WO2013018840A1 - 固体二次電池、および電池システム - Google Patents
固体二次電池、および電池システム Download PDFInfo
- Publication number
- WO2013018840A1 WO2013018840A1 PCT/JP2012/069620 JP2012069620W WO2013018840A1 WO 2013018840 A1 WO2013018840 A1 WO 2013018840A1 JP 2012069620 W JP2012069620 W JP 2012069620W WO 2013018840 A1 WO2013018840 A1 WO 2013018840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- electrode active
- solid electrolyte
- positive electrode
- secondary battery
- Prior art date
Links
- 239000007787 solid Substances 0.000 title claims abstract description 66
- 239000002203 sulfidic glass Substances 0.000 claims abstract description 55
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 53
- 239000000463 material Substances 0.000 claims description 82
- 239000007774 positive electrode material Substances 0.000 claims description 79
- 239000007773 negative electrode material Substances 0.000 claims description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 25
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 claims description 13
- 229910013716 LiNi Inorganic materials 0.000 claims description 12
- 239000011149 active material Substances 0.000 claims description 8
- 239000006182 cathode active material Substances 0.000 abstract description 6
- 239000006183 anode active material Substances 0.000 abstract 3
- 229910014733 LiNiaCobMncO2 Inorganic materials 0.000 abstract 1
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 52
- 229910018091 Li 2 S Inorganic materials 0.000 description 24
- 239000011572 manganese Substances 0.000 description 21
- 239000010941 cobalt Substances 0.000 description 11
- 229910017052 cobalt Inorganic materials 0.000 description 11
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 229910052759 nickel Inorganic materials 0.000 description 10
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 8
- 229910052744 lithium Inorganic materials 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910020346 SiS 2 Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 4
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229910018068 Li 2 O Inorganic materials 0.000 description 3
- 239000002228 NASICON Substances 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910018111 Li 2 S-B 2 S 3 Inorganic materials 0.000 description 2
- 229910018127 Li 2 S-GeS 2 Inorganic materials 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- IIHAFXIJPJUSHE-UHFFFAOYSA-N [Mn](=O)(=O)([O-])[O-].[Ni+2].[Ni+2].[Co+2].[Mn](=O)(=O)([O-])[O-].[Mn](=O)(=O)([O-])[O-] Chemical compound [Mn](=O)(=O)([O-])[O-].[Ni+2].[Ni+2].[Co+2].[Mn](=O)(=O)([O-])[O-].[Mn](=O)(=O)([O-])[O-] IIHAFXIJPJUSHE-UHFFFAOYSA-N 0.000 description 2
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000002388 carbon-based active material Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003701 mechanical milling Methods 0.000 description 2
- 239000002931 mesocarbon microbead Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005486 sulfidation Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910005839 GeS 2 Inorganic materials 0.000 description 1
- 229910018092 Li 2 S-Al 2 S 3 Inorganic materials 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- 229910020725 Li0.34La0.51TiO3 Inorganic materials 0.000 description 1
- 229910009511 Li1.5Al0.5Ge1.5(PO4)3 Inorganic materials 0.000 description 1
- 229910009515 Li1.5Al0.5Ti1.5(PO4)3 Inorganic materials 0.000 description 1
- 229910010500 Li2.9PO3.3N0.46 Inorganic materials 0.000 description 1
- 229910009324 Li2S-SiS2-Li3PO4 Inorganic materials 0.000 description 1
- 229910009320 Li2S-SiS2-LiBr Inorganic materials 0.000 description 1
- 229910009316 Li2S-SiS2-LiCl Inorganic materials 0.000 description 1
- 229910009318 Li2S-SiS2-LiI Inorganic materials 0.000 description 1
- 229910009328 Li2S-SiS2—Li3PO4 Inorganic materials 0.000 description 1
- 229910007281 Li2S—SiS2—B2S3LiI Inorganic materials 0.000 description 1
- 229910007295 Li2S—SiS2—Li3PO4 Inorganic materials 0.000 description 1
- 229910007291 Li2S—SiS2—LiBr Inorganic materials 0.000 description 1
- 229910007288 Li2S—SiS2—LiCl Inorganic materials 0.000 description 1
- 229910007289 Li2S—SiS2—LiI Inorganic materials 0.000 description 1
- 229910007306 Li2S—SiS2—P2S5LiI Inorganic materials 0.000 description 1
- 229910012029 Li4SiO4-Li3BO3 Inorganic materials 0.000 description 1
- 229910012050 Li4SiO4-Li3PO4 Inorganic materials 0.000 description 1
- 229910012078 Li4SiO4—Li3BO3 Inorganic materials 0.000 description 1
- 229910012069 Li4SiO4—Li3PO4 Inorganic materials 0.000 description 1
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- 229910013184 LiBO Inorganic materials 0.000 description 1
- 229910010923 LiLaTiO Inorganic materials 0.000 description 1
- 229910010918 LiLaZrO Inorganic materials 0.000 description 1
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical class CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HIEURJRYEJFHAP-UHFFFAOYSA-N [Mn](=O)(=O)([O-])[O-].[Co+2].[Co+2].[Ni+2].[Mn](=O)(=O)([O-])[O-].[Mn](=O)(=O)([O-])[O-] Chemical compound [Mn](=O)(=O)([O-])[O-].[Co+2].[Co+2].[Ni+2].[Mn](=O)(=O)([O-])[O-].[Mn](=O)(=O)([O-])[O-] HIEURJRYEJFHAP-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000004715 keto acids Chemical class 0.000 description 1
- OVAQODDUFGFVPR-UHFFFAOYSA-N lithium cobalt(2+) dioxido(dioxo)manganese Chemical compound [Li+].[Mn](=O)(=O)([O-])[O-].[Co+2] OVAQODDUFGFVPR-UHFFFAOYSA-N 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a solid secondary battery and a battery system that can suitably suppress an increase in battery resistance when charged to a high SOC and have a high energy density and a long life.
