+

WO2013011250A1 - Fibres composites conductrices a base de graphene - Google Patents

Fibres composites conductrices a base de graphene Download PDF

Info

Publication number
WO2013011250A1
WO2013011250A1 PCT/FR2012/051748 FR2012051748W WO2013011250A1 WO 2013011250 A1 WO2013011250 A1 WO 2013011250A1 FR 2012051748 W FR2012051748 W FR 2012051748W WO 2013011250 A1 WO2013011250 A1 WO 2013011250A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
fiber
coagulation
composite fibers
dispersion
Prior art date
Application number
PCT/FR2012/051748
Other languages
English (en)
Inventor
Patrice Gaillard
Alexander Korzhenko
Patrick Delprat
Serge Bordere
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2013011250A1 publication Critical patent/WO2013011250A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods

Definitions

  • the present invention relates to conductive composite fibers comprising a polymeric matrix in which nano-sized graphene is dispersed. It also relates to processes for preparing these fibers, as well as their uses.
  • the electrically conductive fibers are known for different applications, making particular use of their antistatic properties, in particular for the manufacture of aeronautical or automotive parts or for the electromagnetic shielding of electronic equipment, for example to dissipate electrical charges arising from friction, induced in particular during the circulation of a fluid in a thermoplastic pipe. They can also be used in the manufacture of deformation or stress sensors.
  • the intrinsically conductive polymer fibers which are poorly resistant to washing and are not very stable, insofar as they are sensitive to oxidation and also to heat released by the Joule effect which can chemically degrade (for example crosslink) the polymer and / or alter its mechanical properties beyond a certain temperature,
  • the polymer fibers made conductive by deposition of conductive particles on their surface, such as silver fibers, whose coating is likely to degrade by friction and wear.
  • Composite fibers containing graphene are already known from WO 2010/107762 and US 2010/092723. These fibers are made from graphene obtained by graphite exfoliation and thus having a variable thickness depending on whether the exfoliation is more or less complete, and micrometric side dimensions. Commercially available exfoliation graphene grades have a length and width of more than 1 ⁇ m, typically 5, 15 or 25 ⁇ m and up to 50 ⁇ m.
  • the fibers described in these documents are obtained by molten route. However, this technique does not always make it possible to obtain fibers having a good electrical conductivity, insofar as it leads to an orientation of the charges such as graphene in the direction of the fiber, which is generally pred udiciables to the electrical properties. In addition, the molten process does not achieve high levels of graphene, given the high viscosity that they generate.
  • nanoscale graphene made it possible to prepare fibers having a high electrical conductivity and good mechanical properties. It is also possible to manufacture these fibers by a simple coagulation process to implement, under conditions of high productivity.
  • the subject of the present invention is thus conductive composite fibers containing graphene dispersed in a polymer matrix, characterized in that the graphene is in the form of particles having a thickness of less than 100 nm, preferably less than 50 nm. , more preferably less than 15 nm, between 0.1 and 10 nm, and lateral dimensions of about 1 ⁇ m, more preferably from 50 to 800 nm, more particularly from 100 to 600 nm, or even from 100 to 500 nm .
  • fiber is meant, in the sense of the present invention, a strand whose diameter is between 100 nm (nanometers) and 300 ⁇ (micrometers), preferably between 1 and 100 ⁇ (micrometers), better, between 2 and 50 ⁇ (micrometers).
  • This structure may also be porous or non-porous.
  • Graphene is a material discovered in 2004 and has since been manufactured on an industrial scale. It is a two-dimensional crystal made up of carbon atoms arranged in a honeycomb, the stack of which constitutes graphite (where 1 mm of graphite contains several million graphene sheets).
  • graphene is therefore used to designate a sheet of graphite plane, isolated and individualized, but also, by extension, an assembly comprising between one and a few tens of sheets and having a flat structure or more or less wavy .
  • This definition includes FLGs (Few Layer Graphene or Graphene NanoRegons), Nanosized Graphene Plates (NGPs), CNS (Carbon NanoSheets or nano-graphene sheets), and Graphene NanoRibbons (Graphene NanoRibbons). nano-ribbons of graphene). On the other hand, it excludes carbon nanotubes and nanofibers.
  • the graphene used according to the invention is in the form of particles having a thickness of less than 100 nm, preferably less than 50 nm, more preferably less than 15 nm, and lateral dimensions of approximately 1 ⁇ m, preferably from 50 to 800, more preferably still from 100 to 600 nm, or even from 100 to 500 nm.
  • Each of these particles generally contains from 1 to 50 sheets which are likely to be detached from one of the others in the form of independent leaflets, for example during an ultrasound treatment.
  • Graphene is advantageously prepared according to a chemical vapor deposition or "CVD" method.
  • Such a process generally comprises the decomposition of a gaseous source of carbon, in particular a hydrocarbon, such as ethylene, methane or acetylene, at a temperature of 800 to 1000 ° C., over a supported catalyst. in powder form, in particular on cobalt optionally mixed with iron and supported on magnesia.
  • a preferred CVD method for obtaining graphene according to this invention comprises the following steps:
  • step b) contacting a gaseous carbon source with the catalyst of step b), optionally in a fluidized bed, and its catalytic decomposition at a temperature of 500 to 800 ° C, preferably from 610 to 800 ° C, the gas source being selected from alcohols C 1 -C 1 2 and hydrocarbons C 1 -C 1 2, such as alkanes or alkenes, of preferably ethylene, which can be mixed with a flow of hydrogen as reducing agent and optionally with an inert gas,
  • the amount of graphene used according to the invention represents from 0.5% to 50%, preferably from 1% to 30%, more preferably from 3.5% to 15% by weight, relative to the total weight composite fiber.
  • the present invention also relates to processes for producing these conductive composite fibers by coagulation.
  • the coagulation process may include:
  • the composite fibers according to the invention can be produced by a process comprising the successive steps of:
  • the first step of the process according to the invention consists in forming a graphene dispersion in a binder polymer, in the presence of at least one stabilizing agent covalently or non-covalently bonded to graphene.
  • the binder polymer may be chosen from a homo- or copolymer of vinyl alcohol, cellulose, viscose, an alginate, poly (lactic acid), poly (lactic acid-co-glycolic acid), and mixtures thereof, particularly polyvinyl alcohol.
  • the term "stabilizing agent” is intended to mean a compound which allows a homogeneous dispersion of graphene in the solution, which protects graphene from coagulation in the presence of the polymeric binder, but which does not interfere with the coagulation of the polymeric binder in a coagulation solution.
  • the stabilizing agent (s) according to the invention are bonded to graphene either covalently or non-covalently.
  • the stabilizing agent is non-covalently bonded to graphene, it may be chosen from essentially nonionic surfactants.
  • substantially nonionic surfactant is meant, in the sense of the present invention, a nonionic amphiphilic compound, cited for example in the book McCUTCHEON'S 2008 "Emulsifiers and Detergents", and preferably having a HLB (hydrophilic-lipophilic balance) from 13 to 16, as well as block copolymers containing hydrophilic blocks and lipophilic blocks and having a low ionicity, for example 0% to 10% by weight of ionic monomer and 90% to 100% of nonionic monomer.
  • HLB hydrophilic-lipophilic balance
  • the stabilizing agent is covalently bonded to graphene
  • it is preferably a hydrophilic group, preferably a polyethylene glycol group grafted on graphene.
  • the grafting of reactive units such as polyethylene glycol groups on the surface of graphene can be carried out according to any method known to those skilled in the art.
  • one skilled in the art may disperse graphene in dimethylformamide (DMF) before contacting it with oxalyl chloride.
  • DMF dimethylformamide
  • PEG polyethylene glycol
  • the dispersion produced in the first step of the process according to the invention comprises a solvent which is preferably chosen from water, dimethylsulfoxide (DMSO), glycerol, ethylene glycol, diethylene glycol and triethylene glycol. , diethylene triamine, ethylene diamine, phenol, dimethylformamide (DMF), dimethylacetamide, N-methylpyrrolidone and mixtures thereof.
  • a solvent which is preferably chosen from water, dimethylsulfoxide (DMSO), glycerol, ethylene glycol, diethylene glycol and triethylene glycol. , diethylene triamine, ethylene diamine, phenol, dimethylformamide (DMF), dimethylacetamide, N-methylpyrrolidone and mixtures thereof.
  • the solvent is chosen from water, DMSO and mixtures thereof in all proportions.
  • the pH of the aqueous dispersion can be maintained preferably between 3 and 5 by addition of one or more acids, which can be chosen from inorganic acids, such as sulfuric acid, nitric acid and hydrochloric acid, organic acids such as acetic acid, tartaric acid and oxalic acid and mixtures of organic acid and organic acid salt such as acid citric acid and sodium citrate, acetic acid and sodium acetate, tartaric acid and potassium tartrate, tartaric acid and sodium citrate.
  • inorganic acids such as sulfuric acid, nitric acid and hydrochloric acid
  • organic acids such as acetic acid, tartaric acid and oxalic acid and mixtures of organic acid and organic acid salt such as acid citric acid and sodium citrate, acetic acid and sodium acetate, tartaric acid and potassium tartrate, tartaric acid and sodium citrate.
  • the dispersion may comprise boric acid, borate salts, or mixtures thereof.
  • the dispersion may also comprise a salt selected from zinc chloride, sodium thiocyanate, calcium chloride, aluminum chloride, lithium chloride, rhodanates and mixtures thereof. They make it possible to optimize the rheological properties of the dispersion and to promote the formation of the fiber.
  • the dispersion is carried out by means of ultrasound or a rotor-stator system or a ball mill. It can be carried out at room temperature, or by heating, for example, between 40 and 120 ° C.
  • the second step of the process involves injecting said dispersion obtained in the first step into a coagulation solution to form a fiber, in the form of monofilament or multi-filaments.
  • coagulation solution is intended to mean a solution which causes the polymer binder to solidify.
  • Such solutions are known to those skilled in the art, and the production of vinyl alcohol homo- or copolymer-based fibers is the subject of a rich literature.
  • wet spinning refer for example to US Patents 3,850,901, US 3,852,402 and US 4,612,157.
  • dry-jet wet spinning of PVA, or “dry-jet wet spinning” (refer, for example, to US Patents 4,603,083, US 4,698,194, US 4,971,861, US 5,208,104 and US Pat.
  • the coagulation solution comprises a solvent chosen from water, an alcohol, a polyol, a ketone and their mixtures, more preferably a solvent chosen from water, methanol, ethanol, butanol, propanol, isopropanol, glycol, acetone, methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene and mixtures thereof, and still more more preferred a solvent selected from water, methanol, ethanol, a glycol, acetone and mixtures thereof.
  • the coagulation solution advantageously has a temperature of between 10 and 80 ° C. If the solvent of the coagulation solution is essentially organic, such as methanol, the coagulation solution advantageously has a temperature between -30 and 10 ° C.
  • the coagulation solution may comprise one or more salts intended to promote the coagulation of the polymeric binder, chosen from alkaline salts or desiccant salts such as ammonium sulphate, potassium sulphate, sodium sulphate, sodium carbonate, sodium hydroxide, potassium hydroxide and mixtures thereof.
  • alkaline salts or desiccant salts such as ammonium sulphate, potassium sulphate, sodium sulphate, sodium carbonate, sodium hydroxide, potassium hydroxide and mixtures thereof.
  • the coagulation solution may comprise one or more additional compounds which are intended to improve the mechanical properties, the water resistance of the fiber and / or facilitate the spinning of the fiber.
  • the coagulation solution can therefore comprise at least one compound selected from boric acid, borate salts and mixtures thereof.
  • the coagulation solution is saturated with salts.
  • the dispersion is injected during the second step of the process according to the invention through one or a set of needles and / or one or a set of nonporous cylindrical or conical nozzles into the coagulation solution, which can be static (static bath) or in motion (flow).
