+

WO2013039034A1 - Imaging lens and imaging device - Google Patents

Imaging lens and imaging device Download PDF

Info

Publication number
WO2013039034A1
WO2013039034A1 PCT/JP2012/073060 JP2012073060W WO2013039034A1 WO 2013039034 A1 WO2013039034 A1 WO 2013039034A1 JP 2012073060 W JP2012073060 W JP 2012073060W WO 2013039034 A1 WO2013039034 A1 WO 2013039034A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
block
imaging
image
object side
Prior art date
Application number
PCT/JP2012/073060
Other languages
French (fr)
Japanese (ja)
Inventor
松井一生
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2013039034A1 publication Critical patent/WO2013039034A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0085Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing wafer level optics

Definitions

  • the present invention relates to an imaging lens suitable for an imaging device using a solid-state imaging device such as a CCD (Charge Coupled Devices) type image sensor or a CMOS (Complementary Meta 1-Oxide Semiconductor) type image sensor, and more specifically, a large quantity.
  • the present invention relates to an imaging lens for an optical system using a wafer scale lens suitable for production, and an imaging apparatus using the imaging lens.
  • Compact and thin imaging devices are now installed in portable terminals that are compact and thin electronic devices such as mobile phones and PDAs (Persona1 Digita1 Assistants), which enables not only audio information but also image information to remote locations. Can also be transmitted to each other.
  • PDAs Persona1 Digita1 Assistants
  • a solid-state image pickup element such as a CCD type image sensor or a CMOS type image sensor is used.
  • the number of pixels of an image sensor has been increased, and higher resolution and higher performance have been achieved.
  • a lens formed of a resin suitable for mass production has been used for further cost reduction.
  • a lens made of resin has good workability and can meet the demand for higher performance by adopting an aspherical shape.
  • a large number of lens elements are simultaneously formed on a glass substrate of several inches which is a parallel plate by a replica method, and a glass substrate (lens wafer) on which a large number of these lens elements are formed is used as a sensor wafer.
  • a method of mass-producing lens modules by combining them with each other has been proposed.
  • the lens manufactured by such a manufacturing method is called a wafer scale lens, and the lens module is called a wafer scale lens module.
  • Patent Documents 1 and 2 As an imaging lens capable of reducing the size of the imaging element, those shown in Patent Documents 1 and 2 having two lens blocks are proposed.
  • the imaging lens described in Patent Document 1 has a large sag amount because the radius of curvature of the side surface of the first lens block image is too small, and can secure a sufficient edge thickness enough to insert a substrate when downsizing. There is no problem.
  • the imaging lens described in Patent Document 2 the side surface of the second lens block image is too close to the imaging device, and a sufficient lens back for inserting the cover glass of the imaging device (sensor) can be secured when downsizing. There is no problem.
  • an object of the present invention is to provide an imaging lens having high performance, low cost, and high manufacturing stability, and an imaging apparatus using the imaging lens by realizing aberration performance capable of achieving high resolution up to the periphery.
  • an optical element including a lens substrate that is a parallel plate and a lens unit that is formed on at least one of the object side surface and the image side surface and has positive or negative power is referred to as a lens block.
  • the first lens block having a positive power with the convex surface facing the object side and the concave surface facing the image side
  • the second lens block having the convex surface facing the object side and the concave surface facing the image side
  • the aperture stop is provided on the object side of the first lens block or inside the first lens block, the object side lens portion of the second lens block has a concave shape in the periphery, and the following conditional expression is satisfied: It is characterized by satisfying.
  • r12 Paraxial radius of curvature (mm) of the side surface of the first lens block image
  • f Focal length (mm) of the entire imaging lens system
  • N13 Refractive index D of the first lens block image side lens part
  • D Distance on the optical axis from the first lens block object side surface to the second lens block object side surface (mm)
  • ⁇ d distance on the optical axis from the first lens block object side surface to the second lens block image side surface (mm)
  • an imaging lens having a higher performance than a single-lens configuration and a lower profile (shorter overall length) than a three-lens configuration can be obtained. Furthermore, since the object side surfaces of the first lens block and the second lens block are convex toward the object side, the image-side principal point position can be made closer to the object side even at the same focal length, thereby reducing the overall length. This is an advantageous configuration. Further, since the image side surfaces of the first lens block and the second lens block are concave on the image side, aberration can be corrected well and the lens back can be lengthened. Enough space for insertion can be secured.
  • the object side lens portion of the second lens block has negative power at the periphery, it is possible to share correction of field curvature and astigmatism at the image side surface and the peripheral image height of the first lens block. Therefore, it is possible to reduce the sag amount of the image side surface of the first lens block and the object side surface of the second lens block, which is advantageous for securing the plate thickness of the lens substrate. Further, by arranging the aperture stop on the object side of the first lens block or inside the first lens block, the exit pupil position can be made closer to the object side, so that the telecentric characteristics for the sensor are improved.
  • conditional expression (1) When the value of conditional expression (1) is less than the upper limit, the sag amount on the side surface of the first lens block image can be reduced, so that the lens substrate in the first lens block can easily have a desired thickness. In addition, since the occurrence of coma aberration can be suppressed, good performance can be achieved. On the other hand, if the value of conditional expression (1) exceeds the lower limit, the Petzval sum can be improved and the field curvature can be corrected well, the lens back can be lengthened, and a cover glass for the sensor is inserted. Sufficient space can be secured.
  • conditional expression (2) When the value of conditional expression (2) exceeds the lower limit, the height of light incident on the second lens block is increased, and field curvature and astigmatism are caused by a negative lens around the lens part on the second lens block object side. Since the correction can be performed efficiently, the sag amount on the object side surface of the second lens block can be reduced, so that the lens substrate in the second lens block can easily have a desired thickness.
  • the value of conditional expression (2) is below the upper limit, the lens back can be lengthened, and a sufficient space for inserting the cover glass of the sensor can be secured. In particular, these do not make the sag amount of the image side surface of the first lens block and the object side surface of the second lens block extremely small, but contribute to the overall miniaturization by reducing the sag amount in a balanced manner. .
  • the imaging lens according to claim 2 is characterized in that, in the invention according to claim 1, the image side surface of the second lens block has a convex shape in the peripheral portion.
  • the resin thickness in the peripheral part of the image side lens part of the second lens block can be reduced, and good telecentricity is ensured. can do.
  • the image side surface of the second lens block has a convex shape at the peripheral portion means that the cross section including the optical axis moves toward the image side as the distance from the optical axis increases, and toward the object side with the inflection point as a boundary. It means that it is a shape.
  • the imaging lens according to the first or second aspect wherein the first lens block satisfies the following conditional expression. 0.3 ⁇ DL1 / f ⁇ 0.6 (3)
  • DL1 Distance on the optical axis from the object side surface to the image side surface of the first lens block (mm)
  • the lens substrate in the first lens block has a desired thickness. It can.
  • the distance from the first lens block to the imaging surface of the sensor can be increased when the distance falls below the upper limit of the conditional expression (3), the thickness of the lens substrate of the second lens block is ensured. It becomes easy.
  • the imaging lens according to any one of the first to third aspects, wherein the second lens block satisfies the following conditional expression. 0.7 ⁇ r21 / r22 ⁇ 1.8 (4)
  • r21 Paraxial radius of curvature (mm) of the object side surface of the second lens block
  • r22 Paraxial radius of curvature (mm) of the side surface of the second lens block image
  • the imaging lens according to any one of the first to fourth aspects, wherein the first lens block satisfies the following conditional expression. 0.23 ⁇ r11 / r12 ⁇ 0.6 (5)
  • r11 paraxial radius of curvature (mm) of the object side surface of the first lens block
  • conditional expression (5) The relationship between the paraxial curvature radius of the object side surface of the first lens block and the paraxial curvature radius of the image side surface (the centers of the radii are both on the image side) satisfies the conditional expression (5), whereby the first lens Since the block image side lens unit can have an appropriate negative power, it is possible to secure a sufficient lens back for inserting the cover glass of the sensor even when downsizing, and conditional expression (5) Is less than the upper limit, the sag amount on the image side surface of the first lens block is reduced, and the lens substrate thickness is easily secured.
  • An imaging lens according to a sixth aspect of the present invention is the imaging lens according to any one of the first to fifth aspects, wherein the opening is provided between the object side lens unit or the image side lens unit and the lens substrate in the first lens block. It has a diaphragm.
  • the effective surface diameter of the first lens block image side lens unit can be reduced. In addition to easily securing the lens substrate thickness, it is easy to secure the lens back.
  • the imaging lens according to the sixth aspect of the present invention wherein the first lens block is between the object side lens unit or the image side lens unit and the lens substrate, and the aperture stop is There are flare cut stops at different positions, and the flare cut stop satisfies the following conditional expression. ⁇ 0 ⁇ L (6) However, L: Shortest distance (mm) from the optical axis to the flare cut aperture ⁇ 0: Radius radius (mm) of the axial light beam at the flare-cut stop position
  • FIG. 20 is a diagram showing a relationship between the aperture stop S and the flare cut stop FS, and each symbol corresponds to each diameter.
  • the effective lens length can be further reduced, so that it is easy to secure a desired lens substrate thickness and reduce coma aberration generated off-axis. Can do.
  • An imaging lens according to an eighth aspect is characterized in that, in the invention according to any one of the first to fifth aspects, the aperture stop is provided closer to the object side than the first lens block.
  • the aperture stop By providing the aperture stop closer to the object side than the first lens block, the height of the light beam reaching the object side surface of the second lens block can be increased, and the aperture stop is disposed in the periphery of the object side surface of the second lens block. Since the aberration can be corrected more efficiently on the concave surface, the sag amount on the side surface of the second lens block object can be further reduced.
  • the imaging lens according to claim 9 is the invention according to claim 8, wherein the first lens block has a flare-cut stop between the object side lens unit or the image side lens unit and the lens substrate.
  • the flare cut stop satisfies the following conditional expression. ⁇ 0 ⁇ L (6) However, L: Shortest distance (mm) from the optical axis to the flare cut aperture ⁇ 0: Radius radius (mm) of the axial light beam at the flare-cut stop position
  • the effective lens length can be further reduced, so that it is easy to secure a desired lens substrate thickness and reduce coma aberration generated off-axis. Can do.
  • the imaging lens according to claim 10 is characterized in that, in the invention according to any one of claims 1 to 9, the object side and image side lens portions of the second lens block satisfy the following conditional expression: . 20 ⁇ 21 ⁇ 45 (7) 45 ⁇ 23 ⁇ 65 (8) However, ⁇ 21: Abbe number with respect to d-line of the second lens block object side lens portion ⁇ 23: Abbe number with respect to d line of the second lens block image side lens portion
  • the lateral chromatic aberration can be corrected efficiently, and high performance can be secured up to the periphery.
  • An imaging lens according to an eleventh aspect is characterized in that, in the invention according to any one of the first to tenth aspects, the lens substrate is formed of a resin material.
  • the lens substrate in the lens block is made of resin, it is difficult to break, so the total optical length can be reduced.
  • the imaging lens according to a twelfth aspect is characterized in that, in the invention according to any one of the first to tenth aspects, the lens substrate is made of a glass material.
  • An imaging lens with excellent optical characteristics can be obtained by making the lens substrate in the lens block glass.
  • the imaging lens satisfies the following conditional expression. 0.3 ⁇ DCG / Ymax ⁇ 0.7 (9)
  • DCG Maximum thickness of sensor cover glass
  • Ymax Half the diagonal length of the imaging surface of the solid-state imaging device
  • Miniaturization can be realized by satisfying the upper limit of the conditional expression. By exceeding the lower limit, a desired substrate thickness can be secured and the production stability of the lens is improved.
  • the imaging lens according to a fourteenth aspect is characterized in that, in the invention according to any one of the first to thirteenth aspects, the imaging lens satisfies the following conditional expression. 1.9 ⁇ TL / Ymax ⁇ 2.5 (10) However, TL: Distance (mm) on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system (however, “image-side focal point” means that parallel rays parallel to the optical axis are incident on the imaging lens. This is the image point when
  • the strength of CG can be secured by exceeding the lower limit of this conditional expression.
  • a desired substrate thickness can be secured and the production stability of the lens is improved.
  • An imaging apparatus is characterized by using the imaging lens according to any one of the first to fourteenth aspects.
  • an aberration capable of securing a substrate thickness and a sensor cover glass thickness necessary for ensuring manufacturing stability which is a problem when dealing with downsizing of an imaging device, and achieving high resolution to the periphery.
  • By realizing the performance it is possible to provide an imaging lens having high performance, low cost, and high manufacturing stability, and an imaging device using the imaging lens.
  • FIG. 2 is a cross-sectional view of the configuration of FIG. 1 cut along an arrow II-II line and viewed in the direction of the arrow, where (a) shows an example of forming an aperture stop, a flare cut stop, and a light shielding part; An example is shown.
  • FIGS. 2A and 2B are diagrams showing a mobile phone T, in which FIG. 1A is a view of the folded mobile phone opened and viewed from the inside, and FIG. 2B is a view of the folded mobile phone opened and viewed from the outside. It is a figure which shows an example of the manufacturing process (a)-(e) of an imaging lens.
  • FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 1; 6 is a cross-sectional view of an imaging lens according to Example 2.
  • FIG. FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 2; 6 is a cross-sectional view of an imaging lens according to Example 3.
  • FIG. FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 2.
  • FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 3; 6 is a cross-sectional view of an imaging lens according to Example 4.
  • FIG. FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 4; 6 is a cross-sectional view of an imaging lens according to Example 5.
  • FIG. FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 5; 6 is a cross-sectional view of an imaging lens according to Example 6.
  • FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 6; 10 is a cross-sectional view of an imaging lens according to Example 7.
  • FIG. FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 7; It is a figure which shows the relationship between the aperture stop S and the flare cut stop FS.
  • FIG. 1 is a perspective view of an imaging apparatus LU according to the present embodiment
  • FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along the line II-II and viewed in the direction of the arrow.
  • CMOS image sensor IM as a solid-state imaging device having a photoelectric conversion unit IMa, and a subject image on the photoelectric conversion unit (light receiving surface) IMa of the image sensor IM.
  • An imaging lens LN for imaging and an external connection terminal (electrode) (not shown) that transmits and receives the electrical signal are provided, and these are integrally formed.
  • the imaging lens LN includes a first lens block LB1 and a second lens block LB2 in order from the object side (upper side in FIG. 2).
  • the first lens block LB1 includes a lens substrate PP1 that is a parallel plate, a convex lens portion LB1a formed on the object side surface, and a concave lens portion LB1b formed on the image side surface.
  • the second lens block LB2 includes a lens substrate PP2 which is a parallel plate, a convex lens portion LB2a formed on the object side surface, and a concave lens portion LB2b formed on the image side surface. It is desirable to perform IR cut coating on at least one of both surfaces of the lens substrate PP1 and the lens substrate PP2. By attaching the IR cut coat on both sides, it is possible to prevent warping of the lens substrate.
  • an aperture stop S is further formed between the lens substrate PP1 and the object side lens unit LB1a, and a flare cut stop FS is formed between the lens substrate PP1 and the image side lens unit LB1b. They are formed in between, but these may be reversed.
  • the aperture stop S may be provided on the object side of the first lens block LB1
  • the flare cut stop FS may be provided inside the first lens block LB1.
  • the aperture stop S and the flare cut stop FS can be formed by forming a film on a lens substrate with a resin capable of shielding light such as black. Alternatively, it can be formed by depositing a metal such as Cr or CrO or a metal oxide.
  • the aperture stop S is formed from the effective diameter to the outer periphery of the first lens block LB1, and the flare cut stop FS is formed from a position outside the effective diameter to the outer periphery of the first lens block LB1.
  • the light shielding portion SH may be formed on the lens substrate PP2 of the second lens block LB2 by the same method as the aperture stop.
  • the spacer may be a transparent material such as resin or glass, and the light shielding portion SH is formed from a position outside the effective diameter to the inside of the spacers SP1 and SP2.
  • UV ultraviolet rays
  • the object side lens portion LB2a of the second lens block LB2 has a concave shape in the periphery and satisfies the following conditional expression. ⁇ 3.5 ⁇ r12 / f (1-N13) ⁇ 1.1 (1) 0.5 ⁇ D / ⁇ d ⁇ 0.65 (2) However, r12: paraxial radius of curvature of the first lens block image side surface (mm) f: Focal length (mm) of the entire imaging lens system N13: Refractive index D of the first lens block image side lens portion D: Distance on the optical axis from the first lens block object side surface to the second lens block object side surface (mm) ⁇ d: distance on the optical axis from the first lens block object side surface to the second lens block image side surface (mm)
  • a photoelectric conversion unit IMa as a light receiving unit in which pixels (photoelectric conversion elements) are two-dimensionally arranged is formed in the center of a plane on the light receiving side, and signal processing (not shown) is performed.
  • a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like.
  • a number of pads are arranged near the outer edge of the light receiving side plane of the image sensor IM, and are connected to the image sensor IM via wires (not shown).
  • the image sensor IM converts a signal charge from the photoelectric conversion unit IMa into an image signal such as a digital YUV signal and outputs the image signal to a predetermined circuit via a wire (not shown).
  • Y is a luminance signal
  • the solid-state imaging device is not limited to the CMOS image sensor, and other devices such as a CCD may be used.
  • the image sensor IM is connected to an external circuit (for example, a control circuit included in a host device of a portable terminal mounted with an imaging device) via an external connection terminal, and a voltage or a clock for driving the image sensor IM from the external circuit. It is possible to receive a signal and to output a digital YUV signal to an external circuit.
  • an external circuit for example, a control circuit included in a host device of a portable terminal mounted with an imaging device
  • the upper part of the image sensor IM is sealed with a cover glass CG.
  • a spacer SP2 is interposed, and the flange portion (outside of the lens portion) of the second lens block LB2 is fixed at a predetermined distance.
  • the spacer SP1 Is interposed, and the flange portion (outside of the lens portion) of the first lens block LB1 is fixed.
  • the outer sides of these lens blocks LB1 and LB2 are covered with a housing BX, and the lower surface of the upper flange BXa of the housing BX is in contact with the upper surface of the flange portion (outside of the lens portion) of the first lens block LB1.
  • the lower end of the housing BX is not in contact with the cover glass CG.
  • the spacers SP1 and SP2 are fixed by alignment and are bonded in the air as will be described later. Therefore, the spacer SP1, the first lens block LB1, and the second lens block LB2 are not applied. Thereby, even if the spacers SP1 and the thickness of the lens substrate vary, the distance between the lenses can be accurately defined. Further, a fine concavo-convex structure can be provided as an antireflection structure between the first lens block LB1 and the second lens block LB2. When these uneven structures are provided on the surface, cleaning becomes difficult if dust adheres to the fine unevenness. However, since the space between the first lens block LB1 and the second lens block LB2 is sealed, dust does not enter and cleaning is not necessary.
  • the lower surface of the upper flange BXa of the housing BX that covers the entire lens blocks LB1 and LB2 is in close contact with the upper surface except within the effective diameter of the lens portion LB1a of the first lens block LB1.
  • the central opening of the upper flange BXa constitutes the aperture stop S.
  • an aperture stop may be applied and formed on the lens surface with a black resin or the like.
  • the imaging lens LN is held in the housing BX by engaging the outer peripheral lower surface of the lens substrate PP2 of the second lens block LB2 with the convex portion BXb formed on the inner periphery of the housing BX. Therefore, the spacer SP2 is not provided.
  • the lower end of the housing BX is in contact with the upper surface of the cover glass CG.
  • the other configuration is the same as the example shown in FIG.
  • FIG. 3A is a view of the folded mobile phone opened from the inside
  • FIG. 3B is a view of the folded mobile phone opened from the outside.
  • an upper casing 71 as a case having display screens D1 and D2 and a lower casing 72 having an operation button B are connected via a hinge 73.
  • the main imaging device MC for photographing a landscape or the like is provided on the surface side of the upper housing 71, and the imaging device LU including the above-described wide-angle imaging lens LN is the upper housing 71. And provided on the display screen D1.
  • the imaging lens LN can image the upper body of the user himself holding the mobile phone T with his / her hand, with the imaging device LU facing the imaging device LU.
  • a so-called videophone can be realized by making a normal call.
  • the mobile phone T is not limited to a folding type.
  • FIG. 4 is a diagram showing the manufacturing process of the imaging lens, but the lens shape is different from the actual one.
  • IR cut coating (described above) is performed on both surfaces of a parallel plate 101 made of glass or resin, and a black resist is applied at equal intervals to form a diaphragm 104 (described above).
  • the thickness of the parallel plate 101 is about 0.2 to 0.7 mm. If the substrate is thinner than this value, the strength is insufficient and the substrate is damaged and cheap. In particular, a large glass substrate such as a wafer level lens such as a wafer level lens is difficult to handle with a thin lens, so a certain thickness is required.
  • the two parallel flat plates preferably have substantially the same thickness, and the total thickness of the two parallel flat plates is preferably within a range of 0.5 to 1.0 mm in view of overall miniaturization.
  • a photocurable resin PL is applied to the lower surface of the parallel plate 101. At this time, each lens may be manufactured by individual dropping.
  • the lens unit 1 is formed on the lens substrate.
  • resin is dropped by the number of pieces (or a plurality of pieces), and the molding is repeated individually by repeating the molding. This individual dripping is effective in ensuring lens accuracy, such as having no effect on the lens surface during cutting.
  • the mold 41 is pressed against the parallel plate 101 on the surface on which the resin PL is applied. Thereafter, if the substrate 101 on the parallel plate side is a transparent member (glass or the like), it is irradiated with light from there to be cured. Conversely, the mold 41 may be made of a transparent material, and in that case, it may be cured by irradiating light from the mold 41 side. Thereafter, a lens for releasing the mold 41 is formed.
  • the resin is applied to the parallel flat plate 101 by photo-curing, but the resin may be applied to the mold 41 and molded.
  • a photo-curable resin PL is applied to the surface of the parallel plate 101 opposite to the lens side formed with the mold 41.
  • the mold 42 is pressed against the parallel plate 101 on the surface on which the resin PL is applied.
  • the substrate 101 on the parallel plate side is a transparent member (glass or the like)
  • the mold 42 may be made of a transparent material, and in that case, it may be cured by irradiating light from the mold 42 side.
  • the mold 41 is released to form a lens.
  • the resin is applied to the parallel plate 101 by photo-curing, but the resin may be applied to the mold 41 for molding. In this way, the lens block 100 in which the lens portion 11 is formed on one surface and the lens portion 12 is formed on the other surface as shown in FIG. 4D is completed.
  • the lens block 100 formed in this manner and the lens block 200 formed in the same manner in another process are finally set to have optical axes OA of the lens portions 11 and 12 as shown in FIG. While being held by a holding device (not shown) so as to be aligned, the spacer 105 inserted between the two is adsorbed to the holding device.
  • a UV adhesive 106 (see FIG. 5) is applied to the upper end of the spacer 105.
  • Application of the UV adhesive 106 to the spacer 105 uses screen printing or dispensing.
  • the holding device is operated to lower the lens block 100.
  • the position of the lens block 100 is measured by a position sensor. Therefore, the tilt is corrected even when the lens block 100 is lowered.
  • the lens substrate 101 of the lens block 100 and the lower end of the spacer 105 are held at an interval X.
  • the interval X is a sufficient interval that the outer peripheral portions of the lens portions 11 and 12 do not hit the end face of the spacer 105, but the UV adhesive 106 comes into contact with the lens substrate 101.
  • a UV adhesive 106 is applied to the lower end of the spacer 105.
  • the holding device is operated to lower the lens block 100 together with the spacer 105.
  • the position of the lens block 100 is measured by a position sensor. Therefore, the tilt is corrected even when the lens block 100 is lowered.
  • the lens substrate 101 of the lens block 200 and the lower end of the spacer 105 are held at an interval X ′.
  • the interval X ′ is a sufficient interval that the outer peripheral portions of the lens portions 11 and 12 do not hit the end face of the spacer 105, but the UV adhesive 106 comes into contact with the lens substrate 101.
  • X + X ′ predetermined value.
  • a UV (not shown).
  • the light generator is operated, and the UV adhesive 106 is cured by irradiating UV light from the lens block 200 side.
  • the light blocking member is formed in the lens block 200, if the light blocking member is provided so as to exclude the periphery of the spacer 105, the UV light reaches the lower end and the upper end of the spacer 105, and the UV adhesive 106 is effectively cured. Can do.
  • the lens block 100 and the lens block 200 can be attached while the spacer 105 is interposed.
  • the two UV blocks are bonded simultaneously by the lens block 100 and the lens block 200.
  • the other lens block may be bonded.
  • the imaging lens LN shown in FIG. 5 is formed by dicing at a position indicated by a dotted line DX in FIG.
  • the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction.
  • the height in the direction perpendicular to the optical axis is represented by the following “Equation 1”.
  • a power of 10 (for example, 2.5 ⁇ 10 ⁇ 02 ) is represented by using E (for example, 2.5e ⁇ 002).
  • E for example, 2.5e ⁇ 002
  • the surface number of the lens data was given in order with the object side of the first lens as one surface.
  • the unit of the numerical value showing the length as described in an Example shall be mm.
  • Example 1 Table 1 shows lens data in Example 1. 6 is a sectional view of the lens of Example 1.
  • the imaging lens of Example 1 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side.
  • the first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side.
  • the object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery.
  • An aperture stop S is provided between the first object side lens unit LB1a and the first lens substrate PP1, and a flare cut stop FS is provided between the first lens substrate PP1 and the first image side lens unit LB1b.
  • CG is a cover glass
  • IM is an imaging surface of the solid-state imaging device.
  • the lens substrate is glass.
  • FIG. 7 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c)).
  • the solid line represents the spherical aberration amount with respect to the d line and the dotted line, respectively
  • the solid line represents the sagittal surface and the dotted line represents the meridional surface (hereinafter the same).
  • FIG. 8 is a sectional view of the lens of Example 2.
  • the imaging lens of Example 2 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side.
  • the first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side.
  • the object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery.
  • An aperture stop S is provided between the first object side lens unit LB1a and the first lens substrate PP1, and a flare cut stop FS is provided between the first image side lens unit LB1b and the first lens substrate PP1.
  • CG is a cover glass
  • IM is an imaging surface of the solid-state imaging device.
  • the lens substrate is glass.
  • FIG. 9 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 10 is a sectional view of the lens of Example 3.
  • the imaging lens of Example 3 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side.
  • the first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side.
  • the object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery.
  • An aperture stop S is provided on the object side of the first object side lens unit LB1a, and a flare cut stop FS is provided between the first lens substrate PP1 and the first object side lens unit LB1a or the first image side lens unit LB1b.
  • CG is a cover glass
  • IM is an imaging surface of the solid-state imaging device.
  • the lens substrate is glass.
  • FIG. 11 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Example 4 shows lens data in Example 4.
  • 12 is a sectional view of the lens of Example 4.
  • the imaging lens of Example 4 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side.
  • the first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side.
  • the object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery.
  • An aperture stop S is provided between the first object side lens unit LB1a and the first lens substrate PP1, and a flare cut stop FS is provided between the first lens substrate PP1 and the first image side lens unit LB1b. It has been.
  • CG is a cover glass
  • IM is an imaging surface of the solid-state imaging device.
  • the lens substrate is glass.
  • FIG. 13 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 14 is a sectional view of the lens of Example 5.
  • the imaging lens of Example 5 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side.
  • the first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side.
  • the object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery.
  • An aperture stop S is provided between the first object side lens unit LB1a and the first lens substrate PP1, and a flare cut stop FS is provided between the first lens substrate PP1 and the first image side lens unit LB1b.
  • CG is a cover glass
  • IM is an imaging surface of the solid-state imaging device.
  • the lens substrate is glass.
  • FIG. 15 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 16 is a sectional view of the lens of Example 6.
  • the imaging lens of Example 6 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side.
  • the first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side.
  • the object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery.
  • An aperture stop S is provided between the first object side lens unit LB1a and the first lens substrate PP1, and a flare cut stop FS is provided between the first lens substrate PP1 and the first image side lens unit LB1b.
  • CG is a cover glass
  • IM is an imaging surface of the solid-state imaging device.
  • the lens substrate is glass.
  • FIG. 17 is an aberration diagram of Example 6 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Example 7 shows lens data in Example 7.
  • FIG. 18 is a sectional view of the lens of Example 7.
  • the imaging lens of Example 7 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side.
  • the first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side.
  • the object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery.
  • An aperture stop S is provided between the first lens substrate PP1 and the first image side lens portion LB1b, and a flare cut stop FS is provided between the first object side lens portion LB1a and the first lens substrate PP1.
  • CG is a cover glass
  • IM is an imaging surface of the solid-state imaging device.
  • the lens substrate is a resin.
  • FIG. 19 is an aberration diagram of Example 7 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Table 8 summarizes the values of the examples corresponding to each conditional expression.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

Provided are an imaging lens and an imaging device that uses the imaging lens, the imaging lens being endowed with high performance, low cost, and high manufacturing stability, by ensuring the substrate thickness and sensor cover glass thickness that are necessary to ensure manufacturing stability, which becomes an issue when an imaging lens is adapted to a small-sized imaging device, and by realizing aberration performance whereby high resolution can be achieved even at the edges. An optical element provided with a lens unit having a positive or negative power formed on the object-side surface and/or the image-side surface being referred to as a lens block, the imaging lens comprises: a lens substrate which is a parallel plate; and, in order from the object, a first lens block having a positive power, a convex surface of which facing the object and a concave surface of which facing the image; and a second lens block, a convex surface of which facing the object and a concave surface of which facing the image; an aperture diaphragm being provided on the object side of the first lens block or inside the first lens block; the object-side lens unit of the second lens block having a concave shape at the edge thereof; and the imaging lens satisfying conditions (1) and (2). (1): −3.5 < r12/f(1-N13) < -1.1 (2): 0.5 < D/Σd < 0.65 (r12: paraxial curvature radius (mm) of the image-side surface of the first lens block; f: focal length (mm) of the entire imaging lens system; N13: refractive index of the image-side lens unit of the first lens block; D: distance (mm) on the optical axis from the object-side surface of the first lens block to the object-side surface of the second lens block; Σd: distance (mm) on the optical axis from the object-side surface of the first lens block to the image-side surface of the second lens block)

Description

撮像レンズ及び撮像装置Imaging lens and imaging apparatus
 本発明は、CCD(Charge Coupled Devices)型イメージセンサやCMOS(Complementary Meta1-Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像装置に好適な撮像レンズに関するものであり、より詳しくは、大量生産に適するウェハスケ-ルのレンズを用いた光学系にかかる撮像レンズ、及び撮像レンズを用いた撮像装置に関するものである。 The present invention relates to an imaging lens suitable for an imaging device using a solid-state imaging device such as a CCD (Charge Coupled Devices) type image sensor or a CMOS (Complementary Meta 1-Oxide Semiconductor) type image sensor, and more specifically, a large quantity. The present invention relates to an imaging lens for an optical system using a wafer scale lens suitable for production, and an imaging apparatus using the imaging lens.
 コンパクトで薄型の撮像装置が、携帯電話機やPDA(Persona1 Digita1 Assistant)等のコンパクトで、薄型の電子機器である携帯端末に搭載されるようになり、これにより遠隔地へ音声情報だけでなく画像情報も相互に伝送することが可能となっている。 Compact and thin imaging devices are now installed in portable terminals that are compact and thin electronic devices such as mobile phones and PDAs (Persona1 Digita1 Assistants), which enables not only audio information but also image information to remote locations. Can also be transmitted to each other.
 これらの撮像装置に使用される撮像素子としては、CCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子が使用されている。近年では撮像素子の高画素化が進んでおり、高解像、高性能化が図られてきている。また、これら撮像素子上に被写体像を形成するためのレンズは、更なる低コスト化のために、大量生産に適した樹脂で形成されるレンズが用いられるようになってきた。特に、樹脂によって構成されるレンズは、加工性もよく非球面形状を採ることで高性能化の要求にも応えることができた。 As an image pickup element used in these image pickup apparatuses, a solid-state image pickup element such as a CCD type image sensor or a CMOS type image sensor is used. In recent years, the number of pixels of an image sensor has been increased, and higher resolution and higher performance have been achieved. Further, as a lens for forming a subject image on these image pickup elements, a lens formed of a resin suitable for mass production has been used for further cost reduction. In particular, a lens made of resin has good workability and can meet the demand for higher performance by adopting an aspherical shape.
 このような、携帯端末に内蔵される撮像装置に用いる撮像レンズとして、プラスチックレンズ3枚構成としたタイプおよび、ガラスレンズ1枚とプラスチックレンズ2枚の3枚構成の光学系が一般的によく知られている。しかしながら、これらの撮像レンズに対する更なるコンパクト化と携帯端末に求められる量産性に対する要求が厳しくなっていく中、その両立は益々困難となっている。 As an imaging lens used in such an imaging device built in a portable terminal, a type having a configuration with three plastic lenses and an optical system having a configuration with three glass lenses, one glass lens and two plastic lenses are generally well known. It has been. However, as demands for further downsizing of these imaging lenses and mass productivity required for portable terminals are becoming stricter, it is becoming more difficult to achieve both.
 このような問題点を克服するため、平行平板である数インチのガラス基板上にレプリカ法によってレンズ要素を同時に大量に成形し、これらのレンズ要素が多数形成されたガラス基板(レンズウェハ)をセンサウェハと組み合わせた後に切り離し、レンズモジュールを大量生産する手法が提案されている。こうした製法によって製造されたレンズをウェハスケ-ルレンズ、また、レンズモジュールをウェハスケ-ルレンズモジュールと呼ぶ。 In order to overcome such problems, a large number of lens elements are simultaneously formed on a glass substrate of several inches which is a parallel plate by a replica method, and a glass substrate (lens wafer) on which a large number of these lens elements are formed is used as a sensor wafer. A method of mass-producing lens modules by combining them with each other has been proposed. The lens manufactured by such a manufacturing method is called a wafer scale lens, and the lens module is called a wafer scale lens module.
 また、レンズモジュールを大量生産する手法と共に、レンズモジュールを低コストかつ大量に基板に実装する方法として、近年では予め半田がポッティングされた基板に対しIC(lntegrated Circuit)チップや、その他の電子部品と共に、レンズモジュールを載置したままリフロー処理(加熱処理)し、半田を溶融させることにより電子部品とレンズモジュールとを基板に同時実装するという手法が提案されており、リフロー処理に耐え得る耐熱性に優れた撮像レンズも求められている。ところで、撮像装置の小型化を図るためには、レンズモジュールの平行平板を薄くすることが考えられるが、製造安定性を考慮すると薄くすることには限界がある。一方、撮像素子のカバーガラスには剛性を与えるべく所定の肉厚を持たせる必要があるので、撮像レンズとセンサーとの関係において、干渉を回避すべく或る程度のレンズバックを確保しなくてはならないという課題もある。 In addition to the mass production of lens modules, as a method of mounting lens modules on a board at low cost and in large quantities, in recent years, together with ICs (integrated circuit) chips and other electronic components on boards that have been soldered in advance. A method has been proposed in which an electronic component and a lens module are simultaneously mounted on a substrate by reflow treatment (heating treatment) while the lens module is placed and melting the solder, and the heat resistance can withstand the reflow treatment. There is also a need for excellent imaging lenses. By the way, in order to reduce the size of the imaging device, it is conceivable to make the parallel plate of the lens module thin. However, considering the manufacturing stability, there is a limit to making it thin. On the other hand, since the cover glass of the image sensor needs to have a predetermined thickness to give rigidity, a certain degree of lens back must be secured to avoid interference in the relationship between the image pickup lens and the sensor. There is also a problem that it must not be.
 撮像素子の小型化を図れる撮像レンズとして、レンズブロックを2枚構成とした、特許文献1、2に示すものが提案されている。しかるに、特許文献1に記載の撮像レンズは、第1レンズブロック像側面の曲率半径が小さすぎるためにサグ量が大きくなり、小型化の際に基板を入れられるだけの十分な縁厚を確保できていないという問題がある。一方、特許文献2に記載の撮像レンズは、第2レンズブロック像側面が撮像素子に近づきすぎており、小型化の際に撮像素子(センサ)のカバーガラスを挿入する十分なレンズバックを確保できていないという問題がある。 As an imaging lens capable of reducing the size of the imaging element, those shown in Patent Documents 1 and 2 having two lens blocks are proposed. However, the imaging lens described in Patent Document 1 has a large sag amount because the radius of curvature of the side surface of the first lens block image is too small, and can secure a sufficient edge thickness enough to insert a substrate when downsizing. There is no problem. On the other hand, in the imaging lens described in Patent Document 2, the side surface of the second lens block image is too close to the imaging device, and a sufficient lens back for inserting the cover glass of the imaging device (sensor) can be secured when downsizing. There is no problem.
特許第3929479号明細書Japanese Patent No. 3929479 米国特許第7457053号明細書US Pat. No. 7,457,053
 本発明は、このような状況に鑑みてなされたものであり、撮像装置の小型化に対応した際に課題となる製造安定性を確保するために必要な基板厚み及びセンサのカバーガラス厚みを確保し、且つ周辺まで高い解像度を達成できる収差性能を実現することで、高性能かつ低コストで製造安定性の高い撮像レンズおよび、撮像レンズを用いた撮像装置を提供することを目的とする。 The present invention has been made in view of such a situation, and secures a substrate thickness and a cover glass thickness of a sensor necessary to ensure manufacturing stability, which becomes a problem when dealing with downsizing of an imaging device. In addition, an object of the present invention is to provide an imaging lens having high performance, low cost, and high manufacturing stability, and an imaging apparatus using the imaging lens by realizing aberration performance capable of achieving high resolution up to the periphery.
 請求項1に記載の撮像レンズは、平行平板であるレンズ基板と、その物体側面および像側面のうち少なくとも一方に形成され、正または負のパワーを有するレンズ部を備える光学要素をレンズブロックと呼ぶとき、物体側から順に、物体側に凸面を向け、像側に凹面を向けた正のパワーを有する第1レンズブロックと、物体側に凸面を向け、像側に凹面を向けた第2レンズブロックからなり、開口絞りが前記第1レンズブロックの物体側、もしくは前記第1レンズブロック内部に設けられ、前記第2レンズブロックの物体側レンズ部は周辺で凹の形状を持ち、下記の条件式を満たすことを特徴とする。
 -3.5<r12/f(1-N13)<-1.1   (1)
 0.5<D/Σd<0.65   (2)
但し、
r12:前記第1レンズブロック像側面の近軸曲率半径(mm)
f  :前記撮像レンズ全系の焦点距離(mm)
N13:前記第1レンズブロック像側レンズ部の屈折率
D  :前記第1レンズブロック物体側面から前記第2レンズブロック物体側面までの光軸上の距離(mm)
Σd :前記第1レンズブロック物体側面から前記第2レンズブロック像側面までの光軸上の距離(mm)
In the imaging lens according to claim 1, an optical element including a lens substrate that is a parallel plate and a lens unit that is formed on at least one of the object side surface and the image side surface and has positive or negative power is referred to as a lens block. When starting from the object side, the first lens block having a positive power with the convex surface facing the object side and the concave surface facing the image side, and the second lens block having the convex surface facing the object side and the concave surface facing the image side The aperture stop is provided on the object side of the first lens block or inside the first lens block, the object side lens portion of the second lens block has a concave shape in the periphery, and the following conditional expression is satisfied: It is characterized by satisfying.
−3.5 <r12 / f (1-N13) <− 1.1 (1)
0.5 <D / Σd <0.65 (2)
However,
r12: Paraxial radius of curvature (mm) of the side surface of the first lens block image
f: Focal length (mm) of the entire imaging lens system
N13: Refractive index D of the first lens block image side lens part D: Distance on the optical axis from the first lens block object side surface to the second lens block object side surface (mm)
Σd: distance on the optical axis from the first lens block object side surface to the second lens block image side surface (mm)
 本発明によれば、2枚構成のレンズブロックを用いることで、1枚構成よりも高性能、かつ3枚構成よりも低背の(全長の短い)撮像レンズとすることができる。更に、前記第1レンズブロック及び前記第2レンズブロックの物体側面が物体側に凸面を向けていることにより、同じ焦点距離でも像側主点位置をより物体側にすることができるため全長短縮に有利な構成となる。又、前記第1レンズブロック及び前記第2レンズブロックの像側面が、像側に凹面を向けていることにより、収差を良好に補正し且つレンズバックを長くすることができ、センサのカバーガラスを挿入する十分なスペースを確保できる。更に、前記第2レンズブロックの物体側レンズ部が周辺で負のパワーを持つことで、前記第1レンズブロックの像側面と周辺像高における像面湾曲、非点収差補正を分担することができるため、前記第1レンズブロックの像側面及び前記第2レンズブロックの物体側面のサグ量を小さくすることができるから、レンズ基板の平板厚みを確保するのに有利になる。又、開口絞りを前記第1レンズブロックの物体側、もしくは前記第1レンズブロック内部に配置することで、射出瞳位置をより物体側にすることができるので、センサに対するテレセントリック特性が良好になる。尚、「前記第2レンズブロックの物体側レンズ部が周辺部で凹の形状を有する」とは、光軸を含む断面において光軸から離れるにつれて像側に向かい、変曲点を境に物体側に向かう形状であることをいう。 According to the present invention, by using a lens block having a two-lens configuration, an imaging lens having a higher performance than a single-lens configuration and a lower profile (shorter overall length) than a three-lens configuration can be obtained. Furthermore, since the object side surfaces of the first lens block and the second lens block are convex toward the object side, the image-side principal point position can be made closer to the object side even at the same focal length, thereby reducing the overall length. This is an advantageous configuration. Further, since the image side surfaces of the first lens block and the second lens block are concave on the image side, aberration can be corrected well and the lens back can be lengthened. Enough space for insertion can be secured. Further, since the object side lens portion of the second lens block has negative power at the periphery, it is possible to share correction of field curvature and astigmatism at the image side surface and the peripheral image height of the first lens block. Therefore, it is possible to reduce the sag amount of the image side surface of the first lens block and the object side surface of the second lens block, which is advantageous for securing the plate thickness of the lens substrate. Further, by arranging the aperture stop on the object side of the first lens block or inside the first lens block, the exit pupil position can be made closer to the object side, so that the telecentric characteristics for the sensor are improved. Note that “the object side lens portion of the second lens block has a concave shape at the periphery” means that the cross section including the optical axis is directed toward the image side as the distance from the optical axis increases, and the object side with the inflection point as a boundary. It means that it is a shape toward.
 条件式(1)の値が上限を下回ることで、前記第1レンズブロック像側面のサグ量を小さくすることができるため、前記第1レンズブロック中のレンズ基板に所望の厚みを持たせ易くなる他、コマ収差の発生を抑えることができるため良好な性能を達成できる。一方、条件式(1)の値が下限を上回ることで、ペッツバール和を改善し像面湾曲を良好に補正することができる他、レンズバックを長くすることができ、センサのカバーガラスを挿入する十分なスペースを確保できる。 When the value of conditional expression (1) is less than the upper limit, the sag amount on the side surface of the first lens block image can be reduced, so that the lens substrate in the first lens block can easily have a desired thickness. In addition, since the occurrence of coma aberration can be suppressed, good performance can be achieved. On the other hand, if the value of conditional expression (1) exceeds the lower limit, the Petzval sum can be improved and the field curvature can be corrected well, the lens back can be lengthened, and a cover glass for the sensor is inserted. Sufficient space can be secured.
 条件式(2)の値が下限を上回ることで、前記第2レンズブロックに入射する光線高が高くなり、前記第2レンズブロック物体側レンズ部の周辺の負レンズによる像面湾曲、非点収差補正を効率良く行うことができるため、前記第2レンズブロック物体側面のサグ量を小さくすることができるから、前記第2レンズブロック中のレンズ基板に所望の厚みを持たせ易くなる。一方、条件式(2)の値が上限を下回ることで、レンズバックを長くすることができ、センサのカバーガラスを挿入する十分なスペースを確保できる。これらは特に前記第1レンズブロックの像側面及び前記第2レンズブロックの物体側面のサグ量をどちらかを極端に小さくしたりせず、バランスよく小さくすることで全体の小型化に寄与している。 When the value of conditional expression (2) exceeds the lower limit, the height of light incident on the second lens block is increased, and field curvature and astigmatism are caused by a negative lens around the lens part on the second lens block object side. Since the correction can be performed efficiently, the sag amount on the object side surface of the second lens block can be reduced, so that the lens substrate in the second lens block can easily have a desired thickness. On the other hand, when the value of conditional expression (2) is below the upper limit, the lens back can be lengthened, and a sufficient space for inserting the cover glass of the sensor can be secured. In particular, these do not make the sag amount of the image side surface of the first lens block and the object side surface of the second lens block extremely small, but contribute to the overall miniaturization by reducing the sag amount in a balanced manner. .
 請求項2に記載の撮像レンズは、請求項1に記載の発明において、前記第2レンズブロックの像側面は周辺部で凸の形状を有することを特徴とする。 The imaging lens according to claim 2 is characterized in that, in the invention according to claim 1, the image side surface of the second lens block has a convex shape in the peripheral portion.
 前記第2レンズブロックの像側面の周辺部を凸の形状にすることで、前記第2レンズブロックの像側レンズ部の周辺部における樹脂厚を薄くすることができる他、良好なテレセントリック性を確保することができる。尚、「前記第2レンズブロックの像側面が周辺部で凸の形状を有する」とは、光軸を含む断面において光軸から離れるにつれて像側に向かい、変曲点を境に物体側に向かう形状であることをいう。 By making the peripheral part of the image side surface of the second lens block convex, the resin thickness in the peripheral part of the image side lens part of the second lens block can be reduced, and good telecentricity is ensured. can do. Note that “the image side surface of the second lens block has a convex shape at the peripheral portion” means that the cross section including the optical axis moves toward the image side as the distance from the optical axis increases, and toward the object side with the inflection point as a boundary. It means that it is a shape.
 請求項3に記載の撮像レンズは、請求項1又は2に記載の発明において、前記第1レンズブロックは以下の条件式を満足することを特徴とする。
 0.3<DL1/f<0.6   (3)
但し、
DL1:前記第1レンズブロックの物体側面から像側面までの光軸上の距離(mm)
According to a third aspect of the present invention, there is provided the imaging lens according to the first or second aspect, wherein the first lens block satisfies the following conditional expression.
0.3 <DL1 / f <0.6 (3)
However,
DL1: Distance on the optical axis from the object side surface to the image side surface of the first lens block (mm)
 前記第1レンズブロックの物体側面から像側面までの光軸上の距離が、条件式(3)の下限を上回ることで、前記第1レンズブロック中のレンズ基板に所望の厚みを持たせることができる。一方、前記距離が条件式(3)の上限を下回ることで、前記第1レンズブロックからセンサの撮像面までの距離を伸ばすことが出来るため、前記第2レンズブロックのレンズ基板の厚みを確保しやすくなる。 When the distance on the optical axis from the object side surface to the image side surface of the first lens block exceeds the lower limit of the conditional expression (3), the lens substrate in the first lens block has a desired thickness. it can. On the other hand, since the distance from the first lens block to the imaging surface of the sensor can be increased when the distance falls below the upper limit of the conditional expression (3), the thickness of the lens substrate of the second lens block is ensured. It becomes easy.
 請求項4に記載の撮像レンズは、請求項1~3のいずれかに記載の発明において、前記第2レンズブロックは以下の条件式を満足することを特徴とする。
 0.7<r21/r22<1.8   (4)
但し、
r21:前記第2レンズブロック物体側面の近軸曲率半径(mm)
r22:前記第2レンズブロック像側面の近軸曲率半径(mm)
According to a fourth aspect of the present invention, there is provided the imaging lens according to any one of the first to third aspects, wherein the second lens block satisfies the following conditional expression.
0.7 <r21 / r22 <1.8 (4)
However,
r21: Paraxial radius of curvature (mm) of the object side surface of the second lens block
r22: Paraxial radius of curvature (mm) of the side surface of the second lens block image
 前記第2レンズブロック物体側面の近軸曲率半径と像側面の近軸曲率半径との関係(半径の中心は共に像側にある)が、条件式(4)を満たすことで、前記第2レンズブロック物体側レンズ部と像側レンズ部の樹脂量のバランスを取りやすくなり、レンズ基板の厚みを薄くしても反りづらくなるため製造安定性を高めることができる。 The relationship between the paraxial radius of curvature of the second lens block object side surface and the paraxial radius of curvature of the image side surface (the centers of the radii are both on the image side) satisfies the conditional expression (4), whereby the second lens It becomes easy to balance the resin amount of the block object side lens portion and the image side lens portion, and even if the thickness of the lens substrate is reduced, it is difficult to warp, so that the manufacturing stability can be improved.
 請求項5に記載の撮像レンズは、請求項1~4のいずれかに記載の発明において、前記第1レンズブロックは以下の条件式を満足することを特徴とする。
 0.23<r11/r12<0.6   (5)
但し、
r11:前記第1レンズブロック物体側面の近軸曲率半径(mm)
According to a fifth aspect of the present invention, there is provided the imaging lens according to any one of the first to fourth aspects, wherein the first lens block satisfies the following conditional expression.
0.23 <r11 / r12 <0.6 (5)
However,
r11: paraxial radius of curvature (mm) of the object side surface of the first lens block
 前記第1レンズブロック物体側面の近軸曲率半径と像側面の近軸曲率半径との関係(半径の中心は共に像側にある)が、条件式(5)を満たすことで、前記第1レンズブロック像側レンズ部に適切な負パワーを持たせることができるため、小型化の際にもセンサのカバーガラスを挿入するのに十分なレンズバックを確保することができる他、条件式(5)の値が上限を下回ることで、前記第1レンズブロックの像側面のサグ量を小さくしレンズ基板厚みを確保し易くなる。 The relationship between the paraxial curvature radius of the object side surface of the first lens block and the paraxial curvature radius of the image side surface (the centers of the radii are both on the image side) satisfies the conditional expression (5), whereby the first lens Since the block image side lens unit can have an appropriate negative power, it is possible to secure a sufficient lens back for inserting the cover glass of the sensor even when downsizing, and conditional expression (5) Is less than the upper limit, the sag amount on the image side surface of the first lens block is reduced, and the lens substrate thickness is easily secured.
 請求項6に記載の撮像レンズは、請求項1~5のいずれかに記載の発明において、前記第1レンズブロックにおいて物体側レンズ部又は像側レンズ部と前記レンズ基板との間に、前記開口絞りを有することを特徴とする。 An imaging lens according to a sixth aspect of the present invention is the imaging lens according to any one of the first to fifth aspects, wherein the opening is provided between the object side lens unit or the image side lens unit and the lens substrate in the first lens block. It has a diaphragm.
 前記第1レンズブロックにおいて物体側レンズ部又は像側レンズ部と前記レンズ基板との間に、前記開口絞りを有することにより前記第1レンズブロック像側レンズ部の有効面径を小さくすることができレンズ基板厚みを確保し易くなる他、レンズバックを確保し易くなる。 By providing the aperture stop between the object side lens unit or the image side lens unit and the lens substrate in the first lens block, the effective surface diameter of the first lens block image side lens unit can be reduced. In addition to easily securing the lens substrate thickness, it is easy to secure the lens back.
 請求項7に記載の撮像レンズは、請求項6に記載の発明において、前記第1レンズブロックにおいて物体側レンズ部又は像側レンズ部と前記レンズ基板との間であって、前記開口絞りとは異なる位置にフレアカット絞りを有し、前記フレアカット絞りは以下の条件式を満足することを特徴とする。
 φ0<L   (6)
但し、
L  :光軸から前記フレアカット絞り開口までの最短距離(mm)
φ0 :前記フレアカット絞り位置における軸上光束の光束半径(mm)
According to a seventh aspect of the present invention, there is provided the imaging lens according to the sixth aspect of the present invention, wherein the first lens block is between the object side lens unit or the image side lens unit and the lens substrate, and the aperture stop is There are flare cut stops at different positions, and the flare cut stop satisfies the following conditional expression.
φ0 <L (6)
However,
L: Shortest distance (mm) from the optical axis to the flare cut aperture
φ0: Radius radius (mm) of the axial light beam at the flare-cut stop position
 図20は、開口絞りSと、フレアカット絞りFSとの関係を示す図であり、各符号は、それぞれの径に対応する。フレアカット絞りを、前記開口絞りとは別途に設けることで、物体側又は像側面の有効径外形状による有害光を抑制することができ、有効径外形状の設計自由度を増やすことができるため所望のレンズ基板厚みを確保し易くなる。 FIG. 20 is a diagram showing a relationship between the aperture stop S and the flare cut stop FS, and each symbol corresponds to each diameter. By providing a flare-cut stop separately from the aperture stop, harmful light due to the effective outside diameter on the object side or the image side surface can be suppressed, and the design freedom of the effective outside diameter can be increased. It becomes easy to secure a desired lens substrate thickness.
 更に望ましくは、以下の条件式を満たすとよい。
 φ0<L< φ   (6)’
但し、
φ:フレアカット絞り位置における最大像高の外側光線の通過位置(図~参照)から光軸までの距離(mm)
More preferably, the following conditional expression is satisfied.
φ0 <L <φ (6) '
However,
φ: Distance (mm) from the passing position of the outer light beam with the maximum image height at the flare-cut stop position (see Fig. to)
 値Lが条件式(6)’の上限を下回ることでレンズ有効経を更に小さくすることができるため、所望のレンズ基板厚みを確保し易くなる他、軸外で発生するコマ収差を低減することができる。 When the value L falls below the upper limit of the conditional expression (6) ′, the effective lens length can be further reduced, so that it is easy to secure a desired lens substrate thickness and reduce coma aberration generated off-axis. Can do.
 請求項8に記載の撮像レンズは、請求項1~5のいずれかに記載の発明において、前記開口絞りを前記第1レンズブロックよりも物体側に有することを特徴とする。 An imaging lens according to an eighth aspect is characterized in that, in the invention according to any one of the first to fifth aspects, the aperture stop is provided closer to the object side than the first lens block.
 前記開口絞りを前記第1レンズブロックよりも物体側に有することで前記第2レンズブロックの物体側面に到達する光線高さを高くすることができ、前記第2レンズブロック物体側面の周辺部に配置された凹面での収差補正をより効率よく行えるため、前記第2レンズブロック物体側面のサグ量をより小さくすることができる。 By providing the aperture stop closer to the object side than the first lens block, the height of the light beam reaching the object side surface of the second lens block can be increased, and the aperture stop is disposed in the periphery of the object side surface of the second lens block. Since the aberration can be corrected more efficiently on the concave surface, the sag amount on the side surface of the second lens block object can be further reduced.
 請求項9に記載の撮像レンズは、請求項8に記載の発明において、前記第1レンズブロックにおいて物体側レンズ部又は像側レンズ部と前記レンズ基板との間に、フレアカット絞りを有し、前記フレアカット絞りは以下の条件式を満足することを特徴とする。
 φ0<L   (6)
但し、
L  :光軸から前記フレアカット絞り開口までの最短距離(mm)
φ0 :前記フレアカット絞り位置における軸上光束の光束半径(mm)
The imaging lens according to claim 9 is the invention according to claim 8, wherein the first lens block has a flare-cut stop between the object side lens unit or the image side lens unit and the lens substrate. The flare cut stop satisfies the following conditional expression.
φ0 <L (6)
However,
L: Shortest distance (mm) from the optical axis to the flare cut aperture
φ0: Radius radius (mm) of the axial light beam at the flare-cut stop position
 フレアカット絞りを、前記開口絞りとは別途に設けることで、物体側又は像側面の有効径外形状による有害光を抑制することができ、有効径外形状の設計自由度を増やすことができるため所望のレンズ基板厚みを確保し易くなる。 By providing a flare-cut stop separately from the aperture stop, harmful light due to the effective outside diameter on the object side or the image side surface can be suppressed, and the design freedom of the effective outside diameter can be increased. It becomes easy to secure a desired lens substrate thickness.
 更に望ましくは、以下の条件式を満たすとよい。
 φ0<L< φ   (6)’
但し、
φ:フレアカット絞り位置における最大像高の外側光線の通過位置(図~参照)から光軸までの距離(mm)
More preferably, the following conditional expression is satisfied.
φ0 <L <φ (6) '
However,
φ: Distance (mm) from the passing position of the outer light beam with the maximum image height at the flare-cut stop position (see Fig. to)
 値Lが条件式(6)’の上限を下回ることでレンズ有効経を更に小さくすることができるため、所望のレンズ基板厚みを確保し易くなる他、軸外で発生するコマ収差を低減することができる。 When the value L falls below the upper limit of the conditional expression (6) ′, the effective lens length can be further reduced, so that it is easy to secure a desired lens substrate thickness and reduce coma aberration generated off-axis. Can do.
 請求項10に記載の撮像レンズは、請求項1~9のいずれかに記載の発明において、前記第2レンズブロックの物体側及び像側レンズ部は以下の条件式を満足することを特徴とする。
 20<ν21<45   (7)
 45<ν23<65   (8)
但し、
ν21:前記第2レンズブロック物体側レンズ部のd線に対するアッベ数
ν23:前記第2レンズブロック像側レンズ部のd線に対するアッベ数
The imaging lens according to claim 10 is characterized in that, in the invention according to any one of claims 1 to 9, the object side and image side lens portions of the second lens block satisfy the following conditional expression: .
20 <ν21 <45 (7)
45 <ν23 <65 (8)
However,
ν21: Abbe number with respect to d-line of the second lens block object side lens portion ν23: Abbe number with respect to d line of the second lens block image side lens portion
 前記第2レンズブロックの物体側及び像側レンズ部が条件式(7)、(8)を満たすことによって倍率色収差を効率良く補正することができ、周辺まで高い性能を確保することができる。 When the object side and image side lens portions of the second lens block satisfy the conditional expressions (7) and (8), the lateral chromatic aberration can be corrected efficiently, and high performance can be secured up to the periphery.
 請求項11に記載の撮像レンズは、請求項1~10のいずれかに記載の発明において、前記レンズ基板は樹脂材料から形成されていることを特徴とする。 An imaging lens according to an eleventh aspect is characterized in that, in the invention according to any one of the first to tenth aspects, the lens substrate is formed of a resin material.
 前記レンズブロック中のレンズ基板を樹脂製にすることで割れにくくなるため、光学全長を小さくすることができる。 Since the lens substrate in the lens block is made of resin, it is difficult to break, so the total optical length can be reduced.
 請求項12に記載の撮像レンズは、請求項1~10のいずれかに記載の発明において、前記レンズ基板はガラス材料から形成されていることを特徴とする。 The imaging lens according to a twelfth aspect is characterized in that, in the invention according to any one of the first to tenth aspects, the lens substrate is made of a glass material.
 前記レンズブロック中のレンズ基板をガラス製にすることで光学特性に優れた撮像レンズとできる。 An imaging lens with excellent optical characteristics can be obtained by making the lens substrate in the lens block glass.
 請求項13に記載の撮像レンズは、請求項1~12のいずれかに記載の発明において、前記撮像レンズは以下の条件式を満足することを特徴とする。
 0.3<DCG/Ymax<0.7   (9)
但し、
DCG:センサーカバーガラスの最大厚み
Ymax:固体撮像素子の撮像面対角線長の半分の長さ
According to a thirteenth aspect of the present invention, in the invention according to any one of the first to twelfth aspects, the imaging lens satisfies the following conditional expression.
0.3 <DCG / Ymax <0.7 (9)
However,
DCG: Maximum thickness of sensor cover glass Ymax: Half the diagonal length of the imaging surface of the solid-state imaging device
条件式の上限を満たすことで小型化が実現できる。下限を上回ることで所望の基板厚みが確保できレンズの生産安定性が向上する。 Miniaturization can be realized by satisfying the upper limit of the conditional expression. By exceeding the lower limit, a desired substrate thickness can be secured and the production stability of the lens is improved.
 請求項14に記載の撮像レンズは、請求項1~13のいずれかに記載の発明において、前記撮像レンズは以下の条件式を満足することを特徴とする。
 1.9<TL/Ymax<2.5   (10)
但し、
TL:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離(mm)(但し、「像側焦点」とは、撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。)
The imaging lens according to a fourteenth aspect is characterized in that, in the invention according to any one of the first to thirteenth aspects, the imaging lens satisfies the following conditional expression.
1.9 <TL / Ymax <2.5 (10)
However,
TL: Distance (mm) on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system (however, “image-side focal point” means that parallel rays parallel to the optical axis are incident on the imaging lens. This is the image point when
この条件式の下限を上回ることでCGの強度を確保できる。上限を下回ることで所望の基板厚みが確保できレンズの生産安定性が向上する。 The strength of CG can be secured by exceeding the lower limit of this conditional expression. By lowering the upper limit, a desired substrate thickness can be secured and the production stability of the lens is improved.
 請求項15に記載の撮像装置は、請求項1~14のいずれかに記載の撮像レンズを用いることを特徴とする。 An imaging apparatus according to a fifteenth aspect is characterized by using the imaging lens according to any one of the first to fourteenth aspects.
 本発明によれば、撮像装置の小型化に対応した際に課題となる製造安定性を確保するために必要な基板厚み及びセンサのカバーガラス厚みを確保し、且つ周辺まで高い解像度を達成できる収差性能を実現することで、高性能かつ低コストで製造安定性の高い撮像レンズおよび、撮像レンズを用いた撮像装置を提供することができる。 According to the present invention, an aberration capable of securing a substrate thickness and a sensor cover glass thickness necessary for ensuring manufacturing stability, which is a problem when dealing with downsizing of an imaging device, and achieving high resolution to the periphery. By realizing the performance, it is possible to provide an imaging lens having high performance, low cost, and high manufacturing stability, and an imaging device using the imaging lens.
本実施の形態にかかる撮像装置LUの斜視図である。It is a perspective view of imaging device LU concerning this embodiment. 図1の構成を矢印II-II線で切断して矢印方向に見た断面図で、(a)は開口絞り、フレアカット絞りおよび遮光部を形成する例を示し、(b)は同じく別の例を示す。FIG. 2 is a cross-sectional view of the configuration of FIG. 1 cut along an arrow II-II line and viewed in the direction of the arrow, where (a) shows an example of forming an aperture stop, a flare cut stop, and a light shielding part; An example is shown. 携帯電話機Tを示す図で、(a)は折り畳んだ携帯電話機を開いて内側から見た図、(b)は折り畳んだ携帯電話機を開いて外側から見た図である。FIGS. 2A and 2B are diagrams showing a mobile phone T, in which FIG. 1A is a view of the folded mobile phone opened and viewed from the inside, and FIG. 2B is a view of the folded mobile phone opened and viewed from the outside. 撮像レンズの製造工程(a)~(e)の一例を示す図である。It is a figure which shows an example of the manufacturing process (a)-(e) of an imaging lens. 図4の製造工程により製造された撮像レンズの概略断面図である。It is a schematic sectional drawing of the imaging lens manufactured by the manufacturing process of FIG. 実施例1にかかる撮像レンズの断面図である。1 is a cross-sectional view of an imaging lens according to Example 1. FIG. 実施例1にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 1; 実施例2にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 2. FIG. 実施例2にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 2; 実施例3にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 3. FIG. 実施例3にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 3; 実施例4にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 4. FIG. 実施例4にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 4; 実施例5にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 5. FIG. 実施例5にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 5; 実施例6にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 6. FIG. 実施例6にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 6; 実施例7にかかる撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens according to Example 7. FIG. 実施例7にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 7; 開口絞りSと、フレアカット絞りFSとの関係を示す図である。It is a figure which shows the relationship between the aperture stop S and the flare cut stop FS.
 以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施の形態にかかる撮像装置LUの斜視図であり、図2は、図1の構成を矢印II-II線で切断して矢印方向に見た断面図であり、(a)は基板上に黒いレジン又は樹脂で開口絞りやフレアカット絞り、遮光部を形成する例であり、(b)は筐体の中央開口により開口絞りを形成し、レジン又は樹脂でフレアカット絞り、遮光部を形成する例である。図2に示すように、図1の撮像装置LUは、光電変換部IMaを有する固体撮像素子としてのCMOS型イメージセンサIMと、このイメージセンサIMの光電変換部(受光面)IMaに被写体像を撮像させる撮像レンズLNと、その電気信号の送受を行う不図示の外部接続用端子(電極)とを備え、これらが一体的に形成されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an imaging apparatus LU according to the present embodiment, and FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along the line II-II and viewed in the direction of the arrow. Is an example in which an aperture stop, a flare cut stop, and a light shielding part are formed on a substrate with a black resin or resin, and (b) is an aperture stop formed by the central opening of the housing, and a flare cut stop and light shield are made with resin or resin. It is an example which forms a part. As shown in FIG. 2, the imaging device LU of FIG. 1 has a CMOS image sensor IM as a solid-state imaging device having a photoelectric conversion unit IMa, and a subject image on the photoelectric conversion unit (light receiving surface) IMa of the image sensor IM. An imaging lens LN for imaging and an external connection terminal (electrode) (not shown) that transmits and receives the electrical signal are provided, and these are integrally formed.
 撮像レンズLNは、物体側(図2で上方)から順に、第1レンズブロックLB1と、第2レンズブロックLB2とからなる。第1レンズブロックLB1は、平行平板であるレンズ基板PP1と、その物体側面に形成された凸形状のレンズ部LB1aと、像側面に形成された凹形状のレンズ部LB1bとを有する。又、第2レンズブロックLB2は、平行平板であるレンズ基板PP2と、その物体側面に形成された凸形状のレンズ部LB2aと、像側面に形成された凹形状のレンズ部LB2bとを有する。レンズ基板PP1及びレンズ基板PP2の少なくとも一方の両面には、IRカットコートを施すことが望ましい。IRカットコートを両面につけることにより、レンズ基板のそりを防止できる。 The imaging lens LN includes a first lens block LB1 and a second lens block LB2 in order from the object side (upper side in FIG. 2). The first lens block LB1 includes a lens substrate PP1 that is a parallel plate, a convex lens portion LB1a formed on the object side surface, and a concave lens portion LB1b formed on the image side surface. The second lens block LB2 includes a lens substrate PP2 which is a parallel plate, a convex lens portion LB2a formed on the object side surface, and a concave lens portion LB2b formed on the image side surface. It is desirable to perform IR cut coating on at least one of both surfaces of the lens substrate PP1 and the lens substrate PP2. By attaching the IR cut coat on both sides, it is possible to prevent warping of the lens substrate.
 図2(a)の例では、更に開口絞りSが、レンズ基板PP1と、物体側レンズ部LB1aとの間に形成され、フレアカット絞りFSが、レンズ基板PP1と、像側レンズ部LB1bとの間に形成されているが、これらは逆でも良い。或いは、開口絞りSを、第1レンズブロックLB1の物体側に設け、フレアカット絞りFSを第1レンズブロックLB1内部に設けても良い。開口絞りS、フレアカット絞りFSは、黒色など遮光できる色のレジンでレンズ基板に製膜して形成することができる。或いは、CrやCrOなど金属や金属酸化物で製膜して形成することもできる。開口絞りSは、有効径から第1レンズブロックLB1の外周まで形成され、フレアカット絞りFSは、有効径より外側の位置から第1レンズブロックLB1の外周まで形成されている。一方、第2レンズブロックLB2のレンズ基板PP2に、開口絞りと同様な手法で遮光部SHを形成しても良い。但し、スペーサは透明素材、例えば樹脂やガラスなどであってもよく、遮光部SHは、有効径より外側の位置からスペーサSP1,SP2の内側まで形成される。これは、例えばUV硬化樹脂などを用いてスペーサの接着を行う場合など、第2レンズブロックLB2を介して外部から照射してスペーサ周辺に紫外線(UV)を照射する必要があり、それを遮らないようにする為である。ウェハスケールレンズの場合、レンズ基板切断前だと側面から照射できないからである。 In the example of FIG. 2A, an aperture stop S is further formed between the lens substrate PP1 and the object side lens unit LB1a, and a flare cut stop FS is formed between the lens substrate PP1 and the image side lens unit LB1b. They are formed in between, but these may be reversed. Alternatively, the aperture stop S may be provided on the object side of the first lens block LB1, and the flare cut stop FS may be provided inside the first lens block LB1. The aperture stop S and the flare cut stop FS can be formed by forming a film on a lens substrate with a resin capable of shielding light such as black. Alternatively, it can be formed by depositing a metal such as Cr or CrO or a metal oxide. The aperture stop S is formed from the effective diameter to the outer periphery of the first lens block LB1, and the flare cut stop FS is formed from a position outside the effective diameter to the outer periphery of the first lens block LB1. On the other hand, the light shielding portion SH may be formed on the lens substrate PP2 of the second lens block LB2 by the same method as the aperture stop. However, the spacer may be a transparent material such as resin or glass, and the light shielding portion SH is formed from a position outside the effective diameter to the inside of the spacers SP1 and SP2. This is because, for example, when a spacer is bonded using a UV curable resin or the like, it is necessary to irradiate ultraviolet rays (UV) around the spacer by irradiating from the outside through the second lens block LB2, and this is not blocked. It is for doing so. This is because in the case of a wafer scale lens, irradiation from the side surface is impossible before cutting the lens substrate.
 第2レンズブロックLB2の物体側レンズ部LB2aは周辺で凹の形状を持ち、下記の条件式を満たす。
 -3.5<r12/f(1-N13)<-1.1   (1)
 0.5<D/Σd<0.65   (2)
但し、
r12:第1レンズブロック像側面の近軸曲率半径(mm)
f  :撮像レンズ全系の焦点距離(mm)
N13:第1レンズブロック像側レンズ部の屈折率
D  :第1レンズブロック物体側面から第2レンズブロック物体側面までの光軸上の距離(mm)
Σd :第1レンズブロック物体側面から第2レンズブロック像側面までの光軸上の距離(mm)
The object side lens portion LB2a of the second lens block LB2 has a concave shape in the periphery and satisfies the following conditional expression.
−3.5 <r12 / f (1-N13) <− 1.1 (1)
0.5 <D / Σd <0.65 (2)
However,
r12: paraxial radius of curvature of the first lens block image side surface (mm)
f: Focal length (mm) of the entire imaging lens system
N13: Refractive index D of the first lens block image side lens portion D: Distance on the optical axis from the first lens block object side surface to the second lens block object side surface (mm)
Σd: distance on the optical axis from the first lens block object side surface to the second lens block image side surface (mm)
 上記イメージセンサIMは、その受光側の平面の中央部に、画素(光電変換素子)が2次元的に配置された、受光部としての光電変換部IMaが形成されており、不図示の信号処理回路に接続されている。かかる信号処理回路は、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用いて画像信号出力を形成する信号処理部等から構成されている。また、イメージセンサIMの受光側の平面の外縁近傍には、多数のパッド(図示略)が配置されており、不図示のワイヤを介してイメージセンサIMに接続されている。イメージセンサIMは、光電変換部IMaからの信号電荷をデジタルYUV信号等の画像信号等に変換し、ワイヤ(不図示)を介して所定の回路に出力する。ここで、Yは輝度信号、U(=R-Y)は赤と輝度信号との色差信号、V(=B-Y)は青と輝度信号との色差信号である。なお、固体撮像素子は上記CMOS型のイメージセンサに限定されるものではなく、CCD等の他のものを使用しても良い。 In the image sensor IM, a photoelectric conversion unit IMa as a light receiving unit in which pixels (photoelectric conversion elements) are two-dimensionally arranged is formed in the center of a plane on the light receiving side, and signal processing (not shown) is performed. Connected to the circuit. Such a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like. A number of pads (not shown) are arranged near the outer edge of the light receiving side plane of the image sensor IM, and are connected to the image sensor IM via wires (not shown). The image sensor IM converts a signal charge from the photoelectric conversion unit IMa into an image signal such as a digital YUV signal and outputs the image signal to a predetermined circuit via a wire (not shown). Here, Y is a luminance signal, U (= RY) is a color difference signal between red and the luminance signal, and V (= BY) is a color difference signal between blue and the luminance signal. Note that the solid-state imaging device is not limited to the CMOS image sensor, and other devices such as a CCD may be used.
 イメージセンサIMは、外部接続用端子を介して外部回路(例えば、撮像装置を実装した携帯端末の上位装置が有する制御回路)と接続し、外部回路からイメージセンサIMを駆動するための電圧やクロック信号の供給を受けたり、また、デジタルYUV信号を外部回路へ出力したりすることを可能とする。 The image sensor IM is connected to an external circuit (for example, a control circuit included in a host device of a portable terminal mounted with an imaging device) via an external connection terminal, and a voltage or a clock for driving the image sensor IM from the external circuit. It is possible to receive a signal and to output a digital YUV signal to an external circuit.
 イメージセンサIMの上部は、カバーガラスCGにより封止されている。カバーガラスCGの上方(物体側)には、スペーサSP2を介在させて、所定の距離で第2レンズブロックLB2のフランジ部(レンズ部の外側)が固定され、更にその物体側には、スペーサSP1を介在させて、第1レンズブロックLB1のフランジ部(レンズ部の外側)が固定されている。これらレンズブロックLB1、LB2の外側は、筐体BXにより覆われており、筐体BXの上部フランジBXaの下面が、第1レンズブロックLB1のフランジ部(レンズ部の外側)の上面に当接して支持されており、筐体BXの下端はカバーガラスCGに接触していない。尚、スペーサSP1,SP2は位置合わせで固定させ、後述するように空中接着を行っている。そのため、スペーサSP1と第1レンズブロックLB1、第2レンズブロックLB2は付き当てしていない。これによりスペーサSP1やレンズ基板の厚みがばらついてもレンズ間距離を精度良く規定することができる。又、第1レンズブロックLB1、第2レンズブロックLB2の間に、反射防止構造として細かい凹凸構造を設けることができる。表面にこれら凹凸構造を設けた場合、細かい凹凸にゴミが付着すると洗浄が困難となる。しかし第1レンズブロックLB1、第2レンズブロックLB2の間は封止されるので、ゴミが入るとがなく、洗浄等が不要になる。 The upper part of the image sensor IM is sealed with a cover glass CG. Above the cover glass CG (object side), a spacer SP2 is interposed, and the flange portion (outside of the lens portion) of the second lens block LB2 is fixed at a predetermined distance. Further, on the object side, the spacer SP1 Is interposed, and the flange portion (outside of the lens portion) of the first lens block LB1 is fixed. The outer sides of these lens blocks LB1 and LB2 are covered with a housing BX, and the lower surface of the upper flange BXa of the housing BX is in contact with the upper surface of the flange portion (outside of the lens portion) of the first lens block LB1. The lower end of the housing BX is not in contact with the cover glass CG. The spacers SP1 and SP2 are fixed by alignment and are bonded in the air as will be described later. Therefore, the spacer SP1, the first lens block LB1, and the second lens block LB2 are not applied. Thereby, even if the spacers SP1 and the thickness of the lens substrate vary, the distance between the lenses can be accurately defined. Further, a fine concavo-convex structure can be provided as an antireflection structure between the first lens block LB1 and the second lens block LB2. When these uneven structures are provided on the surface, cleaning becomes difficult if dust adheres to the fine unevenness. However, since the space between the first lens block LB1 and the second lens block LB2 is sealed, dust does not enter and cleaning is not necessary.
 一方、図2(b)の例では、レンズブロックLB1、LB2の全体を覆う筐体BXの上部フランジBXaの下面が、第1レンズブロックLB1のレンズ部LB1aの有効径内を除き、上面に密着している。ここでは、上部フランジBXaの中央開口が開口絞りSを構成する。但し、レンズ表面に黒いレジン等で開口絞りを塗布形成したものでも良い。第2レンズブロックLB2のレンズ基板PP2の外周下面が、筐体BXの内周に形成された凸部BXbに係合することにより、撮像レンズLNは筐体BX内に保持される。よって、スペーサSP2は設けられていない。筐体BXの下端は、カバーガラスCGの上面に当接している。それ以外の構成は、図2(a)に示す例と同様である。 On the other hand, in the example of FIG. 2B, the lower surface of the upper flange BXa of the housing BX that covers the entire lens blocks LB1 and LB2 is in close contact with the upper surface except within the effective diameter of the lens portion LB1a of the first lens block LB1. is doing. Here, the central opening of the upper flange BXa constitutes the aperture stop S. However, an aperture stop may be applied and formed on the lens surface with a black resin or the like. The imaging lens LN is held in the housing BX by engaging the outer peripheral lower surface of the lens substrate PP2 of the second lens block LB2 with the convex portion BXb formed on the inner periphery of the housing BX. Therefore, the spacer SP2 is not provided. The lower end of the housing BX is in contact with the upper surface of the cover glass CG. The other configuration is the same as the example shown in FIG.
 次に、撮像装置を備えた携帯端末の一例として携帯電話機を図3の外観図に基づいて説明する。なお、図3(a)は折り畳んだ携帯電話機を開いて内側から見た図であり、図3(b)は折り畳んだ携帯電話機を開いて外側から見た図である。 Next, a mobile phone as an example of a mobile terminal equipped with an imaging device will be described based on the external view of FIG. 3A is a view of the folded mobile phone opened from the inside and FIG. 3B is a view of the folded mobile phone opened from the outside.
 図3において、携帯電話機Tは、表示画面D1,D2を備えたケースとしての上筐体71と、操作ボタンBを備えた下筐体72とがヒンジ73を介して連結されている。本実施の形態においては、風景等を撮影するためのメインの撮像装置MCが、上筐体71の表面側に設けられ、上述した広角の撮像レンズLNを備える撮像装置LUが、上筐体71の裏面側であって表示画面D1の上に設けられている。 In FIG. 3, in the mobile phone T, an upper casing 71 as a case having display screens D1 and D2 and a lower casing 72 having an operation button B are connected via a hinge 73. In the present embodiment, the main imaging device MC for photographing a landscape or the like is provided on the surface side of the upper housing 71, and the imaging device LU including the above-described wide-angle imaging lens LN is the upper housing 71. And provided on the display screen D1.
 撮像レンズLNは、図3(a)に示すように撮像装置LUに正対した状態で、携帯電話機Tを手で把持した使用者自身の上半身を撮像装置LUにより撮像できる。その画像信号を通信している相手方の携帯電話機に送信して、こちらのユーザーの画像を表示できると共に、通常の通話を行うことにより、いわゆるテレビ電話を実現できる。なお、携帯電話機Tは折り畳み式に限定されるものではない。 As shown in FIG. 3A, the imaging lens LN can image the upper body of the user himself holding the mobile phone T with his / her hand, with the imaging device LU facing the imaging device LU. By transmitting the image signal to the mobile phone of the other party that is communicating and displaying the image of this user, a so-called videophone can be realized by making a normal call. The mobile phone T is not limited to a folding type.
 次に、撮像レンズの製造方法について、図面を参照して説明する。図4は、撮像レンズの製造工程を示す図であるが、レンズ形状は実際とは異なる。まず、図4(a)に示すように、ガラスもしくは樹脂製の平行平板101の両面に、IRカットコート(上述)を行い、等間隔に黒いレジストを塗布して絞り104(上述)を形成する。なお平行平板101の厚みは0.2~0.7mm程度であり、この値よりも薄い基板であると強度が足りなく、破損し安くなる。特にウエハーレベルレンズのように8インチなどの大きなガラス基板だと薄いレンズでは取扱いも困難になるためある程度の厚みは必要になってくる。また逆の0.7mm以上の厚みにしてしまうと基板の厚みだけで全長が大きくなり小型化が困難となることから上記範囲が好ましい。また二枚の平行平板はおほぼ同じ厚みが好ましく、全体の小型化から考えて二枚の平行平板の厚みの合計が0.5~1.0mm以内が望ましい。次いで、図4(b)に示すように、平行平板101の下面に例えば光硬化性樹脂PLを塗布する。このときレンズごとに個別滴下で製造しても良い。例えば、ウェハスケールレンズの製造方法として基板全面に樹脂を塗布して、成形を行うレンズ基板全面に樹脂を滴下する方法(レンズ同士がつながっている)の他に、レンズ基板の上にレンズ部1個分(又は複数個分)だけ樹脂を滴下して、その分だけ成形を繰り返す個別に滴下する方法がある。この個別滴下だと切断時にレンズ面に影響がないなどのレンズ精度確保に有効な点がある。 Next, a method for manufacturing the imaging lens will be described with reference to the drawings. FIG. 4 is a diagram showing the manufacturing process of the imaging lens, but the lens shape is different from the actual one. First, as shown in FIG. 4A, IR cut coating (described above) is performed on both surfaces of a parallel plate 101 made of glass or resin, and a black resist is applied at equal intervals to form a diaphragm 104 (described above). . The thickness of the parallel plate 101 is about 0.2 to 0.7 mm. If the substrate is thinner than this value, the strength is insufficient and the substrate is damaged and cheap. In particular, a large glass substrate such as a wafer level lens such as a wafer level lens is difficult to handle with a thin lens, so a certain thickness is required. On the other hand, if the thickness is 0.7 mm or more, the entire length is increased only by the thickness of the substrate and it is difficult to reduce the size, so the above range is preferable. The two parallel flat plates preferably have substantially the same thickness, and the total thickness of the two parallel flat plates is preferably within a range of 0.5 to 1.0 mm in view of overall miniaturization. Next, as shown in FIG. 4B, for example, a photocurable resin PL is applied to the lower surface of the parallel plate 101. At this time, each lens may be manufactured by individual dropping. For example, as a method for manufacturing a wafer scale lens, in addition to a method in which a resin is applied to the entire surface of the substrate and the resin is dropped on the entire surface of the lens substrate to be molded (the lenses are connected), the lens unit 1 is formed on the lens substrate. There is a method in which resin is dropped by the number of pieces (or a plurality of pieces), and the molding is repeated individually by repeating the molding. This individual dripping is effective in ensuring lens accuracy, such as having no effect on the lens surface during cutting.
 その後、型41を、樹脂PLを塗布した側の面の平行平板101に向かって押し当てる。その後平行平板側の基板101が透明部材(ガラス等)であれば、そちらから光を照射して硬化させる。また逆に型41が透明材料でできていてもよく、その場合は型41側より光を照射して硬化させてもよい。その後型41を離型させるレンズを形成させる。なお上記方法では平行平板101に樹脂を光硬化性塗布したが、型41に樹脂を塗布し成形を行っても良い。 Thereafter, the mold 41 is pressed against the parallel plate 101 on the surface on which the resin PL is applied. Thereafter, if the substrate 101 on the parallel plate side is a transparent member (glass or the like), it is irradiated with light from there to be cured. Conversely, the mold 41 may be made of a transparent material, and in that case, it may be cured by irradiating light from the mold 41 side. Thereafter, a lens for releasing the mold 41 is formed. In the above method, the resin is applied to the parallel flat plate 101 by photo-curing, but the resin may be applied to the mold 41 and molded.
 更に、図4(c)に示すように、先ほど型41で形成したレンズ側とは反対側の平行平板101の面に光硬化性樹脂PLを塗布する。その後型42は、樹脂PLを塗布した側の面の平行平板101に向かって押し当てる。その後平行平板側の基板101が透明部材(ガラス等)であれば、そちらから光を照射して硬化させる。また逆に型42が透明材料でできていてもよく、その場合は型42側より光を照射して硬化させてもよい。その後型41を離型させレンズを形成させる。なお上記方法では平行平板101に樹脂を光硬化性塗布したが型41に樹脂を塗布し成形を行っても良い。このようにして、図4(d)のように一方の面にレンズ部11を形成し、他方の面にレンズ部12を形成したレンズブロック100が完成する。 Further, as shown in FIG. 4C, a photo-curable resin PL is applied to the surface of the parallel plate 101 opposite to the lens side formed with the mold 41. Thereafter, the mold 42 is pressed against the parallel plate 101 on the surface on which the resin PL is applied. Thereafter, if the substrate 101 on the parallel plate side is a transparent member (glass or the like), it is irradiated with light from there to be cured. Conversely, the mold 42 may be made of a transparent material, and in that case, it may be cured by irradiating light from the mold 42 side. Thereafter, the mold 41 is released to form a lens. In the above method, the resin is applied to the parallel plate 101 by photo-curing, but the resin may be applied to the mold 41 for molding. In this way, the lens block 100 in which the lens portion 11 is formed on one surface and the lens portion 12 is formed on the other surface as shown in FIG. 4D is completed.
 このようにして形成したレンズブロック100と、別の工程で同様にして形成されたレンズブロック200とを、最終的に図4(e)に示すように、レンズ部11,12の光軸OAを合わせ込むようにして不図示の保持装置で保持しながら、両者間に挿入するスペーサ105を保持装置に吸着させておく。 The lens block 100 formed in this manner and the lens block 200 formed in the same manner in another process are finally set to have optical axes OA of the lens portions 11 and 12 as shown in FIG. While being held by a holding device (not shown) so as to be aligned, the spacer 105 inserted between the two is adsorbed to the holding device.
 次に、スペーサ105の上端にUV接着剤106(図5参照)を塗布する。スペーサ105へのUV接着剤106の塗布は、スクリーン印刷又はディスペンス等を用いる。その後、保持装置を動作させ、レンズブロック100を降下させる。この際、レンズブロック100の位置は、位置センサによって測定されている。そのため、レンズブロック100の降下の際にも傾きが補正される。 Next, a UV adhesive 106 (see FIG. 5) is applied to the upper end of the spacer 105. Application of the UV adhesive 106 to the spacer 105 uses screen printing or dispensing. Thereafter, the holding device is operated to lower the lens block 100. At this time, the position of the lens block 100 is measured by a position sensor. Therefore, the tilt is corrected even when the lens block 100 is lowered.
 次に、レンズブロック100のレンズ基板101とスペーサ105の下端とを間隔Xをおいて保持する。ここで、間隔Xとは、レンズ部11,12の外周部がスペーサ105の端面に突き当たらない十分な間隔であるが、UV接着剤106はレンズ基板101に接触することになる。 Next, the lens substrate 101 of the lens block 100 and the lower end of the spacer 105 are held at an interval X. Here, the interval X is a sufficient interval that the outer peripheral portions of the lens portions 11 and 12 do not hit the end face of the spacer 105, but the UV adhesive 106 comes into contact with the lens substrate 101.
 同様に、スペーサ105の下端にUV接着剤106を塗布する。その後、保持装置を動作させ、レンズブロック100をスペーサ105と共に降下させる。この際、レンズブロック100の位置は、位置センサによって測定されている。そのため、レンズブロック100の降下の際にも傾きが補正される。 Similarly, a UV adhesive 106 is applied to the lower end of the spacer 105. Thereafter, the holding device is operated to lower the lens block 100 together with the spacer 105. At this time, the position of the lens block 100 is measured by a position sensor. Therefore, the tilt is corrected even when the lens block 100 is lowered.
 次に、レンズブロック200のレンズ基板101とスペーサ105の下端とを間隔X’をおいて保持する。ここで、間隔X’とは、レンズ部11,12の外周部がスペーサ105の端面に突き当たらない十分な間隔であるが、UV接着剤106はレンズ基板101に接触することになる。X+X’=所定の値である。 Next, the lens substrate 101 of the lens block 200 and the lower end of the spacer 105 are held at an interval X ′. Here, the interval X ′ is a sufficient interval that the outer peripheral portions of the lens portions 11 and 12 do not hit the end face of the spacer 105, but the UV adhesive 106 comes into contact with the lens substrate 101. X + X ′ = predetermined value.
 更に、レンズブロック100のレンズ基板101とスペーサ105とを一定の間隔Xに保持し、且つレンズブロック200のレンズ基板101とスペーサ105とを一定の間隔X’に保持した状態で、不図示のUV光発生装置を動作させ、レンズブロック200側からUV光を照射することで、UV接着剤106を硬化させる。このとき、レンズブロック200に遮光部材を形成する場合、スペーサ105の周囲を除くように設ければ、スペーサ105の下端及び上端にもUV光が到達し、UV接着剤106を有効に硬化させることができる。これにより、レンズブロック100とレンズブロック200とを、スペーサ105を介在させつつ取り付けることができる。なお上記構成ではUV硬化による接着をレンズブロック100とレンズブロック200の2つ同時に行ったが、どちらか一方の位置合わせを行い接着した後、もう一方のレンズブロックを接着を行ってもよい。 Further, in the state where the lens substrate 101 of the lens block 100 and the spacer 105 are held at a constant interval X, and the lens substrate 101 of the lens block 200 and the spacer 105 are held at a constant interval X ′, a UV (not shown). The light generator is operated, and the UV adhesive 106 is cured by irradiating UV light from the lens block 200 side. At this time, when the light blocking member is formed in the lens block 200, if the light blocking member is provided so as to exclude the periphery of the spacer 105, the UV light reaches the lower end and the upper end of the spacer 105, and the UV adhesive 106 is effectively cured. Can do. Thereby, the lens block 100 and the lens block 200 can be attached while the spacer 105 is interposed. In the above-described configuration, the two UV blocks are bonded simultaneously by the lens block 100 and the lens block 200. However, after either one is aligned and bonded, the other lens block may be bonded.
 その後、図4(e)の点線DXで示す位置でダイシングすることにより、図5に示す撮像レンズLNが形成されることとなる。 Thereafter, the imaging lens LN shown in FIG. 5 is formed by dicing at a position indicated by a dotted line DX in FIG.
(実施例)
 次に、上述した実施の形態に好適な実施例について説明する。但し、以下に示す実施例により本発明が限定されるものではない。実施例における各符号の意味は以下の通りである(長さの単位は、波長以外mm)。
FL:撮像レンズ全系の焦点距離(mm)
BF:バックフォーカス(mm)(但し、カバーガラス込みの近軸像面までの距離)
Fno :Fナンバー
w :半画角(?)Ymax:固体撮像素子の撮像面対角線長の半分の長さ(mm)
TL:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離(mm)(但し、「像側焦点」とは、撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。)
r :屈折面の曲率半径(mm)
d :軸上面間隔(mm)
nd:レンズ材料のd線の常温での屈折率
vd:レンズ材料のアッベ数
STO:開口絞り
尚、請求項にいうDは、面番号1~4のdの和であり、請求項にいうΣdは、全ての面番号のdの和であり、請求項にいうDL1は、面番号1~3のdの和である。
(Example)
Next, examples suitable for the above-described embodiment will be described. However, the present invention is not limited to the following examples. The meaning of each code | symbol in an Example is as follows (a unit of length is mm other than a wavelength).
FL: Focal length of the entire imaging lens system (mm)
BF: Back focus (mm) (however, distance to paraxial image plane including cover glass)
Fno: F number w: Half angle of view (?) Ymax: Half length (mm) of diagonal length of imaging surface of solid-state imaging device
TL: Distance (mm) on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system (however, “image-side focal point” means that parallel rays parallel to the optical axis are incident on the imaging lens. This is the image point when
r: radius of curvature of refractive surface (mm)
d: Distance between shaft upper surfaces (mm)
nd: Refractive index of lens material at d-line at room temperature vd: Abbe number of lens material STO: Aperture stop Note that D in the claims is the sum of d of surface numbers 1 to 4, and Σd in the claims Is the sum of d of all surface numbers, and DL1 in the claims is the sum of d of surface numbers 1 to 3.
 各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。 In each embodiment, the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction. The height in the direction perpendicular to the optical axis is represented by the following “Equation 1”.
Figure JPOXMLDOC01-appb-M000001

ただし、
Ai:i次の非球面係数
R :基準曲率半径
K :円錐定数
である。
Figure JPOXMLDOC01-appb-M000001

However,
Ai: i-order aspherical coefficient R: reference radius of curvature K: conic constant.
 また、以降(表のレンズデータを含む)において、10のべき乗数(例えば、2.5×10-02)をE(例えば2.5e-002)を用いて表すものとする。また、レンズデータの面番号は第1レンズの物体側を1面として順に付与した。なお、実施例に記載の長さを表す数値の単位はすべてmmとする。 In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is represented by using E (for example, 2.5e−002). The surface number of the lens data was given in order with the object side of the first lens as one surface. In addition, the unit of the numerical value showing the length as described in an Example shall be mm.
(実施例1)
 実施例1におけるレンズデータを表1に示す。図6は実施例1のレンズの断面図である。実施例1の撮像レンズは、物体側から順に、物体側に凸の第1物体側レンズ部LB1aと、平行平板からなる第1レンズ基板PP1と、像側に凹の第1像側レンズ部LB1bとからなる第1レンズブロックLB1と、物体側に凸の第2物体側レンズ部LB2aと、平行平板からなる第2レンズ基板PP2と、像側に凹の第2像側レンズ部LB2bとからなる第2レンズブロックLB2とを有する。第2像側レンズ部LB2bの物体側面は、周辺部で凹の形状を有し、第2像側レンズ部LB2bの像側面は、周辺部で凸の形状を有する。第1物体側レンズ部LB1aと、第1レンズ基板PP1との間に、開口絞りSが設けられ、第1レンズ基板PP1と、第1像側レンズ部LB1bとの間に、フレアカット絞りFSが設けられている。CGはカバーガラスであり、IMは固体撮像素子の撮像面である。
本実施例では、レンズ基板はガラスである。
Example 1
Table 1 shows lens data in Example 1. 6 is a sectional view of the lens of Example 1. FIG. The imaging lens of Example 1 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side. The first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side. And a second lens block LB2. The object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery. An aperture stop S is provided between the first object side lens unit LB1a and the first lens substrate PP1, and a flare cut stop FS is provided between the first lens substrate PP1 and the first image side lens unit LB1b. Is provided. CG is a cover glass, and IM is an imaging surface of the solid-state imaging device.
In this embodiment, the lens substrate is glass.
(表1)
[実施例1]
Reference Wave Length = 587.56 nm

 Construction Data
 NUM.       r           d          nd     vd  
 OBJ    INFINITY     600.0000                      
   1*      0.6236      0.1500   1.51784  56.10
 STO     INFINITY      0.3050   1.51690  61.89
   3     INFINITY      0.1810   1.51784  56.10
   4*      1.2308      0.1260
   5*      1.5401      0.0580   1.51784  56.10
   6     INFINITY      0.3000   1.51690  61.89
   7     INFINITY      0.1920   1.51784  56.10
   8*      1.8445      0.1100
   9     INFINITY      0.5000   1.47140  66.01
  10     INFINITY      0.0193
 IMG     INFINITY     
ASPHERICAL SURFACE
   1:K=1.79120e+000,A3=-1.17350e+000,A4=1.81695e+001,A5=-1.30023e+002,A6=3.91848e+002,A7=0.00000e+000,A8=-4.20685e+003,A9=0.00000e+000,A10=8.88289e+004,A11=0.00000e+000,A12=-1.29992e+006,A13=0.00000e+000,A14=9.68907e+006,A15=0.00000e+000,A16=-2.80628e+007, A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   4:K=-3.39260e+001,A3=1.52360e+000,A4=-1.50040e+001,A5=4.69460e+001,A6=1.05630e+001,A7=0.00000e+000,A8=-1.09630e+003,A9=0.00000e+000,A10=9.43880e+003,A11=0.00000e+000,A12=-3.81090e+004,A13=0.00000e+000,A14=5.87560e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   5:K=-7.58610e+000,A3=9.73190e-001,A4=-1.53070e+001,A5=5.35330e+001,A6=-7.00910e+001,A7=0.00000e+000,A8=-1.44260e+002,A9=0.00000e+000,A10=1.12470e+003,A11=0.00000e+000,A12=6.39880e+003,A13=0.00000e+000,A14=-8.66270e+004,A15=0.00000e+000,A16=2.11840e+005,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   8:K=-5.00000e+001,A3=0.00000e+000,A4=-9.65860e-003,A5=0.00000e+000,A6=-3.50620e+000,A7=0.00000e+000,A8=1.75210e+001,A9=0.00000e+000,A10=-6.09420e+001,A11=0.00000e+000,A12=1.22910e+002,A13=0.00000e+000,A14=-1.34010e+002,A15=0.00000e+000,A16=5.83690e+001,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.5040
 Fno       2.8680
   w      30.2300
   Ymax    0.8800
  BF       0.6293
  TL       1.9413
 Elem   Surfs   Focal Length    
   1     1- 4       1.7982      
   2     5- 8      11.1474      
(Table 1)
[Example 1]
Reference Wave Length = 587.56 nm

Construction Data
NUM. R d nd vd
OBJ INFINITY 600.0000
1 * 0.6236 0.1500 1.51784 56.10
STO INFINITY 0.3050 1.51690 61.89
3 INFINITY 0.1810 1.51784 56.10
4 * 1.2308 0.1260
5 * 1.5401 0.0580 1.51784 56.10
6 INFINITY 0.3000 1.51690 61.89
7 INFINITY 0.1920 1.51784 56.10
8 * 1.8445 0.1100
9 INFINITY 0.5000 1.47140 66.01
10 INFINITY 0.0193
IMG INFINITY
ASPHERICAL SURFACE
1: K = 1.79120e + 000, A3 = -1.17350e + 000, A4 = 1.81695e + 001, A5 = -1.30023e + 002, A6 = 3.91848e + 002, A7 = 0.00000e + 000, A8 = -4.20685 e + 003, A9 = 0.00000e + 000, A10 = 8.88289e + 004, A11 = 0.00000e + 000, A12 = -1.29992e + 006, A13 = 0.00000e + 000, A14 = 9.68907e + 006, A15 = 0.00000 e + 000, A16 = -2.80628e + 007, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = -3.39260e + 001, A3 = 1.52360e + 000, A4 = -1.50040e + 001, A5 = 4.69460e + 001, A6 = 1.05630e + 001, A7 = 0.00000e + 000, A8 = -1.09630 e + 003, A9 = 0.00000e + 000, A10 = 9.43880e + 003, A11 = 0.00000e + 000, A12 = -3.81090e + 004, A13 = 0.00000e + 000, A14 = 5.87560e + 004, A15 = 0.00000 e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -7.58610e + 000, A3 = 9.73190e-001, A4 = -1.53070e + 001, A5 = 5.35330e + 001, A6 = -7.00910e + 001, A7 = 0.00000e + 000, A8 =- 1.44260e + 002, A9 = 0.00000e + 000, A10 = 1.12470e + 003, A11 = 0.00000e + 000, A12 = 6.39880e + 003, A13 = 0.00000e + 000, A14 = -8.66270e + 004, A15 = 0.00000e + 000, A16 = 2.11840e + 005, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -5.00000e + 001, A3 = 0.00000e + 000, A4 = -9.65860e-003, A5 = 0.00000e + 000, A6 = -3.50620e + 000, A7 = 0.00000e + 000, A8 = 1.75210 e + 001, A9 = 0.00000e + 000, A10 = -6.09420e + 001, A11 = 0.00000e + 000, A12 = 1.22910e + 002, A13 = 0.00000e + 000, A14 = -1.34010e + 002, A15 = 0.00000e + 000, A16 = 5.83690e + 001, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.5040
Fno 2.8680
w 30.2300
Ymax 0.8800
BF 0.6293
TL 1.9413
Elem Surfs Focal Length
1 1- 4 1.7982
2 5--8 11.1474
 図7は実施例1の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。ここで、球面収差図において、実線はd線、点線はg線に対する球面収差量をそれぞれ表し、非点収差図において、実線はサジタル面、点線はメリディオナル面を表す(以下、同じ)。 FIG. 7 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c)). Here, in the spherical aberration diagram, the solid line represents the spherical aberration amount with respect to the d line and the dotted line, respectively, and in the astigmatism diagram, the solid line represents the sagittal surface and the dotted line represents the meridional surface (hereinafter the same).
(実施例2)
 実施例2におけるレンズデータを表2に示す。図8は実施例2のレンズの断面図である。実施例2の撮像レンズは、物体側から順に、物体側に凸の第1物体側レンズ部LB1aと、平行平板からなる第1レンズ基板PP1と、像側に凹の第1像側レンズ部LB1bとからなる第1レンズブロックLB1と、物体側に凸の第2物体側レンズ部LB2aと、平行平板からなる第2レンズ基板PP2と、像側に凹の第2像側レンズ部LB2bとからなる第2レンズブロックLB2とを有する。第2像側レンズ部LB2bの物体側面は、周辺部で凹の形状を有し、第2像側レンズ部LB2bの像側面は、周辺部で凸の形状を有する。第1物体側レンズ部LB1aと、第1レンズ基板PP1との間に、開口絞りSが設けられ、第1像側レンズ部LB1bと、第1レンズ基板PP1との間に、フレアカット絞りFSが設けられている。CGはカバーガラスであり、IMは固体撮像素子の撮像面である。
本実施例では、レンズ基板はガラスである。
(Example 2)
Table 2 shows lens data in Example 2. FIG. 8 is a sectional view of the lens of Example 2. The imaging lens of Example 2 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side. The first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side. And a second lens block LB2. The object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery. An aperture stop S is provided between the first object side lens unit LB1a and the first lens substrate PP1, and a flare cut stop FS is provided between the first image side lens unit LB1b and the first lens substrate PP1. Is provided. CG is a cover glass, and IM is an imaging surface of the solid-state imaging device.
In this embodiment, the lens substrate is glass.
(表2)
[実施例2]
Reference Wave Length = 587.56 nm

 Construction Data
 NUM.       r           d          nd     vd  
 OBJ     INFINITY    600.0000                      
   1*      0.5977      0.1490   1.51784  56.10
 STO     INFINITY      0.3311   1.50990  62.39
   3     INFINITY      0.1229   1.51784  56.10
   4*      1.3816      0.1260
   5*      2.7879      0.0550   1.51784  56.10
   6     INFINITY      0.3000   1.50990  62.39
   7     INFINITY      0.2200   1.51784  56.10
   8*      2.7360      0.0834
   9     INFINITY      0.5000   1.47140  66.01
  10     INFINITY      0.0274
 IMG     INFINITY     

ASPHERICAL SURFACE
   1:K=1.67974e+000,A3=-1.21777e+000,A4=1.74491e+001,A5=-1.10779e+002,A6=2.36826e+002,A7=0.00000e+000,A8=1.14714e+002,A9=0.00000e+000,A10=-1.05381e+004,A11=0.00000e+000,A12=4.29148e+003,A13=0.00000e+000,A14=9.92036e+005,A15=0.00000e+000,A16=-5.44997e+006,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   4:K=-5.00000e+001,A3=1.68242e+000,A4=-1.39494e+001,A5=3.80393e+001,A6=2.97788e+001,A7=0.00000e+000,A8=-1.05083e+003,A9=0.00000e+000,A10=6.93536e+003,A11=0.00000e+000,A12=-1.16186e+004,A13=0.00000e+000,A14=-3.00005e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   5:K=-3.50921e+001,A3=1.18652e+000,A4=-1.49320e+001,A5=5.06077e+001,A6=-6.98651e+001,A7=0.00000e+000,A8=-1.70827e+002,A9=0.00000e+000,A10=1.74684e+003,A11=0.00000e+000,A12=5.07926e+003,A13=0.00000e+000,A14=-1.23541e+005,A15=0.00000e+000,A16=3.34176e+005,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   8:K=-3.91217e+001,A3=0.00000e+000,A4=-1.87915e-001,A5=0.00000e+000,A6=-2.96471e+000,A7=0.00000e+000,A8=1.60651e+001,A9=0.00000e+000,A10=-6.14734e+001,A11=0.00000e+000,A12=1.42979e+002,A13=0.00000e+000,A14=-1.88537e+002,A15=0.00000e+000,A16=1.02474e+002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.4899
 Fno       2.8400
   w      30.2800
   Ymax    0.8800
  BF       0.6109
  TL       1.9149 Elem   Surfs   Focal Length    
   1     1- 4       1.6106  
   2     5- 8     101.6982    
(Table 2)
[Example 2]
Reference Wave Length = 587.56 nm

Construction Data
NUM. R d nd vd
OBJ INFINITY 600.0000
1 * 0.5977 0.1490 1.51784 56.10
STO INFINITY 0.3311 1.50990 62.39
3 INFINITY 0.1229 1.51784 56.10
4 * 1.3816 0.1260
5 * 2.7879 0.0550 1.51784 56.10
6 INFINITY 0.3000 1.50990 62.39
7 INFINITY 0.2200 1.51784 56.10
8 * 2.7360 0.0834
9 INFINITY 0.5000 1.47140 66.01
10 INFINITY 0.0274
IMG INFINITY

ASPHERICAL SURFACE
1: K = 1.67974e + 000, A3 = -1.21777e + 000, A4 = 1.74491e + 001, A5 = -1.10779e + 002, A6 = 2.36826e + 002, A7 = 0.00000e + 000, A8 = 1.14714e + 002, A9 = 0.00000e + 000, A10 = -1.05381e + 004, A11 = 0.00000e + 000, A12 = 4.29148e + 003, A13 = 0.00000e + 000, A14 = 9.92036e + 005, A15 = 0.00000e + 000, A16 = -5.44997e + 006, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = -5.00000e + 001, A3 = 1.68242e + 000, A4 = -1.39494e + 001, A5 = 3.80393e + 001, A6 = 2.97788e + 001, A7 = 0.00000e + 000, A8 = -1.05083 e + 003, A9 = 0.00000e + 000, A10 = 6.93536e + 003, A11 = 0.00000e + 000, A12 = -1.16186e + 004, A13 = 0.00000e + 000, A14 = -3.00005e + 004, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -3.50921e + 001, A3 = 1.18652e + 000, A4 = -1.49320e + 001, A5 = 5.06077e + 001, A6 = -6.98651e + 001, A7 = 0.00000e + 000, A8 =- 1.70827e + 002, A9 = 0.00000e + 000, A10 = 1.74684e + 003, A11 = 0.00000e + 000, A12 = 5.07926e + 003, A13 = 0.00000e + 000, A14 = -1.23541e + 005, A15 = 0.00000e + 000, A16 = 3.34176e + 005, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -3.91217e + 001, A3 = 0.00000e + 000, A4 = -1.87915e-001, A5 = 0.00000e + 000, A6 = -2.96471e + 000, A7 = 0.00000e + 000, A8 = 1.60651 e + 001, A9 = 0.00000e + 000, A10 = -6.14734e + 001, A11 = 0.00000e + 000, A12 = 1.42979e + 002, A13 = 0.00000e + 000, A14 = -1.88537e + 002, A15 = 0.00000e + 000, A16 = 1.02474e + 002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.4899
Fno 2.8400
w 30.2800
Ymax 0.8800
BF 0.6109
TL 1.9149 Elem Surfs Focal Length
1 1- 4 1.6106
2 5--8 101.6982
 図9は実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 9 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例3)
 実施例3におけるレンズデータを表3に示す。図10は実施例3のレンズの断面図である。実施例3の撮像レンズは、物体側から順に、物体側に凸の第1物体側レンズ部LB1aと、平行平板からなる第1レンズ基板PP1と、像側に凹の第1像側レンズ部LB1bとからなる第1レンズブロックLB1と、物体側に凸の第2物体側レンズ部LB2aと、平行平板からなる第2レンズ基板PP2と、像側に凹の第2像側レンズ部LB2bとからなる第2レンズブロックLB2とを有する。第2像側レンズ部LB2bの物体側面は、周辺部で凹の形状を有し、第2像側レンズ部LB2bの像側面は、周辺部で凸の形状を有する。第1物体側レンズ部LB1aの物体側に、開口絞りSが設けられ、第1レンズ基板PP1と、第1物体側レンズ部LB1a又は第1像側レンズ部LB1bとの間に、フレアカット絞りFSが設けられている。CGはカバーガラスであり、IMは固体撮像素子の撮像面である。本実施例では、レンズ基板はガラスである。
(Example 3)
Table 3 shows lens data in Example 3. FIG. 10 is a sectional view of the lens of Example 3. The imaging lens of Example 3 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side. The first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side. And a second lens block LB2. The object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery. An aperture stop S is provided on the object side of the first object side lens unit LB1a, and a flare cut stop FS is provided between the first lens substrate PP1 and the first object side lens unit LB1a or the first image side lens unit LB1b. Is provided. CG is a cover glass, and IM is an imaging surface of the solid-state imaging device. In this embodiment, the lens substrate is glass.
(表3)
[実施例3]
Reference Wave Length = 587.56 nm

 Construction Data
 NUM.       r           d          nd     vd  
 OBJ     INFINITY    600.0000
 STO     INFINITY     -0.0181
   2*     0.6368       0.1463   1.51784  56.10
   3     INFINITY      0.4052   1.51690  61.89
   4     INFINITY      0.0529   1.56901  34.99
   5*     2.0461       0.1503
   6*     2.7069       0.0567   1.56901  34.99
   7     INFINITY      0.3000   1.51690  61.89
   8     INFINITY      0.2076   1.51784  56.10
   9*     1.7567       0.0621
  10     INFINITY      0.5000   1.47140  66.01
  11     INFINITY      0.0675
 IMG     INFINITY     

ASPHERICAL SURFACE
   2:K=-2.98000e+001,A3=2.99096e-001,A4=1.49660e+001,A5=-6.44805e+001,A6=7.86630e+001,A7=0.00000e+000,A8=6.52181e+002,A9=0.00000e+000,A10=-1.01880e+004,A11=0.00000e+000,A12=2.64481e+004,A13=0.00000e+000,A14=6.03510e+005,A15=0.00000e+000,A16=-4.00315e+006,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   5:K=-5.00000e+001,A3=2.08229e+000,A4=-1.83693e+001,A5=6.46118e+001,A6=-5.79974e+001,A7=0.00000e+000,A8=-4.77355e+002,A9=0.00000e+000,A10=4.69176e+003,A11=0.00000e+000,A12=-1.83818e+004,A13=0.00000e+000,A14=2.75073e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   6:K=-5.00000e+001,A3=1.13343e+000,A4=-1.16073e+001,A5=3.50695e+001,A6=-4.67558e+001,A7=0.00000e+000,A8=-1.31428e+001,A9=0.00000e+000,A10=5.45524e+001,A11=0.00000e+000,A12=3.45906e+003,A13=0.00000e+000,A14=-2.70589e+004,A15=0.00000e+000,A16=4.72880e+004,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   9:K=-5.00000e+001,A4=6.64790e-002,A6=-3.20902e+000,A8=1.57035e+001,A10=-5.76839e+001,A12=1.27253e+002,A14=-1.54176e+002,A16=7.74969e+001,A18=0.00000e+000,A20=0.00000e+000

  FL       1.5213
 Fno       2.9000
   w      30.1800
   Ymax    0.8800
  BF       0.6296
  TL       1.9485
 Elem   Surfs   Focal Length    
   1     2- 5       1.6001  
   2     6 -9     -16.2328    
(Table 3)
[Example 3]
Reference Wave Length = 587.56 nm

Construction Data
NUM. R d nd vd
OBJ INFINITY 600.0000
STO INFINITY -0.0181
2 * 0.6368 0.1463 1.51784 56.10
3 INFINITY 0.4052 1.51690 61.89
4 INFINITY 0.0529 1.56901 34.99
5 * 2.0461 0.1503
6 * 2.7069 0.0567 1.56901 34.99
7 INFINITY 0.3000 1.51690 61.89
8 INFINITY 0.2076 1.51784 56.10
9 * 1.7567 0.0621
10 INFINITY 0.5000 1.47140 66.01
11 INFINITY 0.0675
IMG INFINITY

ASPHERICAL SURFACE
2: K = -2.98000e + 001, A3 = 2.99096e-001, A4 = 1.49660e + 001, A5 = -6.44805e + 001, A6 = 7.86630e + 001, A7 = 0.00000e + 000, A8 = 6.52181e + 002, A9 = 0.00000e + 000, A10 = -1.01880e + 004, A11 = 0.00000e + 000, A12 = 2.64481e + 004, A13 = 0.00000e + 000, A14 = 6.03510e + 005, A15 = 0.00000e + 000, A16 = -4.00315e + 006, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -5.00000e + 001, A3 = 2.08229e + 000, A4 = -1.83693e + 001, A5 = 6.46118e + 001, A6 = -5.79974e + 001, A7 = 0.00000e + 000, A8 =- 4.77355e + 002, A9 = 0.00000e + 000, A10 = 4.69176e + 003, A11 = 0.00000e + 000, A12 = -1.83818e + 004, A13 = 0.00000e + 000, A14 = 2.75073e + 004, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -5.00000e + 001, A3 = 1.13343e + 000, A4 = -1.16073e + 001, A5 = 3.50695e + 001, A6 = -4.67558e + 001, A7 = 0.00000e + 000, A8 =- 1.31428e + 001, A9 = 0.00000e + 000, A10 = 5.45524e + 001, A11 = 0.00000e + 000, A12 = 3.45906e + 003, A13 = 0.00000e + 000, A14 = -2.70589e + 004, A15 = 0.00000e + 000, A16 = 4.72880e + 004, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
9: K = -5.00000e + 001, A4 = 6.64790e-002, A6 = -3.20902e + 000, A8 = 1.57035e + 001, A10 = -5.76839e + 001, A12 = 1.27253e + 002, A14 =- 1.54176e + 002, A16 = 7.74969e + 001, A18 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.5213
Fno 2.9000
w 30.1800
Ymax 0.8800
BF 0.6296
TL 1.9485
Elem Surfs Focal Length
1 2- 5 1.6001
2 6 -9 -16.2328
 図11は実施例3の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 11 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例4)
 実施例4におけるレンズデータを表4に示す。図12は実施例4のレンズの断面図である。実施例4の撮像レンズは、物体側から順に、物体側に凸の第1物体側レンズ部LB1aと、平行平板からなる第1レンズ基板PP1と、像側に凹の第1像側レンズ部LB1bとからなる第1レンズブロックLB1と、物体側に凸の第2物体側レンズ部LB2aと、平行平板からなる第2レンズ基板PP2と、像側に凹の第2像側レンズ部LB2bとからなる第2レンズブロックLB2とを有する。第2像側レンズ部LB2bの物体側面は、周辺部で凹の形状を有し、第2像側レンズ部LB2bの像側面は、周辺部で凸の形状を有する。第1物体側レンズ部LB1aと、第1レンズ基板PP1との間に、開口絞りSが設けられ、第1レンズ基板PP1、第1像側レンズ部LB1bとの間に、フレアカット絞りFSが設けられている。CGはカバーガラスであり、IMは固体撮像素子の撮像面である。
本実施例では、レンズ基板はガラスである。
(Example 4)
Table 4 shows lens data in Example 4. 12 is a sectional view of the lens of Example 4. FIG. The imaging lens of Example 4 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side. The first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side. And a second lens block LB2. The object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery. An aperture stop S is provided between the first object side lens unit LB1a and the first lens substrate PP1, and a flare cut stop FS is provided between the first lens substrate PP1 and the first image side lens unit LB1b. It has been. CG is a cover glass, and IM is an imaging surface of the solid-state imaging device.
In this embodiment, the lens substrate is glass.
(表4)
[実施例4]
Reference Wave Length = 587.56 nm

 Construction Data
 NUM.       r           d          nd     vd  
 OBJ     INFINITY    600.0000
   1*      0.7089      0.1400   1.51784  56.10
 STO     INFINITY      0.4050   1.51690  61.89
   3     INFINITY      0.1150   1.56981  34.99
   4*      2.8608      0.1786
   5*      1.9193      0.0614   1.56956  34.99
   6     INFINITY      0.3050   1.51690  61.89
   7     INFINITY      0.1918   1.51784  56.10
   8*      1.6752      0.0621
   9     INFINITY      0.5000   1.47140  66.01
  10     INFINITY      0.0429
 IMG    INFINITY      

ASPHERICAL SURFACE
   1:K=-9.16377e+000,A3=-5.02664e-001,A4=1.19113e+001,A5=-5.44330e+001,A6=8.43138e+001,A7=0.00000e+000,A8=6.45865e+002,A9=0.00000e+000,A10=-9.05064e+003,A11=0.00000e+000,A12=2.95359e+003,A13=0.00000e+000,A14=3.33251e+005,A15=0.00000e+000,A16=-3.79239e+005,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   4:K=-5.00000e+001,A3=1.68690e+000,A4=-1.34840e+001,A5=2.70173e+001,A6=3.97745e+001,A7=0.00000e+000,A8=-6.74075e+002,A9=0.00000e+000,A10=2.69408e+003,A11=0.00000e+000,A12=3.07972e+003,A13=0.00000e+000,A14=-3.56851e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   5:K=-5.00000e+001,A3=9.69528e-001,A4=-9.76840e+000,A5=3.13051e+001,A6=-4.60150e+001,A7=0.00000e+000,A8=4.45534e+001,A9=0.00000e+000,A10=-4.28068e+002,A11=0.00000e+000,A12=4.09457e+003,A13=0.00000e+000,A14=-1.33475e+004,A15=0.00000e+000,A16=4.01177e+002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   8:K=-2.33504e+001,A4=-2.23704e-001,A6=-8.12366e-001,A8=5.26365e+000,A10=-3.08347e+001,A12=8.96998e+001,A14=-1.28054e+002,A16=7.03246e+001,A18=0.00000e+000,A20=0.00000e+000

  FL       1.4840
 Fno       2.8800
   w      30.1100
   Ymax    0.8800
  BF       0.6050
  TL       2.0017
 Elem   Surfs   Focal Length    
   1     1- 4       1.6828  
   2     5- 8      47.0511    
(Table 4)
[Example 4]
Reference Wave Length = 587.56 nm

Construction Data
NUM. R d nd vd
OBJ INFINITY 600.0000
1 * 0.7089 0.1400 1.51784 56.10
STO INFINITY 0.4050 1.51690 61.89
3 INFINITY 0.1150 1.56981 34.99
4 * 2.8608 0.1786
5 * 1.9193 0.0614 1.56956 34.99
6 INFINITY 0.3050 1.51690 61.89
7 INFINITY 0.1918 1.51784 56.10
8 * 1.6752 0.0621
9 INFINITY 0.5000 1.47140 66.01
10 INFINITY 0.0429
IMG INFINITY

ASPHERICAL SURFACE
1: K = -9.16377e + 000, A3 = -5.02664e-001, A4 = 1.19113e + 001, A5 = -5.44330e + 001, A6 = 8.43138e + 001, A7 = 0.00000e + 000, A8 = 6.45865 e + 002, A9 = 0.00000e + 000, A10 = -9.05064e + 003, A11 = 0.00000e + 000, A12 = 2.95359e + 003, A13 = 0.00000e + 000, A14 = 3.33251e + 005, A15 = 0.00000 e + 000, A16 = -3.79239e + 005, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = -5.00000e + 001, A3 = 1.68690e + 000, A4 = -1.34840e + 001, A5 = 2.70173e + 001, A6 = 3.97745e + 001, A7 = 0.00000e + 000, A8 = -6.74075 e + 002, A9 = 0.00000e + 000, A10 = 2.69408e + 003, A11 = 0.00000e + 000, A12 = 3.07972e + 003, A13 = 0.00000e + 000, A14 = -3.56851e + 004, A15 = 0.00000 e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -5.00000e + 001, A3 = 9.69528e-001, A4 = -9.76840e + 000, A5 = 3.13051e + 001, A6 = -4.60150e + 001, A7 = 0.00000e + 000, A8 = 4.45534 e + 001, A9 = 0.00000e + 000, A10 = -4.28068e + 002, A11 = 0.00000e + 000, A12 = 4.09457e + 003, A13 = 0.00000e + 000, A14 = -1.33475e + 004, A15 = 0.00000e + 000, A16 = 4.01177e + 002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -2.33504e + 001, A4 = -2.23704e-001, A6 = -8.12366e-001, A8 = 5.26365e + 000, A10 = -3.08347e + 001, A12 = 8.96998e + 001, A14 = -1.28054e + 002, A16 = 7.03246e + 001, A18 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.4840
Fno 2.8800
w 30.1100
Ymax 0.8800
BF 0.6050
TL 2.0017
Elem Surfs Focal Length
1 1- 4 1.6828
2 5--8 47.0511
 図13は実施例4の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 13 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例5)
 実施例5におけるレンズデータを表5に示す。図14は実施例5のレンズの断面図である。実施例5の撮像レンズは、物体側から順に、物体側に凸の第1物体側レンズ部LB1aと、平行平板からなる第1レンズ基板PP1と、像側に凹の第1像側レンズ部LB1bとからなる第1レンズブロックLB1と、物体側に凸の第2物体側レンズ部LB2aと、平行平板からなる第2レンズ基板PP2と、像側に凹の第2像側レンズ部LB2bとからなる第2レンズブロックLB2とを有する。第2像側レンズ部LB2bの物体側面は、周辺部で凹の形状を有し、第2像側レンズ部LB2bの像側面は、周辺部で凸の形状を有する。第1物体側レンズ部LB1aと、第1レンズ基板PP1との間に、開口絞りSが設けられ、第1レンズ基板PP1と、第1像側レンズ部LB1bとの間に、フレアカット絞りFSが設けられている。CGはカバーガラスであり、IMは固体撮像素子の撮像面である。本実施例では、レンズ基板はガラスである。
(Example 5)
Table 5 shows lens data in Example 5. FIG. 14 is a sectional view of the lens of Example 5. The imaging lens of Example 5 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side. The first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side. And a second lens block LB2. The object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery. An aperture stop S is provided between the first object side lens unit LB1a and the first lens substrate PP1, and a flare cut stop FS is provided between the first lens substrate PP1 and the first image side lens unit LB1b. Is provided. CG is a cover glass, and IM is an imaging surface of the solid-state imaging device. In this embodiment, the lens substrate is glass.
(表5)
[実施例5]
Reference Wave Length = 587.56 nm

 Construction Data
 NUM.       r           d          nd     vd  
 OBJ     INFINITY    600.0000
   1*      0.5603      0.1669   1.51784  56.10
 STO     INFINITY      0.3050   1.50990  62.39
   3     INFINITY      0.1254   1.51784  56.10
   4*      0.9956      0.1120
   5*      2.4135      0.0556   1.51784  56.10
   6     INFINITY      0.3050   1.50990  62.39
   7     INFINITY      0.1900   1.51784  56.10
   8*      3.1380      0.0900
   9     INFINITY      0.5000   1.47140  66.01
  10     INFINITY      0.0378
 IMG     INFINITY     

ASPHERICAL SURFACE
   1:K=1.86962e+000,A3=-1.24922e+000,A4=1.78632e+001,A5=-1.12489e+002,A6=2.21917e+002,A7=0.00000e+000,A8=2.85510e+002,A9=0.00000e+000,A10=-1.11106e+004,A11=0.00000e+000,A12=3.14678e+004,A13=0.00000e+000,A14=1.87412e+005,A15=0.00000e+000,A16=-1.15297e+006,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   4:K=-4.85971e+001,A3=1.68877e+000,A4=-1.18799e+001,A5=4.43316e+001,A6=-4.22401e+000,A7=0.00000e+000,A8=-1.08498e+003,A9=0.00000e+000,A10=1.18942e+004,A11=0.00000e+000,A12=-4.22048e+004,A13=0.00000e+000,A14=-6.13737e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   5:K=-5.00000e+001,A3=9.19980e-001,A4=-1.28313e+001,A5=4.51114e+001,A6=-7.10848e+001,A7=0.00000e+000,A8=8.19603e+001,A9=0.00000e+000,A10=-1.67745e+002,A11=0.00000e+000,A12=5.70082e+003,A13=0.00000e+000,A14=-2.56887e+004,A15=0.00000e+000,A16=2.62756e+004,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   8:K=-5.00000e+001,A3=0.00000e+000,A4=-3.89939e-001,A5=0.00000e+000,A6=-2.22374e+000,A7=0.00000e+000,A8=1.18935e+001,A9=0.00000e+000,A10=-4.73271e+001,A11=0.00000e+000,A12=1.27595e+002,A13=0.00000e+000,A14=-2.18529e+002,A15=0.00000e+000,A16=1.66740e+002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.5040
 Fno       2.8800
   w      30.2400
   Ymax    0.8800
  BF       0.6278
  TL       1.8878
 Elem   Surfs   Focal Length    
   1     1- 4       1.6842  
   2     5- 8      16.0204      
(Table 5)
[Example 5]
Reference Wave Length = 587.56 nm

Construction Data
NUM. R d nd vd
OBJ INFINITY 600.0000
1 * 0.5603 0.1669 1.51784 56.10
STO INFINITY 0.3050 1.50990 62.39
3 INFINITY 0.1254 1.51784 56.10
4 * 0.9956 0.1120
5 * 2.4135 0.0556 1.51784 56.10
6 INFINITY 0.3050 1.50990 62.39
7 INFINITY 0.1900 1.51784 56.10
8 * 3.1380 0.0900
9 INFINITY 0.5000 1.47140 66.01
10 INFINITY 0.0378
IMG INFINITY

ASPHERICAL SURFACE
1: K = 1.86962e + 000, A3 = -1.24922e + 000, A4 = 1.78632e + 001, A5 = -1.12489e + 002, A6 = 2.21917e + 002, A7 = 0.00000e + 000, A8 = 2.85510e + 002, A9 = 0.00000e + 000, A10 = -1.11106e + 004, A11 = 0.00000e + 000, A12 = 3.14678e + 004, A13 = 0.00000e + 000, A14 = 1.87412e + 005, A15 = 0.00000e + 000, A16 = -1.15297e + 006, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = -4.85971e + 001, A3 = 1.68877e + 000, A4 = -1.18799e + 001, A5 = 4.43316e + 001, A6 = -4.22401e + 000, A7 = 0.00000e + 000, A8 =- 1.08498e + 003, A9 = 0.00000e + 000, A10 = 1.18942e + 004, A11 = 0.00000e + 000, A12 = -4.22048e + 004, A13 = 0.00000e + 000, A14 = -6.13737e + 004, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -5.00000e + 001, A3 = 9.19980e-001, A4 = -1.28313e + 001, A5 = 4.51114e + 001, A6 = -7.10848e + 001, A7 = 0.00000e + 000, A8 = 8.19603 e + 001, A9 = 0.00000e + 000, A10 = -1.67745e + 002, A11 = 0.00000e + 000, A12 = 5.70082e + 003, A13 = 0.00000e + 000, A14 = -2.56887e + 004, A15 = 0.00000e + 000, A16 = 2.62756e + 004, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -5.00000e + 001, A3 = 0.00000e + 000, A4 = -3.89939e-001, A5 = 0.00000e + 000, A6 = -2.22374e + 000, A7 = 0.00000e + 000, A8 = 1.18935 e + 001, A9 = 0.00000e + 000, A10 = -4.73271e + 001, A11 = 0.00000e + 000, A12 = 1.27595e + 002, A13 = 0.00000e + 000, A14 = -2.18529e + 002, A15 = 0.00000e + 000, A16 = 1.66740e + 002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.5040
Fno 2.8800
w 30.2400
Ymax 0.8800
BF 0.6278
TL 1.8878
Elem Surfs Focal Length
1 1- 4 1.6842
2 5--8 16.0204
 図15は実施例5の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 15 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例6)
 実施例6におけるレンズデータを表5に示す。図16は実施例6のレンズの断面図である。実施例6の撮像レンズは、物体側から順に、物体側に凸の第1物体側レンズ部LB1aと、平行平板からなる第1レンズ基板PP1と、像側に凹の第1像側レンズ部LB1bとからなる第1レンズブロックLB1と、物体側に凸の第2物体側レンズ部LB2aと、平行平板からなる第2レンズ基板PP2と、像側に凹の第2像側レンズ部LB2bとからなる第2レンズブロックLB2とを有する。第2像側レンズ部LB2bの物体側面は、周辺部で凹の形状を有し、第2像側レンズ部LB2bの像側面は、周辺部で凸の形状を有する。第1物体側レンズ部LB1aと、第1レンズ基板PP1との間に、開口絞りSが設けられ、第1レンズ基板PP1と、第1像側レンズ部LB1bとの間に、フレアカット絞りFSが設けられている。CGはカバーガラスであり、IMは固体撮像素子の撮像面である。本実施例では、レンズ基板はガラスである。
(Example 6)
Table 5 shows lens data in Example 6. FIG. 16 is a sectional view of the lens of Example 6. The imaging lens of Example 6 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side. The first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side. And a second lens block LB2. The object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery. An aperture stop S is provided between the first object side lens unit LB1a and the first lens substrate PP1, and a flare cut stop FS is provided between the first lens substrate PP1 and the first image side lens unit LB1b. Is provided. CG is a cover glass, and IM is an imaging surface of the solid-state imaging device. In this embodiment, the lens substrate is glass.
(表6)
[実施例6]
Reference Wave Length = 587.56 nm

 Construction Data
 NUM.       r           d          nd     vd  
 OBJ     INFINITY    600.0000
   1*      1.0190      0.1635   1.51784  56.10
 STO     INFINITY     0.5000   1.50990  62.39
   3      INFINITY     0.1800   1.51784  56.10
   4*      2.0353      0.0983
   5*      0.6186      0.0811   1.51784  56.10
   6     INFINITY      0.3000   1.50990  62.39
   7     INFINITY      0.1376   1.51784  56.10
   8*      0.8966      0.2000
   9     INFINITY      0.4000   1.47140  66.01
  10     INFINITY      0.0843
 IMG     INFINITY      

ASPHERICAL SURFACE
   1:K=-7.65901e-001,A3=-1.03984e+000,A4=1.73643e+001,A5=-1.09530e+002,A6=2.32709e+002,A7=0.00000e+000,A8=3.70648e+002,A9=0.00000e+000,A10=-1.18803e+004,A11=0.00000e+000,A12=1.94072e+004,A13=0.00000e+000,A14=6.10992e+005,A15=0.00000e+000,A16=-2.89470e+006,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   4:K=-2.52073e+001,A3=5.17969e-001,A4=-1.41371e+001,A5=3.31525e+001,A6=2.35750e+001,A7=0.00000e+000,A8=-8.40099e+002,A9=0.00000e+000,A10=5.55424e+003,A11=0.00000e+000,A12=-1.58367e+004,A13=0.00000e+000,A14=1.34812e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   5:K=-5.19710e-002,A3=2.36816e-001,A4=-1.39393e+001,A5=4.52995e+001,A6=-7.25373e+001,A7=0.00000e+000,A8=-2.76946e+001,A9=0.00000e+000,A10=8.43713e+002,A11=0.00000e+000,A12=2.45940e+003,A13=0.00000e+000,A14=-7.00580e+004,A15=0.00000e+000,A16=2.33427e+005,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   8:K=-3.80735e-001,A3=0.00000e+000,A4=-8.56003e-001,A5=0.00000e+000,A6=-2.04021e+000,A7=0.00000e+000,A8=1.15051e+001,A9=0.00000e+000,A10=-4.31359e+001,A11=0.00000e+000,A12=1.19219e+002,A13=0.00000e+000,A14=-1.96772e+002,A15=0.00000e+000,A16=1.34596e+002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.4674
 Fno       2.8800
   w      30.5600
   Ymax    0.8800
  BF       0.6843
  TL       2.1447
 Elem   Surfs   Focal Length    
   1     1- 4       3.0689  
   2     5- 8       2.3518      
(Table 6)
[Example 6]
Reference Wave Length = 587.56 nm

Construction Data
NUM. R d nd vd
OBJ INFINITY 600.0000
1 * 1.0190 0.1635 1.51784 56.10
STO INFINITY 0.5000 1.50990 62.39
3 INFINITY 0.1800 1.51784 56.10
4 * 2.0353 0.0983
5 * 0.6186 0.0811 1.51784 56.10
6 INFINITY 0.3000 1.50990 62.39
7 INFINITY 0.1376 1.51784 56.10
8 * 0.8966 0.2000
9 INFINITY 0.4000 1.47140 66.01
10 INFINITY 0.0843
IMG INFINITY

ASPHERICAL SURFACE
1: K = -7.65901e-001, A3 = -1.03984e + 000, A4 = 1.73643e + 001, A5 = -1.09530e + 002, A6 = 2.32709e + 002, A7 = 0.00000e + 000, A8 = 3.70648 e + 002, A9 = 0.00000e + 000, A10 = -1.18803e + 004, A11 = 0.00000e + 000, A12 = 1.94072e + 004, A13 = 0.00000e + 000, A14 = 6.10992e + 005, A15 = 0.00000 e + 000, A16 = -2.89470e + 006, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = -2.52073e + 001, A3 = 5.17969e-001, A4 = -1.41371e + 001, A5 = 3.31525e + 001, A6 = 2.35750e + 001, A7 = 0.00000e + 000, A8 = -8.40099 e + 002, A9 = 0.00000e + 000, A10 = 5.55424e + 003, A11 = 0.00000e + 000, A12 = -1.58367e + 004, A13 = 0.00000e + 000, A14 = 1.34812e + 004, A15 = 0.00000 e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -5.19710e-002, A3 = 2.36816e-001, A4 = -1.39393e + 001, A5 = 4.52995e + 001, A6 = -7.25373e + 001, A7 = 0.00000e + 000, A8 =- 2.76946e + 001, A9 = 0.00000e + 000, A10 = 8.43713e + 002, A11 = 0.00000e + 000, A12 = 2.45940e + 003, A13 = 0.00000e + 000, A14 = -7.00580e + 004, A15 = 0.00000e + 000, A16 = 2.33427e + 005, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -3.80735e-001, A3 = 0.00000e + 000, A4 = -8.56003e-001, A5 = 0.00000e + 000, A6 = -2.04021e + 000, A7 = 0.00000e + 000, A8 = 1.15051 e + 001, A9 = 0.00000e + 000, A10 = -4.31359e + 001, A11 = 0.00000e + 000, A12 = 1.19219e + 002, A13 = 0.00000e + 000, A14 = -1.96772e + 002, A15 = 0.00000e + 000, A16 = 1.34596e + 002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.4674
Fno 2.8800
w 30.5600
Ymax 0.8800
BF 0.6843
TL 2.1447
Elem Surfs Focal Length
1 1- 4 3.0689
2 5--8 2.3518
 図17は実施例6の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 17 is an aberration diagram of Example 6 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例7)
 実施例7におけるレンズデータを表7に示す。図18は実施例7のレンズの断面図である。実施例7の撮像レンズは、物体側から順に、物体側に凸の第1物体側レンズ部LB1aと、平行平板からなる第1レンズ基板PP1と、像側に凹の第1像側レンズ部LB1bとからなる第1レンズブロックLB1と、物体側に凸の第2物体側レンズ部LB2aと、平行平板からなる第2レンズ基板PP2と、像側に凹の第2像側レンズ部LB2bとからなる第2レンズブロックLB2とを有する。第2像側レンズ部LB2bの物体側面は、周辺部で凹の形状を有し、第2像側レンズ部LB2bの像側面は、周辺部で凸の形状を有する。第1レンズ基板PP1と、第1像側レンズ部LB1bとの間に、開口絞りSが設けられ、第1物体側レンズ部LB1aと、第1レンズ基板PP1との間に、フレアカット絞りFSが設けられている。CGはカバーガラスであり、IMは固体撮像素子の撮像面である。本実施例では、レンズ基板は樹脂である。
(Example 7)
Table 7 shows lens data in Example 7. FIG. 18 is a sectional view of the lens of Example 7. The imaging lens of Example 7 includes, in order from the object side, a first object side lens unit LB1a that is convex on the object side, a first lens substrate PP1 that is a parallel plate, and a first image side lens unit LB1b that is concave on the image side. The first lens block LB1 is composed of: a second object-side lens portion LB2a that is convex on the object side, a second lens substrate PP2 that is a parallel plate, and a second image-side lens portion LB2b that is concave on the image side. And a second lens block LB2. The object side surface of the second image side lens unit LB2b has a concave shape at the periphery, and the image side surface of the second image side lens unit LB2b has a convex shape at the periphery. An aperture stop S is provided between the first lens substrate PP1 and the first image side lens portion LB1b, and a flare cut stop FS is provided between the first object side lens portion LB1a and the first lens substrate PP1. Is provided. CG is a cover glass, and IM is an imaging surface of the solid-state imaging device. In this embodiment, the lens substrate is a resin.
(表7)
[実施例7]
Reference Wave Length = 587.56 nm

 Construction Data
 NUM.       r           d          nd     vd  
 OBJ     INFINITY    600.0000
   1*      0.5753      0.1607   1.51784  56.10
   2     INFINITY      0.2050   1.52000  52.99
 STO     INFINITY     0.0868   1.51784  56.10
   4*      1.4103      0.2157
   5*      4.8084      0.1411   1.51784  56.10
   6     INFINITY      0.3043   1.52000  52.99
   7     INFINITY      0.1900   1.51784  56.10
   8*      6.9686      0.0505
   9     INFINITY      0.6000   1.47140  66.01
  10     INFINITY     -0.0020
 IMG     INFINITY     

ASPHERICAL SURFACE
   1:K=1.78463e+000,A3=-9.09226e-001,A4=1.67533e+001,A5=-1.17480e+002,A6=2.45829e+002,A7=0.00000e+000,A8=4.89080e+002,A9=0.00000e+000,A10=-1.34594e+004,A11=0.00000e+000,A12=-1.03695e+004,A13=0.00000e+000,A14=9.45808e+005,A15=0.00000e+000,A16=-3.85897e+006,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   4:K=-2.16762e+001,A3=1.61669e+000,A4=-1.35841e+001,A5=4.15560e+001,A6=3.05182e+001,A7=0.00000e+000,A8=-1.15455e+003,A9=0.00000e+000,A10=6.60766e+003,A11=0.00000e+000,A12=6.32076e+002,A13=0.00000e+000,A14=-2.79242e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   5:K=-2.89216e+000,A3=1.09562e+000,A4=-1.35506e+001,A5=4.75755e+001,A6=-6.05885e+001,A7=0.00000e+000,A8=-1.58935e+002,A9=0.00000e+000,A10=6.04866e+002,A11=0.00000e+000,A12=1.50329e+004,A13=0.00000e+000,A14=-1.37638e+005,A15=0.00000e+000,A16=3.42243e+005,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
   8:K=-9.26255e-001,A3=0.00000e+000,A4=-3.50608e-002,A5=0.00000e+000,A6=-3.31831e+000,A7=0.00000e+000,A8=1.60609e+001,A9=0.00000e+000,A10=-5.83315e+001,A11=0.00000e+000,A12=1.25609e+002,A13=0.00000e+000,A14=-1.44922e+002,A15=0.00000e+000,A16=6.81959e+001,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.4860
 Fno       2.8400
   w      30.9900
   Ymax    0.8800
  BF       0.6413
  TL       1.9450
 Elem   Surfs   Focal Length    
   1     1- 4       1.5730  
   2     5- 8      27.0462      
(Table 7)
[Example 7]
Reference Wave Length = 587.56 nm

Construction Data
NUM. R d nd vd
OBJ INFINITY 600.0000
1 * 0.5753 0.1607 1.51784 56.10
2 INFINITY 0.2050 1.52000 52.99
STO INFINITY 0.0868 1.51784 56.10
4 * 1.4103 0.2157
5 * 4.8084 0.1411 1.51784 56.10
6 INFINITY 0.3043 1.52000 52.99
7 INFINITY 0.1900 1.51784 56.10
8 * 6.9686 0.0505
9 INFINITY 0.6000 1.47140 66.01
10 INFINITY -0.0020
IMG INFINITY

ASPHERICAL SURFACE
1: K = 1.78463e + 000, A3 = -9.09226e-001, A4 = 1.67533e + 001, A5 = -1.17480e + 002, A6 = 2.45829e + 002, A7 = 0.00000e + 000, A8 = 4.89080e + 002, A9 = 0.00000e + 000, A10 = -1.34594e + 004, A11 = 0.00000e + 000, A12 = -1.03695e + 004, A13 = 0.00000e + 000, A14 = 9.45808e + 005, A15 = 0.00000 e + 000, A16 = -3.85897e + 006, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = -2.16762e + 001, A3 = 1.61669e + 000, A4 = -1.35841e + 001, A5 = 4.15560e + 001, A6 = 3.05182e + 001, A7 = 0.00000e + 000, A8 = -1.15455 e + 003, A9 = 0.00000e + 000, A10 = 6.60766e + 003, A11 = 0.00000e + 000, A12 = 6.32076e + 002, A13 = 0.00000e + 000, A14 = -2.79242e + 004, A15 = 0.00000 e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -2.89216e + 000, A3 = 1.09562e + 000, A4 = -1.35506e + 001, A5 = 4.75755e + 001, A6 = -6.05885e + 001, A7 = 0.00000e + 000, A8 =- 1.58935e + 002, A9 = 0.00000e + 000, A10 = 6.04866e + 002, A11 = 0.00000e + 000, A12 = 1.50329e + 004, A13 = 0.00000e + 000, A14 = -1.37638e + 005, A15 = 0.00000e + 000, A16 = 3.42243e + 005, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -9.26255e-001, A3 = 0.00000e + 000, A4 = -3.50608e-002, A5 = 0.00000e + 000, A6 = -3.31831e + 000, A7 = 0.00000e + 000, A8 = 1.60609 e + 001, A9 = 0.00000e + 000, A10 = -5.83315e + 001, A11 = 0.00000e + 000, A12 = 1.25609e + 002, A13 = 0.00000e + 000, A14 = -1.44922e + 002, A15 = 0.00000e + 000, A16 = 6.81959e + 001, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.4860
Fno 2.8400
w 30.9900
Ymax 0.8800
BF 0.6413
TL 1.9450
Elem Surfs Focal Length
1 1- 4 1.5730
2 5--8 27.0462
 図19は実施例7の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 19 is an aberration diagram of Example 7 (spherical aberration (a), astigmatism (b), distortion (c)).
 各条件式に対応する実施例の値を表8にまとめて示す。 Table 8 summarizes the values of the examples corresponding to each conditional expression.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や技術思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。 The present invention is not limited to the embodiments described in the specification, and includes other embodiments and modifications for those skilled in the art from the embodiments and technical ideas described in the present specification. it is obvious. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims.
B 操作ボタン
D1,D2 表示画面
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
LN 撮像レンズ
LU 撮像装置
CG プレート
S 開口絞り
IM イメージセンサ
IMA 光電変換部
T 携帯電話機
B Operation buttons D1, D2 Display screen L1 First lens L2 Second lens L3 Third lens LN Imaging lens LU Imaging device CG Plate S Aperture stop IM Image sensor IMA Photoelectric conversion unit T Mobile phone

Claims (15)

  1.  平行平板であるレンズ基板と、その物体側面および像側面のうち少なくとも一方に形成され、正または負のパワーを有するレンズ部を備える光学要素をレンズブロックと呼ぶとき、物体側から順に、物体側に凸面を向け、像側に凹面を向けた正のパワーを有する第1レンズブロックと、物体側に凸面を向け、像側に凹面を向けた第2レンズブロックからなり、開口絞りが前記第1レンズブロックの物体側、もしくは前記第1レンズブロック内部に設けられ、前記第2レンズブロックの物体側レンズ部は周辺で凹の形状を持ち、下記の条件式を満たすことを特徴とする撮像レンズ。
     -3.5<r12/f(1-N13)<-1.1   (1)
     0.5<D/Σd<0.65   (2)
    但し、
    r12:前記第1レンズブロック像側面の近軸曲率半径(mm)
    f  :前記撮像レンズ全系の焦点距離(mm)
    N13:前記第1レンズブロック像側レンズ部の屈折率
    D  :前記第1レンズブロック物体側面から前記第2レンズブロック物体側面までの光軸上の距離(mm)
    Σd :前記第1レンズブロック物体側面から前記第2レンズブロック像側面までの光軸上の距離(mm)
    When an optical element including a lens substrate that is a parallel plate and a lens unit that is formed on at least one of the object side surface and the image side surface and has a positive or negative power is called a lens block, in order from the object side to the object side. A first lens block having a positive power with a convex surface facing the concave surface toward the image side, and a second lens block having a convex surface facing the object side and a concave surface facing the image side, the aperture stop being the first lens An imaging lens which is provided on the object side of the block or inside the first lens block, and the object side lens portion of the second lens block has a concave shape in the periphery and satisfies the following conditional expression.
    −3.5 <r12 / f (1-N13) <− 1.1 (1)
    0.5 <D / Σd <0.65 (2)
    However,
    r12: Paraxial radius of curvature (mm) of the side surface of the first lens block image
    f: Focal length (mm) of the entire imaging lens system
    N13: Refractive index D of the first lens block image side lens part D: Distance on the optical axis from the first lens block object side surface to the second lens block object side surface (mm)
    Σd: distance on the optical axis from the first lens block object side surface to the second lens block image side surface (mm)
  2.  前記第2レンズブロックの像側面は周辺部で凸の形状を有することを特徴とする請求項1に記載の撮像レンズ。 2. The imaging lens according to claim 1, wherein an image side surface of the second lens block has a convex shape at a peripheral portion.
  3.  前記第1レンズブロックは以下の条件式を満足することを特徴とする請求項1又は2に記載の撮像レンズ。
     0.3<DL1/f<0.6   (3)
    但し、
    DL1:前記第1レンズブロックの物体側面から像側面までの光軸上の距離(mm)
    The imaging lens according to claim 1, wherein the first lens block satisfies the following conditional expression.
    0.3 <DL1 / f <0.6 (3)
    However,
    DL1: Distance on the optical axis from the object side surface to the image side surface of the first lens block (mm)
  4.  前記第2レンズブロックは以下の条件式を満足することを特徴とする請求項1~3のいずれかに記載の撮像レンズ。
     0.7<r21/r22<1.8   (4)
    但し、
    r21:前記第2レンズブロック物体側面の近軸曲率半径(mm)
    r22:前記第2レンズブロック像側面の近軸曲率半径(mm)
    The imaging lens according to any one of claims 1 to 3, wherein the second lens block satisfies the following conditional expression.
    0.7 <r21 / r22 <1.8 (4)
    However,
    r21: Paraxial radius of curvature (mm) of the object side surface of the second lens block
    r22: Paraxial radius of curvature (mm) of the side surface of the second lens block image
  5.  前記第1レンズブロックは以下の条件式を満足することを特徴とする請求項1~4のいずれかに記載の撮像レンズ。
     0.23<r11/r12<0.6   (5)
    但し、
    r11:前記第1レンズブロック物体側面の近軸曲率半径(mm)
    The imaging lens according to any one of claims 1 to 4, wherein the first lens block satisfies the following conditional expression.
    0.23 <r11 / r12 <0.6 (5)
    However,
    r11: paraxial radius of curvature (mm) of the object side surface of the first lens block
  6.  前記第1レンズブロックにおいて物体側レンズ部又は像側レンズ部と前記レンズ基板との間に、前記開口絞りを有することを特徴とする請求項1~5のいずれかに記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 5, wherein the aperture stop is provided between the object side lens unit or image side lens unit and the lens substrate in the first lens block.
  7.  前記第1レンズブロックにおいて物体側レンズ部又は像側レンズ部と前記レンズ基板との間であって、前記開口絞りとは異なる位置にフレアカット絞りを有し、前記フレアカット絞りは以下の条件式を満足することを特徴とする請求項6に記載の撮像レンズ。
     φ0<L   (6)
    但し、
    L  :光軸から前記フレアカット絞り開口までの最短距離(mm)
    φ0 :前記フレアカット絞り位置における軸上光束の光束半径(mm)
    In the first lens block, a flare cut stop is provided at a position different from the aperture stop between the object side lens unit or the image side lens unit and the lens substrate, and the flare cut stop has the following conditional expression: The imaging lens according to claim 6, wherein:
    φ0 <L (6)
    However,
    L: Shortest distance (mm) from the optical axis to the flare cut aperture
    φ0: Radius radius (mm) of the axial light beam at the flare-cut stop position
  8.  前記開口絞りを前記第1レンズブロックよりも物体側に有することを特徴とする請求項1~5のいずれかに記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 5, wherein the aperture stop is provided closer to the object side than the first lens block.
  9.  前記第1レンズブロックにおいて物体側レンズ部又は像側レンズ部と前記レンズ基板との間に、フレアカット絞りを有し、前記フレアカット絞りは以下の条件式を満足することを特徴とする請求項8に記載の撮像レンズ。
     φ0<L   (6)
    但し、
    L  :光軸から前記フレアカット絞り開口までの最短距離(mm)
    φ0 :前記フレアカット絞り位置における軸上光束の光束半径(mm)
    The first lens block has a flare cut stop between an object side lens unit or an image side lens unit and the lens substrate, and the flare cut stop satisfies the following conditional expression. 8. The imaging lens according to 8.
    φ0 <L (6)
    However,
    L: Shortest distance (mm) from the optical axis to the flare cut aperture
    φ0: Radius radius (mm) of the axial light beam at the flare-cut stop position
  10.  前記第2レンズブロックの物体側及び像側レンズ部は以下の条件式を満足することを特徴とする請求項1~9のいずれかに記載の撮像レンズ。
     20<ν21<45   (7)
     45<ν23<65   (8)
    但し、
    ν21:前記第2レンズブロック物体側レンズ部のd線に対するアッベ数
    ν23:前記第2レンズブロック像側レンズ部のd線に対するアッベ数
    The imaging lens according to claim 1, wherein the object side and image side lens portions of the second lens block satisfy the following conditional expression.
    20 <ν21 <45 (7)
    45 <ν23 <65 (8)
    However,
    ν21: Abbe number with respect to d-line of the second lens block object side lens portion ν23: Abbe number with respect to d line of the second lens block image side lens portion
  11.  前記レンズ基板は樹脂材料から形成されていることを特徴とする請求項1~10に記載の撮像レンズ。 The imaging lens according to claim 1, wherein the lens substrate is made of a resin material.
  12.  前記レンズ基板はガラス材料から形成されていることを特徴とする請求項1~10に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 10, wherein the lens substrate is made of a glass material.
  13.  前記撮像レンズは以下の条件式を満足することを特徴とする請求項1~12に記載の撮像レンズ。
     0.3<DCG/Ymax<0.7   (9)
    但し、
    DCG:センサーカバーガラスの最大厚み
    Ymax:固体撮像素子の撮像面対角線長の半分の長さ
    The imaging lens according to any one of claims 1 to 12, wherein the imaging lens satisfies the following conditional expression.
    0.3 <DCG / Ymax <0.7 (9)
    However,
    DCG: Maximum thickness of sensor cover glass Ymax: Half the diagonal length of the imaging surface of the solid-state imaging device
  14.  前記撮像レンズは以下の条件式を満足することを特徴とする請求項1~13に記載の撮像レンズ。
     1.9<TL/Ymax<2.5   (10)
    但し、
    TL:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離(mm)(但し、「像側焦点」とは、撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。)
    The imaging lens according to any one of claims 1 to 13, wherein the imaging lens satisfies the following conditional expression.
    1.9 <TL / Ymax <2.5 (10)
    However,
    TL: Distance (mm) on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system (however, “image-side focal point” means that parallel rays parallel to the optical axis are incident on the imaging lens. This is the image point when
  15.  請求項1~14のいずれかに記載の撮像レンズを有することを特徴とする撮像装置。 An imaging apparatus comprising the imaging lens according to any one of claims 1 to 14.
PCT/JP2012/073060 2011-09-13 2012-09-10 Imaging lens and imaging device WO2013039034A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-199616 2011-09-13
JP2011199616 2011-09-13

Publications (1)

Publication Number Publication Date
WO2013039034A1 true WO2013039034A1 (en) 2013-03-21

Family

ID=47883264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073060 WO2013039034A1 (en) 2011-09-13 2012-09-10 Imaging lens and imaging device

Country Status (1)

Country Link
WO (1) WO2013039034A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006323365A (en) * 2005-05-18 2006-11-30 Samsung Electro-Mechanics Co Ltd Wafer-scale lens, and optical system equipped with the same
WO2008102773A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, portable terminal and method for manufacturing imaging lens
JP2010054810A (en) * 2008-08-28 2010-03-11 Konica Minolta Opto Inc Image pickup lens, image pickup apparatus, and mobile terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006323365A (en) * 2005-05-18 2006-11-30 Samsung Electro-Mechanics Co Ltd Wafer-scale lens, and optical system equipped with the same
WO2008102773A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, portable terminal and method for manufacturing imaging lens
JP2010054810A (en) * 2008-08-28 2010-03-11 Konica Minolta Opto Inc Image pickup lens, image pickup apparatus, and mobile terminal

Similar Documents

Publication Publication Date Title
JP5321954B2 (en) Imaging lens, imaging device, and portable terminal
JP5348563B2 (en) Imaging lens, imaging device, and portable terminal
JP4513924B2 (en) Imaging lens, imaging device, portable terminal, and manufacturing method of imaging lens
JP5212354B2 (en) Imaging lens, imaging device, portable terminal, and manufacturing method of imaging lens
JP5413738B2 (en) Imaging lens, imaging device, and portable terminal
US7602560B2 (en) Image pickup lens, image pickup apparatus and mobile terminal
WO2009101928A1 (en) Lens unit, image capturing lens, image capturing device, and portable terminal
JP2011017764A (en) Imaging lens, imaging apparatus and portable terminal
JP5434093B2 (en) Imaging lens, imaging device, and portable terminal
JP5648689B2 (en) Imaging lens and imaging apparatus
WO2010047178A1 (en) Imaging lens, imaging device, and portable terminal
CN203480119U (en) Image pick-up lens for solid-state imaging element
JPWO2010010891A1 (en) Imaging lens, imaging device, and portable terminal
JP2009069193A (en) Imaging lens, camera module and imaging equipment
JP2009069194A (en) Imaging lens, camera module and imaging equipment
JPWO2009069467A1 (en) Imaging lens, imaging device, and portable terminal
JP2010266815A (en) Imaging lens, image capturing apparatus and mobile terminal
JP5391822B2 (en) Imaging lens, imaging device, and portable terminal
JP2009008956A (en) Imaging lens, imaging unit, and personal digital assistance incorporating the imaging unit
CN102763018B (en) Imaging lens and imaging device
WO2013039034A1 (en) Imaging lens and imaging device
WO2010087084A1 (en) Image pickup lens, image pickup apapratus, and portable terminal
JP2013218353A (en) Image capturing lens, image capturing device, and mobile terminal
JP5397628B2 (en) Imaging lens and imaging apparatus
JP2009204877A (en) Imaging lens and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载