+

WO2013114573A1 - Load power source device - Google Patents

Load power source device Download PDF

Info

Publication number
WO2013114573A1
WO2013114573A1 PCT/JP2012/052173 JP2012052173W WO2013114573A1 WO 2013114573 A1 WO2013114573 A1 WO 2013114573A1 JP 2012052173 W JP2012052173 W JP 2012052173W WO 2013114573 A1 WO2013114573 A1 WO 2013114573A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage source
energy
inductor
load power
Prior art date
Application number
PCT/JP2012/052173
Other languages
French (fr)
Japanese (ja)
Inventor
ミハエル フィッシャー
ヨハン エッカート
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to DE201211005790 priority Critical patent/DE112012005790T5/en
Priority to PCT/JP2012/052173 priority patent/WO2013114573A1/en
Publication of WO2013114573A1 publication Critical patent/WO2013114573A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation

Definitions

  • the present invention relates to a load power supply that charges a second energy storage source that compensates for the output or capacity of the first energy storage source.
  • FIG. 7 is a configuration diagram showing the configuration of the battery power circuit disclosed in Patent Document 1.
  • the battery power circuit shown in FIG. 7 includes a battery 1 to which a load to which power is to be supplied is connected, a series connected power source in which a capacitor group 2 is connected in series with each other, between battery 1 and capacitor group 2, , DC / DC converter 3 for transferring power between battery 1 and load, and control device 5 for controlling DC / DC converter 3.
  • Control device 5 detects the voltage of capacitor group 2 If the detected voltage is smaller than the first threshold voltage (for example, 4.0 V), the DC / DC converter 3 charges the capacitor group 2. The total voltage of the battery 1 and the capacitor group 2 is applied to the power conversion circuit 4.
  • the first threshold voltage for example, 4.0 V
  • the control device 5 performs switching control of the MOSFET 31 as the upper arm switch or the MOSFET 32 as the lower arm switch, whereby the battery 1 and the capacitor Power transfer takes place between group two.
  • a current flows through the inductance 33, and the capacitor group 2 is charged and discharged.
  • the invention disclosed in Patent Document 1 is for a battery capable of preventing a decrease in power supplied to the motor at the time of start-up and obtaining a predetermined engine speed even when the idle stop operation is continuously performed.
  • the purpose is to obtain a power circuit. That is, when the voltage of the capacitor group 2 is smaller than the predetermined value, the engine rotation is maintained, and the capacitor group 2 is charged by the step-up operation of the DC / DC converter 3.
  • the present invention also applies to the output control of the DC / DC converter according to the capacitor voltage which falls with time when torque assist is performed to operate the motor simultaneously with the engine. Applied. In any case, it is desirable that the time required for charging the capacitor group 2 by the operation of the DC / DC converter 3 be short.
  • An object of the present invention is to provide a load power supply capable of shortening the time required for charging a second energy storage source to compensate for the output or capacity of the first energy storage source.
  • a load power supply device of the invention comprises a first energy storage source (for example, a battery Bat in the embodiment); A second energy storage source (e.g., a capacitor SC in the embodiment) serially connected to the energy storage source, and an inductor (between the first energy storage source and the second energy storage source)
  • a DC / DC converter for example, the DC / DC converter 105 in the embodiment
  • the inductance component on the path of the reactor current flowing through the first energy storage source or the second energy storage source causes the inductance component of the energy from the first energy storage source or the second energy storage source to Are being different from each accumulation time and upon release of the energy stored in the inductor to.
  • the DC / DC converter when energy is transferred from the second energy storage source to the first energy storage source, stores energy in the inductor.
  • a first switching element for example, the transistor T1 in the embodiment
  • a second switching element for example, the transistor T2 in the embodiment
  • the second switch is connected to the connection point of the second energy storage source, and the other end of the inductor is connected to the second switch. Is connected to one end of the grayed element, in the middle of the winding of the inductor, it is characterized in that one end of said first switching element is connected.
  • the first energy storage source and the second energy storage source are energy obtained by energy regeneration by a load to which the load power supply supplies electric power.
  • a switch for example, the switch 201 in the embodiment for selecting whether to charge both or either the first energy storage source or the second energy storage source. It is characterized.
  • the first energy storage source is disposed on the low voltage side
  • the second energy storage source is disposed on the high voltage side.
  • the time required to charge the second energy storage source that compensates for the output or capacity of the first energy storage source can be shortened.
  • the voltage obtained by energy regeneration is lower than the voltage required to charge both the first energy storage source and the second energy storage source. Also, any one of the first energy storage source and the second energy storage source can be charged.
  • FIG. 3 is a diagram showing the relationship between the internal configuration of the load power supply device of the first embodiment and the variable load and converter control device.
  • (A) and (b) is a figure which shows each state when the transistor T2 is turned on / off in the load power supply device shown in FIG. 1 with the transistor T1 turned off.
  • (A) And (b) is a graph which shows a time-dependent change of reactor current when transistor T2 is switching-controlled.
  • (A) and (b) is a figure which shows each state when the transistor T1 is turned on / off in the load power supply device shown in FIG. 1 with the transistor T2 turned off.
  • (A) And (b) is a graph which shows a time-dependent change of reactor current when transistor T1 is switching-controlled.
  • FIG. 1 is a diagram showing the relationship between the internal configuration of the load power supply device of the first embodiment and the variable load and the converter control device.
  • the load power supply device of the first embodiment is connected to a variable load 101 including a DC / AC inverter and a motor / generator.
  • the load power supply device includes a battery Bat, an electric double layer capacitor (hereinafter simply referred to as “capacitor”) SC, a variable inductor VI, transistors T1 and T2, and a free wheeling diode (hereinafter simply referred to as “diode”) D1. And D2.
  • the switching control to turn on and off the transistors T1 and T2 is performed by the converter control device 103.
  • variable inductor VI, the transistors T1 and T2, and the diodes D1 and D2 constitute a DC / DC converter 105 shown by a dotted line in FIG.
  • the DC / DC converter 105 charges and discharges energy between the battery Bat and the capacitor SC via the variable inductor VI.
  • An end point 1 and an end point 3 are provided at both ends of the winding of the variable inductor VI, and an end point 2 for utilizing a part of the inductance of the winding is also provided.
  • the end point 2 when the number of turns of the variable inductor VI is “N”, the end point 2 is provided at a position where the number of turns from the end point 1 is N / 2. Therefore, when the inductance of the variable inductor VI is “L”, the inductance from the end point 1 to the end point 2 is “L / 4”. The position of the end point 2 on the winding of the variable inductor VI is variable.
  • the output voltage of the battery Bat is a substantially constant DC voltage, which is higher than the maximum voltage that the capacitor SC can output.
  • the battery Bat and the capacitor SC are connected in series, and the terminal point 1 of the variable inductor VI is connected to the connection point.
  • the collector of the transistor T2 is connected to the end point 3 of the variable inductor VI, and the emitter of the transistor T1 is connected to the end point 2.
  • a diode D1 is connected in parallel to the transistor T1, and a diode D2 is connected in parallel to the transistor T2.
  • the cathode of the reflux diode is connected to the collector of the transistor, and the anode of the reflux diode is connected to the emitter of the transistor.
  • FIGS. 2 (a) and 2 (b), and FIGS. b) to explain.
  • FIGS. 2A and 2B are diagrams showing respective states when the transistor T2 is turned on and off while the transistor T1 is in the off state in the load power supply device shown in FIG. 2 (a) shows the reactor current IL when the transistor T2 is in the on state by a dotted line, and FIG. 2 (b) shows the reactor current when the transistor T2 is turned from the on state to the off state. IL is shown as a dotted line.
  • reactor current IL flows from the battery Bat to the transistor T2 via the end point 1 and the end point 3 of the variable inductor VI, as shown in FIG. At this time, energy from the battery Bat is stored in the variable inductor VI.
  • the transistor T2 is turned off, the energy stored in the variable inductor VI is released as shown in FIG. 2 (b). Therefore, the reactor current IL is transmitted through the end point 1 and the end point 2 of the variable inductor VI. It flows through the diode D1.
  • the energy stored in the variable inductor VI from the battery Bat in the state shown in FIG. 2A is transferred to the capacitor SC. That is, the energy of the battery Bat charges the capacitor SC.
  • FIGS. 3A and 3B are graphs showing time-dependent changes in reactor current when the transistor T2 is subjected to switching control.
  • FIG. 3 (a) shows the time-dependent change of the reactor current IL in the load power supply device of the first embodiment shown in FIG. 1
  • FIG. 3 (b) shows that the emitter of the transistor T1 is connected to the end point 3
  • the change over time of the reactor current IL in the load power supply device of the different configuration is shown.
  • the load power supply device having a configuration in which the emitter of the transistor T1 is connected to the end point 3 is the same as the configuration of the battery 1, capacitor group 2 and DC / DC converter 3 of the battery power circuit shown in FIG.
  • the load power supply device When the converter control device 103 turns on only the transistor T2 when both the transistors T1 and T2 are in the off state, the load power supply device according to the first embodiment is in the state shown in FIG. 2A, and FIG.
  • the reactor current IL is increased as shown in FIG.
  • Converter control device 103 turns on transistor T2, and when time tc1 elapses, returns the transistor T2 to the off state.
  • the time tc1 is expressed by the following equation (1).
  • Vbat is a voltage between terminals of the battery Bat.
  • tc1 L ⁇ ILth / Vbat (1)
  • the load power supply device of the first embodiment is in the state shown in FIG. 2 (b), and as shown in FIG. 3 (a), the reactor current IL decreases.
  • the reactor current IL in the state shown in FIG. 2A flows through the end point 1 and the end point 3 of the variable inductor VI
  • the inductance component on the path of the reactor current IL is “L”.
  • the reactor current IL in the state shown in FIG. 2B flows through the end point 1 and the end point 2 of the variable inductor VI
  • the inductance component on the path of the reactor current IL is “L / 4”.
  • the reactor current IL decreases from twice the value (2ILth) immediately before the off control.
  • Vsc is a voltage between terminals of the capacitor SC.
  • the time td1 is half of the time td1pa.
  • time T1 of one cycle in on / off control of the transistor T2 is shortened. For this reason, it is possible to shorten the time for charging the capacitor SC by the energy of the battery Bat.
  • FIGS. 4 (a) and 4 (b), and FIGS. Description will be made with reference to b).
  • FIGS. 4A and 4B are diagrams showing respective states when the transistor T1 is turned on and off while the transistor T2 is in the off state in the load power supply device shown in FIG. 4 (a) shows the reactor current IL when the transistor T1 is in the on state by a dotted line, and FIG. 4 (b) shows the reactor current when the transistor T1 is turned from the on state to the off state. IL is shown as a dotted line.
  • the reactor current IL flows from the capacitor SC to the end point 2 and the end point 1 of the variable inductor VI via the transistor T1, as shown in FIG. At this time, energy from the capacitor SC is stored in the variable inductor VI.
  • the transistor T1 is turned off, the energy stored in the variable inductor VI is released as shown in FIG. 4B, so that the reactor current IL passes through the end point 1 and the end point 3 of the variable inductor VI. It flows through the diode D2.
  • the energy stored in the variable inductor VI from the capacitor SC is transferred to the battery Bat. That is, the energy of the capacitor SC charges the battery Bat.
  • FIGS. 5A and 5B are graphs showing time-dependent changes in reactor current when the transistor T1 is subjected to switching control.
  • FIG. 5 (a) shows the time-dependent change of the reactor current IL in the load power supply device of the first embodiment shown in FIG. 1
  • FIG. 5 (b) shows that the emitter of the transistor T1 is connected to the end point 3.
  • the time-dependent change of reactor current IL in the load power supply device of the same composition as conventional is shown.
  • the load power supply device of the first embodiment is in the state shown in FIG. 4 (b), and as shown in FIG. 5 (a) It decreases from the value of (ILth).
  • a time td2 until the variable inductor VI finishes releasing energy and the reactor current IL becomes 0 is expressed by the following equation (5).
  • the inductance component on the path of the reactor current IL is "L / 4" .
  • the inductance component on the path of the reactor current IL is “L”.
  • the inductance component on the path of the reactor current IL is “L” both when the transistor T1 is in the on state and in the off state. It remains unchanged.
  • the time tc2 is half of the time tc2pa.
  • time T2 of one cycle in on / off control of the transistor T1 is shortened. Therefore, the time for charging the battery Bat with the energy of the capacitor SC can be shortened.
  • the end point 2 of the variable inductor VI is provided at a position where the number of turns from the end point 1 is N / 2, ie, at a midpoint, For example, it is not limited to the middle point.
  • the end point 2 may be provided at a position where the number of turns from the end point 1 is N / 3.
  • the time for charging the capacitor SC by the energy of the battery Bat can be further shortened.
  • FIG. 6 is a diagram showing the relationship between the internal configuration of the load power supply device of the second embodiment and the variable load and the converter control device.
  • the difference between the load power supply device of the second embodiment and the load power supply device of the first embodiment is that a switch 201 is provided.
  • the second embodiment is the same as the first embodiment, and in FIG. 6, the same or equivalent parts as the components of the first embodiment are given the same reference numerals or corresponding reference numerals to simplify or omit the description.
  • the switch 201 connects the negative terminal of the variable load to either the terminal n1 connected to the emitter of the transistor T1 (anode of the diode D1) or the terminal n2 connected to the emitter of the transistor T2 (anode of the diode D2). Do.
  • the switch 201 is controlled by the converter control device 103.
  • Converter control device 103 controls switch 201 based on the magnitude of voltage (hereinafter referred to as “regenerative voltage”) Vrg generated when variable load 101 performs a regenerative operation.
  • the regenerative voltage Vrg is detected by the voltage sensor 203 shown in FIG.
  • the converter control device 103 of the present embodiment selects the terminal n2 of the switch 201 if the regenerative voltage Vrg is a predetermined value or more, and selects the terminal n1 of the switch 201 if the regenerative voltage Vrg is less than the predetermined value.
  • the predetermined value is a voltage required to charge the capacitor SC and the battery Bat.
  • the electric path in which the terminal n2 is selected is the same as the electric path shown in FIG. 1 in the first embodiment, and the regenerative voltage Vrg charges the capacitor SC and the battery Bat.
  • the regenerative voltage Vrg when the terminal n1 is selected charges only the capacitor SC.
  • the regenerative voltage Vrg generated when the brake operation is performed at a low vehicle speed, that is, when the rotation speed of the motor / generator is low is low.
  • the low regenerative voltage Vrg is not sufficient for charging the capacitor SC and the battery Bat, but in the present embodiment, the low regenerative voltage Vrg is applied only to the capacitor SC.
  • the regenerative energy generated at low vehicle speeds can be used effectively.
  • the transistors T1 and T2 are used as switching elements, but semiconductor elements such as MOSFETs and IGBTs may be used as switching elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A load power source device is provided with: a first energy storage source; a second energy storage source connected in series to the first energy storage source; and a DC/DC converter for converting energy via an inductor between the first energy storage source and the second energy storage source. The inductance component on the path of the reactor current flowing through the inductor varies between when the inductor is storing energy from the first energy storage source or second energy storage source and when the energy stored in the inductor is being released. Thus, it is possible to reduce the time needed to charge the second energy storage source, which supplements the output or capacity of the first energy storage source.