  • the average injection speed of the dispersion may be between 0.1 m / min and 50 m / min, preferably between 0.5 m / min and 20 m / min.
  • the coagulant solution induces coagulation in the form of a fiber by solidification of the polymeric binder. Graphene gets trapped in the polymer that solidifies.
  • the next step of the process according to the invention consists in extracting, continuously or not, the fiber from the coagulation solution.
  • the wash tank preferably includes water.
  • the washing step may make it possible to eliminate a portion of the peripheral polymer from the fiber and thus enrich the composition of the fiber with graphene.
  • the washing bath may include agents that alter the composition of the fiber or interact with each other. chemically with this one.
  • chemical or physical crosslinking agents in particular borate salts or dialdehydes, may be added to the bath in order to reinforce the fiber.
  • the washing step may also make it possible to eliminate the agents, in particular the surfactants, potentially pre-limpable to the mechanical or electrical properties of the fiber.
  • a drying step is also included in the process according to the invention. This step can take place either directly after extraction or after washing. In particular, if it is desired to obtain a polymer-enriched fiber, it is desirable to dry the fiber directly after the extraction.
  • the drying is preferably carried out in an oven which will dry the fiber by means of a gas circulating in an interior duct of the oven. The drying can also be carried out by infrared radiation.
  • the composite fibers according to the invention may be produced according to a process comprising the successive steps consisting of:
  • the composite fibers according to the invention can be produced according to a process comprising the successive steps consisting of:
  • a multilayer fiber is thus obtained containing: a core formed of a natural or synthetic fiber,
  • a bark containing a polymeric binder and graphene containing a polymeric binder and graphene.
  • the solvents, stabilizing agents, polymeric binders and coagulation solutions used in this process may be chosen from those mentioned above.
  • An example of such a process has been described in the application FR 2 946 178, to which reference may be made for further details.
  • they may include a winding step, and possibly a hot stretching step performed between the drying step and the winding step. They may also include stretches in solvents at different times.
  • composite fibers obtained by this method are intrinsically conductive, their electrical conductivity can be further improved by heat treatments.
  • the composite fibers according to the invention may comprise other conductive carbonaceous fillers in addition to graphene, in particular one or more fillers chosen from carbon nanotubes, nanofibres of carbon, and mixtures thereof.
  • Carbon nanofibers are, like carbon nanotubes, nanofilaments generally produced by chemical vapor deposition (or CVD) from a carbon source that is decomposed on a catalyst having a transition metal (Fe, Ni, Co, Cu) in the presence of hydrogen at temperatures of 500 to 1200 ° C.
  • CVD chemical vapor deposition
  • these two carbonaceous charges are differentiated by their structure (I. MARTIN-GULLON et al., Carbon, Vol 44, 1572-1580, 2006).
  • the carbon nanotubes consist of one or more sheets of graphene wound concentrically to form a cylinder having a diameter of 1 to 100 nm.
  • carbon nanofibers are composed of more or less organized graphitic zones (or turbostratic stacks) whose planes are inclined at variable angles with respect to the axis of the fiber. These stacks can take the form of platelets, fish bones or stacked cups to form structures generally ranging in diameter from 100 nm to 500 nm or more.
  • the carbon nanotubes that can be used in the present invention are advantageously of multi-wall type, containing from 5 to 15 walls, and are preferably obtained by a chemical vapor deposition (CVD) process. They advantageously have a mean diameter ranging from 0.1 to 100 nm and a length of 0.1 to 20 ⁇ m.
  • Examples of crude carbon nanotubes are those commercially available from ARKEMA under the trademark Graphistrength C100.
  • the fibers according to the invention may comprise an assembly of carbon and graphene nanotubes capable of being obtained by decomposition at a temperature of 500 to 1500 ° C. of a source of carbon in the gaseous state, implemented contact with an active catalyst A for the synthesis of carbon nanotubes and an active catalyst B for the synthesis of graphene.
  • This assembly can thus be obtained by adapting the graphene synthesis process described above to add catalyst A.
  • the latter may in particular comprise a metal such as iron, cobalt, nickel, molybdenum, titanium and mixtures thereof. supported on a solid inert support, for example alumina.
  • Such a catalyst may especially be prepared by impregnating a dry substrate with an aqueous or alcoholic impregnation solution comprising metal salts.
  • the composite fibers according to the invention may contain at least one conductive polymer.
  • conducting polymer is meant a homo- or copolymer whose main chain contains conjugated double bonds - for example in the form of one or more (hetero) aromatic rings - and which forms, after possible oxidation and doping with the using at least one doping agent, a salt or complex having electrical conduction properties.
  • usable conductive polymers include homo- and copolymers comprising one or more monomers selected from aniline, pyrrole, optionally substituted thiophene, acetylene, phenylene vinylene, phenylene sulfide and mixtures thereof.
  • PEDOT poly(3,4-ethylenedioxythiophene) or PEDOT.
  • PEDOT and PANI are preferred for use in the present invention.
  • Polyaniline exists under different oxidation states, related to the proportions of imine and amine functions contained in the molecule. It is preferred according to the invention to use emeraldine, which corresponds to the intermediate oxidation state of polyaniline, having the best electrical properties.
  • doping agents include strong protonic acids having a pKa of less than 3, such as hydrochloric acid, sulfuric acid and its salts such as sodium dodecyl sulphate, phosphonic acids and sulphonic compounds, especially 2-acrylamido-2-methylpropanesulphonic acid (AMPS), dodecylbenzenesulfonic acid, camphorsulfonic acid, toluenesulphonic acid, methanesulphonic acid and sulphonic function (s) polymers, such as that the poly (styrene sulfonic acid) which is the doping agent preferably used in combination with the PEDOT to form a colloidal solution PEDOT: PSS.
  • Other doping agents include polyacrylamide and polyacrylic acid.
  • the salts or complexes of conductive polymers and doping agents can be obtained chemically or electrochemically, according to techniques known to those skilled in the art. Some are also available commercially, especially from PANIPOL.
  • These conductive polymers can be incorporated in the composite fibers according to the invention in one of or the other of the variants described above, by mixing them with the polymeric binder before the coagulation step.
  • the present invention also relates to the use of the above-mentioned conductive composite fibers for the manufacture of nose, wings or cockles of rockets or airplanes; off-shore flexible armor; automotive bodywork components, engine chassis or automobile support parts; automotive seat coverings; structural elements in the field of buildings or bridges and roadways; packaging and antistatic textiles, in particular antistatic curtains, antistatic clothing (for example, safety or clean room) or materials for the protection of silos or the packaging and / or transport of powders or granular materials; furnishing items, including clean room furniture; filters; electromagnetic shielding devices, in particular for the protection of electronic components; conductive cables; sensors, in particular deformation sensors or mechanical stresses; electrodes; hydrogen storage devices; biomedical devices such as sutures, prostheses or catheters; displays, keyboards or connectors incorporated into clothing; or receivers and emitters of electromagnetic waves.
  • the manufacture of these composite parts can be carried out according to various processes, generally involving a step of impregnating the conductive composite fibers according to the invention with a composition polymeric material comprising at least one thermoplastic, elastomeric or thermosetting material.
  • This impregnation step may itself be carried out according to various techniques, depending in particular on the physical form of the polymeric composition used.
  • the impregnation of the conductive composite fibers is preferably carried out according to a fluidized bed impregnation process, in which the polymeric composition is in the form of powder. Pre-impregnated fibers are thus obtained.
  • preimpregnated fiber fabrics of identical or different composition, can be stacked to form a plate or a laminated material, or alternatively subjected to a thermoforming process.
  • the pre-impregnated fibers may be combined to form ribbons which may be used in a filament winding process which makes it possible to obtain hollow pieces of almost unlimited shape, by winding the ribbons on a mandrel having the shape of the part to be made.
  • the manufacture of the finished part comprises a step of consolidating the polymeric composition, which is for example melted locally to create zones for fixing the fibers pre-impregnated with each other and / or to secure the fiber ribbons pre-impregnated with each other. impregnated in the filament winding process.
  • the conductive composite fibers according to the invention can be woven or knitted, alone or with other fibers, or used, alone or in combination with other fibers, for the manufacture of cables, felts or nonwoven materials.
  • materials constituting these other fibers include, without limitation:
  • stretched polymer fibers based in particular on: polyamide such as polyamide 6 (PA-6), polyamide 11 (PA-11), polyamide 12 (PA-12), polyamide 6.6 (PA-6.6) the polyamide 4.6 (PA-4,6), polyamide-6,10 (PA-6.10) or polyamide 6.12 (PA-6.12), copolymer polyamide / polyether block (Pebax ®), high density polyethylene, polypropylene or polyester such as polyhydroxyalkanoates and polyesters marketed by Du Pont under the trade name Hytrel ®;
  • glass fibers especially of type E, R or
  • Step 1 Synthesis of assemblages of carbon nanotubes and graphene (NTC / GP)
  • the homogeneous gel thus obtained was heated to a temperature of the order of 200 ° C. so as to decompose citric acid. The expansion of the homogeneous gel was then observed to foam which was allowed to develop for about 30 minutes until stabilization. This foam was then crushed gently to form a powder which was heated at 400 ° C for 4 hours in atmospheric air. A crystalline powder of cobalt ferrite was thus obtained.
  • This powder had a single oxide phase having a spinel type structure with a crystalline domain size of between 14 nm and 20 nm (determined by X-ray diffraction) and a specific surface area of 7 m 2 / g.
  • a catalyst was prepared from Puralox ® SCCa-5/150 alumina with a median diameter of approximately 85 ⁇ and a specific surface area of 160 m 2 / g.
  • 100 g of alumina was introduced and flushed with air.
  • 80 ml of a 45 g / l solution of ammonium molybdate tetrahydrate were then continuously injected, followed by 560 ml of a 675 g / l solution of iron nitrate nonahydrate.
  • the target ratio (metal mass / catalyst mass) being 32% for iron and 3% for molybdenum, the duration of addition was 25 h.
  • the catalyst was then heated in situ at 220 ° C under dry air for 8 hours and then placed in a muffle furnace at 400 ° C for 8 hours.
  • a catalytic test was carried out by putting a mass of about 1.9 g of catalyst A and about 0.6 g catalyst B in a quartz reactor of 5 cm in diameter and 1 meter effective heating height.
  • the amount of product recovered at the end of the reaction was 47 g.
  • the theoretical NTC / GP mass ratio in this test was 90/10.
  • Step 2 Production of Composite Fibers Three aqueous dispersions were carried out, respectively from the two aforementioned assemblies and from NTC without graphene. To this was charged in water 0.9% by weight of the aforementioned charges and 1.2% by weight of a surfactant (Brij ® 78). These suspensions were then passed to the ultrasound microprobe for
  • Fibers that do not contain graphene have an electrical resistance greater than the detection threshold of the device used (Keithley ® 2000 multimeter), due to the orientation of the NTC along the fiber, which is unfavorable to the transmission of the current.
  • graphene-containing fibers have satisfactory electrical conductivity, which could be further enhanced by heat treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Fibres composites conductrices à base de graphène La présente invention concerne des fibres composites conductrices renfermant une matrice polymérique dans laquelle est dispersé du graphène nanométrique. Elle concerne également des procédés de préparation de ces fibres, ainsi que leurs utilisations.

