電力増幅では、電力効率の向上が重要である。トランジスタを用いる電力増幅器で、所望の基本周波数を有する電力を増幅すると、トランジスタは非線形素子であるため、基本周波数を有する基本波成分の他に、基本周波数の整数倍の周波数を有する不要な高調波成分が生じる。この不要な高調波成分が電力増幅器内で消費されると、電力増幅器の付加電力効率が下がってしまう。
In power amplification, improving power efficiency is important. When a power amplifier using a transistor amplifies power having a desired fundamental frequency, the transistor is a nonlinear element, and therefore, in addition to the fundamental wave component having the fundamental frequency, unnecessary harmonics having a frequency that is an integral multiple of the fundamental frequency. Ingredients are produced. When this unnecessary harmonic component is consumed in the power amplifier, the additional power efficiency of the power amplifier is lowered.
高調波成分を制御し、付加電力効率の低下を抑制する方法として、F級増幅および逆F級増幅を用いる方法が知られている。F級増幅および逆F級増幅では、時間領域において、トランジスタの出力側の電圧および電流が分離している。より具体的には、F級増幅では、電圧は矩形波であり、電流は正弦半波であり、電圧および電流が交互にゼロレベルになる。逆F級増幅では反対に、電流は矩形波であり、電圧は正弦半波であり、やはり電圧および電流が交互にゼロレベルになる。
As a method for controlling harmonic components and suppressing reduction in added power efficiency, a method using class F amplification and inverse class F amplification is known. In class F amplification and inverse class F amplification, the voltage and current on the output side of the transistor are separated in the time domain. More specifically, in class F amplification, the voltage is a square wave, the current is a sine half wave, and the voltage and current alternate to zero level. On the contrary, in the reverse class F amplification, the current is a square wave, the voltage is a sine half wave, and the voltage and the current are alternately at a zero level.
図1Aは、F級増幅器の、トランジスタに流れ込む電流と、トランジスタの出力端子に生じる電圧とにおける時間変化の一例を示すグラフ群である。ここで、トランジスタに流れ込む電流は、例えばドレーン電流であり、また、トランジスタの出力端子に生じる電圧は、例えばドレーンソース間電圧である。図1Aのグラフ群は、トランジスタに流れ込む電流を示す第1のグラフ1Aiと、トランジスタの出力端子に生じる電圧を示す第2のグラフ1Avとを含んでいる。図1Aにおいて、横軸は基本周波数の周期を単位とした時間経過を示しており、縦軸は電流および電圧の振幅を示している。第1のグラフ1Aiに示す電流id(t)と、第2のグラフ1Avに示す電圧vds(t)とは、以下の式(1)によって表される。
FIG. 1A is a graph group showing an example of a time change in a current flowing into a transistor and a voltage generated at an output terminal of the transistor of the class F amplifier. Here, the current flowing into the transistor is, for example, a drain current, and the voltage generated at the output terminal of the transistor is, for example, a drain-source voltage. The graph group in FIG. 1A includes a first graph 1Ai that shows the current flowing into the transistor, and a second graph 1Av that shows the voltage generated at the output terminal of the transistor. In FIG. 1A, the horizontal axis indicates the passage of time with the period of the fundamental frequency as a unit, and the vertical axis indicates the amplitude of current and voltage. The current i d (t) shown in the first graph 1Ai and the voltage v ds (t) shown in the second graph 1Av are expressed by the following equation (1).
図1Aの例に示したように、F級増幅器のトランジスタは、ドレーンソース間電圧が発生している時にはドレーン電流がゼロレベルとなり、反対にドレーン電流が発生している時にはドレーンソース間電圧がゼロレベルとなるように形成されている。したがって、F級増幅器のトランジスタの内部で消費される電力はゼロであり、同じく平均消費電力もゼロである。その結果、F級増幅器では、理論的には100%の電力効率が得られることになる。この特徴については、逆F級増幅器も同様である。
As shown in the example of FIG. 1A, in the transistor of the class F amplifier, when the drain-source voltage is generated, the drain current becomes zero level, and when the drain current is generated, the drain-source voltage is zero. It is formed to be a level. Therefore, the power consumed inside the transistor of the class F amplifier is zero, and the average power consumption is also zero. As a result, the class F amplifier can theoretically obtain 100% power efficiency. The same applies to the inverse class F amplifier.
上記に関連して、特許文献1(特許4335633号)には、F級増幅回路およびF級増幅器用付加回路に係る発明が開示されている。このF級増幅回路は、トランジスタと、このトランジスタの後段に接続された負荷回路とを具備している。負荷回路は、第1リアクタンス二端子回路と、第2リアクタンス二端子回路とを具備している。各々のインピーダンスは、必要に応じて、偶数次高調波において零点、ならびに奇数次高調波において極を有する。
In relation to the above, Patent Document 1 (Japanese Patent No. 4335633) discloses an invention relating to a class F amplifier circuit and an additional circuit for a class F amplifier. The class F amplifier circuit includes a transistor and a load circuit connected to the subsequent stage of the transistor. The load circuit includes a first reactance two-terminal circuit and a second reactance two-terminal circuit. Each impedance has a zero at even harmonics and a pole at odd harmonics as needed.