Description

負荷電源装置Load power supply
 本発明は、第1のエネルギー蓄積源の出力又は容量を補う第2のエネルギー蓄積源を充電する負荷電源装置に関する。 The present invention relates to a load power supply that charges a second energy storage source that compensates for the output or capacity of the first energy storage source.
 図7は、特許文献1に開示されたバッテリ用電力回路の構成を示した構成図である。図7に示すバッテリ用電力回路は、電力供給対象である負荷が接続されるバッテリ1と、コンデンサ群2とを互いに直列に接続した直列接続電源と、バッテリ1とコンデンサ群2との間、および、バッテリ1と負荷との間で電力を移行させるためのDC/DCコンバータ3と、DC/DCコンバータ3の制御を行う制御装置5とを備え、制御装置5は、コンデンサ群2の電圧を検知し、検知した電圧が第1の閾値電圧(例えば、4.0V)より小さい場合はDC/DCコンバータ3により、コンデンサ群2への充電を行う。電力変換回路4には、バッテリ1とコンデンサ群2の合計電圧が印加される。 FIG. 7 is a configuration diagram showing the configuration of the battery power circuit disclosed in Patent Document 1. As shown in FIG. The battery power circuit shown in FIG. 7 includes a battery 1 to which a load to which power is to be supplied is connected, a series connected power source in which a capacitor group 2 is connected in series with each other, between battery 1 and capacitor group 2, , DC / DC converter 3 for transferring power between battery 1 and load, and control device 5 for controlling DC / DC converter 3. Control device 5 detects the voltage of capacitor group 2 If the detected voltage is smaller than the first threshold voltage (for example, 4.0 V), the DC / DC converter 3 charges the capacitor group 2. The total voltage of the battery 1 and the capacitor group 2 is applied to the power conversion circuit 4.
国際公開第2004/066472号(図1)WO 2004/066472 (Figure 1)
 特許文献1に開示されたバッテリ用電力回路に含まれるDC/DCコンバータ3では、上アームスイッチとしてのMOSFET31又は下アームスイッチとしてのMOSFET32が制御装置5によってスイッチング制御されることで、バッテリ1とコンデンサ群2の間で電力伝送が行われる。バッテリ1とコンデンサ群2の間で電力伝送が行われる際、インダクタンス33には電流が流れ、コンデンサ群2は充放電される。 In the DC / DC converter 3 included in the battery power circuit disclosed in Patent Document 1, the control device 5 performs switching control of the MOSFET 31 as the upper arm switch or the MOSFET 32 as the lower arm switch, whereby the battery 1 and the capacitor Power transfer takes place between group two. When power transmission is performed between the battery 1 and the capacitor group 2, a current flows through the inductance 33, and the capacitor group 2 is charged and discharged.
 なお、特許文献1に開示された発明は、連続してアイドルストップ動作を行った場合でも、始動時のモータへの供給電力の低下を防止し、所定のエンジン回転数を得ることができるバッテリ用電力回路を得ることを目的としている。すなわち、コンデンサ群2の電圧が所定値より小さい場合は、エンジン回転を維持し、DC/DCコンバータ3の昇圧動作によりコンデンサ群2を充電する。また、特許文献1で説明されているように、当該発明は、エンジンと共にモータも同時に動作させるトルクアシストが行われるとき、経時的に降下するコンデンサ電圧に応じたDC/DCコンバータの出力制御にも適用される。いずれの場合であっても、DC/DCコンバータ3の動作によるコンデンサ群2の充電に要する時間は短い方が望ましい。 The invention disclosed in Patent Document 1 is for a battery capable of preventing a decrease in power supplied to the motor at the time of start-up and obtaining a predetermined engine speed even when the idle stop operation is continuously performed. The purpose is to obtain a power circuit. That is, when the voltage of the capacitor group 2 is smaller than the predetermined value, the engine rotation is maintained, and the capacitor group 2 is charged by the step-up operation of the DC / DC converter 3. Further, as described in Patent Document 1, the present invention also applies to the output control of the DC / DC converter according to the capacitor voltage which falls with time when torque assist is performed to operate the motor simultaneously with the engine. Applied. In any case, it is desirable that the time required for charging the capacitor group 2 by the operation of the DC / DC converter 3 be short.
 本発明の目的は、第1のエネルギー蓄積源の出力又は容量を補う第2のエネルギー蓄積源の充電に要する時間を短縮可能な負荷電源装置を提供することである。 An object of the present invention is to provide a load power supply capable of shortening the time required for charging a second energy storage source to compensate for the output or capacity of the first energy storage source.
 上記課題を解決して係る目的を達成するために、請求項1に記載の発明の負荷電源装置は、第1のエネルギー蓄積源(例えば、実施の形態でのバッテリBat)と、前記第1のエネルギー蓄積源に直列に接続された第2のエネルギー蓄積源(例えば、実施の形態でのキャパシタSC)と、前記第1のエネルギー蓄積源と前記第2のエネルギー蓄積源との間で、インダクタ(例えば、実施の形態での可変インダクタVI)を介してエネルギーを交換するDC/DCコンバータ(例えば、実施の形態でのDC/DCコンバータ105)と、を備えた負荷電源装置であって、前記インダクタを流れるリアクトル電流の経路上のインダクタンス成分が、前記第1のエネルギー蓄積源又は前記第2のエネルギー蓄積源からのエネルギーの前記インダクタへの蓄積時と前記インダクタに蓄積されたエネルギーの放出時とでそれぞれ異なることを特徴としている。 In order to solve the above problems and achieve the object, a load power supply device of the invention according to claim 1 comprises a first energy storage source (for example, a battery Bat in the embodiment); A second energy storage source (e.g., a capacitor SC in the embodiment) serially connected to the energy storage source, and an inductor (between the first energy storage source and the second energy storage source) For example, a DC / DC converter (for example, the DC / DC converter 105 in the embodiment) exchanging energy via the variable inductor VI in the embodiment (for example, the load power supply device), The inductance component on the path of the reactor current flowing through the first energy storage source or the second energy storage source causes the inductance component of the energy from the first energy storage source or the second energy storage source to Are being different from each accumulation time and upon release of the energy stored in the inductor to.
 さらに、請求項2に記載の発明の負荷電源装置では、前記DC/DCコンバータは、前記第2のエネルギー蓄積源から前記第1のエネルギー蓄積源にエネルギーを移行するとき、前記インダクタにおけるエネルギーの蓄積と放出に対応してオンオフされる第1のスイッチング素子(例えば、実施の形態でのトランジスタT1)と、前記第1のエネルギー蓄積源から前記第2のエネルギー蓄積源にエネルギーを移行するとき、前記インダクタにおけるエネルギーの蓄積と放出に対応してオンオフされる第2のスイッチング素子(例えば、実施の形態でのトランジスタT2)と、を有し、前記インダクタの一端は、前記第1のエネルギー蓄積源と前記第2のエネルギー蓄積源の接続点に接続され、前記インダクタの他端は、前記第2のスイッチング素子の一端に接続され、前記インダクタの巻線の途中に、前記第1のスイッチング素子の一端が接続されたことを特徴としている。 Furthermore, in the load power supply device of the invention according to claim 2, when energy is transferred from the second energy storage source to the first energy storage source, the DC / DC converter stores energy in the inductor. And a first switching element (for example, the transistor T1 in the embodiment) which is turned on / off in response to the emission, and when energy is transferred from the first energy storage source to the second energy storage source, And a second switching element (for example, the transistor T2 in the embodiment) which is turned on / off in response to storage and release of energy in the inductor, one end of the inductor being the first energy storage source and The second switch is connected to the connection point of the second energy storage source, and the other end of the inductor is connected to the second switch. Is connected to one end of the grayed element, in the middle of the winding of the inductor, it is characterized in that one end of said first switching element is connected.