Description

Fibres composites conductrices à base de graphène
La présente invention concerne des fibres composites conductrices renfermant une matrice polymérique dans laquelle est dispersé du graphène de taille nanométrique . Elle concerne également des procédés de préparation de ces fibres, ainsi que leurs utilisations.
Les fibres conductrices de l'électricité sont connues pour différentes applications, mettant en particulier à profit leurs propriétés antistatiques, notamment pour la fabrication de pièces aéronautiques ou automobiles ou pour le blindage électromagnétique d'équipements électroniques, par exemple pour dissiper les charges électriques issues de frottements, induites en particulier lors de la circulation d'un fluide dans une conduite thermoplastique. Elles peuvent en outre être utilisées dans la fabrication de capteurs de déformations ou de contraintes.
Les fibres conductrices connues dans l'art antérieur comprennent :
- les fils métalliques, qui ont l'inconvénient d'être lourds et susceptibles de s'oxyder,
- les fibres de polymères intrinsèquement conducteurs, qui résistent mal aux lavages et sont peu stables, dans la mesure où ils sont sensibles à l'oxydation et également à la chaleur dégagée par effet Joule qui peut dégrader chimiquement (par exemple réticuler) le polymère et/ou altérer ses propriétés mécaniques au-delà d'une certaine température,
- les fibres de polymères rendus conducteurs par dépôt de particules conductrices à leur surface, telles que les fibres argentées, dont le revêtement est susceptible de se dégrader par frottement et usure.
Il subsiste donc le besoin de disposer de nouvelles fibres conductrices présentant une conductivité électrique satisfaisante sans générer une quantité de chaleur trop forte, qui serait susceptible de dégrader la matrice de ces fibres. II serait par ailleurs souhaitable que ces fibres présentent d'autres propriétés avantageuses, en particulier qu'elles soient légères et/ou stables chimiquement et/ou qu'elles présentent une bonne tenue mécanique .
Dans ce contexte, il est apparu aux inventeurs qu'il était possible de satisfaire ces besoins en proposant une fibre à base de graphène dispersé dans une matrice polymérique .
Des fibres composites contenant du graphène sont déjà connues des documents WO 2010/107762 et US 2010/092723. Ces fibres sont fabriquées à partir de graphène obtenu par exfoliation de graphite et présentant, de ce fait, une épaisseur variable suivant que 1 ' exfoliâtion est plus ou moins complète, et des dimensions latérales micrométriques. Les grades de graphène obtenu par exfoliation disponibles dans le commerce présentent en effet une longueur et une largeur de plus de 1 pm, typiquement de 5, 15 ou 25 pm et allant jusqu'à 50 pm. En outre, les fibres décrites dans ces documents sont obtenues par voie fondue. Or, cette technique ne permet pas toujours d'obtenir des fibres présentant une bonne conductivité électrique, dans la mesure où elle conduit à une orientation des charges telles que le graphène dans le sens de la fibre, qui est généralement pré udiciables aux propriétés électriques. En outre, le procédé par voie fondue ne permet pas d'atteindre des teneurs en graphène élevées, compte tenu de la trop forte viscosité que celles-ci engendrent.
Or, il est apparu aux inventeurs que l'utilisation de graphène nanométrique permettait de préparer des fibres présentant une conductivité électrique élevée et de bonnes propriétés mécaniques. Il est également possible de fabriquer ces fibres suivant un procédé de coagulation simple à mettre en œuvre, dans des conditions de productivité élevée.
La présente invention a ainsi pour objet des fibres composites conductrices, renfermant du graphène dispersé dans une matrice polymérique, caractérisées en ce que le graphène se présente sous forme de particules d'une épaisseur de moins de 100 nm, de préférence de moins de 50 nm, plus préfèrentiellement de moins de 15 nm, comprise entre 0,1 et 10 nm, et de dimensions latérales d'environ 1 pm, plus préfèrentiellement de 50 à 800 nm, plus particulièrement de 100 à 600 nm, voire de 100 à 500 nm .
Par « fibre », on entend, au sens de la présente invention, un brin dont le diamètre est compris entre 100 nm (nanomètres) et 300 μιη (micromètres), de préférence entre 1 et 100 μιη (micromètres), mieux, entre 2 et 50 μιη (micromètres) . Cette structure peut par ailleurs être ou non poreuse. Le graphène est un matériau découvert en 2004 et fabriqué depuis à l'échelle industrielle. Il s'agit d'un cristal bidimensionnel constitué d'atomes de carbone disposés en nid d'abeille, dont l'empilement constitue le graphite (où 1 mm de graphite renferme plusieurs millions de feuilles de graphène) . L'enroulement d'un ou plusieurs feuillets de graphène de manière coaxiale donne naissance aux nanotubes de carbone (respectivement, mono-parois et multi-parois ) , tandis que l'empilement turbostratique de ces feuillets constitue une nanofibre de carbone. Dans cette description, le terme « graphène » est donc utilisé pour désigner un feuillet de graphite plan, isolé et individualisé, mais aussi, par extension, un assemblage comprenant entre un et quelques dizaines de feuillets et présentant une structure plane ou plus ou moins ondulée. Cette définition englobe ainsi les FLG (Few Layer Graphene ou graphène faiblement empilé) , les NGP (Nanosized Graphene Plates ou plaques de graphène de dimension nanométrique ) , les CNS (Carbon NanoSheets ou nano-feuilles de graphène) , les GNR (Graphene NanoRibbons ou nano-rubans de graphène) . Elle exclut en revanche les nanotubes et nanofibres de carbone. Comme indiqué précédemment, le graphène utilisé selon l'invention se présente sous forme de particules d'une épaisseur de moins de 100 nm, de préférence de moins de 50 nm, plus préfèrentiellement de moins de 15 nm, et de dimensions latérales d'environ 1 pm, préfèrentiellement de 50 à 800, plus préfèrentiellement encore de 100 à 600 nm, voire de 100 à 500 nm. Chacune de ces particules renferme en général de 1 à 50 feuillets qui sont susceptibles d'être désolidarisés les uns des autres sous la forme de feuillets indépendants, par exemple lors d'un traitement par ultrasons.
Le graphène est avantageusement préparé suivant un procédé de dépôt chimique en phase vapeur ou « CVD ». Un tel procédé comprend en général la décomposition d'une source gazeuse de carbone, en particulier un hydrocarbure, tel que de l'éthylène, du méthane ou de l'acétylène, à une température de 800 à 1000°C, sur un catalyseur supporté sous forme de poudre, notamment sur du cobalt éventuellement mélangé à du fer et supporté sur de la magnésie.
Un procédé de CVD préféré pour l'obtention de graphène selon cette invention comprend les étapes suivantes :
a) l'introduction dans un réacteur de synthèse, et éventuellement la mise en lit fluidisé dans ledit réacteur, d'un catalyseur actif pour la synthèse de graphène, tel qu'un oxyde mixte de formule AFe2Û4 où A est un élément métallique à valence mixte présentant au moins deux valences dont l'une est égale à +2, en particulier choisi parmi le cobalt, le cuivre ou le nickel, le catalyseur étant avantageusement de structure spinelle, b) le chauffage dudit catalyseur dans le réacteur, à une température comprise entre 500 et 1500°C, de préférence entre 500 et 800°C, voire entre 610 et 800°C,
c) la mise en contact d'une source gazeuse de carbone avec le catalyseur de l'étape b) , éventuellement en lit fluidisé, et sa décomposition catalytique à une température de 500 à 800°C, de préférence de 610 à 800°C, la source gazeuse étant choisie parmi les alcools en C1-C12 et les hydrocarbures en C1-C12, tels que les alcanes ou les alcènes, de préférence l'éthylène, qui peut être mélangé à un flux d'hydrogène comme agent réducteur et éventuellement à un gaz inerte,
d) la récupération du graphène produit en c) en sortie du réacteur.
La quantité de graphène mise en œuvre selon l'invention représente de 0,5 % à 50 %, de préférence de 1 % à 30 %, de façon plus préférée de 3,5 % à 15 % en poids, par rapport au poids total de la fibre composite.
La présente invention a également pour objet des procédés de fabrication de ces fibres composites conductrices par coagulation. Le procédé de coagulation peut comprendre :
- soit la coagulation sous forme de fibre, ou autour d'une fibre pré-formée, d'un mélange de graphène et de liant polymère, généralement le poly (alcool vinylique) , en le faisant passer dans une solution de coagulation,
- soit l'injection du graphène dispersé dans un solvant dans un co-écoulement d'une solution de coagulation renfermant un liant polymère tel que le poly(alcool vinylique).
Ainsi, selon un premier mode de réalisation, les fibres composites selon l'invention peuvent être produites suivant un procédé comprenant les étapes successives consistant en :
a) la formation d'une dispersion de graphène dans une solution de liant polymère, en présence d'au moins un agent stabilisant lié de façon covalente ou non covalente au graphène,