また、特許文献2(特開2011-55152号公報)には、増幅回路に係る発明が開示されている。この増幅回路は、トランジスタと、このトランジスタの後段に接続された高調波処理回路と、この高調波処理回路の後段に接続された共振回路部とを具備している。このトランジスタは、電流源と、ドレーンソース間容量と、ドレーンインダクタンスとを有する等価回路として表現可能である。この高調波処理回路は、各段が並列容量および直列インダクタを具備するn段の梯子型回路を有する。ここで、nは1以上の整数である。この共振回路部は、共振周波数が互いに異なる2n+1個の共振器を有する。これら2n+1個の共振器の共振周波数は、高調波処理回路の出力部を短絡した場合に、トランジスタのドレーン出力部および接地面の間に形成されるn+1個の極およびn個の零点の周波数にそれぞれ一致する。これら2n+1個の共振器のうち、2n個の共振器の共振周波数は、2次から2n+1次の高調波の周波数にそれぞれ一致している。
Patent Document 2 (Japanese Patent Laid-Open No. 2011-55152) discloses an invention relating to an amplifier circuit. The amplifier circuit includes a transistor, a harmonic processing circuit connected to the subsequent stage of the transistor, and a resonance circuit unit connected to the subsequent stage of the harmonic processing circuit. This transistor can be expressed as an equivalent circuit having a current source, a drain-source capacitance, and a drain inductance. This harmonic processing circuit has an n-stage ladder circuit in which each stage includes a parallel capacitor and a series inductor. Here, n is an integer of 1 or more. This resonance circuit unit has 2n + 1 resonators having different resonance frequencies. The resonance frequency of these 2n + 1 resonators is the frequency of n + 1 poles and n zeros formed between the drain output part of the transistor and the ground plane when the output part of the harmonic processing circuit is short-circuited. Each matches. Among these 2n + 1 resonators, the resonance frequency of the 2n resonators matches the frequency of the second to 2n + 1 harmonics.
また、特許文献3(特開2011-66839号公報)には、マイクロ波高調波処理回路に係る発明が開示されている。このマイクロ波高調波処理回路は、直列伝送線路と、この直列伝送線路の出力端子に1点で並列接続された複数の並列先端開放スタブとを有する。この直列伝送線路は、入力端子がトランジスタの出力端子に接続されていて、所定の電気長を有する。これら複数の並列先端開放スタブは、2次以上でn次までの高調波に対してそれぞれが所定の電気長を持つ。ここで、nは任意の整数であって、複数の並列先端開放スタブの総数はn-1個である。このマイクロ波高調波処理回路は、第1伝送線路層と、第2伝送線路層と、接地層と、ビアとを有する。この第1伝送線路層は、直列伝送線路とn-1個の並列先端開放スタブの内の2つの並列先端開放スタブが1つの接続点で接続されて構成されている。この第2伝送線路層は、これら2つの並列先端開放スタブを除くn-3個の並列先端開放スタブが1つの接続点で接続されて構成されている。この接地層は、第1伝送線路層と、第2伝送線路層との間に配置されている。このビアは、第1伝送線路層における接続点と、第2伝送線路層における接続点とを電気的に接続する。
Patent Document 3 (Japanese Patent Laid-Open No. 2011-66839) discloses an invention relating to a microwave harmonic processing circuit. The microwave harmonic processing circuit includes a serial transmission line and a plurality of parallel tip open stubs connected in parallel at one point to an output terminal of the serial transmission line. This serial transmission line has an input terminal connected to the output terminal of the transistor and a predetermined electrical length. Each of the plurality of parallel open end stubs has a predetermined electrical length with respect to higher harmonics of the second order and up to the nth order. Here, n is an arbitrary integer, and the total number of parallel tip open stubs is n-1. The microwave harmonic processing circuit includes a first transmission line layer, a second transmission line layer, a ground layer, and a via. The first transmission line layer is configured by connecting a serial transmission line and two parallel tip open stubs out of n−1 parallel tip open stubs at one connection point. The second transmission line layer is configured by connecting n-3 parallel tip open stubs excluding these two parallel tip open stubs at one connection point. The ground layer is disposed between the first transmission line layer and the second transmission line layer. The via electrically connects the connection point in the first transmission line layer and the connection point in the second transmission line layer.
添付図面を参照して、本発明による高効率電力増幅器を実施するための形態を以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments for implementing a high efficiency power amplifier according to the present invention will be described below with reference to the accompanying drawings.
(実施形態)
トランジスタ内の消費電力を抑制する手法として、F級増幅器や逆F級増幅器のように、トランジスタに流れ込む電流と、トランジスタの出力端子に生じる電圧とを時間領域で分離してトランジスタによる消費電力を零化する手法のほかに、高調波の電流および電圧の位相を直交させて無効電力化する手法が考えられる。本発明による高効率電力増幅器では、高調波の電流および電圧の位相を直交させる手法を、F級増幅器や逆F級増幅器の手法に併せて利用することで、もしくは単独で利用することで、トランジスタ内の高調波消費電力の抑制を行う。
(Embodiment)
As a technique for suppressing the power consumption in the transistor, the current flowing into the transistor and the voltage generated at the output terminal of the transistor are separated in the time domain to reduce the power consumption by the transistor like a class F amplifier or an inverse class F amplifier. In addition to the method of making reactive power, a method of making reactive power by making the phases of harmonic current and voltage orthogonal is conceivable. In the high-efficiency power amplifier according to the present invention, the method of orthogonalizing the phase of the harmonic current and voltage is used in combination with the method of the class F amplifier or the inverse class F amplifier, or by using it alone. The harmonic power consumption is suppressed.
図1Bは、高調波毎に位相が直交するときの、トランジスタに流れ込む電流と、トランジスタの出力端子に生じる電圧とにおける時間変化の一例を示すグラフ群である。図1Bのグラフ群は、トランジスタに流れ込む電流を示す第1のグラフ1Biと、トランジスタの出力端子に生じる電圧を示す第2のグラフ1Bvとを含んでいる。図1Bにおいて、横軸は基本周波数の周期を単位とした時間経過を示しており、縦軸は電流および電圧の振幅を示している。第1のグラフ1Biに示す電流id(t)と、第2のグラフ1Bvに示す電圧vds(t)とは、以下の式(2)によって表される。
FIG. 1B is a graph group showing an example of temporal changes in the current flowing into the transistor and the voltage generated at the output terminal of the transistor when the phase is orthogonal for each harmonic. The graph group in FIG. 1B includes a first graph 1Bi that shows the current flowing into the transistor, and a second graph 1Bv that shows the voltage generated at the output terminal of the transistor. In FIG. 1B, the horizontal axis indicates the passage of time with the period of the fundamental frequency as a unit, and the vertical axis indicates the amplitude of current and voltage. The current i d (t) shown in the first graph 1Bi and the voltage v ds (t) shown in the second graph 1Bv are expressed by the following equation (2).
なお、上記式(2)は、より現実的な以下の式(3)において、位相差「Φ」がゼロである場合を表している。
The above formula (2) represents a case where the phase difference “Φ” is zero in the following more realistic formula (3).
