WO2013175628A1 - 調圧器、および、それを備えた液圧ブレーキシステム - Google Patents
調圧器、および、それを備えた液圧ブレーキシステム Download PDFInfo
- Publication number
- WO2013175628A1 WO2013175628A1 PCT/JP2012/063492 JP2012063492W WO2013175628A1 WO 2013175628 A1 WO2013175628 A1 WO 2013175628A1 JP 2012063492 W JP2012063492 W JP 2012063492W WO 2013175628 A1 WO2013175628 A1 WO 2013175628A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- chamber
- piston
- pilot
- hydraulic fluid
- Prior art date
Links
- 230000001419 dependent effect Effects 0.000 claims abstract description 72
- 230000007246 mechanism Effects 0.000 claims abstract description 52
- 239000012530 fluid Substances 0.000 claims description 191
- 230000001105 regulatory effect Effects 0.000 claims description 36
- 238000005192 partition Methods 0.000 claims description 14
- 230000000903 blocking effect Effects 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000004044 response Effects 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 22
- 230000004048 modification Effects 0.000 description 16
- 238000012986 modification Methods 0.000 description 16
- 230000005284 excitation Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 230000001172 regenerating effect Effects 0.000 description 5
- 230000005281 excited state Effects 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/58—Combined or convertible systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/02—Brake-action initiating means for personal initiation
- B60T7/04—Brake-action initiating means for personal initiation foot actuated
- B60T7/042—Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/12—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/12—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
- B60T13/14—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
- B60T13/142—Systems with master cylinder
- B60T13/145—Master cylinder integrated or hydraulically coupled with booster
- B60T13/146—Part of the system directly actuated by booster pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/66—Electrical control in fluid-pressure brake systems
- B60T13/662—Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/66—Electrical control in fluid-pressure brake systems
- B60T13/68—Electrical control in fluid-pressure brake systems by electrically-controlled valves
- B60T13/686—Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T15/00—Construction arrangement, or operation of valves incorporated in power brake systems and not covered by groups B60T11/00 or B60T13/00
- B60T15/02—Application and release valves
- B60T15/36—Other control devices or valves characterised by definite functions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/34—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
- B60T8/40—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
- B60T8/4072—Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
- B60T8/4077—Systems in which the booster is used as an auxiliary pressure source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/12—Actuating devices; Operating means; Releasing devices actuated by fluid
- F16K31/122—Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
- F16K31/124—Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston servo actuated
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D16/00—Control of fluid pressure
- G05D16/14—Control of fluid pressure with auxiliary non-electric power
- G05D16/16—Control of fluid pressure with auxiliary non-electric power derived from the controlled fluid
- G05D16/166—Control of fluid pressure with auxiliary non-electric power derived from the controlled fluid using pistons within the main valve
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7758—Pilot or servo controlled
- Y10T137/7762—Fluid pressure type
Definitions
- the present invention relates to a pressure regulator that regulates and supplies hydraulic fluid supplied from a high-pressure source, and a hydraulic brake system including the same.
- the pressure regulator provided in the system has a function of supplying hydraulic fluid supplied from a high-pressure source device as a high-pressure source configured by a pump or the like to a pressure corresponding to a pilot pressure introduced to itself.
- a high-pressure source device as a high-pressure source configured by a pump or the like
- a pilot pressure introduced to itself have.
- the pressure regulator is provided with two pistons arranged in series to operate the valve mechanism, and a first pilot chamber is provided on one end side of the two pistons, A second pilot chamber is formed on one end of the other side, sandwiched between two pistons.
- the pressure of the hydraulic fluid supplied to the brake device provided in the wheel from the master cylinder device is introduced into the first pilot chamber as the first pilot pressure, and the high pressure source is supplied to the second pilot chamber.
- the pressure of the hydraulic fluid supplied from the device and pressure-adjusted by the adjusting device configured by the pressure increasing linear valve and the pressure reducing linear valve is introduced as the second pilot pressure.
- the pressure regulator is configured to supply the hydraulic fluid supplied from the high-pressure source device by adjusting the pressure according to one of the two pilot pressures.
- FIGS. 1 and 2 are Japanese Patent Laid-Open No. 2011-226541, FIGS. 1 and 2
- the two pilot chambers are arranged in series via one of the two pistons. For this reason, fluctuations in one of the two pilot pressures tend to affect the other, and when the pressure regulator is installed in a hydraulic brake system, it is possible to control the brake force in the hydraulic brake system and to feel good brake operation. The possibility of harming is undeniable. In other words, by making improvements from such a viewpoint, it is possible to improve the practicality of the pressure regulator, and consequently the practicality of the hydraulic brake system including the pressure regulator.
- the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a highly practical pressure regulator and a highly practical hydraulic brake system.
- a pressure regulator includes a first pilot chamber defined by a part of a piston for operating a valve mechanism, and another piston of the piston.
- a second pilot chamber defined by a portion is provided, the pressure of each of the two pilot chambers being configured to bias the piston in the same direction.
- the hydraulic brake system of the present invention includes the pressure regulator, and the hydraulic fluid having the pressure adjusted by the adjusting device is provided in one of the two pilot chambers of the pressure regulator, and the other is in accordance with the brake operation force. Pressure hydraulic fluid or hydraulic fluid supplied to the brake device from the master cylinder device is introduced.
- the pressure regulator of the present invention it can be considered that two pilot chambers are provided in parallel for one piston. Therefore, according to the pressure regulator of the present invention, the fluctuation of the pressure of the hydraulic fluid introduced into the other of the two pilot chambers is relatively reduced. It can be made smaller.
- the hydraulic brake system of the present invention having the pressure regulator the hydraulic fluid whose pressure is adjusted by the adjusting device and the hydraulic fluid having a pressure corresponding to the brake operation force or the master cylinder device is supplied to the brake device. Since the pressure fluctuation of the other caused by the pressure fluctuation of one of the hydraulic fluids can be made relatively small, it becomes possible to make the control of the braking force and the feeling of brake operation in the hydraulic brake system relatively good.
- a pressure regulator that regulates and supplies hydraulic fluid supplied from a high-pressure source, A housing; A piston disposed in the housing so as to be movable in the axial direction of the housing; A high pressure chamber in communication with the high pressure source; A low pressure chamber in communication with a low pressure source; The hydraulic fluid supplied from the pressure regulator is accommodated, and the pressure of the accommodated hydraulic fluid acts on the piston so that the piston is urged in one direction in the axial direction. Room, The piston is defined by a part of the piston and the housing, and the working fluid is introduced and the pressure of the introduced working fluid acts on the piston so that the piston is attached in the opposite direction opposite to the one direction.
- a first pilot chamber configured to be energized;
- the piston is partitioned by another part of the piston and the housing so that hydraulic fluid is introduced, and the pressure of the introduced hydraulic fluid acts on the piston to urge the piston in the opposite direction.
- a configured second pilot chamber By moving the piston in one direction, the pressure regulating chamber and the high pressure chamber are communicated with each other, and the communication between the pressure regulating chamber and the low pressure chamber is blocked, and by moving the piston in the opposite direction,
- a pressure regulator comprising: a valve mechanism that blocks communication between the pressure regulating chamber and the high pressure chamber and communicates the pressure regulating chamber and the low pressure chamber.
- the one piston operates the valve mechanism.
- the pressure of the hydraulic fluid introduced into the first pilot chamber is defined as “first pilot pressure” and the second If the pressure of the hydraulic fluid introduced into the pilot chamber is called “second pilot pressure”, the first pilot pressure and the second pilot pressure urge the piston in the same direction against the one piston.
- first pilot chamber and the second pilot chamber are arranged in parallel with respect to one piston. Therefore, the influence of one fluctuation of the first pilot pressure and the second pilot pressure on the other can be made relatively small. That is, the pressure fluctuation of the hydraulic fluid introduced into the other of the first pilot chamber and the second pilot chamber caused by the pressure fluctuation of the hydraulic fluid introduced into one of the first pilot chamber and the second pilot chamber is reduced. Can be made relatively small.
- valve mechanism in this embodiment may have a so-called spool valve structure or a so-called poppet valve structure. Regardless of the structure, according to the valve mechanism of this aspect, the urging force obtained by adding the urging force due to the pressure in the pressure regulating chamber, the urging force due to the first pilot pressure, and the urging force due to the second pilot pressure. Therefore, the moving direction of the piston, in other words, the moving position when moving in that direction is determined, and the pressure regulating chamber and the high pressure chamber are communicated with each other depending on the direction and position.
- high pressure communication / low pressure cut-off state A state where communication is cut off (hereinafter sometimes referred to as “high pressure communication / low pressure cut-off state”), a state where communication between the pressure adjusting chamber and the high pressure chamber is cut off and a pressure adjusting chamber and the low pressure chamber are connected (hereinafter referred to as “high pressure communication / low pressure cut-off state”).
- high pressure communication / low pressure cut-off state a state where communication between the pressure adjusting chamber and the high pressure chamber is cut off and a pressure adjusting chamber and the low pressure chamber are connected.
- “high-pressure cutoff / low-pressure communication state” may be selectively realized.
- pilot facing pressure the pressure of the hydraulic fluid introduced into the pilot facing chamber
- the second pilot pressure and the pilot facing pressure are set to the same pressure, whereby the second pressure with respect to the piston is set.
- the urging force by the pilot pressure and the urging force by the pilot counter pressure are balanced, and the pressure adjustment by the first pilot pressure can be accurately performed.
- the piston has a columnar main body and a flange formed in a bowl shape on the outer periphery of the main body,
- the first pilot chamber is defined on the one-direction side of the main body
- the second pilot chamber is defined on the one-direction side of the flange on the outer periphery of the main body, respectively (1) Or the pressure regulator as described in the item (2).
- the pressure regulator The hydraulic fluid is partitioned by another part of the piston and the housing, and the hydraulic fluid having the same pressure as the hydraulic fluid introduced into the second pilot chamber is introduced, so that the pressure of the introduced hydraulic fluid is reduced.
- a pilot facing chamber configured to act on the piston to urge the piston in the one direction and to cancel the urging of the piston by the hydraulic fluid of the second pilot chamber;
- the above-mentioned two aspects are aspects in which limitations are added regarding the shape of the piston and the locations where the first pilot chamber, the second pilot chamber, and the pilot facing chamber are formed according to the shape.
- a hydraulic brake system provided in the vehicle, A brake operation member that is braked by the driver; A brake device provided on the wheel for generating a braking force; A high-pressure source device as the high-pressure source; The pressure regulator according to any one of (1) to (4), wherein the hydraulic fluid supplied from the high-pressure source device is pressure-adjusted and supplied.
- the brake operating member is connected, and the hydraulic fluid supplied from the pressure regulator is introduced, the hydraulic fluid is pressurized depending on the pressure of the introduced hydraulic fluid, and the pressurized hydraulic fluid is A master cylinder device that supplies the brake device; An adjustment device that adjusts the working fluid supplied from the high-pressure source device to an arbitrary pressure; The hydraulic fluid having the pressure adjusted by the adjusting device is introduced into one of the first pilot chamber and the second pilot chamber of the pressure regulator, and the pressure according to the brake operation force applied to the brake operation member Or a hydraulic brake system configured such that the hydraulic fluid supplied to the brake device from the master cylinder device is introduced into the other of the first pilot chamber and the second pilot chamber.
- the hydraulic brake system is a system that generates a braking force depending on the pressure of hydraulic fluid supplied from the pressure regulator (hereinafter sometimes referred to as “pressure regulator supply pressure”). It is.
- the master cylinder device is configured such that the pressure of the hydraulic fluid supplied from itself to the brake device (hereinafter sometimes referred to as “master pressure”) is a pressure dependent only on the pressure regulator supply pressure. Alternatively, the pressure may depend on both the brake operation force and the pressure regulator supply pressure.
- master pressure the pressure dependent only on the pressure regulator supply pressure.
- the pressure may depend on both the brake operation force and the pressure regulator supply pressure.
- the pressure adjusted by the adjusting device (hereinafter sometimes referred to as “adjusted pressure”) is introduced as one of the two pilot pressures, and is applied to the brake operating force.
- a corresponding pressure (hereinafter sometimes referred to as “operation force dependent pressure”) or a master pressure is introduced as the other of the two pilot pressures. Therefore, in the present system, the regulator is configured to adjust the regulator supply pressure by both the two pilot pressures, more specifically, by the sum of the forces generated by each of the two pilot pressures. It is possible to configure.
- the pressure regulator supply pressure can also be adjusted. For example, when the adjustment pressure is not increased, or when the adjustment pressure cannot be increased, the regulator is adjusted only by the operating force dependent pressure or the master pressure. It is also possible to configure to adjust the supply pressure. That is, the pressure regulator can be operated in various pressure regulation modes.
- the regulator supply pressure is adjusted only by the operating force dependent pressure or the master pressure, for example, in the case of a failure, etc., as long as the high pressure source device can operate properly, or suitable for the high pressure source device As long as the hydraulic fluid with a sufficient pressure remains, it is possible to generate a braking force that depends on the pressure regulator supply pressure, and by configuring the hydraulic brake system in that way, it is excellent in terms of fail-safety. It is possible to build a system.
- the adjustment device is An electromagnetic pressure-increasing linear valve disposed between the high-pressure source device and the one of the first pilot chamber and the second pilot chamber to increase the pressure of one hydraulic fluid;
- An electromagnetic pressure-reducing linear valve disposed between the low-pressure source and the one of the first pilot chamber and the second pilot chamber to depressurize one of the hydraulic fluids;
- the hydraulic brake system according to item (11), configured to adjust the pressure of the one hydraulic fluid in the first pilot chamber and the second pilot chamber to an arbitrary pressure.
- This mode is a mode in which a limitation relating to the specific configuration of the adjusting device is added.
- hydraulic fluid having a pressure that is not based on only the brake operation amount and the brake operation force can be introduced into one of the two pilot chambers.
- the system is suitable for a vehicle equipped with the above-described regenerative braking system.
- the hydraulic brake system is Introduction of hydraulic fluid having a pressure corresponding to the brake operating force or hydraulic fluid supplied from the master cylinder device to the brake device into the other of the first pilot chamber and the second pilot chamber;
- the pressure regulator is configured to adjust the pressure regulator supply pressure using both of the two pilot pressures.
- introduction of one of the two pilot pressures, that is, the operating force dependent pressure or the master pressure as the pilot pressure can be prohibited, only by the adjustment pressure that is the pressure adjusted by the adjustment device, It becomes possible to control the pressure regulator supply pressure satisfactorily.
- the hydraulic brake system is As the operation mode of the master cylinder device, (A) the hydraulic fluid supplied from the master cylinder device to the brake device corresponds to the pressure of the hydraulic fluid supplied from the pressure regulator and introduced into the master cylinder device. A pressure regulator supply pressure-dependent pressurization mode that pressurizes a brake force of a magnitude to a pressure generated by the brake device, and (B) hydraulic fluid supplied from the master cylinder device to the brake device.
- the system of this aspect switches between a mode in which the master pressure depends only on the pressure regulator supply pressure and a mode in which the master pressure depends on both the brake operation force and the pressure regulator supply pressure. It is configured to be possible.
- the former mode has an advantage that the system is suitable when the vehicle is equipped with a regenerative braking system, and the latter mode is based only on the brake operation force. This has the advantage that a larger braking force can be generated than the braking force that can be generated.
- the system of this aspect is a system that can enjoy these two advantages.
- the latter mode when the pressure regulator supply pressure is not introduced, a braking force depending only on the braking operation force, that is, a braking force having a magnitude corresponding to the braking operation force is generated.
