is preferably set so as to be generated at an appropriate timing.
次に、制御部8は、取得した各ブロック電圧をばらつき規定値と比較することで、ブロック電圧値がばらついているか否かを判定する(S202)。
Next, the control unit 8 determines whether or not the block voltage value varies by comparing each acquired block voltage with a variation regulation value (S202).
そして、制御部8は、ブロック電圧がばらついていないと判定した場合(S202にてNo)、スイッチング回路6を停止させるための停止信号をスイッチング回路6に出力する。
When determining that the block voltage does not vary (No in S202), the control unit 8 outputs a stop signal for stopping the switching circuit 6 to the switching circuit 6.
この停止信号が入力されると、スイッチング回路6は、スイッチングを停止(S204)して、セルバランス制御を終了する。なお、S204において、スイッチング回路6が停止していた場合には、そのままスイッチング回路6の停止状態を継続する。
When this stop signal is input, the switching circuit 6 stops switching (S204) and ends the cell balance control. In S204, when the switching circuit 6 is stopped, the switching circuit 6 is kept stopped.
また、制御部8は、各ブロック電圧がばらついていると判定した場合(S202にてYes)、スイッチング回路6をスイッチング動作させるためのスッチング信号をスイッチング回路6に出力する。
Further, when it is determined that the block voltages vary (Yes in S202), the control unit 8 outputs a switching signal for switching the switching circuit 6 to the switching circuit 6.
このスイッチング信号が入力されると、スイッチング回路6は、スイッチングを始める(S203)。なお、既にスイッチング回路6がスイッチング中であった場合には、そのままスイッチングを継続する。そして、S201に戻る。
When this switching signal is input, the switching circuit 6 starts switching (S203). If the switching circuit 6 has already been switched, the switching is continued as it is. Then, the process returns to S201.
そして、S201~S204の動作を繰り返すことにより、電圧の低い電池セルに優先的に電力が供給され、各ブロック電圧は均等化される。
Then, by repeating the operations of S201 to S204, power is preferentially supplied to the battery cells having a low voltage, and the block voltages are equalized.
ここで、セルバランス装置による電力の受け渡しの流れを説明する。以下では、各2次コイルは互いに同じ巻数であり、各1次コイルも互いに同じ巻数であり、かつ、各1次コイルと各2次コイルとの巻線比が1次コイル:2次コイル=2:1に設定されている場合を例とする。なお、簡単のため以下の説明では、適宜スイッチング回路6のスイッチングの周期が調整され、各1次コイルの誘導電圧の振幅(以下、第1の誘導電圧値という。)の合計が、組電池の電圧値(2n個の電池ブロックのブロック電圧値の合計)と等しくなるものとする。
Here, the flow of power delivery by the cell balance device will be described. In the following, each secondary coil has the same number of turns, each primary coil has the same number of turns, and the turn ratio of each primary coil to each secondary coil is the primary coil: secondary coil = Take as an example the case of 2: 1. For simplicity, in the following description, the switching cycle of the switching circuit 6 is adjusted as appropriate, and the sum of the amplitudes of the induced voltages of the primary coils (hereinafter referred to as the first induced voltage value) It shall be equal to the voltage value (the sum of the block voltage values of 2n battery blocks).
