WO2013007509A1 - Formulation permettant d'obtenir un polyuréthanne - Google Patents
Formulation permettant d'obtenir un polyuréthanne Download PDFInfo
- Publication number
- WO2013007509A1 WO2013007509A1 PCT/EP2012/062299 EP2012062299W WO2013007509A1 WO 2013007509 A1 WO2013007509 A1 WO 2013007509A1 EP 2012062299 W EP2012062299 W EP 2012062299W WO 2013007509 A1 WO2013007509 A1 WO 2013007509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyurethane
- phosphate
- formulation
- polyurethane product
- product
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 97
- 239000004814 polyurethane Substances 0.000 title claims abstract description 71
- 229920002635 polyurethane Polymers 0.000 title claims abstract description 65
- 238000009472 formulation Methods 0.000 title claims abstract description 55
- 239000002245 particle Substances 0.000 claims abstract description 50
- 229920001276 ammonium polyphosphate Polymers 0.000 claims abstract description 46
- 235000019826 ammonium polyphosphate Nutrition 0.000 claims abstract description 42
- 239000004114 Ammonium polyphosphate Substances 0.000 claims abstract description 41
- 229910001463 metal phosphate Inorganic materials 0.000 claims abstract description 24
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 22
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 22
- 239000010452 phosphate Substances 0.000 claims abstract description 22
- 235000021317 phosphate Nutrition 0.000 claims abstract description 22
- XFZRQAZGUOTJCS-UHFFFAOYSA-N phosphoric acid;1,3,5-triazine-2,4,6-triamine Chemical class OP(O)(O)=O.NC1=NC(N)=NC(N)=N1 XFZRQAZGUOTJCS-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 5
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 5
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 239000001506 calcium phosphate Substances 0.000 claims description 20
- 229910000391 tricalcium phosphate Inorganic materials 0.000 claims description 14
- 239000006260 foam Substances 0.000 claims description 11
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 10
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 10
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 9
- 229940078499 tricalcium phosphate Drugs 0.000 claims description 9
- 235000019731 tricalcium phosphate Nutrition 0.000 claims description 9
- 235000019739 Dicalciumphosphate Nutrition 0.000 claims description 8
- 229920000877 Melamine resin Polymers 0.000 claims description 8
- 229910000390 dicalcium phosphate Inorganic materials 0.000 claims description 8
- 229940038472 dicalcium phosphate Drugs 0.000 claims description 8
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 8
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 8
- 229920000388 Polyphosphate Polymers 0.000 claims description 5
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 5
- 239000001205 polyphosphate Substances 0.000 claims description 5
- 229920005830 Polyurethane Foam Polymers 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- XZTOTRSSGPPNTB-UHFFFAOYSA-N phosphono dihydrogen phosphate;1,3,5-triazine-2,4,6-triamine Chemical compound NC1=NC(N)=NC(N)=N1.OP(O)(=O)OP(O)(O)=O XZTOTRSSGPPNTB-UHFFFAOYSA-N 0.000 claims description 4
- 235000011176 polyphosphates Nutrition 0.000 claims description 4
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 claims description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 229940001007 aluminium phosphate Drugs 0.000 claims description 3
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 claims description 3
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 claims description 3
- 239000004137 magnesium phosphate Substances 0.000 claims description 3
- 229910000157 magnesium phosphate Inorganic materials 0.000 claims description 3
- 229960002261 magnesium phosphate Drugs 0.000 claims description 3
- 235000010994 magnesium phosphates Nutrition 0.000 claims description 3
- 229910000150 monocalcium phosphate Inorganic materials 0.000 claims description 3
- 235000019691 monocalcium phosphate Nutrition 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 claims description 3
- 229910000165 zinc phosphate Inorganic materials 0.000 claims description 3
- 229940077935 zinc phosphate Drugs 0.000 claims description 3
- 239000011527 polyurethane coating Substances 0.000 claims description 2
- 239000011496 polyurethane foam Substances 0.000 claims description 2
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 claims 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 46
- 239000000047 product Substances 0.000 description 26
- -1 melamine phosphate compound Chemical class 0.000 description 24
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 22
- 229920005862 polyol Polymers 0.000 description 20
- 150000003077 polyols Chemical class 0.000 description 20
- 239000003063 flame retardant Substances 0.000 description 19
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 19
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 17
- 239000004721 Polyphenylene oxide Substances 0.000 description 16
- 239000012948 isocyanate Substances 0.000 description 16
- 229920000570 polyether Polymers 0.000 description 16
- 239000005056 polyisocyanate Substances 0.000 description 16
- 229920001228 polyisocyanate Polymers 0.000 description 16
- 239000000463 material Substances 0.000 description 14
- 239000004417 polycarbonate Substances 0.000 description 14
- 229920000515 polycarbonate Polymers 0.000 description 14
- 150000002513 isocyanates Chemical class 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 11
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 10
- 229920000728 polyester Polymers 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 150000002334 glycols Chemical class 0.000 description 9
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 8
- 239000000543 intermediate Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 6
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 6
- 150000001991 dicarboxylic acids Chemical class 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 150000002009 diols Chemical class 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000004970 Chain extender Substances 0.000 description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 5
- 125000005442 diisocyanate group Chemical group 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000004606 Fillers/Extenders Substances 0.000 description 4
