+

WO2013012115A1 - Energy recovery apparatus in a desalination system using reverse osmosis - Google Patents

Energy recovery apparatus in a desalination system using reverse osmosis Download PDF

Info

Publication number
WO2013012115A1
WO2013012115A1 PCT/KR2011/005526 KR2011005526W WO2013012115A1 WO 2013012115 A1 WO2013012115 A1 WO 2013012115A1 KR 2011005526 W KR2011005526 W KR 2011005526W WO 2013012115 A1 WO2013012115 A1 WO 2013012115A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
drain
valve body
inlet
high pressure
Prior art date
Application number
PCT/KR2011/005526
Other languages
French (fr)
Korean (ko)
Inventor
정기철
전상규
강만곤
권순광
최현철
Original Assignee
효성굿스프링스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효성굿스프링스 주식회사 filed Critical 효성굿스프링스 주식회사
Publication of WO2013012115A1 publication Critical patent/WO2013012115A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/18Specific valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the present invention relates to an energy recovery apparatus of a desalination system using reverse osmosis, and more particularly, to pressurize seawater against a membrane to remove salts by reverse osmosis in a system for desalination of seawater using reverse osmosis.
  • the present invention relates to an energy recovery apparatus of a desalination system using reverse osmosis that recovers energy used for pressurization by pressurizing low pressure raw water with the remaining pressure used.
  • the flow path switching valve used in the energy recovery device and the like is applied to various types of valve body as a means for opening and closing the flow path, one example of the spool type of the linear spool valve device disclosed in US Patent No. 5,797,37-49 Control valves.
  • the spool-type control valve device is capable of cross-feeding high-pressure seawater or brine to the high-pressure vessel 105 as the spool-type piston 103 moves. It is characterized by a structure.
  • such a conventional control valve device 101 is a high-pressure vessel 105 to the operating fluid inside the cylinder 107, that is, sea water or water by the spool-type piston 103 reciprocating inside the sleeve-type cylinder 107
  • the inner peripheral surface of the cylinder 107 There was a problem in that leakage of the working fluid between the piston 103 outer circumferential surface could not be avoided.
  • a rotary control valve other than the above-mentioned reciprocating control valve is proposed in US Pat. No. 7,600,535.
  • an external power is used to rotate an inner rotor to open and close a casing and a rotor flow path, thereby desired system response.
  • the rotary control valve is required to maintain a constant gap between the rotor and the casing, the leakage between the gaps is inevitable, and thus there is a problem that the system efficiency is lowered due to such leakage.
  • the present invention has been made to solve the problems of the conventional flow path switching valve as described above, in the energy recovery device of the desalination system having a flow path switching valve to open and close the valve as a working fluid seawater such as high pressure concentrated water or low pressure source water
  • the purpose is to improve the flow path switching performance of the valve by minimizing the leakage of the valve body for switching the flow path inside the valve pipe when the flow.
  • the present invention is a reverse osmosis module for producing a treated water from which the salt is removed by separating a portion of the sea water supplied to a high pressure in the high pressure water tank by the membrane to the ionic material and pure water; Is installed between the reverse osmosis module and the high pressure water tank, the at least one pair of the pressure of the remaining high pressure concentrated water reverse osmosis in the reverse osmosis module is transmitted to the low pressure seawater supplied from the low pressure water tank to the high pressure water tank Power recovery chamber; And a flow path switching valve installed between the reverse osmosis module and the power recovery chamber and alternately supplying the high pressure concentrated water discharged from the reverse osmosis module to each of the power recovery chambers.
  • the valve may include at least one inlet connected to a high pressure fluid source to allow the high pressure fluid to flow therein, at least one pair of outlets each formed at each side of the inlet to alternately discharge the internal fluid, and at both ends. At least one pair of drain holes respectively formed to alternately drain the fluid therein, each of the inlets, outlets, and drain holes adjacent to each other adjacent to the inner circumferential surface of the pipe body protruding from each other;
  • An actuating rod mounted in the tubular body so as to be able to move back and forth in the axial direction by an actuating means, the actuating rod having a suction or drainage catching means protruding one-to-one on the outer circumferential surface thereof;
  • a plurality of suction or drain valve bodies mounted on an outer circumferential surface of the working rod and configured to control the flow of fluid through the seat unit by repeating detachment with the seat unit corresponding to one to one.
  • any one of the suction catching means having the inlet interposed therebetween corresponds to one of the suction seats with the inlet interposed with the corresponding one of the suction valve bodies with the inlet interposed therebetween.
  • the other suction catching means is connected to the corresponding other intake valve.
  • a sieve is spaced apart from the corresponding other suction seat portion such that a flow from the inlet to the other outlet is connected, the one of said drainage catching means between said outlet and said drainage outlet.
  • the means corresponds to any one of the drain valve body between the outlet and the drain port, among the drain seat portions between the outlet and the drain port.
  • the one drain valve body is brought into close contact with the corresponding other drain seat and the position is such that the flow from the other outlet to the corresponding other drain port is cut off.
  • the other drainage catching means is such that the other drain valve body is in close contact with the corresponding other drain seat portion before the other suction valve body is separated from the corresponding other suction seat portion. It is preferable that it is formed in the position.
  • the one of the drain valves may be configured to contact the one of the suction seats with one of the suction valves, and then the one of the drain valves may correspond to the one of the suction seats.
  • a sieve is formed at a position to be spaced apart from the corresponding one of the drain seats, wherein either one of the suction valve bodies has one of the drain catching means draining the one of the drain valve bodies, In close contact with either of the suction seat portions before being separated from the seat portion, the flow from the inlet to the one drain hole continues while the one drain valve body is spaced from the one drain seat portion. It is desirable to be disconnected.
  • each of the suction valve bodies is fixed on the surface facing the inlet of the corresponding respective suction catching means.
  • the suction valve body may include: a poppet part fixed coaxially to the operation rod and having an outer diameter greater than an inner diameter of the suction seat part; A spool portion protruding from the poppet portion toward the suction seat portion, the spool portion being secured to a length sufficient to be in close contact with the suction seat portion before the drainage catching means is spaced apart from the drainage seat portion; And a guide portion protruding radially from the spool portion at a predetermined interval from the suction sheet portion to maintain the insertion state in the suction sheet portion even at the maximum opening position.
  • FIG. 1 is a longitudinal sectional view showing a conventional flow path switching valve.
  • Figure 2 is a schematic cross-sectional view showing an energy recovery device of the desalination system using a reverse osmosis according to an embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view showing a state in which an operating rod of the flow path switching valve shown in FIG.
  • FIG. 4 is a view showing a state in which the left drain valve body of the flow path switching valve shown in FIG. 2 is in close contact with the left drain seat portion;
  • FIG. 5 is a view showing a neutral state in which an actuating rod of the flow path switching valve shown in FIG. 2 is located at the center of the valve body.
  • FIG. 6 is a view showing a state in which the right suction valve body of the flow path switching valve shown in FIG. 2 starts to seal the right suction seat.
  • FIG. 7 is a longitudinal sectional view showing a state in which an operating rod of the flow path switching valve shown in FIG. 2 is located at a left dead center;
  • FIG. 8 is a view showing a state in which the right drain valve body of the flow path switching valve shown in FIG. 2 is in close contact with the right drain seat portion;
  • FIG. 9 is a view showing a state in which the left suction valve body of the flow path switching valve shown in FIG. 2 starts to seal the left suction seat.
  • FIGS. 10 is an enlarged cross-sectional view showing a state in which the suction valve body and the suction catching means shown in FIGS. 2 to 9 are fastened by bolts.
  • the energy recovery apparatus of the desalination system of the present invention includes a reverse osmosis module 3, a pair of power recovery chambers 5 and 6, and a flow path switching valve 7, as shown in FIG. It is composed.
  • the reverse osmosis module 3 is a part for separating seawater into ionic materials and pure water using reverse osmosis, and is connected to the high pressure water tank 9 as schematically shown in FIG.
  • the treated water is produced by removing salts and the like in the seawater by reverse osmosis.
  • the produced treated water is transferred to the production tank (11) and used for various purposes such as drinking water, and the seawater used for production of juicing water is concentrated water under high pressure and a pair of power recovery chambers (7) through the flow path switching valve (7). 5,6).
  • the pair of power recovery chambers (5,6) is a low pressure before sending the pressure energy of the high-pressure concentrate remaining in the reverse osmosis module 3 by the membrane (8) to the high-pressure water tank (9)
  • As a part for recovering the pressure energy is delivered to the raw water, as shown in Figure 2, between the reverse osmosis module 3 and the high pressure water tank (9), that is, the flow path switching valve (7) and high pressure water tank (9) is installed between.
  • the power recovery chambers 5 and 6 are arranged side by side with each inlet pipe 12 connected to the outlets 33 and 34 of the flow path switching valve 7, and the inlet pipes at the opposite ends of the outlet pipe 14. 12) is connected to the high pressure water tank (9).
  • the low pressure water tank 10 is connected to the outlet pipe 14 through the branch pipe 16, respectively, and the low-pressure pumped seawater is supplied to the respective power recovery chambers 5 and 6 through the outlet pipe 14. It is supposed to be.
  • each of the chambers 5 and 6 is equipped with a piston 17 acting as a partition, so that the high pressure concentrated water entering through the inlet pipe 12 and the low pressure source water entering through the outlet pipe 14 do not mix with each other. High pressure can be given and received.
  • outlet pipe 14 has a check valve 13 to allow the seawater contained in the pair of power recovery chambers 5 and 6 to pass only in the direction in which the high pressure water tank 9 is discharged.
  • 16 is provided with check valves 15 which allow the seawater of the low pressure water tank 10 to pass only in the direction to be supplied to the pair of power recovery chambers 5 and 6, respectively.
  • the flow path switching valve 7 is a direction switching means for alternately supplying the high pressure concentrated water discharged from the reverse osmosis module 3 to each of the pair of power recovery chambers 5 and 6 as described above. 3 to 9, the bar is installed between the reverse osmosis module 3 and the pair of power recovery chambers 5 and 6, again, the tubular body 30, the actuating rod 50, and the valve body. (70-1,70-2,70-3,70-4).
  • the tubular body 30 is a portion forming the body of the flow path switching valve, and has a long tube shape, and as shown in FIG. 3 or less, at least one inlet 31 in the center, each inlet 31. Two or more outlets 33 and 34, one on each side of the opening, and drain openings 35 and 36 on both sides of the opening, respectively.
  • the inlet 31 is connected to the reverse osmosis module (3) as shown in Figure 2 to 9 to supply the concentrated water of the high pressure to the inside of the tubular body 30, at least one as necessary It may be provided.
  • outlets 33 and 34 are opened at opposite sides of the inlet 31 of the tubular body 30 so that the high pressure concentrated water in the tubular body 30 can be discharged to the valve body 70-1, 70-2, 70-.
  • one of the power recovery chambers 5, 6 is selected and discharged alternately.
  • the drainage holes 35 and 36 discharge the low pressure source water flowing from either of the power recovery chambers 5 and 6 through the outlets 33 and 34, for example, from the chamber 6 of FIG. It is made to drain to the drain tank 19 through.
  • the tubular body 30 may have each inlet 31, outlet 33, 34, or other inlet 31, outlet 33, 34 adjacent to the drainage holes 35, 36 formed through the body as described above.
  • the seat portions 37-1, 37-2, 37-3, 37-4 protrude on the inner circumferential surface between the drainage holes 35, 36, respectively, to provide a plurality of valve bodies 70-1, 70-2, 70-. 3,70-4) together with the high-pressure concentrated water or low-pressure source water to control the flow of the flow, the cover block 39 through which the operating rod 50 is inserted is closed at both ends.
  • the actuating rod 50 is reciprocated in the axial direction in the tubular body 30 by an actuator connected to the outside, so that the flow path switching valve is driven by the valve body 70-1, 70-2, 70-3, 70-4.
  • an actuator connected to the outside, so that the flow path switching valve is driven by the valve body 70-1, 70-2, 70-3, 70-4.
  • As a part for controlling the flow path of 7), as shown in Figures 2 to 9 is mounted coaxially in the tubular body 30, one end is exposed to the outside of the tubular body 30 in a fluid sealed state and connected to the actuator
  • the reciprocating movement forward and backward in the axial direction in the tubular body 30, for this purpose is supported so as to be able to slide in a state of maintaining the watertight through the cover block 39 coupled to both ends of the tubular body 30.
  • the operation rod 50 includes a plurality of locking means 53 such as a stopper on the outer circumferential surface to press and move the plurality of valve bodies 70-1, 70-2, 70-3, 70-4 fitted on the outer circumferential surface.
  • -1,53-2,53-3,53-4 are protruded to be spaced apart from each other, as shown in Figure 3, the suction catching means between the inlet 31 of the tubular body 30 Corresponding suction on the left side of the suction seat portions 37-1, 37-2 with the suction catching means 53-1 on the left side of the drawing (53-1, 53-2) between the inlets 31.
  • the means 53-2 is provided with the corresponding suction seat portion 37- with the corresponding suction valve body 70-2 on the right side of the inlet 31 by the pressure of the high pressure concentrated water flowing through the inlet 31. 2 is formed in a position that does not cause interference so that it can be spaced apart from, and the outlet 33,
  • the drainage catching means 53-3 located at the left end of the tubular body 30 among the drainage catching means 53-3 and 53-4 between the 34 and the drains 35 and 36 has a left outlet 33 and a left side.
