+

WO2013161713A1 - Circuit connection material, circuit connection structure, adhesive film, and wound body - Google Patents

Circuit connection material, circuit connection structure, adhesive film, and wound body Download PDF

Info

Publication number
WO2013161713A1
WO2013161713A1 PCT/JP2013/061658 JP2013061658W WO2013161713A1 WO 2013161713 A1 WO2013161713 A1 WO 2013161713A1 JP 2013061658 W JP2013061658 W JP 2013061658W WO 2013161713 A1 WO2013161713 A1 WO 2013161713A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
circuit
film
circuit connection
mass
Prior art date
Application number
PCT/JP2013/061658
Other languages
French (fr)
Japanese (ja)
Inventor
直 工藤
松田 和也
藤縄 貢
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020207011815A priority Critical patent/KR102329065B1/en
Priority to JP2014512528A priority patent/JP6090311B2/en
Priority to CN201380014782.8A priority patent/CN104169389B/en
Priority to KR1020147024907A priority patent/KR20150005516A/en
Publication of WO2013161713A1 publication Critical patent/WO2013161713A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/819Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector with the bump connector not providing any mechanical bonding
    • H01L2224/81901Pressing the bump connector against the bonding areas by means of another connector
    • H01L2224/81903Pressing the bump connector against the bonding areas by means of another connector by means of a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/52Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/913Material designed to be responsive to temperature, light, moisture