- the latter mode can be considered as an operation force dependent pressurizing mode.
- the operation force-dependent pressurization mode can be considered as one mode of the operation force / pressure regulator supply pressure-dependent pressurization mode.
- the operating force-dependent pressurization mode is effective from the viewpoint of fail-safe when an electrical failure or the like occurs in the system.
- the master cylinder device is A housing; (a) a pressurizing piston disposed in the housing and having a main body and a flange provided on the outer periphery of the main body, and (b) disposed in the housing behind the pressurizing piston.
- An input piston connected to the brake operation member at the rear end, In front of the pressurizing piston, a pressurizing chamber in which hydraulic fluid supplied to the brake device is pressurized is between the main body portion of the pressurizing piston and the input piston, and an inter-piston chamber is Input chambers into which the hydraulic fluid supplied from the pressure regulator is introduced are formed on the rear side of the flange portion of the pressure piston, respectively.
- the operation force / pressure regulator supply pressure dependent pressurization mode is realized by allowing the brake operation force to be transmitted from the input piston to the pressurization piston via a chamber ( The hydraulic brake system according to item 14).
- the housing of the master cylinder device has a partition portion in which the housing is partitioned into a front chamber and a rear chamber, and an opening is provided for penetrating the housing and communicating them.
- the pressurizing piston is disposed so that the flange portion thereof is disposed in the front chamber, and the input piston is disposed in the rear chamber,
- the input chamber is partitioned between the partition portion and the flange portion of the pressurizing piston, and the inter-piston chamber uses the opening of the partition portion and the main body portion of the pressurizing piston.
- the hydraulic brake system according to item (15), which is partitioned so that the input piston faces each other.
- the master cylinder device is The pressure piston has a partition formed in front of the flange, and has an input facing chamber that faces the input chamber across the flange.
- the pressure receiving area of the pressurizing piston in which the pressure of the working fluid in the inter-piston chamber acts on the pressurizing piston, and the pressure receiving area of the pressurizing piston in which the pressure of the working fluid in the input facing chamber acts on the pressurizing piston.
- the operation mode switching mechanism is The pressure chamber supply pressure-dependent pressurization mode is realized by communicating the chamber between the piston and the input facing chamber and blocking communication between the chamber and the low pressure source, and the chamber between the piston and the input facing chamber. (15) or (16) configured to realize the operating force / pressure regulator supply pressure dependent pressurization mode by blocking communication with the low pressure source and the input facing chamber.
- the aspect of the above three terms is an aspect in which a limitation relating to the structure of the master cylinder device for selectively realizing the above two modes is added.
- the limited matter regarding the formation of the inter-piston chamber in the aspect of the second term that is, regarding the specific matter that "the main body portion of the pressurizing piston and the input piston face each other using the opening of the partition portion"
- the body portion of the pressure piston has a bottomed hole that opens at the rear end, and the input piston extends through the opening of the partition portion into the bottomed hole, and inputs the inner bottom of the bottomed hole.
- the structure etc. which the front end of a piston faces are included.
- the operation mode switching mechanism is An inter-chamber communication passage for communicating the inter-piston chamber and the input facing chamber; a communication between the inter-piston chamber and the input facing chamber provided in the inter-chamber communication passage; An inter-chamber communication switching valve for switching between communication shutoff, a low-pressure source communication path for communicating the input facing chamber and the low-pressure source without using the inter-chamber communication switching valve, and a low-pressure source communication path A low-pressure source communication switching valve for switching between communication between the input facing chamber and the low-pressure source and blocking of the communication;
- the chamber between the pistons and the input facing chamber are communicated by the chamber communication switching valve, and the communication between the input facing chamber and the low pressure source is blocked by the low pressure source communication switching valve, thereby supplying the pressure regulator
- a pressure-dependent pressurization mode is realized, and the communication between the inter-piston chamber and the input opposing chamber is blocked by the inter-chamber communication switching valve, and the input opposing chamber and the low-pressure source are connected by the low-pressure source
- This mode is a mode in which a limitation relating to the specific configuration of the operation mode switching mechanism is added.
- the inter-chamber communication switching valve is a normally closed electromagnetic on-off valve (a valve that is closed when not energized and opens when excited), and the low-pressure source communication switching valve is a normally open electromagnetic switching valve. If the valve is an open / close valve (a valve that is closed when not energized and opens when energized), the above-described operating force-dependent pressurization mode is realized in the event of electrical failure. It is possible to construct a system advantageous in terms of the above.
- the hydraulic brake system is On the side of the inter-piston chamber of the inter-chamber communication switching valve, a pilot pressure introduction path for communicating the inter-piston chamber and the other of the first pilot chamber and the second pilot chamber of the pressure regulator Prepared,
- the hydraulic fluid in the inter-piston chamber is used as the hydraulic fluid having a pressure corresponding to the brake operating force applied to the brake operating member or the hydraulic fluid supplied from the master cylinder to the brake device.
- the hydraulic brake system according to item (18), wherein the hydraulic brake system is configured to be introduced into the other of the first pilot chamber and the second pilot chamber.
- This mode is a mode in which the operating force dependent pressure is introduced into the pressure regulator as one of the two pilot pressures.
- the operating force dependent pressure caused by the fluctuation in the adjustment pressure that is the other of the two pilot pressures. Is relatively small, it is possible to suppress or reduce the above-mentioned uncomfortable feeling.
- the fluctuation of the adjustment pressure is likely to occur at the time of switching the operation mode and at the time of starting the system, and according to this aspect, it is possible to sufficiently suppress or reduce the uncomfortable feeling at such time.
- the hydraulic brake system is A pilot introduction switching mechanism for switching between introduction of the hydraulic fluid in the inter-piston chamber into the other of the first pilot chamber and the second pilot chamber of the pressure regulator and prohibition of the introduction;
- the introduction of the operating force-dependent pressure as the pilot pressure can be prohibited, so that the pressure regulator supply pressure can be favorably controlled only by the adjustment pressure.
- the introduction of the operation force-dependent pressure as a pilot pressure is prohibited, so that a favorable brake force can be controlled in this mode.
- the piston of the pressure regulator has a columnar main body portion and a flange portion formed in a bowl shape on the outer periphery of the main body portion, and the first pilot chamber is in the one direction of the main body portion.
- the second pilot chamber is formed on the outer periphery of the main body portion on the one-direction side of the flange portion, respectively.
- the pressure regulator further comprises: The hydraulic fluid is partitioned by another part of the piston and the housing, and the hydraulic fluid having the same pressure as the hydraulic fluid introduced into the second pilot chamber is introduced, so that the pressure of the introduced hydraulic fluid is reduced.
- a pilot facing chamber configured to act on the piston to urge the piston in the one direction and to cancel the urging of the piston by the hydraulic fluid of the second pilot chamber;
- the pilot facing chamber is partitioned and formed on the outer periphery of the main body portion of the piston on the opposite side of the flange portion with the flange portion therebetween.
- the hydraulic brake system includes a communication path between opposing chambers for communicating the input opposing chamber and the pilot opposing chamber of the pressure regulator on the input opposing chamber side of the low pressure source communication switching valve (19 ) Hydraulic brake system according to item.
- the biasing force to the piston due to the operating force-dependent pressure introduced as the pilot pressure is canceled out. It becomes possible to control the pressure regulator supply pressure. Further, according to this aspect, this can be realized without providing the pilot introduction switching valve, and it is possible to construct a system that is advantageous in terms of cost.
- FIG. 1 shows a hydraulic brake system according to the first embodiment
- FIG. 2 shows a pressure regulator according to the first embodiment provided in the system.
- the hydraulic brake system and pressure regulator of the first embodiment will be described with reference to the drawings.
- the hydraulic brake system of the first embodiment is a hydraulic brake system that is mounted on a hybrid vehicle using brake oil as hydraulic fluid.
- the present hydraulic braking system is roughly (A) provided on four wheels 10, each of which generates a braking force, and (B) a brake operating member.
- the operation of the brake pedal 14 is input and a master cylinder device 16 that supplies pressurized hydraulic fluid to each brake device 12; and (C) the master cylinder device 16 and the four brake devices 12 are arranged.
- the anti-lock unit 18 and (D) supply the high-pressure hydraulic fluid by pumping the hydraulic fluid from the reservoir 20 which is a low-pressure source (in this embodiment, the atmospheric hydraulic fluid is contained) and pressurizing it.
- a high-pressure source device 22 as a high-pressure source
- a regulator 24 that is a pressure regulator that regulates the hydraulic fluid supplied from the high-pressure source device 22 and supplies the hydraulic fluid to the master cylinder device 16
- the electromagnetic pressure increasing linear valve 26 and the electromagnetic pressure reducing linear valve 28 for adjusting the pressure of the hydraulic fluid supplied from the regulator 24 (hereinafter simply referred to as “pressure increasing linear valve 26” and “pressure reducing linear valve 28”, respectively).
- a brake electronic control unit 30 as a control device that controls the hydraulic brake system by controlling those devices, devices, and valves.
- the regulator 24 is a pressure regulator according to the first embodiment, and includes a pressure-increasing linear valve 26 and a pressure-decreasing linear valve 28, and an adjustment device described later, that is, a pilot pressure adjustment for adjusting the pilot pressure of the regulator 24.
- Device 32 is configured
- the anti-lock unit 18 may be referred to as an “ABS unit 18”, and is denoted by [ABS] in the drawing.
- the pressure-increasing linear valve 26 and the pressure-decreasing linear valve 28 are respectively given the symbols [SLA] and [SLR], which are their symbol marks in the figure.
- the brake electronic control unit 30 may be hereinafter referred to as “brake ECU 30”, and is represented by a symbol [ECU] in the drawing.
- the four wheels 10 are represented as a right front wheel 10FR, a left front wheel 10FL, a right rear wheel 10RR, and a left rear wheel 10RL when it is necessary to represent left and right front and rear.
- the components such as the four brake devices 12 are denoted by the same reference numerals as those of the wheels 10 and expressed as 12FR, 12FL, 12RR, 12RL, and the like.
- a brake device 12 provided corresponding to each wheel 10 includes a disk rotor that rotates together with the wheel 10, a caliper held by a carrier, a wheel cylinder held by the caliper, and a caliper.
- the disc brake device includes a brake pad that sandwiches the disc rotor by being moved by the wheel cylinder.
- the ABS unit 18 is a unit including a pressure increasing on / off valve, a pressure reducing on / off valve, a pump device, and the like that are provided corresponding to each wheel, and the wheel 10 is locked by a slip phenomenon or the like. It is a device for preventing the wheel lock from lasting when it is activated.
- the brake device 12 and the ABS unit 18 are general devices and units, and are not related to the features of the claimable invention.
- the master cylinder device 16 is a master cylinder device integrated with a stroke simulator. Generally speaking, inside the housing 40, there are two pressure pistons, a first pressure piston 42 and a second pressure piston. A piston 44 and an input piston 46 are disposed, and a stroke simulator mechanism 48 is incorporated. In the following description of the master cylinder device 16, for the sake of convenience, the left side in the figure is referred to as the front side and the right side is referred to as the rear side. , Moving to the right is called retreat.
- the housing 40 has a space in which the first pressurizing piston 42, the second pressurizing piston 44, and the input piston 46 are disposed, and the space is closed with a front end closed and an annular section.
- the section 50 is divided into a front chamber 52 and a rear chamber 54.
- the second pressurizing piston 44 has a bottomed cylindrical shape that opens forward, and is disposed on the front side in the front chamber 52.
- the first pressure piston 42 has a main body portion 56 and a flange portion 58 formed on the outer periphery of the main body portion 56.
- a front portion of the main body portion 56 has a bottomed cylindrical shape and is disposed behind the second pressurizing piston 44 in the front chamber 52 together with the flange portion 58.
- a rear portion of the main body portion 56 is a protruding portion 60 and extends to the rear chamber 54.
- the partition 50 of the housing 40 has an annular shape so that an opening 62 is formed at the center, and the protrusion 60 extends through the opening 62 to the rear chamber 54. It is out.
- the input piston 46 is disposed in the rear chamber 54, more specifically, a part of the input piston 46 enters the rear chamber 54 from the rear, and the brake pedal is connected to the rear end portion via the link rod 64. 14 are connected.
- a first pressurizing chamber R1 that pressurizes the hydraulic fluid supplied to the brake devices 12RR and 12RL by the advancement of the first pressurizing piston 42 is provided on the front side of the second pressurizing piston 44 and is connected to the two front wheels 10FR and 10FL.
- a second pressurizing chamber R2 is formed in which the hydraulic fluid supplied to the corresponding two brake devices 12FR and 12FL is pressurized by the advancement of the second pressurizing piston 44, respectively.
- an inter-piston chamber R ⁇ b> 3 is formed between the first pressurizing piston 42 and the input piston 46.
- the rear end of the projecting part 60 extending rearward from the opening 62 formed in the partition part 50, that is, the rear end of the main body part 56 and the front end of the input piston 46 face each other.
- R3 is formed, in other words, the inter-piston chamber R3 is formed such that the first pressure piston 42 and the input piston 46 face each other using the opening 62.
- the regulator is defined on the outer periphery of the projecting portion 60 by the front end surface of the partition portion 50 and the rear end surface of the flange portion 58 of the first pressure piston 42.
- An annular input chamber R4 into which hydraulic fluid supplied from 24 is introduced is disposed on the outer periphery of the main body portion 56 in front of the flange portion 58 and faces the input chamber R4 with the flange portion 58 interposed therebetween.
- R5 is formed respectively.
- the pressure receiving area of the first pressurizing piston 42 to which the pressure of the hydraulic fluid in the inter-piston chamber R3 acts to move the first pressurizing piston 42 forward (the pressure receiving area against the inter-piston chamber). That is, the area of the rear end of the protrusion 58 of the first pressure piston 42 and the pressure of the hydraulic fluid in the input facing chamber R5 act to move the first pressure piston 42 rearward. Is equal to the area of the front end surface of the flange 56 of the first pressure piston.
- the first pressurizing chamber R1 and the second pressurizing chamber R2 are respectively connected via the low pressure ports P1 and P2 when the first pressurizing piston 42 and the second pressurizing piston 44 are located at the rear end in the movement range.
- the reservoir 20 can communicate with each other, and communicate with the brake device 12 via the output ports P3 and P4 and the ABS unit 18, respectively.
- the input chamber R4 is communicated with a pressure regulating port of the regulator 24 described later via an input port P5.
- the inter-piston chamber R3 communicates with the connection port P6, and the input facing chamber R5 communicates with the communication port P7.
- the communication port P6 and the communication port P7 are connected by an inter-chamber communication path 70 that is an external communication path. It has been.
- a normally closed electromagnetic on-off valve 72 that is, an on-off valve 72 that is closed when not excited and opened when excited.
- the on-off valve 72 has a function of switching communication between the inter-piston chamber R3 and the input facing chamber R5 and blocking of the communication. Therefore, the on-off valve 72 is hereinafter referred to as an “inter-chamber communication switching valve 72”. I will call it.
- the master cylinder device 16 is further provided with two low pressure ports P8 and P9, which communicate with each other through an internal passage.
- One low-pressure port P8 is connected to the reservoir 20, and the other low-pressure port P9 is connected between the inter-chamber communication switching valve 72 and the input facing chamber R5 via a low-pressure source communication path 74 that is an external communication path.
- the low-pressure source communication path 74 is provided with a normally open type electromagnetic on-off valve 76, that is, an on-off valve 76 that is opened when not excited and closed when excited.