  • the corresponding left end drain valve body 70-3 is formed at a position that can be pressurized so as to be spaced apart from the corresponding left end drain seat portion 37-3 located between the drain holes 35,
  • the right end drainage catching means 53-4 has a corresponding right end drain seat 37-4 in which a corresponding right end drain valve body 70-4 is located between the right outlet 34 and the right drain port 36. It is formed in a position that does not cause interference so that it can be seated on the.
  • the left drain catching means 53-3 is a left drain valve before the left suction valve body 70-1 is spaced apart from the corresponding left suction seat portion 37-1.
  • the left drain valve is formed in a position such that the sieve 70-3 is sealed to the corresponding left drain seat portion 37-3 and before the inlet 31 and the left outlet 33 are fluidly connected as shown in FIG.
  • the sieve 70-3 is first brought into close contact with the left drain sheet portion 37-3.
  • the right end drain catching means 53-4 has a right suction seat portion corresponding to the right suction valve body 70-2 to which the right suction catching means 53-2 corresponds. After being in close contact with 37-2, the corresponding right drain valve body 70-4 is formed at a position to be spaced apart from the corresponding right drain seat portion 37-4.
  • the right intake valve body 53-2 has a right side before the drainage catching means 53-4 at the right end separates the right drain valve body 70-4 from the right drain seat 37-4. After being in close contact with the suction seat 37-2, the right suction seat until the right drain catching means 53-4 separates the right drain valve body 70-4 from the right drain seat 37-4. The inlet 31 to the right drain 36 while the right drain valve body 70-4 is spaced apart from the right drain seat 37-4. The flow continues to break.
  • the actuating rod 50 is the suction catching means 53 on the right side of the suction catching means 53-1 and 53-2 sandwiching the inlet 31 of the tubular body 30. -2) the corresponding suction valve element on the right side of the inlet 31 to the corresponding suction seat portion 37-2 on the right side of the suction seat portions 37-1, 37-2 with the inlet 31 interposed therebetween.
  • the suction catching means 53-1 on the left side of the suction catching means 53-1, 53-2 is the pressure of the high pressure concentrated water introduced through the inlet 31.
  • the drainage catching means 53-4 located at the right end of the tubular body 30 among the drainage catching means 53-3 and 53-4 between the drain 34 and the drains 35 and 36 are formed at the right outlet 34.
  • the corresponding right end drain valve body 70-4 is formed at a position capable of being pressurized so as to be spaced apart from each other, and the left end drain catching means 53-3 of the tubular body 30 has a left end drain valve body 70. -3) is formed at a position which does not cause interference so that it can be seated on the left end drain sheet portion 37-3 located between the left outlet 33 and the left drain port 35.
  • the right drain catching means 53-4 is drained from the right drain before the right suction valve body 70-2 is separated from the corresponding right suction seat portion 37-2.
  • the valve body 70-4 is formed at a position to be sealed to the corresponding right drain seat portion 37-4 so that the right drain before the inlet 31 and the right outlet 34 are fluidly connected as shown in FIG.
  • the valve body 70-4 is first brought into close contact with the right drain seat portion 37-4.
  • the left end drain catching means 53-3 includes a left suction seat part corresponding to the left suction valve body 70-1 to which the left suction catching means 53-1 corresponds. After being in close contact with 37-1, the corresponding left drain valve body 70-3 is formed at a position to be spaced apart from the corresponding left drain seat portion 37-3.
  • the left intake valve body 70-1 is left-sided before the left end drain catching means 53-3 separates the left drain valve body 70-3 from the left drain seat 37-3. After being in close contact with the suction seat 37-1, the left suction seat until the left drain catching means 53-3 has spaced apart the left drain valve body 70-3 from the left drain seat 37-3. The inlet 31 to the left drain 35 while the left drain valve body 70-3 is spaced apart from the left drain seat 37-3. The flow continues to break.
  • the plurality of valve bodies 70-1, 70-2, 70-3, and 70-4 are movably mounted on the outer circumferential surface of the actuating rod 50, and the outlets 33, 34 are provided by the actuating rod 50. And means for causing the flow paths to the drains 35 and 36 to selectively open and close crosswise, and each latching means so as to have a one-to-one correspondence toward the respective seat portions 37-1, 37-2, 37-3, 37-4. 53-1,53-2,53-3,53-4).
  • the suction valve body 70-1, 70-2 located between the inlet 31 and the outlet 33, 34 of the valve body 70-1, 70-2, 70-3, 70-4 is As shown in FIGS. 3 to 9, an axially movable insertion between the corresponding suction catching means 37-1, 37-2 and the inlet 31 on the actuating rod 50 is performed at the inlet 31. Although it may operate in close contact with each corresponding suction catching means 37-1, 37-2 by the pressure of the incoming high pressure concentrated water, as shown in FIG. 11, each corresponding suction catching means It is also possible to reciprocate from side to side with the working rod 50 in a state of being fixed by a fastening means such as a bolt 38 on the surface facing the inlet 31 of (37-1, 37-2).
  • a fastening means such as a bolt 38 on the surface facing the inlet 31 of (37-1, 37-2).
  • the intake valve body 70-1, 70-2 is also made up of a poppet portion 75, a spool portion 77, and a guide portion 79, as shown in FIG. 11.
  • the flow path formed through the sealing is blocked.
  • the spool portion 77 is a portion for allowing the suction valve body 70-1, 70-2 to maintain the close contact with the left and right suction seats 37-1, 37-2, that is, the close time.
  • the poppet part 75 protrudes coaxially toward the left and right suction seats 37-1 and 37-2, respectively, as shown in FIGS. 6 and 9.
  • the left and right suction seat portions 37 before the means 53-3, 53-4 separate the left and right drain valve bodies 70-3, 70-4 from the left and right drain sheet portions 37-3, 37-4, respectively. Secure enough length to allow close contact with -1,37-2).
  • the guide portion 79 is a portion that allows the intake valve body 70-1, 70-2 to maintain the insertion state in the left and right suction seat portions 37-1, 37-2 even in the maximum opening position.
  • the ends of the spool portion 77 extend coaxially toward the left and right suction sheet portions (,), and as shown in the drawing, the radially protruding radial portions protrude radially from each other. While maintaining the insertion state of 37-1, 37-2, it is also possible to maintain the flow of the high pressure concentrated water through the intake valve body (70-1, 70-2) above a certain level.
  • the energy recovery device 1 of the present invention supplies the high pressure concentrated water discharged from the reverse osmosis module 3 to the power recovery chamber 5 on the right side through the flow path switching valve 7 at the position shown in FIG. 2.
  • the high pressure concentrated water supplied to the power recovery chamber 5 strongly presses the piston 17 and moves to the downstream side.
  • the low pressure source water in the chamber 5 is pressurized to high pressure through the piston 17 and is supplied to the high pressure water tank 9 through the check valve 13 in the outlet pipe 14.
  • the flow path switching valve 7 opens to the drain 19, the low pressure source water of the low pressure water tank 10 passes through the check valve 13 and the left power recovery chamber 6 through the branch pipe 16. Is supplied.
  • the flow path switching valve 7 as shown in Figures 2 and 3, the operating rod 50 is in the right-side point, the intake valve body 70-1 of the left side of the inlet 31 is the left suction locking means Since it is pressurized by 53-1 and in close contact with the left suction sheet portion 37-1 at the rightmost position, the flow path leading from the inlet 31 to the left outlet 33 is blocked.
  • the suction catching means 53-2 on the right side of the inlet 31 is sufficiently separated from the inlet 31 on the right seat portion 37-2 to the right, the suction valve body 70-2 on the right side of the inlet 31. Is pushed open until it is caught by the right suction catching means 53-2 by the pressure of the high pressure concentrated water flowing from the inlet 31.
  • the flow path from the inlet 31 to the right outlet 34 is connected, and the working fluid introduced into the inlet 31 is discharged to the right power recovery chamber 5 through the right outlet 34.
  • the left end drain valve body 70-3 is pushed by the left end drain catching means 53-3 to fall off the left end drain seat portion 37-3, whereby the left outlet 33 is left drain port ( 35) to drain the low pressure source water introduced into the left power recovery chamber (5), as well as the low pressure source water received at the left end of the tubular body (30).
  • the drain valve body 70-4 at the right end is pressurized to the right end by the pressure of the high pressure condensate flowing into the inlet 31, and the right outlet 34 is in close contact with the right end drain seat 37-4. ) And the right drain 36 is cut off.
  • the left end drain catching means 53-3 first enters the left end drain seat 37-3, Before the left intake valve element 70-1 is spaced apart from the left intake seat portion 37-1, the left drain valve element 70-3 is released by the friction force with the actuating rod 50 or in the tubular body 30. It reaches the left drain seat part 37-3 by the physical force, and blocks the flow between the outlet 33 and the drain hole 35. At this time, the left suction valve body 70-1 and the right end drain valve body 70-4 maintain their close contact with the left suction seat unit 37-1 and the right end drain seat unit 37-4, respectively. On the other hand, since the right suction valve body 70-2 remains in an open state before the spool portion is in close contact with the right suction seat portion 37-2, the fluid connection between the inlet 31 and the right outlet 34 is continued. do.
  • the flow path switching valve 7 is placed in the neutral section.
  • the left suction locking means 53-1 moves to the left so that the spool portion of the left suction valve body 70-1 is spaced apart from the left suction seat portion 37-1, while the left and right end drain valve body 70- 3, 70-4 is strongly adhered to the left and right end drain seat portions 37-3, 37-4 by the high pressure concentrated water, and the right suction valve body 70-2 has the spool portion of the right suction seat portion ( 37-2), the high pressure concentrated water flowing from the inlet 31 is divided into the left and right outlets 33 and 34 and discharged. In this way, the high pressure concentrated water is divided into two chambers 5 and 6, and the speed of the piston 17 in the chambers 5 and 6 is reduced, and thus, the sudden change of the fluid is suppressed, so that the water shock phenomenon can be reduced. do.
  • the right suction valve body 70-2 is pushed to the left side by the right suction catching means 53-2, and accordingly, the right side
  • the right intake valve body 70-2 is immediately spooled from the right end drain valve body 70-4 pushed by the end drain catching means 53-4 from the right end drain seat 37-4.
  • the close contact with the right suction seat 37-2 blocks the fluid connection between the inlet 31 and the right outlet 34.
  • the high pressure concentrated water flowing from the inlet 31 is discharged to the left power recovery chamber 6 through the left outlet 33 to pressurize the low pressure source water in the chamber 6 to a high pressure to supply the high pressure water tank 9.
  • the right power recovery chamber (5) is a low pressure source tank (10). It is filled with low pressure source water supplied from.
  • the left end drain valve body 70-3 is strongly adhered to the left end drain seat 37-3 by a high pressure concentrated water that has passed through the guide part of the left suction valve body 70-1, and thus the left end drain port 70 35) Prevent leakage of high pressure concentrate into the furnace. Further, due to the long spool portion of the right intake valve body 70-2, the flow paths of the inlet 31 and the right end drain 36 are first blocked, and then the flow path of the right end drain 36 and the right outlet 34 is Since it is open, the high pressure concentrated water flowing from the inlet 31 can be prevented from directly exiting the right drain 36.
  • the spool portion of the right suction valve body 70-2 is the right suction seat portion as shown in FIG. 4.
  • the right end drain valve body 70-4 is in close contact with the right end drain seat 37-4 before the flow paths of the inlet 31 and the right outlet 34 are spaced apart from 37-2.
  • the flow path between the 34 and the right end drain 36 is first closed.
  • the flow path switching valve 7 passes through the neutral section shown in FIG. 5 by opening the right intake valve body 70-2 by moving to the right. It will be in the state shown in FIG. In this state, the flow path switching valve 7 is left intake valve element 70- before the left end drain valve element 70-3 is spaced apart from the left end drain seat portion 37-3 in the same manner as shown in FIG. 1) first blocks the flow path leading from the inlet 31 to the left outlet 33 so that the high-pressure concentrated water flowing from the inlet 31 immediately opens through the left end drain 35 when the left end drain 35 is opened. It is possible to prevent the discharge.
  • the valve body of the flow path switching valve used to recover the pressure energy of the high pressure concentrated water is connected to one working rod and one actuator connected to the working rod. Operation is possible, which can significantly reduce the cost of equipment, maintenance or operation according to the valve object.
  • the suction valve body has a poppet structure having an inclined surface and a spool structure extending the sealing contact time by the sliding contact surface, the high pressure concentrated water discharged from the reverse osmosis module is not directly drained to the drain tank during valve opening and closing. It is possible to prevent the high pressure concentrated water from leaking inside the pipe, thereby minimizing the loss of pressure energy of the high pressure concentrated water, thereby maximizing the energy recovery rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to an energy recovery apparatus in a desalination system using reverse osmosis, which consists essentially of: a reverse osmosis module (3); a pair of power recovery chambers (5); and a passage switching valve (7). The passage switching valve (7) is made of one or more inlets (31) into which a high pressure fluid flows, at least one pair of outlets (33 and 34) for alternatingly discharging fluid from the inside, and at least one pair of drain holes (35 and 36) for alternatingly draining fluid from the inside, and consists essentially of: a tube body (30) having intake or drain sheet portions (37-1, 37-2, 37-3, and 37-4) each projecting adjacent to one another on an inner periphery thereof between the inlets (31), the outlets (33 and 34), and the drain holes (35 and 36); an actuating rod (50) having an intake or drain catching means (53-1, 53-2, 53-3, and 53-4) projecting on an outer periphery thereof so as to correspond to the sheet portions (37-1,37-2,37-3, and 37-4) on a one-to-one basis; and a plurality of intake or drain valve bodies (70-1, 70-2, 70-3, and 70-4) for blocking the flow of the fluid through the sheet portions (37-1, 37-2, 37-3, and 37-4). Accordingly, the opening and closing operation of the valves can be simultaneously controlled using one actuating rod and an actuator, so that equipment and operating costs can be dramatically reduced, and since high pressure concentrated water is not directly drained into a drain tank during the valve operation, the recovery rate of pressure energy can be dramatically increased.