 さらに、請求項3に記載の発明の負荷電源装置では、当該負荷電源装置が電力を供給する負荷によるエネルギー回生で得られたエネルギーを、前記第1のエネルギー蓄積源及び前記第2のエネルギー蓄積源の両方に充電するか、前記第1のエネルギー蓄積源及び前記第2のエネルギー蓄積源のいずれか一方に充電するかを選択するスイッチ(例えば、実施の形態でのスイッチ201)を備えたことを特徴としている。 Furthermore, in the load power supply device of the invention according to claim 3, the first energy storage source and the second energy storage source are energy obtained by energy regeneration by a load to which the load power supply supplies electric power. Having a switch (for example, the switch 201 in the embodiment) for selecting whether to charge both or either the first energy storage source or the second energy storage source. It is characterized.
 さらに、請求項4に記載の発明の負荷電源装置では、前記第1のエネルギー蓄積源は低電圧側に配置され、前記第2のエネルギー蓄積源は高電圧側に配置されたことを特徴としている。 Furthermore, in the load power supply device of the invention according to claim 4, the first energy storage source is disposed on the low voltage side, and the second energy storage source is disposed on the high voltage side. .
 請求項1~4に記載の発明の負荷電源装置によれば、第1のエネルギー蓄積源の出力又は容量を補う第2のエネルギー蓄積源の充電に要する時間を短縮できる。 According to the load power supply device of the present invention, the time required to charge the second energy storage source that compensates for the output or capacity of the first energy storage source can be shortened.
 請求項3に記載の発明の負荷電源装置によれば、エネルギー回生で得られる電圧が前記第1のエネルギー蓄積源及び前記第2のエネルギー蓄積源の両方を充電するために必要な電圧より低くても、前記第1のエネルギー蓄積源及び前記第2のエネルギー蓄積源のいずれか一方を充電することができる。 According to the load power supply device of the third aspect of the present invention, the voltage obtained by energy regeneration is lower than the voltage required to charge both the first energy storage source and the second energy storage source. Also, any one of the first energy storage source and the second energy storage source can be charged.
第1の実施形態の負荷電源装置の内部構成と可変負荷及びコンバータ制御装置との関係を示す図FIG. 3 is a diagram showing the relationship between the internal configuration of the load power supply device of the first embodiment and the variable load and converter control device. (a)及び(b)は、図1に示した負荷電源装置において、トランジスタT1はオフ状態のまま、トランジスタT2をオンオフした時の各状態を示す図(A) and (b) is a figure which shows each state when the transistor T2 is turned on / off in the load power supply device shown in FIG. 1 with the transistor T1 turned off. (a)及び(b)は、トランジスタT2がスイッチング制御されたときのリアクトル電流の経時変化を示すグラフ(A) And (b) is a graph which shows a time-dependent change of reactor current when transistor T2 is switching-controlled. (a)及び(b)は、図1に示した負荷電源装置において、トランジスタT2はオフ状態のまま、トランジスタT1をオンオフした時の各状態を示す図(A) and (b) is a figure which shows each state when the transistor T1 is turned on / off in the load power supply device shown in FIG. 1 with the transistor T2 turned off. (a)及び(b)は、トランジスタT1がスイッチング制御されたときのリアクトル電流の経時変化を示すグラフ(A) And (b) is a graph which shows a time-dependent change of reactor current when transistor T1 is switching-controlled. 第2の実施形態の負荷電源装置の内部構成と可変負荷及びコンバータ制御装置との関係を示す図The figure which shows the relationship between the internal structure of the load power supply device of 2nd Embodiment, a variable load, and a converter control apparatus. 特許文献1に開示されたバッテリ用電力回路の構成を示した構成図The block diagram which showed the structure of the battery power circuit disclosed by patent document 1
 以下、本発明の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1の実施形態)
 図1は、第1の実施形態の負荷電源装置の内部構成と可変負荷及びコンバータ制御装置との関係を示す図である。図1に示すように、第1の実施形態の負荷電源装置は、DC/ACインバータ及びモータ/ジェネレータ等を含む可変負荷101に接続される。当該負荷電源装置は、バッテリBatと、電気二重層キャパシタ(以下、単に「キャパシタ」という)SCと、可変インダクタVIと、トランジスタT1,T2と、還流ダイオード(以下、単に「ダイオード」という)D1,D2とを備える。なお、トランジスタT1,T2をオンオフするスイッチング制御は、コンバータ制御装置103によって行われる。また、可変インダクタVI、トランジスタT1,T2及びダイオードD1,D2は、図1に点線で示すDC/DCコンバータ105を構成する。DC/DCコンバータ105は、バッテリBatとキャパシタSCとの間で、可変インダクタVIを介してエネルギーを充放電する。
First Embodiment
FIG. 1 is a diagram showing the relationship between the internal configuration of the load power supply device of the first embodiment and the variable load and the converter control device. As shown in FIG. 1, the load power supply device of the first embodiment is connected to a variable load 101 including a DC / AC inverter and a motor / generator. The load power supply device includes a battery Bat, an electric double layer capacitor (hereinafter simply referred to as “capacitor”) SC, a variable inductor VI, transistors T1 and T2, and a free wheeling diode (hereinafter simply referred to as “diode”) D1. And D2. The switching control to turn on and off the transistors T1 and T2 is performed by the converter control device 103. The variable inductor VI, the transistors T1 and T2, and the diodes D1 and D2 constitute a DC / DC converter 105 shown by a dotted line in FIG. The DC / DC converter 105 charges and discharges energy between the battery Bat and the capacitor SC via the variable inductor VI.
 可変インダクタVIの巻線の両端には端点1と端点3が設けられ、当該巻線のインダクタンスの一部を利用するための端点2も設けられる。本実施形態では、可変インダクタVIの巻線数を「N」としたとき、端点1からの巻線数がN/2の位置に端点2が設けられている。したがって、可変インダクタVIのインダクタンスを「L」としたとき、端点1から端点2のインダクタンスは「L/4」である。なお、可変インダクタVIの巻線上における端点2の位置は可変である。 An end point 1 and an end point 3 are provided at both ends of the winding of the variable inductor VI, and an end point 2 for utilizing a part of the inductance of the winding is also provided. In the present embodiment, when the number of turns of the variable inductor VI is “N”, the end point 2 is provided at a position where the number of turns from the end point 1 is N / 2. Therefore, when the inductance of the variable inductor VI is “L”, the inductance from the end point 1 to the end point 2 is “L / 4”. The position of the end point 2 on the winding of the variable inductor VI is variable.
 バッテリBatの出力電圧は、略一定した直流電圧であり、キャパシタSCが出力可能な最大電圧よりも高い。バッテリBatとキャパシタSCは直列に接続されており、その接続点に可変インダクタVIの端点1が接続されている。また、可変インダクタVIの端点3にはトランジスタT2のコレクタが接続され、端点2にはトランジスタT1のエミッタが接続されている。また、トランジスタT1にはダイオードD1が並列に接続され、トランジスタT2にはダイオードD2が並列に接続されている。なお、トランジスタのコレクタには還流ダイオードのカソードが接続され、トランジスタのエミッタには還流ダイオードのアノードが接続されている。 The output voltage of the battery Bat is a substantially constant DC voltage, which is higher than the maximum voltage that the capacitor SC can output. The battery Bat and the capacitor SC are connected in series, and the terminal point 1 of the variable inductor VI is connected to the connection point. Further, the collector of the transistor T2 is connected to the end point 3 of the variable inductor VI, and the emitter of the transistor T1 is connected to the end point 2. Further, a diode D1 is connected in parallel to the transistor T1, and a diode D2 is connected in parallel to the transistor T2. The cathode of the reflux diode is connected to the collector of the transistor, and the anode of the reflux diode is connected to the emitter of the transistor.