図1Bの例に示したように、電流にも、電圧にも、ゼロレベルを保つ期間は特に無い。しかし、電流および電圧を積算したトランジスタ内消費電力の時間積分はゼロになり、すなわち理論的には100%の電力効率を有する電力増幅器が得られる。ただし、本発明の高効率電力増幅器では、所望の基本波以外の高調波のそれぞれにおいて、電流および電圧の位相差が、理想的な値である±90°から多少ずれていても、後述するように、ドレーン効率が実測で90%を超える極めて高い電力効率が得られた。
As shown in the example of FIG. 1B, there is no particular period for maintaining the zero level for both current and voltage. However, the time integration of the power consumption in the transistor obtained by integrating the current and voltage becomes zero, that is, a power amplifier having theoretically 100% power efficiency is obtained. However, in the high-efficiency power amplifier of the present invention, even if the phase difference between the current and the voltage is slightly deviated from the ideal value of ± 90 ° in each of the harmonics other than the desired fundamental wave, as will be described later. In addition, an extremely high power efficiency with a drain efficiency exceeding 90% in actual measurement was obtained.
図2は、本発明の実施形態による高効率電力増幅器の基本的な構成を概念的に示す回路図である。図2に示された高効率電力増幅器の構成要素について説明する。図2に示された高効率電力増幅器は、トランジスタ10と、電源回路部20と、出力電力処理回路部30と、入力部50と、出力部60とを具備している。
FIG. 2 is a circuit diagram conceptually showing the basic structure of the high-efficiency power amplifier according to the embodiment of the present invention. The components of the high efficiency power amplifier shown in FIG. 2 will be described. The high-efficiency power amplifier shown in FIG. 2 includes a transistor 10, a power supply circuit unit 20, an output power processing circuit unit 30, an input unit 50, and an output unit 60.
電源回路部20は、電源21と、インピーダンス回路部22とを具備している。トランジスタ10は、ドレーン11と、ゲート12と、ソース13とを具備している。出力電力処理回路部30は、出力高調波処理回路部31と、出力整合回路部32とを具備している。
The power supply circuit unit 20 includes a power supply 21 and an impedance circuit unit 22. The transistor 10 includes a drain 11, a gate 12, and a source 13. The output power processing circuit unit 30 includes an output harmonic processing circuit unit 31 and an output matching circuit unit 32.
なお、図2の例では、トランジスタ10としてGaN(窒化ガリウム)HEMT(High Electron Mobility Transistor:高電子移動度トランジスタ)を用いているが、本発明はこの例に限定されない。例えば、トランジスタ10として、バイポーラトランジスタや、MOS(Metal Oxide Semiconductor:金属酸化膜半導体)FET(Field Effect Transistor:電界効果トランジスタ)などを用いても良い。ただし、その場合は必要に応じて周囲の回路を適宜に変更するものとする。
In the example of FIG. 2, a GaN (gallium nitride) HEMT (High Electron Mobility Transistor) is used as the transistor 10, but the present invention is not limited to this example. For example, the transistor 10 may be a bipolar transistor, a MOS (Metal Oxide Semiconductor) FET (Field Effect Transistor), or the like. However, in that case, the surrounding circuits are changed as necessary.
図2に示した高効率電力増幅器の構成要素の接続関係について説明する。入力部50は、トランジスタ10のゲート12に接続されている。電源21における一方の端部は、接地されている。電源21における他方の端部は、インピーダンス回路部22における一方の端部に接続されている。インピーダンス回路部22における他方の端部は、トランジスタ10のドレーン11と、出力高調波処理回路部31の入力部とに共通接続されている。トランジスタ10のソース13は、接地されている。出力高調波処理回路部31の出力部は、出力整合回路部32の入力部に接続されている。出力整合回路部32の出力部は、出力部60に接続されている。なお、図2では、出力整合回路部32は接地されているが、接地されていなくても良い。また、出力部60は、図2に示したように、外部の負荷40に接続されていても良い。
The connection relation of the components of the high efficiency power amplifier shown in FIG. 2 will be described. The input unit 50 is connected to the gate 12 of the transistor 10. One end of the power source 21 is grounded. The other end of the power source 21 is connected to one end of the impedance circuit unit 22. The other end of the impedance circuit unit 22 is commonly connected to the drain 11 of the transistor 10 and the input unit of the output harmonic processing circuit unit 31. The source 13 of the transistor 10 is grounded. The output unit of the output harmonic processing circuit unit 31 is connected to the input unit of the output matching circuit unit 32. The output unit of the output matching circuit unit 32 is connected to the output unit 60. In FIG. 2, the output matching circuit unit 32 is grounded, but may not be grounded. Further, the output unit 60 may be connected to an external load 40 as shown in FIG.
図2に示した高効率電力増幅器の動作について説明する。トランジスタ10は、ゲート12から、基本角周波数ω0を有する入力電力を入力する。トランジスタ10は、電源回路部20から電力を供給されつつ、入力電力を増幅し、増幅された出力電力をドレーン11から出力する。ここで、図2でドレーン11を流れる電流2iは、出力電力の電流id(t)を示し、同じく図2でドレーン11およびソース13の間の電圧2vは、出力電力の電圧vds(t)を示している。
The operation of the high efficiency power amplifier shown in FIG. 2 will be described. The transistor 10 receives input power having a basic angular frequency ω 0 from the gate 12. The transistor 10 amplifies input power while being supplied with power from the power supply circuit unit 20, and outputs the amplified output power from the drain 11. Here, the current 2i flowing through the drain 11 in FIG. 2 indicates the output power current i d (t). Similarly, in FIG. 2, the voltage 2v between the drain 11 and the source 13 is the output power voltage v ds (t ).
このとき、トランジスタ10から出力される出力電力には、基本角周波数ω0を有する基本波成分のみならず、基本角周波数ω0の整数倍の角周波数を有する高調波成分もが含まれているのが一般的である。これらの高調波成分が増幅器内で消費されてしまうと、増幅器の効率が低下してしまう。
At this time, the output power outputted from the transistor 10, not only the fundamental wave component having a fundamental angular frequency omega 0, contains harmonics component having an integer multiple of the angular frequency of the fundamental angular frequency omega 0 It is common. If these harmonic components are consumed in the amplifier, the efficiency of the amplifier is reduced.