Description

역삼투압을 이용한 담수화 시스템의 에너지 회수장치Energy recovery system of desalination system using reverse osmosis
본 발명은 역삼투압을 이용한 담수화 시스템의 에너지 회수장치에 관한 것으로, 보다 상세하게는 역삼투압 현상을 이용해 해수를 담수화하는 시스템에 있어서 역삼투압에 의해 염분 등을 제거하도록 멤브레인에 대해 해수를 가압하는 데 사용되고 남은 압력으로 저압원수를 가압함으로써 가압에 사용되는 에너지를 회수할 수 있도록 한 역삼투압을 이용한 담수화 시스템의 에너지 회수장치에 관한 것이다.The present invention relates to an energy recovery apparatus of a desalination system using reverse osmosis, and more particularly, to pressurize seawater against a membrane to remove salts by reverse osmosis in a system for desalination of seawater using reverse osmosis. The present invention relates to an energy recovery apparatus of a desalination system using reverse osmosis that recovers energy used for pressurization by pressurizing low pressure raw water with the remaining pressure used.
일반적으로, 에너지회수장치 등에 사용되는 유로절환밸브는 유로를 개폐하는 수단으로서 다양한 형태의 밸브체가 적용되는 바, 그 하나의 예로 미국특허 제5,797,37-49호에 개시된 선형 스풀밸브장치의 스풀형 제어밸브를 들 수 있다.In general, the flow path switching valve used in the energy recovery device and the like is applied to various types of valve body as a means for opening and closing the flow path, one example of the spool type of the linear spool valve device disclosed in US Patent No. 5,797,37-49 Control valves.
이 스풀형 제어밸브장치는 도 1에 101로 도시된 바와 같이, 스풀형의 피스톤(103)의 움직임에 따라 고압의 해수나 함수(鹹水;brine)를 고압베셀(105)로 교차 공급할 수 있도록 한 구조를 특징으로 한다.As shown in FIG. 1, the spool-type control valve device is capable of cross-feeding high-pressure seawater or brine to the high-pressure vessel 105 as the spool-type piston 103 moves. It is characterized by a structure.
그러나, 이러한 종래의 제어밸브장치(101)는 슬리브 타입의 실린더(107) 내부를 왕복 이동하는 스풀형 피스톤(103)에 의해 실린더(107) 내부의 작동유체 즉, 해수 또는 함수를 고압베셀(105)로 교차 배출하도록 되어 있는 바, 작동유체가 해수나 함수와 같이 점성이 거의 없는 유체인 경우에 피스톤(103)이 실린더(107) 내에서 원활하게 미끄럼 이동할 수 있도록 하기 위해서는 실린더(107) 내주면과 피스톤(103) 외주면 사이로 작동유체가 누설되는 것을 피할 수 없게 되는 문제점이 있었다.However, such a conventional control valve device 101 is a high-pressure vessel 105 to the operating fluid inside the cylinder 107, that is, sea water or water by the spool-type piston 103 reciprocating inside the sleeve-type cylinder 107 In order to allow the piston 103 to slide smoothly in the cylinder 107 when the working fluid is a fluid having little viscosity such as seawater or water, the inner peripheral surface of the cylinder 107 There was a problem in that leakage of the working fluid between the piston 103 outer circumferential surface could not be avoided.
이러한 문제점을 해결하기 위해 미국특허 제7,540,230호에 개시된 3방향 포핏밸브가 제안된 바, 이 밸브에서는 위 특허와 같은 실린더와 피스톤 사이의 누설을 최소화하기 위해 포핏형상의 제어밸브를 사용하여 누설을 거의 없앰으로써 에너지 효율을 높일 수 있으나, 포핏밸브가 복수로 사용되므로 대응하는 복수의 액츄에이터가 사용되어야 하고, 또한 각각의 액츄에이터를 별도로 제어하여야 하는 바, 전체적인 구조나 제어가 복잡해 지고, 따라서 설비 및 유지관리 등의 비용이 증대되는 문제점이 있었다. In order to solve this problem, a three-way poppet valve disclosed in US Pat. No. 7,540,230 has been proposed, which uses a poppet-shaped control valve to minimize the leakage between the cylinder and the piston. Energy efficiency can be increased by eliminating, but since a plurality of poppet valves are used, a plurality of corresponding actuators must be used, and each actuator must be controlled separately, which complicates the overall structure or control, and thus the equipment and maintenance. There was a problem that the cost of such an increase.
또 다른 예로서 위와 같은 왕복형 제어밸브가 아닌 회전형 제어밸브가 미국특허 제7,600,535호로 제안된 바, 이 특허에서는 외부 동력을 사용하여 내부 로터를 회전시킴으로써 케이싱과 로터의 유로를 개폐시켜 원하는 시스템 응답을 얻도록 되어 있으나, 회전형 제어밸브는 로터와 케이싱 사이에 일정한 간극을 유지하는 것이 필수적이므로, 마찬가지로 간극 사이의 누설은 필연적이며, 따라서 이러한 누설로 인해 시스템 효율이 저하되는 문제점이 있었다.As another example, a rotary control valve other than the above-mentioned reciprocating control valve is proposed in US Pat. No. 7,600,535. In this patent, an external power is used to rotate an inner rotor to open and close a casing and a rotor flow path, thereby desired system response. However, since the rotary control valve is required to maintain a constant gap between the rotor and the casing, the leakage between the gaps is inevitable, and thus there is a problem that the system efficiency is lowered due to such leakage.
본 발명은 위와 같은 종래의 유로절환밸브가 가지고 있는 문제점을 해결하기 위해 안출된 것으로, 유로절환밸브를 갖는 담수화 시스템의 에너지 회수장치에서 고압 농축수나 저압원수와 같은 해수를 작동유체로 하여 밸브를 개폐할 때 유로를 절환하는 밸브체가 밸브 관체 내부에서 누설되는 것을 최소화시켜 밸브의 유로절환 성능을 향상시키고자 하는 데 그 목적이 있다. The present invention has been made to solve the problems of the conventional flow path switching valve as described above, in the energy recovery device of the desalination system having a flow path switching valve to open and close the valve as a working fluid seawater such as high pressure concentrated water or low pressure source water The purpose is to improve the flow path switching performance of the valve by minimizing the leakage of the valve body for switching the flow path inside the valve pipe when the flow.
또한, 하나의 작동수단에 의해 밸브체의 개폐동작을 수행함으로써 밸브가 적용된 시스템 전체의 구조를 크게 단순화시키고, 그에 따라 설비나 유지관리에 소요되는 비용을 대폭적으로 절감시키고자 하는 데 또 다른 목적이 있다.In addition, by carrying out the opening and closing operation of the valve body by a single operation means to greatly simplify the structure of the entire system to which the valve is applied, and to further reduce the cost required for installation and maintenance have.
아울러, 밸브 관체 내의 밸브체 배열 또는 형상을 최적화함으로써 고압농축수가 가진 압력에너지의 손실을 최소화하여 압력에너지의 회수율을 향상시키고자 하는 데 또 다른 목적이 있다.In addition, it is another object to improve the recovery rate of the pressure energy by minimizing the loss of pressure energy of the high pressure concentrated water by optimizing the arrangement or shape of the valve body in the valve body.
위와 같은 목적을 달성하기 위해 본 발명은 고압원수조에서 고압으로 공급되는 해수의 일부를 멤브레인에 의해 이온성 물질과 순수로 분리하여 염분이 제거된 처리수를 생산하는 역삼투 모듈; 상기 역삼투 모듈과 상기 고압원수조 사이에 설치되어, 상기 역삼투 모듈에서 역삼투되고 남은 고압농축수의 압력이 저압원수조에서 고압원수조로 공급되는 저압의 해수에 전달되도록 하는 적어도 한 쌍의 동력회수챔버; 및 상기 역삼투 모듈과 상기 동력회수챔버 사이에 설치되어, 상기 역삼투 모듈에서 배출되는 상기 고압농축수를 상기 동력회수챔버 각각에 교대로 공급하는 유로절환밸브;를 포함하여 이루어지되, 상기 유로절환밸브는, 고압유체 공급원에 연결되어 고압의 유체가 내부로 유입되도록 하는 하나 이상의 입구, 상기 입구의 양측에 각각 하나씩 형성되어 내부의 유체가 교대로 유출되도록 하는 적어도 한 쌍의 출구, 및 양측단에 형성되어 내부의 유체를 교대로 배수하는 적어도 한 쌍의 배수구가 각각 형성되어 있으며, 내주면의 상호 인접한 상기 각각의 입구, 출구, 및 배수구 사이에는 흡입 또는 배수 시트부가 각각 돌출되어 있는 관체; 작동수단에 의해 축방향으로 전후진 가능하게 상기 관체 내에 장착되되, 외주면 상에 상기 시트부와 일대일 대응하도록 흡입 또는 배수 걸림수단이 돌출되어 있는 작동로드; 및 상기 작동로드 외주면 상에 장착되어, 일대일 대응하는 상기 시트부와 착탈을 반복함으로써 상기 시트부를 통한 유체의 흐름을 단속하도록 되어 있는 복수의 흡입 또는 배수 밸브체;를 포함하여 구성되는 역삼투압을 이용한 담수화 시스템의 에너지 회수장치를 제공한다.In order to achieve the above object, the present invention is a reverse osmosis module for producing a treated water from which the salt is removed by separating a portion of the sea water supplied to a high pressure in the high pressure water tank by the membrane to the ionic material and pure water; Is installed between the reverse osmosis module and the high pressure water tank, the at least one pair of the pressure of the remaining high pressure concentrated water reverse osmosis in the reverse osmosis module is transmitted to the low pressure seawater supplied from the low pressure water tank to the high pressure water tank Power recovery chamber; And a flow path switching valve installed between the reverse osmosis module and the power recovery chamber and alternately supplying the high pressure concentrated water discharged from the reverse osmosis module to each of the power recovery chambers. The valve may include at least one inlet connected to a high pressure fluid source to allow the high pressure fluid to flow therein, at least one pair of outlets each formed at each side of the inlet to alternately discharge the internal fluid, and at both ends. At least one pair of drain holes respectively formed to alternately drain the fluid therein, each of the inlets, outlets, and drain holes adjacent to each other adjacent to the inner circumferential surface of the pipe body protruding from each other; An actuating rod mounted in the tubular body so as to be able to move back and forth in the axial direction by an actuating means, the actuating rod having a suction or drainage catching means protruding one-to-one on the outer circumferential surface thereof; And a plurality of suction or drain valve bodies mounted on an outer circumferential surface of the working rod and configured to control the flow of fluid through the seat unit by repeating detachment with the seat unit corresponding to one to one. Provide an energy recovery device of the desalination system.
또한, 상기 입구를 사이에 둔 상기 흡입 걸림수단 중 어느 한 쪽 걸림수단이 상기 입구를 사이에 둔 상기 흡입 밸브체 중 대응하는 어느 한 쪽 밸브체를 상기 입구를 사이에 둔 상기 흡입 시트부 중 대응하는 어느 한 쪽 시트부에 밀착시켜 상기 입구에서 상기 어느 한 쪽 흡입 밸브체와 대응하는 어느 한 쪽 출구로의 유동을 단절시킨 때, 상기 다른 한 쪽 흡입 걸림수단은 대응하는 상기 다른 한 쪽 흡입 밸브체를 대응하는 상기 다른 한 쪽 흡입 시트부에서 이격시켜 상기 입구에서 상기 다른 한 쪽 출구로의 유동이 연결되도록 하는 위치에 형성되고, 상기 출구와 상기 배수구 사이의 상기 배수 걸림수단 중 어느 한 쪽 걸림수단은 상기 출구와 상기 배수구 사이의 배수 밸브체 중 어느 한 쪽 밸브체를 상기 출구와 상기 배수구 사이의 배수 시트부 중 대응하는 어느 한 쪽 시트부에서 이격시켜 대응하는 상기 어느 한 쪽 출구에서 상기 배수구 중 대응하는 어느 한 쪽 배수구로의 유동이 연결되도록 하는 위치에 형성되며, 상기 다른 한 쪽 배수 걸림수단은 대응하는 상기 다른 한 쪽 배수 밸브체를 대응하는 상기 다른 한 쪽 배수 시트부에 밀착시켜 상기 다른 한 쪽 출구에서 대응하는 상기 다른 한 쪽 배수구로의 유동이 단절되도록 하는 위치에 형성되는 것이 바람직하다.Further, any one of the suction catching means having the inlet interposed therebetween corresponds to one of the suction seats with the inlet interposed with the corresponding one of the suction valve bodies with the inlet interposed therebetween. When the inlet is cut off from the inlet and the flow from the one inlet valve body to the corresponding one outlet stops, the other suction catching means is connected to the corresponding other intake valve. A sieve is spaced apart from the corresponding other suction seat portion such that a flow from the inlet to the other outlet is connected, the one of said drainage catching means between said outlet and said drainage outlet. The means corresponds to any one of the drain valve body between the outlet and the drain port, among the drain seat portions between the outlet and the drain port. Is formed at a position such that the flow from one of the corresponding outlets to the corresponding one of the drains is connected to one of the drains so as to be spaced apart from each other; Preferably, the one drain valve body is brought into close contact with the corresponding other drain seat and the position is such that the flow from the other outlet to the corresponding other drain port is cut off.
또한, 상기 다른 한 쪽 배수 걸림수단은 상기 다른 한 쪽 흡입 밸브체가 대응하는 상기 다른 한 쪽 흡입 시트부에서 이격되기 이전에 상기 다른 한 쪽 배수 밸브체가 대응하는 다른 한 쪽 배수 시트부에 밀착되도록 하는 위치에 형성되어 있는 것이 바람직하다.In addition, the other drainage catching means is such that the other drain valve body is in close contact with the corresponding other drain seat portion before the other suction valve body is separated from the corresponding other suction seat portion. It is preferable that it is formed in the position.
또한, 상기 어느 한 쪽 배수 걸림수단은 상기 어느 한 쪽 흡입 걸림수단이 대응하는 상기 어느 한 쪽 흡입 밸브체를 대응하는 상기 어느 한 쪽 흡입 시트부에 밀착시킨 후에, 대응하는 상기 어느 한 쪽 배수 밸브체를 대응하는 상기 어느 한 쪽 배수 시트부에서 이격되도록 하는 위치에 형성되어 있으며, 상기 어느 한 쪽 흡입 밸브체는 상기 어느 한 쪽 배수 걸림수단이 상기 어느 한 쪽 배수 밸브체를 상기 어느 한 쪽 배수 시트부에서 이격시키기 이전에 상기 어느 한 쪽 흡입 시트부에 밀착되어, 상기 어느 한 쪽 배수 밸브체가 상기 어느 한 쪽 배수 시트부에서 이격되는 동안 상기 입구에서 상기 어느 한 쪽 배수구로의 유동을 계속해서 단절시키도록 되어 있는 것이 바람직하다.The one of the drain valves may be configured to contact the one of the suction seats with one of the suction valves, and then the one of the drain valves may correspond to the one of the suction seats. A sieve is formed at a position to be spaced apart from the corresponding one of the drain seats, wherein either one of the suction valve bodies has one of the drain catching means draining the one of the drain valve bodies, In close contact with either of the suction seat portions before being separated from the seat portion, the flow from the inlet to the one drain hole continues while the one drain valve body is spaced from the one drain seat portion. It is desirable to be disconnected.
또한, 각각의 상기 흡입 밸브체는 대응하는 각각의 상기 흡입 걸림수단의 상기 입구를 향한 면 상에 고정되어 있는 것이 바람직하다.Further, it is preferable that each of the suction valve bodies is fixed on the surface facing the inlet of the corresponding respective suction catching means.
또한, 상기 흡입 밸브체는, 상기 작동로드에 동축 상으로 고정되되, 상기 흡입 시트부의 내경보다 큰 외경을 갖는 포핏부; 상기 포핏부에서 상기 흡입 시트부를 향하여 돌출되되, 상기 배수 걸림수단이 상기 배수 밸브체를 상기 배수 시트부에서 이격시키기 이전에 상기 흡입 시트부에 밀착되기에 충분한 길이를 확보하도록 되어 있는 스풀부; 및 상기 스풀부에서 상기 흡입 시트부를 항하여 상호 간에 일정 간격을 두고 방사상으로 돌출되어, 최대 개방위치에서도 상기 흡입 시트부에의 삽입 상태를 유지하도록 되어 있는 가이드부;를 포함하여 이루어지는 것이 바람직하다.The suction valve body may include: a poppet part fixed coaxially to the operation rod and having an outer diameter greater than an inner diameter of the suction seat part; A spool portion protruding from the poppet portion toward the suction seat portion, the spool portion being secured to a length sufficient to be in close contact with the suction seat portion before the drainage catching means is spaced apart from the drainage seat portion; And a guide portion protruding radially from the spool portion at a predetermined interval from the suction sheet portion to maintain the insertion state in the suction sheet portion even at the maximum opening position.