- the on-off valve 76 has a function of switching between communication between the input facing chamber R5 and the reservoir 20 as a low-pressure source and blocking of the communication. Therefore, the on-off valve 76 is hereinafter referred to as “low-pressure source communication switching valve 76”. ".
- the housing 40 has a space different from the space where the first pressure piston 42, the second pressure piston 44, and the input piston 46 are disposed, and the stroke simulator mechanism 48 includes the space, A reaction force piston 80 disposed in the space and two reaction force springs 82 and 84 (both are compression coil springs) for urging the reaction force piston 80 are configured.
- a buffer chamber R7 is formed on the rear side of the reaction force piston 80 (represented as a substantially crushed space in the figure).
- the reaction force is applied to the brake pedal 14 by the elastic reaction force of the reaction force springs 82 and 84 corresponding to the amount of the hydraulic fluid, that is, the advance amount of the input piston 46 acting on the reaction force chamber R6. That is, the stroke simulator mechanism 48 functions as a reaction force applying mechanism that applies a reaction force having a magnitude corresponding to the amount of advance of the input piston 46 to the advance of the input piston 46.
- the two reaction force springs 82 and 84 are arranged in series, and the reaction force spring 84 has a considerably smaller spring constant than the reaction force spring 82, so that the operation of the brake pedal 14 can be performed.
- reaction force pressure sensor 86 for detecting the pressure (reaction force pressure) of the hydraulic fluid in the reaction force chamber R6 is provided in the inter-chamber communication passage 70 (in the figure, the reaction force pressure is reduced).
- P RCT The symbol “P RCT ” is attached).
- the high-pressure source device 22 is a pump 90 that pumps and pressurizes hydraulic fluid from the reservoir 20, a motor 92 that drives the pump 90, and an accumulator 94 that stores the hydraulic fluid pressurized by the pump 90 (see FIG. In FIG. 2, the symbol [ACC] is attached).
- the high pressure source device 22 has a high pressure source pressure for detecting the pressure of the working fluid in the accumulator 94, that is, the high pressure source pressure (also referred to as “accumulator pressure”) that is the pressure of the working fluid to be supplied.
- a sensor 96 is provided (in the drawing, a symbol [P ACC ], which is a symbol of a high-pressure source pressure) is attached.
- the regulator 24 includes a housing 100 having a double structure and a space formed therein, and an axial direction (left-right direction) of the housing 100 in the space.
- the piston 102, the valve seat ring 106, and the valve rod 108 are arranged in order from the left.
- the piston 102 functions as a movable body and is movable in the axial direction of the housing 100.
- the piston 102 is configured to include a main body portion 110 that is generally columnar and has a recess that opens to the right end, and a plunger portion 112 that is fitted in the recess.
- the valve seat ring 106 has a cylindrical shape with a flange and open at both ends, and is floatingly supported by the second piston 104 and the housing 100 by two springs 114 and 116.
- the left end of the valve rod 108 functions as a valve element, and the left end of the valve rod 108 is seated on the right end portion of the valve seat ring 106 that functions as a valve seat.
- a valve mechanism 120 described later is configured including the valve seat ring 106, the valve rod 106, and the spring 118.
- the valve mechanism 120 includes the piston 102 that is a movable body in the axial direction of the housing 100. They are arranged side by side.
- the tip (right end) of the plunger portion 112 of the piston 102 can be brought into contact with the left end of the valve rod 108 in the valve seat ring 106.
- the outer diameter of the distal end of the plunger portion 112 is smaller than the inner diameter of the valve seat ring 106, and a gap is provided between them.
- the piston 102 is positioned at the left end of its movable range in the housing 100, the valve rod 108 is seated on the valve seat ring 106, and the tip of the plunger portion 112 is connected to the valve rod 108. It shows a state slightly separated from the left end.
- a plurality of liquid chambers are defined in the space of the housing 100.
- the first pilot chamber R8 is configured to be partitioned by the left end of the main body 110 and the housing 100 on one side of the main body 110 of the piston 102, that is, on the left side. Is formed.
- the piston 102 has a flange 122 formed on the outer periphery of the main body 110, and on one side of the flange 122, that is, on the left side, on the outer periphery of the main body 110.
- An annular second pilot chamber R9 is formed so as to be partitioned by the left end portion of the flange portion 122, a part of the outer peripheral portion of the main body portion 110, and the housing 110.
- two pilot chambers are partitioned and formed in parallel. Further, on the outer periphery of the plunger portion 112 of the piston 102, the pressure is generally adjusted between the main body portion 110 of the piston 102 and the flange portion of the valve seat ring 106, and is supplied from the regulator 24 to the master cylinder device 16.
- a pressure regulating chamber R10 is formed in which the working fluid is stored.
- the outer periphery of the valve rod 108 communicates with the high pressure source device 22 which is a high pressure source, and receives the working fluid supplied from the high pressure source device 22.
- a high pressure chamber R11 is formed.
- the pressure regulating chamber R10 is formed on the valve mechanism 120 side of the piston 102, and the high pressure chamber R11 and the pressure regulating chamber R10 are formed so as to sandwich the valve mechanism 120 therebetween. Further, in the regulator 24, the right end portion of the flange portion 122 and the main body portion are arranged on the outer side of the main body portion 110 on the side opposite to the one direction of the flange portion 122 of the piston 102, that is, on the right side. An annular pilot facing chamber R12 facing the second pilot chamber R9 is formed so as to be partitioned by another part of the outer peripheral portion of 110 and the housing 110 with the flange 122 interposed therebetween.
- the housing 100 is provided with various ports, and the plurality of liquid chambers communicate with each device of the system via the ports.
- the high pressure chamber R11 is connected to the high pressure source device 22 via the high pressure port P10, and the pressure regulation chamber R10 is communicated via the pressure regulation port P11.
- the master cylinder device 16 communicates with the input port P5.
- a low-pressure passage 124 including a liquid passage penetrating the plunger portion 112 in the axial direction and a liquid passage communicating with the liquid passage and penetrating the main body portion 110 in the radial direction.
- Each of the two low-pressure ports P12 and P13 communicates with each other via the low-pressure passage 124.
- One low-pressure port P12 is connected to the low-pressure source communication passage 74, and the low-pressure passage 124 is connected to the reservoir 20 via the master cylinder device 16. That is, the low pressure passage 124 functions as a low pressure chamber communicating with a low pressure source.
- the other low-pressure port P13 is connected to a high-pressure port P14 different from the high-pressure port P8 via the relief valve 126.
- the high-pressure chamber R11 becomes too high, the high-pressure chamber The pressure of R11 is released to the reservoir 20.
- the first pilot chamber R8 is connected to two first pilot ports P15 and P16.
- One first pilot port P15 is connected to the high pressure port P14 via the pressure-increasing linear valve 26 and the other first pilot port.
- the port P16 is connected to the low-pressure source communication path 74 via the pressure-reducing linear valve 28. That is, the first pilot chamber R8 is connected to the high-pressure source device 22 via the pressure-increasing linear valve 26 and to the reservoir 20 via the pressure-decreasing linear valve 28. As described in detail later, the first pilot chamber R8 is connected to the first pilot chamber R8.
- the first pilot pressure which is the pressure of the hydraulic fluid in the chamber R8, is set to a desired pressure (hereinafter also referred to as “adjusted pressure”) by the pressure increasing linear valve 26 and the pressure reducing linear valve 28, that is, by the adjusting device 32. It is adjusted to an arbitrary adjustment pressure.
- the second pilot chamber R9 is connected to the second pilot port P17, and is connected to the communication port P6 of the master cylinder device 16 via the pilot pressure introduction path 128. Therefore, the pressure of the hydraulic fluid in the inter-piston chamber R3 of the master cylinder device 16 is introduced into the second pilot chamber R9 as the second pilot pressure.
- pilot facing chamber R12 is connected to the facing pressure port P18, and is communicated with the communication port P7 of the master cylinder device 16 via the facing chamber communication path 130. Therefore, the pressure of the hydraulic fluid in the input facing chamber R5 of the master cylinder device 16 is introduced into the pilot facing chamber R12.
- the pressure of the hydraulic fluid in the pressure regulating chamber R10 which is, the pressure regulator supply pressure (hereinafter sometimes referred to as “servo pressure”) which is the pressure of the hydraulic fluid supplied from the regulator 24 is
- the piston 102 acts to urge the piston 102 in the left direction which is one direction.
- the pressure of the hydraulic fluid in the first pilot chamber R8, that is, the first pilot pressure acts on the piston 102 so as to urge the piston 102 in the right direction which is the opposite direction.
- the pressure of the hydraulic fluid in the second pilot chamber R9 that is, the second pilot pressure acts on the piston 102 so as to urge the piston 102 in the right direction, which is the opposite direction.
- the pressure of the hydraulic fluid in the pilot facing chamber R12 (hereinafter sometimes referred to as “pilot facing pressure”) acts to urge the piston 102 to the left, which is one direction. To do.
- the piston 102 has an urging force by the servo pressure (hereinafter sometimes referred to as “servo pressure”), an urging force by the first pilot pressure (hereinafter sometimes referred to as “first pilot force”), a second The urging force due to the pilot pressure (hereinafter sometimes referred to as “second pilot force”) and the urging force due to the pilot opposing pressure (hereinafter sometimes referred to as “pilot opposing force”) are acting.
- the piston 102 is moved in the axial direction in the housing 100 by the force, more specifically, the sum of the biasing forces (meaning a difference when the biasing forces are opposite). Strictly speaking, it is necessary to consider the elastic reaction force and the like of the springs 114 and 116. However, the action of the elastic reaction force and the like is relatively small. In, we will ignore these elastic reaction forces and the like.
- the biasing force acting to the right which is the sum of the first pilot force and the second pilot force (hereinafter sometimes referred to as “right biasing force”) is the servo pressure and the pilot facing
- the piston 102 moves to the right, that is, toward the valve mechanism 120 when exceeding the biasing force acting on the left which is the sum of the forces (hereinafter sometimes referred to as “left biasing force”). Be made.
- the left biasing force exceeds the right biasing force, the piston 102 is moved to the left, that is, in a direction away from the valve mechanism 120.
- the piston 102 When moved to the right, the piston 102 engages with the valve mechanism 120 at the distal end of the plunger portion 112, and the distal end of the valve rod 108 is separated from the valve seat ring 106.
- the pressure regulation chamber R10 and the high pressure chamber R11 communicate with each other. In that case, the opening of the low-pressure passage 124 provided at the tip of the plunger 112 is blocked by the tip of the valve rod 108, and the communication between the pressure regulating chamber R10 and the low-pressure passage 124 is blocked.
- a “high pressure communication / low pressure cutoff state” is realized in which the pressure regulating chamber R10 and the high pressure chamber R11 are communicated with each other and the communication between the pressure regulating chamber R10 and the low pressure passage 124, which is a low pressure chamber, is blocked.
- the state shown in FIG. 2 that is, when it is moved leftward, the engagement of the piston 102 with the valve mechanism 120 at the tip of the plunger portion 112 is released, so that the pressure regulating chamber R10 And the communication with the high pressure chamber R11 is blocked.
- the opening of the low pressure passage 124 is not blocked by the tip of the valve rod 108, and the pressure regulating chamber R10 and the low pressure passage 124 communicate with each other.
- the “high-pressure shut-off / low-pressure communication state” is realized in which the communication between the pressure regulating chamber R10 and the high pressure chamber R11 is cut off and the pressure regulating chamber R10 and the low pressure passage 124, which is a low pressure chamber, are communicated.
- the servo pressure which is the pressure of the hydraulic fluid in the pressure regulating chamber R10 is based on the first pilot pressure, the second pilot pressure, and the pilot counter pressure. The pressure is adjusted according to the above.
- a servo pressure sensor 134 for detecting the servo pressure is provided (in the figure, a symbol [ PSRV ], which is a symbol of the servo pressure) is attached).
- the pressure-increasing linear valve 26 and the pressure-reducing linear valve 28 are general electromagnetic linear valves, and the illustration of the structure is omitted.
- the pressure increasing linear valve 26 is a normally closed electromagnetic linear valve disposed between the high pressure source device 22 and the first pilot chamber R8 of the regulator 24.
- the pressure increasing linear valve 26 has a plunger whose tip functions as a valve element and a valve seat on which the plunger is seated.
- An adjustment pressure chamber that communicates with the first pilot chamber R8 of the regulator 24 and contains hydraulic fluid of an adjustment pressure corresponding to the first pilot pressure that is the pressure of the valve seat is disposed on the side of the plunger.
- a high-pressure chamber that is in communication with the high-pressure source device 22 and receives hydraulic fluid at a high-pressure source pressure is arranged on the opposite side of the plunger.
- a differential pressure acting force due to the differential pressure between the high pressure source pressure and the adjusting pressure acts on the plunger in the direction of separating the plunger from the valve seat, while the plunger has its differential pressure acting force. Therefore, the plunger is biased in the direction in which the plunger is seated on the valve seat.
- the plunger when the coil is energized, the plunger has an electromagnetic acting force of a magnitude corresponding to the exciting current energized to the coil in the same direction as the differential pressure acting force, that is, in the direction opposite to the spring biasing force.
- an excitation current that can obtain an arbitrary adjustment pressure is determined in consideration of the balance of these forces, and the coil is energized.
- the adjustment pressure increases as the excitation current increases.
- the opening degree for example, ease of transition from the closed state to the open state
- the valve opening pressure is increased.
- the pressure-reducing linear valve 28 is a normally-open electromagnetic linear valve disposed between the first pilot chamber R8 of the regulator 24 and the reservoir 22 that is a low-pressure source.
- the pressure-reducing linear valve 28 has a plunger whose tip functions as a valve element and a valve seat on which the plunger is seated.
- the pressure-reducing linear valve 28 communicates with the reservoir 20 with the valve seat interposed therebetween, and a low-pressure source pressure (high in this embodiment).
- a low pressure chamber which is an atmospheric pressure
- a differential pressure acting force due to the differential pressure between the adjusted pressure and the low pressure source pressure acts in the direction of separating the plunger from the valve seat.
- the plunger is caused by the biasing force of the spring. It is biased in the same direction as the differential pressure acting force.
- an electromagnetic acting force having a magnitude corresponding to the exciting current passed through the coil acts on the plunger in the opposite direction to the differential pressure acting force and the spring biasing force.
- an excitation current that can obtain an arbitrary adjustment pressure is determined in consideration of the balance of these forces, and the coil is energized.
- the adjustment pressure increases as the excitation current increases. In other words, the opening degree (for example, the ease of transition from the valve closing state to the valve opening state) becomes low, and the valve opening pressure becomes high.
- the pilot pressure adjusting device 32 is configured including them.
- the first pilot pressure of the regulator 24 is adjusted by controlling the exciting current supplied to each of the pressure reducing linear valves 28.
- the control of this system is performed by the brake ECU 30.
- the brake ECU 30 roughly controls the high-pressure source device 22 (specifically, the control of the pump 90, more specifically, the control of the motor 92 that drives it), the inter-room communication switching valve 72, and the low-pressure source communication switching valve 74. And the control of the pressure-increasing linear valve 26 and the pressure-reducing linear valve 28 (specifically, control of the excitation current supplied to them).
- the brake ECU 30 drives a computer as a central element, a motor 92 of the high-pressure source device 22, a pressure-increasing linear valve 26, a pressure-decreasing linear valve 28, a room communication switching valve, a low-pressure source communication switching valve 74, and the like. Drive circuit (driver).