そこで、本実施形態による出力高調波処理回路部31は、トランジスタ10の後段に接続されて、出力電力の高調波成分の大部分を無効電力化する。図2に示した例では、出力高調波処理回路部31は、第1~第3の高調波処理回路部を含んでいる。ここで、第1の高調波処理回路部は、出力電力のうち、基本角周波数ω0の2倍の角周波数2ω0を有する2次高調波成分を無効電力化する。同様に、第2の高調波処理回路部は、出力電力のうち、基本角周波数ω0の3倍の角周波数3ω0を有する3次高調波成分を無効電力化する。さらに、第3の高調波処理回路部は、出力電力のうち、基本角周波数ω0の4倍の角周波数4ω0を有する4次高調波成分を無効電力化する。なお、無効電力化された高調波成分は、高効率電力増幅器の内部で消費される訳ではなく、最終的には基本波成分として出力されるので、無効電力化は電力増幅の効率向上に寄与することになる。
Therefore, the output harmonic processing circuit unit 31 according to the present embodiment is connected to the subsequent stage of the transistor 10 to make most of the harmonic components of the output power reactive power. In the example shown in FIG. 2, the output harmonic processing circuit unit 31 includes first to third harmonic processing circuit units. Here, the first harmonic processing circuit unit converts the second harmonic component having an angular frequency 2ω 0 that is twice the basic angular frequency ω 0 out of the output power to reactive power. Similarly, the second harmonic processing circuit unit converts reactive power to a third harmonic component having an angular frequency 3ω 0 that is three times the basic angular frequency ω 0 in the output power. Further, the third harmonic processing circuit unit converts reactive power to a fourth harmonic component having an angular frequency 4ω 0 that is four times the basic angular frequency ω 0 in the output power. Note that the reactive harmonics are not consumed inside the high-efficiency power amplifier, but are eventually output as fundamental wave components, so reactive power contributes to improved power amplification efficiency. Will do.
なお、これらの高調波処理回路部が、どの高調波成分を無効電力化するかは、自由に選択可能であって、上記に説明で用いた例は本発明を限定しない。高調波ごとの振幅は、トランジスタ10の特性に大きく依存するので、当然ながら、無効電力化する対象として振幅の大きい高調波を優先的に選ぶことが望ましい。あえて極端な例を挙げれば、偶数次高調波成分ばかりを無効電力化しても構わない。
It should be noted that it is possible to freely select which harmonic components these harmonic processing circuit units generate reactive power, and the examples used in the above description do not limit the present invention. Since the amplitude for each harmonic greatly depends on the characteristics of the transistor 10, it is naturally desirable to preferentially select a harmonic having a large amplitude as a target for reactive power. If an extreme example is given, only even harmonic components may be made reactive power.
従来技術では、これらの高調波成分の消費電力を抑制するにあたって、高調波ごとに、電圧および電流が交互にゼロレベルとなるように調整する、F級増幅器や逆F級増幅器の手法が用いられている。本発明は、この手法を否定するものでは決してないが、高調波成分の抑制をさらに推し進めるために、高調波ごとに、電圧および電流の位相が直交するように調整する無効電力化の手法を、高調波の一部または全てに導入する。すなわち、制御対象として選んだ高調波のうち、その一部については電圧および電流の位相を直交させることで無効電力化し、残りについてはF級増幅器や逆F級増幅器の手法を用いてトランジスタ内での消費電力を零化する。例えば、4次以降の高調波成分については電圧および電流の位相を直交させることで無効電力化し、2次および3次の高調波成分についてはF級増幅器や逆F級増幅器の手法を用いてトランジスタ内での消費電力を零化する。あるいは、奇数次(偶数次)の高調波成分については電圧および電流の位相を直交させることで無効電力化し、偶数次(奇数次)の高調波成分についてはF級増幅器や逆F級増幅器の手法を用いてトランジスタ内での消費電力を零化する。もしくは、制御対象として選んだ高調波の全てを、電圧および電流の位相を直交させることで無効電力化しても良い。
In the prior art, in order to suppress the power consumption of these harmonic components, a method of class F amplifier or inverse class F amplifier is used in which the voltage and current are alternately adjusted to zero level for each harmonic. ing. The present invention never denies this technique, but in order to further promote the suppression of harmonic components, a reactive power technique that adjusts the phase of voltage and current to be orthogonal for each harmonic, Introduce to some or all of the harmonics. That is, some of the harmonics selected as control targets are converted into reactive power by making the phase of voltage and current orthogonal, and the rest of the harmonics are generated in the transistor using the method of class F amplifier or inverse class F amplifier. Zero power consumption. For example, reactive power is generated by making the phase of the voltage and current orthogonal for the fourth and subsequent harmonic components, and for the second and third harmonic components, a transistor is used by using a class F amplifier or an inverse class F amplifier. The power consumption inside is reduced to zero. Alternatively, the odd-order (even-order) harmonic components are converted to reactive power by making the voltage and current phases orthogonal to each other, and the even-order (odd-order) harmonic components are used as a class F amplifier or an inverse class F amplifier. Is used to zero the power consumption in the transistor. Alternatively, all of the harmonics selected as the control target may be converted to reactive power by making the voltage and current phases orthogonal.