도 1은 종래의 유로절환밸브를 도시한 종단면도.1 is a longitudinal sectional view showing a conventional flow path switching valve.
도 2는 본 발명의 일실시예에 따른 역삼투압을 이용한 담수화 시스템의 에너지 회수장치를 도시한 단면 개략도.Figure 2 is a schematic cross-sectional view showing an energy recovery device of the desalination system using a reverse osmosis according to an embodiment of the present invention.
도 3은 도 2에 도시된 유로절환밸브의 작동로드가 우사점에 놓인 상태를 도시한 종단면도.3 is a longitudinal sectional view showing a state in which an operating rod of the flow path switching valve shown in FIG.
도 4는 도 2에 도시된 유로절환밸브의 좌측 배수 밸브체가 좌측 배수 시트부에 밀착되기 시작한 상태를 도시하는 도면.FIG. 4 is a view showing a state in which the left drain valve body of the flow path switching valve shown in FIG. 2 is in close contact with the left drain seat portion; FIG.
도 5는 도 2에 도시된 유로절환밸브의 작동로드가 밸브 관체 내의 정중앙에 위치하는 중립 상태를 도시하는 도면. FIG. 5 is a view showing a neutral state in which an actuating rod of the flow path switching valve shown in FIG. 2 is located at the center of the valve body.
도 6은 도 2에 도시된 유로절환밸브의 우측 흡입 밸브체가 우측 흡입 시트부를 밀폐하기 시작한 상태를 도시하는 도면.FIG. 6 is a view showing a state in which the right suction valve body of the flow path switching valve shown in FIG. 2 starts to seal the right suction seat. FIG.
도 7은 도 2에 도시된 유로절환밸브의 작동로드가 좌사점에 놓인 상태를 도시한 종단면도.FIG. 7 is a longitudinal sectional view showing a state in which an operating rod of the flow path switching valve shown in FIG. 2 is located at a left dead center; FIG.
도 8은 도 2에 도시된 유로절환밸브의 우측 배수 밸브체가 우측 배수 시트부에 밀착되기 시작한 상태를 도시하는 도면.FIG. 8 is a view showing a state in which the right drain valve body of the flow path switching valve shown in FIG. 2 is in close contact with the right drain seat portion; FIG.
도 9는 도 2에 도시된 유로절환밸브의 좌측 흡입 밸브체가 좌측 흡입 시트부를 밀폐하기 시작한 상태를 도시하는 도면.FIG. 9 is a view showing a state in which the left suction valve body of the flow path switching valve shown in FIG. 2 starts to seal the left suction seat.
도 10은 도 2 내지 도 9에 도시된 흡입 밸브체와 흡입 걸림수단이 볼트로 체결된 상태를 도시한 확대 단면도. 10 is an enlarged cross-sectional view showing a state in which the suction valve body and the suction catching means shown in FIGS. 2 to 9 are fastened by bolts.
도 11은 도 2 내지 도 10에 도시된 밸브체의 사시도.11 is a perspective view of the valve body shown in FIGS. 2 to 10.
* 부호의 설명 ** Explanation of Codes *
1 : 역삼투압을 이용한 담수화 시스템의 에너지 회수장치1: Energy recovery device of desalination system using reverse osmosis
3 : 역삼투 모듈 5, 6: 동력회수챔버3: reverse osmosis module 5, 6: power recovery chamber
7 : 유로절환밸브 8 : 멤브레인7: flow path switching valve 8: membrane
9 : 고압원수조 10 : 저압원수조 9: high pressure water tank 10: low pressure water tank
11 : 생산수조 13, 15 : 체크밸브11: production tank 13, 15: check valve
17 : 피스톤 19 : 배수조17: piston 19: sump
30 : 관체 31 : 입구30: tube 31: entrance
33, 34 : 우측 출구 35, 36 : 배수구 33, 34: right exit 35, 36: drain
37-1,-2,-3,-4 : 시트부 50 : 작동로드37-1, -2, -3, -4: Seat portion 50: Operation rod
53-1,-2,-3,-4 : 걸림수단 70-1,-2,-3,-4 : 밸브체53-1, -2, -3, -4: locking means 70-1, -2, -3, -4: valve body
75 : 포핏부 77 : 스풀부75: poppet portion 77: spool portion
79 : 가이드부79: guide part
이하, 본 발명의 일실시예에 따른 담수화 시스템의 에너지 회수장치를 첨부도면을 참조하여 설명한다.Hereinafter, an energy recovery apparatus of a desalination system according to an embodiment of the present invention will be described with reference to the accompanying drawings.
본 발명의 담수화 시스템의 에너지 회수장치는 도 2 도면부호 1로 도시된 바와 같이, 역삼투 모듈(3), 한 쌍의 동력회수챔버(5,6), 및 유로절환밸브(7)를 포함하여 구성된다. The energy recovery apparatus of the desalination system of the present invention includes a reverse osmosis module 3, a pair of power recovery chambers 5 and 6, and a flow path switching valve 7, as shown in FIG. It is composed.
여기에서, 먼저 상기 역삼투 모듈(3)은 역삼투 현상을 이용해 해수를 이온성 물질과 순수로 분리해내는 부분으로서, 도 2에 개략적으로 도시된 바와 같이, 고압원수조(9)에 연결되어 고압원수조(9)에서 고압으로 펌핑되어 공급되는 해수를 모듈(3) 내의 멤브레인(8)에 대해 가압함으로써, 역삼투 현상에 의해 해수 내 염분 등을 제거함으로써 처리수를 생산하도록 되어 있다. 이때, 생산된 처리수는 생산수조(11)로 옮겨져 식수 등 다양한 용도로 사용되며, 치리수 생산에 사용된 해수는 고압의 농축수가 되어 유로절환밸브(7)를 통해 한 쌍의 동력회수챔버(5,6)로 전달된다. Here, the reverse osmosis module 3 is a part for separating seawater into ionic materials and pure water using reverse osmosis, and is connected to the high pressure water tank 9 as schematically shown in FIG. By pressurizing the seawater pumped at a high pressure in the high pressure water tank 9 to the membrane 8 in the module 3, the treated water is produced by removing salts and the like in the seawater by reverse osmosis. At this time, the produced treated water is transferred to the production tank (11) and used for various purposes such as drinking water, and the seawater used for production of juicing water is concentrated water under high pressure and a pair of power recovery chambers (7) through the flow path switching valve (7). 5,6).
상기 한 쌍의 동력회수챔버(5,6)는 위 역삼투 모듈(3) 내에서 멤브레인(8)에 의해 역삼투되고 남은 고압농축수가 가지고 있는 압력 에너지를 고압원수조(9)로 보내기 전의 저압원수로 전달하여 버려지는 압력 에너지를 회수하는 부분으로서, 도 2에 도시된 바와 같이, 역삼투 모듈(3)과 상기 고압원수조(9) 사이에 즉, 유로절환밸브(7)와 고압원수조(9) 사이에 설치된다.The pair of power recovery chambers (5,6) is a low pressure before sending the pressure energy of the high-pressure concentrate remaining in the reverse osmosis module 3 by the membrane (8) to the high-pressure water tank (9) As a part for recovering the pressure energy is delivered to the raw water, as shown in Figure 2, between the reverse osmosis module 3 and the high pressure water tank (9), that is, the flow path switching valve (7) and high pressure water tank (9) is installed between.
따라서, 동력회수챔버(5,6)는 각각의 입구관(12)이 유로절환밸브(7)의 출구(33,34)에 연결되어 나란히 배열되며, 출구관(14) 대향단의 입구관(12)이 고압원수조(9)로 연결되어 있다. 이때, 출구관(14)에는 분기관(16)을 통해 저압원수조(10)가 각각 연결되어 저압으로 펌핑된 해수를 출구관(14)을 통해 각각의 동력회수챔버(5,6)로 공급하도록 되어 있다. 또한, 각각의 챔버(5,6) 내에는 간막이 역할을 하는 피스톤(17)이 각각 장착되어 입구관(12)을 통해 들어오는 고압농축수와 출구관(14)을 통해 들어오는 저압원수가 서로 섞이지 않으면서도 높은 압력을 주고 받을 수 있도록 한다. 아울러, 출구관(14)에는 한 쌍의 동력회수챔버(5,6)에 수용된 해수가 고압원수조(9)로 토출되는 방향으로만 통과할 수 있도록 하는 체크밸브(13)가, 분기관(16)에는 저압원수조(10)의 해수가 한 쌍의 동력회수챔버(5,6)로 공급되는 방향으로만 통과할 수 있도록 하는 체크밸브(15)가 각각 장착되어 있다. Accordingly, the power recovery chambers 5 and 6 are arranged side by side with each inlet pipe 12 connected to the outlets 33 and 34 of the flow path switching valve 7, and the inlet pipes at the opposite ends of the outlet pipe 14. 12) is connected to the high pressure water tank (9). At this time, the low pressure water tank 10 is connected to the outlet pipe 14 through the branch pipe 16, respectively, and the low-pressure pumped seawater is supplied to the respective power recovery chambers 5 and 6 through the outlet pipe 14. It is supposed to be. In addition, each of the chambers 5 and 6 is equipped with a piston 17 acting as a partition, so that the high pressure concentrated water entering through the inlet pipe 12 and the low pressure source water entering through the outlet pipe 14 do not mix with each other. High pressure can be given and received. In addition, the outlet pipe 14 has a check valve 13 to allow the seawater contained in the pair of power recovery chambers 5 and 6 to pass only in the direction in which the high pressure water tank 9 is discharged. 16 is provided with check valves 15 which allow the seawater of the low pressure water tank 10 to pass only in the direction to be supplied to the pair of power recovery chambers 5 and 6, respectively.
상기 유로절환밸브(7)는 위와 같이 역삼투 모듈(3)에서 배출되는 고압농축수를 한 쌍의 동력회수챔버(5,6) 각각에 교대로 공급하는 방향전환수단으로서, 도 2는 물론, 도 3 내지 도 9에 도시된 바와 같이, 역삼투 모듈(3)과 한 쌍의 동력회수챔버(5,6) 사이에 설치되는 바, 다시 관체(30), 작동로드(50), 및 밸브체(70-1,70-2,70-3,70-4)로 이루어진다.The flow path switching valve 7 is a direction switching means for alternately supplying the high pressure concentrated water discharged from the reverse osmosis module 3 to each of the pair of power recovery chambers 5 and 6 as described above. 3 to 9, the bar is installed between the reverse osmosis module 3 and the pair of power recovery chambers 5 and 6, again, the tubular body 30, the actuating rod 50, and the valve body. (70-1,70-2,70-3,70-4).
여기에서, 상기 관체(30)는 유로절환밸브의 몸체를 이루는 부분으로, 긴 관 형태로 되어 있으며, 도 3 이하에 도시된 바와 같이, 중앙에 하나 이상의 입구(31)가, 각 입구(31)의 양측에 하나씩 둘 이상의 출구(33,34)가, 그리고 양측단에 배수구(35,36)가 각각 개방 형성된다. 이때, 입구(31)는 도 2 내지 도 9에 도시된 바와 같이 역삼투 모듈(3)에 연결되어 관체(30)의 내부로 고압의 농축수를 공급하도록 되어 있는 바, 필요에 따라 하나 이상으로 구비될 수도 있다. 또한, 출구(33,34)는 관체(30)의 입구(31) 대향측에서 두 개 이상으로 개방되어 관체(30) 내부의 고압농축수를 밸브체(70-1,70-2,70-3,70-4)의 동작에 따라 동력회수챔버(5,6) 중 어느 한 쪽을 선택하여 교대로 배출하도록 되어 있다. 그리고, 반대로 배수구(35,36)는 출구(33,34)를 통해 동력회수챔버(5,6) 어느 한 쪽에서 즉, 예컨대 도 2의 챔버(6)로부터 유입되는 저압원수를 배수관(18)을 통해 배수조(19)로 배수시키도록 되어 있다. 또한, 관체(30)는 위와 같이 몸체에 관통 형성된 각각의 입구(31), 출구(33,34), 또는 배수구(35,36)가 인접한 다른 입구(31), 출구(33,34), 또는 배수구(35,36)와의 사이의 내주면 상에 시트부(37-1,37-2,37-3,37-4)가 각각 돌출되어 복수의 밸브체(70-1,70-2,70-3,70-4)와 함께 고압농축수 또는 저압원수 등 유체의 흐름을 단속하도록 되어 있으며, 작동로드(50)가 관통 삽입되는 커버블록(39)이 양단을 마감하고 있다.Here, the tubular body 30 is a portion forming the body of the flow path switching valve, and has a long tube shape, and as shown in FIG. 3 or less, at least one inlet 31 in the center, each inlet 31. Two or more outlets 33 and 34, one on each side of the opening, and drain openings 35 and 36 on both sides of the opening, respectively. At this time, the inlet 31 is connected to the reverse osmosis module (3) as shown in Figure 2 to 9 to supply the concentrated water of the high pressure to the inside of the tubular body 30, at least one as necessary It may be provided. In addition, at least two outlets 33 and 34 are opened at opposite sides of the inlet 31 of the tubular body 30 so that the high pressure concentrated water in the tubular body 30 can be discharged to the valve body 70-1, 70-2, 70-. According to the operation of 3,70-4, one of the power recovery chambers 5, 6 is selected and discharged alternately. On the contrary, the drainage holes 35 and 36 discharge the low pressure source water flowing from either of the power recovery chambers 5 and 6 through the outlets 33 and 34, for example, from the chamber 6 of FIG. It is made to drain to the drain tank 19 through. In addition, the tubular body 30 may have each inlet 31, outlet 33, 34, or other inlet 31, outlet 33, 34 adjacent to the drainage holes 35, 36 formed through the body as described above. The seat portions 37-1, 37-2, 37-3, 37-4 protrude on the inner circumferential surface between the drainage holes 35, 36, respectively, to provide a plurality of valve bodies 70-1, 70-2, 70-. 3,70-4) together with the high-pressure concentrated water or low-pressure source water to control the flow of the flow, the cover block 39 through which the operating rod 50 is inserted is closed at both ends.
상기 작동로드(50)는 외부에 연결된 액츄에이터에 의해 관체(30) 내에서 축방향으로 왕복 이동함으로써 밸브체(70-1,70-2,70-3,70-4)에 의해 유로절환밸브(7)의 유로를 제어하는 부분으로서, 도 2 내지 도 9에 도시된 바와 같이 관체(30) 내에 동축 상으로 장착되는 바, 일측단이 유체 밀봉 상태로 관체(30) 외부로 노출되어 액츄에이터에 연결됨으로써 관체(30) 내에서 축방향으로 전후진 왕복운동하도록 되어 있으며, 이를 위해 관체(30) 양단에 결합된 커버블록(39)을 통해 수밀을 유지한 상태로 미끄럼 이동 가능하게 지지된다.The actuating rod 50 is reciprocated in the axial direction in the tubular body 30 by an actuator connected to the outside, so that the flow path switching valve is driven by the valve body 70-1, 70-2, 70-3, 70-4. As a part for controlling the flow path of 7), as shown in Figures 2 to 9 is mounted coaxially in the tubular body 30, one end is exposed to the outside of the tubular body 30 in a fluid sealed state and connected to the actuator The reciprocating movement forward and backward in the axial direction in the tubular body 30, for this purpose is supported so as to be able to slide in a state of maintaining the watertight through the cover block 39 coupled to both ends of the tubular body 30.
또한, 작동로드(50)는 외주면 상에 끼워진 복수의 밸브체(70-1,70-2,70-3,70-4)를 가압하여 이동시키기 위해 외주면에 스토퍼와 같은 복수의 걸림수단(53-1,53-2,53-3,53-4)이 상호 이격된 상태로 돌출 형성되는 바, 도 3에 도시된 바와 같이, 관체(30)의 입구(31)를 사이에 둔 흡입 걸림수단(53-1,53-2) 중 도면 상 좌측에 있는 흡입 걸림수단(53-1)이 입구(31)를 사이에 둔 흡입 시트부(37-1,37-2) 중 좌측에 있는 대응 흡입 시트부(37-1)로 입구(31)의 좌측에 있는 대응 흡입 밸브체(70-1)를 가압하여 안착시킨 때, 흡입 걸림수단(53-1,53-2) 중 우측에 있는 흡입 걸림수단(53-2)은 입구(31)를 통해 유입된 고압농축수의 압력에 의해 입구(31)의 우측에 있는 대응 흡입 밸브체(70-2)가 우측에 있는 대응 흡입 시트부(37-2)에서 이격될 수 있도록 간섭을 일으키지 않는 위치에 형성되어 있고, 출구(33,34)와 배수구(35,36) 사이의 배수 걸림수단(53-3,53-4) 중 관체(30)의 좌측단에 위치하는 배수 걸림수단(53-3)은 좌측 출구(33)와 좌측 배수구(35) 사이에 위치하는 대응 좌측단 배수 시트부(37-3)에서 대응하는 좌측단 배수 밸브체(70-3)가 이격되도록 가압할 수 있는 위치에 형성되어 있으며, 관체(30)의 우측단 배수 걸림수단(53-4)은 대응하는 우측단 배수 밸브체(70-4)가 우측 출구(34)와 우측 배수구(36) 사이에 위치하는 대응 우측단 배수 시트부(37-4)에 안착될 수 있도록 간섭을 일으키지 않는 위치에 형성되어 있다.In addition, the operation rod 50 includes a plurality of locking means 53 such as a stopper on the outer circumferential surface to press and move the plurality of valve bodies 70-1, 70-2, 70-3, 70-4 fitted on the outer circumferential surface. -1,53-2,53-3,53-4 are protruded to be spaced apart from each other, as shown in Figure 3, the suction catching means between the inlet 31 of the tubular body 30 Corresponding suction on the left side of the suction seat portions 37-1, 37-2 with the suction catching means 53-1 on the left side of the drawing (53-1, 53-2) between the inlets 31. When the corresponding suction valve element 70-1 on the left side of the inlet 31 is pressed and seated by the seat portion 37-1, the suction catch on the right side of the suction catching means 53-1, 53-2. The means 53-2 is provided with the corresponding suction seat portion 37- with the corresponding suction valve body 70-2 on the right side of the inlet 31 by the pressure of the high pressure concentrated water flowing through the inlet 31. 2 is formed in a position that does not cause interference so that it can be spaced apart from, and the outlet 33, The drainage catching means 53-3 located at the left end of the tubular body 30 among the drainage catching means 53-3 and 53-4 between the 34 and the drains 35 and 36 has a left outlet 33 and a left side. The corresponding left end drain valve body 70-3 is formed at a position that can be pressurized so as to be spaced apart from the corresponding left end drain seat portion 37-3 located between the drain holes 35, The right end drainage catching means 53-4 has a corresponding right end drain seat 37-4 in which a corresponding right end drain valve body 70-4 is located between the right outlet 34 and the right drain port 36. It is formed in a position that does not cause interference so that it can be seated on the.