- reaction force pressure sensor 86 high pressure source pressure sensor 96, and servo pressure sensor 134 are connected to the brake ECU 30.
- this system is provided with a brake operation amount sensor 140 and a brake operation force sensor 142 in order to acquire the brake operation amount and the brake operation force as operation information of the brake pedal 14 that is a brake operation member ( In the drawing, the symbols [ ⁇ PDL ] and [F PDL ], which are symbols for the brake operation amount and the brake operation force, are attached respectively), and these sensors 140 and 142 are also connected to the brake ECU 30. . Control in this system is performed based on the detection values of these sensors.
- the braking device 12 generates a braking force having a magnitude depending on the braking operation force applied to the brake pedal 14. That is, the master cylinder device 16 pressurizes the hydraulic fluid supplied from itself to the brake device 12 to a pressure that causes the brake device 12 to generate a brake force having a magnitude corresponding to the brake operation force. It is activated under "Mode". More simply, the master pressure, which is the pressure of the hydraulic fluid supplied from the master cylinder device 16 to the brake device 12, is set to a pressure corresponding to the brake operation force.
- the first pilot pressure of the regulator 24 remains the low pressure source pressure.
- the pilot pressure introduction path 128 introduces the pressure of the hydraulic fluid in the inter-piston chamber R3 as the second pilot pressure from between the inter-piston chamber R3 of the master cylinder device 16 and the inter-chamber communication switching valve 72.
- the second pilot pressure is an operation force dependent pressure that is a pressure corresponding to the brake operation force.
- the pilot facing chamber R12 communicates with the reservoir 20 via the inter-chamber communication passage 130 and the low pressure source communication passage 74, and the pilot facing pressure is set to the low pressure source pressure. Therefore, the regulator 24 regulates pressure under the “second pilot pressure-dependent regulation mode” in which the pressure is regulated only depending on the second pilot pressure. If there is no high-pressure hydraulic fluid in the accumulator 94, Considering this, the hydraulic fluid in the pressure regulating chamber R10 of the regulator 24 remains substantially at a low pressure source pressure, and only the low pressure source pressure is substantially introduced into the input chamber R4 of the master cylinder device 16. .
- This system is an excellent system in terms of fail-safe because the brake device 12 can generate a braking force under the operation force-dependent pressurization mode even in the case of electrical failure.
- the hydraulic fluid supplied from the high-pressure source device 22 is maintained at a high pressure within the set range by controlling the driving of the pump 90. Then, the exciting current supplied to each of the pressure-increasing linear valve 26 and the pressure-decreasing linear valve 28 is controlled so that the first pilot pressure is an arbitrary pressure. Further, the pressure of the hydraulic fluid in the reaction force chamber R6 is introduced into the second pilot chamber R9 and the pilot facing chamber R12, and the second pilot pressure and the pilot facing pressure are made equal.
- the regulator 24 adjusts the hydraulic fluid to a pressure corresponding to the first pilot pressure based on the first pilot pressure, and supplies the hydraulic fluid to the input chamber R4 of the master cylinder device 16. It will be. That is, the servo pressure that is the pressure regulator supply pressure is regulated by the regulator 24 under the “first pilot pressure-dependent regulation mode” in which the pressure is regulated only depending on the first pilot pressure.
- the first pressure piston 42 and the second pressure piston 44 depend on the pressure of the hydraulic fluid, that is, the servo pressure.
- the hydraulic fluid that moves forward and is pressurized to a pressure corresponding to the servo pressure is supplied to the brake device 12. That is, the master cylinder device 16 pressurizes the hydraulic fluid supplied from itself to the brake device 12 to such a pressure that the brake device 12 generates a brake force having a magnitude corresponding to the servo pressure. It is operated under the “pressurization mode”.
- the master pressure is a pressure corresponding to the servo pressure.
- the vehicle equipped with this system is a hybrid vehicle as described above, and the regenerative braking force can be used in the vehicle. Therefore, the brake device 12 may generate a braking force that is obtained by subtracting the regenerative braking force from the braking force determined based on the brake operation. Therefore, under normal conditions, the pressure increasing linear valve is set so that the servo pressure detected by the servo pressure sensor 134 becomes a pressure that can generate the braking force based on the braking force that the system should generate. 26, the excitation current supplied to each of the pressure-reducing linear valve 28 is controlled, and the first pilot pressure is controlled.
- the brake device 12 generates a braking force that does not depend on the brake operation force by setting the operation mode of the master cylinder device 16 to the pressure regulator supply pressure-dependent pressurization mode in a normal state. .
- a pressure that is not only based on the brake operation amount and the brake operation force is introduced as the first pilot pressure, and the pressure is regulated by the regulator 24 by the introduced pressure, and the brake according to the brake operation is not necessarily performed. It is possible to generate a braking force that is not a force.
- this system is a hydraulic brake system suitable for a hybrid vehicle.
- the servo pressure is regulated depending on only the first pilot pressure by the action of the pilot counter pressure.
- the braking force is accurately controlled only by the adjustment pressure adjusted by the pressure-increasing linear valve 26 and the pressure-reducing linear valve 28, good brake control is possible.
- the servo pressure sensor 134, the pressure-increasing linear valve 26, the pressure-reducing linear valve 28, etc. fail and the excitation supplied to the pressure-increasing linear valve 26 and the pressure-reducing linear valve 28 based on the servo pressure. Assume that current control cannot be performed. Even in such a case, when the high pressure source device 22 can be controlled and the high pressure source pressure can be maintained within an appropriate pressure range, or the hydraulic fluid having a sufficient pressure remains in the accumulator 94 of the high pressure source device 22. Sometimes it is possible to generate a braking force depending on the servo pressure. A failure in which such a high pressure source pressure can be used is considered as a “specific failure”, and at the time of a specific failure, the system is operated as follows.
- the power supply to the inter-chamber communication switching valve 72 and the low-pressure source communication switching valve 76 is cut off, so that the inter-chamber communication switching valve 72 is closed and the low-pressure source communication switching valve 72 is closed. 76 is opened. In this state, the transmission of the brake operating force from the input piston to the first pressurizing piston 42 and the second pressurizing piston 44 is allowed and depends on the brake operating force, as in the case of no power supply described above.
- the brake device 12 can generate a large braking force.
- the pressure of the hydraulic fluid in the inter-piston chamber R3 of the master cylinder device 16 that is the operating force dependent pressure is supplied via the pilot pressure introduction path 128 to the second pilot.
- the pressure is introduced into the second pilot chamber R9 as a pressure, and the pilot facing chamber R12 is opened to a low pressure source pressure, whereby pressure regulation is performed under the “second pilot pressure dependent pressure regulation mode”, and the master cylinder device In the 16 input chambers R4, a servo pressure adjusted to a pressure depending on the brake operation force is introduced.
- the master cylinder device 16 generates a brake force obtained by adding the hydraulic fluid supplied to the brake device 12 to the brake force having a magnitude corresponding to the servo pressure and the brake force having a magnitude corresponding to the brake operation force.
- the pressure is increased to a pressure generated by the brake device 12. That is, the master cylinder device 16 is operated under the “operation force / pressure regulator supply pressure dependent pressurization mode” in which the hydraulic fluid is pressurized depending on both the brake operation force and the servo pressure.
- the master pressure is a pressure corresponding to both the brake operation force and the servo pressure.
- the operating force / pressure regulator supply pressure-dependent pressurization mode is a state in which the servo pressure from the regulator 24 is not introduced in the operation force / pressure regulator supply pressure-dependent pressurization mode. It can be considered as an aspect.
- the brake device 12 generates a braking force in which the braking force having a magnitude corresponding to the servo pressure and the braking force having a magnitude corresponding to the brake operation force are added at the time of the specific failure. Therefore, the braking force is relatively large, and this system is an excellent system in terms of fail-safe.
- the master cylinder device 16 has an operation mode depending on the state of the inter-chamber communication switching valve 72 and the low-pressure source communication switching valve 76, and the operation mode depends on the operation force / pressure regulator supply pressure dependent pressurization mode. (Which is a concept including the operation force-dependent pressurization mode) and the pressure regulator supply pressure-dependent pressurization mode. Can be considered to have an “operation mode switching mechanism” including an inter-chamber communication passage 70, an inter-chamber communication switching valve 72, a low-pressure source communication passage 74, and a low-pressure source communication switching valve 76.
- the pressure adjustment mode of the regulator 24 is also changed between the first pilot pressure dependent pressure adjustment mode and the second pilot pressure dependent pressure adjustment mode. It is designed to switch between them. Therefore, in this system, the operation mode switching mechanism functions as a “pressure regulation mode switching mechanism” for switching the pressure regulation mode of the regulator 24.
- the operation mode switching mechanism also functions as a pressure regulation mode switching mechanism. Since such a configuration is employed, for example, the pilot introduction switching mechanism as described later, specifically, the pressure of the hydraulic fluid in the inter-piston chamber R3 to the second pilot chamber R9 is provided in the pilot pressure introduction path 128. Therefore, the regulator 24 can be selectively regulated by one of the first pilot pressure and the second pilot pressure without providing a pilot introduction switching valve for switching between introduction of the first pilot pressure and prohibition of the introduction.
- FIG. 3 shows a hydraulic brake system according to the second embodiment
- FIG. 4 shows a pressure regulator according to the second embodiment provided in the system.
- the hydraulic brake system and pressure regulator of the first embodiment will be described with reference to the drawings.
- the hydraulic brake system of the second embodiment is substantially the same in overall configuration as the hydraulic brake system of the first embodiment, and includes the brake device 12, the ABS unit 18, the master cylinder device 16, and the chamber.
- the same communication passage is adopted for the inter-communication passage 70, the inter-chamber communication switching valve 72, the low-pressure source communication passage 74, the low-pressure source communication switching valve 76, the high-pressure source device 22, the pressure-increasing linear valve 26, the pressure-decreasing linear valve 28.
- the system of the second embodiment and the system of the first embodiment are slightly different in the structure of the regulator that is a pressure regulator, and are slightly different in the connection between the regulator and the master cylinder device 16.
- a regulator 150 is employed instead of the regulator 24 employed in the first embodiment, and this regulator 150 is the pressure regulator of the second embodiment.
- the regulator 150 employed in the system of the present embodiment has substantially the same structure except for a part as shown in FIG. To explain a different structure, in this regulator 150, the pilot facing chamber R12 formed in the regulator 24 is formed on the side opposite to the one direction, that is, on the right side of the flange portion 122 of the piston 102. The portion is not connected to the low pressure passage 124 and is a part of the low pressure chamber. Accordingly, the counter pressure port P18 provided in the regulator 24 is not provided in the regulator 150, and the communication path 130 between the opposing chambers is not provided in the present system.
- the servo pressure, the first pilot force, and the second pilot force described above are applied to the piston 102, and the piston 102 is moved in the axial direction in the housing 100 by the biasing force.
- the piston 102 moves to the right.
- the servo pressure exceeds the right biasing force, it is moved to the left.
- the inter-chamber communication switching valve 72 is opened and the low-pressure source communication switching valve 76 is closed as in the system of the first embodiment.
- the master cylinder device 16 is similarly operated under the pressure regulator supply pressure dependent pressurization mode.
- the servo pressure is equal to the first pilot pressure and the second pilot pressure. In detail, depending on both, the pressure is regulated depending on the sum of the first pilot force and the second pilot force. That is, the regulator 150 regulates the servo pressure under the “first pilot / second pilot pressure dependent regulation mode”.
- the second pilot pressure is equal to the above-mentioned reaction force pressure and can be detected by the reaction force pressure sensor 86. Therefore, in consideration of the detected second pilot pressure, that is, in consideration of the second pilot force by the second pilot pressure, a servo pressure corresponding to the braking force to be generated by the brake device is obtained.
- the excitation current supplied to each of the pressure-increasing linear valve 26 and the pressure-decreasing linear valve 28 may be controlled so that the first pilot pressure is determined and the first pilot pressure becomes the determined pressure.
- This system is also a hydraulic brake system suitable for a hybrid vehicle because the brake device 12 can generate a braking force that does not depend on the brake operation force.
- the inter-chamber communication switching valve 72 is closed and the low-pressure source communication switching valve 76 is opened.
- the brake device 12 can generate a braking force having a magnitude that depends on the brake operating force, as in the case of no power supply described above.
- the pressure of the hydraulic fluid in the inter-piston chamber R3 of the master cylinder device 16 is introduced as the second pilot pressure into the second pilot chamber R9, and the second pilot pressure Pressure regulation is performed under the dependent pressure regulation mode.
- the master cylinder device 16 is operated under the operating force / pressure regulator supply pressure dependent pressurization mode.
- the brake device 12 can generate a braking force in which a braking force having a magnitude corresponding to the servo pressure and a braking force having a magnitude corresponding to the brake operation force are added in the event of a specific failure.
- the braking force is relatively large, and this system is an excellent system in terms of fail-safe.
- This system is also configured to include an inter-chamber communication path 70, an inter-chamber communication switching valve 72, a low-pressure source communication path 74, and a low-pressure source communication switching valve 76, as in the system of the first embodiment. It can be considered to have an operation mode switching mechanism. However, unlike the system of the first embodiment, the operation mode switching mechanism does not function as a pressure regulation mode switching mechanism for switching the pressure regulation mode of the regulator 150.
- a hydraulic brake system according to a first modification is the same as the hydraulic brake system according to the second embodiment described above, except that the pilot pressure introduction path 128 is connected to the first piston 150 from the inter-piston chamber R3 of the master cylinder device 16.
- a pilot introduction switching valve 152 for switching between introduction of hydraulic fluid into the pilot chamber R9 and prohibition of introduction thereof is provided. That is, a pilot introduction switching mechanism constituted by the pilot introduction switching valve 152 is provided.
- the pilot introduction switching valve 152 is a three-way valve that communicates the second pilot chamber R9 with the inter-piston chamber R3 in the non-excited state and opens the second pilot chamber R9 to the reservoir 20 in the excited state.
- the pilot introduction switching valve 152 when no power is supplied or when a specific failure occurs, the pilot introduction switching valve 152 is in a non-excited state, and the pressure of the hydraulic fluid in the inter-piston chamber R3, which is the operating force dependent pressure, is the second pilot.
- the servo pressure introduced into the chamber R9 is regulated by the regulator 150 under the second pilot pressure dependent regulation mode.
- the pilot introduction switching valve 152 in the normal state, is in an excited state, and the servo pressure is regulated by the regulator 150 under the first pilot pressure dependent regulation mode.
- the braking force is controlled only by the adjustment pressure adjusted by the pressure-increasing linear valve 26 and the pressure-reducing linear valve 28 as in the system of the first embodiment. Brake control is possible.
- the pressure is increased in one of the first pilot chamber R8 and the second pilot chamber R9 of the regulators 24, 150.
- the adjustment pressure adjusted by the linear valve 26 and the pressure-reducing linear valve 28 is introduced, and on the other hand, the pressure of the hydraulic fluid in the inter-piston chamber R3 as the operation force dependent pressure is introduced.
- a master pressure may be introduced into the other of the first pilot chamber R8 and the second pilot chamber R9. Since it can be considered that the master pressure is roughly a pressure corresponding to the brake operation force, the pressure regulator introduces the master pressure as the pilot pressure, and the regulators 24 and 150 adjust the servo pressure based on the pilot pressure. Even with this system, there are substantially the same advantages as the system configured to adjust the servo pressure based on the pressure of the hydraulic fluid in the inter-piston chamber R3 as the operating force dependent pressure.
