WO2013015167A1 - 電力変換装置及び電力変換システム - Google Patents
電力変換装置及び電力変換システム Download PDFInfo
- Publication number
- WO2013015167A1 WO2013015167A1 PCT/JP2012/068181 JP2012068181W WO2013015167A1 WO 2013015167 A1 WO2013015167 A1 WO 2013015167A1 JP 2012068181 W JP2012068181 W JP 2012068181W WO 2013015167 A1 WO2013015167 A1 WO 2013015167A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- surge voltage
- current command
- voltage detection
- current
- circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/024—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
- H02P29/0241—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
Definitions
- the present invention relates to an inverter control device that detects a surge voltage generated when a semiconductor switching element constituting an inverter main circuit is cut off and compares it with a current command value, thereby detecting an abnormality in the inverter main circuit.
- a technique for preventing overvoltage breakdown from a surge voltage generated when the switching element is interrupted is known.
- the surge voltage is detected by detecting the potential obtained by dividing the motor, and the torque of the motor is limited by the motor torque limit command signal when an abnormality is determined.
- Patent Document 2 when the voltage applied between the collector and the emitter of the IGBT becomes abnormal in the constant voltage level of the constant voltage diode, the gate current is passed through the constant voltage diode and the diode to slowly turn off. Therefore, an excessive voltage is prevented from being applied.
- the present invention provides a power conversion system and a power conversion device that can further improve reliability.
- a power converter includes an inverter circuit that outputs a three-phase alternating current, a current sensor that detects the three-phase alternating current, and a motor control circuit that drives the inverter circuit.
- a gate drive circuit for driving a semiconductor switching element constituting the inverter circuit based on a PWM signal from the motor control circuit, and a surge voltage detection circuit for detecting a surge voltage detection signal the motor control circuit generates a current command value and
- a current command generation unit that stores the surge voltage detection signal detected by the surge voltage detection circuit is input to the motor control circuit, and the current command generation unit outputs a current voltage from the current command generation unit when the surge voltage detection signal is detected.
- Possible to implement a surge voltage suppressor that suppresses surge voltage by comparing the current command value with a predetermined current command value. To determine.
- a highly reliable power conversion system and power conversion device can be provided.
- 1 is a surge voltage detection circuit according to a first embodiment of the present invention. It is a surge voltage detection operation waveform which concerns on the 1st Embodiment of this invention. It is a flowchart of the surge voltage detection which concerns on the 1st Embodiment of this invention. It is an example of a waveform at the time of 50A and 650A interruption
- a power conversion system including an inverter is configured by a combination of semiconductor switching elements, and performs power conversion by sequentially switching each element. During the switching operation of the semiconductor switching element, a jumping (surge) voltage is generated due to the switching speed when the semiconductor switching element is cut off.
- a power conversion system and a power conversion device monitor a surge voltage detection signal from a surge voltage detection unit provided in a gate drive circuit, and generate a current generated by a current command generation unit of a motor control circuit A comparison is made between the command value and a surge voltage value relative to the current command value.
- the change of the main circuit impedance can be detected at an early stage by positively detecting the surge voltage in a small current region, it is possible to provide a motor control device capable of further improving the reliability.
- FIG. 1 is a control block diagram of a motor control device of a power conversion system according to an embodiment of the present invention.
- the motor 1 is a permanent magnet synchronous motor, and the rotation speed and the magnetic pole position are detected by a rotation sensor such as a resolver or an encoder.
- the motor 1 is connected to the inverter circuit 2 via a cable, and is supplied with electric power.
- the inverter circuit 2 is composed of a semiconductor switching element such as an IGBT and performs power conversion by switching the upper and lower arms of each phase with a PWM signal.
- the current output from the inverter circuit 2 and flowing to the motor 1 via the cable is detected by the current sensor 3.
- the inverter output current value detected by the current sensor 3 is fed back to the current control unit 8 via an A / D conversion function included in the arithmetic processing unit in the motor control circuit 4.
- FIG. 2 is a block diagram of the surge voltage detection apparatus according to the embodiment of the present invention.
- the current command is generated by the current command generator 7 of the motor control circuit 4 based on the torque command value ⁇ * from the host controller, the rotational speed ⁇ of the motor 1 and the magnetic pole position ⁇ .
- the current command generator 7 is configured by an arithmetic processing device such as a microcomputer.
- the generated current command value is converted by the current control unit 8 of the motor control circuit 4 from the feedback value of the inverter output current detected by the current sensor 3 and converted into a PWM signal through the controller.
- the PWM signal drives a semiconductor switching element such as an IGBT through the gate drive circuit 5.
- FIG. 3 shows a surge voltage detection circuit according to the first embodiment.
- a circuit in which a Zener diode having a predetermined Zener voltage, a backflow prevention diode, and a resistor are connected in series is connected in parallel with the semiconductor switching element between the collector and the emitter (or between the drain and source) of the semiconductor switching element. .
- a Zener current generated when the surge voltage applied between the collector and emitter (or between the drain and source) when the semiconductor switching element is cut off exceeds a predetermined Zener voltage is detected.
- a Zener diode having a predetermined Zener voltage Vz causes a Zener current Iz to flow when a surge voltage exceeding Vz is applied. Since the Zener current is a minute current, the detection level is amplified by a differential amplifier circuit as shown in FIG.
- the surge voltage is a voltage that changes in a short time of several tens of ns, and in order to capture this voltage as a detection signal, the surge voltage detection circuit has a latch circuit that detects the detected zener current for a certain period of time or detects it. It is desirable to provide a one-shot pulse output circuit triggered by a Zener current.
- the surge voltage detection signal Vs detected by the surge voltage detection circuit is input to the current command generator 7 provided in the motor control circuit by an insulating transmission element such as a photocoupler.
- the current command generator 7 determines whether or not a surge voltage exceeding a predetermined voltage value is applied based on the level (H / L) of the input surge voltage detection signal Vso.
- FIG. 5 is a flowchart of surge voltage detection according to the first embodiment.
- the flowchart of FIG. 5 is executed by the current command generator 7.
- Step S101 is a level determination unit for the surge voltage detection signal Vso from the surge voltage detection circuit shown in FIG. When a surge voltage exceeding a predetermined voltage value is applied, Vso is input as L from the surge voltage detection circuit.
- the current command generator 7 on the motor control circuit monitors the current command value as needed, and stores the current command value Is_cmd at the time when the surge voltage detection signal Vso is input at the L level in the memory. deep.
- the surge voltage detection level can be set by the Zener voltage, an arbitrary surge voltage detection level is set in advance.
- the surge voltage detection circuit is configured using a Zener diode having a Zener voltage larger than the surge voltage generated during driving at a predetermined current command value I_cmd.
- step S102 the current command value Is_cmd at the time of detecting the surge voltage is compared with a predetermined current command value I_cmd that is set in advance. If Is_cmd ⁇ I_cmd, a surge that does not occur originally is generated. It is determined that
- the surge voltage for the predetermined current value I_cmd does not exceed the set Zener voltage, so no surge voltage detection signal is output.