 以下、バッテリBatのエネルギーによってキャパシタSCが充電されるときの状態及びこのとき可変インダクタVIを流れるリアクトル電流ILの変化について、図2(a)及び(b)、並びに、図3(a)及び(b)を参照して説明する。 Hereinafter, with respect to the state when the capacitor SC is charged by the energy of the battery Bat and the change of the reactor current IL flowing through the variable inductor VI at this time, FIGS. 2 (a) and 2 (b), and FIGS. b) to explain.
 図2(a)及び(b)は、図1に示した負荷電源装置において、トランジスタT1はオフ状態のまま、トランジスタT2をオンオフした時の各状態を示す図である。なお、図2(a)には、トランジスタT2がオン状態のときのリアクトル電流ILが点線で示され、図2(b)には、トランジスタT2がオン状態からオフ状態になったときのリアクトル電流ILが点線で示される。 FIGS. 2A and 2B are diagrams showing respective states when the transistor T2 is turned on and off while the transistor T1 is in the off state in the load power supply device shown in FIG. 2 (a) shows the reactor current IL when the transistor T2 is in the on state by a dotted line, and FIG. 2 (b) shows the reactor current when the transistor T2 is turned from the on state to the off state. IL is shown as a dotted line.
 トランジスタT1をオフ状態のまま、トランジスタT2をオンすると、図2(a)に示すように、バッテリBatから可変インダクタVIの端点1及び端点3を介してトランジスタT2にリアクトル電流ILが流れ出す。このとき、可変インダクタVIにはバッテリBatからのエネルギーが蓄積される。次に、トランジスタT2をオフすると、図2(b)に示すように、可変インダクタVIに蓄積されたエネルギーが放出されるため、リアクトル電流ILが、可変インダクタVIの端点1及び端点2を介してダイオードD1を流れる。このとき、図2(a)に示した状態のときバッテリBatから可変インダクタVIに蓄えられたエネルギーが、キャパシタSCに移る。すなわち、バッテリBatのエネルギーによってキャパシタSCが充電される。 When the transistor T2 is turned on while the transistor T1 is in the off state, reactor current IL flows from the battery Bat to the transistor T2 via the end point 1 and the end point 3 of the variable inductor VI, as shown in FIG. At this time, energy from the battery Bat is stored in the variable inductor VI. Next, when the transistor T2 is turned off, the energy stored in the variable inductor VI is released as shown in FIG. 2 (b). Therefore, the reactor current IL is transmitted through the end point 1 and the end point 2 of the variable inductor VI. It flows through the diode D1. At this time, the energy stored in the variable inductor VI from the battery Bat in the state shown in FIG. 2A is transferred to the capacitor SC. That is, the energy of the battery Bat charges the capacitor SC.
 図3(a)及び(b)は、トランジスタT2がスイッチング制御されたときのリアクトル電流の経時変化を示すグラフである。但し、図3(a)は、図1に示した第1の実施形態の負荷電源装置におけるリアクトル電流ILの経時変化を示し、図3(b)は、トランジスタT1のエミッタが端点3に接続された構成の負荷電源装置におけるリアクトル電流ILの経時変化を示す。なお、トランジスタT1のエミッタが端点3に接続された構成の負荷電源装置は、図7に示したバッテリ用電力回路のバッテリ1とコンデンサ群2とDC/DCコンバータ3の構成と同じである。 FIGS. 3A and 3B are graphs showing time-dependent changes in reactor current when the transistor T2 is subjected to switching control. However, FIG. 3 (a) shows the time-dependent change of the reactor current IL in the load power supply device of the first embodiment shown in FIG. 1, and FIG. 3 (b) shows that the emitter of the transistor T1 is connected to the end point 3 The change over time of the reactor current IL in the load power supply device of the different configuration is shown. The load power supply device having a configuration in which the emitter of the transistor T1 is connected to the end point 3 is the same as the configuration of the battery 1, capacitor group 2 and DC / DC converter 3 of the battery power circuit shown in FIG.
 トランジスタT1,T2が共にオフの状態のとき、コンバータ制御装置103がトランジスタT2だけをオンすると、第1の実施形態の負荷電源装置は図2(a)に示した状態となり、図3(a)に示すように、リアクトル電流ILが増加する。コンバータ制御装置103は、トランジスタT2をオンして時間tc1が経過した時点で、トランジスタT2をオフ状態に戻す。なお、時間tc1は、以下の式(1)によって表される。なお、VbatはバッテリBatの端子間電圧である。
 tc1=L×ILth/Vbat …(1)
When the converter control device 103 turns on only the transistor T2 when both the transistors T1 and T2 are in the off state, the load power supply device according to the first embodiment is in the state shown in FIG. 2A, and FIG. The reactor current IL is increased as shown in FIG. Converter control device 103 turns on transistor T2, and when time tc1 elapses, returns the transistor T2 to the off state. The time tc1 is expressed by the following equation (1). Vbat is a voltage between terminals of the battery Bat.
tc1 = L × ILth / Vbat (1)
 トランジスタT2がオン状態からオフ制御されると、第1の実施形態の負荷電源装置は図2(b)に示した状態となり、図3(a)に示すように、リアクトル電流ILが減少する。上述したように、図2(a)に示した状態のリアクトル電流ILは可変インダクタVIの端点1と端点3を流れるため、当該リアクトル電流ILの経路上のインダクタンス成分は「L」である。一方、図2(b)に示した状態のリアクトル電流ILは可変インダクタVIの端点1と端点2を流れるため、当該リアクトル電流ILの経路上のインダクタンス成分は「L/4」である。その結果、トランジスタT2がオン状態からオフ制御されると、図3(a)に示すように、リアクトル電流ILはオフ制御される直前の2倍の値(2ILth)から減少していく。 When the transistor T2 is controlled from the on state to the off state, the load power supply device of the first embodiment is in the state shown in FIG. 2 (b), and as shown in FIG. 3 (a), the reactor current IL decreases. As described above, since the reactor current IL in the state shown in FIG. 2A flows through the end point 1 and the end point 3 of the variable inductor VI, the inductance component on the path of the reactor current IL is “L”. On the other hand, since the reactor current IL in the state shown in FIG. 2B flows through the end point 1 and the end point 2 of the variable inductor VI, the inductance component on the path of the reactor current IL is “L / 4”. As a result, when the transistor T2 is controlled from the on state to the off state, as shown in FIG. 3A, the reactor current IL decreases from twice the value (2ILth) immediately before the off control.
 このとき、可変インダクタVIがエネルギーを放出し終わってリアクトル電流ILが0になるまでの時間td1は、以下の式(2)によって表される。なお、VscはキャパシタSCの端子間電圧である。
 td1=(L/4)×2ILth/Vsc
    =L×ILth/2Vsc …(2)
At this time, a time td1 until the variable inductor VI finishes releasing energy and the reactor current IL becomes 0 is expressed by the following equation (2). Vsc is a voltage between terminals of the capacitor SC.
td1 = (L / 4) × 2 ILth / Vsc
= L x ILth / 2 Vsc (2)
 一方、トランジスタT1のエミッタが端点3に接続された従来の構成の負荷電源装置であると、リアクトル電流ILの経路上のインダクタンス成分は、トランジスタT2がオン状態のときもオフ状態のときも「L」のまま変わらない。その結果、トランジスタT2がオン状態からオフ状態に制御されると、図3(b)に示すように、リアクトル電流ILはオフ制御される直前の値(ILth)から減少していく。このとき、インダクタがエネルギーを放出し終わってリアクトル電流ILが0になるまでの時間td1paは、以下の式(3)によって表される。
 td1pa=L×ILth/Vsc
      =L×ILth/Vsc …(3)