- the lithium secondary batteries that are currently on the market include a flammable organic solvent in the above-mentioned electrolyte solution. Improvement is required.
- a lithium solid state secondary battery in which the electrolyte is changed to a solid electrolyte layer to solidify the battery does not use a flammable organic solvent in the battery. It is considered to be excellent in productivity.
- sulfide solid electrolyte materials are known as solid electrolyte materials used for such solid electrolyte layers and the like. Since the sulfide solid electrolyte material has high Li ion conductivity, it is useful for increasing the output of the battery.
- an oxide positive electrode active material is known as a positive electrode active material used for a lithium secondary battery.
- the oxide positive electrode active material is useful because it can improve the energy density of the lithium secondary battery, and has been researched conventionally.
- Patent Document 1 discloses LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
- the present invention has been made in view of the above problems, and provides a solid secondary battery and a battery system that can suitably suppress an increase in battery resistance when charged to a high SOC and have a high energy density and a long life.
- the main purpose is to do.
- the present inventor has achieved a high SOC in a solid secondary battery using a positive electrode active material composed of nickel cobalt lithium manganate having a specific composition range. It has been found as a finding that it is possible to suppress an increase in battery resistance when charged. The present invention has been made based on such knowledge.
- at least one of the positive electrode active material layer and the solid electrolyte layer contains a sulfide solid electrolyte material.
- the positive electrode active material represented by the above general formula an increase in battery resistance can be suitably suppressed even when the solid secondary battery is charged to a high SOC. Therefore, it is possible to suppress a decrease in output characteristics and to obtain a solid secondary battery having a high energy density and a long life.
- the above-described solid secondary battery and a charge control unit that performs charging until the positive electrode active material becomes Li 1-x (Ni a Co b Mn c ) O 2 (x ⁇ 0.7), A battery system is provided.
- the present invention by having a solid secondary battery using the above-described positive electrode active material, even when charging to a high SOC is performed by the charge control unit, an increase in battery resistance is suppressed and output characteristics are reduced. Thus, a solid secondary battery having a high energy density and a long life can be obtained.
- An electrolyte layer, and at least one of the positive electrode active material layer and the solid electrolyte layer contains a sulfide solid electrolyte material.
- FIG. 1 is a schematic cross-sectional view showing an example of the solid secondary battery of the present invention.
- a solid secondary battery 10 shown in FIG. 1 has a positive electrode active material layer 1, a negative electrode active material layer 2, and a solid electrolyte layer 3 formed between the positive electrode active material layer 1 and the negative electrode active material layer 2.
- the solid secondary battery 10 usually includes a positive electrode current collector 4 that collects current from the positive electrode active material layer 1 and a negative electrode current collector 5 that collects current from the negative electrode active material layer 2.
- the positive electrode active material represented by the above general formula an increase in battery resistance can be suitably suppressed even when the solid secondary battery is charged to a high SOC. Therefore, it is possible to suppress a decrease in output characteristics and to obtain a solid secondary battery having a high energy density and a long life.
- the SOC state of charge
- the SOC is an index indicating the state of charge of the battery, and is a value representing the remaining charge with respect to the fully charged state as a ratio.
- the composition ratio of nickel is larger than that of LiNi 1/3 Co 1/3 Mn 1/3 O 2 described above.
- nickel is considered to have a property that it is less likely to be sulfided than cobalt.
- the composition ratio of cobalt can be decreased as shown by 0 ⁇ b ⁇ 0.33.
- the present invention is an invention that solves a problem peculiar to a solid secondary battery using a sulfide solid electrolyte material.
- a sulfide solid electrolyte material As hereinafter, each structure of the solid secondary battery of this invention is demonstrated.
- the composition ratio a of nickel in the positive electrode active material represented by the above general formula is not particularly limited as long as it can satisfy 0.33 ⁇ a ⁇ 0.6, and in particular, 0.5 ⁇ a ⁇ 0. .6 is preferred. If the nickel composition ratio a is less than the above range, it may be difficult to reduce the cobalt composition ratio b of the positive electrode active material to such an extent that deterioration of output characteristics can be suppressed. This is because if the composition ratio a exceeds the above range, it may be difficult to obtain lithium nickel cobalt manganate itself.
- the cobalt composition ratio b in the positive electrode active material represented by the above general formula is not particularly limited as long as 0 ⁇ b ⁇ 0.33 can be satisfied, and among them, 0.10 ⁇ b ⁇ 0.30, It is particularly preferable that 0.20 ⁇ b ⁇ 0.25. This is because when the cobalt composition ratio b is less than the above range, it may be difficult to obtain lithium nickel cobalt manganate itself. When the composition ratio b exceeds the above range, the output characteristics deteriorate. This is because it may be difficult to suppress this.
- the positive electrode active material represented by the above general formula specifically, LiNi 1/2 Co 1/4 Mn 1/4 O 2 , LiNi 3/5 Co 1/5 Mn 1/5 O 2 , especially is preferably LiNi 3/5 Co 1/5 Mn 1/5 O 2 .
- Examples of the shape of the positive electrode active material in the present invention include a particle shape.
- the average particle diameter (D 50 ) of the positive electrode active material is preferably in the range of 0.1 ⁇ m to 50 ⁇ m, for example.
- the average particle size can be determined by a particle size distribution meter.
- the positive electrode active material in the present invention is preferably in contact with the sulfide solid electrolyte material. More specifically, the positive electrode active material may be in contact with the sulfide solid electrolyte material contained in the positive electrode active material layer, and the solid electrolyte layer using the sulfide solid electrolyte material and the positive electrode active material layer May be in contact with each other.
- the positive electrode active material can be obtained by a general method for forming lithium nickel cobalt manganate.
- the positive electrode active material layer in the present invention is a layer containing at least the above-described positive electrode active material, and at least one of a solid electrolyte material, a conductive material and a binder as necessary. Furthermore, you may contain. Further, the content of the positive electrode active material in the positive electrode active material layer is not particularly limited, but is preferably in the range of 40 wt% to 99 wt%, for example.