- 229920002396 Polyurea Polymers 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- GUSFEBGYPWJUSS-UHFFFAOYSA-N pentaazanium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O GUSFEBGYPWJUSS-UHFFFAOYSA-N 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920000768 polyamine Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229960004063 propylene glycol Drugs 0.000 description 4
- 235000013772 propylene glycol Nutrition 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 3
- 229920003226 polyurethane urea Polymers 0.000 description 3
- 238000007655 standard test method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 2
- WTPYFJNYAMXZJG-UHFFFAOYSA-N 2-[4-(2-hydroxyethoxy)phenoxy]ethanol Chemical compound OCCOC1=CC=C(OCCO)C=C1 WTPYFJNYAMXZJG-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000004604 Blowing Agent Substances 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 150000001343 alkyl silanes Chemical class 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000004786 cone calorimetry Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- PGYPOBZJRVSMDS-UHFFFAOYSA-N loperamide hydrochloride Chemical compound Cl.C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 PGYPOBZJRVSMDS-UHFFFAOYSA-N 0.000 description 2
- 150000007974 melamines Chemical class 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 229940117969 neopentyl glycol Drugs 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000036284 oxygen consumption Effects 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920005906 polyester polyol Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VKSWWACDZPRJAP-UHFFFAOYSA-N 1,3-dioxepan-2-one Chemical compound O=C1OCCCCO1 VKSWWACDZPRJAP-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 1
- VZXPHDGHQXLXJC-UHFFFAOYSA-N 1,6-diisocyanato-5,6-dimethylheptane Chemical compound O=C=NC(C)(C)C(C)CCCCN=C=O VZXPHDGHQXLXJC-UHFFFAOYSA-N 0.000 description 1
- PAUHLEIGHAUFAK-UHFFFAOYSA-N 1-isocyanato-1-[(1-isocyanatocyclohexyl)methyl]cyclohexane Chemical compound C1CCCCC1(N=C=O)CC1(N=C=O)CCCCC1 PAUHLEIGHAUFAK-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- LWLOKSXSAUHTJO-UHFFFAOYSA-N 4,5-dimethyl-1,3-dioxolan-2-one Chemical compound CC1OC(=O)OC1C LWLOKSXSAUHTJO-UHFFFAOYSA-N 0.000 description 1
- UHIIHYFGCONAHB-UHFFFAOYSA-N 4,6-dimethyl-1,3-dioxan-2-one Chemical compound CC1CC(C)OC(=O)O1 UHIIHYFGCONAHB-UHFFFAOYSA-N 0.000 description 1
- OFOBGFGQFWCIBT-UHFFFAOYSA-N 4-ethyl-1,3-dioxan-2-one Chemical compound CCC1CCOC(=O)O1 OFOBGFGQFWCIBT-UHFFFAOYSA-N 0.000 description 1
- LSUWCXHZPFTZSF-UHFFFAOYSA-N 4-ethyl-5-methyl-1,3-dioxolan-2-one Chemical compound CCC1OC(=O)OC1C LSUWCXHZPFTZSF-UHFFFAOYSA-N 0.000 description 1
- JKNNDGRRIOGKKO-UHFFFAOYSA-N 4-methyl-1,3-dioxepan-2-one Chemical compound CC1CCCOC(=O)O1 JKNNDGRRIOGKKO-UHFFFAOYSA-N 0.000 description 1
- 229920013683 Celanese Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 240000002989 Euphorbia neriifolia Species 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- IIGAAOXXRKTFAM-UHFFFAOYSA-N N=C=O.N=C=O.CC1=C(C)C(C)=C(C)C(C)=C1C Chemical compound N=C=O.N=C=O.CC1=C(C)C(C)=C(C)C(C)=C1C IIGAAOXXRKTFAM-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- HIFVAOIJYDXIJG-UHFFFAOYSA-N benzylbenzene;isocyanic acid Chemical class N=C=O.N=C=O.C=1C=CC=CC=1CC1=CC=CC=C1 HIFVAOIJYDXIJG-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- ARTGXHJAOOHUMW-UHFFFAOYSA-N boric acid hydrate Chemical class O.OB(O)O ARTGXHJAOOHUMW-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- JYYOBHFYCIDXHH-UHFFFAOYSA-N carbonic acid;hydrate Chemical class O.OC(O)=O JYYOBHFYCIDXHH-UHFFFAOYSA-N 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 239000002666 chemical blowing agent Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- XXKOQQBKBHUATC-UHFFFAOYSA-N cyclohexylmethylcyclohexane Chemical compound C1CCCCC1CC1CCCCC1 XXKOQQBKBHUATC-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- GHLKSLMMWAKNBM-UHFFFAOYSA-N dodecane-1,12-diol Chemical compound OCCCCCCCCCCCCO GHLKSLMMWAKNBM-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 210000000497 foam cell Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000012796 inorganic flame retardant Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000012764 mineral filler Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000005402 stannate group Chemical group 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34928—Salts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/5205—Salts of P-acids with N-bases
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
- C08K2003/321—Phosphates
- C08K2003/325—Calcium, strontium or barium phosphate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/10—Encapsulated ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
Definitions
- the present invention relates to formulations suitable to provide polyurethane and polyurethanes obtained by reacting said formulations.
- Formulations suitable to provide polyurethane (PU) and polyurethanes obtained by reacting said formulations are well known in the art.
- Polyurethane mainly flexible and rigid foams, is used in transportation, refrigeration, home furnishing, building and construction, marine, and business machines. For many of these products, it is necessary to add flame retardants to the polyurethane.
- flame retardants to the polyurethane.
- polyurethane since most of the end applications are internal, polyurethane is in a critical situation and directly subjected to increasingly stringent regulations which on one side require high fire safety standards and on the other side limit the use of potentially toxic but extremely effective flame retardants.
- Halogenated fire retardants are generally very effective, requiring relatively small quantities to be added in the final product in order to obtain outstanding flame retardant properties, but they have been included in the list of priority pollutant as a hazardous priority pollutant, and their use is being limited.
- flame retardants can actually reduce the product's physical properties, cause processing problems and shorten the useful life of a product if they are not compatible with the material itself or other additives.
- Some halogenated flame retardants are very effective at concentrations of a few percent whereas many inorganic flame retardants require concentrations of 30% or higher, thus degrading the mechanical value of the plastic part.