On the other hand, in the load power supply device of the conventional configuration in which the emitter of the transistor T1 is connected to the end point 3, the inductance component on the path of the reactor current IL is "L" both when the transistor T2 is on and off. It remains unchanged. As a result, when the transistor T2 is controlled from the on state to the off state, as shown in FIG. 3 (b), the reactor current IL decreases from the value (ILth) immediately before the off control. At this time, a time td1pa from when the inductor finishes releasing energy until the reactor current IL becomes 0 is expressed by the following equation (3).
td1pa = L × ILth / Vsc
= L x ILth / Vsc (3)
 式(2)と式(3)から明らかなように、時間td1は、時間td1paの半分の時間である。その結果、図3(a)及び(b)に示すように、トランジスタT2のオンオフ制御における1サイクルの時間T1が短縮される。このため、バッテリBatのエネルギーによってキャパシタSCを充電するときの時間を短縮できる。 As apparent from the equations (2) and (3), the time td1 is half of the time td1pa. As a result, as shown in FIGS. 3A and 3B, time T1 of one cycle in on / off control of the transistor T2 is shortened. For this reason, it is possible to shorten the time for charging the capacitor SC by the energy of the battery Bat.
 以下、キャパシタSCのエネルギーによってバッテリBatが充電されるときの状態及びこのとき可変インダクタVIを流れるリアクトル電流ILの変化について、図4(a)及び(b)、並びに、図5(a)及び(b)を参照して説明する。 Hereinafter, with respect to the state when the battery Bat is charged by the energy of the capacitor SC and the change of the reactor current IL flowing through the variable inductor VI at this time, FIGS. 4 (a) and 4 (b), and FIGS. Description will be made with reference to b).
 図4(a)及び(b)は、図1に示した負荷電源装置において、トランジスタT2はオフ状態のまま、トランジスタT1をオンオフした時の各状態を示す図である。なお、図4(a)には、トランジスタT1がオン状態のときのリアクトル電流ILが点線で示され、図4(b)には、トランジスタT1がオン状態からオフ状態になったときのリアクトル電流ILが点線で示される。 FIGS. 4A and 4B are diagrams showing respective states when the transistor T1 is turned on and off while the transistor T2 is in the off state in the load power supply device shown in FIG. 4 (a) shows the reactor current IL when the transistor T1 is in the on state by a dotted line, and FIG. 4 (b) shows the reactor current when the transistor T1 is turned from the on state to the off state. IL is shown as a dotted line.
 トランジスタT2をオフ状態のまま、トランジスタT1をオンすると、図4(a)に示すように、キャパシタSCからトランジスタT1を介して可変インダクタVIの端点2及び端点1にリアクトル電流ILが流れ出す。このとき、可変インダクタVIにはキャパシタSCからのエネルギーが蓄積される。次に、トランジスタT1をオフすると、図4(b)に示すように、可変インダクタVIに蓄積されたエネルギーが放出されるため、リアクトル電流ILが、可変インダクタVIの端点1及び端点3を介してダイオードD2を流れる。このとき、図4(a)に示した状態のときキャパシタSCから可変インダクタVIに蓄えられたエネルギーが、バッテリBatに移る。すなわち、キャパシタSCのエネルギーによってバッテリBatが充電される。 When the transistor T1 is turned on while the transistor T2 is in the off state, the reactor current IL flows from the capacitor SC to the end point 2 and the end point 1 of the variable inductor VI via the transistor T1, as shown in FIG. At this time, energy from the capacitor SC is stored in the variable inductor VI. Next, when the transistor T1 is turned off, the energy stored in the variable inductor VI is released as shown in FIG. 4B, so that the reactor current IL passes through the end point 1 and the end point 3 of the variable inductor VI. It flows through the diode D2. At this time, in the state shown in FIG. 4A, the energy stored in the variable inductor VI from the capacitor SC is transferred to the battery Bat. That is, the energy of the capacitor SC charges the battery Bat.
 図5(a)及び(b)は、トランジスタT1がスイッチング制御されたときのリアクトル電流の経時変化を示すグラフである。但し、図5(a)は、図1に示した第1の実施形態の負荷電源装置におけるリアクトル電流ILの経時変化を示し、図5(b)は、トランジスタT1のエミッタが端点3に接続された従来と同じ構成の負荷電源装置におけるリアクトル電流ILの経時変化を示す。 FIGS. 5A and 5B are graphs showing time-dependent changes in reactor current when the transistor T1 is subjected to switching control. However, FIG. 5 (a) shows the time-dependent change of the reactor current IL in the load power supply device of the first embodiment shown in FIG. 1, and FIG. 5 (b) shows that the emitter of the transistor T1 is connected to the end point 3. The time-dependent change of reactor current IL in the load power supply device of the same composition as conventional is shown.
 トランジスタT1,T2が共にオフの状態のとき、コンバータ制御装置103がトランジスタT1だけをオンすると、第1の実施形態の負荷電源装置は図4(a)に示した状態となり、可変インダクタVIがエネルギーを蓄積して、図5(a)に示すようにリアクトル電流ILが増加する。コンバータ制御装置103は、トランジスタT1をオンして時間tc2が経過した時点で、トランジスタT1をオフ状態に戻す。なお、時間tc2は、以下の式(4)によって表される。
 tc2=(L/4)×2ILth/Vsc
    =L×ILth/2Vsc …(4)
When the converter control device 103 turns on only the transistor T1 while both the transistors T1 and T2 are in the off state, the load power supply device of the first embodiment is in the state shown in FIG. To increase the reactor current IL as shown in FIG. 5 (a). Converter control device 103 turns on transistor T1, and when time tc2 elapses, returns the transistor T1 to the off state. The time tc2 is represented by the following equation (4).
tc2 = (L / 4) × 2 ILth / Vsc
= L x ILth / 2 Vsc (4)
 トランジスタT1がオン状態からオフ制御されると、第1の実施形態の負荷電源装置は図4(b)に示した状態となり、図5(a)に示すように、オフ制御される直前の半分の値(ILth)から減少していく。このとき、可変インダクタVIがエネルギーを放出し終わってリアクトル電流ILが0になるまでの時間td2は、以下の式(5)によって表される。
 td2=L×ILth/Vbat…(5)
When the transistor T1 is controlled from the on state to the off state, the load power supply device of the first embodiment is in the state shown in FIG. 4 (b), and as shown in FIG. 5 (a) It decreases from the value of (ILth). At this time, a time td2 until the variable inductor VI finishes releasing energy and the reactor current IL becomes 0 is expressed by the following equation (5).
td2 = L × ILth / Vbat (5)
 上述したように、図4(a)に示した状態のリアクトル電流ILは可変インダクタVIの端点2と端点1を流れるため、当該リアクトル電流ILの経路上のインダクタンス成分は「L/4」である。また、図4(b)に示した状態のリアクトル電流ILは可変インダクタVIの端点3と端点1を流れるため、当該リアクトル電流ILの経路上のインダクタンス成分は「L」である。一方、トランジスタT1のエミッタが端点3に接続された従来の構成の負荷電源装置であると、リアクトル電流ILの経路上のインダクタンス成分は、トランジスタT1がオン状態のときもオフ状態のときも「L」のまま変わらない。このため、トランジスタT1がオフ状態からオン状態に制御されると、図5(b)に示すように、リアクトル電流ILの増加率は小さい。なお、インダクタがエネルギーを蓄積してリアクトル電流ILがILthになるまでの時間tc2paは、以下の式(6)によって表される。
 tc2pa=L×ILth/Vsc
      =L×ILth/Vsc …(6)
As described above, since the reactor current IL in the state shown in FIG. 4A flows through the end point 2 and the end point 1 of the variable inductor VI, the inductance component on the path of the reactor current IL is "L / 4" . Further, since the reactor current IL in the state shown in FIG. 4B flows through the end point 3 and the end point 1 of the variable inductor VI, the inductance component on the path of the reactor current IL is “L”. On the other hand, in the load power supply device of the conventional configuration in which the emitter of the transistor T1 is connected to the end point 3, the inductance component on the path of the reactor current IL is “L” both when the transistor T1 is in the on state and in the off state. It remains unchanged. For this reason, when the transistor T1 is controlled from the off state to the on state, the increase rate of the reactor current IL is small as shown in FIG. 5 (b). In addition, time tc2pa until an inductor accumulates energy and reactor current IL becomes ILth is represented by the following formula (6).