- the positive electrode active material is preferably coated with an ion conductive oxide. This is because a high-resistance film can be prevented from being formed at the interface between the positive electrode active material and another material (for example, a solid electrolyte material).
- the Li ion conductive oxide include a general formula Li x AO y (where A is B, C, Al, Si, P, S, Ti, Zr, Nb, Mo, Ta, or W, x And y is a positive number).
- Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , LiAlO 2 , Li 4 SiO 4 , Li 2 SiO 3 , Li 3 PO 4 , Li 2 SO 4 , Li 2 TiO 3 , Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , Li 2 ZrO 3 , LiNbO 3 , Li 2 MoO 4 , Li 2 WO 4 and the like can be mentioned.
- the Li ion conductive oxide may be a complex oxide. As such a composite oxide, any combination of the above can be adopted, and specific examples include Li 4 SiO 4 —Li 3 BO 3 , Li 4 SiO 4 —Li 3 PO 4 and the like.
- the ion conductive oxide should just coat
- the thickness of the ion conductive oxide covering the positive electrode active material is, for example, preferably in the range of 0.1 nm to 100 nm, and more preferably in the range of 1 nm to 20 nm.
- TEM transmission electron microscope
- the positive electrode active material layer may contain a solid electrolyte material. By adding the solid electrolyte material, the ion conductivity of the positive electrode active material layer can be improved.
- the solid electrolyte material will be described in “3. Solid electrolyte layer” described later.
- the content of the solid electrolyte material in the positive electrode active material layer is not particularly limited, but is preferably in the range of 10 wt% to 90 wt%, for example. In the present invention, since the positive electrode active material is in contact with the sulfide solid electrolyte material, at least one of the positive electrode active material layer and the solid electrolyte layer described later contains a sulfide solid electrolyte material.
- the positive electrode active material layer may contain a conductive material. By adding a conductive material, the electron conductivity of the positive electrode active material layer can be improved.
- the conductive material include acetylene black, ketjen black, and carbon fiber.
- the positive electrode active material layer preferably contains a binder. This is because a positive electrode active material layer having excellent flexibility can be obtained.
- the binder include fluorine-containing binders such as PTFE and PVDF.
- the thickness of the positive electrode active material layer is, for example, preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and more preferably in the range of 1 ⁇ m to 100 ⁇ m.
- Negative electrode active material layer is a layer containing at least a negative electrode active material, and further contains at least one of a solid electrolyte material, a conductive material and a binder as necessary. Also good.
- the type of the negative electrode active material is not particularly limited as long as it can occlude and release metal ions.
- Examples of the negative electrode active material include a carbon active material, an oxide active material, and a metal active material.
- the carbon active material is not particularly limited as long as it contains carbon, and examples thereof include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon. it can.
- the oxide active material examples include Nb 2 O 5 , Li 4 Ti 5 O 12 , and SiO.
- the metal active material examples include In, Al, Si, and Sn.
- the Li-containing metal active material is not particularly limited as long as it is an active material containing at least Li, and may be Li metal or Li alloy. Examples of the Li alloy include an alloy containing Li and at least one of In, Al, Si, and Sn.
- the shape of the negative electrode active material examples include particles and thin films.
- the average particle diameter (D 50 ) of the negative electrode active material is preferably in the range of 1 nm to 100 ⁇ m, for example, and more preferably in the range of 10 nm to 30 ⁇ m.
- the content of the negative electrode active material in the negative electrode active material layer is not particularly limited, but it is preferably in the range of 40 wt% to 99 wt%, for example.
- the negative electrode active material layer may contain a solid electrolyte material. By adding a solid electrolyte material, the ion conductivity of the negative electrode active material layer can be improved.
- the solid electrolyte material will be described in “3. Solid electrolyte layer” described later.
- the content of the solid electrolyte material in the negative electrode active material layer is not particularly limited, but is preferably in the range of 10 wt% to 90 wt%, for example.
- the conductive material and the binder used for the negative electrode active material layer are the same as the contents described in the above “1. Positive electrode active material layer”, so description thereof is omitted here.
- the thickness of the negative electrode active material layer is, for example, preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and more preferably in the range of 1 ⁇ m to 100 ⁇ m.
- the solid electrolyte layer in the present invention is a layer containing at least a solid electrolyte material.
- the solid electrolyte material include inorganic solid electrolyte materials such as sulfide solid electrolyte materials, oxide solid electrolyte materials, and nitride solid electrolyte materials.
- the sulfide solid electrolyte material is preferable in terms of high ion conductivity compared to the oxide solid electrolyte material, and the oxide solid electrolyte material is preferable in terms of high chemical stability compared to the sulfide solid electrolyte material.
- the solid electrolyte material in the present invention may be an inorganic solid electrolyte material containing halogen. In the present invention, it is particularly preferable to use a sulfide solid electrolyte material.
- At least one of the positive electrode active material layer and the solid electrolyte layer contains a sulfide solid electrolyte material.
- the sulfide solid electrolyte material usually contains Li which becomes conductive ions and sulfur (S).
- the sulfide solid electrolyte material preferably contains Li, A (A is P, Si, Ge, Al, or B), and S.
- the sulfide solid electrolyte material may contain a halogen such as Cl, Br, or I. By containing halogen, ion conductivity can be improved.
- the sulfide solid electrolyte material may contain O. By containing O, chemical stability can be improved.
- Examples of the sulfide solid electrolyte material having Li ion conductivity include Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiI, Li 2 S—P 2 S 5 —Li 2 O, Li 2 S—P 2 S 5 —Li 2 O—LiI, Li 2 S—SiS 2 , Li 2 S—SiS 2 —LiI, Li 2 S—SiS 2 —LiBr, Li 2 S—SiS 2 —LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3, Li 2 S-P 2 S 5 -Z m S n ( provided that , M, n are positive numbers, Z is any one of Ge, Zn, and Ga.), Li 2 S—GeS 2 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2
- sulfide solid electrolyte material does not contain bridge
- Bridged sulfur refers to bridged sulfur in a compound obtained by reacting Li 2 S with the sulfide of A described above. For example, it corresponds to a sulfur bridge having an S 3 P—S—PS 3 structure formed by reaction of Li 2 S and P 2 S 5 . Such bridging sulfur easily reacts with water and easily generates hydrogen sulfide. Furthermore, “substantially free of bridging sulfur” can be confirmed by measurement of a Raman spectrum.