高調波成分の消費電力の抑制に2種類の手法を混在させることで、出力高調波処理回路部31または出力電力処理回路部30の設計にさらなる自由度をもたらす効果も得られる。特に、F級増幅または逆F級増幅の消費電力零化にマイクロストリップ線路を用いる場合は、複数の先端開放型スタブを同一の接続点に集める必要が生じる場合があり、それらの配置には幾何学的な困難が発生し得る。ここで、先端開放型スタブを接続するべき位置は、所望の基本波成分の電気長に換算して、トランジスタ10の出力部(図3の場合はドレーン11)から4分の1波長の距離にある。この距離は、厳密には、トランジスタ10の寄生容量を考慮して、4分の1波長より多少短い。しかし、電流および電圧の位相を直交するためにマイクロストリップ線路を用いる場合は、複数の先端開放型スタブを、主線路部34の任意の位置にそれぞれ配置した複数の接続点に分散することが可能であり、それらの配置に幾何学的な困難が発生しにくい。
By mixing two types of methods for suppressing the power consumption of harmonic components, an effect of providing further freedom in the design of the output harmonic processing circuit unit 31 or the output power processing circuit unit 30 can be obtained. In particular, when a microstrip line is used for zero power consumption for class F amplification or inverse class F amplification, it may be necessary to collect a plurality of open-ended stubs at the same connection point. Geometrical difficulties can occur. Here, the position where the open-ended stub should be connected is converted into the electrical length of the desired fundamental wave component, and is at a distance of a quarter wavelength from the output part of the transistor 10 (drain 11 in the case of FIG. 3). is there. Strictly speaking, this distance is slightly shorter than a quarter wavelength in consideration of the parasitic capacitance of the transistor 10. However, when a microstrip line is used to make the current and voltage phases orthogonal, a plurality of open-ended stubs can be distributed to a plurality of connection points respectively arranged at arbitrary positions of the main line part 34. And geometrical difficulties are unlikely to occur in their arrangement.
出力整合回路部32は、出力電力の基本波成分について、後段とのインピーダンス整合を行う。インピーダンス整合は、従来技術と同様であるので、さらなる詳細な説明を省略する。ただし、出力整合回路部32は、必要に応じて出力高調波処理回路部31と一体化して出力電力処理回路部30を構成しても構わない。
The output matching circuit unit 32 performs impedance matching with the subsequent stage for the fundamental wave component of the output power. Since impedance matching is the same as in the prior art, further detailed description is omitted. However, the output matching circuit unit 32 may be integrated with the output harmonic processing circuit unit 31 to form the output power processing circuit unit 30 as necessary.
位相が直交するような調整によって、全ての高調波において電流および電圧の位相差が±90度に保たれることが理想的である。この場合、理論的な効率は100%となる。ただし、実際には、効率をいくらか犠牲にすることで、位相差に多少の誤差を許容するものとする。その許容範囲は、基本波の振幅と、各次高調波の振幅との比率などに依存する。
Ideally, the phase difference between current and voltage is maintained at ± 90 degrees in all harmonics by adjusting the phase to be orthogonal. In this case, the theoretical efficiency is 100%. However, in practice, it is assumed that some error is allowed in the phase difference by sacrificing some efficiency. The allowable range depends on the ratio between the amplitude of the fundamental wave and the amplitude of each harmonic.
基本波成分の位相差がゼロである場合には、直流投入電力を増やせば良い。一方、直流投入電力が与条件である場合には、基本波成分の位相差を調整すれば良い。
If the phase difference of the fundamental wave component is zero, the DC input power may be increased. On the other hand, when the DC input power is a given condition, the phase difference of the fundamental component may be adjusted.
トランジスタ10を、出力等価電流源を含む等価回路として考える場合、出力電力の基本波成分についてインピーダンス整合を行うことで、この出力等価電流源から負荷40側を見たインピーダンスは、基本波においては共役整合となる。また、出力電力の高調波成分について無効電力化を行うことで、この出力等価電流源から負荷40側を見たインピーダンスは、この高調波成分において純リアクタンスとなる。
When the transistor 10 is considered as an equivalent circuit including an output equivalent current source, impedance matching is performed on the fundamental wave component of the output power so that the impedance viewed from the output equivalent current source on the load 40 side is conjugate to the fundamental wave. Be consistent. Further, by performing reactive power conversion on the harmonic component of the output power, the impedance of the output equivalent current source viewed from the load 40 becomes pure reactance in the harmonic component.
トランジスタ10の出力等価電流源から、出力電力処理回路部30の後段側を見たインピーダンスが、無効電力化を施された高調波成分については純リアクタンスとなり、かつ、基本波成分については直流投入電力に等しい有効電力成分に相当する力率に設定されているようにしても良い。
From the output equivalent current source of the transistor 10, the impedance of the output power processing circuit unit 30 viewed from the rear stage becomes pure reactance for the harmonic component subjected to reactive power, and direct-current input power for the fundamental component The power factor corresponding to the active power component equal to may be set.
図3は、本発明の実施形態による高効率電力増幅器の実装例を示す回路図である。図3の高効率電力増幅器は、図2に示した本発明の実施形態による高効率電力増幅器に、2つの変更を加えたものに等しい。第1の変更点は、本発明の実施形態による出力電力処理回路部30を具体化し、マイクロストリップ線路などの分布定数回路で形成した出力電力処理回路部33としたことである。第2の変更点は、トランジスタ10のゲート12と、入力部50との間に、マイクロストリップ線路などの分布定数回路で形成した入力電力処理回路部70を追加したことである。
FIG. 3 is a circuit diagram showing an implementation example of the high efficiency power amplifier according to the embodiment of the present invention. The high efficiency power amplifier of FIG. 3 is equivalent to the high efficiency power amplifier according to the embodiment of the invention shown in FIG. 2 with two modifications. The first modification is that the output power processing circuit unit 30 according to the embodiment of the present invention is embodied, and the output power processing circuit unit 33 is formed by a distributed constant circuit such as a microstrip line. The second change is that an input power processing circuit unit 70 formed of a distributed constant circuit such as a microstrip line is added between the gate 12 of the transistor 10 and the input unit 50.
なお、図3では、簡単のために、電源21と、外部の負荷40とを省略している。本実施形態による高効率電力増幅器におけるその他の構成については、図2に示した本発明の実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
In FIG. 3, the power source 21 and the external load 40 are omitted for the sake of simplicity. Other configurations in the high efficiency power amplifier according to the present embodiment are the same as those in the embodiment of the present invention shown in FIG.