tc2pa = L × ILth / Vsc
= L x ILth / Vsc (6)
 式(4)と式(6)から明らかなように、時間tc2は、時間tc2paの半分の時間である。その結果、図5(a)及び(b)に示すように、トランジスタT1のオンオフ制御における1サイクルの時間T2が短縮される。このため、キャパシタSCのエネルギーによってバッテリBatを充電するときの時間を短縮できる。 As apparent from the equations (4) and (6), the time tc2 is half of the time tc2pa. As a result, as shown in FIGS. 5A and 5B, time T2 of one cycle in on / off control of the transistor T1 is shortened. Therefore, the time for charging the battery Bat with the energy of the capacitor SC can be shortened.
 なお、本実施形態では、可変インダクタVIの端点2が、端点1からの巻線数がN/2の位置、すなわち中点(midpoint)に設けられているが、巻線の途中の位置であれば中点に限らない。例えば、端点2が、端点1からの巻線数がN/3の位置に設けられていても良い。このとき、トランジスタT2がオン状態からオフ制御された時点からリアクトル電流ILが0になるまでの時間td1は、以下の式(2A)によって表される。
 td1=(L/9)×3ILth/Vsc
    =L×ILth/3Vsc …(2A)
 このとき、バッテリBatのエネルギーによってキャパシタSCを充電するときの時間をさらに短縮できる。
In the present embodiment, although the end point 2 of the variable inductor VI is provided at a position where the number of turns from the end point 1 is N / 2, ie, at a midpoint, For example, it is not limited to the middle point. For example, the end point 2 may be provided at a position where the number of turns from the end point 1 is N / 3. At this time, a time td1 from when the transistor T2 is controlled from the on state to the off state until the reactor current IL becomes 0 is expressed by the following equation (2A).
td1 = (L / 9) × 3 ILth / Vsc
= L x ILth / 3 Vsc ... (2A)
At this time, the time for charging the capacitor SC by the energy of the battery Bat can be further shortened.
 また、トランジスタT1がオフ状態からオン制御されて、リアクトル電流ILが3ILthに到達して再びトランジスタT1がオフ制御されるまでの時間tc2は、以下の式(4A)によって表される。
 tc2=(L/9)×3ILth/Vsc
    =L×ILth/3Vsc …(4A)
 このとき、キャパシタSCのエネルギーによってバッテリBatを充電するときの時間をさらに短縮できる。
Further, a time tc2 from when the transistor T1 is turned on to being turned on to turn on the reactor current IL to 3ILth and then turned off again is expressed by the following equation (4A).
tc2 = (L / 9) × 3 ILth / Vsc
= L x ILth / 3 Vsc ... (4A)
At this time, it is possible to further shorten the time for charging the battery Bat with the energy of the capacitor SC.
(第2の実施形態)
 図6は、第2の実施形態の負荷電源装置の内部構成と可変負荷及びコンバータ制御装置との関係を示す図である。第2の実施形態の負荷電源装置が第1の実施形態の負荷電源装置と異なる点は、スイッチ201を備えたことである。この点以外は第1の実施形態と同様であり、図6において、第1実施形態の構成要素と同一又は同等部分には同一符号又は相当符号を付して説明を簡略化又は省略する。
Second Embodiment
FIG. 6 is a diagram showing the relationship between the internal configuration of the load power supply device of the second embodiment and the variable load and the converter control device. The difference between the load power supply device of the second embodiment and the load power supply device of the first embodiment is that a switch 201 is provided. Except this point, the second embodiment is the same as the first embodiment, and in FIG. 6, the same or equivalent parts as the components of the first embodiment are given the same reference numerals or corresponding reference numerals to simplify or omit the description.
 スイッチ201は、可変負荷のマイナス側端子を、トランジスタT1のエミッタ(ダイオードD1のアノード)に接続された端子n1及びトランジスタT2のエミッタ(ダイオードD2のアノード)に接続された端子n2のいずれかに接続する。なお、スイッチ201は、コンバータ制御装置103によって制御される。コンバータ制御装置103は、可変負荷101が回生動作した際に発生する電圧(以下「回生電圧」という)Vrgの大きさに基づいて、スイッチ201を制御する。なお、回生電圧Vrgは、図6に示した電圧センサー203が検出する。 The switch 201 connects the negative terminal of the variable load to either the terminal n1 connected to the emitter of the transistor T1 (anode of the diode D1) or the terminal n2 connected to the emitter of the transistor T2 (anode of the diode D2). Do. The switch 201 is controlled by the converter control device 103. Converter control device 103 controls switch 201 based on the magnitude of voltage (hereinafter referred to as “regenerative voltage”) Vrg generated when variable load 101 performs a regenerative operation. The regenerative voltage Vrg is detected by the voltage sensor 203 shown in FIG.
 本実施形態のコンバータ制御装置103は、回生電圧Vrgが所定値以上であればスイッチ201の端子n2を選択し、所定値未満であればスイッチ201の端子n1を選択する。なお、所定値は、キャパシタSCとバッテリBatを充電するために必要な電圧である。端子n2が選択された電気経路は第1の実施形態における図1に示した電気経路と同じであり、回生電圧Vrgは、キャパシタSCとバッテリBatを充電する。一方、端子n1が選択されたときの回生電圧Vrgは、キャパシタSCのみを充電する。 The converter control device 103 of the present embodiment selects the terminal n2 of the switch 201 if the regenerative voltage Vrg is a predetermined value or more, and selects the terminal n1 of the switch 201 if the regenerative voltage Vrg is less than the predetermined value. The predetermined value is a voltage required to charge the capacitor SC and the battery Bat. The electric path in which the terminal n2 is selected is the same as the electric path shown in FIG. 1 in the first embodiment, and the regenerative voltage Vrg charges the capacitor SC and the battery Bat. On the other hand, the regenerative voltage Vrg when the terminal n1 is selected charges only the capacitor SC.
 可変負荷101を構成するモータ/ジェネレータが車両の駆動源として用いられている場合、低車速、すなわちモータ/ジェネレータの回転数が低い状態でブレーキ操作が行われたときに発生する回生電圧Vrgは低い。低い回生電圧VrgはキャパシタSCとバッテリBatの充電には十分ではないが、本実施形態では、低い回生電圧VrgはキャパシタSCにのみ印加される。このように、低車速時に発生した回生エネルギーを有効利用することができる。 When the motor / generator constituting the variable load 101 is used as a drive source of a vehicle, the regenerative voltage Vrg generated when the brake operation is performed at a low vehicle speed, that is, when the rotation speed of the motor / generator is low is low. . The low regenerative voltage Vrg is not sufficient for charging the capacitor SC and the battery Bat, but in the present embodiment, the low regenerative voltage Vrg is applied only to the capacitor SC. Thus, the regenerative energy generated at low vehicle speeds can be used effectively.
 上記説明した第1及び第2の実施形態では、スイッチング素子としてトランジスタT1,T2が用いられているが、MOSFETやIGBT等の半導体素子をスイッチング素子として用いても良い。 In the first and second embodiments described above, the transistors T1 and T2 are used as switching elements, but semiconductor elements such as MOSFETs and IGBTs may be used as switching elements.
Bat バッテリ
SC 電気二重層キャパシタ(キャパシタ)
VI 可変インダクタ
T1,T2 トランジスタ
D1,D2 還流ダイオード(ダイオード)
101 可変負荷
103 コンバータ制御装置
105 DC/DCコンバータ
201 スイッチ
203 電圧センサー
Bat battery SC electric double layer capacitor (capacitor)
VI Variable Inductors T1, T2 Transistors D1, D2 Freewheeling Diode (Diode)
101 Variable Load 103 Converter Controller 105 DC / DC Converter 201 Switch 203 Voltage Sensor