- the current command value Is_cmd at the time of detecting the surge voltage is equal to or greater than a predetermined current command value (Is_cmd> I_cmd)
- the current motor region may detect the surge voltage.
- step S102 If the current command value is less than or equal to the set current command value in step S102 (Is_cmd ⁇ I_cmd), it is determined that a surge voltage abnormality has occurred, and a surge voltage abnormality / main circuit abnormality determination signal is output in step S103. Output. Further, in response to the surge voltage abnormality signal from step S103, in step S104, the output current value is limited for the subsequent motor drive. That is, the current command generator 7 limits the maximum output value of the current command value so as not to exceed a predetermined value. Note that the limitation on the output current value does not necessarily limit the maximum output value. You may restrict
- FIG. 6 is an example of operation waveforms of the collector voltage and the collector current when the semiconductor switching element is cut off.
- FIG. 6A shows the collector voltage and collector current when 50A is cut off
- FIG. 6B shows the collector voltage and collector current when 650A is cut off.
- FIG. 7 shows an example of the relationship between the collector current and the surge voltage in the semiconductor switching element.
- blocking reaches 450V and 620V, respectively, and a surge voltage is so large that output current is large.
- the surge voltage detection level is set to 480 V
- the current command generator 7 compares the validity when a surge voltage abnormality is detected.
- the surge voltage at the time of normal 50A interruption is 450V, and since the Zener voltage is 480V or less, the surge voltage detection signal is not output. On the other hand, since the surge voltage exceeds 480 V when shut off at 200 A or more, a surge voltage detection signal is output, but the current command value of the current command generation unit 7 provided in the motor control circuit is According to the validity comparison, abnormality determination is not performed because Is_cmd> 50A.
- the broken line graph shown in FIG. 7 assumes a case where the surge voltage is expanded due to a main circuit inductance expansion due to aged deterioration of the power conversion system or a failure of a current sensor or the like. Assuming that the surge voltage with respect to the collector current increases as a whole by 30V, the 450V surge voltage that was generated when the 50A was shut off expanded to 480V, and the 620V surge voltage that occurred when the 650A was shut off expanded to 650V. End up. As a result, the surge voltage at the time of 650A interruption
- the 480V surge voltage generated when the current command 50A is cut off is detected as an abnormal voltage. be able to. Furthermore, application of a surge voltage of 650 V when 650 A is interrupted can be avoided by detecting a surge voltage abnormality at the time of small current driving and limiting the current command value.
- FIG. 8 shows a surge voltage detection circuit according to the second embodiment.
- the basic motor control block diagram shown in FIGS. 1 and 2 is the same as that of the first embodiment. Further, the method of detecting the surge voltage and the validity comparison of the current command value in the current command generator 7 are the same as in the first embodiment.
- the surge voltage detection circuit in the second embodiment is a mode in which a gate resistance switching function is added to the gate drive circuit in addition to the first embodiment.
- the connected gate resistors are a resistor A having a gate resistance value R during normal driving and a resistor B having a gate resistance value Rs larger than R (R ⁇ Rs).
- the gate resistor is connected to the resistor A during normal motor driving.
- FIG. 9 is a flowchart of surge voltage detection according to the second embodiment.
- the flowchart of FIG. 9 is executed by the current command generator 7.
- a predetermined surge voltage detection level is set, and the current command generator 7 on the motor control device detects the surge voltage by comparing the validity of the current command value at the time of detecting the surge voltage in step S102.
- Current command value Is_cmd at the time is compared with a predetermined current command value I_cmd set in advance, and if it is determined that Is_cmd ⁇ I_cmd, a signal for determining surge voltage abnormality and main circuit abnormality is output from step S103. To do.
- a gate resistance switching signal is output to the gate resistance switching switch 17 in step S105.
- the gate drive circuit switches the connection from the resistor A connected during normal driving to the gate resistor B having a resistance value larger than the gate resistance A.
- di / dt of the semiconductor switching element is adjusted to suppress the surge voltage.
- FIG. 10 shows a surge voltage detection circuit according to the third embodiment.
- the basic motor control block diagram shown in FIGS. 1 and 2 is the same as that of the first embodiment.
- the surge voltage detection circuit according to the third embodiment connects a circuit in which a Zener diode having a different Zener voltage, a backflow prevention diode, and a resistor are connected in series to a semiconductor switching element.
- a surge voltage detection circuit having a different surge voltage detection level is added.
- the surge voltage detection circuits 1 to 3 use Zener diodes 1 to 3 having different Zener voltages, and have a latch circuit or a one-shot pulse output circuit that holds the detected Zener current for a predetermined time.
- Zener voltages Vz1 to Vz3 are surge voltage detection levels. When a surge voltage exceeding each detection level is applied, detection signals Vso1 to Vso3 are output from the respective surge voltage detection circuits. Is done.
- each Zener diode has a different Zener voltage such that Zener voltage 1 ⁇ Zener voltage 2 ⁇ Zener voltage 3.
- FIG. 12 is a flowchart of surge voltage detection in the third embodiment.
- the flowchart of FIG. 12 is executed by the current command generator 7. Since the detected surge voltage levels can be classified according to the output surge voltage detection signals Vso1 to Vso3, current command values I_cmd_1 to I_cmd_3 for validity comparison are set for the respective surge voltage levels.
- Vso1 L
- Vso2 H
- Vso1 L
- Vso2 L
- Vso1 L
- Vso2 L
- the detected surge voltage level can be classified.
- step S201 the presence or absence of surge voltage detection of 480 V or more is determined by the surge voltage detection signal Vso1.
- Vso1 L
- the presence or absence of surge voltage detection of 540 V or higher is determined based on the surge voltage detection signal Vso2 in step S202.
- Vso2 L
- FIG. 13 shows the surge voltage detection level and the protection range of the semiconductor switching element according to the third embodiment.
- the range surrounded by the surge voltage detection level Vz and the predetermined current command value I_cmd is the range to which each surge voltage suppression means is applied.
- the current command value I_cmd_1 50 A and the surge voltage detection
- the surge voltage suppression means can be switched by comparing a plurality of provided surge voltage detection levels with the current command value at the time of surge voltage detection.
- surge voltage suppression means implemented for the surge voltage detection level is arbitrary, and by having various surge voltage suppression means, a power conversion system capable of continuing motor driving while avoiding overvoltage breakdown of the semiconductor switching element, and A power converter can be provided.
- FIG. 14 shows a surge voltage detection circuit according to the fourth embodiment.
- the basic motor control block diagram shown in FIGS. 1 and 2 is the same as that of the first embodiment.
- the surge voltage detection circuit in the fourth embodiment directly detects a voltage applied between the collector and emitter (or drain and source) of the semiconductor switching element by dividing the voltage with a resistor.
- the divided collector (or drain) voltage is output for a certain period of time as a peak value Vp of the applied surge voltage through the peak hold circuit.