- the peak of the S 3 P—S—PS 3 structure usually appears at 402 cm ⁇ 1 . Therefore, it is preferable that this peak is not detected.
- the peak of the PS 4 3 ⁇ structure usually appears at 417 cm ⁇ 1 .
- the intensity I 402 at 402 cm -1 is preferably smaller than the intensity I 417 at 417 cm -1. More specifically, the strength I 402 is preferably 70% or less, more preferably 50% or less, and even more preferably 35% or less with respect to the strength I 417 .
- the sulfide solid electrolyte material if it is made by using the raw material composition containing Li 2 S and P 2 S 5, the proportion of Li 2 S to the total of Li 2 S and P 2 S 5 is For example, it is preferably in the range of 70 mol% to 80 mol%, more preferably in the range of 72 mol% to 78 mol%, and still more preferably in the range of 74 mol% to 76 mol%. This is because a sulfide solid electrolyte material having an ortho composition or a composition in the vicinity thereof can be obtained, and a sulfide solid electrolyte material having high chemical stability can be obtained.
- ortho generally refers to one having the highest degree of hydration among oxo acids obtained by hydrating the same oxide.
- the crystal composition in which Li 2 S is added most in the sulfide is called the ortho composition.
- Li 2 S—P 2 S 5 system Li 3 PS 4 corresponds to the ortho composition.
- P 2 S 5 in the raw material composition, even when using the Al 2 S 3, or B 2 S 3, a preferred range is the same.
- Li 3 AlS 3 corresponds to the ortho composition
- Li 3 BS 3 corresponds to the ortho composition.
- the sulfide solid electrolyte material if it is made by using the raw material composition containing Li 2 S and SiS 2, the ratio of Li 2 S to the total of Li 2 S and SiS 2, for example 60 mol% ⁇ It is preferably within the range of 72 mol%, more preferably within the range of 62 mol% to 70 mol%, and even more preferably within the range of 64 mol% to 68 mol%. This is because a sulfide solid electrolyte material having an ortho composition or a composition in the vicinity thereof can be obtained, and a sulfide solid electrolyte material having high chemical stability can be obtained. In the Li 2 S—SiS 2 system, Li 4 SiS 4 corresponds to the ortho composition.
- SiS 2 instead of SiS 2 in the raw material composition, even when using a GeS 2, the preferred range is the same.
- Li 4 GeS 4 corresponds to the ortho composition.
- the ratio of LiX is, for example, in the range of 1 mol% to 60 mol%. Preferably, it is in the range of 5 mol% to 50 mol%, more preferably in the range of 10 mol% to 40 mol%.
- the sulfide solid electrolyte material if it is made by using the raw material composition containing Li 2 O, the ratio of Li 2 O is, for example, is preferably in the range of 1 mol% ⁇ 25 mol%, More preferably, it is in the range of 3 mol% to 15 mol%.
- the sulfide solid electrolyte material may be sulfide glass, crystallized sulfide glass, or a crystalline material obtained by a solid phase method.
- the sulfide glass can be obtained, for example, by performing mechanical milling (ball mill or the like) on the raw material composition.
- Crystallized sulfide glass can be obtained, for example, by subjecting sulfide glass to a heat treatment at a temperature equal to or higher than the crystallization temperature.
- the sulfide solid electrolyte material is a Li ion conductor
- the Li ion conductivity at room temperature is preferably 1 ⁇ 10 ⁇ 5 S / cm or more, for example, and preferably 1 ⁇ 10 ⁇ 4 S / cm or more. More preferably.
- examples of the oxide solid electrolyte material having Li ion conductivity include a compound having a NASICON type structure.
- a compound having a NASICON type structure a compound represented by the general formula Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 2) can be given.
- the oxide solid electrolyte material is preferably Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3.
- Another example of the compound having a NASICON type structure is a compound represented by the general formula Li 1 + x Al x Ti 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 2).
- the oxide solid electrolyte material is preferably Li 1.5 Al 0.5 Ti 1.5 (PO 4) 3.
- Other examples of the oxide solid electrolyte material include LiLaTiO (for example, Li 0.34 La 0.51 TiO 3 ), LiPON (for example, Li 2.9 PO 3.3 N 0.46 ), LiLaZrO (for example, mention may be made of Li 7 La 3 Zr 2 O 12 ) or the like.
- the shape of the solid electrolyte material examples include particles and thin films.
- the average particle size (D 50 ) of the solid electrolyte material is, for example, preferably in the range of 1 nm to 100 ⁇ m, and more preferably in the range of 10 nm to 30 ⁇ m.
- the content of the solid electrolyte material in the solid electrolyte layer is, for example, preferably 60% by weight or more, particularly 70% by weight or more, and particularly preferably 80% by weight or more.
- the solid electrolyte layer may contain a binder or may be composed only of a solid electrolyte material.
- the thickness of the solid electrolyte layer varies greatly depending on the configuration of the battery. For example, the thickness is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and more preferably in the range of 1 ⁇ m to 100 ⁇ m.
- the solid secondary battery of the present invention may further include a positive electrode current collector that collects current from the positive electrode active material layer and a negative electrode current collector that collects current from the negative electrode active material layer.
- a positive electrode current collector that collects current from the positive electrode active material layer
- a negative electrode current collector that collects current from the negative electrode active material layer.
- the material for the positive electrode current collector include SUS, aluminum, nickel, iron, titanium, and carbon.
- Examples of the material for the negative electrode current collector include SUS, copper, nickel, and carbon.