図4Aは、本発明の実施形態の実装例による入力電力処理回路部70の平面図である。図4Aに示した入力電力処理回路部70は、主線路部71と、入力基本波整合回路部72と、入力高調波処理回路部73とを具備している。ここで、入力基本波整合回路部72と、入力高調波処理回路部73とは、先端開放スタブである。
FIG. 4A is a plan view of the input power processing circuit unit 70 according to the implementation example of the embodiment of the present invention. The input power processing circuit unit 70 illustrated in FIG. 4A includes a main line unit 71, an input fundamental wave matching circuit unit 72, and an input harmonic processing circuit unit 73. Here, the input fundamental wave matching circuit unit 72 and the input harmonic processing circuit unit 73 are open-ended stubs.
主線路部71は、一方の端部が入力部50に接続されており、他方の端部がトランジスタ10のゲート12に接続されている。入力基本波整合回路部72は、一方の端部が主線路部71に接続されている。入力高調波処理回路部73は、一方の端部が主線路部71に接続されている。ここで、主線路部71において、入力部50との接続部と、入力基本波整合回路部72との接続部と、入力高調波処理回路部73との接続部と、トランジスタ10のゲート12との接続部とは、この順番に配置されている。
The main line portion 71 has one end connected to the input unit 50 and the other end connected to the gate 12 of the transistor 10. The input fundamental wave matching circuit unit 72 has one end connected to the main line unit 71. The input harmonic processing circuit unit 73 has one end connected to the main line unit 71. Here, in the main line portion 71, a connection portion to the input portion 50, a connection portion to the input fundamental wave matching circuit portion 72, a connection portion to the input harmonic processing circuit portion 73, the gate 12 of the transistor 10, Are connected in this order.
入力基本波整合回路部72は、入力部50から供給される入力電力のうち、所望の基本角周波数ω0を有する基本波成分について、インピーダンス整合を行う。
The input fundamental wave matching circuit unit 72 performs impedance matching for a fundamental wave component having a desired fundamental angular frequency ω 0 in the input power supplied from the input unit 50.
入力高調波処理回路部73は、トランジスタ10の出力側に生じた電圧の2次の高調波成分のうち、トランジスタ10内にある帰還容量を介したトランジスタ10の入力側への帰還成分に対して位相調整を行う。ここで、対象を2次高調波成分に絞っているのは、基本波成分を除いた高調波成分のうち、振幅が大きいため、効果が一番大きいことが一般的に期待されるからである。したがって、2次高調波成分よりも大きい振幅を有する高次高調波が存在するなら、2次高調波成分の代わりにこの高次高調波成分を位相調整の対象とすることが好ましい。このように、入力高調波処理回路部73は、2よりも高次の高調波を取り扱っても構わないし、また、複数の高次高調波成分を位相調整するために複数の入力高調波処理回路部73を設けても構わない。なお、図4Aの例では、入力高調波処理回路部73の形状は扇型であるが、これはあくまでも一例であって本発明を限定しない。
The input harmonic processing circuit unit 73 responds to the feedback component to the input side of the transistor 10 through the feedback capacitance in the transistor 10 among the secondary harmonic components of the voltage generated on the output side of the transistor 10. Perform phase adjustment. Here, the reason for focusing on the second harmonic component is that, since the amplitude is large among the harmonic components excluding the fundamental component, it is generally expected that the effect is the largest. . Therefore, if there is a high-order harmonic having an amplitude larger than that of the second-order harmonic component, it is preferable to use this higher-order harmonic component as a target for phase adjustment instead of the second-order harmonic component. As described above, the input harmonic processing circuit unit 73 may handle higher-order harmonics than 2, and a plurality of input harmonic processing circuits for phase-adjusting a plurality of higher-order harmonic components. The part 73 may be provided. In the example of FIG. 4A, the input harmonic processing circuit unit 73 has a fan shape, but this is only an example and does not limit the present invention.
図4Bは、本発明の実施形態の実装例による出力電力処理回路部33の平面図である。図4Bに示した出力電力処理回路部33は、主線路部34と、第1の出力高調波処理回路部35と、第2の出力高調波処理回路部36と、第3の出力高調波処理回路部37と、出力基本波整合回路部38とを具備している。ここで、第1の出力高調波処理回路部35と、第2の出力高調波処理回路部36と、第3の出力高調波処理回路部37と、出力基本波整合回路部38とは、それぞれ先端開放スタブである。
FIG. 4B is a plan view of the output power processing circuit unit 33 according to the implementation example of the embodiment of the present invention. The output power processing circuit unit 33 shown in FIG. 4B includes a main line unit 34, a first output harmonic processing circuit unit 35, a second output harmonic processing circuit unit 36, and a third output harmonic processing. A circuit unit 37 and an output fundamental wave matching circuit unit 38 are provided. Here, the first output harmonic processing circuit unit 35, the second output harmonic processing circuit unit 36, the third output harmonic processing circuit unit 37, and the output fundamental wave matching circuit unit 38 are respectively It is a tip open stub.
主線路部34は、一方の端部がトランジスタ10のドレーン11に接続されており、他方の端部が出力部60に接続されている。第1の出力高調波処理回路部35と、第2の出力高調波処理回路部36と、第3の出力高調波処理回路部37とは、それぞれにおける一方の端部が、主線路部34における共通接続部に共通接続されている。出力基本波整合回路部38は、一方の端部が主線路部34に接続されている。ここで、主線路部34において、トランジスタ10のドレーン11との接続部と、第1~第3の出力高調波処理回路部35~37との共通接続部と、出力基本波整合回路部38との接続部と、出力部60との接続部とは、この順番に配置されている。
The main line section 34 has one end connected to the drain 11 of the transistor 10 and the other end connected to the output section 60. One end of each of the first output harmonic processing circuit unit 35, the second output harmonic processing circuit unit 36, and the third output harmonic processing circuit unit 37 is in the main line unit 34. Commonly connected to the common connection. The output fundamental wave matching circuit section 38 has one end connected to the main line section 34. Here, in the main line section 34, the connection section of the transistor 10 to the drain 11, the common connection section of the first to third output harmonic processing circuit sections 35 to 37, the output fundamental wave matching circuit section 38, And the connection part with the output part 60 are arranged in this order.