- the surge voltage detection level is determined by the voltage dividing ratio of the voltage dividing resistor.
- the divided collector (or drain) voltage may be converted to a level that can be detected via a differential amplifier circuit or the like and detected by an arithmetic processing unit such as a microcomputer.
- an arithmetic processing unit or the like the surge voltage detection level can be arbitrarily set by software. Then, the output of the surge voltage detection signal Vs is determined by comparing the surge voltage detection level arbitrarily set in the arithmetic processing unit with a threshold value and comparing the peak value of the surge voltage output from the peak hold circuit.
- the surge voltage peak value Vp or the surge voltage detection signal Vs detected by the surge voltage detection circuit described above is input to the current command generator 7 provided in the motor control circuit by an insulation transfer element such as a photocoupler.
- the current command generator 7 determines whether or not a surge voltage exceeding a predetermined voltage value is applied based on the level (H / L) of the input surge voltage detection signal Vso.
- the processing after the surge voltage abnormality detection in the present embodiment implements a means for limiting the current command as a surge voltage suppressing means according to the flowchart shown in FIG.
- the gate resistance switching means may be implemented as the surge voltage suppression means according to the flowchart shown in FIG.
- a plurality of surge voltage detection circuits are provided as in the third embodiment, means for switching a plurality of surge voltage suppression means according to the surge voltage detection level and the current command value according to the flowchart shown in FIG. You may carry out.
- the surge voltage detection means described above detects an increase in surge voltage due to an abnormality in the inductance and current change rate of the inverter main circuit, outputs a fail signal from the surge voltage abnormality determination unit, and based on the fail signal. Display on the operation panel and control equipment of the motor controller. For example, when applied to an electric vehicle, a surge voltage abnormality can be notified to a motor control device operator or a maintenance worker by, for example, turning on a warning lamp on an internal panel.
- surge voltage suppression means such as applying torque limitation or switching gate resistance, avoiding overvoltage application to the semiconductor switching element Since the motor control system can be continuously driven, a highly reliable power conversion device can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Control Of Ac Motors In General (AREA)
- Power Conversion In General (AREA)
Abstract
電力変換装置は、3相交流電流を出力するインバータ回路と、3相交流電流を検出する電流センサと、インバータ回路を駆動するモータ制御回路を備え、インバータ回路は、モータ制御回路からのPWM信号に基づきインバータ回路を構成する半導体スイッチング素子を駆動するゲートドライブ回路とサージ電圧検出信号を検出するサージ電圧検出回路を備え、モータ制御回路は、電流指令値を生成および記憶する電流指令生成部を備え、サージ電圧検出回路により検出されたサージ電圧検出信号はモータ制御回路に入力され、サージ電圧検出信号を検出した際に電流指令生成部からの電流指令値と所定の電流指令値と対比することによりサージ電圧を抑制するサージ電圧抑制部の実施の可否を選択する選択部を備える。
Description
本発明は、インバータ主回路を構成する半導体スイッチング素子が遮断時に発生するサージ電圧を検出し、電流指令値と対比することで、インバータ主回路の異常検出するインバータ制御装置に関する。
従来から、複数のスイッチング素子によって構成される電力変換装置において、前記スイッチング素子が遮断時に発生するサージ電圧から過電圧破壊を防ぐ手法は知られており、例えば、特許文献1では、スイッチング素子のコレクタ電圧を分圧した電位を検出することでサージ電圧を検出し、異常判定の際には電動機トルク制限指令信号によって電動機のトルクを制限している。
さらに、特許文献2では、IGBTのコレクタ・エミッタ間に印加される電圧が定電圧ダイオードの定電圧レベル異常になると、定電圧ダイオードとダイオードを経由してゲート電流を流すことでゆっくりとターンオフさせることで過大な電圧が印加されるのを防止している。
しかしながら、上記特許文献いずれの手法においては、あくまで大電流駆動時の最大サージ電圧の検出を想定するものであり、実モータ駆動時で多用される小電流領域でのサージ電圧に対しては考慮されていない。そのため、インバータ主回路の異常検知に対する信頼性が損なわれる可能性があった。