b) l'injection de ladite dispersion dans une solution de coagulation,
c) l'extraction de la fibre obtenue,
d) le lavage éventuel de ladite fibre,
e) le séchage de ladite fibre.
Un tel procédé a été décrit en détail dans la demande FR 2 946 177 à laquelle on pourra se reporter pour plus de détails.
La première étape du procédé selon l'invention consiste à former une dispersion de graphène dans un polymère liant, en présence d'au moins un agent stabilisant lié de façon covalente ou non covalente au graphène .
Le polymère liant peut être choisi parmi un homo- ou copolymère d'alcool vinylique, la cellulose, la viscose, un alginate, le poly (acide lactique), le poly (acide lactique-co-acide glycolique) , et leurs mélanges, en particulier le poly(alcool vinylique.
Par « agent stabilisant », on entend au sens de la présente invention, un composé permettant une dispersion homogène du graphène dans la solution, qui protège le graphène de la coagulation en présence du liant polymère, mais qui n'entrave pas la coagulation du liant polymère dans une solution de coagulation.
Le ou les agent (s) stabilisant ( s ) selon l'invention sont liés au graphène soit de façon covalente, soit de façon non covalente.
Dans le cas où l'agent stabilisant est lié au graphène de façon non covalente, il pourra être choisi parmi les tensioactifs essentiellement non ioniques.
Par « tensioactif essentiellement non ionique » on entend, au sens de la présente invention, un composé amphiphile non ionique, cité par exemple dans l'ouvrage McCUTCHEON'S 2008 « Emulsifiers and Détergents », et ayant de préférence une HLB (balance hydrophile- lipophile) de 13 à 16, ainsi que les copolymères blocs renfermant des blocs hydrophiles et des blocs lipophiles et présentant une ionicité faible, par exemple 0% à 10% en poids de monomère ionique et 90% à 100% de monomère non ionique.
Dans le second cas où l'agent stabilisant est lié au graphène de façon covalente, il s'agit de préférence d'un groupement hydrophile, avantageusement d'un groupement polyéthylèneglycol greffé sur le graphène.
Le greffage de motifs réactifs tels que des groupements polyéthylèneglycol à la surface du graphène peut être réalisé selon tout procédé connu de l'homme du métier. Par exemple, l'homme du métier pourra disperser le graphène dans du diméthylformamide (DMF) avant de le mettre en contact avec du chlorure d'oxalyle. Dans un second temps, la dispersion obtenue sera mise en contact avec du polyéthylène glycol (PEG) .
En outre, la dispersion réalisée dans la première étape du procédé selon l'invention comprend un solvant qui est de préférence choisi parmi l'eau, le diméthylsulfoxyde (DMSO) , la glycérine, l'éthylène glycol, le diéthylène glycol, le triéthylène glycol, la diéthylène triamine, l'éthylène diamine, le phénol, le diméthylformamide (DMF) , le diméthylacétamide, la N- méthylpyrrolidone et leurs mélanges. De manière préférée, le solvant est choisi parmi l'eau, le DMSO et leurs mélanges en toutes proportions.
S'il s'agit d'une dispersion aqueuse, le pH de la dispersion aqueuse peut être maintenu de préférence entre 3 et 5 par ajout d'un ou de plusieurs acides, pouvant être choisis parmi les acides inorganiques, tels que l'acide sulfurique, l'acide nitrique et l'acide hydrochlorique, les acides organiques tels que l'acide acétique, l'acide tartrique et l'acide oxalique et les mélanges d'acide organique et de sel d'acide organique tels que l'acide citrique et le citrate de sodium, l'acide acétique et l'acétate de sodium, l'acide tartrique et le tartrate de potassium, l'acide tartrique et le citrate de sodium.
D'autre part, la dispersion peut comprendre de l'acide borique, des sels de borate ou leurs mélanges.
En outre, la dispersion peut aussi comprendre un sel choisi parmi le chlorure de zinc, le thiocyanate de sodium, le chlorure de calcium, le chlorure d'aluminium, le chlorure de lithium, les rhodanates et leurs mélanges. Ils permettent d'optimiser les propriétés rhéologiques de la dispersion et de favoriser la formation de la fibre.
Selon une forme avantageuse de la présente invention, la dispersion est réalisée au moyen d'ultrasons ou d'un système rotor-stator ou d'un broyeur à billes. Elle peut être réalisée à température ambiante, ou bien en chauffant, par exemple, entre 40 et 120°C.
La deuxième étape du procédé consiste à injecter ladite dispersion obtenue lors de la première étape dans une solution de coagulation pour former une fibre, sous forme de mono-filament ou de multi-filaments .
Par « solution de coagulation », on entend au sens de la présente invention une solution qui provoque la solidification du liant polymère. De telles solutions sont connues de l'homme du métier, et la production de fibres à base d'homo- ou copolymère d'alcool vinylique fait l'objet d'une littérature riche. De manière générale, les techniques les plus courantes sont le filage au mouillé du PVA, ou « wet spinning » (terminologie anglo-saxonne ; se référer par exemple aux brevets US 3 850 901, US 3 852 402 et US 4 612 157) et le filage au mouillé à jet sec du PVA, ou « dry-jet wet spinning » (terminologie anglo-saxonne ; se référer par exemple aux brevets US 4 603 083, US 4 698 194, US 4 971 861, US 5 208 104 et
US 7 026 049) . Selon une forme avantageuse d'exécution de la présente invention, la solution de coagulation comprend un solvant choisi parmi l'eau, un alcool, un polyol, une cétone et leurs mélanges, de manière plus préférée un solvant choisi parmi l'eau, le méthanol, l'éthanol, le butanol, le propanol, 1 ' isopropanol , un glycol, l'acétone, le méthyl-éthyl-cétone, le méthyl-isobutyl- cétone, le benzène, le toluène et leurs mélanges, et de manière encore plus préférée un solvant choisi parmi l'eau, le méthanol, l'éthanol, un glycol, l'acétone et leurs mélanges.
Si le solvant de la solution de coagulation est essentiellement de l'eau, la solution de coagulation a de manière avantageuse une température comprise entre 10 et 80°C. Si le solvant de la solution de coagulation est essentiellement organique, tel que le méthanol, la solution de coagulation a de manière avantageuse une température comprise entre -30 et 10°C.
En outre, la solution de coagulation peut comprendre un ou plusieurs sels destinés à favoriser la coagulation du liant polymère, choisis parmi les sels alcalins ou les sels déshydratants tels que le sulfate d'ammonium, le sulfate de potassium, le sulfate de sodium, le carbonate de sodium, l'hydroxyde de sodium, l'hydroxyde de potassium et leurs mélanges.
D'autre part, la solution de coagulation peut comprendre un ou plusieurs composés additionnels qui sont destinés à améliorer les propriétés mécaniques, la résistance à l'eau de la fibre et/ou à faciliter le filage de la fibre. La solution de coagulation peut donc comprendre au moins un composé choisi parmi l'acide borique, les sels de borate et leurs mélanges.
De préférence, la solution de coagulation est saturée en sels.
De manière avantageuse, la dispersion est injectée lors de la deuxième étape du procédé selon l'invention à travers une ou un ensemble d'aiguilles et/ou une ou un ensemble de buses cylindriques ou coniques non poreuses dans la solution de coagulation, qui peut être statique (bain statique) ou en mouvement (écoulement) . La vitesse moyenne d'injection de la dispersion peut être comprise entre 0,1 m/min et 50 m/min, de préférence comprise entre 0,5 m/min et 20 m/min.
La solution coagulante induit la coagulation sous forme d'une fibre par solidification du liant polymère. Le graphène se retrouve piégé dans le polymère qui se solidifie.
L'étape suivante du procédé selon l'invention consiste à extraire, de manière continue ou non, la fibre de la solution de coagulation.
Après l'extraction de la fibre, celle-ci peut être éventuellement lavée une ou plusieurs fois. Le bac de lavage comprend préférablement de l'eau. L'étape de lavage peut permettre d'éliminer une partie du polymère périphérique de la fibre et ainsi d'enrichir la composition de la fibre en graphène. En outre, le bain de lavage peut comprendre des agents qui permettent de modifier la composition de la fibre ou qui interagissent chimiquement avec celle-ci. Notamment, des agents de réticulation chimique ou physique, en particulier des sels de borate ou des dialdéhydes, peuvent être ajoutés au bain afin de renforcer la fibre. L'étape de lavage peut aussi permettre d'éliminer les agents, notamment les tensioactifs, potentiellement pré udiciables aux propriétés mécaniques ou électriques de la fibre.
Une étape de séchage est également comprise dans le procédé selon l'invention. Cette étape peut avoir lieu soit directement après l'extraction, soit consécutivement au lavage. Notamment, si on souhaite obtenir une fibre enrichie en polymère, il est souhaitable de sécher la fibre directement après l'extraction. Le séchage est de préférence réalisé dans un four qui va sécher la fibre grâce à un gaz circulant dans un conduit intérieur du four. Le séchage peut aussi être réalisé par rayonnement infrarouge . Selon un second mode de réalisation, les fibres composites selon l'invention peuvent être produites suivant un procédé comprenant les étapes successives consistant en :