- the valve mechanism 120 has a so-called poppet valve structure.
- the pressure regulator is not particularly limited with respect to the structure of the valve mechanism, and may be a regulator that employs, for example, a so-called spool valve structure valve mechanism instead of the valve mechanism 120 having the above structure.
- the rear portion of the main body 56 of the first pressurizing piston 42 projects with respect to the formation of the inter-piston chamber R3.
- the projecting portion 60 extends to the rear chamber 54 through the opening 62 of the partition 50, and the rear end of the projecting portion 60 faces the front end of the input piston 46. Yes.
- the structure of the master cylinder device 16 is not particularly limited.
- the main body portion of the first pressure piston has a bottomed hole that opens at the rear end, and the bottomed hole It is also possible to adopt a configuration in which the input piston extends through the opening of the partition part and the inner space of the bottomed hole faces the front end of the input piston so that the inter-piston chamber is formed. is there.
- FIG. 6 shows one hydraulic brake system that has been studied in the past as a hydraulic brake system of a comparative example
- FIG. 7 compares the pressure regulators installed in the system. Shown as an example pressure regulator.
- a hydraulic brake system and a pressure regulator according to a comparative example will be described with reference to those drawings. Consider the problems of these systems and pressure regulators.
- the hydraulic brake system of the comparative example is substantially the same in overall configuration as the hydraulic brake system of the second embodiment, and includes the brake device 12, the ABS unit 18, the master cylinder device 16, the inter-chamber connection.
- the passage 70, the inter-chamber communication switching valve 72, the low pressure source communication passage 74, the low pressure source communication switching valve 76, the high pressure source device 22, the pressure increasing linear valve 26, the pressure reducing linear valve 28, and the control system are the same.
- the system of the second embodiment and the system of the comparative example differ in the structure of a regulator that is a pressure regulator, and also differ in the connection between the regulator and the master cylinder device 16.
- a regulator 160 is employed instead of the regulator 24 employed in the first embodiment, and this regulator 160 is a pressure regulator of the comparative example.
- the regulator 160 employed in the system of the comparative example is different from the regulators 24 and 150 of the embodiment in the configuration of the piston and the pilot chamber as shown in FIG. More specifically, the regulator 160 of the comparative example has two pistons arranged in series, that is, a first piston 162 and a second piston 164.
- the first piston 162 is arranged on the right side of the second piston 164, and is the same as the right half of the piston 102 of the regulators 24, 150 of the embodiment. Therefore, similarly to the piston 102, a low-pressure passage 124 is provided which is composed of a main body portion 110 and a plunger portion 112 and functions as a low-pressure chamber.
- the first pilot chamber R8 is sandwiched between the second piston 164 and the first piston 162 on the right end side of the second piston 164 so that the second pilot chamber R9 is sandwiched between the second piston 164 and the left end side. , Each is formed. That is, in the regulator 160, the two pilot chambers are arranged in series with the first piston 162 interposed therebetween. In the same manner as the regulators 24 and 150 of the embodiment, the above-described adjustment pressure is applied to the first pilot chamber R8, and the operation pressure dependent pressure is supplied to the second pilot chamber R9 via the pilot pressure introduction path 128. The pressure of the hydraulic fluid in the inter-piston chamber R3 of the master cylinder device 16 is introduced.
- the adjustment pressure introduced as the first pilot pressure and the second pilot pressure as The servo pressure is adjusted according to the higher pressure of the hydraulic fluid pressure in the inter-piston chamber R3 of the master cylinder device 16 to be introduced.
- the inter-room communication switching valve 72 is closed and the low-pressure source communication switching valve 76 is opened, as in the system of the embodiment.
- the brake device 12 can generate a braking force having a magnitude that depends on the brake operating force, as in the case of no power supply described above.
- the pressure of the hydraulic fluid in the inter-piston chamber R3 of the master cylinder device 16 is introduced as the second pilot pressure into the second pilot chamber R9, and the second pilot pressure Pressure regulation is performed under the dependent pressure regulation mode.
- the regulator 160 of the comparative example is used, and as described above, the first pilot chamber R8 and the second pilot chamber R9 are arranged in series in the regulator 160. Therefore, when the hydraulic fluid flows into both of the two pilot chambers R8 and R9, the other fluctuation caused by one fluctuation of the first pilot pressure and the second pilot pressure becomes relatively large. This contributes to the bad control of the braking force and the feeling of flake operation.
- the following phenomenon occurs in the system of the comparative example.
- the hydraulic fluid in the inter-piston chamber R3 of the master cylinder device 16 flows into the second pilot chamber R9 when power is not supplied before the system is started.
- the hydraulic fluid having the adjusted pressure flows into the first pilot chamber R8.
- the first pilot pressure rises due to the inflow of the hydraulic fluid having the adjusted pressure
- the second pilot pressure rises in response to the rise.
- the inter-piston chamber R3 of the master cylinder device 16 that is the operating force-dependent pressure. This leads to a phenomenon that the pressure of the hydraulic fluid is raised relatively large.
- the increase in the pressure of the hydraulic fluid in the inter-piston chamber R3 is transmitted to the foot of the driver who is operating the brake pedal 14, and gives the driver a relatively great discomfort with respect to the brake operation. In short, the driver feels that the brake pedal 14 is greatly returned, and the brake operation feeling is relatively greatly impaired.
- some pilots such as providing a pilot introduction switching valve 152 similar to that employed in the system of the first modification in the pilot introduction path 128 are used. It is necessary to provide an introduction switching mechanism.
- the first pilot chamber R8 and the second pilot chamber R9 are arranged in parallel in the regulators 24, 150 provided therein. Therefore, even when the hydraulic fluid flows into both of them, the influence of one of the first pilot pressure and the second pilot pressure on the other is relatively small. Therefore, good control of the braking force and good feeling of flake operation are ensured, and the system of the embodiment has a high superiority regarding the above problem as compared with the system of the comparative example.
- the above-described phenomenon when shifting to normal time can be suppressed or alleviated without providing the above-described pilot introduction switching mechanism. It becomes a highly practical system.
- the system of the first embodiment by adopting a means for canceling the second pilot force by the pilot opposing force, the effect of one fluctuation of the first pilot pressure and the second pilot pressure on the other is effective.
- the servo pressure can be accurately adjusted only by the first pilot pressure in a normal state, so that the system is extremely practical.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Braking Systems And Boosters (AREA)
- Regulating Braking Force (AREA)
- Control Of Fluid Pressure (AREA)
- Transmission Of Braking Force In Braking Systems (AREA)
- Safety Valves (AREA)
Abstract
Description
以下に、請求可能発明に係る調圧器のいくつかの態様を示す。
ハウジングと、
そのハウジングの内部にそのハウジングの軸線方向に移動可能に配設された1つのピストンと、
前記高圧源と連通する高圧室と、
低圧源と連通する低圧室と、
当該調圧器から供給される作動液が収容され、その収容された作動液の圧力が前記ピストンに作用することで前記ピストンが前記軸線方向における一方向に付勢されるように構成された調圧室と、
前記ピストンの一部と前記ハウジングとによって区画形成され、作動液が導入されるとともにその導入された作動液の圧力が前記ピストンに作用して前記ピストンが前記一方向とは反対の反対方向に付勢されるように構成された第1パイロット室と、
前記ピストンの別の一部と前記ハウジングとによって区画形成され、作動液が導入され、その導入された作動液の圧力が前記ピストンに作用して前記ピストンが前記反対方向に付勢されるように構成された第2パイロット室と、