이때, 특히 도 4에 도시된 바와 같이, 좌측 배수 걸림수단(53-3)은 좌측 흡입 밸브체(70-1)가 대응하는 좌측 흡입 시트부(37-1)에서 이격되기 이전에 좌측 배수 밸브체(70-3)가 대응하는 좌측 배수 시트부(37-3)에 밀봉되도록 하는 위치에 형성되어 도 5에 도시된 것처럼 입구(31)와 좌측 출구(33)가 유체 연결되기 전에 좌측 배수 밸브체(70-3)가 먼저 좌측 배수 시트부(37-3)에 밀착되도록 한다.At this time, in particular, as shown in FIG. 4, the left drain catching means 53-3 is a left drain valve before the left suction valve body 70-1 is spaced apart from the corresponding left suction seat portion 37-1. The left drain valve is formed in a position such that the sieve 70-3 is sealed to the corresponding left drain seat portion 37-3 and before the inlet 31 and the left outlet 33 are fluidly connected as shown in FIG. The sieve 70-3 is first brought into close contact with the left drain sheet portion 37-3.
또한, 도 6에 도시된 바와 같이, 우측단 배수 걸림수단(53-4)은 우측 흡입 걸림수단(53-2)이 대응하는 우측 흡입 밸브체(70-2)를 대응하는 우측 흡입 시트부(37-2)에 밀착시킨 이후에, 대응하는 우측 배수 밸브체(70-4)를 대응하는 우측 배수 시트부(37-4)에서 이격되도록 하는 위치에 형성되어 있다.In addition, as shown in FIG. 6, the right end drain catching means 53-4 has a right suction seat portion corresponding to the right suction valve body 70-2 to which the right suction catching means 53-2 corresponds. After being in close contact with 37-2, the corresponding right drain valve body 70-4 is formed at a position to be spaced apart from the corresponding right drain seat portion 37-4.
이를 위해, 우측 흡입 밸브체(53-2)는 우측단의 배수 걸림수단(53-4)이 우측 배수 밸브체(70-4)를 우측 배수 시트부(37-4)에서 이격시키기 이전에 우측 흡입 시트부(37-2)에 밀착된 후, 우측 배수 걸림수단(53-4)이 우측 배수 밸브체(70-4)를 우측 배수 시트부(37-4)에서 이격시킨 이후까지 우측 흡입 시트부(37-2)에 밀착을 유지하도록 되어 있으며, 따라서, 우측 배수 밸브체(70-4)가 우측 배수 시트부(37-4)에서 이격되는 동안 입구(31)에서 우측 배수구(36)로의 유동은 계속해서 단절된다.To this end, the right intake valve body 53-2 has a right side before the drainage catching means 53-4 at the right end separates the right drain valve body 70-4 from the right drain seat 37-4. After being in close contact with the suction seat 37-2, the right suction seat until the right drain catching means 53-4 separates the right drain valve body 70-4 from the right drain seat 37-4. The inlet 31 to the right drain 36 while the right drain valve body 70-4 is spaced apart from the right drain seat 37-4. The flow continues to break.
마찬가지로, 작동로드(50)는 도 7에 도시된 바와 같이, 관체(30)의 입구(31)를 사이에 둔 흡입 걸림수단(53-1,53-2) 중 우측에 있는 흡입 걸림수단(53-2)이 입구(31)를 사이에 둔 흡입 시트부(37-1,37-2) 중 우측에 있는 대응 흡입 시트부(37-2)로 입구(31)의 우측에 있는 대응 흡입 밸브체(70-2)를 가압하여 안착시킨 때, 흡입 걸림수단(53-1,53-2) 중 좌측에 있는 흡입 걸림수단(53-1)은 입구(31)를 통해 유입된 고압농축수의 압력에 의해 입구(31)의 좌측에 있는 대응 흡입 밸브체(70-1)가 좌측에 있는 대응 흡입 시트부(37-1)에서 이격될 수 있도록 간섭을 일으키지 않는 위치에 형성되어 있고, 출구(33,34)와 배수구(35,36) 사이의 배수 걸림수단(53-3,53-4) 중 관체(30)의 우측단에 위치하는 배수 걸림수단(53-4)은 우측 출구(34)와 우측 배수구(36) 사이에 위치하는 대응 우측단 배수 시트부(37-4)에서 대응하는 우측단 배수 밸브체(70-4)가 이격되도록 가압할 수 있는 위치에 형성되어 있으며, 관체(30)의 좌측단 배수 걸림수단(53-3)은 좌측단 배수 밸브체(70-3)가 좌측 출구(33)와 좌측 배수구(35) 사이에 위치하는 좌측단 배수 시트부(37-3)에 안착될 수 있도록 간섭을 일으키지 않는 위치에 형성되어 있다.Similarly, as shown in FIG. 7, the actuating rod 50 is the suction catching means 53 on the right side of the suction catching means 53-1 and 53-2 sandwiching the inlet 31 of the tubular body 30. -2) the corresponding suction valve element on the right side of the inlet 31 to the corresponding suction seat portion 37-2 on the right side of the suction seat portions 37-1, 37-2 with the inlet 31 interposed therebetween. When the 70-2 is pressurized and seated, the suction catching means 53-1 on the left side of the suction catching means 53-1, 53-2 is the pressure of the high pressure concentrated water introduced through the inlet 31. Is formed at a position which does not cause interference so that the corresponding suction valve body 70-1 on the left side of the inlet 31 can be separated from the corresponding suction seat portion 37-1 on the left side, and the outlet 33 The drainage catching means 53-4 located at the right end of the tubular body 30 among the drainage catching means 53-3 and 53-4 between the drain 34 and the drains 35 and 36 are formed at the right outlet 34. Corresponding right end drain sheet portion 37-4 located between the right drain port 36 ) And the corresponding right end drain valve body 70-4 is formed at a position capable of being pressurized so as to be spaced apart from each other, and the left end drain catching means 53-3 of the tubular body 30 has a left end drain valve body 70. -3) is formed at a position which does not cause interference so that it can be seated on the left end drain sheet portion 37-3 located between the left outlet 33 and the left drain port 35.
이때도, 또한 도 8에 도시된 바와 같이, 우측 배수 걸림수단(53-4)은 우측 흡입 밸브체(70-2)가 대응하는 우측 흡입 시트부(37-2)에서 이격되기 이전에 우측 배수 밸브체(70-4)가 대응하는 우측 배수 시트부(37-4)에 밀봉되도록 하는 위치에 형성되어 도 5에 도시된 것처럼 입구(31)와 우측 출구(34)가 유체 연결되기 전에 우측 배수 밸브체(70-4)가 먼저 우측 배수 시트부(37-4)에 밀착되도록 한다.Also in this case, as shown in FIG. 8, the right drain catching means 53-4 is drained from the right drain before the right suction valve body 70-2 is separated from the corresponding right suction seat portion 37-2. The valve body 70-4 is formed at a position to be sealed to the corresponding right drain seat portion 37-4 so that the right drain before the inlet 31 and the right outlet 34 are fluidly connected as shown in FIG. The valve body 70-4 is first brought into close contact with the right drain seat portion 37-4.
또한, 도 9에 도시된 바와 같이, 좌측단 배수 걸림수단(53-3)은 좌측 흡입 걸림수단(53-1)이 대응하는 좌측 흡입 밸브체(70-1)를 대응하는 좌측 흡입 시트부(37-1)에 밀착시킨 이후에, 대응하는 좌측 배수 밸브체(70-3)를 대응하는 좌측 배수 시트부(37-3)에서 이격되도록 하는 위치에 형성되어 있다.In addition, as shown in FIG. 9, the left end drain catching means 53-3 includes a left suction seat part corresponding to the left suction valve body 70-1 to which the left suction catching means 53-1 corresponds. After being in close contact with 37-1, the corresponding left drain valve body 70-3 is formed at a position to be spaced apart from the corresponding left drain seat portion 37-3.
이를 위해, 좌측 흡입 밸브체(70-1)는 좌측단의 배수 걸림수단(53-3)이 좌측 배수 밸브체(70-3)를 좌측 배수 시트부(37-3)에서 이격시키기 이전에 좌측 흡입 시트부(37-1)에 밀착된 후, 좌측 배수 걸림수단(53-3)이 좌측 배수 밸브체(70-3)를 좌측 배수 시트부(37-3)에서 이격시킨 이후까지 좌측 흡입 시트부(37-1)에 밀착을 유지하도록 되어 있으며, 따라서, 좌측 배수 밸브체(70-3)가 좌측 배수 시트부(37-3)에서 이격되는 동안 입구(31)에서 좌측 배수구(35)로의 유동은 계속해서 단절된다.To this end, the left intake valve body 70-1 is left-sided before the left end drain catching means 53-3 separates the left drain valve body 70-3 from the left drain seat 37-3. After being in close contact with the suction seat 37-1, the left suction seat until the left drain catching means 53-3 has spaced apart the left drain valve body 70-3 from the left drain seat 37-3. The inlet 31 to the left drain 35 while the left drain valve body 70-3 is spaced apart from the left drain seat 37-3. The flow continues to break.
상기 복수의 밸브체(70-1,70-2,70-3,70-4)는 작동로드(50)의 외주면 상에 이동 가능하게 장착되어 작동로드(50)에 의해 출구(33,34) 및 배수구(35,36)로의 유로가 선택적으로 교차 개폐되도록 하는 수단으로서, 각각의 시트부(37-1,37-2,37-3,37-4)를 향하여 일대일 대응하도록 각각의 걸림수단(53-1,53-2,53-3,53-4) 사이에 배치된다. The plurality of valve bodies 70-1, 70-2, 70-3, and 70-4 are movably mounted on the outer circumferential surface of the actuating rod 50, and the outlets 33, 34 are provided by the actuating rod 50. And means for causing the flow paths to the drains 35 and 36 to selectively open and close crosswise, and each latching means so as to have a one-to-one correspondence toward the respective seat portions 37-1, 37-2, 37-3, 37-4. 53-1,53-2,53-3,53-4).
이때, 밸브체(70-1,70-2,70-3,70-4) 중 입구(31)와 출구(33,34) 사이에 위치하는 흡입 밸브체(70-1,70-2)는 도 3 내지 도 9에 도시된 바와 같이, 작동로드(50) 상에서 대응하는 흡입 걸림수단(37-1,37-2)과 입구(31) 사이에 축방향으로 이동 가능하게 끼워져 입구(31)에서 유입되는 고압농축수의 압력에 의해 각각의 대응하는 흡입 걸림수단(37-1,37-2)에 밀착된 상태로 작동할 수도 있지만, 도 11에 도시된 바와 같이, 각각의 대응하는 흡입 걸림수단(37-1,37-2)의 입구(31)를 향한 면 상에 볼트(38) 등의 체결수단에 의해 고정된 상태로 작동로드(50)와 함께 좌우로 왕복 운동할 수도 있다. At this time, the suction valve body 70-1, 70-2 located between the inlet 31 and the outlet 33, 34 of the valve body 70-1, 70-2, 70-3, 70-4 is As shown in FIGS. 3 to 9, an axially movable insertion between the corresponding suction catching means 37-1, 37-2 and the inlet 31 on the actuating rod 50 is performed at the inlet 31. Although it may operate in close contact with each corresponding suction catching means 37-1, 37-2 by the pressure of the incoming high pressure concentrated water, as shown in FIG. 11, each corresponding suction catching means It is also possible to reciprocate from side to side with the working rod 50 in a state of being fixed by a fastening means such as a bolt 38 on the surface facing the inlet 31 of (37-1, 37-2).
흡입 밸브체(70-1,70-2)는 또한 도 11에 도시된 바와 같이, 포핏부(75), 스풀부(77), 및 가이드부(79)로 이루어지는 바, 먼저 상기 포핏부(75)는 작동로드(50)에 동축 상으로 고정되는 원통체로서, 도 11에 도시된 바와 같이 외경이 좌우측 흡입 시트부(37-1,37-2)의 내경보다 크며, 좌우측 흡입 시트부(37-1,37-2)를 향하여 서로 마주보는 끝면이 경사 형성되어, 좌우측 흡입 시트부(37-1,37-2)의 끝면 모서리에 형성된 경사면과 밀착됨으로써 좌우 흡입 시트부(37-1,37-2) 통해 형성되는 유로를 최종적으로 밀봉, 차단하게 된다.The intake valve body 70-1, 70-2 is also made up of a poppet portion 75, a spool portion 77, and a guide portion 79, as shown in FIG. 11. ) Is a cylindrical body fixed coaxially to the actuating rod 50, the outer diameter of which is larger than the inner diameter of the left and right suction sheet portions 37-1 and 37-2, as shown in FIG. End faces facing each other toward −1,37-2 are inclined, and the left and right suction sheet parts 37-1 and 37 are in close contact with the inclined surfaces formed at the edges of the left and right suction sheet parts 37-1 and 37-2. -2) Finally, the flow path formed through the sealing is blocked.
또한, 상기 스풀부(77)는 흡입 밸브체(70-1,70-2)가 좌우측 흡입 시트부(37-1,37-2)와의 밀착구간 즉, 밀착시간을 길게 유지할 수 있도록 하는 부분으로서, 도 11에 도시된 바와 같이 포핏부(75)에서 동축 상으로 좌우측 흡입 시트부(37-1,37-2)를 향해 각각 돌출되는 바, 도 6 및 도 9에 도시된 바와 같이 좌우측 배수 걸림수단(53-3,53-4)이 좌우측 배수 밸브체(70-3,70-4)를 좌우측 배수 시트부(37-3,37-4)에서 각각 이격시키기 이전에 좌우측 흡입 시트부(37-1,37-2)에 밀착될 수 있도록 하기에 충분한 길이를 확보한다. In addition, the spool portion 77 is a portion for allowing the suction valve body 70-1, 70-2 to maintain the close contact with the left and right suction seats 37-1, 37-2, that is, the close time. As shown in FIG. 11, the poppet part 75 protrudes coaxially toward the left and right suction seats 37-1 and 37-2, respectively, as shown in FIGS. 6 and 9. The left and right suction seat portions 37 before the means 53-3, 53-4 separate the left and right drain valve bodies 70-3, 70-4 from the left and right drain sheet portions 37-3, 37-4, respectively. Secure enough length to allow close contact with -1,37-2).
끝으로, 상기 가이드부(79)는 흡입 밸브체(70-1,70-2)가 최대 개방위치에서도 좌우측 흡입 시트부(37-1,37-2)에의 삽입 상태를 유지할 수 있도록 해주는 부분으로서, 도 11에 도시된 바와 같이 스풀부(77)의 끝면에서 좌우측 흡입 시트부(,) 각각을 향하여 동축 상으로 연장되는 바, 도시된 것처럼 상호 간에 일정 간격을 두고 방사상으로 돌출되어 흡입 시트부(37-1,37-2)에의 삽입 상태는 유지하면서도, 흡입 밸브체(70-1,70-2)를 통한 고압농축수의 유동 또한 일정 수준 이상으로 유지할 수 있도록 해준다.Finally, the guide portion 79 is a portion that allows the intake valve body 70-1, 70-2 to maintain the insertion state in the left and right suction seat portions 37-1, 37-2 even in the maximum opening position. As shown in FIG. 11, the ends of the spool portion 77 extend coaxially toward the left and right suction sheet portions (,), and as shown in the drawing, the radially protruding radial portions protrude radially from each other. While maintaining the insertion state of 37-1, 37-2, it is also possible to maintain the flow of the high pressure concentrated water through the intake valve body (70-1, 70-2) above a certain level.
이제, 위와 같이 구성되는 본 발명의 담수화 시스템의 에너지 회수장치(1)의 작동을 설명하면 다음과 같다. Now, the operation of the energy recovery device 1 of the desalination system of the present invention configured as described above is as follows.