la dispersion de graphène dans un solvant à l'aide éventuellement d'un agent tensioactif,
l'injection de la dispersion de graphène dans un co- écoulement d'une solution de coagulation renfermant un liant polymère,
l'extraction de la fibre obtenue,
- le lavage éventuel de ladite fibre, et
le séchage de ladite fibre. Les solvants, tensioactifs, solutions de coagulation et liants polymères peuvent être choisis parmi ceux cités précédemment . Pour une description plus précise de ce procédé, on pourra se référer à la demande FR 2 921 075.
Selon un troisième mode de réalisation, les fibres composites selon l'invention peuvent être produites suivant un procédé comprenant les étapes successives consistant en :
a) la dispersion de graphène dans un solvant, en présence d'un agent stabilisant lié de façon covalente ou non covalente au graphène et d'un liant polymère, pour former une composition d' enduction,
b) l' enduction d'une fibre naturelle ou synthétique par ladite composition d'enduction,
c) le passage de la fibre composite obtenue dans une solution de coagulation, comprenant au moins un agent de coagulation,
d) l'extraction, le lavage éventuel et le séchage de la fibre composite coagulée.
On obtient ainsi une fibre multicouche renfermant : - un coeur formé d'une fibre naturelle ou synthétique,
- une écorce renfermant un liant polymère et du graphène . Les solvants, agents stabilisants, liants polymères et solutions de coagulation utilisés dans ce procédé peuvent être choisis parmi ceux mentionnés précédemment. Un exemple d'un tel procédé a été décrit dans la demande FR 2 946 178, à laquelle on pourra se référer pour plus de détails.
Il est bien entendu que les procédés décrits ci- dessus peuvent éventuellement comprendre d'autres étapes préliminaires, intermédiaires et/ou subséquentes à celles mentionnées précédemment, pour autant que celles-ci n'affectent pas négativement la formation des fibres composites recherchées.
Ainsi, ils peuvent notamment comprendre une étape de bobinage, et éventuellement une étape d'étirage à chaud réalisée entre l'étape de séchage et l'étape de bobinage. Ils peuvent aussi inclure à différents moments des étirements dans des solvants.
En outre, bien que les fibres composites obtenues selon ce procédé soient intrinsèquement conductrices, leur conductivité électrique peut encore être améliorée par des traitements thermiques.
Quel que soit le mode de réalisation mis en œuvre pour les préparer, les fibres composites selon l'invention peuvent comprendre d'autres charges conductrices carbonées en plus du graphène, en particulier une ou plusieurs charges choisies parmi les nanotubes de carbone, les nanofibres de carbone, et leurs mélanges . Les nanofibres de carbone sont, comme les nanotubes de carbone, des nanofilaments généralement produits par dépôt chimique en phase vapeur (ou CVD) à partir d'une source carbonée qui est décomposée sur un catalyseur comportant un métal de transition (Fe, Ni, Co, Cu) , en présence d'hydrogène, à des températures de 500 à 1200°C. Toutefois, ces deux charges carbonées se différencient par leur structure (I. MARTIN-GULLON et al., Carbon, Vol. 44, 1572-1580, 2006) . En effet, les nanotubes de carbone sont constitués d'un ou plusieurs feuillets de graphène enroulés de manière concentrique pour former un cylindre ayant un diamètre de 1 à 100 nm. Au contraire, les nanofibres de carbone se composent de zones graphitiques plus ou moins organisées (ou empilements turbostratiques ) dont les plans sont inclinés à des angles variables par rapport à l'axe de la fibre. Ces empilements peuvent prendre la forme de plaquettes, d'arêtes de poisson ou de coupelles empilées pour former des structures ayant un diamètre allant généralement de 100 nm à 500 nm voire plus .
Les nanotubes de carbone utilisables dans la présente invention sont avantageusement de type multi- parois, renfermant de 5 à 15 parois, et sont de préférence obtenus suivant un procédé de dépôt chimique en phase vapeur (CVD) . Ils ont avantageusement un diamètre moyen allant de 0,1 à 100 nm et une longueur de 0,1 à 20 pm. Des exemples de nanotubes de carbone bruts sont ceux disponibles dans le commerce auprès de la société ARKEMA sous la dénomination commerciale Graphistrength C100.
Des exemples de nanofibres de carbone sont celles disponibles sous la dénomination commerciale VGCF auprès de la société SHOWA DENKO . Plus particulièrement, les fibres selon l'invention peuvent comprendre un assemblage de nanotubes de carbone et de graphène susceptible d'être obtenu par décomposition à une température de 500 à 1500°C d'une source de carbone à l'état gazeux, mise en contact avec un catalyseur A actif pour la synthèse de nanotubes de carbone et d'un catalyseur B actif pour la synthèse de graphène. Cet assemblage peut ainsi être obtenu en adaptant le procédé de synthèse de graphène décrit précédemment pour y ajouter le catalyseur A. Ce dernier peut notamment comprendre un métal tel que le fer, le cobalt, le nickel, le molybdène, le titane et leurs mélanges, supporté sur un support inerte solide, par exemple de l'alumine. Un tel catalyseur peut notamment être préparé par imprégnation d'un substrat sec à l'aide d'une solution d'imprégnation aqueuse ou alcoolique comprenant des sels métalliques.
Par ailleurs, les fibres composites selon l'invention peuvent renfermer au moins un polymère conducteur. Par « polymère conducteur », on entend un homo- ou copolymère dont la chaîne principale renferme des doubles liaisons conjuguées - par exemple sous forme d'un ou plusieurs (hétéro ) cycles aromatiques - et qui forme, après oxydation éventuelle et dopage à l'aide d'au moins un agent dopant, un sel ou complexe présentant des propriétés de conduction électrique. Des exemples de polymères conducteurs utilisables sont notamment les homo- et copolymères comprenant un ou plusieurs monomères choisis parmi l'aniline, le pyrrole, le thiophène éventuellement substitué, l'acétylène, le phénylène vinylène, le sulfure de phénylène et leurs mélanges. Un exemple de polymère de thiophène substitué est le poly (3, 4-éthylènedioxythiophène) ou PEDOT . Le PEDOT et la polyaniline (PANI) sont préférés pour une utilisation dans la présente invention. La polyaniline existe sous différents états d'oxydation, liés aux proportions de fonctions imine et aminé contenues dans la molécule. On préfère selon l'invention utiliser 1 'éméraldine, qui correspond à l'état d'oxydation intermédiaire de la polyaniline, présentant les meilleures propriétés électriques .
Des exemples d'agents dopants comprennent les acides protoniques forts, ayant un pKa inférieur à 3, tels que l'acide chlorhydrique, l'acide sulfurique et ses sels tels que le dodécyl sulfate de sodium, les acides phosphoniques et les composés sulfoniques, notamment l'acide 2-acrylamido 2-méthylpropane sulfonique (AMPS), l'acide dodécylbenzène sulfonique, l'acide camphosulfonique, l'acide toluène sulfonique, l'acide méthane sulfonique et les polymères à fonction (s) suifonique ( s ) , tels que le poly(acide styrène sulfonique) qui est l'agent dopant préfèrentiellement utilisé en association avec le PEDOT pour former une solution colloïdale PEDOT :PSS. D'autres agents dopants comprennent le polyacrylamide et le poly (acide acrylique) . Les sels ou complexes de polymères conducteurs et d'agents dopants peuvent être obtenus par voie chimique ou électrochimique, suivant des techniques connues de l'homme du métier. Certains sont par ailleurs disponibles dans le commerce, notamment auprès de la société PANIPOL.
Ces polymères conducteurs peuvent être incorporés dans les fibres composites selon l'invention dans l'une ou l'autre des variantes décrites précédemment, en les mélangeant au liant polymère avant l'étape de coagulation .
La présente invention a également pour objet l'utilisation des fibres composites conductrices précitées pour la fabrication de nez, d'ailes ou de carlingues de fusées ou d'avions ; d'armures de flexible off-shore ; d'éléments de carrosserie automobile, de châssis moteur ou de pièces support pour l'automobile ; de revêtements de sièges automobiles ; d'éléments de charpentes dans le domaine du bâtiment ou des ponts et chaussées ; d'emballages et de textiles antistatiques, notamment de rideaux antistatiques, de vêtements antistatiques (par exemple, de sécurité ou pour salle blanche) ou de matériaux pour la protection de silos ou le conditionnement et/ou le transport de poudres ou de matériaux granulaires ; d'éléments d'ameublement, notamment de mobilier pour salle blanche ; de filtres ; de dispositifs de blindage électromagnétique, notamment pour la protection de composants électroniques ; de câbles conducteurs ; de capteurs, notamment de capteurs de déformation ou de contraintes mécaniques ; d'électrodes ; de dispositifs de stockage d'hydrogène ; de dispositifs biomédicaux tels que des fils de suture, des prothèses ou des cathéters ; d'afficheurs, de claviers ou de connecteurs intégrés à des vêtements ; ou de récepteurs et émetteurs d'ondes électromagnétiques.