そこで、本発明は、更なる信頼性向上を図れる電力変換システムおよび電力変換装置を提供する。
本発明の1の態様によると、電力変換装置は、3相交流電流を出力するインバータ回路と、3相交流電流を検出する電流センサと、インバータ回路を駆動するモータ制御回路を備え、インバータ回路は、モータ制御回路からのPWM信号に基づきインバータ回路を構成する半導体スイッチング素子を駆動するゲートドライブ回路とサージ電圧検出信号を検出するサージ電圧検出回路を備え、モータ制御回路は、電流指令値を生成および記憶する電流指令生成部を備え、サージ電圧検出回路により検出されたサージ電圧検出信号はモータ制御回路に入力され、電流指令生成部は、サージ電圧検出信号を検出した際に電流指令生成部からの電流指令値と所定の電流指令値と対比することによりサージ電圧を抑制するサージ電圧抑制部の実施の可否を決定する。
本発明によれば、信頼性の高い電力変換システムおよび電力変換装置を提供することができる。
本発明の実施形態に係る電力変換システムおよび電力変換装置について簡単に原理を説明する。
インバータをはじめとする電力変換システムは、半導体スイッチング素子の組み合わせにより構成され、各素子を順次スイッチング動作させることで、電力変換を実施している。半導体スイッチング素子のスイッチング動作時において、その遮断時にはスイッチング速度により、跳ね上がり(サージ)電圧が発生する。
半導体スイッチング素子のコレクタ-エミッタ間(またはドレイン-ソース間)に印加されている電圧に対して、このサージ電圧が、半導体スイッチング素子の耐圧を超える場合には、半導体スイッチング素子は自らのサージ電圧により過電圧破壊をきたす可能性がある。
サージ電圧は、V=L×di/dtで計算される主回路インダクタンスLまたは電流変化率di/dtに比例した電圧である。すなわち、インバータの出力電流が大きく、di/dtが大きくなる程、発生するサージ電圧は出力電流値に比例して大きくなる特徴がある。
一般的に、半導体スイッチング素子のゲートドライブ回路設計の際には、使用する半導体スイッチング素子のサージ電圧が耐圧を超えないように、ゲート抵抗を設定する等のマッチングを行っている。そのため、サージ電圧そのものはモニタされておらず、電力変換システム駆動中の経年劣化やシステムの不具合等により、主回路インダクタンスや電流変化率に変化が生じてサージ電圧が拡大していたとしても、半導体スイッチング素子が破壊に至るまでに捉えることは難しかった。
本発明の実施形態に係る電力変換システムおよび電力変換装置は、ゲートドライブ回路に設けたサージ電圧検出部からのサージ電圧検出信号をモニタし、モータ制御回路の電流指令生成部にて生成される電流指令値とその電流指令値に相対するサージ電圧値との対比を行うことを特徴とする。
ここで、インバータ出力電流値に相対した所定の電圧値以上のサージ電圧が検出された場合には、サージ電圧異常検出信号を出力するとともに、電流制御系のゲイン調整や出力電流を制限することで、半導体スイッチング素子への過大なサージ電圧印加を防ぐことができる。
特に、小電流領域でのサージ電圧検出を積極的に実施することで、主回路インピーダンスの変化を早期に検出できるため、更なる信頼性向上を図れるモータ制御装置を提供することができる。
以下、図面を参照しながら詳細に説明する。
<第1の実施形態>
図1は、本発明の実施形態に係る電力変換システムのモータ制御装置の制御ブロック図である。モータ1は永久磁石同期モータであり、回転速度および磁極位置はレゾルバやエンコーダ等の回転センサにより検出される。モータ1は、ケーブルを介してインバータ回路2と接続されており、電力の供給を受けている。
図1は、本発明の実施形態に係る電力変換システムのモータ制御装置の制御ブロック図である。モータ1は永久磁石同期モータであり、回転速度および磁極位置はレゾルバやエンコーダ等の回転センサにより検出される。モータ1は、ケーブルを介してインバータ回路2と接続されており、電力の供給を受けている。
インバータ回路2は、IGBT等の半導体スイッチング素子から構成されており、PWM信号により各相上下アームをスイッチングすることで電力変換を行っている。インバータ回路2から出力され、ケーブルを介してモータ1へ流れる電流は、電流センサ3より検出される。電流センサ3により検出されたインバータ出力電流値は、モータ制御回路4内の演算処理装置に含まれるA/D変換機能等を介して、電流制御部8へフィードバックされる。
図2は、本発明の実施形態に係るサージ電圧検出装置のブロック図である。
電流指令は、上位コントローラからのトルク指令値τ*とモータ1の回転速度ωおよび磁極位置θをモータ制御回路4の電流指令生成部7で生成される。電流指令生成部7は、マイクロコンピュータ等の演算処理装置により構成されている。生成された電流指令値は、モータ制御回路4の電流制御部8にて、電流センサ3より検出されたインバータ出力電流のフィードバック値との偏差を演算し、制御器を通じてPWM信号へ変換される。PWM信号は、ゲートドライブ回路5を介してIGBT等の半導体スイッチング素子をスイッチング駆動させている。
次に、第1の実施形態におけるサージ電圧検出部を以下説明する。
図3は、第1の実施形態に係るサージ電圧検出回路である。所定のツェナー電圧を有するツェナーダイオードと逆流防止用ダイオードと抵抗器を直列接続した回路は、半導体スイッチング素子のコレクタ-エミッタ間(またはドレイン-ソース間)に、前記半導体スイッチング素子と並列に接続される。この回路構成により、半導体スイッチング素子の遮断時にコレクタ-エミッタ間(またはドレイン-ソース間)に印加されるサージ電圧が所定のツェナー電圧を超えた時に発生するツェナー電流を検出する。
次に、図4を用いて、第1の実施形態に係るサージ電圧検出動作波形について説明する。所定のツェナー電圧Vzを有するツェナーダイオードは、Vzを超えるサージ電圧が印加されることによって、ツェナー電流Izを流す。ツェナー電流は微小な電流であるので、図3に示すような差動増幅回路等により、検出レベルを増幅する。
また、サージ電圧は数十ns単位の短時間で変化する電圧であり、この電圧を検出信号として捕らえるために、サージ電圧検出回路には、検出したツェナー電流を一定時間保持するラッチ回路または検出したツェナー電流をトリガとした1ショットパルス出力回路を備えることが望ましい。
サージ電圧検出回路により検出されたサージ電圧検出信号Vsは、フォトカプラ等の絶縁伝達素子により、モータ制御回路に備えられた電流指令生成部7へ入力される。電流指令生成部7は、入力されるサージ電圧検出信号Vsoのレベル(H/L)で、所定の電圧値以上のサージ電圧印加の有無を判定する。
図5は第1の実施形態に係るサージ電圧検出のフローチャートである。図5のフローチャートは、電流指令生成部7により実行される。ステップS101は、図3に示したサージ電圧検出回路からのサージ電圧検出信号Vsoのレベル判定部である。所定の電圧値以上のサージ電圧印加がある場合には、サージ電圧検出回路よりVsoはLとして入力される。
一方、サージ電圧検出信号VsoがHである場合は、所定の電圧値以上のサージ電圧は発生していないので、通常のインバータ駆動を継続する。サージ電圧検出信号VsoがLである場合には、次のステップS102で、サージ電圧検出時における電流指令値の妥当性比較を行う。
ここで、モータ制御回路上の電流指令生成部7では、電流指令値を随時モニタしており、サージ電圧検出信号VsoがLレベルで入力された時点での電流指令値Is_cmdをメモリへ記憶しておく。一方で、サージ電圧検出レベルは、ツェナー電圧により設定できるので、予め任意のサージ電圧検出レベルを設定しておく。出力電流値に対するサージ電圧との相関関係より、ある所定の電流指令値I_cmdでの駆動時に発生するサージ電圧よりも大きいツェナー電圧を有するツェナーダイオードを用いてサージ電圧検出回路を構成しておく。
ステップS102では、サージ電圧検出時の電流指令値Is_cmdと予め設定しておいた所定の電流指令値I_cmdを比較し、Is_cmd≦I_cmdである場合には、本来発生することのないサージが発生しているものと判定される。