Claims (4)

  1.  第1のエネルギー蓄積源と、
     前記第1のエネルギー蓄積源に直列に接続された第2のエネルギー蓄積源と、
     前記第1のエネルギー蓄積源と前記第2のエネルギー蓄積源との間で、インダクタを介してエネルギーを交換するDC/DCコンバータと、を備えた負荷電源装置であって、
     前記インダクタを流れるリアクトル電流の経路上のインダクタンス成分が、前記第1のエネルギー蓄積源又は前記第2のエネルギー蓄積源からのエネルギーの前記インダクタへの蓄積時と前記インダクタに蓄積されたエネルギーの放出時とでそれぞれ異なることを特徴とする負荷電源装置。
    A first energy storage source,
    A second energy storage source connected in series to the first energy storage source;
    A DC / DC converter that exchanges energy between the first energy storage source and the second energy storage source via an inductor,
    An inductance component on a path of a reactor current flowing through the inductor stores energy from the first energy storage source or the second energy storage source into the inductor and releases energy stored in the inductor. And load power supply devices characterized by being different from each other.
  2.  請求項1に記載の負荷電源装置であって、
     前記DC/DCコンバータは、
     前記第2のエネルギー蓄積源から前記第1のエネルギー蓄積源にエネルギーを移行するとき、前記インダクタにおけるエネルギーの蓄積と放出に対応してオンオフされる第1のスイッチング素子と、
     前記第1のエネルギー蓄積源から前記第2のエネルギー蓄積源にエネルギーを移行するとき、前記インダクタにおけるエネルギーの蓄積と放出に対応してオンオフされる第2のスイッチング素子と、を有し、
     前記インダクタの一端は、前記第1のエネルギー蓄積源と前記第2のエネルギー蓄積源の接続点に接続され、
     前記インダクタの他端は、前記第2のスイッチング素子の一端に接続され、
     前記インダクタの巻線の途中に、前記第1のスイッチング素子の一端が接続されたことを特徴とする負荷電源装置。
    The load power supply device according to claim 1, wherein
    The DC / DC converter is
    A first switching element that is turned on and off in response to storage and release of energy in the inductor when energy is transferred from the second energy storage source to the first energy storage source;
    A second switching element that is turned on / off in response to storage and release of energy in the inductor when energy is transferred from the first energy storage source to the second energy storage source;
    One end of the inductor is connected to a connection point of the first energy storage source and the second energy storage source,
    The other end of the inductor is connected to one end of the second switching element,
    One end of the first switching element is connected in the middle of the winding of the inductor.
  3.  請求項1又は2に記載の負荷電源装置であって、
     当該負荷電源装置が電力を供給する負荷によるエネルギー回生で得られたエネルギーを、前記第1のエネルギー蓄積源及び前記第2のエネルギー蓄積源の両方に充電するか、前記第1のエネルギー蓄積源及び前記第2のエネルギー蓄積源のいずれか一方に充電するかを選択するスイッチを備えたことを特徴とする負荷電源装置。
    The load power supply device according to claim 1 or 2, wherein
    The energy obtained by energy regeneration by a load to which the load power supply apparatus supplies electric power is charged to both the first energy storage source and the second energy storage source, or the first energy storage source and A load power supply device comprising: a switch for selecting which one of the second energy storage sources is to be charged.
  4.  請求項1~3のいずれか一項に記載の負荷電源装置であって、
     前記第1のエネルギー蓄積源は低電圧側に配置され、前記第2のエネルギー蓄積源は高電圧側に配置されたことを特徴とする負荷電源装置。
    The load power supply device according to any one of claims 1 to 3, wherein
    The load power supply device according to claim 1, wherein the first energy storage source is disposed on the low voltage side, and the second energy storage source is disposed on the high voltage side.
PCT/JP2012/052173 2012-01-31 2012-01-31 Load power source device WO2013114573A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE201211005790 DE112012005790T5 (en) 2012-01-31 2012-01-31 Load power supply device
PCT/JP2012/052173 WO2013114573A1 (en) 2012-01-31 2012-01-31 Load power source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052173 WO2013114573A1 (en) 2012-01-31 2012-01-31 Load power source device