La fabrication de ces pièces composites peut être réalisée suivant différents procédés, impliquant en général une étape d'imprégnation des fibres composites conductrices selon l'invention par une composition polymérique renfermant au moins un matériau thermoplastique, élastomère ou thermodurcissable . Cette étape d'imprégnation peut elle-même être effectuée suivant différentes techniques, en fonction notamment de la forme physique de la composition polymérique utilisée
(pulvérulente ou plus ou moins liquide) . L'imprégnation des fibres composites conductrices est de préférence réalisée suivant un procédé d'imprégnation en lit fluidisé, dans lequel la composition polymérique se trouve à l'état de poudre. Des fibres pré-imprégnées sont ainsi obtenues.
On obtient des semi-produits qui sont ensuite utilisés dans la fabrication de la pièce composite recherchée. Différents tissus de fibres pré-imprégnées, de composition identique ou différente, peuvent être empilés pour former une plaque ou un matériau stratifié, ou en variante soumis à un procédé de thermoformage. En variante, les fibres pré-imprégnées peuvent être associées pour former des rubans qui sont susceptibles d'être utilisés dans un procédé d'enroulement filamentaire permettant l'obtention de pièces creuses de forme quasi-illimitée, par enroulement des rubans sur un mandrin ayant la forme de la pièce à fabriquer. Dans tous les cas, la fabrication de la pièce finie comprend une étape de consolidation de la composition polymérique, qui est par exemple fondue localement pour créer des zones de fixation des fibres pré-imprégnées entre elles et/ou solidariser les rubans de fibres pré-imprégnées dans le procédé d'enroulement filamentaire. variante encore, il est possible de préparer un à partir de la composition polymérique d'imprégnation, notamment au moyen d'un procédé d'extrusion ou de calandrage, ledit film ayant par exemple une épaisseur d'environ 100 pm, puis de le placer entre deux mats de fibres composites conductrices selon l'invention, l'ensemble étant alors pressé à chaud pour permettre l'imprégnation des fibres et la fabrication de la pièce composite.
Dans ces procédés, les fibres composites conductrices selon l'invention peuvent être tissées ou tricotées, seules ou avec d'autres fibres, ou être utilisées, seules ou en association avec d'autres fibres, pour la fabrication de câbles, de feutres ou de matériaux non-tissés. Des exemples de matériaux constitutifs de ces autres fibres comprennent, sans limitation :
- les fibres de polymère étiré, à base notamment : de polyamide tel que le polyamide 6 (PA-6), le polyamide 11 (PA-11), le polyamide 12 (PA-12), le polyamide 6.6 (PA-6.6), le polyamide 4.6 (PA-4.6), le polyamide 6.10 (PA-6.10) ou le polyamide 6.12 (PA-6.12), de copolymère bloc polyamide/polyéther (Pebax®) , de polyéthylène haute densité, de polypropylène ou de polyester tel que les polyhydroxyalcanoates et les polyesters commercialisés par DU PONT sous la dénomination commerciale Hytrel® ;
- les fibres de carbone ;
- les fibres de verre, notamment de type E, R ou
S2 ;
- les fibres d'aramide (Kevlar®) ;
- les fibres de bore ;
- les fibres de silice ;
- les fibres naturelles telles que le lin, le chanvre, le sisal le coton ou la laine ; et - leurs mélanges, tels que les mélanges de fibres de verre, carbone et aramide.
L'invention sera mieux comprise à la lumière des exemples ci-dessous qui sont donnés à des fins d'illustration uniquement et n'ont pas pour but de limiter la portée de l'invention.
EXEMPLES
Exemple 1 : Fabrication de fibres composites selon 1' invention
Etape 1 : synthèse d'assemblages de nanotubes de carbone et de graphène (NTC/GP)
1-1. Préparation du catalyseur A
Dans un bêcher de 250 ml, on a préparé 37,5 ml d'une solution aqueuse d'acide citrique à une concentration de 0,4 M, à laquelle on a ajouté 1,1 g de nitrate de cobalt
(Co(N03)2), 6H20) et 3,1 g de nitrate de fer (Fe(N03)3), 9H2O) . On a ajusté le pH de la solution obtenue à une valeur de 6 par addition, goutte-à-goutte et sous agitation, d'ammoniaque (NH4OH) . Le rapport molaire entre le nitrate de fer et le nitrate de cobalt dans la solution aqueuse était sensiblement de l'ordre de 2. On a placé cette solution aqueuse dans un cristallisoir en Pyrex à une température de 80 °C pendant une durée sensiblement de l'ordre de 12 h de façon à former un gel homogène sensiblement déshydraté.
On a chauffé le gel homogène ainsi obtenu à une température de l'ordre de 200°C de façon à décomposer l'acide citrique. On a observé alors l'expansion du gel homogène en une mousse que l'on a laissé se développer pendant environ 30 min jusqu'à stabilisation. On a broyé ensuite délicatement cette mousse de façon à former une poudre que l'on a chauffée à une température de 400°C pendant 4 heures à l'air atmosphérique. On a obtenu ainsi une poudre cristalline de ferrite de cobalt.
Cette poudre présentait une unique phase d'oxyde possédant une structure de type spinelle avec une taille de domaine cristallin comprise entre 14 nm et 20 nm (déterminée par diffraction des rayons X) et une surface spécifique de 7 m2/g.
1-2. Préparation du catalyseur B
On a préparé un catalyseur à partir d'alumine Puralox® SCCa-5/150 de diamètre médian égal à environ 85 μιη et de surface spécifique 160 m2/g. Dans un réacteur de 1 1 muni d'une double enveloppe chauffé à 120°C, on a introduit 100 g d'alumine et on a balayé à l'air. Au moyen d'une pompe, on a injecté alors en continu 80 ml d'une solution à 45 g/1 de molybdate d'ammonium tétrahydraté, puis 560 ml d'une solution à 675 g/1 de nitrate de fer nonahydraté. Le ratio visé (masse de métal/masse de catalyseur) étant de 32% pour le fer et 3% pour le molybdène, la durée d'addition a été de 25 h. Le catalyseur a ensuite été chauffé in-situ à 220 °C sous balayage d'air sec pendant 8 heures, puis placé dans un four à moufle à 400°C pendant 8 heures.
1-3. Synthèse de l'assemblage NTC/GP
On a effectué un test catalytique en mettant une masse d'environ 1,9 g du catalyseur A et d'environ 0,6 g du catalyseur B dans un réacteur en quartz de 5 cm de diamètre et de 1 mètre de hauteur de chauffe efficace.
On a chauffé à 650 °C sous 2,66 1/mn d'azote pendant 30 minutes puis on a maintenu un palier de réduction pendant 30 minutes sous 2 1/mn d'azote et 0,66 1/mn d'hydrogène. Une fois ce palier atteint, on a introduit un débit d'éthylène de 2 1/mn et d'hydrogène de 0,66 1/mn. Après 60 minutes, on a arrêté le chauffage et on a refroidi le réacteur sous un courant d'azote de 2 1/mn.
La quantité de produit récupéré en fin de réaction a été de 47 g. Le ratio massique NTC/GP théorique dans cet essai était de 90/10.
On a préparé de manière similaire un assemblage de nanotubes de carbone et de graphène (NTC/GP) dans un rapport en poids de 80/20.
Etape 2 : Réalisation des fibres composites Trois dispersions aqueuses ont été réalisées, respectivement à partir des deux assemblages précités et de NTC sans graphène. Pour ce faire, on a introduit dans de l'eau 0,9% en poids des charges précitées et 1,2% en poids d'un tensioactif (Brij® 78) . Ces suspensions ont ensuite été passées à la microsonde à ultrasons pendant
60 minutes. Une solution aqueuse de poly (alcool vinylique) a ensuite été ajoutée à chacune pour obtenir une solution de filage. Celle-ci a alors été injectée dans un bain de coagulation composé de sulfate de sodium concentré à 320 g/1 dans de l'eau et chauffé à 40°C. La fibre a ensuite été lavée dans un premier bain contenant 0,1% de tétraborate de sodium dans l'eau, puis on l'a fait passer dans un second bain contenant uniquement de l'eau. La fibre a ensuite été séchée et bobinée. On a obtenu une fibre mono-filament. Les fibres obtenues à partir d'un ratio NTC/GP de 90/10 et de 80/20 avaient respectivement une teneur théorique en graphène de 1,1 et 2,3% en poids. Leur diamètre moyen était d'environ 45 pm.
Exemple 2 : Essais mécaniques et de conductivité électrique
Des essais de traction mécanique ont été réalisés sur les trois fibres obtenues à l'Exemple 1. Les résultats obtenus, moyennés sur 5 éprouvettes, sont rassemblés dans le Tableau 1 ci-dessous.
Tableau 1
Figure imgf000026_0001
Il ressort de cet essai que la contrainte à la rupture des fibres contenant du graphène est supérieure à celle des fibres qui en sont dépourvues.
On a par ailleurs mesuré la conductivité électrique des fibres de l'Exemple 1. Les résultats obtenus, moyennés sur 6 éprouvettes, sont présentés dans le tableau 2 ci-dessous. Tableau 2
Figure imgf000027_0001
Les fibres ne renfermant pas de graphène présentent une résistance électrique supérieure au seuil de détection de l'appareil utilisé (multimètre Keithley® 2000), due à l'orientation des NTC le long de la fibre, qui est défavorable à la transmission du courant. Au contraire, les fibres contenant du graphène ont une conductivité électrique satisfaisante, qui pourrait être encore améliorée par un traitement thermique.

Claims

REVENDICATIONS
1. Fibres composites conductrices, renfermant du graphène dispersé dans une matrice polymérique, caractérisées en ce que le graphène se présente sous forme de particules d'une épaisseur de moins de 100 nm, de préférence de moins de 50 nm, plus préfèrentiellement de moins de 15 nm, et de dimensions latérales d'environ 1 pm, préfèrentiellement de 50 à 800, plus préfèrentiellement encore de 100 à 600 nm, voire de 100 à
500 nm.
2. Fibres composites selon la revendication 1, caractérisées en ce que le graphène est obtenu par un procédé de dépôt chimique en phase vapeur (CVD) .
3. Fibres composites selon l'une des revendications 1 et 2, caractérisées en ce qu'elles renferment en outre une ou plusieurs charges choisies parmi les nanotubes de carbone, les nanofibres de carbone, et leurs mélanges.
4. Fibres composites selon la revendication 3, caractérisées en ce qu'elles renferment un assemblage de nanotubes de carbone et de graphène susceptible d'être obtenu par décomposition à une température de 500 à
1500°C d'une source de carbone à l'état gazeux, mise en contact avec un catalyseur A actif pour la synthèse de nanotubes de carbone et d'un catalyseur B actif pour la synthèse de graphène.
5. Fibres composites selon l'une quelconque des revendications 1 à 4, caractérisées en ce qu'elles renferment en outre au moins un polymère conducteur, tel que le poly ( 3 , 4-éthylènedioxythiophène ) (PEDOT) et la polyaniline .
6. Fibres composites selon l'une quelconque des revendications 1 à 5, caractérisées en ce qu'elles renferment de 0,5 à 50% en poids, de préférence de 1 à 30% en poids, plus préfèrentiellement de 3,5 à 15% en poids de graphène.
7. Procédé de fabrication des fibres composites selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il consiste en un procédé de coagulation comprenant :
- soit la coagulation sous forme de fibre, ou autour d'une fibre pré-formée, d'un mélange de graphène et de liant polymère, en le faisant passer dans une solution de coagulation,
- soit l'injection du graphène dispersé dans un solvant dans un co-écoulement d'une solution de coagulation renfermant un liant polymère.
8. Procédé selon la revendication 7, caractérisé en ce qu'il comprend les étapes successives consistant en : a) la formation d'une dispersion de graphène dans une solution de liant polymère, en présence d'au moins un agent stabilisant lié de façon covalente ou non covalente au graphène,
b) l'injection de ladite dispersion dans une solution de coagulation,
c) l'extraction de la fibre obtenue,
d) le lavage éventuel de ladite fibre,
e) le séchage de ladite fibre.
9. Procédé selon la revendication 7, caractérisé en ce qu'il comprend les étapes successives consistant en : la dispersion de graphène dans un solvant à l'aide éventuellement d'un agent tensioactif,
l'injection de la dispersion de graphène dans un co- écoulement d'une solution de coagulation renfermant un liant polymère,
l'extraction de la fibre obtenue,
le lavage éventuel de ladite fibre, et
le séchage de ladite fibre.
10. Procédé selon la revendication 7, caractérisé en ce qu'il comprend les étapes successives consistant en : a) la dispersion de graphène dans un solvant, en présence d'un agent stabilisant lié de façon covalente ou non covalente au graphène et d'un liant polymère, pour former une composition d' enduction,
b) l' enduction d'une fibre naturelle ou synthétique par ladite composition d'enduction,
c) le passage de la fibre composite obtenue dans une solution de coagulation, comprenant au moins un agent de coagulation,
d) l'extraction, le lavage éventuel et le séchage de la fibre composite coagulée.
11. Utilisation des fibres composites conductrices selon l'une quelconque des revendications 1 à 6 pour la fabrication de nez, d'ailes ou de carlingues de fusées ou d'avions ; d'armures de flexible off-shore ; d'éléments de carrosserie automobile, de châssis moteur ou de pièces support pour l'automobile ; de revêtements de sièges automobiles ; d'éléments de charpentes dans le domaine du bâtiment ou des ponts et chaussées ; d'emballages et de textiles antistatiques, notamment de rideaux antistatiques, de vêtements antistatiques (par exemple, de sécurité ou pour salle blanche) ou de matériaux pour la protection de silos ou le conditionnement et/ou le transport de poudres ou de matériaux granulaires ; d'éléments d'ameublement, notamment de mobilier pour salle blanche ; de filtres ; de dispositifs de blindage électromagnétique, notamment pour la protection de composants électroniques ; de câbles conducteurs ; de capteurs, notamment de capteurs de déformation ou de contraintes mécaniques ; d'électrodes ; de dispositifs de stockage d'hydrogène ; de dispositifs biomédicaux tels que des fils de suture, des prothèses ou des cathéters ; d'afficheurs, de claviers ou de connecteurs intégrés à des vêtements ; ou de récepteurs et émetteurs d'ondes électromagnétiques .
PCT/FR2012/051748 2011-07-21 2012-07-23 Fibres composites conductrices a base de graphene WO2013011250A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1156649A FR2978170B1 (fr) 2011-07-21 2011-07-21 Fibres composites conductrices a base de graphene
FR1156649 2011-07-21

Publications (1)

Publication Number Publication Date
WO2013011250A1 true WO2013011250A1 (fr) 2013-01-24

Family

ID=46724512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/051748 WO2013011250A1 (fr) 2011-07-21 2012-07-23 Fibres composites conductrices a base de graphene

Country Status (2)

Country Link
FR (1) FR2978170B1 (fr)
WO (1) WO2013011250A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093358A1 (fr) * 2011-12-22 2013-06-27 Arkema France Procede de production d'un assemblage de nanotubes de carbone et de graphene
CN104278360A (zh) * 2014-09-28 2015-01-14 苏州长盛机电有限公司 一种掺杂石墨烯的导电复合纤维的制备方法
WO2016128625A1 (fr) * 2015-02-10 2016-08-18 Jose Buendia Effets piézo de régulation électromagnétique pour les applications électrique mécanique chimique
EP3192902A4 (fr) * 2014-11-20 2017-08-09 Jinan Shengquan Group Share Holding Co., Ltd. Fibre de viscose contenant du graphène et procédé de préparation de cette fibre
CN114539974A (zh) * 2022-02-21 2022-05-27 厦门大学 一种基于化学气相沉积法制备磁性金属@石墨烯吸波材料的方法
CN115124363A (zh) * 2022-06-29 2022-09-30 航天特种材料及工艺技术研究所 一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用
CN115322430A (zh) * 2022-07-25 2022-11-11 成都飞机工业(集团)有限责任公司 一种吸波气凝胶复合材料及其制备方法
CN115386980A (zh) * 2022-08-16 2022-11-25 杭州巨星科技股份有限公司 一种石墨烯改性高强度低成本碳纤维的制备方法及其在工具产品中的应用
CN115448691A (zh) * 2022-09-22 2022-12-09 东莞华贝电子科技有限公司 一种热导复合薄膜及其制备方法
CN116791229A (zh) * 2022-03-14 2023-09-22 北京石墨烯研究院 高性能石墨烯改性芳纶纤维及其制备方法
CN116892066A (zh) * 2023-06-02 2023-10-17 常州灵达特种纤维有限公司 一种聚丙烯基抗静电膨体长丝及其制备工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017216258A1 (en) * 2016-02-03 2018-09-06 Imagine Intelligent Materials Limited Geotextile with conductive properties
CN113481631A (zh) * 2021-07-02 2021-10-08 和也健康科技有限公司 一种纳米银线/砭石纤维抗菌材料的制备方法及产品和应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850901A (en) 1969-11-25 1974-11-26 T Kimura Polyvinyl alcohol fibers
US3852402A (en) 1969-11-25 1974-12-03 S Tanaka Process for the preparation of polyvinyl alcohol fibers
US4603083A (en) 1983-12-12 1986-07-29 Toray Industries, Inc. Ultra-high-tenacity polyvinyl alcohol fiber and process for producing same
US4612157A (en) 1984-01-31 1986-09-16 Kuraray Company, Limited Method for production of high-tenacity, fine-denier polyvinyl alcohol fiber
US4971861A (en) 1986-12-27 1990-11-20 Unitika Ltd. Polyvinyl alcohol fiber and method of manufacture thereof
US5208104A (en) 1988-02-10 1993-05-04 Toray Industries, Inc. High-tenacity water-soluble polyvinyl alcohol fiber and process for producing the same
US7026049B2 (en) 2004-02-18 2006-04-11 Kuraray Co., Ltd. Conductive polyvinyl alcohol fiber
US20080315453A1 (en) * 2007-06-22 2008-12-25 Michael Joseph Molitor Process for the production of polyester nanocomposites
FR2921075A1 (fr) 2007-09-18 2009-03-20 Arkema France Procede continu d'obtention de fibres composites a base de particules colloidales et dispositif pour sa mise en oeuvre
US20100092723A1 (en) 2005-10-26 2010-04-15 Jiusheng Guo Nano-scaled graphene plate-reinforced composite materials and method of producing same
WO2010107762A1 (fr) 2009-03-16 2010-09-23 Aksay Ilhan A Fibres polymères et articles fabriques a partir de celles-ci
EP2256236A1 (fr) * 2009-05-27 2010-12-01 Arkema France Procédé de fabrication de fibres composites conductrices à haute teneur en nanotubes
FR2946178A1 (fr) 2009-05-27 2010-12-03 Arkema France Procede de fabrication d'une fibre conductrice multicouche par enduction-coagulation.