본 발명의 에너지 회수장치(1)는 도 2에 도시된 위치에서, 역삼투 모듈(3)에서 배출되는 고압농축수를 유로절환밸브(7)를 통해 우측에 있는 동력회수챔버(5)로 공급하며, 동력회수챔버(5)로 공급된 고압농축수는 피스톤(17)을 강하게 압박하여 하류측으로 이동시킨다. 이에 따라, 챔버(5) 내 저압원수는 피스톤(17)을 통해 고압으로 가압되어 출구관(14)에서 체크밸브(13)를 통과해 고압원수조(9)로 공급된다. 이와 동시에, 유로절환밸브(7)가 배수조(19)로 개방되므로, 저압원수조(10)의 저압원수가 체크밸브(13)를 거쳐 분기관(16)을 통해 좌측 동력회수챔버(6)로 공급된다. The energy recovery device 1 of the present invention supplies the high pressure concentrated water discharged from the reverse osmosis module 3 to the power recovery chamber 5 on the right side through the flow path switching valve 7 at the position shown in FIG. 2. In addition, the high pressure concentrated water supplied to the power recovery chamber 5 strongly presses the piston 17 and moves to the downstream side. Accordingly, the low pressure source water in the chamber 5 is pressurized to high pressure through the piston 17 and is supplied to the high pressure water tank 9 through the check valve 13 in the outlet pipe 14. At the same time, since the flow path switching valve 7 opens to the drain 19, the low pressure source water of the low pressure water tank 10 passes through the check valve 13 and the left power recovery chamber 6 through the branch pipe 16. Is supplied.
이때, 유로절환밸브(7)는 도 2 및 도 3에 도시된 바와 같이, 작동로드(50)가 우사점에 있으며, 입구(31) 좌측의 흡입 밸브체(70-1)는 좌측 흡입 걸림수단(53-1)에 의해 가압되어 최우측 위치에서 좌측 흡입 시트부(37-1)에 밀착되므로, 입구(31)에서 좌측 출구(33)로 이어지는 유로는 차단된다. 이와 동시에 입구(31) 우측의 흡입 걸림수단(53-2)은 입구(31) 우측 시트부(37-2)에서 우측으로 충분히 이격되므로, 입구(31) 우측의 흡입 밸브체(70-2)는 입구(31)에서 유입되는 고압농축수의 압력에 의해 우측 흡입 걸림수단(53-2)에 걸릴 때까지 밀려 개방된다. 이에 따라 입구(31)에서 우측 출구(34)로의 유로가 연결됨으로써 입구(31)로 유입된 작동유체는 우측 출구(34)를 통해 우측 동력회수챔버(5)로 배출된다. 이때, 좌측단 배수 밸브체(70-3)는 좌측단 배수 걸림수단(53-3)에 의해 밀려 좌측단 배수 시트부(37-3)에서 떨어지며, 이에 따라 좌측 출구(33)가 좌측 배수구(35)로 개방되어 관체(30) 좌측단에 수용된 저압원수는 물론, 좌측 동력회수챔버(5)로 유입된 저압원수를 배수조(19) 등으로 배수시킨다. 또한, 우측단의 배수 밸브체(70-4)는 입구(31)로 유입되는 고압농축수의 압력에 의해 우측단으로 가압되어 우측단 배수 시트부(37-4)에 밀착되면서 우측 출구(34)와 우측 배수구(36) 사이의 연결은 차단된다. At this time, the flow path switching valve 7 as shown in Figures 2 and 3, the operating rod 50 is in the right-side point, the intake valve body 70-1 of the left side of the inlet 31 is the left suction locking means Since it is pressurized by 53-1 and in close contact with the left suction sheet portion 37-1 at the rightmost position, the flow path leading from the inlet 31 to the left outlet 33 is blocked. At the same time, since the suction catching means 53-2 on the right side of the inlet 31 is sufficiently separated from the inlet 31 on the right seat portion 37-2 to the right, the suction valve body 70-2 on the right side of the inlet 31. Is pushed open until it is caught by the right suction catching means 53-2 by the pressure of the high pressure concentrated water flowing from the inlet 31. Accordingly, the flow path from the inlet 31 to the right outlet 34 is connected, and the working fluid introduced into the inlet 31 is discharged to the right power recovery chamber 5 through the right outlet 34. At this time, the left end drain valve body 70-3 is pushed by the left end drain catching means 53-3 to fall off the left end drain seat portion 37-3, whereby the left outlet 33 is left drain port ( 35) to drain the low pressure source water introduced into the left power recovery chamber (5), as well as the low pressure source water received at the left end of the tubular body (30). In addition, the drain valve body 70-4 at the right end is pressurized to the right end by the pressure of the high pressure condensate flowing into the inlet 31, and the right outlet 34 is in close contact with the right end drain seat 37-4. ) And the right drain 36 is cut off.
이 상태에서 액츄에이터에 의해 작동로드(50)가 좌측으로 이동하면, 도 4에 도시된 바와 같이, 먼저 좌측단 배수 걸림수단(53-3)이 좌측단 배수 시트부(37-3) 안으로 들어가면서, 좌측 흡입 밸브체(70-1)가 좌측 흡입 시트부(37-1)에서 이격되기 전에, 좌측 배수 밸브체(70-3)가 작동로드(50)와의 마찰력에 의해 또는 관체(30) 내 유체력에 의해 좌측 배수 시트부(37-3)에 도달하여 출구(33)와 배수구(35) 사이의 흐름을 차단하게 된다. 이때, 좌측 흡입 밸브체(70-1)와 우측단 배수 밸브체(70-4)는 각각 좌측 흡입 시트부(37-1)와 우측단 배수 시트부(37-4)에의 밀착 상태를 유지하는 한편, 우측 흡입 밸브체(70-2)는 그 스풀부가 우측 흡입 시트부(37-2)에 밀착되기 전이어서 여전히 개방 상태를 유지하므로 입구(31)와 우측 출구(34)의 유체 연결은 지속된다. In this state, when the actuating rod 50 is moved to the left by the actuator, as shown in FIG. 4, the left end drain catching means 53-3 first enters the left end drain seat 37-3, Before the left intake valve element 70-1 is spaced apart from the left intake seat portion 37-1, the left drain valve element 70-3 is released by the friction force with the actuating rod 50 or in the tubular body 30. It reaches the left drain seat part 37-3 by the physical force, and blocks the flow between the outlet 33 and the drain hole 35. At this time, the left suction valve body 70-1 and the right end drain valve body 70-4 maintain their close contact with the left suction seat unit 37-1 and the right end drain seat unit 37-4, respectively. On the other hand, since the right suction valve body 70-2 remains in an open state before the spool portion is in close contact with the right suction seat portion 37-2, the fluid connection between the inlet 31 and the right outlet 34 is continued. do.
이 상태에서, 재차 작동로드(50)가 좌측으로 이동하면, 도 5에 도시된 바와 같이 유로절환밸브(7)는 중립 구간에 놓이게 된다. 이때는 좌측 흡입 걸림수단(53-1)이 좌측으로 이동하여 좌측 흡입 밸브체(70-1)의 스풀부가 좌측 흡입 시트부(37-1)에서 이격되도록 하는 한편, 좌우측단 배수 밸브체(70-3,70-4)는 고압농축수에 의해 좌우측단 배수 시트부(37-3,37-4)에 강하게 밀착되고, 우측 흡입 밸브체(70-2)는 그 스풀부가 아직 우측 흡입 시트부(37-2)에 밀착되기 전이므로, 입구(31)에서 유입되는 고압농축수는 좌측 및 우측 출구(33,34)로 반분되어 배출된다. 이와 같이, 고압농축수가 두 챔버(5,6)로 반분되면서 챔버(5,6) 내의 피스톤(17) 속도가 감소되고, 따라서 유체의 급격한 방향전환이 억제되므로, 수충격 현상을 감소시킬 수 있게 된다.In this state, when the operation rod 50 again moves to the left side, as shown in FIG. 5, the flow path switching valve 7 is placed in the neutral section. At this time, the left suction locking means 53-1 moves to the left so that the spool portion of the left suction valve body 70-1 is spaced apart from the left suction seat portion 37-1, while the left and right end drain valve body 70- 3, 70-4 is strongly adhered to the left and right end drain seat portions 37-3, 37-4 by the high pressure concentrated water, and the right suction valve body 70-2 has the spool portion of the right suction seat portion ( 37-2), the high pressure concentrated water flowing from the inlet 31 is divided into the left and right outlets 33 and 34 and discharged. In this way, the high pressure concentrated water is divided into two chambers 5 and 6, and the speed of the piston 17 in the chambers 5 and 6 is reduced, and thus, the sudden change of the fluid is suppressed, so that the water shock phenomenon can be reduced. do.
계속해서, 작동로드(50)가 좌측으로 이동하면, 도 6에 도시된 바와 같이, 우측 흡입 걸림수단(53-2)에 의해 우측 흡입 밸브체(70-2)가 좌측으로 밀리며, 이에 따라 우측단 배수 걸림수단(53-4)에 의해 밀린 우측단 배수 밸브체(70-4)가 우측단 배수 시트부(37-4)에서 이격되기 직전에 우측 흡입 밸브체(70-2)는 그 스풀부가 우측 흡입 시트부(37-2)에 밀착됨으로써 입구(31)와 우측 출구(34)로의 유체 연결을 차단하게 된다. Subsequently, when the operation rod 50 moves to the left side, as shown in FIG. 6, the right suction valve body 70-2 is pushed to the left side by the right suction catching means 53-2, and accordingly, the right side The right intake valve body 70-2 is immediately spooled from the right end drain valve body 70-4 pushed by the end drain catching means 53-4 from the right end drain seat 37-4. The close contact with the right suction seat 37-2 blocks the fluid connection between the inlet 31 and the right outlet 34.
다음으로, 작동로드(50)가 좌측으로 좀 더 이동하여 좌사점에 이르면, 도 7에 도시된 바와 같이, 우측 흡입 걸림수단(53-2)에 의해 좌측으로 밀린 우측 흡입 밸브체(70-2)는 그 스풀부에 의해 우측 흡입 시트부(37-2)와 밀착되어 입구(31)와 우측 출구(34) 사이의 유체 연결을 먼저 차단하게 된다. 그리고 나서, 우측단 배수 걸림수단(53-4)이 비로소 우측단 배수 밸브체(70-4)를 좌측으로 가압하여 우측단 배수 시트부(53-4)에서 이격되도록 함으로써 우측 출구(34)와 우측단 배수구(36) 사이의 흐름이 연결된다. 이에 따라, 입구(31)에서 유입되는 고압농축수는 전부 좌측 출구(33)를 통해서 좌측 동력회수챔버(6)로 배출되어 챔버(6) 내의 저압원수를 고압으로 가압하여 고압원수조(9)로 배출한다. 한편, 우측 동력회수챔버(5)와 관체(30) 우측의 고압농축수가 우측단 배수구(36)를 통해 배수조(19)로 배출됨에 따라 우측 동력회수챔버(5)는 저압원수조(10)에서 공급되는 저압원수로 충진된다.Next, when the operation rod 50 moves further to the left to reach the left dead center, as shown in FIG. 7, the right suction valve body 70-2 pushed to the left by the right suction catching means 53-2. ) Is in close contact with the right suction seat portion 37-2 by the spool portion, thereby first blocking the fluid connection between the inlet 31 and the right outlet 34. Then, the right end drain catching means 53-4 finally presses the right end drain valve body 70-4 to the left to be spaced apart from the right end drain seat 53-4 with the right outlet 34. The flow between the right end drain 36 is connected. Accordingly, the high pressure concentrated water flowing from the inlet 31 is discharged to the left power recovery chamber 6 through the left outlet 33 to pressurize the low pressure source water in the chamber 6 to a high pressure to supply the high pressure water tank 9. To be discharged. On the other hand, as the high-pressure concentrated water of the right power recovery chamber (5) and the right side of the tubular body (30) is discharged to the drain tank (19) through the right end drain (36), the right power recovery chamber (5) is a low pressure source tank (10). It is filled with low pressure source water supplied from.
이때, 좌측단 배수 밸브체(70-3)는 좌측 흡입 밸브체(70-1)의 가이드부를 통과한 고압농축수에 의해 좌측단 배수 시트부(37-3)에 강하게 밀착되어 좌측단 배수구(35)로의 고압농축수 누설을 방지한다. 또한, 우측 흡입 밸브체(70-2)의 긴 스풀부로 인해 입구(31)와 우측단 배수구(36)의 유로가 먼저 차단된 다음, 우측단 배수구(36)와 우측 출구(34)의 유로가 개방되므로, 입구(31)에서 유입되는 고압농축수가 직접 우측 배수구(36)로 빠져나가는 것을 방지할 수 있게 된다. At this time, the left end drain valve body 70-3 is strongly adhered to the left end drain seat 37-3 by a high pressure concentrated water that has passed through the guide part of the left suction valve body 70-1, and thus the left end drain port 70 35) Prevent leakage of high pressure concentrate into the furnace. Further, due to the long spool portion of the right intake valve body 70-2, the flow paths of the inlet 31 and the right end drain 36 are first blocked, and then the flow path of the right end drain 36 and the right outlet 34 is Since it is open, the high pressure concentrated water flowing from the inlet 31 can be prevented from directly exiting the right drain 36.
반대로, 도 7의 좌사점에서 작동로드(50)가 도 8에 도시된 바와 같이 우측으로 이동하면, 도 4의 경우와 마찬가지로 우측 흡입 밸브체(70-2)는 그 스풀부가 도 우측 흡입 시트부(37-2)에서 이격되어 입구(31)와 우측 출구(34)의 유로가 개방되기 전에 우측단 배수 밸브체(70-4)가 우측단 배수 시트부(37-4)에 밀착되어 우측 출구(34)와 우측단 배수구(36) 사이의 유로를 먼저 폐쇄한다.On the contrary, when the operating rod 50 moves to the right as shown in FIG. 8 at the left dead center of FIG. 7, the spool portion of the right suction valve body 70-2 is the right suction seat portion as shown in FIG. 4. The right end drain valve body 70-4 is in close contact with the right end drain seat 37-4 before the flow paths of the inlet 31 and the right outlet 34 are spaced apart from 37-2. The flow path between the 34 and the right end drain 36 is first closed.
계속해서, 작동로드(50)가 우측으로 이동하면, 유로절환밸브(7)는 우측 흡입 밸브체(70-2)가 우측으로 이동하여 개방됨으로써 도 5에 도시된 중립구간을 거치게 되며, 곧 이어 도 9에 도시된 상태가 된다. 이 상태에서 유로절환밸브(7)는 도 6에 도시된 상태와 마찬가지로 좌측단 배수 밸브체(70-3)가 좌측단 배수 시트부(37-3)에서 이격되기 전에 좌측 흡입 밸브체(70-1)가 먼저 입구(31)에서 좌측 출구(33)로 이어진 유로를 차단함으로써 좌측단 배수구(35)가 개방될 때 입구(31)에서 유입되는 고압농축수가 곧 바로 좌측단 배수구(35)를 통해 배출되는 것을 방지할 수 있게 된다.Subsequently, when the actuating rod 50 moves to the right, the flow path switching valve 7 passes through the neutral section shown in FIG. 5 by opening the right intake valve body 70-2 by moving to the right. It will be in the state shown in FIG. In this state, the flow path switching valve 7 is left intake valve element 70- before the left end drain valve element 70-3 is spaced apart from the left end drain seat portion 37-3 in the same manner as shown in FIG. 1) first blocks the flow path leading from the inlet 31 to the left outlet 33 so that the high-pressure concentrated water flowing from the inlet 31 immediately opens through the left end drain 35 when the left end drain 35 is opened. It is possible to prevent the discharge.
따라서, 본 발명의 역삼투압을 이용한 담수화 시스템의 에너지 회수장치 에 의하면, 고압 농축수의 압력 에너지를 회수하는 데 사용되는 유로절환밸브의 밸브체가 하나의 작동로드 및 이 작동로드에 연결된 하나의 액츄에이터에 의해 동작이 가능하므로, 밸브 개체에 따른 설비나 유지관리 또는 운전 비용을 대폭적으로 절감할 수 있게 된다. Therefore, according to the energy recovery apparatus of the desalination system using the reverse osmosis pressure of the present invention, the valve body of the flow path switching valve used to recover the pressure energy of the high pressure concentrated water is connected to one working rod and one actuator connected to the working rod. Operation is possible, which can significantly reduce the cost of equipment, maintenance or operation according to the valve object.
또한, 흡입 밸브체가 경사면을 갖는 포핏구조와 미끄럼 접촉면에 의해 밀봉 접촉시간을 연장하는 스풀구조를 동시에 가지고 있으므로, 역삼투 모듈에서 배출되는 고압의 농축수가 밸브 개폐 중에 배수조로 직접 배수되지 않게 되는 등 밸브 관체 내에서 고압의 농축수가 내부 누설되지 않도록 하고, 따라서 고압농축수가 가진 압력에너지의 손실을 최소화하여 에너지 회수율을 극대화할 수 있게 된다.In addition, since the suction valve body has a poppet structure having an inclined surface and a spool structure extending the sealing contact time by the sliding contact surface, the high pressure concentrated water discharged from the reverse osmosis module is not directly drained to the drain tank during valve opening and closing. It is possible to prevent the high pressure concentrated water from leaking inside the pipe, thereby minimizing the loss of pressure energy of the high pressure concentrated water, thereby maximizing the energy recovery rate.