正常動作時には、所定の電流値I_cmdに対するサージ電圧が設定したツェナー電圧を超えることが無いため、サージ電圧検出信号は出力されない。また、サージ電圧検出時の電流指令値Is_cmdが設定された所定の電流指令値以上であった場合(Is_cmd>I_cmd)には、サージ電圧が検出されても良い電流領域であるため通常のモータ駆動を継続する。
ステップS102で、設定された電流指令値以下であった場合(Is_cmd≦I_cmd)には、サージ電圧異常が発生しているものと判断し、ステップS103でサージ電圧異常、主回路異常判定の信号を出力する。さらに、ステップS103からのサージ電圧異常信号を受け、ステップS104では、以降のモータ駆動に対して出力電流値を制限する。すなわち、電流指令生成部7は、電流指令値の最大出力値を所定の値以上超えないように制限する。なお、出力電流値の制限は必ずしも最大出力値を制限するものでなくてもよい。一定の比率で出力電流を下げるように制限してもよい。
サージ電圧異常判定により、インバータ出力電流値を抑えることで、大電流駆動時のサージ電圧による半導体スイッチング素子の過電圧破壊を防ぐことができる。また、小電流領域でのサージ電圧異常を早期に検出することにより、大電流駆動への電流移行中に主回路異常が検出できるため、信頼性の高い電力変換システムおよび電力変換装置を提供することができる。
本実施形態におけるサージ電圧検出に関して、具体例を用いて以下説明する。
図6は、半導体スイッチング素子遮断時のコレクタ電圧およびコレクタ電流の動作波形例である。図6(a)は50A遮断時、図6(b)は650A遮断時のコレクタ電圧およびコレクタ電流をそれぞれ示す。また、図7は半導体スイッチング素子におけるコレクタ電流とサージ電圧の関係例を示す。50A、650A遮断時のサージ電圧は、それぞれ450V、620Vに達し、出力電流が大きいほどサージ電圧が大きい。
ここでは、サージ電圧検出レベルは480Vと設定し、ツェナー電圧Vz=480Vのツェナーダイオードを用いてサージ電圧検出を行い、サージ電圧異常検出時に電流指令生成部7で妥当性比較を行う所定の電流指令値はI_cmd=50Aとしている。
通常の50A遮断時のサージ電圧は450Vであり、ツェナー電圧480V以下であるため、サージ電圧検出信号は出力されない。一方で、200A以上での遮断時では、サージ電圧は480Vを超えてくるため、サージ電圧検出信号が出力されるが、モータ制御回路に備えられた電流指令生成部7での、電流指令値の妥当性比較により、Is_cmd>50Aのため異常判定はされない。
図7に示す破線グラフは、電力変換システムの経年劣化による主回路インダクタンス拡大や電流センサ等の不具合により、サージ電圧が拡大した場合を想定したものである。コレクタ電流に対するサージ電圧が全体的に30V大きくなると仮定すると、従来50A遮断時に発生していた450Vのサージ電圧は480Vへ拡大し、650A遮断時に発生していた620Vのサージ電圧は650Vまで拡大してしまう。その結果、650A遮断時のサージ電圧はIGBT素子の耐圧である650Vに達してしまうため、過電圧破壊に繋がる恐れがある。
しかし、本実施形態を適用することにより、480Vのサージ電圧検出レベルと所定の電流指令値I_cmd=50Aの設定をすることで、電流指令50A遮断時に発生した480Vのサージ電圧を異常電圧として検出することができる。さらに、小電流駆動時にサージ電圧異常を検出して、電流指令値を制限することによって、650A遮断時による650Vのサージ電圧の印加を避けることができる。
以上のように、所定の電流指令値に対するサージ電圧検出信号の有無によって、本来検出されるはずの無い小電流領域でサージ電圧異常の信号を認識した場合に、主回路インダクタンスまたは電流変化率に異常をもたらす変化がモータ制御システム内で発生していることを認識でき、さらに電流指令制限等のサージ電圧抑制手段を用いることで、半導体スイッチング素子への大電流駆動によるサージ電圧印加を避けることができる。
<第2の実施形態>
図8は、第2の実施形態に係るサージ電圧検出回路である。図1および図2に示す基本的なモータ制御ブロック図は第1の実施形態と同様である。また、サージ電圧の検出方法および電流指令生成部7での電流指令値の妥当性比較も第1の実施形態と同様である。
図8は、第2の実施形態に係るサージ電圧検出回路である。図1および図2に示す基本的なモータ制御ブロック図は第1の実施形態と同様である。また、サージ電圧の検出方法および電流指令生成部7での電流指令値の妥当性比較も第1の実施形態と同様である。
第2の実施形態におけるサージ電圧検出回路は、第1の実施形態に加え、ゲートドライブ回路にゲート抵抗の切り替え機能を追加した形態である。
接続されるゲート抵抗は、通常駆動時のゲート抵抗値Rを有する抵抗器Aと、Rよりも大きいゲート抵抗値Rsを有する抵抗器Bである(R<Rs)。通常のモータ駆動時には、ゲート抵抗は抵抗器Aに接続されている。
図9は、第2の実施形態に係るサージ電圧検出のフローチャートである。図9のフローチャートは、電流指令生成部7により実行される。第1の実施形態と同様に所定のサージ電圧検出レベルを設定し、モータ制御装置上の電流指令生成部7が、ステップS102でサージ電圧検出時の電流指令値の妥当性比較により、サージ電圧検出時の電流指令値Is_cmdと予め設定しておいた所定の電流指令値I_cmdを比較し、Is_cmd≦I_cmdであると判定した場合には、ステップS103よりサージ電圧異常、主回路異常判定の信号を出力する。ステップS103からのサージ電圧異常信号を受け、ステップS105でゲート抵抗切り替え信号をゲート抵抗切り替えスイッチ17に出力する。電流指令生成部7から出力されたゲート抵抗切り替え信号により、ゲートドライブ回路では、通常駆動時に接続されている抵抗器Aから、ゲート抵抗Aよりも大きい抵抗値を有するゲート抵抗器Bへ接続を切り替えることにより、半導体スイッチング素子のdi/dtを調整してサージ電圧を抑制する。
なお、本実施形態は、第1の実施形態に示した出力電流値の制限と併用しても良い。
<第3の実施形態>
図10は、第3の実施形態に係るサージ電圧検出回路である。図1および図2に示す基本的なモータ制御ブロック図は第1の実施形態と同様である。
図10は、第3の実施形態に係るサージ電圧検出回路である。図1および図2に示す基本的なモータ制御ブロック図は第1の実施形態と同様である。
第3の実施形態におけるサージ電圧検出回路は、第1または第2の実施形態に加えて、ツェナー電圧の異なるツェナーダイオードと逆流防止ダイオードと抵抗器を直列接続した回路を半導体スイッチング素子と並列に接続することで、サージ電圧検出レベルの異なるサージ電圧検出回路を追加した形態である。サージ電圧検出回路1~3には、ツェナー電圧の異なるツェナーダイオード1~3を用いており、検出したツェナー電流を一定時間保持するラッチ回路または1ショットパルス出力回路を有する。
ここで、任意に設定するツェナー電圧Vz1~Vz3がサージ電圧検出レベルであり、各検出レベルを超えたサージ電圧が印加された場合に、各々のサージ電圧検出回路からの検出信号Vso1~Vso3が出力される。ここでは、各ツェナーダイオードは、ツェナー電圧1<ツェナー電圧2<ツェナー電圧3となる異なるツェナー電圧をそれぞれ有する。
なお、図11に示すように、ツェナー電圧の異なるツェナーダイオードを複数直列接続することで、サージ電圧検出レベルを設定する構成としても良い。
図12は、第3の実施形態におけるサージ電圧検出のフローチャートである。図12のフローチャートは、電流指令生成部7により実行される。出力されたサージ電圧検出信号Vso1~Vso3に従って、検出したサージ電圧のレベルを場合分けすることができるので、各々のサージ電圧レベルに妥当性比較用の電流指令値I_cmd_1~I_cmd_3を設定する。
ここでは、サージ電圧検出レベルとして、ツェナーダイオード1~3のツェナー電圧は、Vz1=480V、Vz2=540V、Vz3=600Vと設定し、比較用電流指令値は、I_cmd_1=50A、I_cmd_2=300A、I_cmd_3=500A、と設定する。
まずステップS201~203では、サージ電圧検出信号Vso1、Vso2、Vso3のH/L組み合わせにより、
Vso1=L、Vso2=H、Vso3=Hは、480V以上、540V未満のサージ電圧検出、
Vso1=L、Vso2=L、Vso3=Hは、540V以上、600V未満のサージ電圧検出、