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852402A (en) 1969-11-25 1974-12-03 S Tanaka Process for the preparation of polyvinyl alcohol fibers
US3850901A (en) 1969-11-25 1974-11-26 T Kimura Polyvinyl alcohol fibers
US4603083A (en) 1983-12-12 1986-07-29 Toray Industries, Inc. Ultra-high-tenacity polyvinyl alcohol fiber and process for producing same
US4698194A (en) 1983-12-12 1987-10-06 Toray Industries, Inc. Process for producing ultra-high-tenacity polyvinyl alcohol fiber
US4612157A (en) 1984-01-31 1986-09-16 Kuraray Company, Limited Method for production of high-tenacity, fine-denier polyvinyl alcohol fiber
US4971861A (en) 1986-12-27 1990-11-20 Unitika Ltd. Polyvinyl alcohol fiber and method of manufacture thereof
US5208104A (en) 1988-02-10 1993-05-04 Toray Industries, Inc. High-tenacity water-soluble polyvinyl alcohol fiber and process for producing the same
US7026049B2 (en) 2004-02-18 2006-04-11 Kuraray Co., Ltd. Conductive polyvinyl alcohol fiber
US20100092723A1 (en) 2005-10-26 2010-04-15 Jiusheng Guo Nano-scaled graphene plate-reinforced composite materials and method of producing same
US20080315453A1 (en) * 2007-06-22 2008-12-25 Michael Joseph Molitor Process for the production of polyester nanocomposites
WO2009047456A2 (fr) * 2007-09-18 2009-04-16 Arkema France Procede continu d ' obtention de fibres composites a base de particules colloïdales et fibre obtenue par ce procede
FR2921075A1 (fr) 2007-09-18 2009-03-20 Arkema France Procede continu d'obtention de fibres composites a base de particules colloidales et dispositif pour sa mise en oeuvre
WO2010107762A1 (fr) 2009-03-16 2010-09-23 Aksay Ilhan A Fibres polymères et articles fabriques a partir de celles-ci
EP2256236A1 (fr) * 2009-05-27 2010-12-01 Arkema France Procédé de fabrication de fibres composites conductrices à haute teneur en nanotubes
FR2946177A1 (fr) 2009-05-27 2010-12-03 Arkema France Procede de fabrication de fibres composites conductrices a haute teneur en nanotubes.
FR2946178A1 (fr) 2009-05-27 2010-12-03 Arkema France Procede de fabrication d'une fibre conductrice multicouche par enduction-coagulation.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I. MARTIN-GULLON ET AL., CARBON, VOL., vol. 44, 2006, pages 1572 - 1580

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093358A1 (fr) * 2011-12-22 2013-06-27 Arkema France Procede de production d'un assemblage de nanotubes de carbone et de graphene
CN104278360A (zh) * 2014-09-28 2015-01-14 苏州长盛机电有限公司 一种掺杂石墨烯的导电复合纤维的制备方法
EP3192902A4 (fr) * 2014-11-20 2017-08-09 Jinan Shengquan Group Share Holding Co., Ltd. Fibre de viscose contenant du graphène et procédé de préparation de cette fibre
KR101783951B1 (ko) 2014-11-20 2017-11-06 지난 셩취엔 그룹 쉐어 홀딩 코., 엘티디. 그래핀을 포함하는 비스코스섬유 및 이의 제조방법
WO2016128625A1 (fr) * 2015-02-10 2016-08-18 Jose Buendia Effets piézo de régulation électromagnétique pour les applications électrique mécanique chimique
CN114539974A (zh) * 2022-02-21 2022-05-27 厦门大学 一种基于化学气相沉积法制备磁性金属@石墨烯吸波材料的方法
CN114539974B (zh) * 2022-02-21 2024-06-11 厦门大学 一种基于化学气相沉积法制备磁性金属@石墨烯吸波材料的方法
CN116791229A (zh) * 2022-03-14 2023-09-22 北京石墨烯研究院 高性能石墨烯改性芳纶纤维及其制备方法
CN115124363A (zh) * 2022-06-29 2022-09-30 航天特种材料及工艺技术研究所 一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用
CN115124363B (zh) * 2022-06-29 2023-01-31 航天特种材料及工艺技术研究所 一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用
CN115322430A (zh) * 2022-07-25 2022-11-11 成都飞机工业(集团)有限责任公司 一种吸波气凝胶复合材料及其制备方法
CN115322430B (zh) * 2022-07-25 2023-10-03 成都飞机工业(集团)有限责任公司 一种吸波气凝胶复合材料及其制备方法
CN115386980A (zh) * 2022-08-16 2022-11-25 杭州巨星科技股份有限公司 一种石墨烯改性高强度低成本碳纤维的制备方法及其在工具产品中的应用
CN115386980B (zh) * 2022-08-16 2023-07-21 杭州巨星科技股份有限公司 一种石墨烯改性高强度低成本碳纤维的制备方法及其在工具产品中的应用
CN115448691B (zh) * 2022-09-22 2023-06-09 东莞华贝电子科技有限公司 一种热导复合薄膜及其制备方法
CN115448691A (zh) * 2022-09-22 2022-12-09 东莞华贝电子科技有限公司 一种热导复合薄膜及其制备方法
CN116892066A (zh) * 2023-06-02 2023-10-17 常州灵达特种纤维有限公司 一种聚丙烯基抗静电膨体长丝及其制备工艺

Also Published As

Publication number Publication date
FR2978170B1 (fr) 2014-08-08
FR2978170A1 (fr) 2013-01-25

Similar Documents

Publication Publication Date Title
WO2013011250A1 (fr) Fibres composites conductrices a base de graphene
FR2946177A1 (fr) Procede de fabrication de fibres composites conductrices a haute teneur en nanotubes.
Nataraj et al. Polyacrylonitrile-based nanofibers—A state-of-the-art review
Naebe et al. Effects of MWNT nanofillers on structures and properties of PVA electrospunnanofibres
WO2015061327A1 (fr) Procédé de préparation de films et fibres d'oxyde de graphène
Wu et al. High-performance carbon nanotube/polymer composite fiber from layer-by-layer deposition
WO2010136720A1 (fr) Procede de fabrication d'une fibre conductrice multicouche par enduction-coagulation
JP2007533797A (ja) モジュール式ポリ(フェニレンエチレニン)の合成方法及びナノマテリアルを機能化するためにその電子特性を微調整する方法
JP2015533187A (ja) カーボンナノ構造体の剪断混合により形成される複合体材料及び関連方法
US9255003B2 (en) Carbon nanotube fibers/filaments formulated from metal nanoparticle catalyst and carbon source
JP2008507622A (ja) ポリマー/カーボンナノチューブ相互貫入網目構造及びその製造プロセス
KR20100087321A (ko) 탄소 섬유 및 필름, 및 이들의 제조 방법
EP2909366A1 (fr) Procede de fabrication d'une fibre de carbone, materiau precurseur utilise par le procede et fibre de carbone obtenue
WO2018078287A1 (fr) Nouveau procede de fabrication de materiaux hautement carbones et materiau hautement carbone obtenu
FR2940659A1 (fr) Fibre composite a base de pekk, son procede de fabrication et ses utilisations
KR101840168B1 (ko) 방향족 헤테로 고리와 극성기를 포함하는 기능기로 표면개질된 탄소나노소, 탄소나노소재-고분자 복합소재, 및 이들의 제조방법
FR2921075A1 (fr) Procede continu d'obtention de fibres composites a base de particules colloidales et dispositif pour sa mise en oeuvre
Chowdhury et al. Improvement of interfacial adhesion performance of the kevlar fiber mat by depositing SiC/TiO2/Al2O3/graphene nanoparticles
US20170092388A1 (en) Conductive composites and compositions for producing the same, and production methods thereof
Xiong et al. Preparation and thermal properties of soluble poly (phthalazinone ether sulfone ketone) composites reinforced with multi-walled carbon nanotube buckypaper
Zhang et al. Green and nondestructive method for constructing multiscale carbon fiber reinforcement via encapsulating chitosan and grafting carbon nanotubes
KR101919658B1 (ko) 그래핀/고분자 복합 섬유 및 이의 제조방법
RU2523483C1 (ru) Способ упрочнения углеродного волокна
WO2012160288A1 (fr) Fibres composites conductrices comprenant des charges conductrices carbonees et un polymere conducteur
Espinosa-González et al. Polystyrene composites with very high carbon nanotubes loadings by in situ grafting polymerization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12750447

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载