Definitions

  • the present invention relates to a circuit connection material for electrically connecting two circuit members facing each other, and a circuit connection structure, an adhesive film and a wound body using the same.
  • circuit connection materials In a semiconductor element and a liquid crystal display element, various circuit connection materials have been conventionally used for the purpose of bonding various members in the element.
  • the characteristics required for circuit connection materials are diverse, including adhesiveness, heat resistance, reliability in high temperature and high humidity conditions, and the like.
  • Examples of adherends to be bonded with circuit connection materials include, for example, printed wiring boards, organic substrates such as polyimide, polyethylene terephthalate and polycarbonate, metal substrates such as copper and aluminum, and ITO, IZO, SiN. And inorganic base materials such as SiO 2, and base materials having various surface states are used. For this reason, the circuit connection material needs to have a molecular design tailored to each adherend (for example, Patent Documents 1 and 2).
  • thermosetting resin composition using an epoxy resin exhibiting high adhesion and high reliability has been used (for example, see Patent Document 1).
  • a thermosetting resin composition there are a curing agent such as an epoxy resin, a phenol resin having reactivity with the epoxy resin, and a thermal latent catalyst that promotes the reaction between the epoxy resin and the curing agent. Commonly used.
  • the above circuit connecting material was cured at a temperature of 170 to 250 ° C. for 1 to 3 hours to obtain a desired adhesion.
  • the pitch between elements and wirings is narrowed, and there is a risk that the peripheral members will be adversely affected by heating during curing.
  • a radical curable adhesive using an acrylate derivative and / or a methacrylate derivative (hereinafter referred to as a (meth) acrylate derivative) and a peroxide as a radical polymerization initiator has attracted attention.
  • the radical curable adhesive can be cured for a short time because radicals that are reactive species are rich in reactivity (see, for example, Patent Document 2).
  • the present invention has been made in view of the above-mentioned problems of the prior art, and is a radical polymerization type, and even when the circuit member is left in a high-temperature and high-humidity environment after being connected, peeling bubbles at the interface with the circuit member are present.
  • Circuit connection material capable of sufficiently suppressing the occurrence of the above and maintaining sufficient connection reliability, a circuit connection structure manufactured using the circuit connection material, and an adhesive film comprising a connection material layer made of the circuit connection material And a wound body of the adhesive film.
  • the present invention is a circuit connecting material for electrically connecting two circuit members facing each other, comprising a thermoplastic resin, a radical polymerizable compound, a radical polymerization initiator and inorganic fine particles, and the radical polymerizable
  • the content of the compound is 40% by mass or more based on the total amount of the circuit connecting material, and the content of a compound having a molecular weight of 1000 or less among the radical polymerizable compounds is 15% by mass or less based on the total amount of the circuit connecting material.
  • a circuit connection material is provided wherein the content of the inorganic fine particles is 5 to 30% by mass based on the total amount of the circuit connection material and contains at least a compound represented by the following formula (1).
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms, or an aryl group.
  • At least one of R 1 , R 2 and R 3 is an alkoxy group having 1 to 5 carbon atoms
  • R 4 is a (meth) acryloyl group, a vinyl group, an isocyanate group, an imidazole group, a mercapto group, An amino group, a methylamino group, a dimethylamino group, a benzylamino group, a phenylamino group, a cyclohexylamino group, a morpholino group, a piperazino group, a ureido group, or a glycidyl group, and n represents an integer of 1 to 10. ]
  • circuit connecting material of the present invention is a radical curing type
  • circuit members can be bonded together at a low temperature and in a short time.
  • generation of peeling bubbles at the interface with the circuit member is sufficiently suppressed, and sufficient connection reliability is achieved. Is maintained.
  • the thermoplastic resin may contain at least one resin having a glass transition temperature of 25 ° C. or higher.
  • the average particle size of the inorganic fine particles may be less than 1 ⁇ m.
  • conductive particles may be dispersed. By dispersing the conductive particles, it is possible to impart conductivity or anisotropic conductivity to the circuit connection material.
  • Such a circuit connection material can be used for connecting circuit members having circuit electrodes to each other. It can be used suitably. Moreover, the connection resistance between the connected circuit electrodes can be sufficiently reduced by connecting with such a circuit connection material.
  • the present invention may be an anisotropic conductive adhesive containing the circuit connection material and conductive particles dispersed in the circuit connection material.
  • total amount of circuit connecting material does not include conductive particles.
  • the shape of the circuit connecting material of the present invention can be a film. Such a circuit connection material is excellent in handleability.
  • At least one of the two circuit members may be a glass substrate. Further, at least one of the two circuit members may be a flexible substrate.
  • the circuit connecting material of the present invention can be suitably used for connecting such circuit members.
  • the present invention also includes a pair of circuit members arranged opposite to each other and a cured product of the circuit connection material, and the circuit electrodes interposed between the pair of circuit members are electrically connected to each other.
  • a circuit connection structure including a connection member for connecting the circuit members to each other is provided.
  • circuit connection structure of the present invention since the circuit members are bonded to each other by the connection member containing the cured product of the circuit connection material, the interface between the circuit member and the connection member even when left under high temperature and high humidity conditions The generation of exfoliated bubbles in is sufficiently suppressed, and sufficient connection reliability is maintained.
  • the present invention also provides an adhesive film comprising a film base material and a film adhesive containing the circuit connecting material provided on one surface of the film base material. Since such an adhesive film is provided with the film adhesive containing the said circuit connection material, it can be utilized suitably for the connection of circuit members. In addition, the adhesive film of the present invention can be stored in a reel shape.
  • the film adhesive When a conventional circuit connection material is applied on one side of a film base material and wound in a reel, the film adhesive may be transferred onto the other side of the film base material and cannot be used effectively. is there.
  • the adhesive film of the present invention since the film adhesive contains the circuit connection material, even when the film adhesive is rolled up in a reel shape, the transfer of the film adhesive on the other surface of the film substrate is performed. Sufficiently suppressed.
  • the present invention further provides a wound body obtained by winding the adhesive film in a reel shape.
  • the wound body of this invention can be utilized suitably for the connection of circuit members. Moreover, in the wound body of this invention, transfer of the film adhesive on the other surface of a film base material is fully suppressed.
  • the present invention is an application of a composition containing a thermoplastic resin, a radical polymerizable compound, a radical polymerization initiator and inorganic fine particles as a circuit connection material for electrically connecting two opposing circuit members. It can also be said.
  • the content of the radical polymerizable compound is 40% by mass or more based on the total amount of the composition, and the content of a compound having a molecular weight of 1000 or less among the radical polymerizable compounds is based on the total amount of the composition.
  • the content of the inorganic fine particles is 5 to 30% by mass based on the total amount of the composition, and the composition contains at least the compound represented by the formula (1). .
  • the present invention also provides a method for producing a circuit connection material for electrically connecting two opposing circuit members of a composition containing a thermoplastic resin, a radical polymerizable compound, a radical polymerization initiator and inorganic fine particles. It can also be said to be an application for.
  • the content of the radical polymerizable compound is 40% by mass or more based on the total amount of the composition, and the content of a compound having a molecular weight of 1000 or less among the radical polymerizable compounds is based on the total amount of the composition.
  • the content of the inorganic fine particles is 5 to 30% by mass based on the total amount of the composition, and the composition contains at least the compound represented by the formula (1). .
  • circuit connection material capable of maintaining the properties can be obtained.
  • Circuit connection material that can maintain the above, a circuit connection structure manufactured using the circuit connection material, an adhesive film including a connection material layer made of the circuit connection material, and a wound body of the adhesive film are provided.
  • (meth) acrylic acid means acrylic acid or methacrylic acid corresponding thereto
  • (meth) acrylate means acrylate or methacrylate corresponding thereto
  • (meth) acryloyl group means acryloyl group. Or means a methacryloyl group.
  • the circuit connecting material of the present embodiment can be suitably used for electrically connecting two circuit members facing each other, and is a thermoplastic resin (hereinafter sometimes referred to as “component (a)”).
  • component (a) A radical polymerizable compound (hereinafter sometimes referred to as “component (b)”), a radical polymerization initiator (hereinafter sometimes referred to as “component (c)”), and inorganic fine particles (hereinafter referred to as case). (Referred to as “component (d)”).
  • the content of the component (b) is 40% by mass or more based on the total amount of the circuit connection material, and the content of the compound having a molecular weight of 1000 or less among the components (b) is based on the total amount of the circuit connection material.
  • the content of the component (d) is 5 to 30% by mass.
  • circuit connection material of the present embodiment contains a compound represented by the following formula (1) (hereinafter sometimes referred to as “silane coupling agent”).
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms, Represents an aryl group, and at least one of R 1 , R 2 and R 3 is an alkoxy group having 1 to 5 carbon atoms, and R 4 represents a (meth) acryloyl group, a vinyl group, an isocyanate group, an imidazole group, a mercapto group Represents a group, amino group, methylamino group, dimethylamino group, benzylamino group, phenylamino group, cyclohexylamino group, morpholino group, piperazino group, ureido group or glycidyl group, and n represents an integer of 1 to 10.
  • the silane coupling agent may be blended in the circuit connecting material as a part of the radically polymerizable compound of the component (b), and may be blended in the circuit connecting material as a component other than the components (a) to (d). Also good.
  • R 4 in the formula (1) is a (meth) acryloyl group or a vinyl group
  • the silane coupling agent is included in the component (b).
  • the circuit connecting member of the present embodiment is a radical curing type, the circuit members can be bonded together at a low temperature and in a short time. Further, according to the circuit connection material of the present embodiment, even when the circuit member is left in a high-temperature and high-humidity environment after connection, the generation of peeling bubbles at the interface with the circuit member is sufficiently suppressed, and sufficient connection reliability is achieved. Sex is maintained.
  • thermoplastic resin As the component (a), a known thermoplastic resin can be used without particular limitation, and a plurality of known thermoplastic resins can also be mixed and used.
  • a component contains at least 1 sort (s) of resin whose glass transition temperature is 25 degreeC or more from a viewpoint which film forming property improves further.
  • resins include polyimide resins, polyamide resins, phenoxy resins, poly (meth) acrylate resins, polyester resins, polyurethane resins, and polyvinyl butyral resins.
  • (a) component may contain resin whose glass transition temperature is less than 25 degreeC.
  • the glass transition temperature of a thermoplastic resin can generally be calculated
  • thermoplastic resin of component (a) a siloxane bond or a fluorine substituent (for example, a fluorine atom, a fluorinated alkyl group or a fluorinated aryl group) may be contained.
  • a fluorine substituent for example, a fluorine atom, a fluorinated alkyl group or a fluorinated aryl group
  • thermoplastic resins to be mixed are completely compatible with each other, or microphase separation occurs to become a cloudy state.
  • the circuit connecting material preferably contains at least one resin having a glass transition temperature of 25 ° C. or higher as the component (a), and the weight average molecular weight of the resin is 5.0 ⁇ 10 3 to 2.0 ⁇ 10 5. Preferably, it is 1.0 ⁇ 10 4 to 1.5 ⁇ 10 5 .
  • a resin having a glass transition temperature of 25 ° C. or higher has a tendency that the adhesiveness of the circuit connecting material is inferior and film formability is sufficiently obtained when the weight average molecular weight is less than 5.0 ⁇ 10 3.
  • the weight average molecular weight exceeds 2.0 ⁇ 10 5 , the compatibility with other components of the circuit connecting material may be inferior, and the fluidity of the circuit connecting material may be reduced.
  • the resin having the weight average molecular weight within the above range it is possible to sufficiently suppress the decrease in the adhesive strength and the fluidity of the circuit connecting material, and the connection reliability can be further improved.
  • a weight average molecular weight shows the weight average molecular weight of polystyrene conversion measured by GPC method.
  • the circuit connection material may contain a known rubber component as the component (a).
  • a rubber component By adding a rubber component, stress relaxation and improvement in adhesion can be expected.
  • the rubber component include acrylic rubber, polyisoprene, polybutadiene, carboxyl group-terminated polybutadiene, hydroxyl group-terminated polybutadiene, 1,2-polybutadiene, carboxyl group-terminated 1,2-polybutadiene, hydroxyl group-terminated 1,2-polybutadiene, and styrene.
  • Butadiene rubber hydroxyl-terminated styrene-butadiene rubber, carboxyl group, hydroxyl group, carboxylated nitrile rubber, hydroxyl-terminated poly (oxypropylene), alkoxysilyl group-terminated poly (oxypropylene), poly (oxytetramethylene) glycol, polyolefin glycol and poly - ⁇ -caprolactone and the like.
  • the weight average molecular weight of the rubber component is preferably 2.0 ⁇ 10 5 to 1.0 ⁇ 10 6 . If the weight average molecular weight of the rubber component is less than 2.0 ⁇ 10 5 , a sufficient stress relaxation effect may not be obtained, and if it exceeds 1.0 ⁇ 10 6 , the fluidity of the circuit connecting material may decrease. is there. That is, according to the rubber component having the weight average molecular weight within the above range, a more excellent stress relaxation effect can be obtained while sufficiently suppressing the decrease in fluidity of the circuit connecting material.
  • a rubber component having a cyano group or a carboxyl group, which is a highly polar group, in the side chain or terminal is preferable from the viewpoint of improving adhesiveness.
  • a rubber component can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the thermoplastic resin having a glass transition temperature of 25 ° C. or higher is preferably 10 to 50% by mass, more preferably 20 to 40% by mass, based on the total amount of the circuit connecting material. preferable.
  • the film-forming property may be inferior. Fluidity may decrease.
  • component (b) a known radical polymerizable compound can be used.
  • component (b) component can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the component (b) is 40% by mass or more, preferably 40 to 70% by mass, and more preferably 45 to 65% by mass based on the total amount of the circuit connecting material.
  • component (b) a compound having a molecular weight exceeding 1000 (hereinafter sometimes referred to as “component (b-1)”) is mainly used, and a compound having a molecular weight of 1000 or less (hereinafter referred to as “component (b))”.
  • component (b) a compound having a molecular weight of 1000 or less
  • the content of “(b-2) component” in some cases is 15% by mass or less based on the total amount of the circuit connecting material.
  • the content of the component (b-2) is preferably 15% by mass or less, and more preferably 12.5% by mass or less.
  • the content of the component (b-2) may be 2.5% by mass or more, and may be 5% by mass or more.
  • the content of the component (b-1) is 25% by mass or more, preferably 30% by mass or more, more preferably 35% by mass or more, based on the total amount of the circuit connecting material. Further, the content of the component (b-1) may be 55% by mass or less and may be 50% by mass or less.
  • the molecular weight of the component (b-1) is preferably 20000 or less, more preferably 15000 or less.
  • the weight average molecular weight of the component (b-1) can be regarded as the molecular weight of (b-1).
  • the ratio (mass ratio) C 2 / C 1 of the content C 2 of the component (b-2) to the content C 1 of the component (b-1) is preferably 0 to 0.6. More preferably, it is 0.05 to 0.4, and further preferably 0.075 to 0.35.
  • Examples of the component (b-1) include oligomers such as epoxy (meth) acrylate oligomers, urethane (meth) acrylate oligomers, polyether (meth) acrylate oligomers, and polyester (meth) acrylate oligomers; trimethylolpropane tri (meth) Acrylate, polyethylene glycol di (meth) acrylate, polyalkylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, neopentyl glycol di (meth) acrylate, dipentaerythritol Hexa (meth) acrylate, isocyanuric acid modified bifunctional (meth) acrylate, isocyanuric acid modified trifunctional (meth) acrylate, bisphenol fluorenediglycol Epoxy (meth) acrylate obtained by adding (meth) acrylic acid to glycidy
  • the component (b-2) includes pentaerythritol (meth) acrylate, 2-cyanoethyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate.
  • the circuit connecting material preferably contains at least one compound having two or more (meth) acryloyl groups in the molecule as the component (b), and two or more in the molecule as the component (b-1). It is more preferable to contain at least one compound having a (meth) acryloyl group.
  • a compound having a (meth) acryloyl group is preferable, but as the component (b), a compound having a functional group that is polymerized by an active radical such as an allyl group, a maleimide group, and a vinyl group can also be used.
  • component (b) examples include N-vinylimidazole, N-vinylpyridine, N-vinylpyrrolidone, N-vinylformamide, N-vinylcaprolactam, 4,4′-vinylidenebis (N, N— Dimethylaniline), N-vinylacetamide, N, N-dimethylacrylamide, N-isopropylacrylamide, N, N-diethylacrylamide, methylolacrylamide, 4,4'-diphenylmethane bismaleimide, 3,3'-dimethyl-5,5 Examples include '-4,4'-diphenylmethane bismaleimide and 1,6-bismaleimide- (2,2,4-trimethyl) hexane.
  • the circuit connecting material may contain a radical polymerizable compound having a phosphate ester structure as the component (b).
  • examples of the radical polymerizable compound having a phosphate ester structure include radical polymerizable compounds having a phosphate ester structure represented by the following formulas (2) to (4).
  • R 5 represents a (meth) acryloyloxy group
  • R 6 represents a hydrogen atom or a methyl group
  • w and x each independently represents an integer of 1 to 8.
  • R 5 s , R 6 s , w s, and x s may be the same or different.
  • R 7 represents a (meth) acryloyloxy group
  • y and z each independently represents an integer of 1 to 8.
  • R 7 s , y s, and z s may be the same or different.
  • R 8 represents a (meth) acryloyloxy group
  • R 9 represents a hydrogen atom or a methyl group
  • a and b each independently represents an integer of 1 to 8.
  • radical polymerizable compound having a phosphate ester structure examples include acid phosphooxyethyl methacrylate, acid phosphooxyethyl acrylate, acid phosphooxypropyl methacrylate, acid phosphooxypolyoxyethylene glycol monomethacrylate, and acid phosphooxypolyoxypropylene.
  • examples include glycol monomethacrylate, 2,2′-di (meth) acryloyloxydiethyl phosphate, EO-modified phosphate dimethacrylate, phosphate-modified epoxy acrylate, and vinyl phosphate.
  • the content of the radically polymerizable compound having a phosphate ester structure is preferably 0.01 to 10% by mass, more preferably 0.5 to 5% by mass based on the total amount of the circuit connecting material.
  • a radical polymerizable compound having a phosphate ester structure a compound obtained by reacting phosphoric anhydride and 2-hydroxyethyl (meth) acrylate can be used.
  • examples of such radically polymerizable compounds having a phosphate ester structure include mono (2-methacryloyloxyethyl) acid phosphate, di (2-methacryloyloxyethyl) acid phosphate, and the like.
  • the compound which has a phosphate ester structure may be used individually by 1 type, or may mix and use 2 or more types.
  • the radical polymerizable compound having a phosphoric ester structure may be the component (b-1) or the component (b-2), and is preferably the component (b-2).
  • the circuit connecting material may also contain, as component (b), a radically polymerizable material among the silane coupling agents represented by the formula (1).
  • radical polymerization initiator of component (c) examples include compounds that decompose by heating to generate free radicals, and known compounds such as peroxides and azo compounds can be used.
  • a peroxide having a one-minute half-life temperature of 90 to 175 ° C. and a molecular weight of 180 to 1000 is preferably used from the viewpoint of having stability, reactivity, and compatibility. it can.
  • one-minute half-life temperature refers to the temperature at which the half-life is 1 minute
  • half-life refers to the time until the concentration of the compound decreases to half of the initial value.
  • component (c) examples include 1,1,3,3-tetramethylbutylperoxyneodecanoate, di (4-t-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxy Dicarbonate, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, dilauroyl peroxide, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t -Hexylperoxyneodecanoate, t-butylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2, 5-Dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane, t-hexylperoxy -2
  • a compound that generates radicals by light irradiation for example, light irradiation with a wavelength of 150 nm to 750 nm
  • light irradiation with a wavelength of 150 nm to 750 nm can also be used.
  • Such compounds include, for example, Photoinitiation, Photopolymerization, and Photocuring, J. Biol. -P. ⁇ -acetaminophenone derivatives and phosphine oxide derivatives described in Fouassier, Hanser Publishers (1995), p17 to p35 are more preferable because of their high sensitivity to light irradiation. These compounds may be used alone or in combination with the above peroxide or azo compound.
  • the amount of chlorine ion and organic acid contained in the component (c) is preferably 10000 mass ppm or less, more preferably 5000 mass ppm or less.
  • the quantity of the chlorine ion and organic acid which are contained in (c) component may be 500 mass ppm or more.
  • the component (c) preferably has a mass retention of 20% by mass or more after being left open for 24 hours at room temperature (25 ° C.) and normal pressure. According to the component (c) having such a mass retention rate, the storage stability of the circuit connecting material is further improved.
  • the mass retention rate can be measured by measuring the weight before and after standing.
  • the content of the component (c) is preferably 0.1 to 30% by mass and more preferably 1 to 20% by mass based on the total amount of the circuit connecting material.
  • the reaction rate for obtaining a sufficient adhesive force and a long pot life can be achieved at a higher level.
  • component (d) known inorganic fine particles can be used without particular limitation.
  • the component (d) include metal oxide fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles, and zirconia fine particles.
  • (d) component can be used individually by 1 type or in mixture of 2 or more types.
  • the average particle size of the component (d) is preferably less than 1 ⁇ m, more preferably 0.1 to 0.5 ⁇ m.
  • the average particle diameter is the mode diameter in the major axis direction when present in the circuit connecting material.
  • the average primary particle diameter of the component (d) is preferably 100 nm or less, more preferably 10 to 30 nm.
  • an average particle diameter shows the value measured by image analysis.
  • the component (d) fine particles whose surface is modified with an organic group can be suitably used because of excellent dispersibility.
  • the organic group include a dimethylsiloxane group and a diphenylsiloxane group.
  • the content of the component (d) is preferably 5 to 30% by mass and more preferably 10 to 20% by mass based on the total amount of the circuit connecting material.
  • the content of the component (d) is in the above range, the connection resistance between the circuit electrodes to be connected can be further reduced, and the effect of the present invention is more remarkably exhibited.
  • the silane coupling agent represented by the formula (1) may be blended in the circuit connection material as a part of the component (b) as described above, and the circuit connection as a component other than the components (a) to (d). You may mix
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms, Represents an aryl group, and at least one of R 1 , R 2 and R 3 is an alkoxy group having 1 to 5 carbon atoms, and R 4 represents a (meth) acryloyl group, a vinyl group, an isocyanate group, an imidazole group, a mercapto group Represents a group, amino group, methylamino group, dimethylamino group, benzylamino group, phenylamino group, cyclohexylamino group, morpholino group, piperazino group, ureido group or glycidyl group, and n represents an integer of 1 to 10.
  • R 4 in the formula (1) is a (meth) acryloyl group or a vinyl group
  • the silane coupling agent is included in the component (b).
  • R 1 , R 2 and R 3 are preferably a methyl group, an ethyl group, a methoxy group or an ethoxy group, and more preferably a methoxy group or an ethoxy group.
  • R 4 is preferably a (meth) acryloyl group, a glycidyl group, a mercapto group or a vinyl group, and more preferably a (meth) acryloyl group or a glycidyl group.
  • the content of the silane coupling agent is preferably 0.1 to 10% by mass and more preferably 0.25 to 5% by mass based on the total amount of the circuit connecting material.
  • the content of the silane coupling agent is within the above range, generation of exfoliated bubbles at the interface between the circuit member and the connecting member can be more significantly suppressed, and a longer pot life can be secured. .
  • the circuit connection material of this embodiment may contain components other than those described above.
  • a stabilizer may be added to the circuit connection material for reasons such as controlling the curing rate and imparting storage stability.
  • Stabilizers include quinone derivatives such as benzoquinone and hydroquinone; phenol derivatives such as 4-methoxyphenol and 4-t-butylcatechol; 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy- An aminoxyl derivative such as 2,2,6,6-tetramethylpiperidine-1-oxyl; a hindered amine derivative such as tetramethylpiperidyl methacrylate; and the like can be preferably used.
  • the content of the stabilizer is preferably 0.01 to 15% by mass, and 0.05 to 10% by mass based on the total amount of the circuit connecting material. It is more preferable.
  • the content of the stabilizer is less than 0.01% by mass, the effect of addition may not be sufficiently obtained.
  • the content exceeds 15% by mass, the polymerization reaction may be inhibited, and the low temperature rapid curability may be inferior.
  • organic fine particles may be added to the circuit connection material of the present embodiment for the purpose of stress relaxation and heat resistance improvement.
  • known organic fine particles can be used without particular limitation.
  • organic fine particles examples include silicone fine particles, methacrylate-butadiene-styrene fine particles, acrylic-silicone fine particles, polyamide fine particles, and polyimide fine particles. These organic fine particles may have a uniform structure or a core-shell structure.
  • the content of the organic fine particles is preferably 1.5 to 20% by mass, more preferably 2 to 15% by mass based on the total amount of the circuit connecting material. .
  • circuit connection material of the present embodiment conductive particles may be dispersed.
  • electroconductivity or anisotropic conductivity can be provided to a circuit connection material, and such a circuit connection material can be used suitably for the connection use etc. of the circuit members which have a circuit electrode.
  • connection resistance between the connected circuit electrodes can be sufficiently reduced by connecting with such a circuit connection material.
  • the present invention may be an anisotropic conductive adhesive containing a circuit connecting material and conductive particles dispersed in the circuit connecting material.
  • total amount of circuit connecting material does not include conductive particles.
  • the conductive particles include metal particles made of metal such as Au, Ag, Pd, Ni, Cu, and solder, and carbon particles.
  • the conductive particles may be particles made of a non-conductive material such as glass, ceramic, plastic, etc. as a core, and the core is coated with a conductive material such as the metal, metal particles, or carbon. Good.
  • the conductive particles hot-melt metal particles are preferable. Since such conductive particles have deformability due to heat and pressure, when connecting circuit members, the contact area between the conductive particles and the electrodes increases, and the connection reliability between the circuit members is improved. There is a tendency.
  • the blending amount of the conductive particles is preferably 0.1 to 30% by volume, more preferably 0.1 to 10% by volume with respect to the total volume of the anisotropic conductive adhesive. If the blending amount of the conductive particles is less than 0.1% by volume, the conductivity tends to be inferior, and if it exceeds 30% by volume, a short circuit between the circuit electrodes tends to occur.
  • the compounding quantity of electroconductive particle is determined based on the volume in 23 degreeC of each component of the circuit connection material before hardening. The volume of each component can be determined by converting mass to volume using specific gravity. Also, put an appropriate solvent (water, alcohol, etc.) that can wet the component well without dissolving or swelling the component whose volume is to be measured. It is also possible to obtain the volume increased by charging as the volume of the component.
  • the circuit connecting material of the present embodiment can be manufactured by mixing the above-described components without using a solvent. Moreover, it can also manufacture by mixing each above-mentioned component with the solvent which can melt
  • the circuit connection material of this embodiment can be used in the form of a film. By using the shape of the film, the handleability of the circuit connecting material becomes extremely good.
  • a film-like circuit connection material (hereinafter sometimes referred to as “film-like adhesive”) can be obtained.
  • a solution prepared by adding a solvent or the like to a circuit connecting material as necessary is impregnated into a base material such as a nonwoven fabric and placed on a peelable base material, and the solvent is removed.
  • An agent can be obtained.
  • electroconductive particle can be disperse
  • methyl ethyl ketone and toluene can be suitably used.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a circuit connection material of the present invention.
  • a film adhesive 1 shown in FIG. 1 is formed by forming the circuit connecting material into a film.
  • the film adhesive 1 is easy to handle and can be easily installed on the adherend. Therefore, according to the film adhesive 1, connection work can be performed easily.
  • the film adhesive 1 may have a multilayer structure (not shown) composed of two or more layers. Further, conductive particles (not shown) may be dispersed in the film adhesive 1.
  • the film adhesive in which the conductive particles are dispersed can be suitably used as an anisotropic conductive film adhesive. That is, the present invention may be an anisotropic conductive film adhesive containing the circuit connecting material and conductive particles.
  • connection method of the adherend using the circuit connection material (for example, the film adhesive 1) of the present embodiment include a connection method using heating and pressurization together.
  • the heating temperature is preferably 100 to 250 ° C.
  • the pressure is not particularly limited as long as it does not damage the adherend, but it is generally preferably 0.1 to 10 MPa. These heating and pressurization are preferably performed in the range of 0.5 to 120 seconds.
  • adherends can be sufficiently bonded to each other by heating and pressurizing for 10 seconds under the conditions of a heating temperature of 150 to 200 ° C. and a pressure of 3 MPa.
  • the circuit connection material of the present embodiment can be suitably used as an adhesive for different types of adherends having different thermal expansion coefficients.
  • the circuit connection material of the present embodiment may be formed in a film shape on one surface of the film substrate.
  • the present invention may be an adhesive film provided with a film base material and a film adhesive provided on one surface of the film base material and including the circuit connection material.
  • Such an adhesive film can be suitably used as the above-mentioned film adhesive by peeling the film substrate.
  • the film adhesive since the film adhesive includes the circuit connecting material having the above-described specific configuration, even when the film base is wound in a reel shape so that the other surface of the film base is in contact with the film adhesive, Transfer of the film adhesive onto the other surface of the material is sufficiently suppressed.
  • the circuit connection material When a similar wound body is produced with a conventional circuit connection material, the circuit connection material may ooze out from between the film base materials.
  • the circuit adhesive has the above-mentioned specific configuration. Since the material is included, even when the film is wound in a reel shape, the bleeding of the film adhesive from between the film base materials is sufficiently suppressed. Therefore, the adhesive film can be suitably stored as a roll wound in a reel shape, and is further excellent in handleability.
  • Examples of the film substrate include polyethylene terephthalate, polycarbonate, and polypropylene.
  • the adhesive film can be, for example, a width of 5 mm or less (preferably 0.5 to 5.0 mm) and a length of 1 m or more (preferably 10 to 500 m). Since the adhesive film having such a size is desirably stored in a reel shape, the above-described effect is particularly effective.
  • the adhesive film may further include a protective film provided on the film adhesive. Since the protective film needs to be peeled off before the adherend is connected, it is desirable that the protective film has excellent peelability.
  • circuit members having circuit electrodes formed on the main surface of a circuit board are connected to each other using the circuit connection material of the present embodiment.
  • the circuit connection material to form an anisotropic conductive adhesive
  • connection between members can be performed.
  • An anisotropic conductive adhesive is placed between the circuit electrodes facing each other on the circuit board and heated and pressed to perform electrical connection between the circuit electrodes facing each other and adhesion between the circuit boards. Can be connected.
  • the circuit board examples include a glass substrate; a flexible substrate made of an organic material such as polyimide, polyethylene terephthalate, and polycarbonate.
  • the effect of the present invention is particularly great when one of the circuit boards is a glass substrate and the other is a flexible board.
  • the board substrate which combined inorganic substance, such as glass / epoxy, and organic substance can also be used.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of the circuit connection structure of the present invention.
  • the circuit connection structure shown in FIG. 2 includes a first circuit member 20 and a second circuit member 30 facing each other, and the first circuit member 20 and the second circuit member 30 are disposed between the first circuit member 20 and the second circuit member 30.
  • a connecting member 10 is provided to connect them.
  • the first circuit member 20 includes a circuit board (first circuit board) 21 and a circuit electrode (first circuit electrode) 22 formed on the main surface 21 a of the circuit board 21. Note that an insulating layer (not shown) may be formed on the main surface 21a of the circuit board 21 in some cases.
  • the second circuit member 30 includes a circuit board (second circuit board) 31 and a circuit electrode (second circuit electrode) 32 formed on the main surface 31 a of the circuit board 31.
  • an insulating layer (not shown) may be formed on the main surface 31a of the circuit board 31 according to circumstances.
  • the first and second circuit members 20 and 30 are not particularly limited as long as electrodes that require electrical connection are formed. Specific examples include glass or plastic substrates with electrodes formed of ITO, IZO, etc. used in liquid crystal displays, printed wiring boards, ceramic wiring boards, flexible wiring boards, semiconductor silicon chips, etc. Used in combination as needed. As described above, in the present embodiment, materials such as printed wiring boards and polyimides, metals such as copper and aluminum, ITO (indium tin oxide), silicon nitride (SiN x ), silicon dioxide (SiO 2 ) are used. Circuit members having various surface states such as inorganic materials such as the above can be used.
  • the connecting member 10 contains an insulating substance 11 and conductive particles 7.
  • the conductive particles 7 are disposed not only between the circuit electrode 22 and the circuit electrode 32 facing each other but also between the main surfaces 21a and 31a.
  • the circuit electrodes 22 and 32 are electrically connected via the conductive particles 7. That is, the conductive particles 7 are in direct contact with both the circuit electrodes 22 and 32.
  • the conductive particles 7 are the conductive particles described above, and the insulating substance 11 is a cured product of the circuit connection material.
  • the circuit electrode 22 and the circuit electrode 32 facing each other are electrically connected via the conductive particles 7. For this reason, the connection resistance between the circuit electrodes 22 and 32 is sufficiently reduced. Therefore, the flow of current between the circuit electrodes 22 and 32 can be made smooth, and the functions of the circuit can be fully exhibited.
  • the connection member 10 does not contain the conductive particles 7, the circuit electrode 22 and the circuit electrode 32 are in direct contact with each other to be electrically connected.
  • connection member 10 is composed of the cured product of the circuit connection material and conductive particles, the adhesion strength of the connection member 10 to the circuit member 20 or 30 is sufficiently high, and a reliability test (high temperature and high humidity) is performed. Even after the test), stable performance (good adhesive strength and connection resistance) can be maintained.
  • the film adhesive 40 is formed by forming a circuit connection material in which conductive particles are dispersed into a film shape, and includes the circuit connection material 5 and the conductive particles 7. Even when the conductive particles 7 are not dispersed in the film adhesive 40 (that is, when the film adhesive 40 is made of the circuit connecting material 5), the film adhesive is anisotropic as an insulating adhesive. It can be used for conductive bonding. At this time, the circuit connecting material is sometimes called NCP (Non-Conductive Paste). Moreover, when the electroconductive particle 7 is disperse
  • the thickness of the film adhesive 40 is preferably 6 to 50 ⁇ m.
  • the thickness of the film adhesive 40 is less than 6 ⁇ m, the circuit connecting material 5 tends to be insufficiently filled between the circuit electrodes 22 and 32.
  • the thickness exceeds 50 ⁇ m, the circuit connecting material 5 between the circuit electrodes 22 and 32 cannot be sufficiently removed, and it is difficult to ensure conduction between the circuit electrodes 22 and 32.
  • the film adhesive 40 is placed on the surface of the first circuit member 20 on which the circuit electrode 22 is formed.
  • the first circuit member 20 is arranged such that the film adhesive 40 side faces the first circuit member 20. Put it on top.
  • the film adhesive 40 is in a film form and is easy to handle. For this reason, the film adhesive 40 can be easily interposed between the first circuit member 20 and the second circuit member 30, and the connection between the first circuit member 20 and the second circuit member 30 is possible. Work can be done easily.
  • the film adhesive 40 is pressurized in the directions of arrows A and B in FIG. 3A to temporarily connect the film adhesive 40 to the first circuit member 20 (see FIG. 3B). At this time, you may pressurize, heating. However, the heating temperature is set to a temperature lower than the temperature at which the film adhesive 40 (the circuit connecting material 5 constituting the film adhesive 40) is not cured.
  • the second circuit member 30 is placed on the film adhesive 40 so that the second circuit electrode 32 faces the first circuit member 20.
  • the film adhesive 40 has adhered on the support body (for example, the above-mentioned film-form base material (not shown))
  • the 2nd circuit member 30 is made into a film form. Place on adhesive 40.
  • the first and second circuit electrodes 22 and 23 are aligned so that they face each other, and then the second circuit member 30 is temporarily fixed by heating and pressing from above the second circuit member 30. be able to. By doing so, it is possible to suppress the positional deviation of the electrodes during the subsequent main connection.
  • the heating temperature at the time of temporary fixing is set to a temperature lower than the temperature at which the circuit connecting material 5 in the film adhesive 40 is not cured, and the time from alignment to completion of temporary fixing is preferably 5 seconds or less for shortening the throughput. .
  • the film adhesive 40 is heated through the first and second circuit members 20 and 30 in the directions of arrows A and B in FIG.
  • the heating temperature at this time is set to a temperature at which the polymerization reaction can be started.
  • the film-like adhesive 40 is cured to perform the main connection, and a circuit connection structure as shown in FIG. 2 is obtained.
  • connection conditions are preferably a heating temperature of 100 to 250 ° C., a pressure of 0.1 to 10 MPa, and a connection time of 0.5 seconds to 120 seconds. These conditions are appropriately selected depending on the intended use, circuit connection material, and circuit member, and may be post-cured as necessary.
  • the conductive particles 7 can be brought into contact with both of the circuit electrodes 22 and 32 facing each other. The connection resistance between them can be sufficiently reduced.
  • the circuit connecting material 5 is cured to become the insulating substance 11 in a state where the distance between the circuit electrode 22 and the circuit electrode 32 is sufficiently small, and the first circuit member 20 is cured. And the second circuit member 30 are firmly connected via the connection member 10. That is, in the obtained circuit connection structure, since the connection member 10 includes the insulating substance 11 made of the circuit connection material described above, the bonding strength of the connection member 10 to the circuit member 20 or 30 is sufficiently high, The connection resistance between the electrically connected circuit electrodes can be sufficiently reduced.
  • connection member 10 even when left in a high-temperature and high-humidity environment for a long period of time, the generation of peeling bubbles at the interface between the circuit members 20 and 30 and the connection member 10 can be sufficiently suppressed, and the adhesive strength is reduced In addition, an increase in connection resistance can be sufficiently suppressed.
  • the present invention provides a circuit connection for electrically connecting two opposing circuit members of a composition containing the thermoplastic resin, the radical polymerizable compound, the radical polymerization initiator, and the inorganic fine particles. It can be said that it is applied as a material. Further, the present invention provides a circuit connection for electrically connecting two opposing circuit members of the composition containing the thermoplastic resin, the radical polymerizable compound, the radical polymerization initiator, and the inorganic fine particles. It can also be referred to as an application for the production of materials.
  • the content of the radical polymerizable compound is 40% by mass or more based on the total amount of the composition, and the content of a compound having a molecular weight of 1000 or less of the radical polymerizable compound is
  • the content of the inorganic fine particles is 5 to 30% by mass based on the total amount of the composition, and the composition contains at least the compound represented by the formula (1). contains.
  • circuit member is a radical polymerization type
  • the generation of exfoliated bubbles at the interface with the circuit member can be sufficiently suppressed and sufficient connection reliability can be achieved.
  • circuit connection material capable of maintaining the properties can be obtained.
  • the weight average molecular weight in terms of polystyrene of the obtained polyurethane resin was 320,000 as a result of measurement by GPC.
  • the GPC analysis conditions are shown in Table 1 below.
  • the reaction was continued for 15 hours after completion of the dropwise addition, and the reaction was terminated when NCO% (the amount of isocyanate group relative to the urethane group) was 0.2% or less, to obtain urethane acrylate.
  • NCO% the amount of isocyanate group relative to the urethane group
  • the weight average molecular weight of the obtained urethane acrylate was 8,500.
  • the GPC analysis was performed under the conditions shown in Table 1.
  • thermoplastic resin of component (a) As the thermoplastic resin of component (a), a phenoxy resin (PKHC, trade name of Union Carbide, weight average molecular weight 45000, represented as “PKHC” in the table) 40 g in 40 g of solid content dissolved in 60 g of methyl ethyl ketone. % Solution and a polyurethane resin (represented as “PU” in the table) obtained in Production Example 1 having a solid content concentration of 30 mass% were used.
  • PKHC phenoxy resin
  • % Solution and a polyurethane resin (represented as “PU” in the table) obtained in Production Example 1 having a solid content concentration of 30 mass% were used.
  • urethane acrylate obtained in Production Example 2 represented as “UA” in the table
  • cyclohexyl acrylate manufactured by Toagosei Co., Ltd., represented as “CHA” in the table
  • 2- (meth) acryloyloxyethyl phosphate light ester P-2M, trade name, manufactured by Kyoeisha Co., Ltd., indicated as “P-2M” in the table
  • 3-methacryloxypropyltri Methoxysilane KBM503, trade name manufactured by Shin-Etsu Chemical Co., Ltd., silane coupling agent, represented as “KBM” in the table
  • t-hexyl peroxy-2-ethylhexanoate (Perhexyl O, trade name, manufactured by Yushi Co., Ltd., represented as “peroxide” in the table) is used. It was.
  • component (d) 10 g of R711 (product name manufactured by Nippon Aerosil Co., Ltd., represented as “R711” in the table) is dispersed in a mixed solvent of 45 g of toluene and 45 g of ethyl acetate. Used as a solution.
  • the above components are blended so as to have a solid weight ratio shown in Table 2, and then the conductive particles obtained in Production Example 3 are blended at 1.5% by volume with respect to the total volume of the adhesive component and dispersed.
  • the obtained coating solution was applied to a polyethylene terephthalate (PET) film having a thickness of 50 ⁇ m by using a coating apparatus, followed by drying with hot air at 70 ° C. for 10 minutes to obtain a film adhesive having a thickness of 16 ⁇ m. .
  • PET polyethylene terephthalate
  • the content of the radically polymerizable compound in the film-like adhesives of the examples and comparative examples the content of the radically polymerizable compound (component (b-1)) having a molecular weight exceeding 1000, and the radically polymerizable compound having a molecular weight of 1000 or less (
  • the content of the component (b-2) and the content of the inorganic fine particles were as shown in Table 3 calculated from the respective compounding amounts (both circuit connection materials (conductive particles of the film adhesive) %) Based on the total amount of components other than The silane coupling agent 3-methacryloxypropyltrimethoxysilane is included in the component (b-2).
  • Example 6 to 10 and Comparative Examples 6 to 10 Using the film adhesives of Examples 1 to 5 and Comparative Examples 1 to 5, connection structures of Examples 6 to 10 and Comparative Examples 6 to 10 were produced.
  • the film-like adhesive is a glass substrate (thickness 1.1 mm) on which a thin film of indium oxide (ITO) having a thickness of 0.2 ⁇ m is formed under conditions of 1 MPa and 2 seconds at a temperature of 70 ° C. ) Transcription.
  • this glass substrate and a flexible circuit board (FPC board) in which 500 copper circuits having a line width of 75 ⁇ m, a pitch of 150 ⁇ m, and a thickness of 18 ⁇ m are wired on polyimide with an epoxy resin adhesive are used as a film adhesive Were placed so as to face each other, and heated and pressurized at 3 MPa at a temperature of 160 ° C.
  • connection body circuit connection structure
  • connection body by which the FPC board and the glass substrate (ITO board
  • curing material connection member of the film adhesive over 2 mm in width was obtained.
  • Circuit connection structure evaluation 3 characteristic evaluation after high temperature and high humidity test
  • the circuit connection structures obtained in Examples and Comparative Examples were held for 250 hours under the conditions of 85 ° C. and 85% RH to obtain measurement samples.
  • the obtained sample, connection resistance and adhesive strength were evaluated by the same method as said evaluation 1 and 2.
  • the evaluation results are shown in Table 4.
  • circuit connection structure of Comparative Example 8 obtained using the film-like adhesive of Comparative Example 3 in which the content of the component (b-2) exceeds 15% by mass, and the Comparative Example not containing a silane coupling agent
  • the circuit connection structure of Comparative Example 10 obtained by using the film-like adhesive of No. 5
  • peeling occurred remarkably at the interface between the connection member and the circuit member after the high temperature and high humidity test.
  • the connection resistance is low. As a result, the adhesive force decreased, and the interface between the connecting member and the circuit member was remarkably peeled off.
  • Example 11 to 15 and Comparative Examples 11 to 15 Each of the coating solutions used in the production of the film adhesives of Examples 1 to 5 and Comparative Examples 1 to 5 was applied to a polyethylene terephthalate (PET) film having a thickness of 50 ⁇ m, and the coating solution was 70 ° C. for 10 minutes. Hot air drying was performed to form a film adhesive having a thickness of 16 ⁇ m on the PET film, and an adhesive film including the PET film and the film adhesive was obtained.
  • PET polyethylene terephthalate
  • the obtained adhesive film was cut into a width of 2 mm and wound into a reel having an inner diameter of 66 mm to obtain a roll of the adhesive film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Adhesive Tapes (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Abstract

A circuit connection material for electrically connecting two circuit members facing each other, which contains a thermoplastic resin, radically polymerizable compounds, a radical polymerization initiator and inorganic fine particles. The content of the radically polymerizable compounds is 40% by mass or more based on the total amount of the circuit connection material, and the content of compounds having a molecular weight of 1,000 or less among the radically polymerizable compounds is 15% by mass or less based on the total amount of the circuit connection material. The content of the inorganic fine particles is 5-30% by mass based on the total amount of the circuit connection material. The circuit connection material contains at least a compound represented by formula (1).