Vso1=L、Vso2=L、Vso3=Lは、600V以上のサージ電圧検出、
というように、検出したサージ電圧のレベルを区分けすることができる。
Vso1=L、Vso2=H、Vso3=Hは、480V以上、540V未満のサージ電圧検出、
Vso1=L、Vso2=L、Vso3=Hは、540V以上、600V未満のサージ電圧検出、
Vso1=L、Vso2=L、Vso3=Lは、600V以上のサージ電圧検出、
というように、検出したサージ電圧のレベルを区分けすることができる。
ステップS201では、480V以上のサージ電圧検出有無をサージ電圧検出信号Vso1により判定する。
Vso1=Hの場合は、サージ電圧検出無しの判定であり、モータ駆動を継続する。
Vso1=Lの場合は、ステップS202にて、540V以上のサージ電圧検出有無をサージ電圧検出信号Vso2により判定する。
Vso2=Hの場合は、480V以上、540V未満のサージ電圧検出と判定され、ステップS211にて、サージ電圧検出時の電流指令値Is_cmdと予め設定した電流指令値I_cmd_1=50Aとを比較する。Is_cmd≦I_cmd_1であれば、ステップS221でサージ電圧異常信号を出力すると共に、ステップS231でゲートドライブ回路上のゲート抵抗切り替えによるサージ電圧抑制手段を実施する。一方で、Is_cmd>I_cmd_1であれば、大電流駆動でのサージ電圧検出と判断され、通常のモータ駆動を継続する。
Vso2=Lの場合は、ステップS203にて、Vz3=600V以上のサージ電圧検出有無をサージ電圧検出信号Vso3により判定する。
Vso3=Hの場合は、540V以上、600V未満のサージ電圧検出と判定され、ステップS212にて、サージ電圧検出時の電流指令値Is_cmdと予め設定した電流指令値I_cmd_2=300Aとを比較する。Is_cmd≦I_cmd_2であれば、ステップS222でサージ電圧異常信号を出力すると共に、ステップS232で電流指令制限によるサージ電圧抑制手段を実施する。一方で、Is_cmd>I_cmd_2であれば、電流指令値に対するサージ電圧異常があるが、モータの継続駆動は可能と判断できるため、ステップS211でサージ電圧異常信号を出力すると共に、ステップS231でゲートドライブ回路上のゲート抵抗切り替えによるサージ電圧抑制手段を実施する。
Vso3=Lの場合は、600V以上のサージ電圧検出と判定され、ステップS213にて、サージ電圧検出時の電流指令値Is_cmdと予め設定した電流指令値I_cmd_3=500Aとを比較する。Is_cmd≦I_cmd_3であれば、500A以下での遮断時に600V以上のサージ電圧が発生していると判定できるので、ステップS223でサージ電圧異常信号を出力すると共に、ステップS233でモータ駆動を即停止する。
一方で、Is_cmd>I_cmd_3であれば、電流指令値に対するサージ電圧異常があるが、モータの継続駆動は可能と判断できるため、ステップS222でサージ電圧異常信号を出力すると共にステップS232で電流指令制限によるサージ電圧抑制手段を実施する。
図13は第3の実施形態に係るサージ電圧検出レベルと半導体スイッチング素子の保護範囲を示す。サージ電圧検出レベルVzと所定の電流指令値I_cmdで囲まれる範囲が、各サージ電圧抑制手段が適用される範囲であり、上述した実施形態に依れば、電流指令値I_cmd_1=50Aとサージ電圧検出レベルVz1=480Vで設定され、2点鎖線で囲まれる範囲では、ゲート抵抗切り替えによるサージ電圧抑制手段を実施し、電流指令値I_cmd_2=300Aとサージ電圧検出レベルVz2=540Vで設定され、1点鎖線で囲まれる範囲では、電流指令制限によるサージ電圧抑制手段を実施し、電流指令値I_cmd_3=500Aとサージ電圧検出レベルVz2=600Vで設定され、実太線で囲まれる範囲ではモータ駆動を停止する。
以上のように、複数設けたサージ電圧検出レベルとサージ電圧検出時点での電流指令値との比較により、サージ電圧抑制手段を切り替えることができる。
サージ電圧検出レベルに対して実施するサージ電圧抑制手段の組み合わせは任意であり、種々のサージ電圧抑制手段を持つことにより、半導体スイッチング素子の過電圧破壊を避けながら、モータ駆動を継続できる電力変換システムおよび電力変換装置を提供することができる。
<第4の実施形態>
図14は、第4の実施形態に係るサージ電圧検出回路である。図1および図2に示す基本的なモータ制御ブロック図は第1の実施形態と同様である。第4の実施形態におけるサージ電圧検出回路は、半導体スイッチング素子のコレクタ-エミッタ(またはドレイン-ソース)間に印加される電圧を抵抗器で分圧して直接検出する。分圧されたコレクタ(またはドレイン)電圧は、ピークホールド回路を介することで、印加されたサージ電圧のピーク値Vpとして一定時間出力される。なお、サージ電圧検出レベルは、分圧抵抗の分圧比により決定される。
図14は、第4の実施形態に係るサージ電圧検出回路である。図1および図2に示す基本的なモータ制御ブロック図は第1の実施形態と同様である。第4の実施形態におけるサージ電圧検出回路は、半導体スイッチング素子のコレクタ-エミッタ(またはドレイン-ソース)間に印加される電圧を抵抗器で分圧して直接検出する。分圧されたコレクタ(またはドレイン)電圧は、ピークホールド回路を介することで、印加されたサージ電圧のピーク値Vpとして一定時間出力される。なお、サージ電圧検出レベルは、分圧抵抗の分圧比により決定される。
また、図15に示すように、分圧したコレクタ(またはドレイン)電圧は、差動増幅回路等を介して検出可能なレベルに変換し、マイクロコンピュータ等の演算処理装置で検出しても良い。演算処理装置等を用いることで、サージ電圧検出レベルはソフトで任意に設定することができる。そして、演算処理装置内で、任意に設定するサージ電圧検出レベルを閾値とし、ピークホールド回路から出力されたサージ電圧のピーク値とを比較することで、サージ電圧検出信号Vsの出力を決定する。
上述したサージ電圧検出回路により検出されたサージ電圧のピーク値Vp、またはサージ電圧検出信号Vsは、フォトカプラ等の絶縁伝達素子により、モータ制御回路に備えられた電流指令生成部7等へ入力される。電流指令生成部7は、入力されるサージ電圧検出信号Vsoのレベル(H/L)で、所定の電圧値以上のサージ電圧印加の有無を判定する。
本実施形態におけるサージ電圧異常検出後の処理は、第1の実施形態と同様に、図5で示すフローチャートに従い、サージ電圧抑制手段として電流指令を制限する手段を実施する。また、第2の実施形態のように、ゲート抵抗切り替え機能を備える場合には、図9に示すフローチャートに従い、サージ電圧抑制手段としてゲート抵抗切り替え手段を実施しても良い。さらに、第3の実施形態のように、複数のサージ電圧検出回路を備える場合には、図12に示すフローチャートに従い、サージ電圧検出レベルと電流指令値により、複数のサージ電圧抑制手段を切り替える手段を実施しても良い。
以上、第1から第4の実施形態の適用により、サージ電圧を検出することでIGBT等の半導体スイッチング素子を過電圧破壊から防ぐことが可能となり、信頼性の高い電力変換装置を提供することが可能になる。
また、上述したサージ電圧検出手段は、インバータ主回路のインダクタンスや電流変化率の異常によるサージ電圧の拡大を検知すると共に、サージ電圧異常判定部よりフェール信号を出力し、そのフェール信号をもとにモータ制御装置の操作盤や制御機器に表示する。例えば、電気自動車に適用される場合には、内部パネルに警告ランプを点灯させる等を実施することにより、モータ制御装置操作者またはメンテナンス作業者へ、サージ電圧異常を通知することができる。
加えて、小電流領域でのサージ電圧異常を早期に検出することにより、トルク制限をかけるまたはゲート抵抗を切り替える等のサージ電圧抑制手段を実施することで、半導体スイッチング素子への過電圧印加を避けながら、モータ制御システムを継続駆動することが可能になるため、信頼性の高い電力変換装置を提供することが可能となる。
本発明の応用範囲としては、本文中で例を挙げた永久磁石同期モータ駆動システムを利用した自動車の他、エレベータ、圧縮機等、半導体スイッチング素子により構成された電力変換回路を有し、特に遮断時には、半導体スイッチング素子にサージ電圧が印加されるようなシステムとそのシステムを利用している機器が考えられる。