- the battery case of a general solid secondary battery can be used for the battery case used for this invention. Examples of the battery case include a SUS battery case.
- Solid secondary battery The solid secondary battery of the present invention can be repeatedly charged and discharged, and thus is useful as, for example, an in-vehicle battery.
- Examples of the shape of the solid secondary battery include a coin type, a laminate type, a cylindrical type, and a square type.
- the manufacturing method of a solid secondary battery will not be specifically limited if it is a method which can obtain the solid secondary battery mentioned above, The method similar to the manufacturing method of a general solid secondary battery is used. be able to. For example, a press method, a coating method, a vapor deposition method, a spray method, etc. can be mentioned.
- the battery system of the present invention includes a solid secondary battery described in the section “B. Solid secondary battery” described above and a positive electrode active material of Li 1-x (Ni a Co b Mn c ) O 2 (x ⁇ 0). 7), and a charging control unit that performs charging until it becomes (7).
- FIG. 2 is a schematic diagram showing an example of the battery system of the present invention.
- the battery system 20 shown in FIG. 2 includes a solid secondary battery 10 and a charge control unit 11. Moreover, it has the connection terminal 12 for connecting with the power supply for charging normally. Note that the specific configuration of the solid secondary battery 10 can be the same as that shown in FIG.
- FIGS. 3 and 4 are schematic views showing other examples of the battery system of the present invention.
- the battery system 20 may include, for example, a load 13, a diode 14, a resistor 15, and the like in addition to the solid secondary battery 10 and the charging control unit 11.
- a load 13 a diode 14
- a resistor 15 a resistor 16
- the battery system 20 may include, for example, a load 13, a diode 14, a resistor 15, and the like in addition to the solid secondary battery 10 and the charging control unit 11.
- a load 13 for example, a load 13, a diode 14, a resistor 15, and the like in addition to the solid secondary battery 10 and the charging control unit 11.
- resistor 15 resistor
- Li 1-x (Ni a Co b Mn c ) O 2 (x ⁇ 0.7) is obtained by the charge control unit.
- Li 1-x (Ni a Co b Mn c ) O 2 (x ⁇ 0.7) is obtained by the charge control unit.
- Solid Secondary Battery The solid secondary battery according to the present invention can be the same as that described in the above-mentioned section “A. Solid Secondary Battery”, and thus the description thereof is omitted here.
- the charge control unit in the present invention will be described.
- the charge control unit in the present invention is not particularly limited as long as it can be charged until the positive electrode active material is Li 1-x (Ni a Co b Mn c ) O 2 (x ⁇ 0.7), It is particularly preferable that x ⁇ 0.72. This is because the solid secondary battery in the present invention can have a higher energy density when the value of x is equal to or greater than the above value. This is because if the value of x exceeds the above value, other components of the solid secondary battery may be deteriorated.
- the value of X is preferably 0.8 or less, for example, and more preferably 0.78 or less.
- the charge control unit in the present invention can be the same as the charge control unit of a general solid secondary battery.
- the charge control unit for example, when the voltage measurement unit that measures the voltage of the above-described solid secondary battery and the voltage measurement unit detect a voltage such that the value of x satisfies the relationship described above, And a switch unit that terminates charging.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
- Nickel cobalt lithium manganate (LiNi 1/2 Co 1/4 Mn 1/4 O 2 ) was used as the positive electrode active material, and the nickel nickel cobalt manganate was surface treated with LiNbO 3 .
- 12.03 mg of the positive electrode active material, 0.51 mg of VGVF (Showa Denko), and 5.03 nm of the above-described sulfide solid electrolyte material were weighed and mixed to obtain a positive electrode mixture.
- Example 2 Lithium nickel cobalt manganate (LiNi 3/5 Co 1/5 Mn 1/5 O 2 ) was used as the positive electrode active material, and the nickel cobalt cobalt manganate was surface treated with LiNbO 3 . Next, 12.03 mg of the positive electrode active material, 0.51 mg of VGVF (Showa Denko), and 5.03 mg of the sulfide solid electrolyte material in Example 1 were weighed and mixed to obtain a positive electrode mixture. A solid secondary battery was obtained in the same manner as in Example 1 except that the positive electrode mixture was used.
- Nickel cobalt lithium manganate (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) was used as the positive electrode active material, and the nickel nickel cobalt manganate was surface treated with LiNbO 3 .
- 12.03 mg of the positive electrode active material, 0.51 mg of VGVF (Showa Denko), and 5.03 mg of the sulfide solid electrolyte material in Example 1 were weighed and mixed to obtain a positive electrode mixture.