なお、共通接続部に共通接続された複数の出力高調波処理回路部35~37と、この共通接続部の両側に伸びる主線路部34の両部分は、相互の影響を抑えるために、なるべく等角度で接続されていることが望ましい。
It should be noted that a plurality of output harmonic processing circuit sections 35 to 37 commonly connected to the common connection section and the main line section 34 extending on both sides of the common connection section are preferably made as much as possible in order to suppress mutual influences. It is desirable to be connected at an angle.
図4Aに示した入力電力処理回路部70と、図4Bに示した出力電力処理回路部33とを製作し、その特性を測定した結果について説明する。
The result of manufacturing the input power processing circuit unit 70 shown in FIG. 4A and the output power processing circuit unit 33 shown in FIG. 4B and measuring the characteristics thereof will be described.
図5は、本発明の実施形態の実装例による高効率電力増幅器の特性を測定して得られた結果を示すスミスチャートである。図5のスミスチャートには、理論値を表す合計4個の点51a、52a、53aおよび54aと、実測地を表す合計4個の点51b、52b、53bおよび54bとが示されている。点51aは、基本波成分の理論値を表す。点52aは、2次高調波成分の理論値を表す。点53aは、3次高調波成分の理論値を表す。点54aは、4次高調波成分の理論値を表す。点51bは、基本波成分の実測値を表す。点52bは、2次高調波成分の実測値を表す。点53bは、3次高調波成分の実測値を表す。点54bは、4次高調波成分の実測値を表す。
FIG. 5 is a Smith chart showing the results obtained by measuring the characteristics of the high efficiency power amplifier according to the implementation example of the embodiment of the present invention. The Smith chart of FIG. 5 shows a total of four points 51a, 52a, 53a, and 54a representing theoretical values, and a total of four points 51b, 52b, 53b, and 54b representing actual measurement locations. A point 51a represents the theoretical value of the fundamental wave component. Point 52a represents the theoretical value of the second harmonic component. A point 53a represents the theoretical value of the third harmonic component. Point 54a represents the theoretical value of the fourth harmonic component. A point 51b represents an actual measurement value of the fundamental wave component. A point 52b represents an actual measurement value of the second harmonic component. A point 53b represents an actual measurement value of the third harmonic component. A point 54b represents an actual measurement value of the fourth-order harmonic component.
これらの点51b、52b、53bおよび54bからは、電圧Vnと、電流Inと、電圧Vnおよび電流Inの位相差θnとが読み取れる。ここで、nは1~4の整数を表し、1は基本波成分を示し、2~4は2次~4次高調波成分を示す。基本波成分および2次~4次高調波成分のそれぞれにおける電圧Vnと、電流Inと、位相差θnとの実測値を、下記の「表1」に示す。なお、下記の「表1」には、図5のスミスチャートに示されない5次高調波成分も示されている。
From these points 51b, 52b, 53b and 54b, the voltage Vn, the current In, and the phase difference θn between the voltage Vn and the current In can be read. Here, n represents an integer of 1 to 4, 1 represents the fundamental wave component, and 2 to 4 represents the second to fourth harmonic components. The following “Table 1” shows measured values of the voltage Vn, the current In, and the phase difference θn in each of the fundamental wave component and the second to fourth harmonic components. The following “Table 1” also shows fifth-order harmonic components not shown in the Smith chart of FIG.
「表1」から読み取れるように、出力電力の無効電力化が施されている2次~4次高調波成分については、電圧および電流の位相差の絶対値が86.7°~99°の範囲に収まっており、すなわちほぼ直交していることが確認される。言い換えれば、電圧および電流の位相差の絶対値が90°であれば、力率がゼロになり完全に無効電力化されるが、2次~4次高調波成分はこの状態に近い。しかし、無効電力化の対象外である5次高調波成分についてはこの限りではない。すなわち、電圧および電流の位相差の絶対値がゼロまたは180°であれば、力率が100%になり完全に有効電力化されるが、5次高調波成分はこの状態に近い。また、所望の基本波成分については、電圧および電流の位相差の絶対値が120.4°であり、無効電力化されていないことが確認される。この位相差は、有効電力と無効電力の入り混じった状態を表し、現実的には十分に効果があると言える。
As can be seen from “Table 1”, the absolute value of the phase difference between voltage and current is in the range of 86.7 ° to 99 ° for the 2nd to 4th harmonic components for which the reactive power of the output power is applied. In other words, that is, almost orthogonal. In other words, if the absolute value of the phase difference between the voltage and current is 90 °, the power factor becomes zero and the reactive power is completely reduced, but the second to fourth harmonic components are close to this state. However, this does not apply to the fifth harmonic component that is not subject to reactive power conversion. That is, if the absolute value of the phase difference between the voltage and current is zero or 180 °, the power factor is 100% and the active power is completely achieved, but the fifth harmonic component is close to this state. In addition, for the desired fundamental wave component, the absolute value of the phase difference between the voltage and current is 120.4 °, and it is confirmed that no reactive power is generated. This phase difference represents a state where active power and reactive power are mixed and can be said to be sufficiently effective in practice.
図6は、本発明の実施形態の実装例による高効率電力増幅器の、5.7Ghz帯における電力効率を測定した結果を示すグラフ群である。図6のグラフ群は、第1~第3のグラフ6a~6cを含んでいる。第1のグラフ6aは、入力電力Pinに対する出力電力Poutをデシベル(dBm)で表している。第2のグラフ6bは、入力電力Pinに対する付加電力効率PAEをパーセント(%)で表している。第3のグラフ6cは、入力電力Pinに対するドレーン効率ηDをパーセント(%)で表している。
FIG. 6 is a graph group showing the results of measuring the power efficiency in the 5.7 Ghz band of the high efficiency power amplifier according to the implementation example of the embodiment of the present invention. The graph group in FIG. 6 includes first to third graphs 6a to 6c. The first graph 6a represents the output power P out with respect to the input power P in in decibels (dBm). Second graph 6b represents an additional power efficiency PAE of input power P in in percent (%). The third graph 6c represents the drain efficiency eta D with respect to the input power P in in percent (%).