前記ピストンの一方向への移動によって、前記調圧室と前記高圧室とを連通させるとともに前記調圧室と前記低圧室との連通を遮断し、前記ピストンの前記反対方向への移動によって、前記調圧室と前記高圧室との連通を遮断するとともに前記調圧室と前記低圧室とを連通させる弁機構と
を備えた調圧器。
前記ピストンのさらに別の一部と前記ハウジングとによって区画形成され、前記第2パイロット室に導入される作動液と同じ圧力の作動液が導入された場合に、その導入された作動液の圧力が前記ピストンに作用して前記ピストンが前記一方向に付勢されるとともに、その付勢が前記第2パイロット室の作動液の圧力による前記ピストンの付勢を打ち消すように構成されたパイロット対向室を備えた(1)項に記載の調圧器。
前記第1パイロット室が前記本体部の前記一方向の側に、前記第2パイロット室が、前記本体部の外周において前記鍔部の前記一方向の側に、それぞれ区画形成された(1)項または(2)項に記載の調圧器。
前記ピストンのさらに別の一部と前記ハウジングとによって区画形成され、前記第2パイロット室に導入される作動液と同じ圧力の作動液が導入されることで、その導入された作動液の圧力が前記ピストンに作用して前記ピストンが前記一方向に付勢されるとともに、その付勢が前記第2パイロット室の作動液による前記ピストンの付勢を打ち消すように構成されたパイロット対向室を備え、
そのパイロット対向室が、前記ピストンの前記本体部の外周において、前記鍔部の前記反対方向の側に、その鍔部を挟んで対向するように区画形成された(3)項に記載の調圧器。
以下に、上記請求可能発明に係る調圧器を配備した請求可能発明に係る液圧ブレーキシステムのいくつかの態様を示す。
運転者によってブレーキ操作がなされるブレーキ操作部材と、
車輪に設けられてブレーキ力を発生させるブレーキ装置と、
前記高圧源としての高圧源装置と、
その高圧源装置から供給される作動液を調圧して供給する(1)項ないし(4)項のいずれか1つに記載の前記調圧器と、
前記ブレーキ操作部材が連結されるとともに、前記調圧器から供給される作動液が導入され、その導入された作動液の圧力に依存して作動液を加圧し、その加圧された作動液を前記ブレーキ装置に供給するマスタシリンダ装置と、
前記高圧源装置から供給される作動液を任意の圧力に調整する調整装置と
を備え、
前記調整装置によって調整された圧力の作動液が、前記調圧器の前記第1パイロット室と前記第2パイロット室との一方に導入され、前記ブレーキ操作部材に加えられたブレーキ操作力に応じた圧力の作動液若しくは前記マスタシリンダ装置から前記ブレーキ装置に供給される作動液が、前記第1パイロット室と前記第2パイロット室との他方に導入されるように構成された液圧ブレーキシステム。
前記高圧源装置と前記第1パイロット室と前記第2パイロット室との前記一方との間に配置されてその一方の作動液を増圧する電磁式の増圧リニア弁と、
前記低圧源と前記第1パイロット室と前記第2パイロット室との前記一方との間に配置されてその一方の作動液を減圧する電磁式の減圧リニア弁と
を含み、
前記第1パイロット室と前記第2パイロット室との前記一方の作動液の圧力を任意の圧力に調整するように構成された(11)項に記載の液圧ブレーキシステム。
前記ブレーキ操作力に応じた圧力の作動液若しくは前記マスタシリンダ装置から前記ブレーキ装置に供給される作動液の前記第1パイロット室と前記第2パイロット室との前記他方への導入と、その導入の禁止とを切換えるパイロット導入切換機構を備えた(11)項または(12)項に記載の液圧ブレーキシステム。
前記マスタシリンダ装置の作動モードとして、(A)当該マスタシリンダ装置から前記ブレーキ装置に供給される作動液を、前記調圧器から供給されて当該マスタシリンダ装置に導入された作動液の圧力に応じた大きさのブレーキ力を前記ブレーキ装置が発生させるような圧力に加圧する調圧器供給圧依存加圧モードと、(B)当該マスタシリンダ装置から前記ブレーキ装置に供給される作動液を、前記調圧器から供給されて当該マスタシリンダ装置に導入された作動液の圧力に応じた大きさのブレーキ力と前記ブレーキ操作部材に加えられたブレーキ操作力に応じた大きさのブレーキ力とが足し合わされたブレーキ力を前記ブレーキ装置が発生させるような圧力に加圧する操作力・調圧器供給圧依存加圧モードと選択的に実現させる作動モード切換機構を備えた(11)項ないし(13)項のいずれか1つに記載の液圧ブレーキシステム。
ハウジングと、
(a)そのハウジング内に配設され、本体部とその本体部の外周に設けられた鍔部とを有する加圧ピストンと、(b)その加圧ピストンの後方において前記ハウジング内に配設され後端部に前記ブレーキ操作部材が連結された入力ピストンとを有し、
前記加圧ピストンの前方に、前記ブレーキ装置に供給される作動液が加圧される加圧室が、前記加圧ピストンの前記本体部と前記入力ピストンとの間に、ピストン間室が、前記加圧ピストンの前記鍔部の後方に、前記調圧器から供給される作動液が導入される入力室が、それぞれ区画形成されており、
前記ピストン間室の作動液を介した前記入力ピストンから前記加圧ピストンへの前記ブレーキ操作力の伝達が禁止されることで、前記前記調圧器供給圧依存加圧モードが実現され、前記ピストン間室を介した前記入力ピストンから前記加圧ピストンへの前記ブレーキ操作力の伝達が許容されることで、前記操作力・調圧器供給圧依存加圧モードが実現されるように構成されている(14)項に記載の液圧ブレーキシステム。
前記加圧ピストンが、それの前記鍔部が前記前方室に配置されるように配設されるとともに、前記入力ピストンが、前記後方室に配設されており、
前記入力室が、前記区画部と前記加圧ピストンの前記鍔部との間に区画形成され、前記ピストン間室が、前記区画部の前記開口を利用して前記加圧ピストンの前記本体部と前記入力ピストンとが互いに向かい合うように区画形成された(15)項に記載の液圧ブレーキシステム。
前記加圧ピストンの前記鍔部の前方に区画形成され、その鍔部を挟んで前記入力室と対向する入力対向室を有し、
前記ピストン間室の作動液の圧力が前記加圧ピストンに作用するその加圧ピストンの受圧面積と、前記入力対向室の作動液の圧力が前記加圧ピストンに作用するその加圧ピストンの受圧面積とが等しくされており、
前記作動モード切換機構が、
前記ピストン間室と前記入力対向室とを連通させるとともにそれらと前記低圧源との連通を遮断することによって、前記調圧器供給圧依存加圧モードを実現し、前記ピストン間室と前記入力対向室との連通を遮断し、前記低圧源と前記入力対向室とを連通させることで、前記操作力・調圧器供給圧依存加圧モードを実現させるように構成された(15)項または(16)項に記載の液圧ブレーキシステム。
前記ピストン間室と前記入力対向室とを連通させるための室間連通路と、その室間連通路に設けられてその室間連通路による前記ピストン間室と前記入力対向室との連通とその連通の遮断とを切換える室間連通切換弁と、その室間連通切換弁を介さずに前記入力対向室と前記低圧源とを連通させるための低圧源連通路と、その低圧源連通路に設けられて、前記入力対向室と前記低圧源との連通とその連通の遮断とを切換える低圧源連通切換弁とを有し、
前記室間連通切換弁によって前記ピストン間室と前記入力対向室とを連通させるとともに、前記低圧源連通切換弁によって前記入力対向室と前記低圧源との連通を遮断することで、前記調圧器供給圧依存加圧モードを実現し、前記室間連通切換弁によって前記ピストン間室と前記入力対向室との連通を遮断するとともに、前記低圧源連通切換弁によって前記入力対向室と前記低圧源とを連通させることで、前記操作力・調圧器供給圧依存加圧モードを実現するように構成された(17)項に記載の液圧ブレーキシステム。
前記室間連通切換弁の前記ピストン間室の側において、そのピストン間室と前記調圧器の前記第1パイロット室と前記第2パイロット室との前記他方とを連通させるためのパイロット圧導入路を備え、
前記ブレーキ操作部材に加えられたブレーキ操作力若しくは前記マスタシリンダから前記ブレーキ装置に供給される作動液の圧力に応じた圧力の作動液として、前記ピストン間室の作動液が、前記第1パイロット室と前記第2パイロット室との前記他方に導入されるように構成された(18)項に記載の液圧ブレーキシステム。
前記ピストン間室の作動液の前記調圧器の前記第1パイロット室と前記第2パイロット室との前記他方への導入と、その導入の禁止とを切換えるパイロット導入切換機構を備え、
そのパイロット導入切換機構が、前記パイロット圧導入路に設けられたパイロット導入切換弁を含んで構成された(19)項に記載の液圧ブレーキシステム。
前記調圧器が、さらに、
前記ピストンのさらに別の一部と前記ハウジングとによって区画形成され、前記第2パイロット室に導入される作動液と同じ圧力の作動液が導入されることで、その導入された作動液の圧力が前記ピストンに作用して前記ピストンが前記一方向に付勢されるとともに、その付勢が前記第2パイロット室の作動液による前記ピストンの付勢を打ち消すように構成されたパイロット対向室を備え、
そのパイロット対向室が、前記ピストンの前記本体部の外周において、前記鍔部の前記反対方向の側に、その鍔部を挟んで対向するように区画形成されており、
当該液圧ブレーキシステムが、前記低圧源連通切換弁の前記入力対向室の側においてその入力対向室と前記調圧器の前記パイロット対向室とを連通させるための対向室間連通路を備えた(19)項に記載の液圧ブレーキシステム。
図1に、第1実施例の液圧ブレーキシステムを、図2に、そのシステムに配備されている第1実施例の調圧器を、それぞれ示し、以下に、それらの図を参照しつつ、第1実施例の液圧ブレーキシステム,調圧器について説明する。
i)全体構成
第1実施例の液圧ブレーキシステムは、ブレーキオイルを作動液としてハイブリッド車両に搭載される液圧ブレーキシステムである。本液圧ブレーキシステムは、図1に示すように、大まかには、(A) 4つの車輪10に設けられ、それぞれがブレーキ力を発生させる4つのブレーキ装置12と、(B) ブレーキ操作部材としてのブレーキペダル14の操作が入力されるとともに、加圧された作動液を各ブレーキ装置12に供給するマスタシリンダ装置16と、(C) マスタシリンダ装置16と4つのブレーキ装置12の間に配置されたアンチロックユニット18と、(D) 作動液を低圧源であるリザーバ20(本実施例では、大気圧の作動液が収容されている)から汲み上げて加圧することにより、高圧の作動液を供給する高圧源としての高圧源装置22と、(E) 高圧源装置22から供給される作動液を調圧してマスタシリンダ装置16に供給する調圧器であるレギュレータ24と、(F) レギュレータ24から供給される作動液の圧力を調節するための電磁式増圧リニア弁26および電磁式減圧リニア弁28(以下、それぞれ、単に、「増圧リニア弁26」および「減圧リニア弁28」と略す場合がある)と、(G) それらの装置,機器,弁を制御することで当該液圧ブレーキシステムの制御を司る制御装置としてのブレーキ電子制御ユニット30を含んで構成されている。上記レギュレータ24が第1実施例の調圧器であり、増圧リニア弁26と減圧リニア弁28とを含んで、後に説明する調整装置、つまり、レギュレータ24のパイロット圧を調整するためのパイロット圧調整装置32が構成されている
ちなみに、アンチロックユニット18は、「ABSユニット18」と呼ぶ場合があり、図では、[ABS]という符号が付されている。また、増圧リニア弁26,減圧リニア弁28は、図では、それぞれ、それらの記号標記である[SLA],[SLR]という符号が付されている。さらに、ブレーキ電子制御ユニット30は、以下、「ブレーキECU30」と呼ぶ場合があり、図では、[ECU]という符号で表わされている。なお、4つの車輪10は、左右前後を表わす必要のある場合に、右前輪10FR,左前輪10FL,右後輪10RR,左後輪10RLと表わすこととする。また、4つのブレーキ装置12等の構成要素も、左右前後を区別する必要がある場合に、車輪10と同様の符号を付して、12FR,12FL,12RR,12RL等と表わすこととする。
各車輪10に対応して設けられたブレーキ装置12は、車輪10ともに回転するディスクロータ,キャリアに保持されたキャリパ,キャリパに保持されたホイールシリンダ,キャリパに保持されてそのホイールシリンダによって動かされることでディスクロータを挟み付けるブレーキパッド等を含んで構成されたディスクブレーキ装置である。また、ABSユニット18は、各車輪に対応して設けられて対をなす増圧用開閉弁および減圧用開閉弁,ポンプ装置等を含んで構成されたユニットであり、スリップ現象等によって車輪10がロックした場合に作動させられて、車輪のロックが持続することを防止するための装置である。なお、ブレーキ装置12,ABSユニット18は、一般的な装置,ユニットであり、請求可能発明の特徴とは関連が小さいため、それらの構造についての詳しい説明は省略する。
マスタシリンダ装置16は、ストロークシミュレータ一体型のマスタシリンダ装置であり、概して言えば、ハウジング40の内部に、2つの加圧ピストンである第1加圧ピストン42,第2加圧ピストン44、入力ピストン46が配設されるとともに、ストロークシミュレータ機構48が組み込まれている。なお、マスタシリンダ装置16に関する以下の説明において、便宜的に、図における左方を前方,右方を後方と呼び、同様に、後に説明するピストン等の移動方向について、左方に動くことを前進,右方に動くことを後退と呼ぶこととする。
高圧源装置22は、リザーバ20から作動液を汲み上げて加圧するポンプ90と、そのポンプ90を駆動するモータ92と、ポンプ90によって加圧された作動液を蓄えるアキュムレータ94(図では[ACC]という符号が付されている)とを含んで構成されている。なお、高圧源装置22には、アキュムレータ94内の作動液の圧力、すなわち、供給する作動液の圧力である高圧源圧(「アキュムレータ圧」と呼ぶこともできる)を検出するための高圧源圧センサ96が設けられている(図では、高圧源圧の記号標記である[PACC]という符号が付されている)。
レギュレータ24は、拡大して図2に示すように、2重構造をなして内部に空間が形成されたハウジング100と、その空間内にハウジング100の軸線方向(左右方向)において図の左方から順に並んで配置されたピストン102,弁座環106,弁ロッド108とを含んで構成されている。ピストン102は、可動体として機能し、ハウジング100の軸線方向に移動可能とされている。ピストン102は、概して柱状をなすとともに右端に開口する凹所が形成された本体部110と、その凹所に嵌め込まれたプランジャ部112と含んで構成されている。弁座環106は、鍔部を有するとともに両端が開口する筒状をなしており、2つのスプリング114,116によって、第2ピストン104とハウジング100とに浮動支持されている。弁ロッド108は、左端が弁子として機能し、弁座として機能する弁座環106の右端部にその弁ロッド108の左端が着座可能に配設され、スプリング118によって左方に向かって付勢されている。つまり、弁座環106,弁ロッド106,スプリング118を含んで、後に説明する弁機構120が構成されているのであり、その弁機構120は、ハウジング100の軸線方向において可動体であるピストン102と並んで配設されているのである。なお、ピストン102のプランジャ部112の先端(右端)は、弁座環106内において弁ロッド108の左端に当接可能とされている。プランジャ部112の先端の外径は、弁座環106の内径より小さく、両者の間には隙間が設けられている。ちなみに、図2は、ピストン102が、ハウジング100内において、自身の可動範囲の左端に位置しており、弁ロッド108が弁座環106に着座し、プランジャ部112の先端は、弁ロッド108の左端から僅かに離れている状態を示している。
増圧リニア弁26,減圧リニア弁28は、一般的な電磁式リニア弁であり、構造の図示については省略する。増圧リニア弁26は、高圧源装置22とレギュレータ24の第1パイロット室R8との間に配設された常閉型の電磁式リニア弁である。この増圧リニア弁26は、先端が弁子として機能するプランジャと、そのプランジャが着座する弁座を有している。そして、その弁座を挟んで、レギュレータ24の第1パイロット室R8と連通してそれの圧力である第1パイロット圧に相当する調整圧の作動液が収容される調整圧室が、プランジャの側に、高圧源装置22と連通して高圧源圧の作動液が受け入れられる高圧室が、プランジャとは反対側に、それそれ配置されている。プランジャには、それら高圧源圧と調整圧との差圧による差圧作用力が、当該プランジャを弁座から離座させる方向に作用しており、その一方で、プランジャは、その差圧作用力を上回るスプリングの付勢力によって、当該プランジャを弁座に着座させる方向に付勢されている。また、プランジャには、コイルの励磁によって、そのコイルに通電される励磁電流に応じた大きさの電磁作用力が、差圧作用力と同じ方向、つまり、スプリングの付勢力とは反対の方向に作用する。大まかに言えば、本増圧リニア弁26では、それらの力の釣り合いを考慮しつつ、任意の調整圧が得られるような励磁電流が決定され、コイルに通電される。ちなみに、本増圧リニア弁26では、励磁電流が大きくなるほど、調整圧が高くなる。言い換えれば、開度(例えば、閉弁状態から開弁状態への移行のし易さ)が高くなり、開弁圧が高くなるのである。
本システムの制御は、ブレーキECU30によって行われる。ブレーキECU30は、大まかには、高圧源装置22の制御(詳しくは、ポンプ90の制御、より詳しくは、それを駆動するモータ92の制御)、室間連通切換弁72および低圧源連通切換弁74の制御(詳しくは、それらの開閉制御)、および、増圧リニア弁26および減圧リニア弁28の制御(詳しくは、それらに供給される励磁電流の制御)を行う。ブレーキECU30は、中心的な要素であるコンピュータと、高圧源装置22のモータ92,増圧リニア弁26,減圧リニア弁28,室間連通切換弁,低圧源連通切換弁74等をそれぞれ駆動するための駆動回路(ドライバ)とを含んで構成されている。
本システムは、車両の状況等に応じて、マスタシリンダ装置16の作動モードが切換わり、また、レギュレータ24の調圧モードも切換わる。以下に、それらのモードの切換わりに関連して、当該液圧ブレーキシステムの作動について説明する。
当該システムが起動させられる前、電気的失陥時等の電力非供給時においては、当該システムへの電力の供給がなされていない。そのため、上記室間連通切換弁72は、閉弁状態となっており、また、上記低圧源連通切換弁76は、開弁状態となっている。そのため、マスタシリンダ装置16のピストン間室R3と入力対向室R5との連通は断たれ、入力対向室R5は、リザーバ20と連通して低圧源圧に開放されることになる。この状態では、ブレーキペダル14に加えられたブレーキ操作力は、ピストン間室R3の作動液を介して第1加圧ピストン42に伝達される。つまり、ブレーキ操作力の入力ピストンから第1加圧ピストン42,第2加圧ピストン44への伝達が許容されていることで、第1加圧ピストン42,第2加圧ピストン44は前進する。その結果、ブレーキペダル14に加えられたブレーキ操作力に依存した大きさのブレーキ力をブレーキ装置12が発生させることになる。つまり、マスタシリンダ装置16は、自身からブレーキ装置12に供給される作動液をブレーキ操作力に応じた大きさのブレーキ力をブレーキ装置12が発生させるような圧力に加圧する「操作力依存加圧モード」の下で、作動させられるのである。さらに端的に言えば、マスタシリンダ装置16からブレーキ装置12に供給される作動液の圧力であるマスタ圧が、ブレーキ操作力に応じた圧力とされるのである。