上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国特許出願2011年第161532号(2011年7月25日出願)
日本国特許出願2011年第161532号(2011年7月25日出願)
Claims (11)
- 電力変換装置であって、
3相交流電流を出力するインバータ回路と、
前記3相交流電流を検出する電流センサと、
前記インバータ回路を駆動するモータ制御回路を備え、
前記インバータ回路は、前記モータ制御回路からのPWM信号に基づき前記インバータ回路を構成する半導体スイッチング素子を駆動するゲートドライブ回路とサージ電圧検出信号を検出するサージ電圧検出回路を備え、
前記モータ制御回路は、電流指令値を生成および記憶する電流指令生成部を備え、
前記サージ電圧検出回路により検出されたサージ電圧検出信号は前記モータ制御回路に入力され、
前記電流指令生成部は、前記サージ電圧検出信号を検出した際に前記電流指令生成部からの電流指令値と所定の電流指令値と対比することによりサージ電圧を抑制するサージ電圧抑制の実施の可否を決定する電力変換装置。 - 請求項1に記載の電力変換装置において、
前記電流指令生成部は、上位コントローラからのトルク指令値に基づいて電流指令を生成し、
前記電流指令生成部は、前記サージ電圧検出信号が検出された時点における電流指令値が所定の電流値以下である場合には、サージ電圧異常であると判定する電力変換装置。 - 請求項2に記載の電力変換装置において、
前記サージ電圧検出回路は、ツェナーダイオードとダイオードと抵抗器とを直列接続し、半導体スイッチング素子のコレクタ・エミッタ間またはドレイン・ソース間に並列に接続することで、所定のツェナー電圧値を超えた場合に前記ツェナーダイオードに流れるツェナー電流を検出する電力変換装置。 - 請求項2に記載の電力変換装置において、
前記サージ電圧検出回路は、分圧抵抗により半導体スイッチング素子のコレクタ・エミッタまたはドレイン・ソース間の電圧を分圧して取り込み、ピークホールド回路によってコレクタ・エミッタ間に印加されるサージ電圧のピーク値を検出する電力変換装置。 - 請求項3に記載の電力変換装置において、
前記サージ電圧検出回路は、複数のツェナーダイオードを直列接続することで、サージ電圧の検出レベルの異なる検出回路を備える電力変換装置。 - 請求項3又は5記載の電力変換装置において、
前記サージ電圧検出回路は、単一もしくは複数のツェナーダイオードとダイオードと抵抗器とを直列接続し、半導体スイッチング素子のコレクタ・エミッタまたはドレイン・ソース間に複数並列に接続することで、複数のサージ電圧検出レベルを有する電力変換装置。 - 請求項1乃至6いずれかに記載の電力変換装置において、
前記電流指令生成部は、上位コントローラからのトルク指令値に基づいて電流指令を生成し、
前記電流指令生成部は、前記サージ電圧検出部からのサージ電圧検出信号が入力された場合に前記電流指令値の最大出力値を制限する電力変換装置。 - 請求項1乃至6いずれかに記載の電力変換装置において、
前記電流指令生成部は、上位コントローラからのトルク指令値に基づいて電流指令を生成し、
前記電流指令生成部は、前記サージ電圧検出部からのサージ電圧検出信号が入力された場合に、サージ電圧が規定値以下になるまで電流値を下げる帰還制御を有する電力変換装置。 - 請求項1乃至6いずれかに記載の電力変換装置において、
前記電流指令生成部は、上位コントローラからのトルク指令値に基づいて電流指令を生成し、
前記電流指令生成部は、前記サージ電圧検出部からのサージ電圧検出信号が入力された場合に、前記電流指令値の生成を停止する電力変換装置。 - 請求項1乃至9いずれかに記載の電力変換装置において、
前記電流指令生成部は、上位コントローラからのトルク指令値に基づいて電流指令を生成し、
前記電流指令生成部は、マイクロコンピュータ等の演算処理装置により構成され、前記サージ電圧検出信号が検出された時点における電流指令値が、任意に定めた電流値以下である場合には、前記ゲートドライブ回路のゲート抵抗値を切り替えることでモータ駆動を継続する電力変換装置。 - モータと電力変換装置とを含む電力変換システムであって、
前記電力変換装置は、
3相交流電流を前記モータに出力するインバータ回路と、
前記3相交流電流を検出する電流センサと、
前記インバータ回路を駆動するモータ制御回路を備え、
前記インバータ回路は、前記モータ制御回路からのPWM信号に基づき前記インバータ回路を構成する半導体スイッチング素子を駆動するゲートドライブ回路とサージ電圧検出信号を検出するサージ電圧検出回路を備え、
前記モータ制御回路は、電流指令値を生成および記憶する電流指令生成部を備え、前記サージ電圧検出回路により検出されたサージ電圧検出信号は前記モータ制御回路に入力され、
前記サージ電圧検出信号を検出した際に前記電流指令生成部からの電流指令値と所定の電流指令値と対比することによりサージ電圧を抑制するサージ電圧抑制部の実施の可否を選択する選択部を備える電力変換システム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-161532 | 2011-07-25 | ||
JP2011161532A JP5452551B2 (ja) | 2011-07-25 | 2011-07-25 | 電力変換装置及び電力変換システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013015167A1 true WO2013015167A1 (ja) | 2013-01-31 |
Family
ID=47601017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/068181 WO2013015167A1 (ja) | 2011-07-25 | 2012-07-18 | 電力変換装置及び電力変換システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5452551B2 (ja) |
WO (1) | WO2013015167A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110719094A (zh) * | 2018-07-12 | 2020-01-21 | 株式会社电装 | 栅极驱动电路 |
CN111771330A (zh) * | 2018-02-26 | 2020-10-13 | 日立汽车系统株式会社 | 马达控制装置 |
WO2021177098A1 (ja) * | 2020-03-03 | 2021-09-10 | 株式会社デンソー | ゲート駆動装置 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5915551B2 (ja) * | 2013-01-21 | 2016-05-11 | 株式会社デンソー | 駆動対象スイッチング素子の駆動回路 |
JP5893064B2 (ja) * | 2014-03-18 | 2016-03-23 | 三菱電機株式会社 | モータの制御装置 |
JP6314053B2 (ja) * | 2014-07-31 | 2018-04-18 | 株式会社日立製作所 | 電力変換装置及びその制御方法 |
JP6822907B2 (ja) * | 2017-06-26 | 2021-01-27 | 株式会社東芝 | 半導体装置、電力変換装置、駆動装置、車両、及び、昇降機 |
JP6786465B2 (ja) * | 2017-11-07 | 2020-11-18 | 株式会社東芝 | 半導体装置、電力変換装置、駆動装置、車両、及び、昇降機 |
JP6981261B2 (ja) * | 2018-01-09 | 2021-12-15 | 株式会社デンソー | サージ電圧検出回路 |
JP6786543B2 (ja) | 2018-03-22 | 2020-11-18 | 株式会社東芝 | 半導体装置、電力変換装置、駆動装置、車両、及び、昇降機 |
US11431332B2 (en) | 2018-07-12 | 2022-08-30 | Denso Corporation | Gate drive circuit |