図6の測定では、90.7%のドレーン効率と、79.5%の付加電力効率とが、5.7GHz帯で得られた。この結果を、従来技術による電力増幅器の場合と比較する。下記の「表2」は、本発明の実施形態の実装例による高効率電力増幅器の測定結果と、第1~第5の従来技術による電力増幅器の測定結果とを示している。
In the measurement of FIG. 6, a drain efficiency of 90.7% and an additional power efficiency of 79.5% were obtained in the 5.7 GHz band. This result is compared with the case of a power amplifier according to the prior art. The following “Table 2” shows the measurement results of the high efficiency power amplifier according to the implementation example of the embodiment of the present invention and the measurement results of the power amplifiers according to the first to fifth conventional techniques.
上記の「表2」において、第1の従来技術は、「P. Colantonio, F.Gianni, R. Giofre, E. Limiti, A. Serino, M. Peroni, P. Romanini, and C. Proietti, “A C-band high0efficiency second-harmonic-tuned hybrid power amplifier in GaN technology”, IEEE Trans. Microw. Theory Tech., vol. 54, no.6 pp. 2713-2722. June 2006」に記載されている。第2の従来技術は、「Y. Hao, L. Yang, X. Ma, J. Ma, M. Cao, C. Pan, C. Wang, and J. Zhang, “High-Performance Microwave Gate-Recessed AlGaN/AlN/GaN MOS-HEMT With 73% Power-Added Efficiency”, IEEE Electron Device Lett., vol. 32, no. 5, pp. 626-628. May 2011」に記載されている。第3の従来技術は、「R. Negra, and W. Bachtold, “BiCMOS MMIC class-E power amplifier for 5 to 6GHz wireless communication systems”, in Proc. 35th Eur. Microw. Conf., Paris, France, Oct. 2005, pp. 445-448.」に記載されている。第4の従来技術は、「Y. Tsuyama, K. Yamanaka, K. Namura, S. Chaki, and N. Shinohara, “Internally-matched GaN HEMT high efficienty power amplifier for SPS”, IEEE MTT-S Int. Microw. Works. Dig., Kyoto, Japan, May 2011, pp.41-44.」に記載されている。第5の従来技術は、「K. Kuroda, R. Ishikawa, K. Honjo, “Parasitic compensation design technique for a C-band GaN HEMT class-F amplifier”, IEEE Trans. Microw. Theory Tech., vol. 58, no. 11 pp.2741-2750, Nov. 2010.」に記載されている。
In the above “Table 2”, the first conventional technology is “P. Colantonio, F. Gianni, R. Giofre, E. Limiti, A. Serino, M. Peroni, P. Romanini, and C. Proietti,“ As described in A C-band high0 efficiency second-harmonic-tuned hybrid power amplifier in GaN technology ”, IEEE Trans. Micro. Theory.27. The second conventional technology is “Y. Hao, L. Yang, X. Ma, J. Ma, M. Cao, C. Pan, C. Wang, and J. Zhang,“ High-Performance MicroAlvesedGate-ResidentialGate-ResidentialGate-ResidentialGate. / AlN / GaN MOS-HEMT With 73% Power-Added Efficiency ”, IEEE Electron Device Let., Vol. 32, no. 5, pp. 626-628. May 2011”. The third conventional technology is “R. Negra, and W. Bachold,“ BiCMOS MMIC class-E power amplifier for 5 to 6 GHz wireless communication systems, ”Proc. 35th Eur. 2005, pp. 445-448. The fourth conventional technology is “Y. Tsuyama, K. Yamanaka, K. Namura, S. Chaki, and N. Shinohara,“ Internally-matched GaN HEMT High Efficient MT ”. "Works. Dig., Kyoto, Japan, May 2011, pp. 41-44." The fifth conventional technology is “K. Kuroda, R. Ishikawa, K. Honjo,“ Parasic compensation design technology for C-bandGaN HEMT class-T.F.E.T ”. No. 11, pp. 2741-2750, Nov. 2010. ”.
上記の「表2」から読み取れるように、ドレーン効率で比較すると、従来技術の中で最高値だった79.9%(第5の従来技術)を、本発明の実施形態の実装例による高効率電力増幅器では、実に10%以上もの大幅な改善が実現されている。
As can be seen from Table 2 above, when compared with drain efficiency, 79.9% (fifth prior art), which was the highest value in the prior art, is high efficiency according to the implementation example of the embodiment of the present invention. In power amplifiers, a significant improvement of more than 10% has been realized.
本発明の実施形態による高効率電力増幅器の他の実装例としては、図2に示した本発明の実施形態による高効率電力増幅器に、次の変更を加えたバリエーションもある。すなわち、出力電力処理回路部を、キャパシタやインダクタンスなどの集中定数回路を用いて形成する。本実施形態による高効率電力増幅器のその他の構成および動作は、図2に示した本発明の実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
As another implementation example of the high efficiency power amplifier according to the embodiment of the present invention, there is a variation in which the following change is added to the high efficiency power amplifier according to the embodiment of the present invention shown in FIG. That is, the output power processing circuit unit is formed using a lumped constant circuit such as a capacitor or an inductance. Other configurations and operations of the high efficiency power amplifier according to this embodiment are the same as those of the embodiment of the present invention shown in FIG.
上記のような変更を加えることで、本実施形態による高効率電力増幅器は、メガヘルツ帯域を用いる電気自動車の非接触型充電システムにおける電力送信装置などでも利用し易くなる。
By making the above changes, the high-efficiency power amplifier according to the present embodiment can be easily used in a power transmission device or the like in a contactless charging system for an electric vehicle using a megahertz band.
以上に説明した本発明の各実施形態は、技術的に矛盾しない範囲において、自由に組み合わせることが可能である。例えば、図3に示した実施形態の実装例による高効率電力増幅器において、入力電力処理回路部と、出力電力処理回路部とを、実施形態の他の実装例で説明した集中定数回路を用いて形成しても構わない。
Each embodiment of the present invention described above can be freely combined within a technically consistent range. For example, in the high efficiency power amplifier according to the implementation example of the embodiment shown in FIG. 3, the input power processing circuit unit and the output power processing circuit unit are used by using the lumped constant circuit described in the other implementation example of the embodiment. It may be formed.