Description

回路接続材料、回路接続構造体、接着フィルム及び巻重体Circuit connection material, circuit connection structure, adhesive film and roll
 本発明は、相対向する二つの回路部材を電気的に接続するための回路接続材料、並びに、それを用いた回路接続構造体、接着フィルム及び巻重体に関する。 The present invention relates to a circuit connection material for electrically connecting two circuit members facing each other, and a circuit connection structure, an adhesive film and a wound body using the same.
 半導体素子及び液晶表示素子において、素子中の種々の部材を結合させる目的で従来から種々の回路接続材料が使用されている。回路接続材料に要求される特性は、接着性をはじめとして、耐熱性、高温高湿状態における信頼性等、多岐に渡る。 In a semiconductor element and a liquid crystal display element, various circuit connection materials have been conventionally used for the purpose of bonding various members in the element. The characteristics required for circuit connection materials are diverse, including adhesiveness, heat resistance, reliability in high temperature and high humidity conditions, and the like.
 また、回路接続材料で接着する被着体としては、例えば、プリント配線板、ポリイミド、ポリエチレンテレフタレート及びポリカーボネ―ト等の有機基材、銅及びアルミニウム等の金属基材、並びに、ITO、IZO、SiN及びSiO等の無機基材が挙げられ、多種多様な表面状態を有する基材が用いられる。そのため、回路接続材料は、各被着体にあわせた分子設計が必要である(例えば特許文献1~2)。 Examples of adherends to be bonded with circuit connection materials include, for example, printed wiring boards, organic substrates such as polyimide, polyethylene terephthalate and polycarbonate, metal substrates such as copper and aluminum, and ITO, IZO, SiN. And inorganic base materials such as SiO 2, and base materials having various surface states are used. For this reason, the circuit connection material needs to have a molecular design tailored to each adherend (for example, Patent Documents 1 and 2).
 従来から、半導体素子用又は液晶表示素子用の回路接続材料としては、高接着性及び高信頼性を示すエポキシ樹脂を用いた熱硬化性樹脂組成物が用いられている(例えば、特許文献1参照)。このような熱硬化性樹脂組成物の構成成分としては、エポキシ樹脂、エポキシ樹脂と反応性を有するフェノール樹脂等の硬化剤、及び、エポキシ樹脂と硬化剤との反応を促進する熱潜在性触媒が一般に用いられている。 Conventionally, as a circuit connection material for a semiconductor element or a liquid crystal display element, a thermosetting resin composition using an epoxy resin exhibiting high adhesion and high reliability has been used (for example, see Patent Document 1). ). As a component of such a thermosetting resin composition, there are a curing agent such as an epoxy resin, a phenol resin having reactivity with the epoxy resin, and a thermal latent catalyst that promotes the reaction between the epoxy resin and the curing agent. Commonly used.
 上述の回路接続材料は、実際の工程では、170~250℃の温度で1~3時間硬化することにより、所望の接着を得ていた。しかしながら、最近の半導体素子の高集積化及び液晶素子の高精細化に伴い、素子間及び配線間ピッチが狭小化し、硬化時の加熱によって、周辺部材に悪影響を及ぼす恐れが出ている。 In the actual process, the above circuit connecting material was cured at a temperature of 170 to 250 ° C. for 1 to 3 hours to obtain a desired adhesion. However, with the recent high integration of semiconductor elements and high definition of liquid crystal elements, the pitch between elements and wirings is narrowed, and there is a risk that the peripheral members will be adversely affected by heating during curing.
 また、低コスト化のためには、スループットを向上させる必要性があり、より低温かつ短時間での硬化、換言すれば低温速硬化での接着が要求されている。この低温速硬化を達成するためには、活性化エネルギーの低い熱潜在性触媒を使用する必要があり、室温付近での貯蔵安定性を兼備することが非常に難しい。 Further, in order to reduce the cost, it is necessary to improve the throughput, and it is required to cure at a lower temperature and in a shorter time, in other words, adhesion at a lower temperature and faster curing. In order to achieve this low-temperature rapid curing, it is necessary to use a thermal latent catalyst with a low activation energy, and it is very difficult to combine storage stability near room temperature.
 近年、アクリレート誘導体及び/又はメタアクリレート誘導体(以後、(メタ)アクリレート誘導体とよぶ)とラジカル重合開始剤である過酸化物とを併用した、ラジカル硬化型接着剤が注目されている。ラジカル硬化型接着剤は、反応活性種であるラジカルが反応性に富むため、短時間硬化が可能である(例えば、特許文献2参照)。 Recently, a radical curable adhesive using an acrylate derivative and / or a methacrylate derivative (hereinafter referred to as a (meth) acrylate derivative) and a peroxide as a radical polymerization initiator has attracted attention. The radical curable adhesive can be cured for a short time because radicals that are reactive species are rich in reactivity (see, for example, Patent Document 2).
特開平1-113480号公報Japanese Patent Laid-Open No. 1-113480 国際公開98/44067号パンフレットInternational Publication No. 98/44067 Pamphlet
 しかしながら、ラジカル硬化型接着剤は、(メタ)アクリレートの硬化収縮がエポキシ樹脂の硬化収縮と比較して大きいため、接続構造体を例えば85℃85%RHといった高温高湿環境下に放置した場合、回路部材と回路接続材料との界面に剥離気泡が生じてしまうことが多い。これを解決するために(メタ)アクリレートの配合量を少なくした場合、回路部材と回路接続材料との界面における剥離は抑制できても、接着強度が低くなったり、相対する電極間の電気的接続を維持できなくなったりしてしまう。 However, in the case of the radical curable adhesive, since the curing shrinkage of (meth) acrylate is larger than that of the epoxy resin, when the connection structure is left in a high temperature and high humidity environment such as 85 ° C. and 85% RH, In many cases, peeling bubbles are generated at the interface between the circuit member and the circuit connecting material. In order to solve this problem, if the amount of (meth) acrylate is reduced, even if the peeling at the interface between the circuit member and the circuit connection material can be suppressed, the adhesive strength is reduced, or the electrical connection between the opposing electrodes It becomes impossible to maintain.
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、ラジカル重合型でありながら、回路部材を接続後に高温高湿環境下に放置した場合でも、回路部材との界面における剥離気泡の発生を十分に抑制でき且つ十分な接続信頼性を維持できる回路接続材料と、該回路接続材料を用いて作製された回路接続構造体と、該回路接続材料からなる接続材料層を備える接着フィルムと、該接着フィルムの巻重体と、を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and is a radical polymerization type, and even when the circuit member is left in a high-temperature and high-humidity environment after being connected, peeling bubbles at the interface with the circuit member are present. Circuit connection material capable of sufficiently suppressing the occurrence of the above and maintaining sufficient connection reliability, a circuit connection structure manufactured using the circuit connection material, and an adhesive film comprising a connection material layer made of the circuit connection material And a wound body of the adhesive film.
 本発明は、相対向する二つの回路部材を電気的に接続するための回路接続材料であって、熱可塑性樹脂、ラジカル重合性化合物、ラジカル重合開始剤及び無機微粒子を含有し、上記ラジカル重合性化合物の含有量が、上記回路接続材料の全量基準で40質量%以上であり、上記ラジカル重合性化合物のうち分子量1000以下の化合物の含有量が、上記回路接続材料の全量基準で15質量%以下であり、上記無機微粒子の含有量が、上記回路接続材料の全量基準で5~30質量%であり、少なくとも下記式(1)で表される化合物を含有する、回路接続材料を提供する。
Figure JPOXMLDOC01-appb-C000004
[式中、R、R及びRは各々独立に、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のアルコキシカルボニル基又はアリール基を示し、R、R及びRのうち少なくとも一つは炭素数1~5のアルコキシ基であり、Rは(メタ)アクリロイル基、ビニル基、イソシアナート基、イミダゾール基、メルカプト基、アミノ基、メチルアミノ基、ジメチルアミノ基、ベンジルアミノ基、フェニルアミノ基、シクロヘキシルアミノ基、モルホリノ基、ピペラジノ基、ウレイド基又はグリシジル基を示し、nは1~10の整数を示す。]
The present invention is a circuit connecting material for electrically connecting two circuit members facing each other, comprising a thermoplastic resin, a radical polymerizable compound, a radical polymerization initiator and inorganic fine particles, and the radical polymerizable The content of the compound is 40% by mass or more based on the total amount of the circuit connecting material, and the content of a compound having a molecular weight of 1000 or less among the radical polymerizable compounds is 15% by mass or less based on the total amount of the circuit connecting material. A circuit connection material is provided wherein the content of the inorganic fine particles is 5 to 30% by mass based on the total amount of the circuit connection material and contains at least a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004
[Wherein R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms, or an aryl group. At least one of R 1 , R 2 and R 3 is an alkoxy group having 1 to 5 carbon atoms, and R 4 is a (meth) acryloyl group, a vinyl group, an isocyanate group, an imidazole group, a mercapto group, An amino group, a methylamino group, a dimethylamino group, a benzylamino group, a phenylamino group, a cyclohexylamino group, a morpholino group, a piperazino group, a ureido group, or a glycidyl group, and n represents an integer of 1 to 10. ]
 本発明の回路接続材料は、ラジカル硬化型であるため、低温且つ短時間で回路部材同士を接着することができる。また、本発明の回路接続材料によれば、回路部材を接続後に高温高湿環境下に放置した場合でも、回路部材との界面における剥離気泡の発生が十分に抑制され、且つ十分な接続信頼性が維持される。 Since the circuit connecting material of the present invention is a radical curing type, circuit members can be bonded together at a low temperature and in a short time. Further, according to the circuit connection material of the present invention, even when the circuit member is left in a high-temperature and high-humidity environment after being connected, generation of peeling bubbles at the interface with the circuit member is sufficiently suppressed, and sufficient connection reliability is achieved. Is maintained.
 本発明の回路接続材料においては、上記熱可塑性樹脂が、ガラス転移温度が25℃以上の樹脂を少なくとも1種含んでいてもよい。 In the circuit connection material of the present invention, the thermoplastic resin may contain at least one resin having a glass transition temperature of 25 ° C. or higher.
 本発明の回路接続材料において、上記無機微粒子の平均粒子径が1μm未満であってよい。 In the circuit connecting material of the present invention, the average particle size of the inorganic fine particles may be less than 1 μm.
 本発明の回路接続材料は、導電性粒子が分散されていてもよい。導電性粒子を分散させることにより、回路接続材料に導電性又は異方導電性を付与することができ、このような回路接続材料は、回路電極を有する回路部材同士を接続するための用途等により好適に用いることができる。また、このような回路接続材料で接続することにより、接続された回路電極間の接続抵抗を十分に低減することができる。 In the circuit connection material of the present invention, conductive particles may be dispersed. By dispersing the conductive particles, it is possible to impart conductivity or anisotropic conductivity to the circuit connection material. Such a circuit connection material can be used for connecting circuit members having circuit electrodes to each other. It can be used suitably. Moreover, the connection resistance between the connected circuit electrodes can be sufficiently reduced by connecting with such a circuit connection material.
 すなわち、本発明は、上記回路接続材料と該回路接続材料中に分散された導電性粒子とを含有する異方導電性接着剤であってもよい。なお、本明細書中「回路接続材料の全量」には導電性粒子は含まれない。 That is, the present invention may be an anisotropic conductive adhesive containing the circuit connection material and conductive particles dispersed in the circuit connection material. In this specification, “total amount of circuit connecting material” does not include conductive particles.
 本発明の回路接続材料の形状は、フィルム状とすることができる。このような回路接続材料は取扱い性に優れる。 The shape of the circuit connecting material of the present invention can be a film. Such a circuit connection material is excellent in handleability.
 本発明において、上記二つの回路部材のうち少なくとも一方は、ガラス基板であってよい。また、上記二つの回路部材のうち少なくとも一方は、フレキシブル基板であってよい。本発明の回路接続材料はこのような回路部材の接続に好適に使用することができる。 In the present invention, at least one of the two circuit members may be a glass substrate. Further, at least one of the two circuit members may be a flexible substrate. The circuit connecting material of the present invention can be suitably used for connecting such circuit members.
 本発明はまた、対向配置された一対の回路部材と、上記回路接続材料の硬化物を含み、上記一対の回路部材の間に介在しそれぞれの回路部材が有する回路電極同士が電気的に接続されるように当該回路部材同士を接続する接続部材と、を備える、回路接続構造体を提供する。 The present invention also includes a pair of circuit members arranged opposite to each other and a cured product of the circuit connection material, and the circuit electrodes interposed between the pair of circuit members are electrically connected to each other. A circuit connection structure including a connection member for connecting the circuit members to each other is provided.
 本発明の回路接続構造体は、上記回路接続材料の硬化物を含む接続部材により回路部材同士が接着されているため、高温高湿条件下に放置した場合でも、回路部材と接続部材との界面における剥離気泡の発生が十分に抑制され、且つ十分な接続信頼性が維持される。 In the circuit connection structure of the present invention, since the circuit members are bonded to each other by the connection member containing the cured product of the circuit connection material, the interface between the circuit member and the connection member even when left under high temperature and high humidity conditions The generation of exfoliated bubbles in is sufficiently suppressed, and sufficient connection reliability is maintained.
 本発明はまた、フィルム基材と、該フィルム基材の一方面上に設けられた上記回路接続材料を含むフィルム状接着剤と、を備える、接着フィルムを提供する。このような接着フィルムは、上記回路接続材料を含むフィルム状接着剤を備えるため、回路部材同士の接続に好適に利用することができる。また、本発明の接着フィルムは、リール状に巻き重ねて保管することができる。 The present invention also provides an adhesive film comprising a film base material and a film adhesive containing the circuit connecting material provided on one surface of the film base material. Since such an adhesive film is provided with the film adhesive containing the said circuit connection material, it can be utilized suitably for the connection of circuit members. In addition, the adhesive film of the present invention can be stored in a reel shape.
 従来の回路接続材料をフィルム基材の一方面上に塗布してリール状にして巻き重ねた場合、フィルム基材の他方面上にフィルム状接着剤が転写して、有効に使用できなくなる場合がある。これに対して本発明の接着フィルムでは、フィルム状接着剤が上記回路接続材料を含むものであるため、リール状に巻き重ねた場合でもフィルム基材の他方面上へのフィルム状接着剤の転写が、十分に抑制される。 When a conventional circuit connection material is applied on one side of a film base material and wound in a reel, the film adhesive may be transferred onto the other side of the film base material and cannot be used effectively. is there. On the other hand, in the adhesive film of the present invention, since the film adhesive contains the circuit connection material, even when the film adhesive is rolled up in a reel shape, the transfer of the film adhesive on the other surface of the film substrate is performed. Sufficiently suppressed.
 本発明はさらに、上記接着フィルムをリール状に巻き重ねてなる、巻重体を提供する。本発明の巻重体は、回路部材同士の接続に好適に利用することができる。また、本発明の巻重体では、フィルム基材の他方面上へのフィルム状接着剤の転写が、十分に抑制される。 The present invention further provides a wound body obtained by winding the adhesive film in a reel shape. The wound body of this invention can be utilized suitably for the connection of circuit members. Moreover, in the wound body of this invention, transfer of the film adhesive on the other surface of a film base material is fully suppressed.
 また、本発明は、熱可塑性樹脂、ラジカル重合性化合物、ラジカル重合開始剤及び無機微粒子を含有する組成物の、相対向する二つの回路部材を電気的に接続するための回路接続材料としての応用ということもできる。ここで、上記ラジカル重合性化合物の含有量は、上記組成物の全量基準で40質量%以上であり、上記ラジカル重合性化合物のうち分子量1000以下の化合物の含有量は、上記組成物の全量基準で15質量%以下であり、上記無機微粒子の含有量は、上記組成物の全量基準で5~30質量%であり、上記組成物は、少なくとも上記式(1)で表される化合物を含有する。 Further, the present invention is an application of a composition containing a thermoplastic resin, a radical polymerizable compound, a radical polymerization initiator and inorganic fine particles as a circuit connection material for electrically connecting two opposing circuit members. It can also be said. Here, the content of the radical polymerizable compound is 40% by mass or more based on the total amount of the composition, and the content of a compound having a molecular weight of 1000 or less among the radical polymerizable compounds is based on the total amount of the composition. And the content of the inorganic fine particles is 5 to 30% by mass based on the total amount of the composition, and the composition contains at least the compound represented by the formula (1). .
 また、本発明は、熱可塑性樹脂、ラジカル重合性化合物、ラジカル重合開始剤及び無機微粒子を含有する組成物の、相対向する二つの回路部材を電気的に接続するための回路接続材料の製造のための応用ということもできる。ここで、上記ラジカル重合性化合物の含有量は、上記組成物の全量基準で40質量%以上であり、上記ラジカル重合性化合物のうち分子量1000以下の化合物の含有量は、上記組成物の全量基準で15質量%以下であり、上記無機微粒子の含有量は、上記組成物の全量基準で5~30質量%であり、上記組成物は、少なくとも上記式(1)で表される化合物を含有する。 The present invention also provides a method for producing a circuit connection material for electrically connecting two opposing circuit members of a composition containing a thermoplastic resin, a radical polymerizable compound, a radical polymerization initiator and inorganic fine particles. It can also be said to be an application for. Here, the content of the radical polymerizable compound is 40% by mass or more based on the total amount of the composition, and the content of a compound having a molecular weight of 1000 or less among the radical polymerizable compounds is based on the total amount of the composition. And the content of the inorganic fine particles is 5 to 30% by mass based on the total amount of the composition, and the composition contains at least the compound represented by the formula (1). .
 これらの応用によれば、ラジカル重合型でありながら、回路部材を接続後に高温高湿環境下に放置した場合でも、回路部材との界面における剥離気泡の発生を十分に抑制でき且つ十分な接続信頼性を維持できる回路接続材料を得ることができる。 According to these applications, even if the circuit member is a radical polymerization type, even when the circuit member is left in a high-temperature and high-humidity environment after connection, the generation of exfoliated bubbles at the interface with the circuit member can be sufficiently suppressed and sufficient connection reliability can be achieved. Thus, a circuit connection material capable of maintaining the properties can be obtained.
 本発明によれば、ラジカル重合型でありながら、回路部材を接続後に高温高湿環境下に放置した場合でも、回路部材との界面における剥離気泡の発生を十分に抑制でき且つ十分な接続信頼性を維持できる回路接続材料と、該回路接続材料を用いて作製された回路接続構造体と、該回路接続材料からなる接続材料層を備える接着フィルムと、該接着フィルムの巻重体と、が提供される。 According to the present invention, even when the circuit member is left in a high-temperature and high-humidity environment after being connected, it is possible to sufficiently suppress the generation of exfoliated bubbles at the interface with the circuit member and to ensure sufficient connection reliability. Circuit connection material that can maintain the above, a circuit connection structure manufactured using the circuit connection material, an adhesive film including a connection material layer made of the circuit connection material, and a wound body of the adhesive film are provided. The
本発明の回路接続材料の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the circuit connection material of this invention. 本発明の接続構造体の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the connection structure of this invention. (a)~(c)は、回路部材を接続する一連の工程を示す工程図である。(A)-(c) is process drawing which shows a series of processes which connect a circuit member.
 以下、場合により図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as the case may be. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
 なお、本明細書において、(メタ)アクリル酸とはアクリル酸又はそれに対応するメタクリル酸を示し、(メタ)アクリレートとはアクリレート又はそれに対応するメタクリレートを意味し、(メタ)アクリロイル基とはアクリロイル基又はメタクリロイル基を意味する。 In the present specification, (meth) acrylic acid means acrylic acid or methacrylic acid corresponding thereto, (meth) acrylate means acrylate or methacrylate corresponding thereto, and (meth) acryloyl group means acryloyl group. Or means a methacryloyl group.
 本実施形態の回路接続材料は、相対向する二つの回路部材を電気的に接続するために好適に使用することができ、熱可塑性樹脂(以下、場合により「(a)成分」と称する。)と、ラジカル重合性化合物(以下、場合により「(b)成分」と称する。)と、ラジカル重合開始剤(以下、場合により「(c)成分」と称する。)と、無機微粒子(以下、場合により「(d)成分」と称する。)とを含有する。 The circuit connecting material of the present embodiment can be suitably used for electrically connecting two circuit members facing each other, and is a thermoplastic resin (hereinafter sometimes referred to as “component (a)”). A radical polymerizable compound (hereinafter sometimes referred to as “component (b)”), a radical polymerization initiator (hereinafter sometimes referred to as “component (c)”), and inorganic fine particles (hereinafter referred to as case). (Referred to as “component (d)”).
 本実施形態において、(b)成分の含有量は、回路接続材料の全量基準で40質量%以上であり、(b)成分のうち分子量1000以下の化合物の含有量は、回路接続材料の全量基準で15質量%以下であり、(d)成分の含有量は、5~30質量%である。 In this embodiment, the content of the component (b) is 40% by mass or more based on the total amount of the circuit connection material, and the content of the compound having a molecular weight of 1000 or less among the components (b) is based on the total amount of the circuit connection material. The content of the component (d) is 5 to 30% by mass.
 また、本実施形態の回路接続材料は、下記式(1)で表される化合物(以下、場合により「シランカップリング剤」と称する。)を含有する。 In addition, the circuit connection material of the present embodiment contains a compound represented by the following formula (1) (hereinafter sometimes referred to as “silane coupling agent”).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、R、R及びRは各々独立に、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のアルコキシカルボニル基又はアリール基を示し、R、R及びRのうち少なくとも一つは炭素数1~5のアルコキシ基であり、Rは(メタ)アクリロイル基、ビニル基、イソシアナート基、イミダゾール基、メルカプト基、アミノ基、メチルアミノ基、ジメチルアミノ基、ベンジルアミノ基、フェニルアミノ基、シクロヘキシルアミノ基、モルホリノ基、ピペラジノ基、ウレイド基又はグリシジル基を示し、nは1~10の整数を示す。 In formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms, Represents an aryl group, and at least one of R 1 , R 2 and R 3 is an alkoxy group having 1 to 5 carbon atoms, and R 4 represents a (meth) acryloyl group, a vinyl group, an isocyanate group, an imidazole group, a mercapto group Represents a group, amino group, methylamino group, dimethylamino group, benzylamino group, phenylamino group, cyclohexylamino group, morpholino group, piperazino group, ureido group or glycidyl group, and n represents an integer of 1 to 10.
 シランカップリング剤は、(b)成分のラジカル重合性化合物の一部として回路接続材料に配合されていてもよく、(a)~(d)成分以外の成分として回路接続材料に配合されていてもよい。例えば、式(1)のRが(メタ)アクリロイル基又はビニル基であるとき、シランカップリング剤は(b)成分に含まれる。 The silane coupling agent may be blended in the circuit connecting material as a part of the radically polymerizable compound of the component (b), and may be blended in the circuit connecting material as a component other than the components (a) to (d). Also good. For example, when R 4 in the formula (1) is a (meth) acryloyl group or a vinyl group, the silane coupling agent is included in the component (b).
 本実施形態の回路接続部材は、ラジカル硬化型であるため、低温且つ短時間で回路部材同士を接着することができる。また、本実施形態の回路接続材料によれば、回路部材を接続後に高温高湿環境下に放置した場合でも、回路部材との界面における剥離気泡の発生が十分に抑制され、且つ十分な接続信頼性が維持される。 Since the circuit connecting member of the present embodiment is a radical curing type, the circuit members can be bonded together at a low temperature and in a short time. Further, according to the circuit connection material of the present embodiment, even when the circuit member is left in a high-temperature and high-humidity environment after connection, the generation of peeling bubbles at the interface with the circuit member is sufficiently suppressed, and sufficient connection reliability is achieved. Sex is maintained.
 (a)成分としては、公知の熱可塑性樹脂を特に制限なく使用でき、公知の熱可塑性樹脂を複数種混合して使用することもできる。 As the component (a), a known thermoplastic resin can be used without particular limitation, and a plurality of known thermoplastic resins can also be mixed and used.
 (a)成分は、フィルム形成性が一層向上する観点から、ガラス転移温度が25℃以上の樹脂を少なくとも1種含むことが好ましい。このような樹脂としては、ポリイミド樹脂、ポリアミド樹脂、フェノキシ樹脂、ポリ(メタ)アクリレート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリビニルブチラール樹脂等が挙げられる。また、(a)成分は、ガラス転移温度が25℃未満の樹脂を含有していてもよい。なお、熱可塑性樹脂のガラス転移温度は一般的にDSC法やDVE法によって求めることができ、本明細書においてガラス転移温度はDSC法を用いて求めた値を示す。 (A) It is preferable that a component contains at least 1 sort (s) of resin whose glass transition temperature is 25 degreeC or more from a viewpoint which film forming property improves further. Examples of such resins include polyimide resins, polyamide resins, phenoxy resins, poly (meth) acrylate resins, polyester resins, polyurethane resins, and polyvinyl butyral resins. Moreover, (a) component may contain resin whose glass transition temperature is less than 25 degreeC. In addition, the glass transition temperature of a thermoplastic resin can generally be calculated | required by DSC method or DVE method, and the glass transition temperature in this specification shows the value calculated | required using DSC method.
 (a)成分の熱可塑性樹脂中には、シロキサン結合又はフッ素置換基(例えば、フッ素原子、フッ化アルキル基又はフッ化アリール基)が含まれていてもよい。 In the thermoplastic resin of component (a), a siloxane bond or a fluorine substituent (for example, a fluorine atom, a fluorinated alkyl group or a fluorinated aryl group) may be contained.
 (a)成分として二種以上の熱可塑性樹脂を混合して用いる場合、混合する熱可塑性樹脂同士が完全に相溶するか、ミクロ相分離が生じて白濁状態となることが好ましい。 When two or more kinds of thermoplastic resins are mixed and used as the component (a), it is preferable that the thermoplastic resins to be mixed are completely compatible with each other, or microphase separation occurs to become a cloudy state.
 回路接続材料は、(a)成分として、ガラス転移温度が25℃以上の樹脂を少なくとも1種含有することが好ましく、その樹脂の重量平均分子量は5.0×10~2.0×10であることが好ましく、1.0×10~1.5×10であることがより好ましい。 The circuit connecting material preferably contains at least one resin having a glass transition temperature of 25 ° C. or higher as the component (a), and the weight average molecular weight of the resin is 5.0 × 10 3 to 2.0 × 10 5. Preferably, it is 1.0 × 10 4 to 1.5 × 10 5 .
 (a)成分のうち、ガラス転移温度が25℃以上の樹脂は、重量平均分子量が5.0×10未満の場合、回路接続材料の接着力が劣る傾向や、フィルム形成性が十分に得られない傾向があり、重量平均分子量が2.0×10を超える場合、回路接続材料の他の成分との相溶性に劣り、回路接続材料の流動性を低下させることがある。これに対して、重量平均分子量が上記範囲の樹脂によれば、回路接続材料の接着力の低下及び流動性の低下を十分に抑制することができ、接続信頼性を一層向上させることができる。 Among the components (a), a resin having a glass transition temperature of 25 ° C. or higher has a tendency that the adhesiveness of the circuit connecting material is inferior and film formability is sufficiently obtained when the weight average molecular weight is less than 5.0 × 10 3. When the weight average molecular weight exceeds 2.0 × 10 5 , the compatibility with other components of the circuit connecting material may be inferior, and the fluidity of the circuit connecting material may be reduced. On the other hand, according to the resin having the weight average molecular weight within the above range, it is possible to sufficiently suppress the decrease in the adhesive strength and the fluidity of the circuit connecting material, and the connection reliability can be further improved.