- more environmental- friendly flame retardants are used in the place of halogenated compounds, such as inorganics or melamine, a compromise has to be found between the achieving of acceptable fire properties and the high load required, which is detrimental to the material performance.
- a formulation suitable to provide polyurethane comprises:
- phosphate component selected from the group consisting of ammonium polyphosphate (APP), and melamine phosphates and mixtures thereof, and;
- metal phosphate particle wherein the metal is selected from the group consisting of Ca, Mg, Al and Zn.
- the present invention also encompasses a polyurethane product, obtained by reacting a formulation according to the first aspect of the invention.
- the polyurethane products obtained by reacting a formulation according to the first aspect of the present invention surprisingly show improved fire resistance properties.
- This combination of ingredients produces a reduction of peak heat release rate (PHR ) and total heat released (THR) in cone calorimeter experiments.
- the invention can be used to achieve extremely high fire performances.
- phosphate component selected from the group consisting of ammonium polyphosphate (APP) and melamine phosphates and mixtures thereof, preferably the phosphate component comprises or even consists of ammonium polyphosphate and;
- particles of metal phosphates are selected from the group comprising tricalcium phosphate, hydroxyapatite, dicalcium phosphate, monocalcium phosphate, magnesium phosphate, aluminium phosphate, and zinc phosphate or combination thereof, preferably tricalcium phosphate particles, dicalcium phosphate particles, hydroxyapatite particles, or combination thereof.
- the formulation according to the invention comprises: (a) at least one polyurethane forming mixture; (b) at least one phosphate component selected from the group consisting of ammonium polyphosphate (APP) and melamine phosphates and mixtures thereof, and; (c) at least one metal phosphate particle, wherein the metal phosphate particle is selected from the group comprising tricalcium phosphate, hydroxyapatite, dicalcium phosphate, monocalcium phosphate, magnesium phosphate, aluminium phosphate, and zinc phosphate or combination thereof; tricalcium phosphate particles, dicalcium phosphate particles, hydroxyapatite particles or a combination thereof.
- the metal phosphate particles may be micro-, or nano-particles.
- Particles smaller than 300 ⁇ may be used in order to minimize disruption of the foam cell structure.
- micro-particles “micron-particles” “micron-sized particles” “micro-sized particles” are to be understood as particles having an average diameter of between 0.1 ⁇ and 300 ⁇ , more preferably 0.1 ⁇ and 150 ⁇ .
- nano-particles or “nano-sized particles” are to be understood as particles having an average diameter of between 1 nanometer and 100 nanometers.
- the at least one metal phosphate particle may have a maximum particle size (D99) of less than 300 ⁇ , e.g. less than 200 ⁇ , even less then 170 ⁇ , e.g. less than 150 ⁇ .
- the at least one metal phosphate particle may have a maximum particle size (D99) of less than 100 ⁇ , such as less than 50 ⁇ , for example of less than 30 ⁇ , for example of less than 20 ⁇ , for example of less than 10 ⁇ , e.g. less than 1 ⁇ .
- particle average size may be expressed as "Dxx" where the "xx" is the volume percent of that particle having a size equal to or less than the Dxx.
- the D99 is defined as the particle size for which ninety-nine percent by volume of the particles has a size lower than the D99.
- the D50 can be measured by sieving, by BET surface measurement, or by laser diffraction analysis.
- the amount of the metal phosphate particles, preferably of tri-calcium phosphate , dicalcium phosphate, hydroxyapatite or a combination thereof in the formulation can range from 0.2 to 10% by weight based on 100% by weight of the formulation, e.g., from 0.2%> to 8% by weight.
- the amount of metal phosphate in the formulation is ranging between 0.5 % to 6 % by weight.
- the ratio of weight % of the at least one metal phosphate particle over the weight % of the phosphate component is in the range of 0.01 to 0.3, preferably 0.01 to 0.2, preferably from 0.02 to 0.14, more preferred in the range of 0.02 to 0.11 yet more preferably from 0.03 to 0.08.
- the weight % of the phosphate component and the weight % of the metal phosphate particles both refer to the weight of the component, either the metal phosphate particles or the phosphate component, over the total weight of the formulation.
- the formulation comprises a phosphate component selected from the group consisting of ammonium polyphosphate and melamine phosphates, and mixtures thereof.
- the phosphate component may comprise at least one melamine phosphate selected from the group consisting of melamine orthophosphate, melamine pyrophosphate and melamine polyphosphate.
- the phosphate component comprises Ammonium polyphosphate.
- Ammonium polyphosphate is known and described as, for example, a flame retardant.
- Ammonium polyphosphate is an inorganic salt of polyphosphoric acid and ammonia.
- the chemical formula of ammonium polyphosphate is [NH 4 P0 3 ] n and corresponds to the general formula (I), wherein n is greater than 100:
- the chain length (n) of this polymeric compound is both variable and can be branched, and can be greater than 100, preferably greater than 1000.
- the ammonium polyphosphate has the general formula (II):
- n greater than 100, preferably greater than 1000.
- the phosphate component can be a melamine phosphate compound selected from the group consisting of melamine orthophosphate, melamine pyrophosphate and melamine polyphosphate, or a mixture thereof.
- the melamine phosphate compound has general formula (III):
- the phosphate component may or may not be encapsulated.
- Suitable non encapsulated phosphate component can be readily available commercially, under the tradename Exolit AP-422 from Clariant, FR Cros 484 from Budenheim, Antiblaze LR3 from Albemarle, APP1001 from Dgtech International and Aflammit PCI 202 from Thor.
- the phosphate component in particular a polyphosphate, is encapsulated.
- encapsulated ammonium polyphosphate are described in U.S. Patent Nos. 4,347,334, 4,467,056, 4,514,328, and 4,639,331 hereby incorporated by reference.
- Such encapsulated ammonium polyphosphates contain a hardened, water insoluble resin enveloping the individual ammonium polyphosphate particles.