Claims (6)

  1. 고압원수조에서 고압으로 공급되는 해수의 일부를 멤브레인에 의해 이온성 물질과 순수로 분리하여 염분이 제거된 처리수를 생산하는 역삼투 모듈; A reverse osmosis module for separating a portion of seawater supplied at a high pressure from a high pressure water tank into an ionic substance and pure water by a membrane to produce treated water from which salt is removed;
    상기 역삼투 모듈과 상기 고압원수조 사이에 설치되어, 상기 역삼투 모듈에서 역삼투되고 남은 고압농축수의 압력이 저압원수조에서 고압원수조로 공급되는 저압의 해수에 전달되도록 하는 적어도 한 쌍의 동력회수챔버; 및Is installed between the reverse osmosis module and the high pressure water tank, the at least one pair of the pressure of the remaining high pressure concentrated water reverse osmosis in the reverse osmosis module is transmitted to the low pressure seawater supplied from the low pressure water tank to the high pressure water tank Power recovery chamber; And
    상기 역삼투 모듈과 상기 동력회수챔버 사이에 설치되어, 상기 역삼투 모듈에서 배출되는 상기 고압농축수를 상기 동력회수챔버 각각에 교대로 공급하는 유로절환밸브;를 포함하여 이루어지되,And a flow path switching valve installed between the reverse osmosis module and the power recovery chamber to alternately supply the high pressure concentrated water discharged from the reverse osmosis module to each of the power recovery chambers.
    상기 유로절환밸브는,The flow path switching valve,
    고압유체 공급원에 연결되어 고압의 유체가 내부로 유입되도록 하는 하나 이상의 입구, 상기 입구의 양측에 각각 하나씩 형성되어 내부의 유체가 교대로 유출되도록 하는 적어도 한 쌍의 출구, 및 양측단에 형성되어 내부의 유체를 교대로 배수하는 적어도 한 쌍의 배수구가 각각 형성되어 있으며, 내주면의 상호 인접한 상기 각각의 입구, 출구, 및 배수구 사이에는 흡입 또는 배수 시트부가 각각 돌출되어 있는 관체;At least one inlet connected to the high pressure fluid source to allow the high pressure fluid to enter therein, at least one pair of outlets each formed at each side of the inlet so that the fluids flow out alternately, and formed at both ends to be At least one pair of drains each of which alternately drains the fluids is formed, and between the inlets, outlets, and drains adjacent to each other on the inner circumferential surface of the pipe body, each of which has a suction or drain sheet projecting;
    작동수단에 의해 축방향으로 전후진 가능하게 상기 관체 내에 장착되되, 외주면 상에 상기 시트부와 일대일 대응하도록 흡입 또는 배수 걸림수단이 돌출되어 있는 작동로드; 및An actuating rod mounted in the tubular body so as to be able to move back and forth in the axial direction by an actuating means, the actuating rod having a suction or drainage catching means protruding one-to-one on the outer circumferential surface thereof; And
    상기 작동로드 외주면 상에 장착되어, 일대일 대응하는 상기 시트부와 착탈을 반복함으로써 상기 시트부를 통한 유체의 흐름을 단속하도록 되어 있는 복수의 흡입 또는 배수 밸브체;를 포함하여 구성되는 것을 특징으로 하는 역삼투압을 이용한 담수화 시스템의 에너지 회수장치.And a plurality of suction or drain valve bodies mounted on an outer circumferential surface of the working rod and configured to control the flow of the fluid through the seat portions by repeating detachment with the seat portions corresponding to the one-to-one correspondence. Energy recovery device of desalination system using osmotic pressure.
  2. 제1 항에 있어서,The method of claim 1,
    상기 입구를 사이에 둔 상기 흡입 걸림수단 중 어느 한 쪽 걸림수단이 상기 입구를 사이에 둔 상기 흡입 밸브체 중 대응하는 어느 한 쪽 밸브체를 상기 입구를 사이에 둔 상기 흡입 시트부 중 대응하는 어느 한 쪽 시트부에 밀착시켜 상기 입구에서 상기 어느 한 쪽 흡입 밸브체와 대응하는 어느 한 쪽 출구로의 유동을 단절시킨 때,Any one of the suction catching means having the inlet interposed therebetween corresponds to one of the suction seats with the inlet interposed between any one of the suction valve bodies having the inlet interposed therebetween. In close contact with one seat portion to cut off the flow from the inlet to the either inlet and the corresponding outlet,
    상기 다른 한 쪽 흡입 걸림수단은 대응하는 상기 다른 한 쪽 흡입 밸브체를 대응하는 상기 다른 한 쪽 흡입 시트부에서 이격시켜 상기 입구에서 상기 다른 한 쪽 출구로의 유동이 연결되도록 하는 위치에 형성되고, The other suction catching means is formed at a position to connect the flow from the inlet to the other outlet by separating the corresponding other suction valve body from the corresponding other suction seat portion,
    상기 출구와 상기 배수구 사이의 상기 배수 걸림수단 중 어느 한 쪽 걸림수단은 상기 출구와 상기 배수구 사이의 배수 밸브체 중 어느 한 쪽 밸브체를 상기 출구와 상기 배수구 사이의 배수 시트부 중 대응하는 어느 한 쪽 시트부에서 이격시켜 대응하는 상기 어느 한 쪽 출구에서 상기 배수구 중 대응하는 어느 한 쪽 배수구로의 유동이 연결되도록 하는 위치에 형성되며, Any one of the drainage catching means between the outlet and the drainage port is any one of the drainage valve portion between the outlet and the drainage port corresponding to any one of the drainage seat portion between the outlet and the drainage port. Spaced apart from the seat portion so as to connect the flow from the corresponding one outlet to the corresponding one of the drains,
    상기 다른 한 쪽 배수 걸림수단은 대응하는 상기 다른 한 쪽 배수 밸브체를 대응하는 상기 다른 한 쪽 배수 시트부에 밀착시켜 상기 다른 한 쪽 출구에서 대응하는 상기 다른 한 쪽 배수구로의 유동이 단절되도록 하는 위치에 형성되는 것을 특징으로 하는 역삼투압을 이용한 담수화 시스템의 에너지 회수장치.The other drainage catching means is in close contact with the corresponding other drain valve body to the corresponding other drain seat so that the flow from the other outlet to the corresponding other drain is cut off. Energy recovery device of the desalination system using reverse osmosis, characterized in that formed in the position.
  3. 제2 항에 있어서,The method of claim 2,
    상기 다른 한 쪽 배수 걸림수단은 상기 다른 한 쪽 흡입 밸브체가 대응하는 상기 다른 한 쪽 흡입 시트부에서 이격되기 이전에 상기 다른 한 쪽 배수 밸브체가 대응하는 다른 한 쪽 배수 시트부에 밀착되도록 하는 위치에 형성되어 있는 것을 특징으로 하는 역삼투압을 이용한 담수화 시스템의 에너지 회수장치.The other drainage catching means is positioned such that the other drainage valve body is in close contact with the corresponding other drainage seat portion before the other intake valve body is spaced apart from the corresponding other suction seat portion. Energy recovery device of the desalination system using reverse osmosis, characterized in that formed.
  4. 제2 항에 있어서,The method of claim 2,
    상기 어느 한 쪽 배수 걸림수단은 상기 어느 한 쪽 흡입 걸림수단이 대응하는 상기 어느 한 쪽 흡입 밸브체를 대응하는 상기 어느 한 쪽 흡입 시트부에 밀착시킨 후에, 대응하는 상기 어느 한 쪽 배수 밸브체를 대응하는 상기 어느 한 쪽 배수 시트부에서 이격되도록 하는 위치에 형성되어 있으며,The one of the drain catching means closes the corresponding one of the drain valve bodies after the one of the suction catching means is brought into close contact with one of the corresponding suction seats. Is formed in a position to be spaced apart from the corresponding one of the drain sheet,
    상기 어느 한 쪽 흡입 밸브체는 상기 어느 한 쪽 배수 걸림수단이 상기 어느 한 쪽 배수 밸브체를 상기 어느 한 쪽 배수 시트부에서 이격시키기 이전에 상기 어느 한 쪽 흡입 시트부에 밀착되어, 상기 어느 한 쪽 배수 밸브체가 상기 어느 한 쪽 배수 시트부에서 이격되는 동안 상기 입구에서 상기 어느 한 쪽 배수구로의 유동을 계속해서 단절시키도록 되어 있는 것을 특징으로 하는 담수화 시스템의 에너지 회수장치.The said one suction valve body is in close contact with said one suction seat part before said one drainage latching means separates the said one drain valve body from the said one drain seat part, An energy recovery apparatus of the desalination system, characterized in that the flow is continuously cut from the inlet to the one drain while the one side drain valve body is separated from the one drain seat.
  5. 제2 항 내지 제4 항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 4,
    각각의 상기 흡입 밸브체는 대응하는 각각의 상기 흡입 걸림수단의 상기 입구를 향한 면 상에 고정되어 있는 것을 특징으로 하는 담수화 시스템의 에너지 회수장치.And each said suction valve body is fixed on a surface facing said inlet of said respective said suction catching means.
  6. 제2 항 내지 제4 항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 4,
    상기 흡입 밸브체는,The suction valve body,
    상기 작동로드에 동축 상으로 고정되되, 상기 흡입 시트부의 내경보다 큰 외경을 갖는 포핏부; A poppet portion fixed coaxially to the actuating rod, the poppet portion having an outer diameter greater than an inner diameter of the suction seat portion;
    상기 포핏부에서 상기 흡입 시트부를 향하여 돌출되되, 상기 배수 걸림수단이 상기 배수 밸브체를 상기 배수 시트부에서 이격시키기 이전에 상기 흡입 시트부에 밀착되기에 충분한 길이를 확보하도록 되어 있는 스풀부; 및A spool portion protruding from the poppet portion toward the suction seat portion, the spool portion being secured to a length sufficient to be in close contact with the suction seat portion before the drainage catching means is spaced apart from the drainage seat portion; And
    상기 스풀부에서 상기 흡입 시트부를 항하여 상호 간에 일정 간격을 두고 방사상으로 돌출되어, 최대 개방위치에서도 상기 흡입 시트부에의 삽입 상태를 유지하도록 되어 있는 가이드부;를 포함하여 이루어지는 것을 특징으로 하는 담수화 시스템의 에너지 회수장치.And a guide portion protruding radially from the spool portion at a predetermined interval from the suction sheet portion to maintain the insertion state in the suction sheet portion even at the maximum opening position. Energy recovery system of the system.
PCT/KR2011/005526 2011-07-20 2011-07-27 Energy recovery apparatus in a desalination system using reverse osmosis WO2013012115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110072174A KR101306401B1 (en) 2011-07-20 2011-07-20 Apparatus for recovering energy for desalinization system using reverse osmosis
KR10-2011-0072174 2011-07-20