当該システムの起動後で通常の状態の場合、つまり、通常時においては、上記室間連通切換弁72は、開弁状態とされ、上記低圧源連通切換弁76は、閉弁状態とされる。その結果、ピストン間室R3と入力対向室R5とが連通させられるとともにそれらと低圧源であるリザーバ20との連通が遮断される。それにより、ピストン間室R3と入力対向室R5とによって、上記反力室R6が形成され、その反力室R6の作動液の圧力は、ブレーキ操作力に応じた圧力、つまり、操作力依存圧となる。しかし、その状態では、先に説明したように、対ピストン間室受圧面積と対対向室受圧面積とが等しくされているため、ブレーキペダル14を操作して入力ピストン46を前進させても、ブレーキ操作力操作力、すなわち、反力室R6の圧力によっては、第1加圧ピストン42,第2加圧ピストン44は前進せず、マスタシリンダ装置16によって加圧された作動液がブレーキ装置12に供給されることはない。言い換えれば、ピストン間室R3の作動液を介した入力ピストン46から第1加圧ピストン42,第2加圧ピストンへのブレーキ操作力の伝達が禁止されるのである。
例えば、サーボ圧センサ134,増圧リニア弁26,減圧リニア弁28等が失陥し、上記サーボ圧に基づく増圧リニア弁26,減圧リニア弁28に供給する励磁電流の制御が実行できなくなった場合を想定する。その場合でも、高圧源装置22が制御可能であって高圧源圧を適正な圧力範囲に維持可能であるときには、若しくは、高圧源装置22のアキュムレータ94に充分なる圧力の作動液が残存しているときには、サーボ圧に依存してブレーキ力を発生させることが可能である。そのような高圧源圧が利用可能な失陥を「特定失陥」と考え、特定失陥時には、当該システムは、以下のように作動させられる。
マスタシリンダ装置16は、上述したように、室間連通切換弁72,低圧源連通切換弁76の状態によって、作動モードが、上記操作力・調圧器供給圧依存加圧モード(上記操作力依存加圧モードを含む概念である)と、上記調圧器供給圧依存加圧モードとの間で切換わるという機能を有しており、その作動モードの切換に関して言えば、本システムは、室間連通路70,室間連通切換弁72,低圧源連通路74,低圧源連通切換弁76を含んで構成される「作動モード切換機構」を有していると考えることができる。また、本システムでは、そのマスタシリンダ装置16の作動モードの切換に連動して、レギュレータ24の調圧モードも、上記第1パイロット圧依存調圧モードと上記第2パイロット圧依存調圧モードとの間で切換わるようになっている。したがって、本システムでは、上記作動モード切換機構は、レギュレータ24の調圧モードを切換える「調圧モード切換機構」としても機能するものとされている。
図3に、第2実施例の液圧ブレーキシステムを、図4に、そのシステムに配備されている第2実施例の調圧器を、それぞれ示し、以下に、それらの図を参照しつつ、第1実施例の液圧ブレーキシステム,調圧器について説明する。
i)全体構成等
第2実施例の液圧ブレーキシステムは、第1実施例の液圧ブレーキシステムと全体構成において略同じとされており、ブレーキ装置12,ABSユニット18,マスタシリンダ装置16,室間連通路70,室間連通切換弁72,低圧源連通路74,低圧源連通切換弁76,高圧源装置22,増圧リニア弁26,減圧リニア弁28,制御系については同じものが採用されている。第2実施例のシステムと第1実施例のシステムとでは、調圧器であるレギュレータの構造において若干異なり、また、そのレギュレータとマスタシリンダ装置16との接続において若干異なっている。そこで、同じ若しくは同様の構造若しくは機能を有する構成要素については、同じ符号で表わすことで、それらの説明を省略する。ちなみに、第2実施例のシステムでは、第1実施例で採用されていたレギュレータ24に代えて、レギュレータ150が採用されており、このレギュレータ150が、第2実施例の調圧器である。
本実施例のシステムで採用されているレギュレータ150は、拡大して図4に示すように、一部を除いて略同様の構造を有している。異なる構造について説明すれば、本レギュレータ150では、ピストン102の鍔部122の上記一方向の反対の方向の側、つまり、右方の側に、レギュレータ24において形成されていたパイロット対向室R12は形成されておらず、その箇所は、低圧通路124を連通して低圧室の一部とされている。それに伴って、レギュレータ24に設けられていた対向圧ポートP18は、レギュレータ150では、設けられておらず、また、本システムでは、対向室間連通路130も設けられていない。
本システムも、車両の状況等に応じて、マスタシリンダ装置16の作動モードが切換わり、また、レギュレータ24の調圧モードも切換わるが、第1実施例のシステムと、調圧モードの切換わりにおいて、若干異なる。以下に、それらのモードの切換わりに関連して、当該液圧ブレーキシステムの作動について説明する。
電力非供給時においては、第1実施例のシステムと同様に、上記室間連通切換弁72は、閉弁状態となっており、また、上記低圧源連通切換弁76は、開弁状態となっているため、マスタシリンダ装置16は、操作力依存加圧モードの下で作動させられ、レギュレータ150は、第2パイロット圧依存調圧モードの下で調圧を行う。同様に、アキュムレータ94に高圧の作動液が存在していないと考えれば、マスタシリンダ装置16の入力室R4には、実質的には低圧源圧しか導入されないことになる。第1実施例のシステムと同様に、本システムは、電気的失陥時においても、操作力依存加圧モードの下で、ブレーキ装置12がブレーキ力を発生させることができるため、フェールセーフの観点において優れたシステムとなる。
通常時においては、第1実施例のシステムと同様、室間連通切換弁72は開弁状態とされ、低圧源連通切換弁76は閉弁状態とされる。その結果、マスタシリンダ装置16は、同様に、調圧器供給圧依存加圧モードの下で作動させられる。一方で、上述のパイロット対向室が設けられていないことから、第2パイロット力をパイロット対向力によって打ち消すことができず、レギュレータ150では、サーボ圧は、第1パイロット圧と第2パイロット圧との両者に依存して、詳しく言えば、第1パイロット力と第2パイロット力との和に依存して調圧される。つまり、レギュレータ150は、「第1パイロット・第2パイロット圧依存調圧モード」の下で、サーボ圧を調圧する。
特定失陥時には、第1実施例のシステムと同様、室間連通切換弁72は、閉弁状態とされ、低圧源連通切換弁76は、開弁状態とされる。その状態では、先に説明した電力非供給時と同様に、ブレーキ操作力に依存した大きさのブレーキ力をブレーキ装置12が発生可能となる。その一方で、特定失陥時には、高圧源圧が利用できるため、マスタシリンダ装置16のピストン間室R3の作動液の圧力が第2パイロット圧として第2パイロット室R9に導入れ、第2パイロット圧依存調圧モードの下で調圧が行われる。その結果、第1実施例のシステムと同様に、マスタシリンダ装置16は、操作力・調圧器供給圧依存加圧モードの下で作動させられるのである。本システムでも、特定失陥時において、サーボ圧に応じた大きさのブレーキ力とブレーキ操作力に応じた大きさのブレーキ力とが足し合わされたブレーキ力をブレーキ装置12が発生させることができるため、そのブレーキ力は比較的大きく、本システムは、フェールセーフの観点において優れたシステムとなる。
本システムも、第1実施例のシステムと同様、室間連通路70,室間連通切換弁72,低圧源連通路74,低圧源連通切換弁76を含んで構成される作動モード切換機構を有していると考えることができる。ただし、第1実施例のシステムとは異なり、その作動モード切換機構は、レギュレータ150の調圧モードを切換える調圧モード切換機構としては機能しない。
以下に、上記第1実施例,第2実施例の液圧ブレーキシステム,調圧器に関するいくつかの変形例を説明する。
第1変形例の液圧ブレーキシステムは、上記第2実施例の液圧ブレーキシステムにおいて、パイロット圧導入路128に、マスタシリンダ装置16のピストン間室R3からレギュレータ150の第2パイロット室R9への作動液の導入と、その導入の禁止とを切換えるパイロット導入切換弁152を設けたものである。つまり、そのパイロット導入切換弁152によって構成されるパイロット導入切換機構を備えているのである。なお、パイロット導入切換弁152は、非励磁状態において、第2パイロット室R9をピストン間室R3と連通させ、励磁状態において、第2パイロット室R9をリザーバ20に開放する三方弁である。
上記第2実施例,第1変形例の液圧ブレーキシステムでは、レギュレータ24,150の第1パイロット室R8に、増圧リニア弁26,減圧リニア弁28によって調整された調整圧が導入され、第2パイロット室R9に、操作力依存圧としてのピストン間室R3の作動液の圧力が導入される。そのような構成に代え、第1パイロット室R8に操作力依存圧が導入され、第2パイロット室R9に調整圧が導入されるようにしてもよい。そのように構成されたシステムであっても、第2実施例,第1変形例のシステムが有する利点と同様の利点を有することができる。
上記第1実施例,第2実施例,各変形例のシステムでは、いずれも、レギュレータ24,150の第1パイロット室R8と第2パイロット室R9との一方に、増圧リニア弁26,減圧リニア弁28によって調整された調整圧が導入され、他方に、操作力依存圧としてのピストン間室R3の作動液の圧力が導入される。そのような構成に代え、第1パイロット室R8と第2パイロット室R9との他方に、マスタ圧が導入されるように構成することも可能である。マスタ圧は概ねブレーキ操作力に応じた圧力となると考えることができるため、調圧器がマスタ圧をパイロット圧として導入し、そのパイロット圧に基づいてレギュレータ24,150がサーボ圧を調圧するように構成したシステムであっても、操作力依存圧としてのピストン間室R3の作動液の圧力に基づいてサーボ圧を調圧する構成のシステムと略同様の利点を有することとなる。
上記各実施例,各変形例のシステムに配備されたレギュレータ24,150では、弁機構120が、端的に言えば、いわゆるポペット弁構造のものとされている。調圧器は、弁機構の構造について特段に限定されるものではなく、上記構造の弁機構120に代えて、例えば、いわゆるスプール弁構造の弁機構を採用するレギュレータであってもよい。
上記各実施例,各変形例のシステムに配備されたマスタシリンダ装置16では、ピストン間室R3の形成に関し、第1加圧ピストン42の本体部56の後方の部分が突出部60とされ、その突出部60が区画部50の開口62を通って後方室54に延び出して、その突出部60の後端と入力ピストン46の前端とが向かい合うような構成が採用されている。マスタシリンダ装置16の構造については、特段限定されるものではなく、例えば、上記構成に代え、第1加圧ピストンの本体部が、後端に開口する有底穴を有し、その有底穴に入力ピストンが区画部の開口を通って延び入り、その有底穴の内底と入力ピストンの前端とが向かい合うようにしてピストン間室が形成されるような構成をも採用することが可能である。
図6に、従来から検討されている液圧ブレーキシステムの1つを、比較例の液圧ブレーキシステムとして示し、図7に、そのシステムに配備されている調圧器を、比較例の調圧器として示す。以下に、それらの図を参照しつつ、比較例の液圧ブレーキシステム,調圧器について説明する。それらシステム,調圧器の抱える問題について考える。
i)全体構成等
比較例の液圧ブレーキシステムは、第2実施例の液圧ブレーキシステムと全体構成において略同じとされており、ブレーキ装置12,ABSユニット18,マスタシリンダ装置16,室間連通路70,室間連通切換弁72,低圧源連通路74,低圧源連通切換弁76,高圧源装置22,増圧リニア弁26,減圧リニア弁28,制御系については同じものが採用されている。第2実施例のシステムと比較例のシステムとでは、調圧器であるレギュレータの構造において異なり、また、そのレギュレータとマスタシリンダ装置16との接続において異なっている。そこで、同じ若しくは同様の構造若しくは機能を有する構成要素については、同じ符号で表わすことで、それらの説明を省略する。ちなみに、比較例のシステムでは、第1実施例で採用されていたレギュレータ24に代えて、レギュレータ160が採用されており、このレギュレータ160が、比較例の調圧器である。
比較例のシステムで採用されているレギュレータ160は、拡大して図4に示すように、ピストンおよびパイロット室の構成において、実施例のレギュレータ24,150と異なっている。詳しく言えば、比較例のレギュレータ160は、直列的に配置された2つのピストン、つまり、第1ピストン162,第2ピストン164を有している。第1ピストン162は、第2ピストン164の右側に配置されており、実施例のレギュレータ24,150のピストン102の右半分と同様のものとされている。したがって、そのピストン102と同様に、本体部110,プランジャ部112とから構成され、低圧室として機能する低圧通路124が設けられている。第2ピストン164の左端の側に、第1パイロット室R8が、第2ピストン164の右端の側に、第2ピストン164と第1ピストン162とに挟まれるようにして、第2パイロット室R9が、それぞれ形成されている。つまり、レギュレータ160では、第1ピストン162を挟んで、2つのパイロット室が直列的に配置されているのである。そして、実施例のレギュレータ24,150と同様に、第1パイロット室R8には、上述の調整圧が、第2パイロット室R9には、パイロット圧導入路128を介して、操作力依存圧であるマスタシリンダ装置16のピストン間室R3の作動液の圧力が、それぞれ導入される。
本比較例のシステムも、車両の状況等に応じて、マスタシリンダ装置16の作動モードが切換わり、また、レギュレータ24の調圧モードも切換わるが、実施例のシステムと、調圧モードの切換わりにおいて、若干異なる。以下に、それらのモードの切換わりに関連して、当該液圧ブレーキシステムの作動について説明する。
電力非供給時においては、実施例のシステムと同様に、上記室間連通切換弁72は、閉弁状態となっており、また、上記低圧源連通切換弁76は、開弁状態となっているため、マスタシリンダ装置16は、操作力依存加圧モードの下で作動させられる。このとき、レギュレータ160の第1パイロット室R8には、実質的にパイロット圧が導入されず、レギュレータ160は、第2パイロット圧依存調圧モードの下で調圧を行う。ただし、アキュムレータ94に高圧の作動液が存在していないと考えれば、マスタシリンダ装置16の入力室R4には、実質的には低圧源圧しか導入されないことになる。
通常時においては、実施例のシステムと同様、室間連通切換弁72は開弁状態とされ、低圧源連通切換弁76は閉弁状態とされる。その結果、マスタシリンダ装置16は、同様に、調圧器供給圧依存加圧モードの下で作動させられる。一方で、レギュレータ160には、第1パイロット室R8にも、また、第2パイロット室R9にも、パイロット圧が導入される。比較例のシステムでは、通常時において、概ね、第1パイロット圧のほうが第2パイロット圧より高くなるように調整圧が調整されるため、レギュレータ160では、実質的には、第1パイロット圧依存調圧モードの下で、サーボ圧を調圧する。
特定失陥時には、実施例のシステムと同様、室間連通切換弁72は、閉弁状態とされ、低圧源連通切換弁76は、開弁状態とされる。その状態では、先に説明した電力非供給時と同様に、ブレーキ操作力に依存した大きさのブレーキ力をブレーキ装置12が発生可能となる。その一方で、特定失陥時には、高圧源圧が利用できるため、マスタシリンダ装置16のピストン間室R3の作動液の圧力が第2パイロット圧として第2パイロット室R9に導入れ、第2パイロット圧依存調圧モードの下で調圧が行われる。
比較例のシステムにおいては、比較例のレギュレータ160を用いており、そのレギュレータ160は、先に説明したように、第1パイロット室R8と第2パイロット室R9とが直列的に配置されている。したがって、2つのパイロット室R8,R9の両方に作動液が流入するような場合に、第1パイロット圧と第2パイロット圧との一方の変動に起因する他方の変動が比較的大きなものとなる。そのことは、ブレーキ力の良好な制御,フレーキ操作感を害する一因となる。
上記比較例のシステムでは、レギュレータ160において、第1パイロット室R8と第2パイロット室R9とが直列的に配置されているため、第1パイロット圧と第2パイロット圧との一方の変動が、他方に大きく影響を与える。
Claims (10)
- 高圧源から供給される作動液を調圧して供給する調圧器であって、
ハウジングと、
そのハウジングの内部にそのハウジングの軸線方向に移動可能に配設された1つのピストンと、
前記高圧源と連通する高圧室と、
低圧源と連通する低圧室と、
当該調圧器から供給される作動液が収容され、その収容された作動液の圧力が前記ピストンに作用することで前記ピストンが前記軸線方向における一方向に付勢されるように構成された調圧室と、
前記ピストンの一部と前記ハウジングとによって区画形成され、作動液が導入されるとともにその導入された作動液の圧力が前記ピストンに作用して前記ピストンが前記一方向とは反対の反対方向に付勢されるように構成された第1パイロット室と、
前記ピストンの別の一部と前記ハウジングとによって区画形成され、作動液が導入され、その導入された作動液の圧力が前記ピストンに作用して前記ピストンが前記反対方向に付勢されるように構成された第2パイロット室と、
前記ピストンの一方向への移動によって、前記調圧室と前記高圧室とを連通させるとともに前記調圧室と前記低圧室との連通を遮断し、前記ピストンの前記反対方向への移動によって、前記調圧室と前記高圧室との連通を遮断するとともに前記調圧室と前記低圧室とを連通させる弁機構と
を備えた調圧器。 - 当該調圧器が、さらに、
前記ピストンのさらに別の一部と前記ハウジングとによって区画形成され、前記第2パイロット室に導入される作動液と同じ圧力の作動液が導入された場合に、その導入された作動液の圧力が前記ピストンに作用して前記ピストンが前記一方向に付勢されるとともに、その付勢が前記第2パイロット室の作動液の圧力による前記ピストンの付勢を打ち消すように構成されたパイロット対向室を備えた請求項1に記載の調圧器。 - 前記ピストンが、柱状の本体部と、その本体部の外周に鍔状に形成された鍔部とを有し、
前記第1パイロット室が前記本体部の前記一方向の側に、前記第2パイロット室が、前記本体部の外周において前記鍔部の前記一方向の側に、それぞれ区画形成され、
当該調圧器が、さらに、
前記ピストンのさらに別の一部と前記ハウジングとによって区画形成され、前記第2パイロット室に導入される作動液と同じ圧力の作動液が導入されることで、その導入された作動液の圧力が前記ピストンに作用して前記ピストンが前記一方向に付勢されるとともに、その付勢が前記第2パイロット室の作動液による前記ピストンの付勢を打ち消すように構成されたパイロット対向室を備え、
そのパイロット対向室が、前記ピストンの前記本体部の外周において、前記鍔部の前記反対方向の側に、その鍔部を挟んで対向するように区画形成された請求項2に記載の調圧器。 - 車両に設けられた液圧ブレーキシステムであって、
運転者によってブレーキ操作がなされるブレーキ操作部材と、
車輪に設けられてブレーキ力を発生させるブレーキ装置と、
前記高圧源としての高圧源装置と、
その高圧源装置から供給される作動液を調圧して供給する請求項1ないし請求項3のいずれか1つに記載の前記調圧器と、
前記ブレーキ操作部材が連結されるとともに、前記調圧器から供給される作動液が導入され、その導入された作動液の圧力に依存して作動液を加圧し、その加圧された作動液を前記ブレーキ装置に供給するマスタシリンダ装置と、
前記高圧源装置から供給される作動液を任意の圧力に調整する調整装置と
を備え、
前記調整装置によって調整された圧力の作動液が、前記調圧器の前記第1パイロット室と前記第2パイロット室との一方に導入され、前記ブレーキ操作部材に加えられたブレーキ操作力に応じた圧力の作動液若しくは前記マスタシリンダ装置から前記ブレーキ装置に供給される作動液が、前記第1パイロット室と前記第2パイロット室との他方に導入されるように構成された液圧ブレーキシステム。 - 当該液圧ブレーキシステムが、