- the resin may be a phenol- formaldehyde resin, an epoxy resin, a surface reacted silane, a surface reacted melamine or a melamine-formaldehyde resin.
- the encapsulated ammonium polyphosphate flame retardant available under the trademark FR CROS C 60, FR CROS C30, FR CROS C70 from Chemische Fabrik Budenheim, Budenheim am Rhein, Germany, EXOLIT 462 from Hoechst Celanese Corporation, Somerville, N.J.
- the encapsulated ammonium polyphosphate flame retardant can be a melamine-formaldehyde encapsulated ammonium polyphosphate additive.
- Suitable encapsulated melamine compounds are described in US 6,015,510 hereby incorporated by reference.
- Such melamine compounds contain an outer coating.
- Such coating compounds may comprise organo silanes such as alkyl silanes, amino silanes, mixtures of alkyl silanes and polysiloxanes; esters; polyols; dicarboxylic acids; aromatic or aliphatic dianhydrides; melamine formaldehyde; and mixtures thereof.
- the phosphate component and preferably ammonium polyphosphate, can be present in the flame retardant composition in an amount ranging from 10% to 50% by weight based on 100% by weight of the formulation, preferably from 12 to 45% by weight, more preferably from 15 to 40% by weight.
- the formulation comprises at least one polyurethane forming mixture.
- the at least one polyurethane forming mixture is present in the formulation in an amount ranging from 30 to 90% by weight based on 100% by weight of the formulation, preferably from 50 to 80% by weight, more preferably from 60 to 75% by weight.
- the polyurethane forming mixture may comprise: at least one isocyanate compound; and at least one isocyanate reactive component.
- the present invention is useful for its flame retardant effects in polyurethane and polyurea materials and in particular in polyurethane and polyurea foams.
- Polyurea materials can be made by reacting an isocyanate compound, preferably a polyisocyanate and at least one polyamine and polyurethanes can be made by reacting an isocyanate compound preferably polyisocyanates with one of more polyols.
- Polyamine may be selected from any suitable type of polyamines, such as polyether polyamines.
- Isocyanate compounds are preferably polyisocyanate compounds.
- Suitable polyisocyanates used may be aliphatic, araliphatic and/or aromatic polyisocyanates, typically of the type R- (NCO) x with x being at least 2 and R being an aromatic, aliphatic or combined aromatic/aliphatic group.
- R are diphenylmethane, toluene, dicyclohexylmethane, hexamethylene, or groups providing a similar polyisocyanate.
- Non-limiting examples of suitable polyisocyanates are diphenylmethane diisocyanate (MDI) - type isocyanates in the form of its 2,4'-, 2,2'- and 4,4'-isomers and mixtures thereof (also referred to as pure MDI), the mixtures of diphenylmethane diisocyanates (MDI) and oligomers thereof (known in the art as "crude” or polymeric MDI ), and reaction products of polyisocyanates (e.g. polyisocyanates as set out above), with components containing isocyanate-reactive hydrogen atoms forming polymeric polyisocyanates or so-called prepolymers.
- MDI diphenylmethane diisocyanate
- oligomers thereof known in the art as "crude” or polymeric MDI
- reaction products of polyisocyanates e.g. polyisocyanates as set out above
- components containing isocyanate-reactive hydrogen atoms forming polymeric polyis
- tolylene diisocyanate also known as toluene diisocyanate, and referred to as TDI
- TDI tolylene diisocyanate
- 2,4 TDI and 2,6 TDI in any suitable isomer mixture
- HMDI or HDI hexamethylene diisocyanate
- IPDI isophorone diisocyanate
- butylene diisocyanate trimethylhexamethylene diisocyanate
- di(isocyanatocyclohexyl)methane e.g.
- 4,4'-diisocyanatodicyclohexylmethane (f1 ⁇ 2MDI), isocyanatomethyl-l,8-octane diisocyanate and tetramethylxylene diisocyanate (TMXDI), 1,5-naphtalenediisocyanate (NDI), p-phenylenediisocyanate (PPDI), 1,4- cyclohexanediisocyanate (CDI), tolidine diisocyanate (TODI), any suitable mixture of these polyisocyanates, and any suitable mixture of one or more of these polyisocyanates with MDI-type polyisocyanates.
- TXDI 4,4'-diisocyanatodicyclohexylmethane
- NDI 1,5-naphtalenediisocyanate
- PPDI p-phenylenediisocyanate
- CDI 1,4- cyclohexanediiso
- the polyurethane is generally prepared by reacting a polyisocyanate with isocyanate reactive components which are typically components containing isocyanate-reactive hydrogen atoms, such as a hydroxyl terminated polyester (polyester polyols), a hydroxyl terminated polyether (polyether polyols), a hydroxyl terminated polycarbonate or mixture thereof, with one or more chain extenders, all of which are well known to those skilled in the art.
- isocyanate reactive components which are typically components containing isocyanate-reactive hydrogen atoms, such as a hydroxyl terminated polyester (polyester polyols), a hydroxyl terminated polyether (polyether polyols), a hydroxyl terminated polycarbonate or mixture thereof, with one or more chain extenders, all of which are well known to those skilled in the art.
- the hydroxyl terminated polyester intermediate (polyester polyols),can be generally a linear polyester having a number average molecular weight (Mn) of from about 500 to about 10000, desirably from about 700 to about 5000, and preferably from about 700 to about 4000, an acid number generally less than 1.3 and preferably less than 0.8.
- Mn number average molecular weight
- the molecular weight is determined by assay of the terminal functional groups and is related to the number average molecular weight.
- the polymers are produced by (1) an esterification reaction of one or more glycols with one or more dicarboxylic acids or anhydrides or (2) by transesterification reaction, i.e. the reaction of one or more glycols with esters of dicarboxylic acids.