JP6908010B2 (ja) * | 2018-08-28 | 2021-07-21 | 株式会社デンソー | スイッチの駆動装置 |
JP7073999B2 (ja) * | 2018-09-18 | 2022-05-24 | 株式会社デンソー | スイッチの駆動回路 |
JP2022043655A (ja) * | 2020-09-04 | 2022-03-16 | 株式会社デンソー | ゲート駆動装置および負荷給電回路 |
JP7500388B2 (ja) | 2020-10-26 | 2024-06-17 | 株式会社マキタ | 電動作業機 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54111645A (en) * | 1978-02-20 | 1979-09-01 | Mitsubishi Electric Corp | Surge absorption indicating circuit |
JP2004236371A (ja) * | 2003-01-28 | 2004-08-19 | Hitachi Ltd | インバータを用いる電動機制御装置 |
JP2004357429A (ja) * | 2003-05-29 | 2004-12-16 | Mitsubishi Electric Corp | エレベーターの制御装置 |
JP2011024381A (ja) * | 2009-07-17 | 2011-02-03 | Fuji Electric Systems Co Ltd | 電力用半導体素子のスナバ回路 |
-
2011
- 2011-07-25 JP JP2011161532A patent/JP5452551B2/ja active Active
-
2012
- 2012-07-18 WO PCT/JP2012/068181 patent/WO2013015167A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54111645A (en) * | 1978-02-20 | 1979-09-01 | Mitsubishi Electric Corp | Surge absorption indicating circuit |
JP2004236371A (ja) * | 2003-01-28 | 2004-08-19 | Hitachi Ltd | インバータを用いる電動機制御装置 |
JP2004357429A (ja) * | 2003-05-29 | 2004-12-16 | Mitsubishi Electric Corp | エレベーターの制御装置 |
JP2011024381A (ja) * | 2009-07-17 | 2011-02-03 | Fuji Electric Systems Co Ltd | 電力用半導体素子のスナバ回路 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111771330A (zh) * | 2018-02-26 | 2020-10-13 | 日立汽车系统株式会社 | 马达控制装置 |
CN111771330B (zh) * | 2018-02-26 | 2024-02-02 | 日立安斯泰莫株式会社 | 马达控制装置 |
CN110719094A (zh) * | 2018-07-12 | 2020-01-21 | 株式会社电装 | 栅极驱动电路 |
WO2021177098A1 (ja) * | 2020-03-03 | 2021-09-10 | 株式会社デンソー | ゲート駆動装置 |
JP2021141661A (ja) * | 2020-03-03 | 2021-09-16 | 株式会社デンソー | ゲート駆動装置 |
JP7180626B2 (ja) | 2020-03-03 | 2022-11-30 | 株式会社デンソー | ゲート駆動装置 |
Also Published As
Publication number | Publication date |
---|---|
JP5452551B2 (ja) | 2014-03-26 |
JP2013027217A (ja) | 2013-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5452551B2 (ja) | 電力変換装置及び電力変換システム | |
US8269450B2 (en) | Winding switching apparatus and winding switching system | |
EP2899886B1 (en) | Semiconductor drive device and power conversion device using the same | |
US8471507B2 (en) | Electric power conversion system and electric power conversion device | |
JP6110796B2 (ja) | インバータを動作させるためのシステムおよび方法 | |
KR101628401B1 (ko) | 하이브리드 자동차 및 전기자동차의 인버터 고장 검출 방법 | |
JP2007259533A (ja) | 半導体素子の保護回路 | |
US20120248864A1 (en) | System and Method for Operating Inverters | |
JP2017112823A (ja) | フィールド制御スイッチの過電流保護のためのシステムおよび方法 | |
JP2018057105A (ja) | 半導体駆動装置ならびにこれを用いた電力変換装置 | |
KR101538094B1 (ko) | 인버터 시스템의 스위칭 소자 고장 검출 장치 및 방법 | |
CN111665400A (zh) | 缺相检测装置、包括该装置的压缩机及缺相检测方法 | |
US20170170715A1 (en) | Method of controlling an inverter | |
JP2008236907A (ja) | 電力変換装置のゲート制御回路及びゲート制御方法 | |
JP2019193384A (ja) | 半導体素子の駆動装置 | |
WO2016021329A1 (ja) | 電力変換装置 | |
JP2009254179A (ja) | 車両駆動装置 | |
JP2007336665A (ja) | ゲート駆動装置およびそれを備えた電力変換装置 | |
US9912281B2 (en) | Motor driving apparatus including overcurrent detection unit | |
GB2564700A (en) | A power electronics module and a method of detecting a fault in a power electronics module | |
US10291159B2 (en) | Control system, controller, and control method for wound induction machine | |
JP2019176696A (ja) | パワートランジスタの駆動回路、パワーモジュール | |
JP5893383B2 (ja) | 電力変換装置 | |
GB2564701A (en) | A power electronics module and a method of protecting a solid state switching device in a power electronics module | |
JP2018160972A (ja) | モータ駆動回路の制御装置及びモータ駆動回路の診断方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12818237 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12818237 Country of ref document: EP Kind code of ref document: A1 |