まず、スイッチング回路6がスイッチングされると、各1次コイルに第1の誘導電圧が発生する。この第1の誘導電圧は、各1次コイルの巻線数が等しいので、各1次コイルで値が等しく、下記式(8)のように組電池の電圧を1次コイルの個数であるnで除算した電圧値が第1の誘導電圧値となる。
第1の誘導電圧値=組電池の電圧値/n (8)
また、各1次コイルに間欠的な電流が供給されることにより、各1次コイルからの電磁誘導により、各2次コイルに第2の誘導電圧が発生する。この第2の誘導電圧の振幅(以下、第2の誘導電圧値という。)は、各2次コイルの巻線数が1次コイルの巻線数の1/2なので、下記式(9)のように第1の誘導電圧を2で除算した電圧値になる。すなわち、式(8)、(9)から明らかなように、第2の誘導電圧値は、ブロック電圧平均値である。
第2の誘導電圧値=第1の誘導電圧値/2=ブロック電圧平均値 (9)
したがって、ブロック電圧平均値以上のブロック電圧値を有する電池ブロックには、接続されている2次コイルからの誘導電流の流れ込みがなく、電力は供給されない。逆に、ブロック電圧平均値以下のブロック電圧値を有する電池ブロックには、接続されている2次コイルで発生した誘導電流が流れ込み、優先的に電力が供給されることになる。 First, when the switching circuit 6 is switched, a first induced voltage is generated in each primary coil. Since the number of windings of each primary coil is equal, the value of the first induced voltage is equal for each primary coil, and the voltage of the assembled battery is the number of primary coils as shown in the following equation (8). The voltage value divided by is the first induced voltage value.
First induced voltage value = battery voltage value / n (8)
Further, by supplying intermittent current to each primary coil, second induction voltage is generated in each secondary coil by electromagnetic induction from each primary coil. The amplitude of the second induced voltage (hereinafter referred to as the second induced voltage value) is that the number of turns of each secondary coil is ½ of the number of turns of the primary coil. Thus, the voltage value is obtained by dividing the first induced voltage by 2. That is, as is clear from the equations (8) and (9), the second induced voltage value is a block voltage average value.
2nd induced voltage value = 1st induced voltage value / 2 = block voltage average value (9)
Therefore, the battery block having a block voltage value equal to or higher than the block voltage average value has no inductive current flowing from the connected secondary coil, and no power is supplied. Conversely, an induced current generated in the connected secondary coil flows into a battery block having a block voltage value equal to or lower than the block voltage average value, and power is preferentially supplied.
第1の誘導電圧値=組電池の電圧値/n (8)
また、各1次コイルに間欠的な電流が供給されることにより、各1次コイルからの電磁誘導により、各2次コイルに第2の誘導電圧が発生する。この第2の誘導電圧の振幅(以下、第2の誘導電圧値という。)は、各2次コイルの巻線数が1次コイルの巻線数の1/2なので、下記式(9)のように第1の誘導電圧を2で除算した電圧値になる。すなわち、式(8)、(9)から明らかなように、第2の誘導電圧値は、ブロック電圧平均値である。
第2の誘導電圧値=第1の誘導電圧値/2=ブロック電圧平均値 (9)
したがって、ブロック電圧平均値以上のブロック電圧値を有する電池ブロックには、接続されている2次コイルからの誘導電流の流れ込みがなく、電力は供給されない。逆に、ブロック電圧平均値以下のブロック電圧値を有する電池ブロックには、接続されている2次コイルで発生した誘導電流が流れ込み、優先的に電力が供給されることになる。 First, when the switching circuit 6 is switched, a first induced voltage is generated in each primary coil. Since the number of windings of each primary coil is equal, the value of the first induced voltage is equal for each primary coil, and the voltage of the assembled battery is the number of primary coils as shown in the following equation (8). The voltage value divided by is the first induced voltage value.
First induced voltage value = battery voltage value / n (8)
Further, by supplying intermittent current to each primary coil, second induction voltage is generated in each secondary coil by electromagnetic induction from each primary coil. The amplitude of the second induced voltage (hereinafter referred to as the second induced voltage value) is that the number of turns of each secondary coil is ½ of the number of turns of the primary coil. Thus, the voltage value is obtained by dividing the first induced voltage by 2. That is, as is clear from the equations (8) and (9), the second induced voltage value is a block voltage average value.
2nd induced voltage value = 1st induced voltage value / 2 = block voltage average value (9)
Therefore, the battery block having a block voltage value equal to or higher than the block voltage average value has no inductive current flowing from the connected secondary coil, and no power is supplied. Conversely, an induced current generated in the connected secondary coil flows into a battery block having a block voltage value equal to or lower than the block voltage average value, and power is preferentially supplied.