Publications (1)

Publication Number Publication Date
WO2013114573A1 true WO2013114573A1 (en) 2013-08-08

Family

ID=48904652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052173 WO2013114573A1 (en) 2012-01-31 2012-01-31 Load power source device

Country Status (2)

Country Link
DE (1) DE112012005790T5 (en)
WO (1) WO2013114573A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501036A (en) * 2013-10-28 2014-01-08 上海同异动力科技有限公司 Charging and discharging control circuit for lithium battery
CN116979659A (en) * 2023-06-20 2023-10-31 浙江华宇钠电新能源科技有限公司 Sodium ion battery and electric vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339165A (en) * 2002-05-17 2003-11-28 Cosel Co Ltd Synchronous rectification type switching power supply
WO2004066472A1 (en) * 2003-01-24 2004-08-05 Mitsubishi Denki Kabushiki Kaisha Battery power circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339165A (en) * 2002-05-17 2003-11-28 Cosel Co Ltd Synchronous rectification type switching power supply
WO2004066472A1 (en) * 2003-01-24 2004-08-05 Mitsubishi Denki Kabushiki Kaisha Battery power circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501036A (en) * 2013-10-28 2014-01-08 上海同异动力科技有限公司 Charging and discharging control circuit for lithium battery
CN116979659A (en) * 2023-06-20 2023-10-31 浙江华宇钠电新能源科技有限公司 Sodium ion battery and electric vehicle
CN116979659B (en) * 2023-06-20 2024-02-27 浙江华宇钠电新能源科技有限公司 Sodium ion battery and electric vehicle

Also Published As

Publication number Publication date
DE112012005790T5 (en) 2015-04-16

Similar Documents

Publication Publication Date Title
KR101241221B1 (en) Charging system for mild hybrid vehicle
US8723490B2 (en) Controlling a bidirectional DC-to-DC converter
CA2806628C (en) Battery heating circuit
US10086711B2 (en) In-vehicle charger and surge-suppression method in in-vehicle charger
KR101284331B1 (en) Recharge systen for green car and method thereof
CN103545872B (en) Balancing circuit for balancing battery cells
US9718376B2 (en) Electricity supply system having double power-storage devices of a hybrid or electric motor vehicle
JP5745465B2 (en) Power supply
JP6003932B2 (en) Power conversion apparatus and start method thereof
US8680795B2 (en) Vehicle electric drive and power systems
JP5858309B2 (en) Power conversion system and control method thereof
WO2016194790A1 (en) Electric power converting device and method of controlling electric power converting device
CN106134058B (en) DC/DC converters and accumulating system
Al-Sheikh et al. Power electronics interface configurations for hybrid energy storage in hybrid electric vehicles
US20150043251A1 (en) Power conversion system and method of controlling power conversion system
CN212579628U (en) Energy conversion device and vehicle
Rezaii et al. Design and experimental study of a high voltage gain bidirectional dc-dc converter for electrical vehicle application
JP2005261059A (en) Current bidirectional converter
US9490710B2 (en) Power supply device for supplying power to a load by combining a secondary battery and a capacitor
Moradpour et al. Controller Design of a New Universal Two-Phase SiC-GaN-Based DC-DC Converter for Plug-In Electric Vehicles
WO2013114573A1 (en) Load power source device
US8634209B2 (en) Current-fed full-bridge DC-DC converter
JP6423483B2 (en) Battery control circuit for renewable energy power generation system
JP6502088B2 (en) POWER SUPPLY SYSTEM, VEHICLE, AND VOLTAGE CONTROL METHOD
JP5420080B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120057902

Country of ref document: DE

Ref document number: 112012005790

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载