- a solid secondary battery was obtained in the same manner as in Example 1 except that the positive electrode mixture was used.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Power Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
まず、本発明の固体二次電池について説明する。本発明の固体二次電池は、一般式LiNiaCobMncO2(0.33<a≦0.6、0<b<0.33、c=1-a-b)で表わされるニッケルコバルトマンガン酸リチウムから構成される正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された固体電解質層と、を有し、上記正極活物質層および上記固体電解質層のすくなくとも一つが、硫化物固体電解質材料を含有していることを特徴とするものである。
すなわち、LiNi1/3Co1/3Mn1/3O2の各構成のうち、コバルトはニッケルやマンガンに比べて硫化しやすい性質を有すると考えられる。また、固体二次電池が高いSOC状態になると、正極電位が上がり、コバルトの硫化がより顕著になると推測される。よって、上述の構成を有する固体二次電池を高いSOCまで充電した場合においては、正極活物質中のコバルトの硫化により電池抵抗が増加して出力特性が低下することが推測される。
すなわち、一般式LiNiaCobMncO2(0.33<a≦0.6、0<b<0.33、c=1-a-b)で示される正極活物質は、0.33<a≦0.6で示されるように、ニッケルの組成比が上述したLiNi1/3Co1/3Mn1/3O2に比べて大きい。ここで、ニッケルはコバルトに比べて硫化しにくい性質を有すると考えられる。本発明においては、硫化しにくいニッケルの組成比を大きくすることにより、0<b<0.33で示されるように、コバルトの組成比を小さくすることが可能となるため、高いSOCまで充電した場合においても、コバルトの硫化による電池抵抗の増加を少ないものとすることができることが推測される。
なお、マンガンもコバルトに比べて硫化しにくい性質を有することが考えられることから、マンガンの組成比を上述したLiNi1/3Co1/3Mn1/3O2に比べて大きくすることも考えられるが、マンガンの組成比が大きい場合は固体二次電池のエネルギー密度が小さくなることが懸念される。一方、上述したニッケルコバルトマンガン酸リチウムにおいてニッケルの組成比を大きくした場合は、マンガンの組成比についても小さくすることが可能となることから、エネルギー的にも有利な固体二次電池とすることが可能となる。
以下、本発明の固体二次電池の各構成について説明する。
まず、本発明における正極活物質層について説明する。
本発明における正極活物質は、一般式LiNiaCobMncO2(0.33<a≦0.6、0<b<0.33、c=1-a-b)で表わされるニッケルコバルトマンガン酸リチウムから構成される。
本発明における正極活物質層は、少なくとも上述の正極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つをさらに含有していても良い。また、正極活物質層における正極活物質の含有量は、特に限定されるものではないが、例えば40重量%~99重量%の範囲内であることが好ましい。
本発明における負極活物質層は、少なくとも負極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つをさらに含有していても良い。負極活物質の種類は、金属イオンを吸蔵放出できるものであれば特に限定されるものではない。負極活物質としては、例えば、カーボン活物質、酸化物活物質および金属活物質等を挙げることができる。カーボン活物質としては、炭素を含有するものであれば特に限定されるものではないが、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。酸化物活物質としては、例えばNb2O5、Li4Ti5O12、SiO等を挙げることができる。金属活物質としては、例えばIn、Al、SiおよびSn等を挙げることができる。また、負極活物質として、Li含有金属活物質を用いても良い。Li含有金属活物質としては、少なくともLiを含有する活物質であれば特に限定されるものではなく、Li金属であっても良く、Li合金であっても良い。Li合金としては、例えば、Liと、In、Al、SiおよびSnの少なくとも一種とを含有する合金を挙げることができる。
本発明における固体電解質層は、少なくとも固体電解質材料を含有する層である。固体電解質材料としては、例えば、硫化物固体電解質材料、酸化物固体電解質材料、窒化物固体電解質材料等の無機固体電解質材料を挙げることができる。硫化物固体電解質材料は、酸化物固体電解質材料に比べて、イオン伝導性が高い点で好ましく、酸化物固体電解質材料は、硫化物固体電解質材料に比べて、化学的安定性が高い点で好ましい。また、本発明における固体電解質材料は、ハロゲンを含有する無機固体電解質材料であっても良い。本発明においては、特に、硫化物固体電解質材料を用いることが好ましい。
本発明の固体二次電池は、正極活物質層の集電を行う正極集電体、および、負極活物質層の集電を行う負極集電体をさらに有していても良い。正極集電体の材料としては、例えばSUS、アルミニウム、ニッケル、鉄、チタンおよびカーボン等を挙げることができる。負極集電体の材料としては、例えばSUS、銅、ニッケルおよびカーボン等を挙げることができる。また、本発明に用いられる電池ケースには、一般的な固体二次電池の電池ケースを用いることができる。電池ケースとしては、例えばSUS製電池ケース等を挙げることができる。
本発明の固体二次電池は、繰り返し充放電できるため、例えば車載用電池として有用である。固体二次電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。また、固体二次電池の製造方法は、上述した固体二次電池を得ることができる方法であれば特に限定されるものではなく、一般的な固体二次電池の製造方法と同様の方法を用いることができる。例えば、プレス法、塗工法、蒸着法、スプレー法等を挙げることができる。
次に、本発明の電池システムについて説明する。本発明の電池システムは、上述した「B.固体二次電池」の項で説明した固体二次電池と、正極活物質がLi1-x(NiaCobMnc)O2(x≧0.7)となるまで充電を行う充電制御部と、を有することを特徴とするものである。
以下、本発明の電池システムの詳細について説明する。
本発明における固体二次電池については、上述した「A.固体二次電池」の項で説明したものと同様とすることができるので、ここでの説明は省略する。
本発明における充電制御部について説明する。本発明における充電制御部は、正極活物質がLi1-x(NiaCobMnc)O2(x≧0.7)となるまで充電を行うことが可能であれば特に限定されないが、特にx≧0.72であることが好ましい。xの値が上記値以上であることにより、本発明における固体二次電池をより高エネルギー密度とすることが可能となるからである。xの値が上記値を上回る場合は、固体二次電池の他の構成等が劣化するおそれがあるからである。
なお、上記Xの値は、例えば0.8以下であることが好ましく、0.78以下であることがより好ましい。上記Xの値が上述の値を上回る場合は、上記ニッケルコバルトマンガン酸リチウムの結晶構造を保つことが困難となる場合があるからである。
ここで、上記xは、一般式LiNiaCobMncO2(0.33<a≦0.6、0<b<0.33、c=1-a-b)で表わされるニッケルコバルトマンガン酸リチウムから構成される正極活物質の理論容量を表わす値である。
(硫化物固体電解質材料の作製)
出発原料として、Li2S(日本化学工業)とP2S5(アルドリッチ)を用いた。次に、Ar雰囲気下(露点-70℃)のグローブボックス内で、Li2SおよびP2S5を、75Li2S・25P2S5のモル比(Li3PS4、オルト組成)となるように秤量し、メノウ乳鉢で5分間混合し、原料組成物2g(Li2S=0.7656g、P2S5=1.2344g)を得た。この原料組成物2gを、遊星型ボールミルの容器(45cc、ZrO2製)に投入し、脱水ヘプタン(水分量30ppm以下、4g)を投入し、さらにZrO2ボール(φ=5mm、53g)を投入し、容器を完全に密閉した(Ar雰囲気)。この容器を遊星型ボールミル機(フリッチュ製P7)に取り付け、台盤回転数370rpmで40時間メカニカルミリングを行った。その後、得られた試料を真空乾燥させ、ガラス状の硫化物固体電解質材料を得た。