また、各電池ブロックは、スイッチング回路6がスイッチングしている間、電力線PL1側から電力を放出している。
Further, each battery block discharges power from the power line PL1 side while the switching circuit 6 is switching.
上記の電力の受け渡しの流れを鑑みると、ブロック電圧値がブロック電圧平均値以上の電池ブロックでは、電力線PL1からの電力の放電のみが行なわれる。また、ブロック電圧値がブロック電圧平均値未満の電池ブロックでは、電力線PL1からの電力の放電と、2次コイルで発生する誘導電流による電力の充電が同時に行なわれる。なお、端子A、A′が負荷に接続されていない場合、原理的には組電池から各1次コイルに供給される電力と、各2次コイルを介して組電池に供給される電力は等しくなる。そして、ブロック電圧平均値以上の電池ブロックは、電力の放電のみを行なっているので、組電池から放電される電力を電圧平均値未満の電池ブロックで分配することになる。したがって、電圧平均値未満の電池ブロックの充放電量は、充電量の方が多くなる。よって、結果的に電圧平均値未満の電池ブロックには電力が供給され、ブロック電圧が上昇する。
In view of the above-described flow of power transfer, only the discharge of power from the power line PL1 is performed in the battery block whose block voltage value is equal to or higher than the block voltage average value. Moreover, in the battery block whose block voltage value is less than the block voltage average value, the electric power is discharged from the power line PL1 and the electric power is charged by the induced current generated in the secondary coil at the same time. When the terminals A and A ′ are not connected to the load, in principle, the power supplied from the assembled battery to each primary coil is equal to the power supplied to the assembled battery via each secondary coil. Become. And since the battery block more than a block voltage average value is performing only discharge of electric power, the electric power discharged from an assembled battery is distributed with the battery block below a voltage average value. Therefore, the charge / discharge amount of the battery block less than the voltage average value is larger in the charge amount. Therefore, as a result, electric power is supplied to the battery block below the voltage average value, and the block voltage increases.
以上のように、セルバランス装置により電力の受け渡しが行なわれるので、自動的に各ブロック電圧の均等化が行なわれることになる。
As described above, since the power is transferred by the cell balance device, each block voltage is automatically equalized.
上記で説明したように、本発明の実施形態1のセルバランス装置は、電池スタック201~20nに別々のトランス結合回路を接続している。これにより、1個のトランスに巻き回されるコイルの数の増大を抑制している。したがって、1個のトランスが備えるタップ数の増大を抑え、タップ間の特性のばらつきを抑制することができる。さらに、電池ブロックの直列数を増減する場合には、セルバランス装置においてトランスを作り変えることなく、トランス結合回路の直列数を増減するだけ良い。
As described above, in the cell balance device according to the first embodiment of the present invention, separate transformer coupling circuits are connected to the battery stacks 201 to 20n. This suppresses an increase in the number of coils wound around one transformer. Therefore, an increase in the number of taps included in one transformer can be suppressed, and variations in characteristics between taps can be suppressed. Furthermore, when increasing or decreasing the number of battery blocks in series, it is only necessary to increase or decrease the number of series of transformer coupling circuits without changing the transformer in the cell balance device.
また、本発明の実施形態1のセルバランス装置は、スイッチング回路6をスイッチングするだけで各ブロック電圧を均等化できる構成とした。これにより、1個のスイッチング回路の制御をするだけで、各ブロック電圧を均等化することができるので、スイッチング回路の制御を簡略化することができる。また、セルバランス装置に必要なスイッチング回路の個数が電池ブロックの個数によらず1個だけとなるので、コストを抑えることができる。
In addition, the cell balance device according to the first embodiment of the present invention has a configuration in which each block voltage can be equalized only by switching the switching circuit 6. Thereby, each block voltage can be equalized only by controlling one switching circuit, so that the control of the switching circuit can be simplified. Moreover, since the number of switching circuits required for the cell balance device is only one regardless of the number of battery blocks, the cost can be suppressed.
また、本発明の実施形態1において、各トランス結合回路は、2次コイルを2個、1次コイルを1個及びコアを1個で構成するものとして説明したが、特に各構成要素の個数を限定しない。本発明の実施形態1の目的を達成することができる範囲内で、適宜それぞれの個数を変更しても良い。
In the first embodiment of the present invention, each transformer coupling circuit has been described as having two secondary coils, one primary coil, and one core. Not limited. The number of each may be changed as appropriate within the range in which the object of Embodiment 1 of the present invention can be achieved.
また、本発明の実施形態1において、組電池を構成する各電池ブロックを、1個の電池セルに置き換えた場合には、電池セルの電圧であるセル電圧を均等化することができる。
[実施形態2]
以下、本発明の実施形態2のアクティブ方式のセルバランス装置について、図面を参照しながら説明する。なお、特に断らない限り、本発明の実施形態2に記載のセルバランス装置は、アクティブ方式であるものとする。 Moreover, in Embodiment 1 of this invention, when each battery block which comprises an assembled battery is replaced with one battery cell, the cell voltage which is the voltage of a battery cell can be equalized.
[Embodiment 2]
Hereinafter, an active cell balance apparatus according to a second embodiment of the present invention will be described with reference to the drawings. Unless otherwise specified, the cell balance device described in Embodiment 2 of the present invention is assumed to be an active method.
[実施形態2]
以下、本発明の実施形態2のアクティブ方式のセルバランス装置について、図面を参照しながら説明する。なお、特に断らない限り、本発明の実施形態2に記載のセルバランス装置は、アクティブ方式であるものとする。 Moreover, in Embodiment 1 of this invention, when each battery block which comprises an assembled battery is replaced with one battery cell, the cell voltage which is the voltage of a battery cell can be equalized.
[Embodiment 2]
Hereinafter, an active cell balance apparatus according to a second embodiment of the present invention will be described with reference to the drawings. Unless otherwise specified, the cell balance device described in Embodiment 2 of the present invention is assumed to be an active method.
図3は、本発明の実施形態2のセルバランス装置を示す構成図である。
FIG. 3 is a configuration diagram showing a cell balance device according to the second embodiment of the present invention.
以下、図3を参照して、本発明の実施形態2のセルバランス装置について説明する。
Hereinafter, the cell balance device according to the second embodiment of the present invention will be described with reference to FIG.
なお、図3において、図1と同じ構成要素については、同じ符号を付し、その説明を省略する。
In FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
本発明の実施形態2のセルバランス装置は、図3に示すように、図1に示した本発明の実施形態1の構成に、系統電源30、充電装置40及び切替スイッチ50a、50bを加えた構成である。これらの構成を加えたことにより、本発明の実施形態2は、系統電源30から供給される電力によって、各電池ブロックのセルバランス制御をしながら、組電池を充電できるようにしたものである。
As shown in FIG. 3, the cell balance device according to the second embodiment of the present invention includes a system power supply 30, a charging device 40, and changeover switches 50a and 50b in addition to the configuration of the first embodiment of the present invention illustrated in FIG. It is a configuration. By adding these configurations, the second embodiment of the present invention can charge the assembled battery while controlling the cell balance of each battery block by the electric power supplied from the system power supply 30.
充電装置40は、AC/DCコンバータと、DC/DCコンバータとを備えて構成されている。そして、充電装置40は、系統電源30に電力線PL2と接地線NL2とを介して接続されている。また、充電装置40は、電力線PL3を介して切替スイッチ50aと接続されている。さらに、充電装置40は、接地線NL3を介して切替スイッチ50bと接続されている。以上により、切替スイッチ50aが電力線PL3に接続され、切替スイッチ50bが接地線NL3に接続されたときに、直列に接続された1次コイル51~5nに直流電流を供給する。
The charging device 40 includes an AC / DC converter and a DC / DC converter. Charging device 40 is connected to system power supply 30 via power line PL2 and ground line NL2. Charging device 40 is connected to changeover switch 50a via power line PL3. Furthermore, the charging device 40 is connected to the changeover switch 50b via the ground line NL3. As described above, when the changeover switch 50a is connected to the power line PL3 and the changeover switch 50b is connected to the ground line NL3, a direct current is supplied to the primary coils 51 to 5n connected in series.
また、切替スイッチ50aには、例えば、電磁リレー等のスイッチ素子を採用することができる。そして、切替スイッチ50aは、互いに直列に接続された1次コイル51~5nの外部との接続端子である端子Bに接続され、その接続先を電力線PL1と電力線PL3との間で切替え可能に構成されている。そして、制御部8から互いに直列に接続された1次コイル51~5nの接続先を切替えるための切替信号が入力されると、端子Bの接続先を電力線PL1と電力線PL3との間で切替える。
Further, for example, a switch element such as an electromagnetic relay can be employed as the changeover switch 50a. The changeover switch 50a is connected to a terminal B which is a connection terminal to the outside of the primary coils 51 to 5n connected in series with each other, and the connection destination can be switched between the power line PL1 and the power line PL3. Has been. When a switching signal for switching the connection destinations of primary coils 51 to 5n connected in series with each other is input from control unit 8, the connection destination of terminal B is switched between power line PL1 and power line PL3.
また、切替スイッチ50bには、例えば、電磁リレー等のスイッチ素子を採用することができる。そして、切替スイッチ50bは、互いに直列に接続された1次コイル51~5nの外部との接続端子である端子B′に接続され、その接続先を接地線NL1と接地線NL3との間で切替え可能に構成されている。そして、制御部8から互いに直列に接続された1次コイル51~5nの接続先を切替えるための切替信号が入力されると、端子B′の接続先を接地線NL1と設置線NL3との間で切替える。
Further, for example, a switch element such as an electromagnetic relay can be employed as the changeover switch 50b. The changeover switch 50b is connected to a terminal B ′ that is a connection terminal of the primary coils 51 to 5n connected in series with each other, and the connection destination is switched between the ground line NL1 and the ground line NL3. It is configured to be possible. When the switching signal for switching the connection destinations of the primary coils 51 to 5n connected in series with each other is input from the control unit 8, the connection destination of the terminal B ′ is set between the ground line NL1 and the installation line NL3. Switch with.
また、制御部8の制御により、切替スイッチ50aが電力線PL1に接続された場合、切替スイッチ50bは、接地線NL1に接続される。さらに、制御部8の制御により、切替スイッチ50aが電力線PL3に接続された場合、切替スイッチ50bは、接地線NL3に接続される。このように、制御部8の制御により、切替スイッチ50aと切替スイッチ50bとは、同期して切替えられる。
Further, when the changeover switch 50a is connected to the power line PL1 under the control of the control unit 8, the changeover switch 50b is connected to the ground line NL1. Further, when the changeover switch 50a is connected to the power line PL3 under the control of the control unit 8, the changeover switch 50b is connected to the ground line NL3. In this way, the changeover switch 50a and the changeover switch 50b are switched in synchronization under the control of the control unit 8.
以上のように構成された本発明の実施形態2のセルバランス装置は、充電装置40が系統電源30に接続されたときに組電池を充電するために、切替スイッチ50a、50bは、制御部8の制御により、接続先をそれぞれ電力線PL3、接地線NL3に切り替えられる。そして、充電装置40は、制御部8に制御され、系統電源30の交流電流を直流電流に変換して、1次コイル51~5nに供給する。その後、制御部8は、スイッチング回路6をスイッチングさせる。これにより、各トランス結合回路において、電磁誘導により、各1次コイルから各2次コイルに誘導電流を発生させる。そして、その誘導電流により組電池を構成する各電池ブロックを充電することができる。すなわち、本発明の実施形態2のセルバランス装置は、系統電源30からの電力を用いて、組電池を充電しながら、各ブロック電圧の均等化を行なうことができる。
In the cell balance device according to the second embodiment of the present invention configured as described above, the changeover switches 50a and 50b are connected to the control unit 8 in order to charge the assembled battery when the charging device 40 is connected to the system power supply 30. Through the control, the connection destination can be switched to the power line PL3 and the ground line NL3, respectively. The charging device 40 is controlled by the control unit 8 to convert the alternating current of the system power supply 30 into a direct current and supply it to the primary coils 51 to 5n. Thereafter, the control unit 8 switches the switching circuit 6. Thereby, in each transformer coupling circuit, an induced current is generated from each primary coil to each secondary coil by electromagnetic induction. And each battery block which comprises an assembled battery can be charged with the induced current. That is, the cell balance device according to the second embodiment of the present invention can equalize each block voltage while charging the assembled battery using the power from the system power supply 30.
また、系統電源30から充電装置40を介して、互いに直列に接続された1次コイル51~5nに供給される電圧と、スイッチング回路のスイッチングの周期は、制御部8によって適宜調整されると良い。具体的には、2次コイル21a、21b~2na、2nbに発生する誘導電圧及び誘導電流が、各電池ブロックの充電に適した大きさになるように、制御部8によってそれぞれが調整されると良い。
Further, the voltage supplied from thesystem power supply 30 to the primary coils 51 to 5n connected in series via the charging device 40 and the switching cycle of the switching circuit may be appropriately adjusted by the control unit 8. . Specifically, when each of the induced voltages and induced currents generated in the secondary coils 21a, 21b to 2na, 2nb is adjusted by the control unit 8 so as to have a magnitude suitable for charging each battery block. good.
Further, the voltage supplied from the
Claims (3)
- 複数の電池セルを、直列接続した組電池の各セル電圧を均等化するセルバランス装置において、
互いに直列、かつ、前記組電池に並列接続された複数の1次コイルと、
前記各電池セルに並列接続された複数の2次コイルと、
前記複数の1次コイルと直列接続されたスイッチング回路と、
を備え、
前記複数の1次コイルは、それぞれ前記複数の電池セルの中の少なくとも2以上の電池セルに接続された複数の2次コイルとトランス結合することを特徴とするセルバランス装置。 In a cell balance device that equalizes each cell voltage of an assembled battery in which a plurality of battery cells are connected in series,
A plurality of primary coils connected in series to each other and in parallel to the assembled battery;
A plurality of secondary coils connected in parallel to each of the battery cells;
A switching circuit connected in series with the plurality of primary coils;
With
The plurality of primary coils are transformer-coupled to a plurality of secondary coils respectively connected to at least two or more battery cells of the plurality of battery cells. - 各電池の電圧がばらついている場合、前記スイッチング回路をスイッチングさせる制御部と、
を備えることを特徴とする請求項1に記載のセルバランス装置。 When the voltage of each battery varies, a control unit that switches the switching circuit;
The cell balance device according to claim 1, further comprising: - 系統電源からの供給される交流電流を直流電流に変換する充電装置と、
前記複数の1次コイルの接続先を、前記組電池と前記充電装置との間で切替える切替スイッチと、
を備え、
前記制御部は、
前記組電池を充電する場合、前記複数の1次コイルの接続先が前記充電装置となるように前記切替スイッチを切替えて、前記スイッチング回路をスイッチングさせることを特徴とする請求項2に記載のセルバランス装置。 A charging device that converts alternating current supplied from the system power source into direct current;
A changeover switch for switching a connection destination of the plurality of primary coils between the assembled battery and the charging device;
With
The controller is
3. The cell according to claim 2, wherein when the assembled battery is charged, the switching circuit is switched by switching the changeover switch so that a connection destination of the plurality of primary coils is the charging device. 4. Balance device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-048808 | 2012-03-06 | ||
JP2012048808A JP2013187930A (en) | 2012-03-06 | 2012-03-06 | Cell balance device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013133265A1 true WO2013133265A1 (en) | 2013-09-12 |
Family
ID=49116740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/055975 WO2013133265A1 (en) | 2012-03-06 | 2013-03-05 | Cell balancing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013187930A (en) |
WO (1) | WO2013133265A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9742205B2 (en) | 2014-03-17 | 2017-08-22 | Ricoh Company, Ltd. | Storage status adjusting circuit, storage status adjusting device, and storage battery pack |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023176102A1 (en) * | 2022-03-17 | 2023-09-21 | パナソニックIpマネジメント株式会社 | Battery state analysis system, battery state analysis method, and battery state analysis program |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007012407A (en) * | 2005-06-30 | 2007-01-18 | Fuji Heavy Ind Ltd | Voltage equalization device for storage element |
JP2010288447A (en) * | 2009-05-22 | 2010-12-24 | Intersil Americas Inc | System and method for cell balancing and charging |
JP2011101572A (en) * | 2009-11-05 | 2011-05-19 | O2 Micro Inc | Charging system with cell balancing function |
-
2012
- 2012-03-06 JP JP2012048808A patent/JP2013187930A/en active Pending
-
2013
- 2013-03-05 WO PCT/JP2013/055975 patent/WO2013133265A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007012407A (en) * | 2005-06-30 | 2007-01-18 | Fuji Heavy Ind Ltd | Voltage equalization device for storage element |
JP2010288447A (en) * | 2009-05-22 | 2010-12-24 | Intersil Americas Inc | System and method for cell balancing and charging |
JP2011101572A (en) * | 2009-11-05 | 2011-05-19 | O2 Micro Inc | Charging system with cell balancing function |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9742205B2 (en) | 2014-03-17 | 2017-08-22 | Ricoh Company, Ltd. | Storage status adjusting circuit, storage status adjusting device, and storage battery pack |
Also Published As
Publication number | Publication date |
---|---|
JP2013187930A (en) | 2013-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Park et al. | Single-magnetic cell-to-cell charge equalization converter with reduced number of transformer windings | |
CN106099898B (en) | Battery system with battery controls | |
Kutkut et al. | Charge equalization for an electric vehicle battery system | |
JP5687016B2 (en) | Battery management system using energy balance between multiple battery cells | |
US9160185B2 (en) | Apparatus and method for active balancing of series cells and series packs in a battery system | |
JP6480935B2 (en) | Charge balance device | |
US10862315B2 (en) | Device and method for supplying energy to a plurality of energy storage components and/or for providing energy stored within the energy storage components | |
CN103069682A (en) | Balancing system for power battery and corresponding load balancing method | |
CN105932363A (en) | Power source system self-heating method | |
US9774218B2 (en) | Non-contact power feeding apparatus | |
JP2014533483A (en) | Device for balancing the amount of charge for power batteries | |
US20160204627A1 (en) | Balancing Series-Connected Electrical Energy Units | |
CN105375539A (en) | Automatic balance charger for power battery | |
WO2017000739A1 (en) | Energy balancing method and apparatus | |
CN109088462B (en) | Active equalization device for battery containing alternating current module | |
JP5718676B2 (en) | Non-contact charging method and non-contact charging device | |
WO2013114757A1 (en) | Battery equalization device and method | |
WO2013133265A1 (en) | Cell balancing device | |
JP5285322B2 (en) | Voltage equalizing device, charging device, battery assembly, and charging system | |
JP5751351B2 (en) | Earth leakage detector | |
WO2013129602A1 (en) | Cell balancing device | |
JP2013198306A (en) | Voltage control device | |
JP5382070B2 (en) | Cell balance device | |
KR101567423B1 (en) | Active balancing controller of baterry management system for electronic storage system utilizing small multi winding transformer | |
CN110370957B (en) | Compact wireless battery charger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13757624 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13757624 Country of ref document: EP Kind code of ref document: A1 |