- Suitable polyester intermediates also include various lactones such as polycaprolactone typically made from caprolactone and a bifunctional initiator such as diethylene glycol.
- the dicarboxylic acids of the desired polyester can be aliphatic, cycloaliphatic, aromatic, or combinations thereof.
- Suitable dicarboxylic acids which can be used alone or in mixtures generally have a total of from 4 to 15 carbon atoms and include: succinic, glutaric, adipic, pimelic, suberic, azelaic, sebacic, dodecanedioic, isophthalic, terephthalic, cyclohexane dicarboxylic, and the like.
- Anhydrides of the above dicarboxylic acids such as phthalic anhydride, tetrahydrophthalic anhydride, or the like, can also be used.
- Adipic acid is the preferred acid.
- the glycols which are reacted to form a desirable polyester intermediate can be aliphatic, aromatic, or combinations thereof, and have a total of from 2 to 12 carbon atoms, and include ethylene glycol, 1 ,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2- dimethyl- 1,3-propanediol, 1,4-cyclohexanedimethanol, decamethylene glycol, dodecamethylene glycol, and the like.
- 1,4-Butanediol is the preferred glycol.
- Hydroxyl terminated polyether intermediates are preferably polyether polyols derived from a diol or polyol having a total of from 2 to 15 carbon atoms, preferably an alkyl diol or glycol which is reacted with an ether comprising an alkylene oxide having from 2 to 6 carbon atoms, typically ethylene oxide or propylene oxide or mixtures thereof.
- hydroxyl functional polyether can be produced by first reacting propylene glycol with propylene oxide followed by subsequent reaction with ethylene oxide. Primary hydroxyl groups resulting from ethylene oxide are more reactive than secondary hydroxyl groups and thus are preferred.
- Useful commercial polyether polyols include poly(ethylene glycol) comprising ethylene oxide reacted with ethylene glycol, poly(propylene glycol) comprising propylene oxide reacted with propylene glycol, poly(tetramethyl glycol) (PTMG) comprising water reacted with tetrahydrofuran (THF).
- Polyether polyols further include polyamide adducts of an alkylene oxide and can include, for example, ethylenediamine adduct comprising the reaction product of ethylenediamine and propylene oxide, diethylenetriamine adduct comprising the reaction product of diethylenetriamine with propylene oxide, and similar polyamide type polyether polyols. Copolyethers can also be utilized in the current invention.
- Typical copolyethers include the reaction product of glycerol and ethylene oxide or glycerol and propylene oxide.
- the various polyether intermediates generally have a number average molecular weight (Mn), as determined by assay of the terminal functional groups which is an average molecular weight, of from about 500 to about 10000, desirably from about 500 to about 5000, and preferably from about 700 to about 3000.
- Hydroxyl terminated polycarbonate intermediates can be prepared by reacting a glycol with a carbonate.
- US 4131731 is hereby incorporated by reference for its disclosure of hydroxyl terminated polycarbonates and their preparation. Such polycarbonates are linear and have terminal hydroxyl groups with essential exclusion of other terminal groups. The essential reactants are glycols and carbonates.
- Suitable glycols are selected from cycloaliphatic and aliphatic diols containing 4 to 40, and preferably 4 to 12 carbon atoms, and from polyoxyalkylene glycols containing 2 to 20 alkoxy groups per molecule with each alkoxy group containing 2 to 4 carbon atoms.
- Diols suitable for use in the present invention include aliphatic diols containing 4 to 12 carbon atoms such as butanediol-1,4, pentanediol-1,4, neopentyl glycol, hexanediol-1,6, 2,2,4-trimethylhexanedion-l,6, decanediol-1,10, hydrogenated dilinoleylglycol, hydrogenated diolelylglycol; and cycloaliphatic diols such as cyclohexanediol- 1 ,3, dimethylolcyclohexane-1 ,4, cyclohexanediol- 1 ,4, dimethylolcyclohexane- 1 ,3, 1 ,4-endomethylene-2-hydroxy-5-hydroxymethyl cyclohexane, and polyalkylene glycols.
- the diols used in the reaction may be a single diol or a
- Non-limiting examples of suitable carbonates for use herein include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, 1,2-propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-ethylene carbonate, 1,3-pentylene carbonate, 1,4- pentylene carbonate, 2,3-pentylene carbonate and 2,4-pentylene carbonate.
- dialkylcarbonates cycloaliphatic carbonates, and diary lcarbonates.
- the dialkylcarbonates can contain 2 to 5 carbon atoms in each alkyl group and specific examples thereof are diethylcarbonate and diprop
- Cycloaliphatic carbonates can contain 4 to 7 carbon atoms in each cyclic structure, and there can be one or two of such structures.
- the other can be either alkyl or aryl.
- the other can be alkyl or cycloaliphatic.
- Preferred examples of diarylcarbonates, which can contain 6 to 20 carbon atoms in each aryl group, are diphenylcarbonate, ditolylcarbonate and dinaphthylcarbonate.
- the reaction is carried out by reacting a glycol with a carbonate, preferably an alkylene carbonate in the molar range of 10: 1 to 1 :10, but preferably 3: 1 to 1 :3 at a temperature of 100°C to 300°C and at a pressure in the range of 0.1 to 300 mm Hg in the presence or absence of an ester interchange catalyst, while removing low boiling glycols by distillation.
- a carbonate preferably an alkylene carbonate in the molar range of 10: 1 to 1 :10, but preferably 3: 1 to 1 :3 at a temperature of 100°C to 300°C and at a pressure in the range of 0.1 to 300 mm Hg in the presence or absence of an ester interchange catalyst, while removing low boiling glycols by distillation.
- the hydroxyl terminated polycarbonates can be prepared in two stages.
- a glycol is reacted with an alkylene carbonate to form a low molecular weight hydroxyl terminated polycarbonate.