前記マスタシリンダ装置の作動モードとして、(A)当該マスタシリンダ装置から前記ブレーキ装置に供給される作動液を、前記調圧器から供給されて当該マスタシリンダ装置に導入された作動液の圧力に応じた大きさのブレーキ力を前記ブレーキ装置が発生させるような圧力に加圧する調圧器供給圧依存加圧モードと、(B)当該マスタシリンダ装置から前記ブレーキ装置に供給される作動液を、前記調圧器から供給されて当該マスタシリンダ装置に導入された作動液の圧力に応じた大きさのブレーキ力と前記ブレーキ操作部材に加えられたブレーキ操作力に応じた大きさのブレーキ力とが足し合わされたブレーキ力を前記ブレーキ装置が発生させるような圧力に加圧する操作力・調圧器供給圧依存加圧モードと選択的に実現させる作動モード切換機構を備え、
前記マスタシリンダ装置が、
ハウジングと、
(a)そのハウジング内に配設され、本体部とその本体部の外周に設けられた鍔部とを有する加圧ピストンと、(b)その加圧ピストンの後方において前記ハウジング内に配設され後端部に前記ブレーキ操作部材が連結された入力ピストンとを有し、
前記加圧ピストンの前方に、前記ブレーキ装置に供給される作動液が加圧される加圧室が、前記加圧ピストンの前記本体部と前記入力ピストンとの間に、ピストン間室が、前記加圧ピストンの前記鍔部の後方に、前記調圧器から供給される作動液が導入される入力室が、それぞれ区画形成されており、
前記ピストン間室の作動液を介した前記入力ピストンから前記加圧ピストンへの前記ブレーキ操作力の伝達が禁止されることで、前記前記調圧器供給圧依存加圧モードが実現され、前記ピストン間室を介した前記入力ピストンから前記加圧ピストンへの前記ブレーキ操作力の伝達が許容されることで、前記操作力・調圧器供給圧依存加圧モードが実現されるように構成されている請求項4に記載の液圧ブレーキシステム。 - 前記マスタシリンダ装置が、
前記加圧ピストンの前記鍔部の前方に区画形成され、その鍔部を挟んで前記入力室と対向する入力対向室を有し、
前記ピストン間室の作動液の圧力が前記加圧ピストンに作用するその加圧ピストンの受圧面積と、前記入力対向室の作動液の圧力が前記加圧ピストンに作用するその加圧ピストンの受圧面積とが等しくされており、
前記作動モード切換機構が、
前記ピストン間室と前記入力対向室とを連通させるとともにそれらと前記低圧源との連通を遮断することによって、前記調圧器供給圧依存加圧モードを実現し、前記ピストン間室と前記入力対向室との連通を遮断し、前記低圧源と前記入力対向室とを連通させることで、前記操作力・調圧器供給圧依存加圧モードを実現させるように構成された請求項5に記載の液圧ブレーキシステム。 - 前記作動モード切換機構が、
前記ピストン間室と前記入力対向室とを連通させるための室間連通路と、その室間連通路に設けられてその室間連通路による前記ピストン間室と前記入力対向室との連通とその連通の遮断とを切換える室間連通切換弁と、その室間連通切換弁を介さずに前記入力対向室と前記低圧源とを連通させるための低圧源連通路と、その低圧源連通路に設けられて、前記入力対向室と前記低圧源との連通とその連通の遮断とを切換える低圧源連通切換弁とを有し、
前記室間連通切換弁によって前記ピストン間室と前記入力対向室とを連通させるとともに、前記低圧源連通切換弁によって前記入力対向室と前記低圧源との連通を遮断することで、前記調圧器供給圧依存加圧モードを実現し、前記室間連通切換弁によって前記ピストン間室と前記入力対向室との連通を遮断するとともに、前記低圧源連通切換弁によって前記入力対向室と前記低圧源とを連通させることで、前記操作力・調圧器供給圧依存加圧モードを実現するように構成された請求項6に記載の液圧ブレーキシステム。 - 当該液圧ブレーキシステムが、
前記室間連通切換弁の前記ピストン間室の側において、そのピストン間室と前記調圧器の前記第1パイロット室と前記第2パイロット室との前記他方とを連通させるためのパイロット圧導入路を備え、
前記ブレーキ操作部材に加えられたブレーキ操作力若しくは前記マスタシリンダから前記ブレーキ装置に供給される作動液の圧力に応じた圧力の作動液として、前記ピストン間室の作動液が、前記第1パイロット室と前記第2パイロット室との前記他方に導入されるように構成された請求項7に記載の液圧ブレーキシステム。 - 前記調圧器の前記ピストンが、柱状の本体部と、その本体部の外周に鍔状に形成された鍔部とを有し、前記第1パイロット室が前記本体部の前記一方向の側に、前記第2パイロット室が、前記本体部の外周において前記鍔部の前記一方向の側に、それぞれ区画形成されており、
前記調圧器が、さらに、
前記ピストンのさらに別の一部と前記ハウジングとによって区画形成され、前記第2パイロット室に導入される作動液と同じ圧力の作動液が導入されることで、その導入された作動液の圧力が前記ピストンに作用して前記ピストンが前記一方向に付勢されるとともに、その付勢が前記第2パイロット室の作動液による前記ピストンの付勢を打ち消すように構成されたパイロット対向室を備え、
そのパイロット対向室が、前記ピストンの前記本体部の外周において、前記鍔部の前記反対方向の側に、その鍔部を挟んで対向するように区画形成されており、
当該液圧ブレーキシステムが、前記低圧源連通切換弁の前記入力対向室の側においてその入力対向室と前記調圧器の前記パイロット対向室とを連通させるための対向室間連通路を備えた請求項8に記載の液圧ブレーキシステム。 - 当該液圧ブレーキシステムが、
前記ピストン間室の作動液の前記調圧器の前記第1パイロット室と前記第2パイロット室との前記他方への導入と、その導入の禁止とを切換えるパイロット導入切換機構を備え、
そのパイロット導入切換機構が、前記パイロット圧導入路に設けられたパイロット導入切換弁を含んで構成された請求項8に記載の液圧ブレーキシステム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014516604A JP5768935B2 (ja) | 2012-05-25 | 2012-05-25 | 調圧器、および、それを備えた液圧ブレーキシステム |
CN201280072056.7A CN104284819B (zh) | 2012-05-25 | 2012-05-25 | 调压器以及具备该调压器的液压制动系统 |
US14/394,622 US9205822B2 (en) | 2012-05-25 | 2012-05-25 | Pressure regulator and hydraulic brake system equipped with the pressure regulator |
DE112012006423.2T DE112012006423B4 (de) | 2012-05-25 | 2012-05-25 | Druckregler und mit dem Druckregler ausgerüstetes Hydraulikbremssystem |
PCT/JP2012/063492 WO2013175628A1 (ja) | 2012-05-25 | 2012-05-25 | 調圧器、および、それを備えた液圧ブレーキシステム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/063492 WO2013175628A1 (ja) | 2012-05-25 | 2012-05-25 | 調圧器、および、それを備えた液圧ブレーキシステム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013175628A1 true WO2013175628A1 (ja) | 2013-11-28 |
Family
ID=49623357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/063492 WO2013175628A1 (ja) | 2012-05-25 | 2012-05-25 | 調圧器、および、それを備えた液圧ブレーキシステム |
Country Status (5)
Country | Link |
---|---|
US (1) | US9205822B2 (ja) |
JP (1) | JP5768935B2 (ja) |
CN (1) | CN104284819B (ja) |
DE (1) | DE112012006423B4 (ja) |
WO (1) | WO2013175628A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015111732A1 (ja) * | 2014-01-24 | 2015-07-30 | 株式会社アドヴィックス | 車両用制動装置 |
JP2015137089A (ja) * | 2014-01-24 | 2015-07-30 | 株式会社アドヴィックス | 車両用制動装置 |
JP2016030476A (ja) * | 2014-07-28 | 2016-03-07 | 日信工業株式会社 | バーハンドル車両用ブレーキ装置 |
FR3029479A1 (fr) * | 2014-12-08 | 2016-06-10 | Peugeot Citroen Automobiles Sa | Dispositif d’assistance electrique du freinage comportant un reducteur du type cycloidal |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6240104B2 (ja) * | 2015-02-06 | 2017-11-29 | トヨタ自動車株式会社 | 液圧ブレーキシステム |
JP6827946B2 (ja) | 2015-03-16 | 2021-02-10 | アイピーゲート・アクチェンゲゼルシャフト | ブレーキシステム毎のアウトレットバルブまたはブレーキ回路毎のアウトレットバルブを用いる新式のmux調整(mux2.0)を備えるブレーキシステムおよび圧力調整方法 |
EP3957526A1 (de) | 2015-03-16 | 2022-02-23 | Ipgate Ag | Bremsanlage mit druckaufbau-regelung mit spezieller verschaltung der einlassventile mit bremskreis/radbremsen und verfahren zur druckregelung |
JP6530359B2 (ja) * | 2016-09-09 | 2019-06-12 | 株式会社アドヴィックス | 車両用制動装置 |
JP6747388B2 (ja) * | 2017-06-28 | 2020-08-26 | 株式会社アドヴィックス | 制動制御装置 |
CN108099888A (zh) * | 2017-12-22 | 2018-06-01 | 易孝威 | 一种适应不同路况可变换气路的刹车总阀 |
KR102682469B1 (ko) | 2019-05-31 | 2024-07-08 | 에이치엘만도 주식회사 | 전자식 브레이크 시스템 및 작동방법 |
JP7359795B2 (ja) * | 2021-03-04 | 2023-10-11 | トヨタ自動車株式会社 | 車両用ブレーキシステム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011226541A (ja) * | 2010-04-19 | 2011-11-10 | Toyota Motor Corp | 液圧弁装置 |
JP2011240873A (ja) * | 2010-05-20 | 2011-12-01 | Advics Co Ltd | ブレーキ装置 |
JP2011240872A (ja) * | 2010-05-20 | 2011-12-01 | Advics Co Ltd | ブレーキ装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5330259A (en) | 1992-12-22 | 1994-07-19 | Alliedsignal Inc. | Electrohydraulic braking system with remote booster |
CN101263033A (zh) * | 2005-09-15 | 2008-09-10 | 大陆-特韦斯贸易合伙股份公司及两合公司 | 用于机动车辆的制动系统 |
US7686039B2 (en) * | 2006-06-30 | 2010-03-30 | Caterpillar Inc. | Cartridge valve assembly |
JP5488009B2 (ja) | 2010-02-02 | 2014-05-14 | トヨタ自動車株式会社 | ブレーキシステム |
JP5869527B2 (ja) * | 2013-07-10 | 2016-02-24 | トヨタ自動車株式会社 | 液圧ブレーキシステムおよび液圧制御装置 |
-
2012
- 2012-05-25 DE DE112012006423.2T patent/DE112012006423B4/de not_active Expired - Fee Related
- 2012-05-25 WO PCT/JP2012/063492 patent/WO2013175628A1/ja active Application Filing
- 2012-05-25 CN CN201280072056.7A patent/CN104284819B/zh not_active Expired - Fee Related
- 2012-05-25 JP JP2014516604A patent/JP5768935B2/ja active Active
- 2012-05-25 US US14/394,622 patent/US9205822B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011226541A (ja) * | 2010-04-19 | 2011-11-10 | Toyota Motor Corp | 液圧弁装置 |
JP2011240873A (ja) * | 2010-05-20 | 2011-12-01 | Advics Co Ltd | ブレーキ装置 |
JP2011240872A (ja) * | 2010-05-20 | 2011-12-01 | Advics Co Ltd | ブレーキ装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015111732A1 (ja) * | 2014-01-24 | 2015-07-30 | 株式会社アドヴィックス | 車両用制動装置 |
JP2015137089A (ja) * | 2014-01-24 | 2015-07-30 | 株式会社アドヴィックス | 車両用制動装置 |
JP2015137088A (ja) * | 2014-01-24 | 2015-07-30 | 株式会社アドヴィックス | 車両用制動装置 |
WO2015111733A1 (ja) * | 2014-01-24 | 2015-07-30 | 株式会社アドヴィックス | 車両用制動装置 |
CN105829179A (zh) * | 2014-01-24 | 2016-08-03 | 株式会社爱德克斯 | 车辆用制动装置 |
US10173657B2 (en) | 2014-01-24 | 2019-01-08 | Advics Co., Ltd. | Vehicle braking device |
JP2016030476A (ja) * | 2014-07-28 | 2016-03-07 | 日信工業株式会社 | バーハンドル車両用ブレーキ装置 |
FR3029479A1 (fr) * | 2014-12-08 | 2016-06-10 | Peugeot Citroen Automobiles Sa | Dispositif d’assistance electrique du freinage comportant un reducteur du type cycloidal |
Also Published As
Publication number | Publication date |
---|---|
US20150069828A1 (en) | 2015-03-12 |
CN104284819B (zh) | 2016-09-21 |
DE112012006423B4 (de) | 2018-07-19 |
CN104284819A (zh) | 2015-01-14 |
JP5768935B2 (ja) | 2015-08-26 |
US9205822B2 (en) | 2015-12-08 |
DE112012006423T5 (de) | 2015-03-12 |
JPWO2013175628A1 (ja) | 2016-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5768935B2 (ja) | 調圧器、および、それを備えた液圧ブレーキシステム | |
JP6276144B2 (ja) | 液漏れ検知方法 | |
WO2012114510A1 (ja) | マスタシリンダ装置およびそれを用いた液圧ブレーキシステム | |
JP5862771B2 (ja) | 車両用ブレーキシステム | |
JP2009090933A (ja) | 制動装置 | |
JP2011218839A (ja) | 車両用ブレーキ装置および車両用ブレーキ装置の制御方法 | |
CN105383463B (zh) | 调压器以及具备该调压器的车辆用液压制动系统 | |
CN105383464B (zh) | 调压器以及具备该调压器的车辆用液压制动系统 | |
JP6240104B2 (ja) | 液圧ブレーキシステム | |
JP6359976B2 (ja) | 液圧ブレーキシステム | |
JP6365204B2 (ja) | 調圧器、および、それを備えた車両用液圧ブレーキシステム | |
JP6052262B2 (ja) | 調圧器、および、それを備えた車両用液圧ブレーキシステム | |
JP6252427B2 (ja) | 調圧器、および、それを備えた車両用液圧ブレーキシステム | |
JP6567962B2 (ja) | 液圧ブレーキシステム | |
JP2917746B2 (ja) | 液圧ブレーキ装置 | |
JP2015217884A (ja) | レギュレータおよび液圧ブレーキシステム | |
JP2009067269A (ja) | ブレーキ制御装置 | |
JP5747876B2 (ja) | 液圧ブレーキシステム | |
JP3788465B2 (ja) | ブレーキ液圧制御装置 | |
JPH05305865A (ja) | ブレーキ液圧制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12877157 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014516604 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14394622 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120120064232 Country of ref document: DE Ref document number: 112012006423 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12877157 Country of ref document: EP Kind code of ref document: A1 |