Publications (1)

Publication Number Publication Date
WO2013012115A1 true WO2013012115A1 (en) 2013-01-24

Family

ID=47558277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005526 WO2013012115A1 (en) 2011-07-20 2011-07-27 Energy recovery apparatus in a desalination system using reverse osmosis

Country Status (2)

Country Link
KR (1) KR101306401B1 (en)
WO (1) WO2013012115A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10933375B1 (en) 2019-08-30 2021-03-02 Fluid Equipment Development Company, Llc Fluid to fluid pressurizer and method of operating the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101630601B1 (en) 2014-08-26 2016-06-15 주식회사 기술과창조 Training apparatus for osmotic pressure
CN106320462B (en) * 2016-10-11 2019-04-23 天津送变电工程公司 Automatic anti-seepage and anti-running water device and method for water hose in engineering building

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449225A (en) * 1990-10-17 1995-09-12 Alfred Teves Gmbh Master cylinder with two internal valves
JP2001046842A (en) * 1999-08-17 2001-02-20 Japan Organo Co Ltd Power recovery method and apparatus in reverse osmosis membrane type seawater desalting apparatus
JP2009103109A (en) * 2007-10-25 2009-05-14 Ebara Corp Power recovery system
KR20090128628A (en) * 2008-06-11 2009-12-16 한국기계연구원 Energy recovery device driven by rotary plate valve
JP2009299675A (en) * 2008-06-11 2009-12-24 Korea Mach Res Inst Self-reciprocating energy recovery device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797429A (en) 1996-03-11 1998-08-25 Desalco, Ltd. Linear spool valve device for work exchanger system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449225A (en) * 1990-10-17 1995-09-12 Alfred Teves Gmbh Master cylinder with two internal valves
JP2001046842A (en) * 1999-08-17 2001-02-20 Japan Organo Co Ltd Power recovery method and apparatus in reverse osmosis membrane type seawater desalting apparatus
JP2009103109A (en) * 2007-10-25 2009-05-14 Ebara Corp Power recovery system
KR20090128628A (en) * 2008-06-11 2009-12-16 한국기계연구원 Energy recovery device driven by rotary plate valve
JP2009299675A (en) * 2008-06-11 2009-12-24 Korea Mach Res Inst Self-reciprocating energy recovery device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10933375B1 (en) 2019-08-30 2021-03-02 Fluid Equipment Development Company, Llc Fluid to fluid pressurizer and method of operating the same

Also Published As

Publication number Publication date
KR20130011197A (en) 2013-01-30
KR101306401B1 (en) 2013-09-09

Similar Documents

Publication Publication Date Title
EP1095693B1 (en) Water desalting installation through reverse osmosis with pressurized supply tanks in continuous kinetic cycle
JP4659310B2 (en) A pumping device having a piston pump for filtering water and a method for desalinating seawater using the pumping device
JP2001506916A (en) Fluid driven pump and device using the pump
GB2357320A (en) Energy recovery device
WO2013012115A1 (en) Energy recovery apparatus in a desalination system using reverse osmosis
CN103890390A (en) Volumetric pressure exchanger for a seawater desalination plant and desalination plant
WO2011108783A1 (en) Energy recovery device for seawater desalination system
WO2011108790A1 (en) Energy recovery device in seawater desalination system
CN100409925C (en) Method and apparatus for desalinating water against pressure drop
NZ526010A (en) Method and device for desalting water
JP2011075058A (en) Flow passage switching device
US7661932B2 (en) Pressure exchange apparatus
CN110594118A (en) High salt water energy conversion control system
AU2013250766B2 (en) Effecting high recovery desalination with pressure driven membranes
JP2022522268A (en) Pumping system and fluid transfer device
KR20130113342A (en) Linear hollow spool valve
KR20110138351A (en) Continuous Batch Reverse Osmosis System with Concentrate Circulation and In-tank Membrane
WO2012057391A1 (en) Flow path conversion valve
JP7674408B2 (en) Energy Recovery Device
CN117945507B (en) Automatic rotating water inlet system of sea water desalination membrane group
EA008997B1 (en) Hydraulic motor arrangement and method of operating a hydraulic motor
JP2008121613A (en) Force feed system
JPH0751151Y2 (en) Reverse osmosis membrane concentrator
CN115108608A (en) Circulating reverse osmosis treatment system and treatment method thereof
CN118084154A (en) Industrial electric desalting device with stable operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869713

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载