- the lower boiling point glycol is removed by distillation at 100°C to 300°C, preferably at 150°C to 250°C, under a reduced pressure of 10 to 30 mm Hg, preferably 50 to 200 mm Hg.
- a fractionating column is used to separate the by-product glycol from the reaction mixture.
- the by-product glycol is taken off the top of the column and the unreacted alkylene carbonate and glycol reactant are returned to the reaction vessel as reflux.
- a current of inert gas or an inert solvent can be used to facilitate removal of by-product glycol as it is formed.
- amount of by-product glycol obtained indicates that degree of polymerization of the hydroxyl terminated polycarbonate is in the range of 2 to 10
- the pressure is gradually reduced to 0.1 to 10 mm Hg and the unreacted glycol and alkylene carbonate are removed. This marks the beginning of the second stage of reaction during which the low molecular weight hydroxyl terminated polycarbonate is condensed by distilling off glycol as it is formed at 100°C to 300°C, preferably 150°C to 250°C and at a pressure of 0.1 to 10 mm Hg until the desired molecular weight of the hydroxyl terminated polycarbonate is attained.
- Molecular weight (Mn) of the hydroxyl terminated polycarbonates can vary from about 500 to about 10000 but in a preferred embodiment, it will be in the range of 500 to 2500.
- suitable extender glycols i.e., chain extenders
- suitable extender glycols are lower aliphatic or short chain glycols having from about 2 to about 10 carbon atoms and include, for instance, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,6- hexanediol, 1,3-butanediol, 1,5-pentanediol, 1 ,4-cyclohexanedimethanol, hydroquinone di(hydroxyethyl)ether, neopentylglycol, and the like, with 1,4-butanediol and hydroquinone di(hydroxyethyl)ether being preferred.
- the polyurethane is generally made from the abovementioned isocyanate reactive component such as a hydroxyl terminated polyester, polyether, or polycarbonate, preferably polyether, which is further reacted with a polyisocyanate, preferably a diisocyanate, along with extender glycol.
- the formulation can also comprises non-fire-retardant mineral fillers such as certain oxides, carbonates, silicates, borates, stannates, mixed oxide hydroxides, oxide hydroxide carbonates, hydroxide silicates, or hydroxide borates, or a mixture of these substances.
- calcium oxide aluminum oxide, manganese oxide, tin oxide, boehmite, dihydrotalcite, hydrocalumite, or calcium carbonate.
- Preferred compounds are silicates and hydroxide silicates. These fillers are usually added in amounts of between 1 to 20 % by weight based on the formulation, preferably between 1 and 10 % by weight.
- additives apart from the fillers may be used in the formulation of this invention.
- Additives such as catalysts, stabilizers, lubricants, colorants, antioxidants, antiozonates, light stabilizers, UV stabilizers and the like may be used in amounts of from 0 to 5 wt% of the composition, preferably from 0 to 2 wt%.
- PU polyurethane
- TPU thermoplastic PU
- soft, semi-rigid or rigid PU foams may be provided.
- Foams can be made by using chemical or inert blowing agents while conducting above reactions or by using a gas in order to create a froth during these reactions.
- a useful chemical blowing agent is water.
- the foams may be rigid, semi-rigid, flexible and microcellular elastomeric; they may have an integral skin or not and they may be made in a mould, on a laminator or a slabstock machine. Densities of the foams may vary widely e.g. 10 - 1000 kg/m 3 .
- Non foam polyurethane and polyurea materials may be made in a similar way, in absence of a blowing agent.
- the TPU products can be made from the abovementioned intermediates such as a hydroxyl terminated polyester, polyether, or polycarbonate, preferably polyether, which is further reacted with a polyisocyanate, preferably a diisocyanate, along with extender glycol desirably in a so-called one-shot process or simultaneous co-reaction of polyester, polycarbonate or polyether intermediate, diisocyanate, and extender glycol to produce a high molecular weight linear TPU polymer.
- the preparation of the macroglycol is generally well known in the art and any suitable method may be used.
- the weight average (Mw) of a TPU polymer can be generally about 50000 to 800000, and preferably from about 90000 to about 450000 Daltons.
- the equivalent weight amount of diisocyanate to the total equivalent weight amount of hydroxyl containing components can be typically from about 0.95 to about 1.10, desirably from about 0.96 to about 1.02, and preferably from about 0.97 to about 1.01.
- the present invention also encompasses a polyurethane product, obtained by reacting a formulation according to the invention.
- the polyurethane product may be a thermoplastic polyurethane product.
- the polyurethane product may be a polyurethane elastomeric product.
- the polyurethane product may be a polyurethane foam, such as a polyurethane flexible foam or a polyurethane rigid or semi-rigid foam.
- the polyurethane product may be a polyurethane coating.
- the polyurethane product may be used for cable and wire applications.
- the polyurethane product is a thermoplastic polyurethane product used for cable sheating. In particular it can be utilized as a cable jacket as set forth in further detail below.
- TPU products can be used as thermal and/or electric insulators for electrical conductors.
- the TPU products can be used as jacketing for electrical conductors in wire and cable construction applications, such as jacketing for armored cable, industrial robotic equipment, non-metallic sheath cable, deep well pump cables and other multiple conductor assemblies and consumer goods.
- insulated and “non-conductive” means electrically insulating and electrically non-conductive.
- electrically non- conductive is synonymous of "electrically insulating” and these terms may be used interchangeably.
- electrically insulating or “electrically non- conductive” material is a material that resists the flow of electric charge, also called a dielectric, as is well known to the skilled person.
- the polyurethane products obtained by reacting a formulation according to the first aspect of the present invention surprisingly show improved fire resistance properties.
- FIGRA flame retardancy
- FIGRA Peak HRR / time to Peak HRR (kW/m 2 sec). All these parameters can also be determined by using a Mass Loss Calorimeter instead of an Oxygen Consumption Calorimeter.
- Limiting Oxygen Index (LOI) can be measured using a Stanton Redcroft instrument according to the standard ASTM 2863 (standard test method for measuring the minimum oxygen concentration to support candle like combustion of plastics ASTM D2863/77 Philadelphia PA American Society for Testing and Materials 1977). The data for the Examples have been presented using some of these measurements.
- the polyurethane products obtained when subjected to cone calorimeter experiment, shows a significant reduction of the peak of heat release (PHRR, expressed in kW/m 2 ), the total heat release (THRR, expressed in kW/m 2 ) and improves the ratio PHRR/Tig, Tig being the time to ignition.
- PHRR peak of heat release
- THRR total heat release
- Tricalcium phosphate particles Ca 3 (P0 4 ) 2 nanoparticles supplied by Nanocerox (U.S.A).BET surface area was 21 m 2 /g, corresponding to average primary particle size of 93 nm.
- the samples are based on polyurethane elastomeric formulation obtained by polymerizing 48.4 parts of polyol Arcol 1374 (Bayer MaterialScience), 7.4 parts of chain extender Daltoped AO 00009 (1,4 butanediol, Huntsman PU) with 43.8 parts of pre-polymer isocyanate Suprasec 2433 (Huntsman PU) using 0.4 parts of catalyst Dabco S25 (Air Products).
- Ammonium polyphosphate (APP) (Exolit AP 422, Clariant) was dispersed in both polyol and isocyanate prepolymer by high shear mixing using a Heidolph mixer equipped with a cowel blade at 4000rpm for 40 minutes.
- the fraction of APP to be added to each stream was calculated in proportion to the polyol/isocyanate weight fraction.
- the required amount of metal phosphate particles was then added to the polyol (or to the dispersion of APP in polyol) and mixed by high shear mixing using a Heidolph mixer equipped with a cowel blade at 4000rpm for 40 minutes followed by sonication for 20 minutes (2sec active-2sec rest) at 40% amplitude using a Sonic VCX 500.
- the high shear mixing step was performed under a nitrogen flow in order to avoid the incorporation of moisture contained in the air.
- the appropriate amount of polyol/APP/particle was weighed in a paper cup, 1,4 butanediol was added and the mixture was mixed at 400 rpm for 10 minutes under vacuum. Then the proper amount of isocyanate/ APP was added to the mixture, which was then stirred under vacuum at 800 rpm for 60 seconds. The catalyst Dabco 25S was added drop by drop and the mixture was again stirred at 800 rpm for 20 seconds. At this step, the blend was quickly poured in an aluminum mould (preventively sprayed with release agent) placed on a hot plate at 85°C. After 1 hour the casting was removed and post cured at 85°C for 24 hours in an oven.
- LOI limited oxygen index
- a composition comprising a mixture of hydroxyapatite (Cas(P0 4 ) 3 (OH)), dicalcium phosphate (CaHP0 4 ) and tricalcium phosphate (Ca 3 (P0 4 ) 2 ) particles supplied by Prolabo- VWR (product number 22417.293; Lot#10A120002 31.01.2012).
- the mixture contained Ca 5 (P0 4 ) 3 (OH) / CaHP0 4 / Ca 3 (P0 4 ) 2 in the following proportions: 60 / 30 / 10 (determined by XRD analysis).
- the samples are based on polyurethane flexible coating formulation obtained by polymerizing 47.8 parts of polyol Daltocel F526 (Huntsman PU), 10.3 parts of chain extender Daltoped AO 00009 (1,4 butanediol, Huntsman PU) with 41.8 parts of isocyanate Suprasec 2020 (Huntsman PU).
- Ammonium polyphosphate (APP) (Exolit AP 422, Clariant) was dispersed in both polyol and isocyanate prepolymer by high shear mixing using a Heidolph mixer equipped with a cowel blade at 4000rpm for 30 minutes.
- the fraction of APP to be added to each stream was calculated in proportion to the polyol/isocyanate weight fraction.
- the required amount of metal phosphate particles was then added to the polyol (or to the dispersion of APP in polyol) and mixed by high shear mixing using a Heidolph mixer equipped with a cowel blade at 4000rpm for 30 minutes.
- the high shear mixing step was performed under a nitrogen flow in order to avoid the incorporation of moisture contained in the air.
- the appropriate amount of polyol/ APP/particle was weighed in a paper cup, 1,4 butanediol was added and the mixture was mixed at 400 rpm for 1 minute under vacuum. The proper amount of isocyanate/ APP was quickly added to the mixture, which was then stirred with a disposable spatula until the blend started to heat up. At this step, the blend was quickly poured in an aluminum mould (preventively sprayed with release agent) placed on a hot plate at 42°C. After 1 hour the casting was removed and post cured at 80°C for 24 hours in an oven.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Cette invention concerne une formulation permettant d'obtenir un polyuréthanne, ladite formulation comprenant (a) au moins un mélange formant un polyuréthanne ; (b) au moins un composant de phosphate choisi dans le groupe constitué par le polyphosphate d'ammonium (APP) et les phosphates de mélamine, et leurs mélanges ; et (c) au moins une particule de phosphate métallique, le métal étant choisi dans le groupe constitué par Ca, Mg, Al et Zn.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11173526 | 2011-07-12 | ||
EP11173526.2 | 2011-07-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013007509A1 true WO2013007509A1 (fr) | 2013-01-17 |
Family
ID=46420155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/062299 WO2013007509A1 (fr) | 2011-07-12 | 2012-06-26 | Formulation permettant d'obtenir un polyuréthanne |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013007509A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119505519A (zh) * | 2025-01-21 | 2025-02-25 | 湖南强泰新材料有限公司 | 一种聚氨酯复合材料及其制备方法和应用 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4131731A (en) | 1976-11-08 | 1978-12-26 | Beatrice Foods Company | Process for preparing polycarbonates |
US4347334A (en) | 1980-02-13 | 1982-08-31 | Hoechst Aktiengesellschaft | Particulate agent for impeding the combustibility of combustible substances |
US4467056A (en) | 1979-12-08 | 1984-08-21 | Hoechst Aktiengesellschaft | Particulate agent for impeding the combustibility of combustible materials |
US4514328A (en) | 1982-05-12 | 1985-04-30 | Hoechst Aktiengesellschaft | Particulate material reducing the ignitability of combustible substances |
US4639331A (en) | 1983-05-07 | 1987-01-27 | Hoechst Aktiengesellschaft | Process for making pulverulent ammonium polyphosphates stable to hydrolysis |
EP0276726A2 (fr) * | 1987-01-27 | 1988-08-03 | Mankiewicz Gebr. & Co. (GmbH & Co. KG) | Masse moulée et son utilisation |
US6015510A (en) | 1996-08-29 | 2000-01-18 | E. I. Du Pont De Nemours And Company | Polymer flame retardant |
EP1132563A2 (fr) * | 2000-03-07 | 2001-09-12 | Intumex Brandschutzprodukte AG | Ruban coupe-feu intumescent enrobé sur trois côtés ainsi que joint d'étanchéité combiné pour gaz chauds et froids |
EP1705221A1 (fr) * | 2005-03-26 | 2006-09-27 | Clariant Produkte (Deutschland) GmbH | Utilisation de stabilisateurs pour l'agents d'ignifugation agglomérés thermostabilisés contenant du phosphore |
WO2007068599A1 (fr) * | 2005-12-14 | 2007-06-21 | Tesa Ag | Bande de matiere a enrouler, faite d'un film de polyurethane thermoplastique |
WO2009016129A1 (fr) * | 2007-07-28 | 2009-02-05 | Chemische Fabrik Budenheim Kg | Matériau polymère ignifuge |
-
2012
- 2012-06-26 WO PCT/EP2012/062299 patent/WO2013007509A1/fr active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4131731A (en) | 1976-11-08 | 1978-12-26 | Beatrice Foods Company | Process for preparing polycarbonates |
US4467056A (en) | 1979-12-08 | 1984-08-21 | Hoechst Aktiengesellschaft | Particulate agent for impeding the combustibility of combustible materials |
US4347334A (en) | 1980-02-13 | 1982-08-31 | Hoechst Aktiengesellschaft | Particulate agent for impeding the combustibility of combustible substances |
US4514328A (en) | 1982-05-12 | 1985-04-30 | Hoechst Aktiengesellschaft | Particulate material reducing the ignitability of combustible substances |
US4639331A (en) | 1983-05-07 | 1987-01-27 | Hoechst Aktiengesellschaft | Process for making pulverulent ammonium polyphosphates stable to hydrolysis |
EP0276726A2 (fr) * | 1987-01-27 | 1988-08-03 | Mankiewicz Gebr. & Co. (GmbH & Co. KG) | Masse moulée et son utilisation |
US6015510A (en) | 1996-08-29 | 2000-01-18 | E. I. Du Pont De Nemours And Company | Polymer flame retardant |
EP1132563A2 (fr) * | 2000-03-07 | 2001-09-12 | Intumex Brandschutzprodukte AG | Ruban coupe-feu intumescent enrobé sur trois côtés ainsi que joint d'étanchéité combiné pour gaz chauds et froids |
EP1705221A1 (fr) * | 2005-03-26 | 2006-09-27 | Clariant Produkte (Deutschland) GmbH | Utilisation de stabilisateurs pour l'agents d'ignifugation agglomérés thermostabilisés contenant du phosphore |
WO2007068599A1 (fr) * | 2005-12-14 | 2007-06-21 | Tesa Ag | Bande de matiere a enrouler, faite d'un film de polyurethane thermoplastique |
WO2009016129A1 (fr) * | 2007-07-28 | 2009-02-05 | Chemische Fabrik Budenheim Kg | Matériau polymère ignifuge |
Non-Patent Citations (2)
Title |
---|
"Standard Test Method for Heat and Visible Smoke release Rates for Materials and Products Using an Oxygen Consumption Calorimeter", ASTM E 1354-08, 1 January 2008 (2008-01-01) |
A. MORGAN; M. BUNDY, FIRE MATER, vol. 31, 2007, pages 257 - 283 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119505519A (zh) * | 2025-01-21 | 2025-02-25 | 湖南强泰新材料有限公司 | 一种聚氨酯复合材料及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9136041B2 (en) | Flame retardant composition for thermoplastic polyurethane polymers | |
JP5143724B2 (ja) | 非ハロゲン性難燃性熱可塑性ポリウレタン | |
KR102099337B1 (ko) | 폴리카르보네이트디올을 기초로 한 난연성 열가소성 폴리우레탄 | |
KR102197372B1 (ko) | 알루미늄을 주성분으로 하는 피복된 금속 수산화물을 포함하는 난연성 열가소성 폴리우레탄 | |
CA2823849C (fr) | Formulation d'ignifugeant pour polyurethane | |
KR102119616B1 (ko) | 금속 수산화물 및 폴리에스테롤을 기초로 한 난연성 열가소성 폴리우레탄 | |
US8872034B2 (en) | Flame retardant thermoplastic composition | |
WO2013007509A1 (fr) | Formulation permettant d'obtenir un polyuréthanne | |
KR102805209B1 (ko) | 난연제 조성물, 이의 제조 방법 및 이로부터의 물품 | |
CN111356732A (zh) | 阻燃剂组合物、其制备方法及其制品 | |
EP4499724A1 (fr) | Polyuréthane thermoplastique ignifuge (tpu) à base de poly-propane diol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12730917 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12730917 Country of ref document: EP Kind code of ref document: A1 |