正極活物質に、ニッケルコバルトマンガン酸リチウム(LiNi1/2Co1/4Mn1/4O2)を使用し、上記ニッケルコバルトマンガン酸リチウムにLiNbO3で表面処理を施した。次いで、上記正極活物質を12.03mg、VGVF(昭和電工)を0.51mg、および上述の硫化物固体電解質材料を5.03mn秤量し、混合して正極合剤を得た。
正極活物質に、ニッケルコバルトマンガン酸リチウム(LiNi3/5Co1/5Mn1/5O2)を使用し、上記ニッケルコバルトマンガン酸リチウムにLiNbO3で表面処理を施した。次いで、上記正極活物質を12.03mg、VGVF(昭和電工)を0.51mg、および実施例1における硫化物固体電解質材料を5.03mg秤量し、混合して正極合剤を得た。
上記正極合剤を用いたこと以外は実施例1と同様にして、固体二次電池を得た。
正極活物質に、ニッケルコバルトマンガン酸リチウム(LiNi1/3Co1/3Mn1/3O2)を使用し、上記ニッケルコバルトマンガン酸リチウムにLiNbO3で表面処理を施した。次いで、上記正極活物質を12.03mg、VGVF(昭和電工)を0.51mg、および実施例1における硫化物固体電解質材料を5.03mg秤量し、混合して正極合剤を得た。
上記正極合剤を用いたこと以外は実施例1と同様にして、固体二次電池を得た。
(60℃保存による劣化試験)
得られた固体二次電池を0.3mAで200mAh/gまでCC/CV充電(SOC75%まで充電)した後、インピーダンスアナライザ(ソーラトロン社製)でインピーダンス解析を行い、抵抗(初期)を求めた。抵抗測定後の固体二次電池を60℃のまま30日間保存した。30日間保存した後、電池を完全放電して、任意の電圧まで再び充電を行い、抵抗測定を実施した。
抵抗(初期)を基準として、30日後の抵抗の抵抗増加率を算出した。その結果を図5に示す。図5に示すように、比較例においては初期と比べて30日後の抵抗が4.6倍大きくなるのに対して、実施例1および実施例2においては初期と比べて30日後の抵抗が2.5倍程度に抑制することができた。
2 … 負極活物質層
3 … 固体電解質層
4 … 正極集電体
5 … 負極集電体
10 … 固体二次電池
11 … 充電制御部
20 … 電池システム
Claims (2)
- 一般式LiNiaCobMncO2(0.33<a≦0.6、0<b<0.33、c=1-a-b)で表わされるニッケルコバルトマンガン酸リチウムから構成される正極活物質を含有する正極活物質層と、
負極活物質を含有する負極活物質層と、
前記正極活物質層および前記負極活物質層の間に形成された固体電解質層と、を有し、
前記正極活物質層および前記固体電解質層のすくなくとも一つが、硫化物固体電解質材料を含有していることを特徴とする固体二次電池。 - 請求項1に記載の固体二次電池と、
正極活物質がLi1-x(NiaCobMnc)O2(x≧0.7)となるまで充電を行う充電制御部と、
を有することを特徴とする電池システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12819821.5A EP2741361A4 (en) | 2011-08-02 | 2012-08-01 | SECONDARY BATTERY AND BATTERY SYSTEM |
CN201280037608.0A CN103718369A (zh) | 2011-08-02 | 2012-08-01 | 固体二次电池和电池系统 |
KR1020147002168A KR20140021072A (ko) | 2011-08-02 | 2012-08-01 | 고체 2차 전지 및 전지 시스템 |
US14/235,637 US20140159675A1 (en) | 2011-08-02 | 2012-08-01 | Solid secondary battery and battery system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011169175A JP5141805B1 (ja) | 2011-08-02 | 2011-08-02 | 固体二次電池、および電池システム |
JP2011-169175 | 2011-08-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013018840A1 true WO2013018840A1 (ja) | 2013-02-07 |
Family
ID=47629359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/069620 WO2013018840A1 (ja) | 2011-08-02 | 2012-08-01 | 固体二次電池、および電池システム |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140159675A1 (ja) |
EP (1) | EP2741361A4 (ja) |
JP (1) | JP5141805B1 (ja) |
KR (1) | KR20140021072A (ja) |
CN (1) | CN103718369A (ja) |
WO (1) | WO2013018840A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014238925A (ja) * | 2013-06-06 | 2014-12-18 | 日本碍子株式会社 | 全固体電池 |
JP6172083B2 (ja) | 2014-08-04 | 2017-08-02 | トヨタ自動車株式会社 | リチウム固体二次電池およびその製造方法 |
KR20190039393A (ko) * | 2016-12-16 | 2019-04-11 | 리오나노 인크. | 리튬 이온 배터리 및 그 밖의 응용을 위한 전기 활성 물질 |
JP7215423B2 (ja) * | 2017-08-25 | 2023-01-31 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、及び、非水系電解質二次電池とその製造方法 |
KR102507006B1 (ko) * | 2017-09-11 | 2023-03-06 | 현대자동차주식회사 | 전고체 전지 및 그 제조방법 |
US11508960B2 (en) * | 2017-11-23 | 2022-11-22 | Ecopro Bm Co., Ltd. | Lithium metal complex oxide and manufacturing method of the same |
JP7463973B2 (ja) * | 2021-01-07 | 2024-04-09 | トヨタ自動車株式会社 | 電池システム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007004590A1 (ja) * | 2005-07-01 | 2007-01-11 | National Institute For Materials Science | 全固体リチウム電池 |
WO2010107084A1 (ja) * | 2009-03-18 | 2010-09-23 | 株式会社三徳 | 全固体リチウム電池 |
JP2010282948A (ja) * | 2009-05-01 | 2010-12-16 | Toyota Motor Corp | 固体電解質材料 |
JP2011060649A (ja) | 2009-09-11 | 2011-03-24 | Toyota Motor Corp | 電極活物質層、全固体電池、電極活物質層の製造方法および全固体電池の製造方法 |
JP2012099323A (ja) * | 2010-11-01 | 2012-05-24 | Toyota Motor Corp | 正極活物質材料、正極活物質層、全固体電池および正極活物質材料の製造方法 |