 なお、本明細書において、重量平均分子量は、GPC法で測定されるポリスチレン換算の重量平均分子量を示す。 In addition, in this specification, a weight average molecular weight shows the weight average molecular weight of polystyrene conversion measured by GPC method.
 回路接続材料は、(a)成分として、公知のゴム成分を含有していてもよい。ゴム成分の添加により、応力緩和及び接着性の向上が期待できる。ゴム成分の具体例としては、アクリルゴム、ポリイソプレン、ポリブタジエン、カルボキシル基末端ポリブタジエン、水酸基末端ポリブタジエン、1,2-ポリブタジエン、カルボキシル基末端1,2-ポリブタジエン、水酸基末端1,2-ポリブタジエン、スチレン-ブタジエンゴム、水酸基末端スチレン-ブタジエンゴム、カルボキシル基、水酸基、カルボキシル化ニトリルゴム、水酸基末端ポリ(オキシプロピレン)、アルコキシシリル基末端ポリ(オキシプロピレン)、ポリ(オキシテトラメチレン)グリコール、ポリオレフィングリコール及びポリ-ε-カプロラクトン等が挙げられる。 The circuit connection material may contain a known rubber component as the component (a). By adding a rubber component, stress relaxation and improvement in adhesion can be expected. Specific examples of the rubber component include acrylic rubber, polyisoprene, polybutadiene, carboxyl group-terminated polybutadiene, hydroxyl group-terminated polybutadiene, 1,2-polybutadiene, carboxyl group-terminated 1,2-polybutadiene, hydroxyl group-terminated 1,2-polybutadiene, and styrene. Butadiene rubber, hydroxyl-terminated styrene-butadiene rubber, carboxyl group, hydroxyl group, carboxylated nitrile rubber, hydroxyl-terminated poly (oxypropylene), alkoxysilyl group-terminated poly (oxypropylene), poly (oxytetramethylene) glycol, polyolefin glycol and poly -Ε-caprolactone and the like.
 ゴム成分の重量平均分子量は、2.0×10~1.0×10であることが好ましい。ゴム成分の重量平均分子量が2.0×10未満であると十分な応力緩和効果が得られなくなる場合があり、1.0×10を超えると回路接続材料の流動性が低下する場合がある。すなわち、重量平均分子量が上記範囲にあるゴム成分によれば、回路接続材料の流動性の低下を十分に抑制しつつ、一層優れた応力緩和効果を得ることができる。 The weight average molecular weight of the rubber component is preferably 2.0 × 10 5 to 1.0 × 10 6 . If the weight average molecular weight of the rubber component is less than 2.0 × 10 5 , a sufficient stress relaxation effect may not be obtained, and if it exceeds 1.0 × 10 6 , the fluidity of the circuit connecting material may decrease. is there. That is, according to the rubber component having the weight average molecular weight within the above range, a more excellent stress relaxation effect can be obtained while sufficiently suppressing the decrease in fluidity of the circuit connecting material.
 ゴム成分としては、接着性向上の観点から、高極性基であるシアノ基又はカルボキシル基を側鎖又は末端に有するゴム成分が好ましい。また、ゴム成分は1種を単独で又は2種以上を混合して用いることができる。 As the rubber component, a rubber component having a cyano group or a carboxyl group, which is a highly polar group, in the side chain or terminal is preferable from the viewpoint of improving adhesiveness. Moreover, a rubber component can be used individually by 1 type or in mixture of 2 or more types.
 (a)成分のうちガラス転移温度が25℃以上の熱可塑性樹脂の含有量は、回路接続材料の全量基準で10~50質量%であることが好ましく、20~40質量%であることがより好ましい。 Of the component (a), the content of the thermoplastic resin having a glass transition temperature of 25 ° C. or higher is preferably 10 to 50% by mass, more preferably 20 to 40% by mass, based on the total amount of the circuit connecting material. preferable.
 (a)成分のうちガラス転移温度が25℃以上の熱可塑性樹脂の含有量が、10質量%未満であると、フィルム形成性に劣る場合があり、50質量%を超えると、回路接続材料の流動性が低下する場合がある。これに対して、上記範囲であると、回路接続材料の接着力の低下及び流動性の低下を十分に抑制しつつ、一層優れたフィルム形成性及び接続信頼性を得ることができる。 If the content of the thermoplastic resin having a glass transition temperature of 25 ° C. or higher among the components (a) is less than 10% by mass, the film-forming property may be inferior. Fluidity may decrease. On the other hand, when it is in the above-mentioned range, it is possible to obtain more excellent film formability and connection reliability while sufficiently suppressing the decrease in the adhesive force and the fluidity of the circuit connection material.
 (b)成分としては、公知のラジカル重合性化合物を使用することができる。また(b)成分は、1種を単独で又は2種以上を混合して用いることができる。 As the component (b), a known radical polymerizable compound can be used. Moreover, (b) component can be used individually by 1 type or in mixture of 2 or more types.
 本実施形態において、(b)成分の含有量は、回路接続材料の全量基準で40質量%以上であり、好ましくは40~70質量%であり、より好ましくは45~65質量%である。 In this embodiment, the content of the component (b) is 40% by mass or more, preferably 40 to 70% by mass, and more preferably 45 to 65% by mass based on the total amount of the circuit connecting material.
 また、本実施形態において、(b)成分としては、分子量が1000を超える化合物(以下、場合により「(b-1)成分」と称する。)を主として使用し、分子量1000以下の化合物(以下、場合により「(b-2)成分」と称する。)の含有量は、回路接続材料の全量基準で15質量%以下とする。(b-1)成分の含有量を15質量%以下とすることにより、上述の本発明の効果を顕著に得ることができる。 In this embodiment, as the component (b), a compound having a molecular weight exceeding 1000 (hereinafter sometimes referred to as “component (b-1)”) is mainly used, and a compound having a molecular weight of 1000 or less (hereinafter referred to as “component (b))”. The content of “(b-2) component” in some cases is 15% by mass or less based on the total amount of the circuit connecting material. By making the content of the component (b-1) 15% by mass or less, the above-described effects of the present invention can be remarkably obtained.
 (b-2)成分の含有量は、15質量%以下であることが好ましく、12.5質量%以下であることがより好ましい。なお、(b-2)成分の含有量は、2.5質量%以上であってよく、5質量%以上であってもよい。 The content of the component (b-2) is preferably 15% by mass or less, and more preferably 12.5% by mass or less. In addition, the content of the component (b-2) may be 2.5% by mass or more, and may be 5% by mass or more.
 (b-1)成分の含有量は、回路接続材料の全量基準で、25質量%以上であり、好ましくは30質量%以上であり、より好ましくは35質量%以上である。また、(b-1)成分の含有量は、55質量%以下であってよく、50質量%以下であってもよい。 The content of the component (b-1) is 25% by mass or more, preferably 30% by mass or more, more preferably 35% by mass or more, based on the total amount of the circuit connecting material. Further, the content of the component (b-1) may be 55% by mass or less and may be 50% by mass or less.
 (b-1)成分の分子量は、好ましくは20000以下であり、より好ましくは15000以下である。なお、(b-1)成分が分子量分布を有する場合は、(b-1)成分の重量平均分子量を、(b-1)の分子量とみなすことができる。 The molecular weight of the component (b-1) is preferably 20000 or less, more preferably 15000 or less. When the component (b-1) has a molecular weight distribution, the weight average molecular weight of the component (b-1) can be regarded as the molecular weight of (b-1).
 本実施形態において、(b-1)成分の含有量Cに対する(b-2)成分の含有量Cの比(質量比)C/Cは、好ましくは0~0.6であり、より好ましくは0.05~0.4であり、さらに好ましくは0.075~0.35である。 In the present embodiment, the ratio (mass ratio) C 2 / C 1 of the content C 2 of the component (b-2) to the content C 1 of the component (b-1) is preferably 0 to 0.6. More preferably, it is 0.05 to 0.4, and further preferably 0.075 to 0.35.
 (b-1)成分としては、例えば、エポキシ(メタ)アクリレートオリゴマー、ウレタン(メタ)アクリレートオリゴマー、ポリエーテル(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー等のオリゴマー;トリメチロールプロパントリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリアルキレングリコールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、イソシアヌル酸変性2官能(メタ)アクリレート、イソシアヌル酸変性3官能(メタ)アクリレート、ビスフェノールフルオレンジグリシジルエーテルのグリシジル基に(メタ)アクリル酸を付加させたエポキシ(メタ)アクリレート、ビスフェノールフルオレンジグリシジルエーテルのグリシジル基にエチレングリコール及び/又はプロピレングリコールを付加させた化合物に(メタ)アクリロイルオキシ基を導入した化合物等の多官能(メタ)アクリレート;が挙げられる。これらの化合物は、1種を単独で又は2種以上を混合して用いることができる。 Examples of the component (b-1) include oligomers such as epoxy (meth) acrylate oligomers, urethane (meth) acrylate oligomers, polyether (meth) acrylate oligomers, and polyester (meth) acrylate oligomers; trimethylolpropane tri (meth) Acrylate, polyethylene glycol di (meth) acrylate, polyalkylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, neopentyl glycol di (meth) acrylate, dipentaerythritol Hexa (meth) acrylate, isocyanuric acid modified bifunctional (meth) acrylate, isocyanuric acid modified trifunctional (meth) acrylate, bisphenol fluorenediglycol Epoxy (meth) acrylate obtained by adding (meth) acrylic acid to glycidyl group of diether, and (meth) acryloyloxy group added to compound obtained by adding ethylene glycol and / or propylene glycol to glycidyl group of bisphenol fluorenediglycidyl ether And polyfunctional (meth) acrylates such as introduced compounds. These compounds can be used individually by 1 type or in mixture of 2 or more types.
 また、(b-2)成分としては、ペンタエリスリトール(メタ)アクリレート、2-シアノエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリール(メタ)アクリレート、2-(メタ)アクリロイロキシエチルホスフェート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、(メタ)アクリロイルモルホリン等が挙げられる。これらの化合物は、1種を単独で又は2種以上を混合して用いることができる。 The component (b-2) includes pentaerythritol (meth) acrylate, 2-cyanoethyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate. 2- (2-ethoxyethoxy) ethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-hexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, hydroxy Propyl (meth) acrylate, isobornyl (meth) acrylate, isodecyl (meth) acrylate, isooctyl (meth) acrylate, n-lauryl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2 Phenoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate , (Meth) acryloylmorpholine, and the like. These compounds can be used individually by 1 type or in mixture of 2 or more types.
 回路接続材料は、(b)成分として、分子内に2つ以上の(メタ)アクリロイル基を有する化合物を少なくとも1種含有することが好ましく、(b-1)成分として、分子内に2つ以上の(メタ)アクリロイル基を有する化合物を少なくとも1種含有することがより好ましい。 The circuit connecting material preferably contains at least one compound having two or more (meth) acryloyl groups in the molecule as the component (b), and two or more in the molecule as the component (b-1). It is more preferable to contain at least one compound having a (meth) acryloyl group.
 (b)成分としては、(メタ)アクリロイル基を有する化合物が好ましいが、(b)成分としてアリル基、マレイミド基及びビニル基等の活性ラジカルによって重合する官能基を有する化合物を用いることもできる。このような(b)成分の具体例としては、N-ビニルイミダゾール、N-ビニルピリジン、N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルカプロラクタム、4,4’-ビニリデンビス(N,N-ジメチルアニリン)、N-ビニルアセトアミド、N,N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド、N,N-ジエチルアクリルアミド、メチロールアクリルアミド、4,4’-ジフェニルメタンビスマレイミド、3,3’-ジメチル-5,5’-4,4’-ジフェニルメタンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)へキサン等が挙げられる。 As the component (b), a compound having a (meth) acryloyl group is preferable, but as the component (b), a compound having a functional group that is polymerized by an active radical such as an allyl group, a maleimide group, and a vinyl group can also be used. Specific examples of such component (b) include N-vinylimidazole, N-vinylpyridine, N-vinylpyrrolidone, N-vinylformamide, N-vinylcaprolactam, 4,4′-vinylidenebis (N, N— Dimethylaniline), N-vinylacetamide, N, N-dimethylacrylamide, N-isopropylacrylamide, N, N-diethylacrylamide, methylolacrylamide, 4,4'-diphenylmethane bismaleimide, 3,3'-dimethyl-5,5 Examples include '-4,4'-diphenylmethane bismaleimide and 1,6-bismaleimide- (2,2,4-trimethyl) hexane.
 また、回路接続材料は、(b)成分として、リン酸エステル構造を有するラジカル重合性化合物を含有していてもよい。リン酸エステル構造を有するラジカル重合性化合物としては、例えば、下記式(2)~(4)で表されるリン酸エステル構造を有するラジカル重合性化合物が挙げられる。このような化合物を配合することで、金属等の無機物表面に対する接着強度が一層向上し、回路電極同士の接着に一層有効な回路接続材料が得られる。 Further, the circuit connecting material may contain a radical polymerizable compound having a phosphate ester structure as the component (b). Examples of the radical polymerizable compound having a phosphate ester structure include radical polymerizable compounds having a phosphate ester structure represented by the following formulas (2) to (4). By blending such a compound, the adhesive strength to the surface of an inorganic substance such as a metal is further improved, and a circuit connection material that is more effective for adhesion between circuit electrodes can be obtained.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(2)中、Rは(メタ)アクリロイルオキシ基を示し、Rは水素原子又はメチル基を示し、w及びxは各々独立に1~8の整数を示す。式中、R同士、R同士、w同士及びx同士はそれぞれ同一でも異なっていてもよい。 In formula (2), R 5 represents a (meth) acryloyloxy group, R 6 represents a hydrogen atom or a methyl group, and w and x each independently represents an integer of 1 to 8. In the formula, R 5 s , R 6 s , w s, and x s may be the same or different.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(3)中、Rは(メタ)アクリロイルオキシ基を示し、y及びzは各々独立に1~8の整数を示す。式中、R同士、y同士及びz同士はそれぞれ同一でも異なっていてもよい。 In the formula (3), R 7 represents a (meth) acryloyloxy group, and y and z each independently represents an integer of 1 to 8. In the formula, R 7 s , y s, and z s may be the same or different.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(4)中、Rは(メタ)アクリロイルオキシ基を示し、Rは水素原子又はメチル基を示し、a及びbは各々独立に1~8の整数を示す。 In the formula (4), R 8 represents a (meth) acryloyloxy group, R 9 represents a hydrogen atom or a methyl group, and a and b each independently represents an integer of 1 to 8.
 リン酸エステル構造を有するラジカル重合性化合物の具体例としては、アシッドホスホオキシエチルメタクリレート、アシッドホスホオキシエチルアクリレート、アシッドホスホオキシプロピルメタクリレート、アシッドホスホオキシポリオキシエチレングリコールモノメタクリレート、アシッドホスホオキシポリオキシプロピレングリコールモノメタクリレート、2,2’-ジ(メタ)アクリロイロキシジエチルホスフェート、EO変性リン酸ジメタクリレート、リン酸変性エポキシアクリレート及びリン酸ビニル等が挙げられる。 Specific examples of the radical polymerizable compound having a phosphate ester structure include acid phosphooxyethyl methacrylate, acid phosphooxyethyl acrylate, acid phosphooxypropyl methacrylate, acid phosphooxypolyoxyethylene glycol monomethacrylate, and acid phosphooxypolyoxypropylene. Examples include glycol monomethacrylate, 2,2′-di (meth) acryloyloxydiethyl phosphate, EO-modified phosphate dimethacrylate, phosphate-modified epoxy acrylate, and vinyl phosphate.
 リン酸エステル構造を有するラジカル重合性化合物の含有量は、回路接続材料の全量基準で0.01~10質量%であることが好ましく、0.5~5質量%であることがより好ましい。 The content of the radically polymerizable compound having a phosphate ester structure is preferably 0.01 to 10% by mass, more preferably 0.5 to 5% by mass based on the total amount of the circuit connecting material.
 また、リン酸エステル構造を有するラジカル重合性化合物として、無水リン酸と2-ヒドロキシエチル(メタ)アクリレートとを反応させた化合物を用いることもできる。このようなリン酸エステル構造を有するラジカル重合性化合物としては、モノ(2-メタクリロイルオキシエチル)アシッドフォスフェート、ジ(2-メタクリロイルオキシエチル)アシッドフォスフェート等がある。なお、リン酸エステル構造を有する化合物は、1種を単独で用いても2種以上を混合して用いてもよい。 Also, as a radical polymerizable compound having a phosphate ester structure, a compound obtained by reacting phosphoric anhydride and 2-hydroxyethyl (meth) acrylate can be used. Examples of such radically polymerizable compounds having a phosphate ester structure include mono (2-methacryloyloxyethyl) acid phosphate, di (2-methacryloyloxyethyl) acid phosphate, and the like. In addition, the compound which has a phosphate ester structure may be used individually by 1 type, or may mix and use 2 or more types.
 リン酸エステル構造を有するラジカル重合性化合物は、(b-1)成分であっても(b-2)成分であってもよく、(b-2)成分であることが好ましい。 The radical polymerizable compound having a phosphoric ester structure may be the component (b-1) or the component (b-2), and is preferably the component (b-2).
 回路接続材料はまた、上述のように、式(1)で表されるシランカップリング剤のうちラジカル重合性を有するものを(b)成分として含有していてもよい。 As described above, the circuit connecting material may also contain, as component (b), a radically polymerizable material among the silane coupling agents represented by the formula (1).
 (c)成分のラジカル重合開始剤としては、例えば、加熱により分解して遊離ラジカルを発生する化合物が挙げられ、過酸化物及びアゾ化合物等の公知の化合物を用いることができる。 Examples of the radical polymerization initiator of component (c) include compounds that decompose by heating to generate free radicals, and known compounds such as peroxides and azo compounds can be used.
 (c)成分は、安定性、反応性及び相溶性を兼ね備える観点から、1分間半減期温度が90~175℃であり、且つ分子量が180~1000である過酸化物を、好適に用いることができる。ここで「1分間半減期温度」とは、半減期が1分となる温度をいい、「半減期」とは、化合物の濃度が初期値の半分に減少するまでの時間をいう。 As the component (c), a peroxide having a one-minute half-life temperature of 90 to 175 ° C. and a molecular weight of 180 to 1000 is preferably used from the viewpoint of having stability, reactivity, and compatibility. it can. Here, “one-minute half-life temperature” refers to the temperature at which the half-life is 1 minute, and “half-life” refers to the time until the concentration of the compound decreases to half of the initial value.
 (c)成分の具体例としては、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジラウロイルパーオキサイド、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシネオヘプタノエート、t-アミルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキシヘキサヒドロテレフタレート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエート、3-ヒドロキシ-1,1-ジメチルブチルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシネオデカノエート、t-アミルパーオキシ-2-エチルヘキサノエート、3-メチルベンゾイルパーオキサイド、4-メチルベンゾイルパーオキサイド、ジ(3-メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、ジ(4-メチルベンゾイル)パーオキサイド、2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、ジメチル-2,2’-アゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノバレリン酸)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(3-メチルベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシベンゾエート、ジブチルパーオキシトリメチルアジペート、t-アミルパーオキシノルマルオクトエート、t-アミルパーオキシイソノナノエート、t-アミルパーオキシベンゾエート等が挙げられる。なお、(c)成分は、1種を単独で用いてもよく、2種以上の化合物を混合して用いてもよい。 Specific examples of the component (c) include 1,1,3,3-tetramethylbutylperoxyneodecanoate, di (4-t-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxy Dicarbonate, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, dilauroyl peroxide, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t -Hexylperoxyneodecanoate, t-butylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2, 5-Dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane, t-hexylperoxy -2-Ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyneoheptanoate, t-amylperoxy-2-ethylhexanoate, di-t-butylper Oxyhexahydroterephthalate, t-amylperoxy-3,5,5-trimethylhexanoate, 3-hydroxy-1,1-dimethylbutylperoxyneodecanoate, 1,1,3,3-tetramethylbutyl Peroxy-2-ethylhexanoate, t-amylperoxyneodecanoate, t-amylperoxy-2-ethylhexanoate, 3-methylbenzoyl peroxide, 4-methylbenzoyl peroxide, di (3 -Methylbenzoyl) peroxide, dibenzoyl peroxide, di (4-methylbenzoy) ) Peroxide, 2,2′-azobis-2,4-dimethylvaleronitrile, 1,1′-azobis (1-acetoxy-1-phenylethane), 2,2′-azobisisobutyronitrile, 2, 2′-azobis (2-methylbutyronitrile), dimethyl-2,2′-azobisisobutyronitrile, 4,4′-azobis (4-cyanovaleric acid), 1,1′-azobis (1-cyclohexane) Carbonitrile), t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5- Dimethyl-2,5-di (3-methylbenzoylperoxy) hexane, t-butylperoxy-2-ethylhexyl monocarbonate , T-hexylperoxybenzoate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxybenzoate, dibutylperoxytrimethyladipate, t-amylperoxynormal octoate, t- Examples include amyl peroxy isononanoate and t-amyl peroxybenzoate. In addition, (c) component may be used individually by 1 type, and may mix and use 2 or more types of compounds.
 (c)成分としては、光照射(例えば、波長150nm~750nmの光照射)によってラジカルを発生する化合物を用いることもできる。 As the component (c), a compound that generates radicals by light irradiation (for example, light irradiation with a wavelength of 150 nm to 750 nm) can also be used.
 このような化合物としては、例えば、Photoinitiation,Photopolymerization,and Photocuring,J.-P. Fouassier,Hanser Publishers(1995年)、p17~p35に記載されているα-アセトアミノフェノン誘導体及びホスフィンオキサイド誘導体が、光照射に対する感度が高いためより好ましい。これらの化合物は、1種を単独で用いてもよく、上記過酸化物又はアゾ化合物と混合して用いてもよい。 Such compounds include, for example, Photoinitiation, Photopolymerization, and Photocuring, J. Biol. -P. Α-acetaminophenone derivatives and phosphine oxide derivatives described in Fouassier, Hanser Publishers (1995), p17 to p35 are more preferable because of their high sensitivity to light irradiation. These compounds may be used alone or in combination with the above peroxide or azo compound.
 回路部材の回路電極の腐食を抑えるために、(c)成分に含有される塩素イオン及び有機酸の量は、それぞれ10000質量ppm以下であることが好ましく、5000質量ppm以下であることがより好ましい。なお、この上限値以下であれば回路電極の腐食が十分に抑制されることから、(c)成分に含有される塩素イオン及び有機酸の量は、500質量ppm以上であってもよい。 In order to suppress the corrosion of the circuit electrode of the circuit member, the amount of chlorine ion and organic acid contained in the component (c) is preferably 10000 mass ppm or less, more preferably 5000 mass ppm or less. . In addition, since corrosion of a circuit electrode will fully be suppressed if it is below this upper limit, the quantity of the chlorine ion and organic acid which are contained in (c) component may be 500 mass ppm or more.
 また、(c)成分は、室温(25℃)、常圧下での24時間の開放放置後の質量保持率が、20質量%以上であることが好ましい。このような質量保持率を有する(c)成分によれば、回路接続材料の保存安定性が一層向上する。なお、質量保持率は、放置前後の重量を測定することにより測定することができる。 The component (c) preferably has a mass retention of 20% by mass or more after being left open for 24 hours at room temperature (25 ° C.) and normal pressure. According to the component (c) having such a mass retention rate, the storage stability of the circuit connecting material is further improved. The mass retention rate can be measured by measuring the weight before and after standing.
 (c)成分の含有量は、回路接続材料の全量基準で0.1~30質量%であることが好ましく、1~20質量%であることがより好ましい。(c)成分の含有量が上記範囲であると、十分な接着力を得るための反応率と長いポットライフとをより高いレベルで両立することができる。 The content of the component (c) is preferably 0.1 to 30% by mass and more preferably 1 to 20% by mass based on the total amount of the circuit connecting material. When the content of the component (c) is in the above range, the reaction rate for obtaining a sufficient adhesive force and a long pot life can be achieved at a higher level.
 (d)成分の無機微粒子としては、公知の無機微粒子を特に制限無く用いることができる。(d)成分としては、例えば、シリカ微粒子、アルミナ微粒子、シリカ-アルミナ微粒子、チタニア微粒子、ジルコニア微粒子等の金属酸化物微粒子が挙げられる。また、(d)成分は、1種を単独で又は2種以上を混合して用いることができる。 As the inorganic fine particles of component (d), known inorganic fine particles can be used without particular limitation. Examples of the component (d) include metal oxide fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles, and zirconia fine particles. Moreover, (d) component can be used individually by 1 type or in mixture of 2 or more types.
 (d)成分の平均粒子径は、1μm未満であることが好ましく、0.1~0.5μmであることがより好ましい。なお、ここでいう平均粒子径とは、回路接続材料中に存在するときの長軸方向のモード径である。(d)成分の平均1次粒子径は、100nm以下であることが好ましく、10~30nmであることがより好ましい。なお、本明細書において、平均粒子径は、画像解析により測定される値を示す。 The average particle size of the component (d) is preferably less than 1 μm, more preferably 0.1 to 0.5 μm. Here, the average particle diameter is the mode diameter in the major axis direction when present in the circuit connecting material. The average primary particle diameter of the component (d) is preferably 100 nm or less, more preferably 10 to 30 nm. In addition, in this specification, an average particle diameter shows the value measured by image analysis.
 (d)成分としては、分散性に優れることから、表面を有機基で修飾した微粒子を好適に用いることができる。有機基としては、例えば、ジメチルシロキサン基、ジフェニルシロキサン基等が挙げられる。 As the component (d), fine particles whose surface is modified with an organic group can be suitably used because of excellent dispersibility. Examples of the organic group include a dimethylsiloxane group and a diphenylsiloxane group.
 (d)成分の含有量は、回路接続材料の全量基準で5~30質量%であることが好ましく、10~20質量%であることがより好ましい。(d)成分の含有量が上記範囲であると、接続する回路電極間の接続抵抗を一層低減することができ、且つ本発明の効果が一層顕著に奏される。 The content of the component (d) is preferably 5 to 30% by mass and more preferably 10 to 20% by mass based on the total amount of the circuit connecting material. When the content of the component (d) is in the above range, the connection resistance between the circuit electrodes to be connected can be further reduced, and the effect of the present invention is more remarkably exhibited.
 式(1)で表されるシランカップリング剤は、上述のとおり(b)成分の一部として回路接続材料に配合されていてもよく、(a)~(d)成分以外の成分として回路接続材料に配合されていてもよい。 The silane coupling agent represented by the formula (1) may be blended in the circuit connection material as a part of the component (b) as described above, and the circuit connection as a component other than the components (a) to (d). You may mix | blend with material.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(1)中、R、R及びRは各々独立に、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のアルコキシカルボニル基又はアリール基を示し、R、R及びRのうち少なくとも一つは炭素数1~5のアルコキシ基であり、Rは(メタ)アクリロイル基、ビニル基、イソシアナート基、イミダゾール基、メルカプト基、アミノ基、メチルアミノ基、ジメチルアミノ基、ベンジルアミノ基、フェニルアミノ基、シクロヘキシルアミノ基、モルホリノ基、ピペラジノ基、ウレイド基又はグリシジル基を示し、nは1~10の整数を示す。 In formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms, Represents an aryl group, and at least one of R 1 , R 2 and R 3 is an alkoxy group having 1 to 5 carbon atoms, and R 4 represents a (meth) acryloyl group, a vinyl group, an isocyanate group, an imidazole group, a mercapto group Represents a group, amino group, methylamino group, dimethylamino group, benzylamino group, phenylamino group, cyclohexylamino group, morpholino group, piperazino group, ureido group or glycidyl group, and n represents an integer of 1 to 10.
 式(1)のRが(メタ)アクリロイル基又はビニル基であるとき、シランカップリング剤は(b)成分に含まれる。 When R 4 in the formula (1) is a (meth) acryloyl group or a vinyl group, the silane coupling agent is included in the component (b).
 R、R及びRは、メチル基、エチル基、メトキシ基又はエトキシ基であることが好ましく、メトキシ基又はエトキシ基であることがより好ましい。 R 1 , R 2 and R 3 are preferably a methyl group, an ethyl group, a methoxy group or an ethoxy group, and more preferably a methoxy group or an ethoxy group.
 Rは、(メタ)アクリロイル基、グリシジル基、メルカプト基又はビニル基であることが好ましく、(メタ)アクリロイル基又はグリシジル基であることがより好ましい。 R 4 is preferably a (meth) acryloyl group, a glycidyl group, a mercapto group or a vinyl group, and more preferably a (meth) acryloyl group or a glycidyl group.
 シランカップリング剤の含有量は、回路接続材料の全量基準で0.1~10質量%であることが好ましく、0.25~5質量%であることがより好ましい。シランカップリング剤の含有量が上記範囲であると、回路部材と接続部材との界面における剥離気泡の発生を一層顕著に抑制することができるとともに、より長期間のポットライフを確保することができる。 The content of the silane coupling agent is preferably 0.1 to 10% by mass and more preferably 0.25 to 5% by mass based on the total amount of the circuit connecting material. When the content of the silane coupling agent is within the above range, generation of exfoliated bubbles at the interface between the circuit member and the connecting member can be more significantly suppressed, and a longer pot life can be secured. .
 本実施形態の回路接続材料は、上記以外の成分を含有していてもよい。例えば、回路接続材料には、硬化速度の制御、貯蔵安定性の付与等の理由で、安定化剤を添加してもよい。安定化剤としては、ベンゾキノン、ハイドロキノン等のキノン誘導体;4-メトキシフェノール、4-t-ブチルカテコール等のフェノール誘導体;2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル等のアミノキシル誘導体;テトラメチルピペリジルメタクリレート等のヒンダードアミン誘導体;等を好適に用いることができる。 The circuit connection material of this embodiment may contain components other than those described above. For example, a stabilizer may be added to the circuit connection material for reasons such as controlling the curing rate and imparting storage stability. Stabilizers include quinone derivatives such as benzoquinone and hydroquinone; phenol derivatives such as 4-methoxyphenol and 4-t-butylcatechol; 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy- An aminoxyl derivative such as 2,2,6,6-tetramethylpiperidine-1-oxyl; a hindered amine derivative such as tetramethylpiperidyl methacrylate; and the like can be preferably used.
 回路接続材料が安定化剤を含有するとき、該安定化剤の含有量は、回路接続材料の全量基準で0.01~15質量%とすることが好ましく、0.05~10質量%とすることがより好ましい。安定化剤の含有量が0.01質量%未満であると添加効果が十分に得られない場合があり、15質量%を超えると重合反応が阻害され、低温速硬化性に劣る場合がある。 When the circuit connecting material contains a stabilizer, the content of the stabilizer is preferably 0.01 to 15% by mass, and 0.05 to 10% by mass based on the total amount of the circuit connecting material. It is more preferable. When the content of the stabilizer is less than 0.01% by mass, the effect of addition may not be sufficiently obtained. When the content exceeds 15% by mass, the polymerization reaction may be inhibited, and the low temperature rapid curability may be inferior.
 また、本実施形態の回路接続材料には、応力緩和及び耐熱性の向上を目的として、有機微粒子を添加してもよい。有機微粒子としては、公知の有機微粒子を特に制限なく使用できる。 Moreover, organic fine particles may be added to the circuit connection material of the present embodiment for the purpose of stress relaxation and heat resistance improvement. As the organic fine particles, known organic fine particles can be used without particular limitation.
 有機微粒子としては、例えば、シリコーン微粒子、メタクリレート-ブタジエン-スチレン微粒子、アクリル-シリコーン微粒子、ポリアミド微粒子、ポリイミド微粒子等が挙げられる。これらの有機微粒子は、均一な構造でもコア-シェル型構造となっていてもよい。 Examples of the organic fine particles include silicone fine particles, methacrylate-butadiene-styrene fine particles, acrylic-silicone fine particles, polyamide fine particles, and polyimide fine particles. These organic fine particles may have a uniform structure or a core-shell structure.
 回路接続材料が有機微粒子を含有するとき、該有機微粒子の含有量は、回路接続材料の全量基準で1.5~20質量%とすることが好ましく、2~15質量%とすることがより好ましい。 When the circuit connecting material contains organic fine particles, the content of the organic fine particles is preferably 1.5 to 20% by mass, more preferably 2 to 15% by mass based on the total amount of the circuit connecting material. .
 本実施形態の回路接続材料には、導電性粒子が分散されていてもよい。これにより、回路接続材料に導電性又は異方導電性を付与することができ、このような回路接続材料は、回路電極を有する回路部材同士の接続用途等により好適に用いることができる。また、このような回路接続材料で接続することにより、接続された回路電極間の接続抵抗を十分に低減することができる。 In the circuit connection material of the present embodiment, conductive particles may be dispersed. Thereby, electroconductivity or anisotropic conductivity can be provided to a circuit connection material, and such a circuit connection material can be used suitably for the connection use etc. of the circuit members which have a circuit electrode. Moreover, the connection resistance between the connected circuit electrodes can be sufficiently reduced by connecting with such a circuit connection material.
 すなわち、本発明は、回路接続材料と該回路接続材料中に分散された導電性粒子とを含有する異方導電性接着剤であってもよい。なお、本明細書中「回路接続材料の全量」には導電性粒子は含まれない。 That is, the present invention may be an anisotropic conductive adhesive containing a circuit connecting material and conductive particles dispersed in the circuit connecting material. In this specification, “total amount of circuit connecting material” does not include conductive particles.
 導電性粒子としては、Au、Ag、Pd、Ni、Cu、はんだ等の金属からなる金属粒子、カーボン粒子等が挙げられる。また、導電性粒子は、ガラス、セラミック、プラスチック等の非導電性材料からなる粒子を核体とし、この核体に上記金属、金属粒子、カーボン等の導電性材料を被覆したものであってもよい。 Examples of the conductive particles include metal particles made of metal such as Au, Ag, Pd, Ni, Cu, and solder, and carbon particles. In addition, the conductive particles may be particles made of a non-conductive material such as glass, ceramic, plastic, etc. as a core, and the core is coated with a conductive material such as the metal, metal particles, or carbon. Good.
 また、導電性粒子としては、熱溶融金属粒子が好ましい。このような導電性粒子は、加熱加圧による変形性を有するので、回路部材同士を接続する際に、導電性粒子と電極との接触面積が増加して回路部材間の接続信頼性が向上する傾向にある。 Further, as the conductive particles, hot-melt metal particles are preferable. Since such conductive particles have deformability due to heat and pressure, when connecting circuit members, the contact area between the conductive particles and the electrodes increases, and the connection reliability between the circuit members is improved. There is a tendency.
 導電性粒子の配合量は、異方導電接着剤の総体積に対して0.1~30体積%とすることが好ましく、0.1~10体積%とすることがより好ましい。導電性粒子の配合量が0.1体積%未満であると導電性が劣る傾向があり、30体積%を超えると回路電極間の短絡が生じやすくなる傾向がある。なお、導電性粒子の配合量は、硬化前の回路接続材料の各成分の23℃での体積をもとに決定される。各成分の体積は、比重を利用して質量を体積に換算することで求めることができる。また、体積を測定しようとする成分を溶解したり膨潤させたりせず、その成分をよくぬらすことができる適当な溶媒(水、アルコール等)をメスシリンダー等に入れ、そこへ測定対象の成分を投入して増加した体積をその成分の体積として求めることもできる。 The blending amount of the conductive particles is preferably 0.1 to 30% by volume, more preferably 0.1 to 10% by volume with respect to the total volume of the anisotropic conductive adhesive. If the blending amount of the conductive particles is less than 0.1% by volume, the conductivity tends to be inferior, and if it exceeds 30% by volume, a short circuit between the circuit electrodes tends to occur. In addition, the compounding quantity of electroconductive particle is determined based on the volume in 23 degreeC of each component of the circuit connection material before hardening. The volume of each component can be determined by converting mass to volume using specific gravity. Also, put an appropriate solvent (water, alcohol, etc.) that can wet the component well without dissolving or swelling the component whose volume is to be measured. It is also possible to obtain the volume increased by charging as the volume of the component.
 本実施形態の回路接続材料は、上述の各成分を溶剤を用いずに混合して製造することができる。また、上述の各成分を、該各成分を溶解又は分散できる溶剤とともに混合して製造することもできる。 The circuit connecting material of the present embodiment can be manufactured by mixing the above-described components without using a solvent. Moreover, it can also manufacture by mixing each above-mentioned component with the solvent which can melt | dissolve or disperse | distribute each said component.
 本実施形態の回路接続材料は、フィルム状にして用いることができる。フィルムの形状とすることで、回路接続材料の取扱性が極めて良好になる。 The circuit connection material of this embodiment can be used in the form of a film. By using the shape of the film, the handleability of the circuit connecting material becomes extremely good.
 具体的には、例えば、回路接続材料に必要に応じて溶剤等を加えて調製した溶液を、フッ素樹脂フィルム、ポリエチレンテレフタレートフィルム、剥離紙等の剥離性基材上に塗布した後、溶剤を除去することにより、フィルム状の回路接続材料(以下、場合により「フィルム状接着剤」と称する。)を得ることができる。また、回路接続材料に必要に応じて溶剤等を加えて調製した溶液を、不織布等の基材に含浸させて剥離性基材上に載置し、溶剤を除去することによっても、フィルム状接着剤を得ることができる。また、混合時に導電性粒子を配合することで、フィルム状接着剤に導電性粒子を分散させることができる。 Specifically, for example, after applying a solution prepared by adding a solvent or the like to a circuit connecting material on a peelable substrate such as a fluororesin film, a polyethylene terephthalate film or a release paper, the solvent is removed. By doing so, a film-like circuit connection material (hereinafter sometimes referred to as “film-like adhesive”) can be obtained. In addition, a solution prepared by adding a solvent or the like to a circuit connecting material as necessary is impregnated into a base material such as a nonwoven fabric and placed on a peelable base material, and the solvent is removed. An agent can be obtained. Moreover, electroconductive particle can be disperse | distributed to a film adhesive by mix | blending electroconductive particle at the time of mixing.
 溶剤としては、例えば、メチルエチルケトン、トルエンを好適に用いることができる。 As the solvent, for example, methyl ethyl ketone and toluene can be suitably used.
 図1は、本発明の回路接続材料の一実施形態を示す模式断面図である。図1に示すフィルム状接着剤1は、上記回路接続材料をフィルム状に成形してなるものである。フィルム状接着剤1は、取り扱いが容易であり、被着体上へ容易に設置することができる。そのため、フィルム状接着剤1によれば、接続作業を容易に行うことができる。 FIG. 1 is a schematic cross-sectional view showing an embodiment of a circuit connection material of the present invention. A film adhesive 1 shown in FIG. 1 is formed by forming the circuit connecting material into a film. The film adhesive 1 is easy to handle and can be easily installed on the adherend. Therefore, according to the film adhesive 1, connection work can be performed easily.
 フィルム状接着剤1は、2種以上の層からなる多層構造(図示せず)を有していてもよい。また、フィルム状接着剤1には、導電性粒子(図示せず)が分散されていてもよい。導電性粒子が分散されたフィルム状接着剤は、異方導電性フィルム状接着剤として好適に利用することができる。すなわち、本発明は、上記回路接続材料と導電性粒子とを含有する、異方導電性フィルム状接着剤であってもよい。 The film adhesive 1 may have a multilayer structure (not shown) composed of two or more layers. Further, conductive particles (not shown) may be dispersed in the film adhesive 1. The film adhesive in which the conductive particles are dispersed can be suitably used as an anisotropic conductive film adhesive. That is, the present invention may be an anisotropic conductive film adhesive containing the circuit connecting material and conductive particles.
 本実施形態の回路接続材料(例えば、フィルム状接着剤1)を用いた被着体の接続方法としては、例えば、加熱及び加圧を併用した接続方法が挙げられる。この方法において、加熱温度は100~250℃であることが好ましい。また、圧力は、被着体に損傷を与えない範囲であれば特に制限されないが、一般的には0.1~10MPaであることが好ましい。これらの加熱及び加圧は、0.5秒~120秒の範囲で行うことが好ましい。また、上記回路接続材料によれば、例えば、加熱温度150~200℃及び圧力3MPaの条件にて10秒間の加熱及び加圧を行うことで、被着体同士を十分に接着させることができる。 Examples of the connection method of the adherend using the circuit connection material (for example, the film adhesive 1) of the present embodiment include a connection method using heating and pressurization together. In this method, the heating temperature is preferably 100 to 250 ° C. The pressure is not particularly limited as long as it does not damage the adherend, but it is generally preferably 0.1 to 10 MPa. These heating and pressurization are preferably performed in the range of 0.5 to 120 seconds. Further, according to the circuit connecting material, for example, adherends can be sufficiently bonded to each other by heating and pressurizing for 10 seconds under the conditions of a heating temperature of 150 to 200 ° C. and a pressure of 3 MPa.
 本実施形態の回路接続材料は、熱膨張係数の異なる異種の被着体の接着剤として好適に使用することができる。具体的には、例えば、異方導電接着剤、銀ペースト、銀フィルム等に代表される回路接続材料として、又は、CSP用エラストマー、CSP用アンダーフィル材、LOCテープ等に代表される半導体素子接着材料として、好適に使用することができる。 The circuit connection material of the present embodiment can be suitably used as an adhesive for different types of adherends having different thermal expansion coefficients. Specifically, for example, as a circuit connection material represented by anisotropic conductive adhesive, silver paste, silver film, etc., or semiconductor element adhesion represented by CSP elastomer, CSP underfill material, LOC tape, etc. It can be used suitably as a material.
 本実施形態の回路接続材料は、フィルム基材の一方面上においてフィルム状に形成されていてもよい。 The circuit connection material of the present embodiment may be formed in a film shape on one surface of the film substrate.
 すなわち、本発明は、フィルム基材と該フィルム基材の一方面上に設けられ、上記回路接続材料を含むフィルム状接着剤と、を備える接着フィルムであってもよい。このような接着フィルムは、フィルム基材を剥離することで上述のフィルム状接着剤として好適に用いることができる。 That is, the present invention may be an adhesive film provided with a film base material and a film adhesive provided on one surface of the film base material and including the circuit connection material. Such an adhesive film can be suitably used as the above-mentioned film adhesive by peeling the film substrate.
 接着フィルムでは、フィルム状接着剤が上述の特定の構成を有する回路接続材料を含むため、フィルム基材の他方面とフィルム状接着剤とが接するようにリール状に巻き重ねた場合でも、フィルム基材の他方面上へのフィルム状接着剤の転写が十分に抑制される。 In the adhesive film, since the film adhesive includes the circuit connecting material having the above-described specific configuration, even when the film base is wound in a reel shape so that the other surface of the film base is in contact with the film adhesive, Transfer of the film adhesive onto the other surface of the material is sufficiently suppressed.
 従来の回路接続材料で同様の巻重体を作製した場合、フィルム基材間から回路接続材料が染み出す場合があるが、この接着フィルムでは、フィルム状接着剤が上述の特定の構成を有する回路接続材料を含むため、リール状に巻き重ねた場合でも、フィルム状基材間からのフィルム状接着剤の染み出しが十分に抑制される。そのため、接着フィルムは、リール状に巻き重ねた巻重体として好適に保管することができ、取扱性に一層優れる。 When a similar wound body is produced with a conventional circuit connection material, the circuit connection material may ooze out from between the film base materials. In this adhesive film, the circuit adhesive has the above-mentioned specific configuration. Since the material is included, even when the film is wound in a reel shape, the bleeding of the film adhesive from between the film base materials is sufficiently suppressed. Therefore, the adhesive film can be suitably stored as a roll wound in a reel shape, and is further excellent in handleability.
 フィルム基材としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリプロピレンが挙げられる。 Examples of the film substrate include polyethylene terephthalate, polycarbonate, and polypropylene.
 接着フィルムは、例えば、幅5mm以下(好ましくは0.5~5.0mm)、長さ1m以上(好ましくは10~500m)とすることができる。このようなサイズの接着フィルムは、リール状に巻き重ねて保管することが望ましいため、上述の効果が特に有効となる。 The adhesive film can be, for example, a width of 5 mm or less (preferably 0.5 to 5.0 mm) and a length of 1 m or more (preferably 10 to 500 m). Since the adhesive film having such a size is desirably stored in a reel shape, the above-described effect is particularly effective.
 接着フィルムは、フィルム状接着剤上に設けられた保護フィルムを更に備えていてもよい。保護フィルムは、被着体の接続前に剥離する必要があるため、剥離性に優れることが望ましい。 The adhesive film may further include a protective film provided on the film adhesive. Since the protective film needs to be peeled off before the adherend is connected, it is desirable that the protective film has excellent peelability.
 以下、本実施形態の回路接続材料を用いて、回路基板の主面上に回路電極が形成された回路部材同士を接続する場合の一例について、説明する。なお、以下の説明では、回路接続材料に導電性粒子を分散させて異方導電性接着剤とした場合を例示したが、回路接続材料に導電性粒子を分散させない場合にも同様の方法により回路部材同士の接続を行うことができる。 Hereinafter, an example in which circuit members having circuit electrodes formed on the main surface of a circuit board are connected to each other using the circuit connection material of the present embodiment will be described. In the following description, the case where the conductive particles are dispersed in the circuit connection material to form an anisotropic conductive adhesive is exemplified, but the circuit is also obtained by the same method when the conductive particles are not dispersed in the circuit connection material. Connection between members can be performed.
 異方導電性接着剤を、回路基板上の相対向する回路電極間に配置し、加熱加圧することにより、対向する回路電極間の電気的接続と回路基板間の接着とを行い、回路部材同士を接続することができる。 An anisotropic conductive adhesive is placed between the circuit electrodes facing each other on the circuit board and heated and pressed to perform electrical connection between the circuit electrodes facing each other and adhesion between the circuit boards. Can be connected.
 回路基板としては、例えば、ガラス基板;ポリイミド、ポリエチレンテレフタレート、ポリカーボネート等の有機物からなるフレキシブル基板;が挙げられる。ここで、回路基板としては、一方がガラス基板であり、他方がフレキシブル基板である場合に特に本発明の効果が大きい。また、回路基板としては、ガラス/エポキシ等の無機物と有機物とを組み合わせた基板を用いることもできる。 Examples of the circuit board include a glass substrate; a flexible substrate made of an organic material such as polyimide, polyethylene terephthalate, and polycarbonate. Here, the effect of the present invention is particularly great when one of the circuit boards is a glass substrate and the other is a flexible board. Moreover, as a circuit board, the board | substrate which combined inorganic substance, such as glass / epoxy, and organic substance can also be used.
 図2は、本発明の回路接続構造体の一実施形態を示す模式断面図である。図2に示す回路接続構造体は、相互に対向する第一の回路部材20及び第二の回路部材30を備えており、第一の回路部材20と第二の回路部材30との間には、これらを接続する接続部材10が設けられている。 FIG. 2 is a schematic cross-sectional view showing an embodiment of the circuit connection structure of the present invention. The circuit connection structure shown in FIG. 2 includes a first circuit member 20 and a second circuit member 30 facing each other, and the first circuit member 20 and the second circuit member 30 are disposed between the first circuit member 20 and the second circuit member 30. A connecting member 10 is provided to connect them.
 第一の回路部材20は、回路基板(第一の回路基板)21と、回路基板21の主面21a上に形成される回路電極(第一の回路電極)22とを備えている。なお、回路基板21の主面21a上には、場合により絶縁層(図示せず)が形成されていてもよい。 The first circuit member 20 includes a circuit board (first circuit board) 21 and a circuit electrode (first circuit electrode) 22 formed on the main surface 21 a of the circuit board 21. Note that an insulating layer (not shown) may be formed on the main surface 21a of the circuit board 21 in some cases.
 一方、第二の回路部材30は、回路基板(第二の回路基板)31と、回路基板31の主面31a上に形成される回路電極(第二の回路電極)32とを備えている。また、回路基板31の主面31a上にも、場合により絶縁層(図示せず)が形成されていてもよい。 On the other hand, the second circuit member 30 includes a circuit board (second circuit board) 31 and a circuit electrode (second circuit electrode) 32 formed on the main surface 31 a of the circuit board 31. In addition, an insulating layer (not shown) may be formed on the main surface 31a of the circuit board 31 according to circumstances.
 第一及び第二の回路部材20,30としては、電気的接続を必要とする電極が形成されているものであれば特に制限はない。具体的には、液晶ディスプレイに用いられているITO、IZO等で電極が形成されているガラス又はプラスチック基板、プリント配線板、セラミック配線板、フレキシブル配線板、半導体シリコンチップ等が挙げられ、これらは必要に応じて組み合わせて使用される。このように、本実施形態では、プリント配線板やポリイミド等の有機物からなる材質をはじめ、銅、アルミニウム等の金属やITO(indium tin oxide)、窒化ケイ素(SiN)、二酸化ケイ素(SiO)等の無機材質のように多種多様な表面状態を有する回路部材を用いることができる。 The first and second circuit members 20 and 30 are not particularly limited as long as electrodes that require electrical connection are formed. Specific examples include glass or plastic substrates with electrodes formed of ITO, IZO, etc. used in liquid crystal displays, printed wiring boards, ceramic wiring boards, flexible wiring boards, semiconductor silicon chips, etc. Used in combination as needed. As described above, in the present embodiment, materials such as printed wiring boards and polyimides, metals such as copper and aluminum, ITO (indium tin oxide), silicon nitride (SiN x ), silicon dioxide (SiO 2 ) are used. Circuit members having various surface states such as inorganic materials such as the above can be used.
 接続部材10は、絶縁性物質11及び導電性粒子7を含有している。導電性粒子7は、対向する回路電極22と回路電極32との間のみならず、主面21a,31a同士間にも配置されている。この回路接続構造体においては、回路電極22,32が、導電性粒子7を介して電気的に接続されている。即ち、導電性粒子7が回路電極22,32の双方に直接接触している。 The connecting member 10 contains an insulating substance 11 and conductive particles 7. The conductive particles 7 are disposed not only between the circuit electrode 22 and the circuit electrode 32 facing each other but also between the main surfaces 21a and 31a. In this circuit connection structure, the circuit electrodes 22 and 32 are electrically connected via the conductive particles 7. That is, the conductive particles 7 are in direct contact with both the circuit electrodes 22 and 32.
 ここで、導電性粒子7は、先に説明した導電性粒子であり、絶縁性物質11は、上記回路接続材料の硬化物である。 Here, the conductive particles 7 are the conductive particles described above, and the insulating substance 11 is a cured product of the circuit connection material.
 この回路接続構造体においては、上述したように、対向する回路電極22と回路電極32とが導電性粒子7を介して電気的に接続されている。このため、回路電極22,32間の接続抵抗が十分に低減される。従って、回路電極22,32間の電流の流れを円滑にすることができ、回路の持つ機能を十分に発揮することができる。なお、接続部材10が導電性粒子7を含有していない場合には、回路電極22と回路電極32とが直接接触することで、電気的に接続される。 In the circuit connection structure, as described above, the circuit electrode 22 and the circuit electrode 32 facing each other are electrically connected via the conductive particles 7. For this reason, the connection resistance between the circuit electrodes 22 and 32 is sufficiently reduced. Therefore, the flow of current between the circuit electrodes 22 and 32 can be made smooth, and the functions of the circuit can be fully exhibited. In addition, when the connection member 10 does not contain the conductive particles 7, the circuit electrode 22 and the circuit electrode 32 are in direct contact with each other to be electrically connected.
 接続部材10は、上記回路接続材料の硬化物と導電性粒子とから構成されていることため、回路部材20又は30に対する接続部材10の接着強度が十分に高くなり、信頼性試験(高温高湿試験)後においても安定した性能(良好な接着強度及び接続抵抗)を維持することができる。 Since the connection member 10 is composed of the cured product of the circuit connection material and conductive particles, the adhesion strength of the connection member 10 to the circuit member 20 or 30 is sufficiently high, and a reliability test (high temperature and high humidity) is performed. Even after the test), stable performance (good adhesive strength and connection resistance) can be maintained.
 次に、図3を参照しながら、上述した回路接続構造体の製造方法の一例について説明する。まず、上述した第一の回路部材20と、フィルム状接着剤40とを用意する(図3(a)参照)。フィルム状接着剤40は、導電性粒子が分散された回路接続材料をフィルム状に成形してなるものであり、回路接続材料5と導電性粒子7とを含む。なお、フィルム状接着剤40に導電性粒子7が分散されていない場合(すなわち、フィルム状接着剤40が回路接続材料5からなる場合)でも、そのフィルム状接着剤は絶縁性接着剤として異方導電性接着に使用でき、このとき回路接続材料はNCP(Non-Conductive Paste)と呼ばれることもある。また、回路接続材料5に導電性粒子7が分散されている場合、その材料はACP(Anisotropic Conductive Paste)と呼ばれることもある。 Next, an example of a method for manufacturing the above-described circuit connection structure will be described with reference to FIG. First, the first circuit member 20 and the film adhesive 40 described above are prepared (see FIG. 3A). The film adhesive 40 is formed by forming a circuit connection material in which conductive particles are dispersed into a film shape, and includes the circuit connection material 5 and the conductive particles 7. Even when the conductive particles 7 are not dispersed in the film adhesive 40 (that is, when the film adhesive 40 is made of the circuit connecting material 5), the film adhesive is anisotropic as an insulating adhesive. It can be used for conductive bonding. At this time, the circuit connecting material is sometimes called NCP (Non-Conductive Paste). Moreover, when the electroconductive particle 7 is disperse | distributed to the circuit connection material 5, the material may be called ACP (Anisotropic Conductive Paste).
 フィルム状接着剤40の厚さは、6~50μmであることが好ましい。フィルム状接着剤40の厚さが6μm未満では、回路電極22,32間に回路接続材料5が充填不足となる傾向がある。他方、50μmを超えると、回路電極22,32間の回路接続材料5を十分に排除しきれなくなり、回路電極22,32間の導通の確保が困難となる傾向がある。 The thickness of the film adhesive 40 is preferably 6 to 50 μm. When the thickness of the film adhesive 40 is less than 6 μm, the circuit connecting material 5 tends to be insufficiently filled between the circuit electrodes 22 and 32. On the other hand, when the thickness exceeds 50 μm, the circuit connecting material 5 between the circuit electrodes 22 and 32 cannot be sufficiently removed, and it is difficult to ensure conduction between the circuit electrodes 22 and 32.
 次に、フィルム状接着剤40を第一の回路部材20の回路電極22が形成されている面上に載せる。なお、フィルム状接着剤40が支持体(図示せず)上に付着している場合には、フィルム状接着剤40側を第一の回路部材20に向けるようにして、第一の回路部材20上に載せる。このとき、フィルム状接着剤40はフィルム状であり、取り扱いが容易である。このため、第一の回路部材20と第二の回路部材30との間にフィルム状接着剤40を容易に介在させることができ、第一の回路部材20と第二の回路部材30との接続作業を容易に行うことができる。 Next, the film adhesive 40 is placed on the surface of the first circuit member 20 on which the circuit electrode 22 is formed. When the film adhesive 40 is attached on a support (not shown), the first circuit member 20 is arranged such that the film adhesive 40 side faces the first circuit member 20. Put it on top. At this time, the film adhesive 40 is in a film form and is easy to handle. For this reason, the film adhesive 40 can be easily interposed between the first circuit member 20 and the second circuit member 30, and the connection between the first circuit member 20 and the second circuit member 30 is possible. Work can be done easily.
 そして、フィルム状接着剤40を、図3(a)の矢印A及びB方向に加圧し、フィルム状接着剤40を第一の回路部材20に仮接続する(図3(b)参照)。このとき、加熱しながら加圧してもよい。但し、加熱温度はフィルム状接着剤40(フィルム状接着剤40を構成する回路接続材料5)が硬化しない温度よりも低い温度とする。 Then, the film adhesive 40 is pressurized in the directions of arrows A and B in FIG. 3A to temporarily connect the film adhesive 40 to the first circuit member 20 (see FIG. 3B). At this time, you may pressurize, heating. However, the heating temperature is set to a temperature lower than the temperature at which the film adhesive 40 (the circuit connecting material 5 constituting the film adhesive 40) is not cured.
 続いて、図3(c)に示すように、第二の回路部材30を、第二の回路電極32を第一の回路部材20に向けるようにしてフィルム状接着剤40上に載せる。なお、フィルム状接着剤40が支持体(例えば上述のフィルム状基材(図示せず))上に付着している場合には、支持体を剥離してから第二の回路部材30をフィルム状接着剤40上に載せる。このとき第一及び第二の回路電極22,23が相対向するよう位置合わせをしてから、第二の回路部材30の上から加熱、加圧することで第二の回路部材30を仮固定することができる。こうすることで続く本接続時の電極の位置ずれを抑制することができる。仮固定時の加熱温度はフィルム状接着剤40中の回路接続材料5が硬化しない温度よりも低い温度とし、スループット短縮のため位置合わせから仮固定完了までの時間は5秒以下であることが好ましい。 Subsequently, as shown in FIG. 3 (c), the second circuit member 30 is placed on the film adhesive 40 so that the second circuit electrode 32 faces the first circuit member 20. In addition, when the film adhesive 40 has adhered on the support body (for example, the above-mentioned film-form base material (not shown)), after peeling a support body, the 2nd circuit member 30 is made into a film form. Place on adhesive 40. At this time, the first and second circuit electrodes 22 and 23 are aligned so that they face each other, and then the second circuit member 30 is temporarily fixed by heating and pressing from above the second circuit member 30. be able to. By doing so, it is possible to suppress the positional deviation of the electrodes during the subsequent main connection. The heating temperature at the time of temporary fixing is set to a temperature lower than the temperature at which the circuit connecting material 5 in the film adhesive 40 is not cured, and the time from alignment to completion of temporary fixing is preferably 5 seconds or less for shortening the throughput. .
 そして、フィルム状接着剤40を加熱しながら、図3(c)の矢印A及びB方向に第一及び第二の回路部材20,30を介して加圧する。このときの加熱温度は、重合反応が開始可能な温度とする。こうして、フィルム状接着剤40が硬化処理されて本接続が行われ、図2に示すような回路接続構造体が得られる。 Then, the film adhesive 40 is heated through the first and second circuit members 20 and 30 in the directions of arrows A and B in FIG. The heating temperature at this time is set to a temperature at which the polymerization reaction can be started. In this way, the film-like adhesive 40 is cured to perform the main connection, and a circuit connection structure as shown in FIG. 2 is obtained.
 ここで、接続条件は先に述べた通り、加熱温度100~250℃、圧力0.1~10MPa、接続時間0.5秒~120秒間であることが好ましい。これらの条件は、使用する用途、回路接続材料、回路部材によって適宜選択され、必要に応じて、後硬化を行ってもよい。 Here, as described above, the connection conditions are preferably a heating temperature of 100 to 250 ° C., a pressure of 0.1 to 10 MPa, and a connection time of 0.5 seconds to 120 seconds. These conditions are appropriately selected depending on the intended use, circuit connection material, and circuit member, and may be post-cured as necessary.
 上記のようにして回路接続構造体を製造することにより、得られる回路接続構造体において、導電性粒子7を対向する回路電極22,32の双方に接触させることが可能となり、回路電極22,32間の接続抵抗を十分に低減することができる。 By manufacturing the circuit connection structure as described above, in the obtained circuit connection structure, the conductive particles 7 can be brought into contact with both of the circuit electrodes 22 and 32 facing each other. The connection resistance between them can be sufficiently reduced.
 また、フィルム状接着剤40の加熱により、回路電極22と回路電極32との間の距離を十分に小さくした状態で回路接続材料5が硬化して絶縁性物質11となり、第一の回路部材20と第二の回路部材30とが接続部材10を介して強固に接続される。すなわち、得られる回路接続構造体においては、接続部材10が上述の回路接続材料からなる絶縁性物質11を備えることから、回路部材20又は30に対する接続部材10の接着強度が十分に高くなるとともに、電気的に接続した回路電極間の接続抵抗を十分に低減することができる。また、高温高湿環境下に長期間おかれた場合であっても、回路部材20,30と接続部材10との界面における剥離気泡の発生を十分に抑制することができるとともに、接着強度の低下及び接続抵抗の増大を十分に抑制することができる。 Further, by heating the film adhesive 40, the circuit connecting material 5 is cured to become the insulating substance 11 in a state where the distance between the circuit electrode 22 and the circuit electrode 32 is sufficiently small, and the first circuit member 20 is cured. And the second circuit member 30 are firmly connected via the connection member 10. That is, in the obtained circuit connection structure, since the connection member 10 includes the insulating substance 11 made of the circuit connection material described above, the bonding strength of the connection member 10 to the circuit member 20 or 30 is sufficiently high, The connection resistance between the electrically connected circuit electrodes can be sufficiently reduced. In addition, even when left in a high-temperature and high-humidity environment for a long period of time, the generation of peeling bubbles at the interface between the circuit members 20 and 30 and the connection member 10 can be sufficiently suppressed, and the adhesive strength is reduced In addition, an increase in connection resistance can be sufficiently suppressed.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.
 例えば、本発明は、上記熱可塑性樹脂、上記ラジカル重合性化合物、上記ラジカル重合開始剤及び上記無機微粒子を含有する組成物の、相対向する二つの回路部材を電気的に接続するための回路接続材料としての応用ということもできる。また、本発明は、上記熱可塑性樹脂、上記ラジカル重合性化合物、上記ラジカル重合開始剤及び上記無機微粒子を含有する組成物の、相対向する二つの回路部材を電気的に接続するための回路接続材料の製造のための応用ということもできる。 For example, the present invention provides a circuit connection for electrically connecting two opposing circuit members of a composition containing the thermoplastic resin, the radical polymerizable compound, the radical polymerization initiator, and the inorganic fine particles. It can be said that it is applied as a material. Further, the present invention provides a circuit connection for electrically connecting two opposing circuit members of the composition containing the thermoplastic resin, the radical polymerizable compound, the radical polymerization initiator, and the inorganic fine particles. It can also be referred to as an application for the production of materials.
 これらの応用に際し、上記ラジカル重合性化合物の含有量は、上記組成物の全量基準で40質量%以上であり、上記ラジカル重合性化合物のうち分子量1000以下の化合物の含有量は、上記組成物の全量基準で15質量%以下であり、上記無機微粒子の含有量は、上記組成物の全量基準で5~30質量%であり、上記組成物は、少なくとも上記式(1)で表される化合物を含有する。 In these applications, the content of the radical polymerizable compound is 40% by mass or more based on the total amount of the composition, and the content of a compound having a molecular weight of 1000 or less of the radical polymerizable compound is The content of the inorganic fine particles is 5 to 30% by mass based on the total amount of the composition, and the composition contains at least the compound represented by the formula (1). contains.
 これらの応用によれば、ラジカル重合型でありながら、回路部材を接続後に高温高湿環境下に放置した場合でも、回路部材との界面における剥離気泡の発生を十分に抑制でき且つ十分な接続信頼性を維持できる、上述の回路接続材料を得ることができる。 According to these applications, even if the circuit member is a radical polymerization type, even when the circuit member is left in a high-temperature and high-humidity environment after connection, the generation of exfoliated bubbles at the interface with the circuit member can be sufficiently suppressed and sufficient connection reliability can be achieved. Thus, the above-described circuit connection material capable of maintaining the properties can be obtained.
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
(製造例1:熱可塑性樹脂の合成)
 還流冷却器、温度計及び撹拌器を備えたセパラブルフラスコに、エーテル結合を有するジオールとしてポリプロピレングリコール(Mn=2000)1000質量部及び溶媒としてメチルエチルケトン4000質量部を加え、40℃で30分間撹拌した。この溶液を70℃まで昇温した後、触媒としてジメチル錫ラウレート1質量部を加え、次いで、この溶液に対して、ジイソシアネート化合物として4,4-ジフェニルメタン-ジイソシアネート125質量部をメチルエチルケトン125質量部に溶解させた溶液を、1時間かけて滴下した。
(Production Example 1: Synthesis of thermoplastic resin)
To a separable flask equipped with a reflux condenser, a thermometer, and a stirrer, 1000 parts by mass of polypropylene glycol (Mn = 2000) as a diol having an ether bond and 4000 parts by mass of methyl ethyl ketone as a solvent were added and stirred at 40 ° C. for 30 minutes. . After the temperature of this solution was raised to 70 ° C., 1 part by mass of dimethyltin laurate was added as a catalyst, and then 125 parts by mass of 4,4-diphenylmethane-diisocyanate as a diisocyanate compound was dissolved in 125 parts by mass of methyl ethyl ketone. The solution was added dropwise over 1 hour.
 その後、赤外分光光度計でNCO(イソシアネート基)の吸収ピークが見られなくなるまで70℃で撹拌を続け、ポリウレタン樹脂のメチルエチルケトン溶液を得た。この溶液を固形分濃度が30質量%となるように調整して、実施例及び比較例で用いた。 Thereafter, stirring was continued at 70 ° C. until an NCO (isocyanate group) absorption peak was not observed with an infrared spectrophotometer, to obtain a methyl ethyl ketone solution of a polyurethane resin. This solution was adjusted to have a solid content concentration of 30% by mass and used in Examples and Comparative Examples.
 得られたポリウレタン樹脂のポリスチレン換算の重量平均分子量は、GPCによる測定の結果、320000であった。GPCの分析条件を下記表1に示す。 The weight average molecular weight in terms of polystyrene of the obtained polyurethane resin was 320,000 as a result of measurement by GPC. The GPC analysis conditions are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(製造例2:ラジカル重合性化合物の合成)
 温度計、攪拌機、不活性ガス導入口及び還流冷却器を備えた2リットルの四つ口フラスコに、ポリカーボネートジオール(アルドリッチ社製、数平均分子量2000)4000質量部、2-ヒドロキシエチルアクリレート238質量部、ハイドロキノンモノメチルエーテル0.49質量部及びスズ系触媒4.9質量部を仕込み70℃に加熱し、IPDI(イソホロンジイソシアネート)666質量部を3時間かけて均一に滴下し、反応させた。滴下完了後15時間反応を継続し、NCO%(ウレタン基に対するイソシアネート基の量)が0.2%以下となった時点を反応終了とし、ウレタンアクリレートを得た。GPCによる分析の結果、得られたウレタンアクリレートの重量平均分子量は8500であった。なお、GPC分析は表1の条件で行った。
(Production Example 2: Synthesis of radically polymerizable compound)
In a 2 liter four-necked flask equipped with a thermometer, stirrer, inert gas inlet and reflux condenser, polycarbonate diol (manufactured by Aldrich, number average molecular weight 2000) 4000 parts by mass, 2-hydroxyethyl acrylate 238 parts by mass Then, 0.49 parts by mass of hydroquinone monomethyl ether and 4.9 parts by mass of a tin catalyst were charged and heated to 70 ° C., and 666 parts by mass of IPDI (isophorone diisocyanate) was uniformly dropped over 3 hours to be reacted. The reaction was continued for 15 hours after completion of the dropwise addition, and the reaction was terminated when NCO% (the amount of isocyanate group relative to the urethane group) was 0.2% or less, to obtain urethane acrylate. As a result of analysis by GPC, the weight average molecular weight of the obtained urethane acrylate was 8,500. The GPC analysis was performed under the conditions shown in Table 1.
(製造例3:導電性粒子の作製)
 ポリスチレン粒子の表面上に、厚さ0.2μmのニッケルからなる層を設け、更にこのニッケルからなる層の表面上に、厚さ0.04μmになるように金からなる層を設けた。こうして平均粒子径5μmの導電性粒子を作製した。
(Production Example 3: Production of conductive particles)
A layer made of nickel having a thickness of 0.2 μm was provided on the surface of the polystyrene particles, and a layer made of gold was provided on the surface of the layer made of nickel so as to have a thickness of 0.04 μm. Thus, conductive particles having an average particle diameter of 5 μm were produced.
(実施例1~6及び比較例1~4)
 (a)成分の熱可塑性樹脂としては、フェノキシ樹脂(PKHC、ユニオンカーバイト社製商品名、重量平均分子量45000、表中「PKHC」と表す。)40gをメチルエチルケトン60gに溶解した固形分濃度40質量%の溶液、及び、製造例1で得られたポリウレタン樹脂(表中「PU」と表す。)の固形分濃度30質量%の溶液を用いた。
(Examples 1 to 6 and Comparative Examples 1 to 4)
As the thermoplastic resin of component (a), a phenoxy resin (PKHC, trade name of Union Carbide, weight average molecular weight 45000, represented as “PKHC” in the table) 40 g in 40 g of solid content dissolved in 60 g of methyl ethyl ketone. % Solution and a polyurethane resin (represented as “PU” in the table) obtained in Production Example 1 having a solid content concentration of 30 mass% were used.
 また、(b)成分のラジカル重合性化合物としては、製造例2で得られたウレタンアクリレート(表中「UA」と表す。)、シクロヘキシルアクリレート(東亞合成株式会社製、表中「CHA」と表す。)、2-(メタ)アクリロイロキシエチルホスフェ-ト(ライトエステルP-2M、共栄社株式会社製商品名、表中「P-2M」と表す。)、及び、3-メタクリロキシプロピルトリメトキシシラン(KBM503、信越化学工業株式会社製商品名、シランカップリング剤、表中「KBM」と表す。)を用いた。 In addition, as the radically polymerizable compound of component (b), urethane acrylate obtained in Production Example 2 (represented as “UA” in the table), cyclohexyl acrylate (manufactured by Toagosei Co., Ltd., represented as “CHA” in the table). ), 2- (meth) acryloyloxyethyl phosphate (light ester P-2M, trade name, manufactured by Kyoeisha Co., Ltd., indicated as “P-2M” in the table), and 3-methacryloxypropyltri Methoxysilane (KBM503, trade name manufactured by Shin-Etsu Chemical Co., Ltd., silane coupling agent, represented as “KBM” in the table) was used.
 また、(c)成分のラジカル重合開始剤としては、t-ヘキシルパーオキシー2-エチルヘキサノエート(パーヘキシルO、油脂製品株式会社製商品名、表中「過酸化物」と表す。)を用いた。 Further, as the radical polymerization initiator of component (c), t-hexyl peroxy-2-ethylhexanoate (Perhexyl O, trade name, manufactured by Yushi Co., Ltd., represented as “peroxide” in the table) is used. It was.
 また、(d)成分の無機微粒子としてはR711(日本アエロジル株式会社製商品名、表中「R711」と表す。)10gを、トルエン45g及び酢酸エチル45gの混合溶媒に分散させ、10質量%の溶液として用いた。 In addition, as inorganic fine particles of component (d), 10 g of R711 (product name manufactured by Nippon Aerosil Co., Ltd., represented as “R711” in the table) is dispersed in a mixed solvent of 45 g of toluene and 45 g of ethyl acetate. Used as a solution.
 上記各成分を表2に記載の固形分重量比となるよう配合し、次いで製造例3で得られた導電性粒子を、接着剤成分の総体積に対して1.5体積%配合して分散させ、塗工液を得た。得られた塗工液を、厚さ50μmのポリエチレンテレフタレート(PET)フィルムに塗工装置を用いて塗布し、70℃、10分の熱風乾燥を行い、厚さ16μmのフィルム状接着剤を得た。 The above components are blended so as to have a solid weight ratio shown in Table 2, and then the conductive particles obtained in Production Example 3 are blended at 1.5% by volume with respect to the total volume of the adhesive component and dispersed. To obtain a coating solution. The obtained coating solution was applied to a polyethylene terephthalate (PET) film having a thickness of 50 μm by using a coating apparatus, followed by drying with hot air at 70 ° C. for 10 minutes to obtain a film adhesive having a thickness of 16 μm. .
 各実施例及び比較例のフィルム状接着剤におけるラジカル重合性化合物の含有量、分子量が1000を超えるラジカル重合性化合物((b-1)成分)の含有量、分子量1000以下のラジカル重合性化合物((b-2)成分)の含有量及び無機微粒子の含有量は、それぞれの配合量から計算して表3に記載のとおりであった(いずれも回路接続材料(フィルム状接着剤の導電性粒子以外の成分)の全量基準の質量%)。なお、シランカップリング剤の3-メタクリロキシプロピルトリメトキシシランは(b-2)成分に含まれる。 The content of the radically polymerizable compound in the film-like adhesives of the examples and comparative examples, the content of the radically polymerizable compound (component (b-1)) having a molecular weight exceeding 1000, and the radically polymerizable compound having a molecular weight of 1000 or less ( The content of the component (b-2) and the content of the inorganic fine particles were as shown in Table 3 calculated from the respective compounding amounts (both circuit connection materials (conductive particles of the film adhesive) %) Based on the total amount of components other than The silane coupling agent 3-methacryloxypropyltrimethoxysilane is included in the component (b-2).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(実施例6~10及び比較例6~10)
 実施例1~5及び比較例1~5の各フィルム状接着剤を用いて、実施例6~10及び比較例6~10の接続構造体を作製した。
(Examples 6 to 10 and Comparative Examples 6 to 10)
Using the film adhesives of Examples 1 to 5 and Comparative Examples 1 to 5, connection structures of Examples 6 to 10 and Comparative Examples 6 to 10 were produced.
 具体的には、上記フィルム状接着剤を、70℃の温度にて1MPa、2秒間の条件で厚さ0.2μmの酸化インジウム(ITO)の薄膜が形成されたガラス基板(厚さ1.1mm)に転写にした。次に、このガラス基板と、ライン幅75μm、ピッチ150μm及び厚さ18μmの銅回路500本がエポキシ樹脂系接着剤でポリイミド上に配線されたフレキシブル回路板(FPC基板)とを、フィルム状接着剤を介して対向するように配置し、熱圧着装置(加熱方式:コンスタントヒート型、東レエンジニアリング株式会社製)を用いて160℃の温度にて3MPaで10秒間の加熱加圧を行った。これにより、幅2mmにわたりFPC基板とガラス基板(ITO基板)とがフィルム状接着剤の硬化物(接続部材)により接続された接続体(回路接続構造体)を得た。 Specifically, the film-like adhesive is a glass substrate (thickness 1.1 mm) on which a thin film of indium oxide (ITO) having a thickness of 0.2 μm is formed under conditions of 1 MPa and 2 seconds at a temperature of 70 ° C. ) Transcription. Next, this glass substrate and a flexible circuit board (FPC board) in which 500 copper circuits having a line width of 75 μm, a pitch of 150 μm, and a thickness of 18 μm are wired on polyimide with an epoxy resin adhesive are used as a film adhesive Were placed so as to face each other, and heated and pressurized at 3 MPa at a temperature of 160 ° C. for 10 seconds using a thermocompression bonding apparatus (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.). Thereby, the connection body (circuit connection structure) by which the FPC board and the glass substrate (ITO board | substrate) were connected by the cured | curing material (connection member) of the film adhesive over 2 mm in width was obtained.
(回路接続構造体の評価1:初期接続抵抗の評価)
 実施例及び比較例で得られた回路接続構造体について、それぞれ隣接回路間の抵抗値(接続抵抗)を、マルチメータで測定した。隣接回路間の抵抗37点の平均を、初期接続抵抗の評価結果とした。評価結果を表4に示す。
(Evaluation of circuit connection structure 1: Evaluation of initial connection resistance)
About the circuit connection structure obtained by the Example and the comparative example, the resistance value (connection resistance) between adjacent circuits was measured with the multimeter, respectively. The average of 37 resistances between adjacent circuits was used as the evaluation result of the initial connection resistance. The evaluation results are shown in Table 4.
(回路接続構造体の評価2:初期接着力の評価)
 実施例及び比較例で得られた回路接続構造体について、それぞれ接続部材とFPC基板との間の接着力をJIS-Z0237に準じた90度剥離法で測定して、測定された値を初期接着力の評価結果とした。なお、接着力の測定装置は東洋ボールドウィン株式会社製テンシロンUTM-4(剥離速度50mm/min、25℃)を使用した。評価結果を表4を示す。
(Evaluation of circuit connection structure 2: Evaluation of initial adhesive strength)
For the circuit connection structures obtained in the examples and comparative examples, the adhesive strength between the connection member and the FPC board was measured by a 90-degree peeling method according to JIS-Z0237, and the measured value was the initial adhesion. The result of the evaluation of force. As an adhesive force measuring apparatus, Tensilon UTM-4 (peeling speed 50 mm / min, 25 ° C.) manufactured by Toyo Baldwin Co., Ltd. was used. Table 4 shows the evaluation results.
(回路接続構造体の評価3:高温高湿試験後の特性評価)
 実施例及び比較例で得られた回路接続構造体を、85℃、85%RHの条件下に250時間保持して、測定サンプルを得た。得られたサンプルについて、上記評価1及び2と同様の方法により、接続抵抗及び接着力の評価を行った。評価結果を表4に示す。
(Circuit connection structure evaluation 3: characteristic evaluation after high temperature and high humidity test)
The circuit connection structures obtained in Examples and Comparative Examples were held for 250 hours under the conditions of 85 ° C. and 85% RH to obtain measurement samples. About the obtained sample, connection resistance and adhesive strength were evaluated by the same method as said evaluation 1 and 2. The evaluation results are shown in Table 4.
 また、得られたサンプルについて、顕微鏡(商品名:ECLIPSE L200、株式会社ニコン製)を用いて、接続部材とFPC基板との界面、及び接続部材とガラス基板との界面における剥離の有無を調べた。界面剥離が無かったものを「A」、界面剥離がわずかにあったものを「B」、実用上問題がある程度に界面剥離が生じていたものを「C」として評価した。評価結果を表4に示す。 Moreover, about the obtained sample, the presence or absence of the peeling in the interface of a connection member and an FPC board and the interface of a connection member and a glass substrate was investigated using the microscope (brand name: ECLIPSE L200, Nikon Corporation make). . The case where there was no interfacial delamination was evaluated as “A”, the case where there was slight interfacial delamination as “B”, and the case where interfacial delamination occurred to some extent in practical use was evaluated as “C”. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表4に示した結果から明らかなように、実施例6~10で得られた回路接続構造体は、初期及び高温高湿試験後のいずれの場合も3Ω以下の抵抗値を示し、接続部材と回路部材との界面に剥離気泡等は発生しなかった。 As is apparent from the results shown in Table 4, the circuit connection structures obtained in Examples 6 to 10 showed a resistance value of 3Ω or less both in the initial stage and after the high temperature and high humidity test. No peeling bubbles or the like were generated at the interface with the circuit member.
 一方、無機微粒子を含まない比較例1のフィルム状接着剤を用いて得られた比較例6の回路接続構造体と、無機微粒子の含有量が5質量%未満の比較例2のフィルム状接着剤を用いて得られた比較例7の回路接続構造体では、高温高湿試験後に、接続抵抗が著しく上昇し、接着力が低下し、接続部材と回路部材との界面に剥離が見られた。また、(b-2)成分の含有量が15質量%を超える比較例3のフィルム状接着剤を用いて得られた比較例8の回路接続構造体と、シランカップリング剤を含有しない比較例5のフィルム状接着剤を用いて得られた比較例10の回路接続構造体では、高温高湿試験後に接続部材と回路部材との界面に著しく剥離が生じた。さらに、無機微粒子を含まず、(b-2)成分の含有量が15質量%を超える比較例4のフィルム状接着剤を用いて得られた比較例9の回路接続構造体では、接続抵抗が上昇し、接着力が低下し、接続部材と回路部材との界面に著しく剥離が生じた。 On the other hand, the circuit connection structure of Comparative Example 6 obtained using the film-like adhesive of Comparative Example 1 containing no inorganic fine particles, and the film-like adhesive of Comparative Example 2 having an inorganic fine particle content of less than 5% by mass In the circuit connection structure of Comparative Example 7 obtained using the above, after the high-temperature and high-humidity test, the connection resistance was remarkably increased, the adhesive force was decreased, and peeling was observed at the interface between the connection member and the circuit member. Further, the circuit connection structure of Comparative Example 8 obtained using the film-like adhesive of Comparative Example 3 in which the content of the component (b-2) exceeds 15% by mass, and the Comparative Example not containing a silane coupling agent In the circuit connection structure of Comparative Example 10 obtained by using the film-like adhesive of No. 5, peeling occurred remarkably at the interface between the connection member and the circuit member after the high temperature and high humidity test. Furthermore, in the circuit connection structure of Comparative Example 9 obtained by using the film-like adhesive of Comparative Example 4 which does not contain inorganic fine particles and the content of the component (b-2) exceeds 15% by mass, the connection resistance is low. As a result, the adhesive force decreased, and the interface between the connecting member and the circuit member was remarkably peeled off.
(実施例11~15及び比較例11~15)
 実施例1~5及び比較例1~5のフィルム状接着剤の製造に用いた塗工液をそれぞれ、厚さ50μmのポリエチレンテレフタレート(PET)フィルム上に10m塗工し、70℃、10分の熱風乾燥を行って、PETフィルム上に厚さ16μmのフィルム状接着剤を形成して、PETフィルムとフィルム状接着剤とを備える接着フィルムを得た。
(Examples 11 to 15 and Comparative Examples 11 to 15)
Each of the coating solutions used in the production of the film adhesives of Examples 1 to 5 and Comparative Examples 1 to 5 was applied to a polyethylene terephthalate (PET) film having a thickness of 50 μm, and the coating solution was 70 ° C. for 10 minutes. Hot air drying was performed to form a film adhesive having a thickness of 16 μm on the PET film, and an adhesive film including the PET film and the film adhesive was obtained.
 得られた接着フィルムを、幅2mmに裁断し、内径66mmのリール状に巻き重ねて、接着フィルムの巻重体を得た。 The obtained adhesive film was cut into a width of 2 mm and wound into a reel having an inner diameter of 66 mm to obtain a roll of the adhesive film.
(接着フィルムの巻重体の評価)
 得られた接着フィルムの巻重体先端部に、75gの荷重を固定して30℃雰囲気下で6時間荷重をぶら下げたまま放置した。放置後の巻重体を観察し、PETフィルム間からのフィルム状接着剤の染み出しの有無を確認した。また、放置後の巻重体から接着フィルムを引き出し、フィルム状接着剤のPETフィルム裏面への転写の有無を確認した。染み出し及び転写のいずれも見られなかった場合を「A」、転写は見られなかったが染み出しが見られた場合を「B」、染み出し及び転写がいずれも見られた場合を「C」として、評価した。評価結果を表5に示す。
(Evaluation of rolls of adhesive film)
A load of 75 g was fixed to the front end of the wound body of the obtained adhesive film, and the load was left hanging at 30 ° C. for 6 hours. The wound body after standing was observed, and it was confirmed whether or not the film adhesive exuded from between the PET films. Moreover, the adhesive film was pulled out from the wound body after standing, and the presence or absence of transfer of the film adhesive to the PET film back surface was confirmed. “A” indicates that no exudation or transfer was observed, “B” indicates that no exudation was observed but exudation was observed, and “C” indicates that no exudation or transfer was observed. " The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表5に示した結果から明らかなとおり、実施例11~15で得られた接着フィルムでは30℃75gの荷重下6時間放置後においてもフィルム状接着剤の染み出しは見られず、PETフィルム裏面への転写も見られなかった。一方、比較例11~13では、巻重体においてPETフィルム間からのフィルム状基材の染み出しが見られた。また、比較例11、14では、染み出しのみならず、PETフィルム裏面へのフィルム状接着剤の転写が見られた。 As is apparent from the results shown in Table 5, the adhesive films obtained in Examples 11 to 15 did not show any oozing out of the film adhesive even after being left for 6 hours under a load of 75 g at 30 ° C., and the back surface of the PET film No transcription was seen. On the other hand, in Comparative Examples 11 to 13, bleeding of the film-like base material from between the PET films was observed in the wound body. In Comparative Examples 11 and 14, not only the seepage but also the transfer of the film adhesive onto the back surface of the PET film was observed.
 1…フィルム状接着剤、5…回路接続材料、7…導電性粒子、10…接続部材、11…絶縁性物質、20…第一の回路部材、21…回路基板(第一の回路基板)、21a…主面、22…回路電極(第一の回路電極)、30…第二の回路部材、31…回路基板(第二の回路基板)、31a…主面、32…回路電極(第二の回路電極)、40…フィルム状接着剤。 DESCRIPTION OF SYMBOLS 1 ... Film adhesive, 5 ... Circuit connection material, 7 ... Conductive particle, 10 ... Connection member, 11 ... Insulating substance, 20 ... First circuit member, 21 ... Circuit board (1st circuit board), 21a ... main surface, 22 ... circuit electrode (first circuit electrode), 30 ... second circuit member, 31 ... circuit board (second circuit board), 31a ... main surface, 32 ... circuit electrode (second electrode) Circuit electrode), 40 ... film adhesive.

Claims (24)

  1.  相対向する二つの回路部材を電気的に接続するための回路接続材料であって、
     熱可塑性樹脂、ラジカル重合性化合物、ラジカル重合開始剤及び無機微粒子を含有し、
     前記ラジカル重合性化合物の含有量が、前記回路接続材料の全量基準で40質量%以上であり、
     前記ラジカル重合性化合物のうち分子量1000以下の化合物の含有量が、前記回路接続材料の全量基準で15質量%以下であり、
     前記無機微粒子の含有量が、前記回路接続材料の全量基準で5~30質量%であり、
     少なくとも下記式(1)で表される化合物を含有する、回路接続材料。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R、R及びRは各々独立に、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のアルコキシカルボニル基又はアリール基を示し、R、R及びRのうち少なくとも一つは炭素数1~5のアルコキシ基であり、Rは(メタ)アクリロイル基、ビニル基、イソシアナート基、イミダゾール基、メルカプト基、アミノ基、メチルアミノ基、ジメチルアミノ基、ベンジルアミノ基、フェニルアミノ基、シクロヘキシルアミノ基、モルホリノ基、ピペラジノ基、ウレイド基又はグリシジル基を示し、nは1~10の整数を示す。]
    A circuit connecting material for electrically connecting two circuit members facing each other,
    Containing a thermoplastic resin, a radical polymerizable compound, a radical polymerization initiator and inorganic fine particles,
    The content of the radical polymerizable compound is 40% by mass or more based on the total amount of the circuit connecting material,
    The content of a compound having a molecular weight of 1000 or less among the radical polymerizable compounds is 15% by mass or less based on the total amount of the circuit connecting material,
    The content of the inorganic fine particles is 5 to 30% by mass based on the total amount of the circuit connecting material,
    A circuit connecting material containing at least a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms, or an aryl group. At least one of R 1 , R 2 and R 3 is an alkoxy group having 1 to 5 carbon atoms, and R 4 is a (meth) acryloyl group, a vinyl group, an isocyanate group, an imidazole group, a mercapto group, An amino group, a methylamino group, a dimethylamino group, a benzylamino group, a phenylamino group, a cyclohexylamino group, a morpholino group, a piperazino group, a ureido group, or a glycidyl group, and n represents an integer of 1 to 10. ]
  2.  前記熱可塑性樹脂が、ガラス転移温度が25℃以上の樹脂を少なくとも1種含む、請求項1に記載の回路接続材料。 The circuit connection material according to claim 1, wherein the thermoplastic resin contains at least one resin having a glass transition temperature of 25 ° C or higher.
  3.  前記無機微粒子の平均粒子径が1μm未満である、請求項1又は2に記載の回路接続材料。 The circuit connection material according to claim 1 or 2, wherein an average particle size of the inorganic fine particles is less than 1 µm.
  4.  導電性粒子が分散されている、請求項1~3のいずれか一項に記載の回路接続材料。 The circuit connection material according to any one of claims 1 to 3, wherein conductive particles are dispersed.
  5.  形状がフィルム状である、請求項1~4のいずれか一項に記載の回路接続材料。 The circuit connection material according to any one of claims 1 to 4, wherein the shape is a film shape.
  6.  前記二つの回路部材のうち少なくとも一方が、ガラス基板である、請求項1~5のいずれか一項に記載の回路接続材料。 The circuit connection material according to any one of claims 1 to 5, wherein at least one of the two circuit members is a glass substrate.
  7.  前記二つの回路部材のうち少なくとも一方が、フレキシブル基板である、請求項1~6のいずれか一項に記載の回路接続材料。 The circuit connection material according to any one of claims 1 to 6, wherein at least one of the two circuit members is a flexible substrate.
  8.  請求項1~7のいずれか一項に記載の回路接続材料と、該回路接続材料中に分散された導電性粒子と、を含有する、異方導電性接着剤。 An anisotropic conductive adhesive comprising the circuit connection material according to any one of claims 1 to 7 and conductive particles dispersed in the circuit connection material.
  9.  対向配置された一対の回路部材と、
     請求項1~7のいずれか一項に記載の回路接続材料の硬化物を含み、前記一対の回路部材の間に介在しそれぞれの回路部材が有する回路電極同士が電気的に接続されるように当該回路部材同士を接続する接続部材と、
    を備える、回路接続構造体。
    A pair of circuit members disposed opposite to each other;
    A cured product of the circuit connection material according to any one of claims 1 to 7, wherein the circuit electrodes interposed between the pair of circuit members are electrically connected to each other. A connecting member that connects the circuit members;
    A circuit connection structure comprising:
  10.  フィルム基材と、該フィルム基材の一方面上に設けられた請求項1~7のいずれか一項に記載の回路接続材料を含むフィルム状接着剤と、を備える、接着フィルム。 An adhesive film comprising: a film base material; and a film adhesive containing the circuit connecting material according to any one of claims 1 to 7 provided on one surface of the film base material.
  11.  熱可塑性樹脂、ラジカル重合性化合物、ラジカル重合開始剤及び無機微粒子を含有する組成物の、相対向する二つの回路部材を電気的に接続するための回路接続材料としての応用であって、
     前記ラジカル重合性化合物の含有量が、前記組成物の全量基準で40質量%以上であり、
     前記ラジカル重合性化合物のうち分子量1000以下の化合物の含有量が、前記組成物の全量基準で15質量%以下であり、
     前記無機微粒子の含有量が、前記組成物の全量基準で5~30質量%であり、
     前記組成物が、少なくとも下記式(1)で表される化合物を含有する、応用。
    Figure JPOXMLDOC01-appb-C000002
    [式中、R、R及びRは各々独立に、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のアルコキシカルボニル基又はアリール基を示し、R、R及びRのうち少なくとも一つは炭素数1~5のアルコキシ基であり、Rは(メタ)アクリロイル基、ビニル基、イソシアナート基、イミダゾール基、メルカプト基、アミノ基、メチルアミノ基、ジメチルアミノ基、ベンジルアミノ基、フェニルアミノ基、シクロヘキシルアミノ基、モルホリノ基、ピペラジノ基、ウレイド基又はグリシジル基を示し、nは1~10の整数を示す。]
    Application of a composition containing a thermoplastic resin, a radical polymerizable compound, a radical polymerization initiator and inorganic fine particles as a circuit connection material for electrically connecting two opposing circuit members,
    The content of the radical polymerizable compound is 40% by mass or more based on the total amount of the composition,
    The content of a compound having a molecular weight of 1000 or less among the radical polymerizable compounds is 15% by mass or less based on the total amount of the composition,
    The content of the inorganic fine particles is 5 to 30% by mass based on the total amount of the composition,
    Application wherein the composition contains at least a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms, or an aryl group. At least one of R 1 , R 2 and R 3 is an alkoxy group having 1 to 5 carbon atoms, and R 4 is a (meth) acryloyl group, a vinyl group, an isocyanate group, an imidazole group, a mercapto group, An amino group, a methylamino group, a dimethylamino group, a benzylamino group, a phenylamino group, a cyclohexylamino group, a morpholino group, a piperazino group, a ureido group, or a glycidyl group, and n represents an integer of 1 to 10. ]
  12.  前記熱可塑性樹脂が、ガラス転移温度が25℃以上の樹脂を少なくとも1種含む、請求項11に記載の応用。 The application according to claim 11, wherein the thermoplastic resin contains at least one resin having a glass transition temperature of 25 ° C or higher.
  13.  前記無機微粒子の平均粒子径が1μm未満である、請求項11又は12に記載の応用。 The application according to claim 11 or 12, wherein an average particle size of the inorganic fine particles is less than 1 µm.
  14.  前記回路接続材料中に導電性粒子が分散される、請求項11~13のいずれか一項に記載の応用。 The application according to any one of claims 11 to 13, wherein conductive particles are dispersed in the circuit connecting material.
  15.  前記回路接続材料の形状がフィルム状である、請求項11~14のいずれか一項に記載の応用。 The application according to any one of claims 11 to 14, wherein a shape of the circuit connecting material is a film.
  16.  前記二つの回路部材のうち少なくとも一方が、ガラス基板である、請求項11~15のいずれか一項に記載の応用。 The application according to any one of claims 11 to 15, wherein at least one of the two circuit members is a glass substrate.
  17.  前記二つの回路部材のうち少なくとも一方が、フレキシブル基板である、請求項11~16のいずれか一項に記載の応用。 The application according to any one of claims 11 to 16, wherein at least one of the two circuit members is a flexible substrate.
  18.  熱可塑性樹脂、ラジカル重合性化合物、ラジカル重合開始剤及び無機微粒子を含有する組成物の、相対向する二つの回路部材を電気的に接続するための回路接続材料の製造のための応用であって、
     前記ラジカル重合性化合物の含有量が、前記組成物の全量基準で40質量%以上であり、
     前記ラジカル重合性化合物のうち分子量1000以下の化合物の含有量が、前記組成物の全量基準で15質量%以下であり、
     前記無機微粒子の含有量が、前記組成物の全量基準で5~30質量%であり、
     前記組成物が、少なくとも下記式(1)で表される化合物を含有する、応用。
    Figure JPOXMLDOC01-appb-C000003
    [式中、R、R及びRは各々独立に、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のアルコキシカルボニル基又はアリール基を示し、R、R及びRのうち少なくとも一つは炭素数1~5のアルコキシ基であり、Rは(メタ)アクリロイル基、ビニル基、イソシアナート基、イミダゾール基、メルカプト基、アミノ基、メチルアミノ基、ジメチルアミノ基、ベンジルアミノ基、フェニルアミノ基、シクロヘキシルアミノ基、モルホリノ基、ピペラジノ基、ウレイド基又はグリシジル基を示し、nは1~10の整数を示す。]
    An application of a composition containing a thermoplastic resin, a radical polymerizable compound, a radical polymerization initiator and inorganic fine particles for producing a circuit connecting material for electrically connecting two opposing circuit members. ,
    The content of the radical polymerizable compound is 40% by mass or more based on the total amount of the composition,
    The content of a compound having a molecular weight of 1000 or less among the radical polymerizable compounds is 15% by mass or less based on the total amount of the composition,
    The content of the inorganic fine particles is 5 to 30% by mass based on the total amount of the composition,
    Application wherein the composition contains at least a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000003
    [Wherein R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms, or an aryl group. At least one of R 1 , R 2 and R 3 is an alkoxy group having 1 to 5 carbon atoms, and R 4 is a (meth) acryloyl group, a vinyl group, an isocyanate group, an imidazole group, a mercapto group, An amino group, a methylamino group, a dimethylamino group, a benzylamino group, a phenylamino group, a cyclohexylamino group, a morpholino group, a piperazino group, a ureido group, or a glycidyl group, and n represents an integer of 1 to 10. ]
  19.  前記熱可塑性樹脂が、ガラス転移温度が25℃以上の樹脂を少なくとも1種含む、請求項18に記載の応用。 The application according to claim 18, wherein the thermoplastic resin contains at least one resin having a glass transition temperature of 25 ° C or higher.
  20.  前記無機微粒子の平均粒子径が1μm未満である、請求項18又は19に記載の応用。 The application according to claim 18 or 19, wherein the inorganic fine particles have an average particle size of less than 1 µm.
  21.  前記回路接続材料中に導電性粒子が分散される、請求項18~20のいずれか一項に記載の応用。 The application according to any one of claims 18 to 20, wherein conductive particles are dispersed in the circuit connecting material.
  22.  前記回路接続材料の形状がフィルム状である、請求項18~21のいずれか一項に記載の応用。 The application according to any one of claims 18 to 21, wherein a shape of the circuit connecting material is a film.
  23.  前記二つの回路部材のうち少なくとも一方が、ガラス基板である、請求項18~22のいずれか一項に記載の応用。 The application according to any one of claims 18 to 22, wherein at least one of the two circuit members is a glass substrate.
  24.  前記二つの回路部材のうち少なくとも一方が、フレキシブル基板である、請求項21~23のいずれか一項に記載の応用。 The application according to any one of claims 21 to 23, wherein at least one of the two circuit members is a flexible substrate.
PCT/JP2013/061658 2012-04-25 2013-04-19 Circuit connection material, circuit connection structure, adhesive film, and wound body WO2013161713A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207011815A KR102329065B1 (en) 2012-04-25 2013-04-19 Circuit connection material, circuit connection structure, adhesive film, and wound body
JP2014512528A JP6090311B2 (en) 2012-04-25 2013-04-19 Circuit connection material, circuit connection structure and adhesive film
CN201380014782.8A CN104169389B (en) 2012-04-25 2013-04-19 Circuit connection material, circuit connection structure, adhesive film and coiling body
KR1020147024907A KR20150005516A (en) 2012-04-25 2013-04-19 Circuit connection material, circuit connection structure, adhesive film, and wound body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-100207 2012-04-25
JP2012100207 2012-04-25

Publications (1)

Publication Number Publication Date
WO2013161713A1 true WO2013161713A1 (en) 2013-10-31

Family

ID=49483032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061658 WO2013161713A1 (en) 2012-04-25 2013-04-19 Circuit connection material, circuit connection structure, adhesive film, and wound body

Country Status (4)

Country Link
JP (1) JP6090311B2 (en)
KR (2) KR20150005516A (en)
CN (1) CN104169389B (en)
WO (1) WO2013161713A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117853A (en) * 2014-12-22 2016-06-30 日立化成株式会社 Underfill material, production method of electronic component device, and electronic component device
JP2016152168A (en) * 2015-02-18 2016-08-22 株式会社タムラ製作所 Anisotropic conducive paste and printed wiring board using the same
WO2016199252A1 (en) * 2015-06-10 2016-12-15 日立化成株式会社 Adhesive composition and connected object
JP2017103303A (en) * 2015-11-30 2017-06-08 日立化成株式会社 Adhesive for semiconductor, semiconductor device, and method for manufacturing the same
TWI685554B (en) * 2015-06-16 2020-02-21 日商日立化成股份有限公司 Adhesive composition and connector
WO2022186016A1 (en) * 2021-03-01 2022-09-09 昭和電工マテリアルズ株式会社 Bonding film for circuit connection and connected body

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143640A1 (en) * 2015-03-11 2016-09-15 セメダイン株式会社 Electroconductive structure and method for manufacturing same
CN104952702B (en) * 2015-05-15 2017-11-28 张家港康得新光电材料有限公司 Semiconductor devices and preparation method thereof
CN108350320B (en) * 2015-11-04 2021-11-26 昭和电工材料株式会社 Adhesive compositions and structures
JP6958359B2 (en) * 2015-11-25 2021-11-02 昭和電工マテリアルズ株式会社 Adhesive composition and structure
CN106549115B (en) * 2016-10-27 2018-07-20 武汉华星光电技术有限公司 The stripping means of anisotropic conductive film and anisotropic conductive film
JP7279639B2 (en) * 2017-11-08 2023-05-23 株式会社レゾナック Bonded body manufacturing method and bonding material
CN114927256A (en) * 2022-04-29 2022-08-19 常州德创高新材料科技有限公司 Circuit connecting material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325543A (en) * 1995-06-05 1996-12-10 Soken Chem & Eng Co Ltd Anisotropically electroconductive adhesive
JPH11284024A (en) * 1998-03-31 1999-10-15 Hitachi Chem Co Ltd Manufacture of circuit board device
JP2001126541A (en) * 1999-10-28 2001-05-11 Sumitomo Bakelite Co Ltd Anisotropic-conductive film and electric/electronic parts
JP2004067908A (en) * 2002-08-07 2004-03-04 Sumitomo Bakelite Co Ltd Anisotropically electroconductive adhesive
JP2010111846A (en) * 2008-10-09 2010-05-20 Hitachi Chem Co Ltd Adhesive composition, adhesive for connecting circuit and connected circuit body

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610900B2 (en) 1987-10-27 1997-05-14 ソニーケミカル 株式会社 Thermosetting anisotropic conductive adhesive sheet and method for producing the same
JP4760070B2 (en) * 2005-03-16 2011-08-31 日立化成工業株式会社 Adhesive, adhesive for circuit connection, connector and semiconductor device
KR101100524B1 (en) * 2006-08-22 2011-12-29 히다치 가세고교 가부시끼가이샤 Circuit connection material, the connection structure of a circuit member, and the manufacturing method of the connection structure of a circuit member
KR100902714B1 (en) * 2006-12-29 2009-06-15 제일모직주식회사 Semi thermosetting anisotropic conductive film composition
KR101240009B1 (en) * 2007-09-19 2013-03-06 히타치가세이가부시끼가이샤 Adhesive composition and bonded body
JP2009110913A (en) * 2007-10-30 2009-05-21 Cheil Industries Inc Semi-thermosetting anisotropic conductive film composition
WO2009133901A1 (en) * 2008-04-28 2009-11-05 日立化成工業株式会社 Circuit connecting material, film-like adhesive, adhesive reel, and circuit connecting structural body
JP5293779B2 (en) * 2010-07-20 2013-09-18 日立化成株式会社 Adhesive composition, circuit connection structure, semiconductor device and solar cell module
WO2015005540A1 (en) 2013-07-11 2015-01-15 엘지전자 주식회사 Broadcasting method using device-to-device (d2d) communication in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325543A (en) * 1995-06-05 1996-12-10 Soken Chem & Eng Co Ltd Anisotropically electroconductive adhesive
JPH11284024A (en) * 1998-03-31 1999-10-15 Hitachi Chem Co Ltd Manufacture of circuit board device
JP2001126541A (en) * 1999-10-28 2001-05-11 Sumitomo Bakelite Co Ltd Anisotropic-conductive film and electric/electronic parts
JP2004067908A (en) * 2002-08-07 2004-03-04 Sumitomo Bakelite Co Ltd Anisotropically electroconductive adhesive
JP2010111846A (en) * 2008-10-09 2010-05-20 Hitachi Chem Co Ltd Adhesive composition, adhesive for connecting circuit and connected circuit body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117853A (en) * 2014-12-22 2016-06-30 日立化成株式会社 Underfill material, production method of electronic component device, and electronic component device
JP2016152168A (en) * 2015-02-18 2016-08-22 株式会社タムラ製作所 Anisotropic conducive paste and printed wiring board using the same
WO2016199252A1 (en) * 2015-06-10 2016-12-15 日立化成株式会社 Adhesive composition and connected object
JPWO2016199252A1 (en) * 2015-06-10 2018-03-29 日立化成株式会社 Adhesive composition and connector
TWI685554B (en) * 2015-06-16 2020-02-21 日商日立化成股份有限公司 Adhesive composition and connector
JP2017103303A (en) * 2015-11-30 2017-06-08 日立化成株式会社 Adhesive for semiconductor, semiconductor device, and method for manufacturing the same
WO2022186016A1 (en) * 2021-03-01 2022-09-09 昭和電工マテリアルズ株式会社 Bonding film for circuit connection and connected body

Also Published As

Publication number Publication date
KR102329065B1 (en) 2021-11-18
CN104169389A (en) 2014-11-26
JPWO2013161713A1 (en) 2015-12-24
KR20200045015A (en) 2020-04-29
CN104169389B (en) 2018-07-13
JP6090311B2 (en) 2017-03-08
KR20150005516A (en) 2015-01-14

Similar Documents

Publication Publication Date Title
JP6090311B2 (en) Circuit connection material, circuit connection structure and adhesive film
JP4998468B2 (en) Adhesive composition and circuit member connection structure
JP5867508B2 (en) Circuit connection material and connection body
JP5223679B2 (en) Adhesive and connection structure using the same
JP6173928B2 (en) Adhesive composition, adhesive for circuit connection and connector
KR102478959B1 (en) Adhesive composition and connected structure
JP5292838B2 (en) Adhesive and circuit member connection structure
JP5577635B2 (en) Adhesive composition, adhesive for circuit connection, and circuit connector
JP2015183118A (en) Adhesive composition, anisotropic conductive adhesive composition, circuit connecting material, and connected body
JP2011037953A (en) Adhesive agent composition, circuit-connecting structure and semiconductor device
JP2013028675A (en) Circuit connection material, and circuit connection structure using the same
JP2022000530A (en) Adhesive composition and structure
JP2013227420A (en) Circuit connection material, circuit connection structure, adhesion film and wound body
CN109804508B (en) Connection structure, circuit connection member, and adhesive composition
JP2012204059A (en) Circuit connection material and circuit connection structure using the same
JP6645499B2 (en) Adhesive composition and connector
WO2017037951A1 (en) Adhesive composition, anisotropically electroconductive adhesive composition, circuit connecting material, and connected object
TWI570208B (en) Circuit connecting material and connection body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512528

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147024907

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782245

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载