JP2012190772A (ja) * | 2011-02-25 | 2012-10-04 | Idemitsu Kosan Co Ltd | 全固体リチウムイオン電池及び正極合材 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI286849B (en) * | 2003-03-25 | 2007-09-11 | Nichia Corp | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP2006147210A (ja) * | 2004-11-17 | 2006-06-08 | Hitachi Ltd | 二次電池及びその製造方法 |
JP4824349B2 (ja) * | 2005-06-16 | 2011-11-30 | パナソニック株式会社 | リチウムイオン二次電池 |
JP4938286B2 (ja) * | 2005-11-02 | 2012-05-23 | 東洋炭素株式会社 | リチウムイオン二次電池 |
JP2010272494A (ja) * | 2008-08-18 | 2010-12-02 | Sumitomo Electric Ind Ltd | 非水電解質二次電池及びその製造方法 |
JP5157781B2 (ja) * | 2008-09-25 | 2013-03-06 | トヨタ自動車株式会社 | 全固体リチウム二次電池 |
JPWO2010125729A1 (ja) * | 2009-04-27 | 2012-10-25 | パナソニック株式会社 | 非水電解質二次電池用正極板およびその製法並びに非水電解質二次電池 |
US8586247B2 (en) * | 2009-12-11 | 2013-11-19 | Samsung Sdi Co., Ltd. | Positive electrode active material comprising an agglomeration of at least two primary particles for lithium battery and lithium battery using the same |
-
2011
- 2011-08-02 JP JP2011169175A patent/JP5141805B1/ja not_active Expired - Fee Related
-
2012
- 2012-08-01 WO PCT/JP2012/069620 patent/WO2013018840A1/ja active Application Filing
- 2012-08-01 CN CN201280037608.0A patent/CN103718369A/zh active Pending
- 2012-08-01 EP EP12819821.5A patent/EP2741361A4/en not_active Withdrawn
- 2012-08-01 KR KR1020147002168A patent/KR20140021072A/ko not_active Ceased
- 2012-08-01 US US14/235,637 patent/US20140159675A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007004590A1 (ja) * | 2005-07-01 | 2007-01-11 | National Institute For Materials Science | 全固体リチウム電池 |
WO2010107084A1 (ja) * | 2009-03-18 | 2010-09-23 | 株式会社三徳 | 全固体リチウム電池 |
JP2010282948A (ja) * | 2009-05-01 | 2010-12-16 | Toyota Motor Corp | 固体電解質材料 |
JP2011060649A (ja) | 2009-09-11 | 2011-03-24 | Toyota Motor Corp | 電極活物質層、全固体電池、電極活物質層の製造方法および全固体電池の製造方法 |
JP2012099323A (ja) * | 2010-11-01 | 2012-05-24 | Toyota Motor Corp | 正極活物質材料、正極活物質層、全固体電池および正極活物質材料の製造方法 |
JP2012190772A (ja) * | 2011-02-25 | 2012-10-04 | Idemitsu Kosan Co Ltd | 全固体リチウムイオン電池及び正極合材 |
Non-Patent Citations (2)
Title |
---|
HIDETAKE OKAMOTO ET AL.: "Zen Kotaigata Lithium Niji Denchi eno Nickel-kei Seikyoku Zairyo no Tekiyosei ni Kansuru Kento", BATTERY SYMPOSIUM IN JAPAN, vol. 49, 5 November 2008 (2008-11-05), pages 293, XP008172935 * |
See also references of EP2741361A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20140159675A1 (en) | 2014-06-12 |
KR20140021072A (ko) | 2014-02-19 |
EP2741361A1 (en) | 2014-06-11 |
JP2013033638A (ja) | 2013-02-14 |
JP5141805B1 (ja) | 2013-02-13 |
EP2741361A4 (en) | 2015-03-04 |
CN103718369A (zh) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8968939B2 (en) | Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material | |
JP5601157B2 (ja) | 正極活物質材料、正極活物質層、全固体電池および正極活物質材料の製造方法 | |
JP5195975B2 (ja) | 全固体電池およびその製造方法 | |
US9337509B2 (en) | Solid electrolyte material, solid state battery, and method for producing solid electrolyte material | |
JP5737415B2 (ja) | 全固体電池およびその製造方法 | |
US9214674B2 (en) | Coated active material and lithium solid state battery | |
JP5508646B2 (ja) | 固体二次電池システムおよび再生固体二次電池の製造方法 | |
CN103975466B (zh) | 正极活性物质材料、正极活性物质层、全固体电池以及正极活性物质材料的制造方法 | |
JP5516755B2 (ja) | 電極体および全固体電池 | |
JP5673826B2 (ja) | リチウム固体二次電池システム | |
CN102656150B (zh) | 常温熔融盐、电极、电池、电荷耗散剂以及试料的观察方法 | |
JP5141805B1 (ja) | 固体二次電池、および電池システム | |
JP2011159534A (ja) | リチウム電池 | |
JP5609773B2 (ja) | 固体二次電池の製造方法 | |
JP2014157666A (ja) | リチウム電池システム | |
WO2012157047A1 (ja) | 全固体二次電池 | |
CN119384703A (zh) | 锂离子传导体、锂离子电池和锂离子传导体的制造方法 | |
CN115398666A (zh) | 负极材料及电池 | |
WO2013076854A1 (ja) | 全固体電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12819821 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147002168 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14235637 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012819821 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |