+

WO2013005767A1 - Multi-layer film with gas barrier properties, adhesive, and coating material - Google Patents

Multi-layer film with gas barrier properties, adhesive, and coating material Download PDF

Info

Publication number
WO2013005767A1
WO2013005767A1 PCT/JP2012/067067 JP2012067067W WO2013005767A1 WO 2013005767 A1 WO2013005767 A1 WO 2013005767A1 JP 2012067067 W JP2012067067 W JP 2012067067W WO 2013005767 A1 WO2013005767 A1 WO 2013005767A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
polyester polyol
acid
film
resin composition
Prior art date
Application number
PCT/JP2012/067067
Other languages
French (fr)
Japanese (ja)
Inventor
武田 博之
下口 睦弘
圭一 尾薗
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011149977A external-priority patent/JP5543408B2/en
Priority claimed from JP2011154774A external-priority patent/JP5273219B2/en
Priority claimed from JP2011154773A external-priority patent/JP5201429B2/en
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2013005767A1 publication Critical patent/WO2013005767A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4219Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from aromatic dicarboxylic acids and dialcohols in combination with polycarboxylic acids and/or polyhydroxy compounds which are at least trifunctional
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7831Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing biuret groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging

Definitions

  • the present invention relates to a gas barrier multilayer film, an adhesive, and a coating material, and further relates to a polyester resin composition that can provide the gas barrier multilayer film, the adhesive, and the coating material.
  • Packaging materials used for packaging food and beverages have functions such as strength, resistance to cracking, retort resistance, and heat resistance to protect the contents from various distribution, storage such as refrigeration and heat sterilization. In addition to this, a wide variety of functions are required such as excellent transparency so that the contents can be confirmed.
  • an unstretched polyolefin film having excellent heat processability is essential, but the unstretched polyolefin film has many functions that are insufficient as a packaging material. In particular, a high barrier property is required for the purpose of maintaining the quality of the contents.
  • Such a barrier packaging material is usually used as a composite flexible film in which different polymer materials are laminated.
  • a barrier function is often imparted to various films (polyester resins such as polyethylene terephthalate (hereinafter abbreviated as PET), polyamide resins, stretched polyolefin resins) used on the outer layer side.
  • PET polyethylene terephthalate
  • polyamide resins polyamide resins
  • stretched polyolefin resins used on the outer layer side.
  • Patent Document 1 a gas barrier property using an aqueous dispersion containing a gas barrier polyurethane resin having a urethane group and a urea group and having a total of a urethane group concentration and a urea group concentration of 15% by mass or more.
  • a polyurethane resin and a gas barrier film containing the same are described.
  • the aqueous dispersion has no water resistance, there is a problem in using it in foods, beverages and the like containing water.
  • thermosetting gas barrier polyurethane resin containing a cured resin obtained by reacting an active hydrogen-containing compound (A) and an organic polyisocyanate compound (B),
  • the skeleton structure derived from meta-xylene diisocyanate is contained in an amount of 20% by mass or more, and the ratio of the trifunctional or higher compound in the (A) and (B) is based on the total amount of (A) and (B).
  • the composition has poor workability because a highly polar solvent must be used.
  • a highly soluble solvent such as acetone
  • the viscosity of the preparation is likely to increase due to the reaction between water and isocyanate because the boiling point is low and the water in the outside air is easily taken up.
  • Patent Document 3 discloses that an oxygen-absorbing resin component having a carbon-carbon unsaturated bond and a reactive functional group, and reacting with the reactive functional group to form a cross-linked structure with the oxygen-absorbing resin component.
  • An oxygen-absorbing paint containing the resulting cross-linking agent is described.
  • the purpose of the present invention is the same as that of the present invention in the sense that the contents are protected from deterioration, but this cited reference is a technique for preventing deterioration of the contents by absorbing oxygen, and blocks the oxygen of the present application. It is different from the method.
  • a film having an oxygen barrier property is indispensable, and deterioration of contents cannot be prevented without a film having a high oxygen barrier property.
  • an organic polymer polyol compound selected from the group consisting of polyester polyol, polyether polyol, polyether ester polyol and polyurethane polyol, and a carboxylic acid anhydride is added to one end of the organic polymer polyol compound.
  • a solventless composite laminate adhesive composition characterized by comprising an organic polymer polyol compound having a carboxyl group introduced at one end and a polyisocyanate compound.
  • Patent Document 4 has a description on workability and adhesiveness, but does not have a description on oxygen barrier properties and does not have oxygen barrier properties.
  • Japanese Patent No. 4524463 Japanese Patent No. 4054972 JP 2003-268310 A Japanese Unexamined Patent Publication No. 7-97557
  • the problem to be solved by the present invention is to provide a gas barrier multilayer film having excellent gas barrier properties.
  • Another object of the present invention is to provide a gas barrier polyester resin composition mainly comprising a polyester resin used as a gas barrier layer in the gas barrier multilayer film, a gas barrier multilayer film in which the resin composition is applied to the film, and a coating material. .
  • a gas barrier multilayer film having a gas barrier layer obtained by curing a polyester resin composition obtained by reacting a polyester polyol and a curing agent.
  • a polyester resin composition having a specific structure solves the problems of the present invention, and the present invention has been completed.
  • the present invention In a gas barrier multilayer film having a gas barrier layer obtained by curing a polyester resin composition obtained by reacting a polyester polyol and a curing agent, the present invention provides a gas barrier multilayer film in which the polyester resin composition is any one selected from the following (I) to (III).
  • the polyester resin composition is any one selected from the following (I) to (III).
  • R 1 to R 3 each independently represents a hydrogen atom, or a compound represented by the general formula (2)
  • n represents an integer of 1 to 5
  • X represents an optionally substituted 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group
  • 2 represents an arylene group selected from the group consisting of 1,3-anthraquinonediyl group and 2,3-anthracenediyl group
  • Y represents an alkylene group having 2 to 6 carbon atoms.
  • R 1 to R 3 represents a group represented by the general formula (2).
  • a resin composition for an oxygen barrier adhesive comprising a polyester polyol (C) and a polyisocyanate (D) having two or more isocyanate groups,
  • the polyester polyol (C) has at least one carboxy group and two or more hydroxyl groups obtained by reacting a carboxylic anhydride or a polyvalent carboxylic acid with a polyester polyol having three or more hydroxyl groups.
  • a gas barrier multilayer film having excellent gas barrier properties is provided. Also provided are a gas barrier polyester resin composition mainly composed of a polyester resin excellent in gas barrier properties used as a gas barrier layer in the gas barrier multilayer film, a gas barrier multilayer film in which the resin composition is applied to the film, and a coating material. can do.
  • Polyester resin composition according to (I) (polyester resin compound having a glycerol skeleton)
  • R 1 to R 3 are a hydrogen atom or a general formula (2)
  • n represents an integer of 1 to 5
  • X represents an optionally substituted 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group
  • 2 represents an arylene group selected from the group consisting of 1,3-anthraquinonediyl group and 2,3-anthracenediyl group
  • Y represents an alkylene group having 2 to 6 carbon atoms.
  • at least one of R 1 to R 3 represents a group represented by the general formula (2). ).
  • R 1 , R 2 and R 3 needs to be a group represented by the general formula (2). Among them, it is preferable that all of R 1 , R 2 and R 3 are groups represented by the general formula (2).
  • R 1, any one of R 2 and R 3 is a group represented by the general formula (2) compound, R 1, R 2, and any two of the general formula R 3 (2) Any two or more compounds of the compound represented by the general formula (2) and the compound in which all of R 1 , R 2 and R 3 are groups represented by the general formula (2) are mixed. Also good.
  • X is selected from the group consisting of 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 2,3-anthraquinonediyl group, and 2,3-anthracenediyl group,
  • the arylene group which may have is represented.
  • X When X is substituted with a substituent, it may be substituted with one or more substituents, which are attached to any carbon atom on X that is different from the free radical.
  • substituents examples include chloro group, bromo group, methyl group, ethyl group, i-propyl group, hydroxyl group, methoxy group, ethoxy group, phenoxy group, methylthio group, phenylthio group, cyano group, nitro group, amino group, Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group, and a naphthyl group.
  • Y represents an ethylene group, propylene group, butylene group, neopentylene group, 1,5-pentylene group, 3-methyl-1,5-pentylene group, 1,6-hexylene group, methylpentylene.
  • Y is preferably a propylene group or an ethylene group, and most preferably an ethylene group.
  • the polyester resin compound having a glycerol skeleton represented by the general formula (1) is essential for glycerol, an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted in the ortho position, or an anhydride thereof, and a polyhydric alcohol component. Obtained by reacting as a component.
  • the aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted in the ortho position or its anhydride includes orthophthalic acid or its anhydride, naphthalene 2,3-dicarboxylic acid or its anhydride, naphthalene 1,2-dicarboxylic acid or its An anhydride, anthraquinone 2,3-dicarboxylic acid or its anhydride, 2,3-anthracene carboxylic acid or its anhydride, etc. are mentioned. These compounds may have a substituent on any carbon atom of the aromatic ring.
  • substituents examples include chloro group, bromo group, methyl group, ethyl group, i-propyl group, hydroxyl group, methoxy group, ethoxy group, phenoxy group, methylthio group, phenylthio group, cyano group, nitro group, amino group, Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group, and a naphthyl group.
  • examples of the polyhydric alcohol component include alkylene diols having 2 to 6 carbon atoms.
  • diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, etc. Can be illustrated.
  • a polyester resin compound having a glycerol skeleton represented by the general formula (1) a polyester resin (orthophthalic anhydride as an aromatic polycarboxylic acid and ethylene glycol as a polyhydric alcohol ( GLY (oPAEG) m, where m represents the total number of groups in parentheses contained in the polyester resin of the present invention), naphthalene 2,3-dicarboxylic acid as an aromatic polycarboxylic acid, and polyhydric alcohol as Examples thereof include polyester resins using ethylene glycol (abbreviated as GLY (oNAEG) m, where m is as defined above).
  • GLY (oNAEG) m ethylene glycol
  • P represents a polyester resin compound having a glycerol skeleton.
  • the present invention is characterized by having a glycerol residue of 5% by mass or more in the polyester resin composition in order to express a high barrier property.
  • the mass excluding the mass of the diluent solvent, the mass of the volatile component contained in the curing agent and the inorganic component from the mass part of the gas barrier polyester resin composition is defined as the mass of the total solid content of the adhesive resin.
  • the aromatic polyvalent carboxylic acid in which the acyl group as the raw material of the polyester component is substituted in the ortho position or its anhydride has an asymmetric structure. Therefore, it is presumed that the rotation of the molecular chain of the resulting polyester is suppressed, and thus it is presumed that the gas barrier property is excellent.
  • the crystallinity that inhibits the adhesion to the substrate is low, so that it exhibits high solubility in solvents such as ethyl acetate and methyl ethyl ketone and is excellent in gas barrier properties.
  • polyhydric alcohol In the polyester resin compound used in the present invention, a polyhydric alcohol component other than an alkylene diol having 2 to 6 carbon atoms may be copolymerized as a polyhydric alcohol as long as the effects of the present invention are not impaired.
  • aliphatic polyhydric alcohols such as glycerol, erythritol, pentaerythritol, dipentaerythritol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, tetraethylene glycol, tripropylene glycol, Cycloaliphatic polyhydric alcohols such as cyclohexanedimethanol and tricyclodecanedimethanol, aromatic polyhydric phenols such as hydroquinone, resorcinol, catechol, naphthalene diol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, or the like Examples thereof include ethylene oxide elongated products and hydrogenated alicyclic groups.
  • polyester resin of the present invention essentially comprises an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted in the ortho position or an anhydride thereof as the polyvalent carboxylic acid component, but within the range not impairing the effects of the present invention, A polyvalent carboxylic acid component may be copolymerized.
  • aliphatic polyvalent carboxylic acid succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, etc.
  • unsaturated bond-containing polyvalent carboxylic acid maleic anhydride, maleic acid, Fumaric acid, etc., 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid etc.
  • succinic acid 1,3-cyclopentanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalic acid and diphenic acid are preferred.
  • glycerol used as a raw material, an aromatic polycarboxylic acid in which the carboxylic acid is substituted in the ortho position, or an anhydride thereof, and a polyhydric alcohol component are collectively charged,
  • the temperature is raised while stirring and mixing to cause a dehydration condensation reaction.
  • 1 mgKOH / g or less by the acid value measuring method described in JIS-K0070, and the hydroxyl value ZmgKOH / g obtained by the hydroxyl value measuring method described in JIS-K0070 is the numerical value on the right side of the following formula (b) (mgKOH /
  • the desired polyester resin can be obtained by continuing the reaction until it is within ⁇ 5% of g).
  • Mn represents a set number average molecular weight of a predetermined trifunctional polyester resin.
  • each raw material may be reacted in multiple stages. Moreover, you may prepare so that a hydroxyl value may enter into less than +/- 5%, adding the diol component which volatilized at reaction temperature.
  • Catalysts used in the reaction include acids such as tin-based catalysts such as monobutyltin oxide and dibutyltin oxide, titanium-based catalysts such as tetra-isopropyl-titanate and tetra-butyl-titanate, and zirconia-based catalysts such as tetra-butyl-zirconate.
  • acids such as tin-based catalysts such as monobutyltin oxide and dibutyltin oxide
  • titanium-based catalysts such as tetra-isopropyl-titanate and tetra-butyl-titanate
  • zirconia-based catalysts such as tetra-butyl-zirconate.
  • a catalyst is mentioned. It is preferable to use a combination of the titanium-based catalyst such as tetra-isopropyl-titanate or tetra-butyl-titanate, which has high activity for este
  • the amount of the catalyst is 1 to 1000 ppm, more preferably 10 to 100 ppm, based on the total mass of the reaction raw material used. If it is less than 1 ppm, it is difficult to obtain an effect as a catalyst, and if it exceeds 1000 ppm, the subsequent urethanization reaction tends to be inhibited. However, a catalyst is not essential if the reaction can proceed without catalyst.
  • the number average molecular weight of the polyester resin compound having a glycerol skeleton is preferably 450 to 5,000, and more preferably 450 to 2,000.
  • the polyisocyanate described below is most preferable, can give an appropriate reaction time, and is particularly excellent in solubility and oxygen barrier ability.
  • the urethane group concentration at this time is preferably in the range of 1.0 to 6.0 mmol / g.
  • the polyester resin compound having a glycerol skeleton used in the present invention preferably has a glass transition temperature in the range of ⁇ 30 ° C. to 70 ° C. More preferably, it is ⁇ 20 ° C. to 50 ° C.
  • the glass transition temperature is too higher than 70 ° C., the flexibility of the polyester resin near room temperature tends to be low, and the adhesion to the substrate tends to be poor.
  • the temperature is too low at about -30 ° C., there is a risk that sufficient gas barrier properties may not be obtained due to the intense molecular motion of the polyester resin near room temperature.
  • the resin composition according to (II) is obtained by reacting a polyvalent carboxylic acid and a polyhydric alcohol, and is a component of polyvalent carboxylic acid and polyhydric alcohol.
  • a component having a polymerizable carbon-carbon double bond a polymerizable carbon double bond is introduced into the molecule of the polyester polyol (A).
  • the polyester polyol (A) of the present invention is a polyvalent carboxylic acid component, specifically, an aliphatic polyvalent carboxylic acid such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, etc. 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, etc.
  • aromatic polycarboxylic acids and orthophthalic acid, terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic as aromatic polycarboxylic acids Acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid And anhydrides or ester-forming derivatives of these dicarboxylic acids; p-hydroxybenzoic acid, p- (2 Polyhydroxy acids such as -hydroxyethoxy) benzoic acid and ester-forming derivatives of these dihydroxycarboxylic acids can be used alone or in a mixture of two or more.
  • succinic acid, 1,3-cyclopentanedicarboxylic acid, orthophthalic acid, acid anhydride of orthophthalic acid, and isophthalic acid are preferable, and orthophthalic acid and its acid anhydride are more preferable.
  • the polyhydric alcohol used in the present invention includes, as the aliphatic diol, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, cyclohexanedimethanol, 1,5-pentanediol, 3-methyl-1 , 5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, aromatic polyphenol , Hydroquinone, resorcinol, catechol, naphthalene diol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, ethylene oxide De extension product, there can be mentioned hydrogenated alicyclic.
  • ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexane Methanol is preferable, and ethylene glucol is more preferable.
  • polyhydric alcohol with polymerizable carbon-carbon double bond examples include 2-butene-1,4-diol.
  • a polymerizable double bond is introduced into the polyester polyol (A) by using a polyvalent carboxylic acid having a polymerizable carbon-carbon double bond and a polyhydric alcohol, but has a hydroxyl group. It may be a reaction between a polyester polyol and a carboxylic acid having a polymerizable double bond, or a carboxylic acid anhydride.
  • a carboxylic acid having a polymerizable double bond such as maleic acid, maleic anhydride or fumaric acid, an unsaturated fatty acid such as oleic acid or sorbic acid, or the like can be used.
  • the polyester polyol in this case is preferably a polyester polyol having two or more hydroxyl groups, but it is more preferable to have three or more hydroxyl groups in consideration of molecular elongation due to crosslinking with polyisocyanate.
  • the polyester polyol has 1 or 2 hydroxyl groups
  • the polyester polyol (A) obtained by reacting with a carboxylic acid having a polymerizable double bond has 0 or 1 hydroxyl group and reacts with the polyisocyanate (B). It becomes difficult to cause molecular elongation due to, and it becomes difficult to obtain properties such as laminate strength, seal strength, and heat resistance as an adhesive.
  • polyester polyols (A) having a number average molecular weight of 450 to 5,000 are particularly preferable because a crosslinking density with an excellent balance between adhesive ability and oxygen barrier ability can be obtained.
  • the polyisocyanate described below is most preferable, can give an appropriate reaction time, and is particularly excellent in adhesive strength and oxygen barrier ability.
  • the molecular weight is less than 450, the cohesive force of the adhesive at the time of coating becomes too small, causing the problem that the film shifts during lamination or the bonded film rises.
  • the molecular weight is higher than 5000, The problem is that the viscosity at the time of construction is too high to be applied, and that the lamination is impossible due to low adhesiveness.
  • the number average molecular weight was obtained by calculation from the obtained hydroxyl value and the number of functional groups of the designed hydroxyl group.
  • the polyester polyol (A) used in the present invention preferably has a glass transition temperature in the range of ⁇ 30 ° C. to 80 ° C. More preferably, it is 0 ° C to 60 ° C. More preferably, it is 25 ° C to 60 ° C.
  • the glass transition temperature is too higher than 80 ° C.
  • the flexibility of the polyester polyol near room temperature is lowered, and thus the adhesiveness to the substrate may be deteriorated due to poor adhesion to the substrate.
  • the temperature is lower than ⁇ 30 ° C., there is a possibility that sufficient oxygen barrier properties may not be obtained due to intense molecular motion of the polyester polyol at around room temperature.
  • the polyester polyol (A) has a hydroxyl value of 20 to 250 mgKOH / g and an acid value of 0 to 100 mgKOH / g.
  • the hydroxyl value can be measured by the hydroxyl value measuring method described in JIS-K0070, and the acid value can be measured by the acid value measuring method described in JIS-K0070.
  • the hydroxyl value is smaller than 20 mgKOH / g, the molecular weight is too large, the viscosity becomes high, and good coating suitability cannot be obtained.
  • the hydroxyl value exceeds 250 mgKOH / g the molecular weight becomes too small, so that the crosslinking density of the cured coating film becomes too high, and good adhesive strength cannot be obtained.
  • the monomer component having a polymerizable carbon-carbon double bond is 5 to 60 parts by mass with respect to 100 parts by mass of all monomer components constituting the polyester polyol (A). If it is lower than this range, the number of crosslinking points between the polymerizable double bonds will be reduced, and it will be difficult to obtain barrier properties. If it is higher, the number of crosslinking points will be increased, and the flexibility of the cured coating will be significantly reduced, resulting in a laminate strength. This is not preferable because it is difficult to be performed. For this reason, the amount of polyvalent carboxylic acid and polyhydric alcohol component used other than the polyvalent carboxylic acid and polyhydric alcohol component having a polymerizable carbon-carbon double bond must be kept below a certain level.
  • polyester polyol (A) of the present invention examples include a drying oil or a semi-drying oil.
  • the drying oil or semi-drying oil examples include publicly known and commonly used drying oils having a carbon double bond and semi-drying oils.
  • a polyol having a number average molecular weight of 1000 to 15000 by urethane elongation by reaction of the polyester polyol (A) with a diisocyanate compound may be used as an adhesive. Since the polyol has a certain molecular weight component and a urethane bond, the polyol has an excellent oxygen barrier property, an excellent initial cohesive force, and is further excellent as an adhesive used during lamination.
  • the polyester polyol (A) according to (III) includes at least one carboxy group obtained by reacting a polyester polyol (I) having three or more hydroxyl groups with a carboxylic acid anhydride or a polyvalent carboxylic acid. It has two or more hydroxyl groups.
  • the polyester polyol (I) having three or more hydroxyl groups can be obtained by making a part of the polyvalent carboxylic acid or polyhydric alcohol trivalent or higher.
  • the polyvalent carboxylic acid component and the polyhydric alcohol component of the polyester polyol (A) are preferably a polyvalent carboxylic acid component containing at least one or more of orthophthalic acid and its anhydride, ethylene glycol, propylene glycol, butylene glycol, neo Carboxylic anhydride or polycarboxylic acid is reacted with polyester polyol (I) having three or more hydroxyl groups comprising at least one polyhydric alcohol component selected from the group consisting of pentyl glycol and cyclohexanedimethanol. And having at least one carboxy group and two or more hydroxyl groups.
  • Orthophthalic acid and its anhydride have an asymmetric structure in the skeleton. Therefore, it is presumed that the rotation of the molecular chain of the resulting polyester is suppressed, and it is presumed that this provides excellent oxygen barrier properties. Further, it is presumed that due to this asymmetric structure, it exhibits non-crystallinity, imparts sufficient substrate adhesion, and is excellent in adhesion and oxygen barrier properties. Furthermore, when used as a dry laminate adhesive, the solvent solubility, which is essential, is also high, so that it has excellent handling characteristics.
  • polyester polyol (I) of the present invention may be copolymerized with other polyvalent carboxylic acid components as long as the effects of the present invention are not impaired.
  • the aliphatic polyvalent carboxylic acid succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, etc.
  • the unsaturated bond-containing polyvalent carboxylic acid maleic anhydride, maleic acid, Fumaric acid, etc., 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid etc.
  • Trivalent or higher polyvalent carboxylic acids include trimellitic acid and its acid anhydride, pyromellitic acid and its acid anhydride, etc. In order to prevent gelation during synthesis, a trivalent or higher polyvalent carboxylic acid may be used. A trivalent carboxylic acid is preferred as the divalent carboxylic acid.
  • the polyhydric alcohol used in the present invention preferably contains at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol.
  • ethylene glycol is most preferably used because it is presumed that the smaller the number of carbon atoms between oxygen atoms, the less the molecular chain becomes excessively flexible and the less oxygen permeates.
  • polyhydric alcohol and other ingredients are preferably used, but other polyhydric alcohol components may be copolymerized within a range not impairing the effects of the present invention.
  • aliphatic diols include 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, Triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, aromatic polyphenols, hydroquinone, resorcinol, catechol, naphthalene diol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, and ethylene Examples thereof include an oxide extension product and a hydrogenated alicyclic group.
  • trihydric or higher polyhydric alcohol examples include glycerin, trimethylolpropane, trimethylolethane, tris (2-hydroxyethyl) isocyanurate, 1,2,4-butanetriol, pentaerythritol, dipentaerythritol and the like.
  • the trihydric or higher polyhydric alcohol is preferably a trihydric alcohol.
  • polyester polyol (I) can be obtained by reacting the polyester polyol (I) with a polyvalent carboxylic acid or an acid anhydride thereof with a hydroxyl group of the polyester polyol (I).
  • the ratio between the polyester polyol (I) and the polyvalent carboxylic acid is that 1 or more hydroxyl groups of the polyester polyol (A) after the reaction are required, so that the polyvalent carboxylic acid is 1/3 of the hydroxyl groups of the polyester polyol (I).
  • carboxylic acid anhydride or polyhydric carboxylic acid used here when the gelatinization at the time of reaction with polyhydric carboxylic acid and polyester polyol (I) is considered, it is a bivalent or trivalent carboxylic acid anhydride. Is preferably used.
  • Divalent carboxylic acid anhydrides include succinic anhydride, maleic anhydride, 1,2-cyclohexanedicarboxylic anhydride, 4-cyclohexene-1,2-dicarboxylic anhydride, 5-norbornene-2,3-dicarboxylic acid Anhydride, phthalic anhydride, 2,3-naphthalenedicarboxylic acid anhydride, and the like can be used, and trimellitic acid anhydride can be used as the trivalent carboxylic acid anhydride.
  • the number average molecular weight of the polyester polyol (A) is particularly preferably from 450 to 5,000 because a crosslinking density with an excellent balance between adhesion ability and oxygen barrier ability can be obtained.
  • the polyisocyanate described below is most preferable, can give an appropriate reaction time, and is particularly excellent in adhesive strength and oxygen barrier ability.
  • the molecular weight is less than 450, the cohesive force of the adhesive at the time of coating becomes too small, causing the problem that the film shifts during lamination or the bonded film rises.
  • the molecular weight is higher than 5000, The problem is that the viscosity at the time of construction is too high to be applied, and that the lamination is impossible due to low adhesiveness.
  • the number average molecular weight was obtained by calculation from the obtained hydroxyl value and the number of functional groups of the designed hydroxyl group.
  • the polyester polyol (A) used in the present invention preferably has a glass transition temperature in the range of ⁇ 30 ° C. to 80 ° C. More preferably, it is 0 ° C to 60 ° C. More preferably, it is 25 ° C to 60 ° C.
  • the glass transition temperature is higher than 80 ° C.
  • the flexibility of the polyester polyol near room temperature is lowered, and thus the adhesiveness to the substrate may be deteriorated due to poor adhesion to the substrate.
  • the temperature is lower than ⁇ 30 ° C., there is a possibility that sufficient oxygen barrier properties may not be obtained due to the intense molecular motion of the polyester polyol near room temperature.
  • the polyester polyol (A) has a hydroxyl value of 20 to 250 and an acid value of 20 to 200.
  • the hydroxyl value can be measured by the hydroxyl value measuring method described in JIS-K0070, and the acid value can be measured by the acid value measuring method described in JIS-K0070.
  • the hydroxyl value is smaller than 20 mgKOH / g, the molecular weight is too large, the viscosity becomes high, and good coating suitability cannot be obtained.
  • the hydroxyl value exceeds 250 mgKOH / g, the molecular weight becomes too small, so that the crosslinking density of the cured coating film becomes too high, and good adhesive strength cannot be obtained.
  • a polyol having a number average molecular weight of 1000 to 15000 by urethane elongation by reaction of the polyester polyol (A) with a diisocyanate compound may be used as an adhesive. Since the polyol has a certain molecular weight component and a urethane bond, the polyol has an excellent oxygen barrier property, an excellent initial cohesive force, and is further excellent as an adhesive used during lamination.
  • the curing agent used in the present invention is not particularly limited as long as it is a curing agent capable of reacting with the hydroxyl group of the polyester resin, and known curing agents such as polyisocyanates and epoxy compounds can be used. Among these, it is preferable to use polyisocyanate from the viewpoints of adhesiveness and retort resistance.
  • Polyisocyanate compounds include aromatic and aliphatic diisocyanates and trivalent or higher polyisocyanates, which may be either low molecular compounds or high molecular compounds.
  • the isocyanate compound may be a blocked isocyanate.
  • the isocyanate blocking agent for example, phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, chlorophenol, acetoxime, methyl ethyl ketoxime, cyclohexanone oxime oximes, methanol, Alcohols such as ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; tertiary alcohols such as t-butanol and t-pentanol; Examples include lactams such as caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam, ⁇ -propylolactam, and other aromatic amines, imides, acetylacetate.
  • the blocked isocyanate can be obtained by subjecting the above isocyanate compound and an isocyanate blocking agent to an addition reaction by a conventionally known appropriate method.
  • Epoxy compounds include bisphenol A diglycidyl ether and oligomers thereof, hydrogenated bisphenol A diglycidyl ether and oligomers thereof, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, and p-oxybenzoic acid diglyceride.
  • Glycidyl ester tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, succinic acid diglycidyl ester, adipic acid diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1 , 4-Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether and polyalkylene glycol Cole diglycidyl ethers, trimellitic acid triglycidyl ester, triglycidyl isocyanurate, 1,4-diglycidyloxybenzene, diglycidyl propylene urea, glycerol triglycidyl ether, trimethylolethane triglycidyl ether, trimethylolpropane triglycidyl
  • a general-purpose known epoxy curing accelerator may be appropriately added for the purpose of accelerating curing as long as the gas barrier property which is the object of the present invention is not impaired.
  • the curing agent is preferably the polyisocyanate, and when the polyisocyanate includes the metaxylene skeleton, the gas barrier property can be improved by not only hydrogen bonding of the urethane group but also ⁇ - ⁇ stacking of aromatic rings. It is preferable because it can be done.
  • Examples of the polyisocyanate containing a metaxylene skeleton include xylene diisocyanate trimer, burette synthesized by reaction with amine, and adduct formed by reaction with alcohol.
  • the adduct body is more preferable because the solubility of the polyisocyanate in the organic solvent used for the dry laminate adhesive is easily obtained.
  • an adduct obtained by reacting with an alcohol appropriately selected from the above low molecular active hydrogen compounds can be used. Among them, addition of ethylene oxide of trimethylolpropane, glycerol, triethanolamine, metaxylenediamine, etc. Adduct bodies with objects are particularly preferred.
  • the ratio of the polyester resin compound having a glycerol skeleton and the curing agent is that the ratio of the polyester resin compound having a glycerol skeleton and the curing agent is a hydroxyl group of the polyester resin compound having a glycerol skeleton and curing. It is preferable to blend such that the reaction component of the agent is 1 / 0.5 to 1/5 (equivalent ratio), more preferably 1/1 to 1/3. If the curing agent component is excessive beyond this range, the excess curing agent component may be left out and bleed out from the adhesive layer after bonding. On the other hand, if the curing agent component is insufficient, the adhesive strength is insufficient. There is a fear.
  • the above-mentioned curing agent can be used in combination with a known curing agent or accelerator selected according to the type.
  • the adhesion promoter include silane coupling agents such as hydrolyzable alkoxysilane compounds, titanate coupling agents, aluminum coupling agents, and epoxy resins. Silane coupling agents and titanate coupling agents are also preferred in terms of improving the adhesive to various film materials.
  • the polyester polyol (A) and the curing agent are such that the ratio of the polyester polyol (A) and the curing agent is a hydroxyl group of the polyester polyol (A) and a reaction component of the curing agent. It is preferably blended so as to be 1 / 0.5 to 1/10 (equivalent ratio), more preferably 1/1 to 1/5. If the curing agent component is excessive beyond this range, the excess curing agent component may be left out and bleed out from the adhesive layer after bonding. On the other hand, if the curing agent component is insufficient, the adhesive strength may be insufficient. There is.
  • a known polymerization catalyst can be used as a catalyst for promoting polymerization of a polymerizable double bond.
  • the polymerization catalyst include transition metal complexes. Although a transition metal complex will not be specifically limited if it is a compound provided with the capability to oxidatively polymerize a polymerizable double bond, A various metal or its complex can be used.
  • metals such as cobalt, manganese, lead, calcium, cerium, zirconium, zinc, iron, copper, octyl acid, naphthenic acid, neodecanoic acid, stearic acid, resin acid, tall oil fatty acid, tung oil fatty acid, linseed oil fatty acid, A salt with soybean oil fatty acid or the like can be used.
  • the transition metal complex is preferably 0 to 10 parts by mass, more preferably 0 to 3 parts by mass with respect to the polyester polyol (A).
  • the above-mentioned curing agent can be used in combination with a known curing agent or accelerator selected according to the type.
  • the adhesion promoter include silane coupling agents such as hydrolyzable alkoxysilane compounds, titanate coupling agents, aluminum coupling agents, and epoxy resins. Silane coupling agents and titanate coupling agents are also preferred in terms of improving the adhesive to various film materials.
  • the polyester polyol (A) and the curing agent are such that the ratio of the polyester polyol (A) and the curing agent is a reaction component of the hydroxyl group of the polyester polyol (A) and the curing agent. Is preferably 1 / 0.5 to 1/10 (equivalent ratio), more preferably 1/1 to 1/5. If the curing agent component is excessive beyond this range, the excess curing agent component may be left out and bleed out from the adhesive layer after bonding. On the other hand, if the curing agent component is insufficient, the adhesive strength is insufficient. There is a fear.
  • the above-mentioned curing agent can be used in combination with a known curing agent or accelerator selected according to the type.
  • the adhesion promoter include silane coupling agents such as hydrolyzable alkoxysilane compounds, titanate coupling agents, aluminum coupling agents, and epoxy resins. Silane coupling agents and titanate coupling agents are also preferred in terms of improving the adhesive to various film materials.
  • the polyester resin composition of the present invention may contain various additives as long as the gas barrier property is not impaired.
  • additives include inorganic fillers such as silica, alumina, mica, talc, aluminum flakes, and glass flakes, layered inorganic compounds, stabilizers (antioxidants, heat stabilizers, ultraviolet absorbers, etc.), plasticizers, Examples thereof include an antistatic agent, a lubricant, an antiblocking agent, a colorant, a filler, and a crystal nucleating agent.
  • swellable inorganic layered compounds examples include hydrous silicates (phyllosilicate minerals, etc.), kaolinite group clay minerals (halloysite, kaolinite, enderite, dickite, nacrite, etc.), antigolite group clay minerals (anti Golite, chrysotile, etc.), smectite group clay minerals (montmorillonite, beidellite, nontronite, saponite, hectorite, soconite, stevensite, etc.), vermiculite group clay minerals (vermiculite etc.), mica or mica group clay minerals (white mica, Mica such as phlogopite, margarite, tetrasilic mica, teniolite, etc.). These minerals may be natural clay minerals or synthetic clay minerals.
  • the swellable inorganic layered compounds are used alone or in combination of two or more.
  • known acid anhydrides can be used in combination as a method for improving the acid resistance of the cured coating film.
  • the acid anhydride include phthalic acid anhydride, succinic acid anhydride, het acid anhydride, hymic acid anhydride, maleic acid anhydride, tetrahydrophthalic acid anhydride, hexahydraphthalic acid anhydride, tetraprom phthalic acid Anhydride, tetrachlorophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenotetracarboxylic anhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 5- (2 , 5-oxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, styrene maleic anhydride copolymer and the like.
  • a compound having an oxygen scavenging function may be added.
  • the compound having an oxygen scavenging function include low molecular organic compounds that react with oxygen such as hindered phenols, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, pyrogallol, cobalt, manganese, nickel, iron, Examples include transition metal compounds such as copper.
  • a tackifier such as a xylene resin, a terpene resin, a phenol resin, or a rosin resin may be added as necessary.
  • a tackifier such as a xylene resin, a terpene resin, a phenol resin, or a rosin resin may be added as necessary.
  • the range of 0.01 to 5 parts by mass is preferable with respect to 100 parts by mass of the total amount of the epoxy resin and the epoxy resin curing agent.
  • an active energy ray can also be used as a method of reacting a polymerizable double bond.
  • a known technique can be used as the active energy ray, and it can be cured by irradiation with ionizing radiation such as electron beam, ultraviolet ray, or ⁇ ray.
  • ionizing radiation such as electron beam, ultraviolet ray, or ⁇ ray.
  • a known ultraviolet irradiation device equipped with a high pressure mercury lamp, an excimer lamp, a metal halide lamp or the like can be used.
  • Radical-generating photo (polymerization) initiators include hydrogen abstraction types such as benzyl, benzophenone, Michler's ketone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, diethoxyacetophenone, benzylmethyl ketal, hydroxy
  • photocleavage types such as cyclohexyl phenyl ketone and 2-hydroxy-2-methylphenyl ketone. These can be used alone or in combination.
  • the glass transition temperature of the cured coating film of the polyester polyol (A) and the polyisocyanate (B) is preferably in the range of ⁇ 30 ° C. to 80 ° C. More preferably, it is 0 ° C to 60 ° C. More preferably, it is 25 ° C to 60 ° C.
  • the glass transition temperature is too higher than 80 ° C., the flexibility of the polyester polyol near the room temperature is lowered, which may reduce the adhesion to the substrate.
  • the temperature is lower than ⁇ 30 ° C., there is a possibility that sufficient oxygen barrier properties may not be obtained due to intense molecular motion of the polyester polyol at around room temperature.
  • the gas barrier multilayer film obtained by curing the polyester resin composition of the present invention is obtained by applying and curing a polyester resin composition coating liquid on a film serving as a base material.
  • the coating liquid may be either a solvent type or a solventless type.
  • the solvent is used as a reaction medium during the production of the polyester resin and the curing agent, and is further used as a diluent during coating.
  • solvents examples include esters such as ethyl acetate, butyl acetate and cellosolve acetate, ketones such as acetone, methyl ethyl ketone, isobutyl ketone and cyclohexanone, ethers such as tetrahydrofuran and dioxane, and aromatic hydrocarbons such as toluene and xylene. , Halogenated hydrocarbons such as methylene chloride and ethylene chloride, dimethyl sulfoxide, dimethyl sulfoamide and the like.
  • polyester resin composition of the present invention is excellent in solubility in ethyl acetate or methyl ethyl ketone solvent, it is preferable to use ethyl acetate or methyl ethyl ketone.
  • the method for applying the polyester resin of the present invention is not particularly limited, and may be performed by a known method.
  • a solvent type whose viscosity can be adjusted, it is often applied by a gravure roll coating method or the like.
  • it when it is a solventless type and has a high viscosity at room temperature and is not suitable for gravure roll coating, it can be coated with a roll coater while heating.
  • the coating is preferably performed in a state where the gas barrier polyester resin composition of the present invention is heated from room temperature to about 120 ° C. so that the viscosity is about 500 to 2500 mPa ⁇ s.
  • the polyester resin composition of the present invention can be used as a gas barrier polyester resin composition for various applications that require gas barrier properties against polymers, paper, metals, etc. as a gas barrier polyester resin composition.
  • a gas barrier polyester resin composition for film lamination will be described as one specific application.
  • the gas barrier multilayer film obtained by curing the polyester resin composition of the present invention can be used as a gas barrier multilayer film for film lamination.
  • the film for lamination used in the present invention is not particularly limited, and a thermoplastic resin film can be appropriately selected according to a desired application.
  • a thermoplastic resin film can be appropriately selected according to a desired application.
  • PET film polystyrene film, polyamide film, polyacrylonitrile film
  • polyethylene film LLDPE: low density polyethylene film
  • HDPE high density polyethylene film
  • polypropylene film CPP: unstretched polypropylene film
  • OPP examples thereof include polyolefin films such as biaxially stretched polypropylene film), polyvinyl alcohol films, and ethylene-vinyl alcohol copolymer films. These may be subjected to stretching treatment.
  • the stretching treatment method it is common to perform simultaneous biaxial stretching or sequential biaxial stretching after the resin is melt-extruded by extrusion film forming method or the like to form a sheet. Further, in the case of sequential biaxial stretching, it is common to first perform longitudinal stretching and then perform lateral stretching. Specifically, a method of combining longitudinal stretching using a speed difference between rolls and transverse stretching using a tenter is often used.
  • the surface of the film may be subjected to various surface treatments such as flame treatment and corona discharge treatment as necessary so that an adhesive layer free from defects such as film breakage and repellency is formed.
  • a gas barrier multilayer film can be obtained by laminating another thermoplastic resin film and laminating them together by lamination using a known dry laminate adhesive.
  • known lamination such as dry lamination, non-solvent lamination, extrusion lamination, etc. can be used.
  • the dry lamination method is a dry lamination (dry lamination method) in which the gas barrier polyester resin composition of the present invention is applied to one of the base films by a gravure roll method, and the other base film is stacked. Paste together.
  • the temperature of the laminate roll is preferably about room temperature to 60 ° C.
  • Non-solvent lamination is applied immediately after applying the gas barrier polyester resin composition of the present invention, which has been heated to room temperature to about 120 ° C., on a base film with a roll such as a roll coater heated to room temperature to about 120 ° C.
  • a laminate film can be obtained by pasting a new film material on the surface.
  • the laminating pressure is preferably about 10 to 300 kg / cm 2 .
  • an organic solvent solution of the gas barrier polyester resin composition of the present invention is applied to a base film as an adhesion aid (anchor coating agent) with a roll such as a gravure roll, and the solvent is used at room temperature to 140 ° C.
  • a laminated film can be obtained by laminating the polymer material melted by the extruder.
  • the polymer material to be melted is preferably a polyolefin resin such as a low density polyethylene resin, a linear low density polyethylene resin, or an ethylene-vinyl acetate copolymer resin.
  • the gas barrier multilayer film of the present invention is preferably subjected to aging after production. If polyisocyanate is used as a curing agent, the aging condition is from room temperature to 80 ° C. for 12 to 240 hours, during which the polyester resin and the curing agent react to produce adhesive strength.
  • a film in which a vapor deposition layer of a metal such as aluminum or a metal oxide such as silica or alumina may be laminated as necessary.
  • the gas barrier polyester resin composition of the present invention can be preferably used as a gas barrier polyester resin composition for a laminated film formed by bonding a plurality of the same or different resin films.
  • the resin film may be appropriately selected depending on the purpose.
  • the outermost layer is a thermoplastic resin film selected from PET, OPP, and polyamide, and the innermost layer is unstretched polypropylene.
  • CPP a composite film consisting of two layers using a thermoplastic resin film selected from a low density polyethylene film (hereinafter abbreviated as LLDPE), or an outermost layer selected from, for example, PET, polyamide and OPP
  • LLDPE low density polyethylene film
  • a three-layer composite using a thermoplastic resin film, a thermoplastic resin film that forms an intermediate layer selected from OPP, PET, and polyamide, and a thermoplastic resin film that forms an innermost layer selected from CPP and LLDPE Heat to form an outermost layer selected from a film, for example, OPP, PET, polyamide Selected from a plastic film, a thermoplastic film forming a first intermediate layer selected from PET and nylon, and a thermoplastic film forming a second intermediate layer selected from PET and polyamide, LLDPE, and CPP
  • a composite film composed of four layers using a thermoplastic resin film forming the innermost layer can be preferably used as a food packaging material as an oxygen and water vapor barrier film.
  • a laminate film formed from the gas barrier polyester resin composition includes a PVDC coat layer, a polyvinyl alcohol (PVA) coat layer, Without using commonly used gas barrier materials such as ethylene-vinyl alcohol copolymer (EVOH) film layer, metaxylylene adipamide film layer, inorganic vapor-deposited film layer deposited with alumina, silica, etc.
  • gas barrier materials such as ethylene-vinyl alcohol copolymer (EVOH) film layer, metaxylylene adipamide film layer, inorganic vapor-deposited film layer deposited with alumina, silica, etc.
  • EVOH ethylene-vinyl alcohol copolymer
  • metaxylylene adipamide film layer metaxylylene adipamide film layer
  • a high level of gas barrier properties is manifested.
  • the gas barrier property of the film obtained can also be remarkably improved by using together as a gas
  • the resin composition according to (II) and (III) of the present invention can be used as a gas barrier adhesive.
  • the adhesive of the present invention may be either a solvent type or a solventless type.
  • the solvent may be used as a reaction medium during the production of the polyester polyol and the curing agent. Furthermore, it is used as a diluent during painting.
  • the solvent that can be used include esters such as ethyl acetate, butyl acetate, and cellosolve acetate, ketones such as acetone, methyl ethyl ketone, isobutyl ketone, and cyclohexanone, ethers such as tetrahydrofuran and dioxane, and aromatic hydrocarbons such as toluene and xylene.
  • Halogenated hydrocarbons such as methylene chloride and ethylene chloride, dimethyl sulfoxide, dimethyl sulfoamide and the like. Of these, it is usually preferable to use ethyl acetate or methyl ethyl ketone.
  • Sex when used without a solvent, it is not always necessary to be soluble in an organic solvent, but considering the washing of a reaction kettle during synthesis and the washing of a coating machine during lamination, Sex is necessary.
  • the adhesive of the present invention can be used by being applied to a substrate film or the like.
  • the coating method is not particularly limited and may be performed by a known method.
  • a solvent type whose viscosity can be adjusted
  • it is often applied by a gravure roll coating method.
  • it when it is a solventless type and has a high viscosity at room temperature and is not suitable for gravure roll coating, it can be coated with a roll coater while heating.
  • the adhesive of the present invention can be used as an oxygen barrier adhesive for various applications that require oxygen barrier properties against polymers, paper, metals, and the like.
  • an adhesive for film lamination will be described as one of specific applications.
  • the adhesive of the present invention can be used as an adhesive for film lamination. Since the laminated film is excellent in oxygen barrier properties, it can be used as an oxygen barrier laminated film.
  • the film for lamination used in the present invention is not particularly limited, and a thermoplastic resin film can be appropriately selected according to a desired application.
  • a thermoplastic resin film can be appropriately selected according to a desired application.
  • PET film polystyrene film, polyamide film, polyacrylonitrile film
  • polyethylene film LLDPE: low density polyethylene film
  • HDPE high density polyethylene film
  • polypropylene film CPP: unstretched polypropylene film
  • OPP examples thereof include polyolefin films such as biaxially stretched polypropylene film), polyvinyl alcohol films, and ethylene-vinyl alcohol copolymer films. These may be subjected to stretching treatment.
  • the stretching treatment method it is common to perform simultaneous biaxial stretching or sequential biaxial stretching after the resin is melt-extruded by extrusion film forming method or the like to form a sheet. Further, in the case of sequential biaxial stretching, it is common to first perform longitudinal stretching and then perform lateral stretching. Specifically, a method of combining longitudinal stretching using a speed difference between rolls and transverse stretching using a tenter is often used.
  • a transparent vapor-deposited film having a high oxygen barrier property is used on both sides of the adhesive, polymerization of the polymerizable double bond of the polyester polyol (A) as an adhesive component is inhibited and good barrier properties are not exhibited.
  • the oxygen barrier property of the oxygen barrier laminate film is preferably such that the oxygen permeability of at least one laminate film is 0.1 cc / m 2 ⁇ day ⁇ atm or more.
  • the surface of the film may be subjected to various surface treatments such as flame treatment and corona discharge treatment as necessary so that an adhesive layer free from defects such as film breakage and repellency is formed.
  • the other thermoplastic resin film is overlaid and bonded by lamination to obtain the oxygen barrier laminate film of the present invention.
  • lamination method known lamination such as dry lamination, non-solvent lamination, extrusion lamination, etc. can be used.
  • the adhesive of the present invention is applied to one of the base films by the gravure roll method, and the other base film is stacked and bonded by dry lamination (dry lamination method).
  • the temperature of the laminate roll is preferably about room temperature to 60 ° C.
  • non-solvent lamination is applied to the surface immediately after applying the adhesive of the present invention, which has been heated to room temperature to about 120 ° C., with a roll such as a roll coater heated to room temperature to about 120 ° C.
  • a laminate film can be obtained by laminating various film materials.
  • the laminating pressure is preferably about 10 to 300 kg / cm 2 .
  • the organic solvent solution of the adhesive of the present invention is applied to the base film as an adhesion aid (anchor coating agent) by a roll such as a gravure roll, and the solvent is dried and cured at room temperature to 140 ° C.
  • a laminate film can be obtained by laminating the polymer material melted by the extruder.
  • the polymer material to be melted is preferably a polyolefin resin such as a low density polyethylene resin, a linear low density polyethylene resin, or an ethylene-vinyl acetate copolymer resin.
  • the oxygen barrier laminate film of the present invention is preferably subjected to aging after production. If polyisocyanate is used as a curing agent, the aging condition is from room temperature to 80 ° C. for 12 to 240 hours, during which adhesive strength is generated.
  • a barrier film containing a gas barrier layer such as a polymer or vinylidene chloride may be used in combination.
  • the adhesive of the present invention can be preferably used as an adhesive for a laminated film formed by bonding a plurality of the same or different resin films.
  • the resin film may be appropriately selected depending on the purpose.
  • the outermost layer is a thermoplastic resin film selected from PET, OPP, and polyamide, and the innermost layer is unstretched polypropylene.
  • CPP a composite film consisting of two layers using a thermoplastic resin film selected from a low density polyethylene film (hereinafter abbreviated as LLDPE), or an outermost layer selected from, for example, PET, polyamide and OPP
  • LLDPE low density polyethylene film
  • a three-layer composite using a thermoplastic resin film, a thermoplastic resin film that forms an intermediate layer selected from OPP, PET, and polyamide, and a thermoplastic resin film that forms an innermost layer selected from CPP and LLDPE Heat to form an outermost layer selected from a film, for example, OPP, PET, polyamide Selected from a plastic film, a thermoplastic film forming a first intermediate layer selected from PET and nylon, and a thermoplastic film forming a second intermediate layer selected from PET and polyamide, LLDPE, and CPP
  • a composite film composed of four layers using a thermoplastic resin film forming the innermost layer can be preferably used as a food packaging material as an oxygen and water vapor barrier film.
  • the laminate film formed by the adhesive is a PVDC coat layer, a polyvinyl alcohol (PVA) coat layer, an ethylene-vinyl alcohol copolymer. (EVOH)
  • PVDC coat layer a polyvinyl alcohol (PVA) coat layer
  • EVOH ethylene-vinyl alcohol copolymer.
  • a very high level of gas barrier properties is achieved without using commonly used gas barrier materials such as film layers, metaxylylene adipamide film layers, and inorganic vapor deposited film layers deposited with alumina, silica, etc. To do.
  • the gas barrier property of the obtained film can also be remarkably improved by using together as an adhesive agent which bonds these conventional gas barrier material and sealant material together.
  • polyester resin “GLY (oPAEG) 3” having a number average molecular weight of 668.60.
  • the mass% of glycerol contained in this polyester resin was 13.32%.
  • Production Example 6 Production Method of Polyester Polyol “TMP (oPAEG) 3” Composed of Trimethylolpropane, Orthophthalic Anhydride, and Ethylene Glycol, except that instead of glycerol 92.09 in Production Example 3, it was replaced with 134.17 parts of trimethylolpropane In the same manner as in Production Example 3, a number average molecular weight 710.68 polyester polyol “TMP (oPAEG) 3” was obtained. The mass% of glycerol contained in this polyester polyol was 0.0%.
  • Polyester polyol “TMP (oPAEG) 6" comprising trimethylolpropane, orthophthalic anhydride and ethylene glycol Production method Production Example 4 was replaced with 134.17 parts of trimethylolpropane instead of 92.09 parts of glycerol.
  • the polyester polyol “TMP (oPAEG) 6” having a number average molecular weight of 1287.18 was obtained in the same manner as in Production Example 4 except for the above.
  • the mass% of glycerol contained in this polyester polyol was 0.0%.
  • the non-volatile content of the curing agent a is 87.5% and NCO% 28.05%.
  • Examples 1 to 8 Comparative Examples 1 to 4
  • the polyester polyol obtained by the above production method is diluted with methyl ethyl ketone to obtain a resin solution having a non-volatile content of 50%, and further, curing agents a, b, c, d are blended as shown in Tables 1 to 3, and will be described later.
  • a polyester resin coating solution used in the coating method was obtained.
  • the gas barrier multilayer film that has been aged is used in an atmosphere of 23 ° C., 0% RH and 90% RH in accordance with JIS-K7126 (isobaric method) using an oxygen permeability measuring device OX-TRAN2 / 21MH manufactured by Mocon. It was measured.
  • the oxygen barrier multilayer films coated with the resin compositions of Examples 1 to 8 all had an oxygen permeability of 30 cc / m 2 ⁇ day ⁇ atm or less.
  • Comparative Examples 1 to 3 did not contain glycerol, the oxygen permeability remained at 35 to 45 cc / m 2 ⁇ day ⁇ atm. Further, in Comparative Example 4, when the phthalic acid of the polyester resin was changed to isophthalic acid, the solvent solubility was lost and the film could not be applied to the film.
  • the esterification reaction was terminated to obtain a polyester polyol having a number average molecular weight of about 600, a hydroxyl value of 182 mgKOH / g, and an acid value of 0.9 mgKOH / g.
  • the temperature was lowered to 120 ° C., and 421.8 parts of maleic anhydride was added thereto, and maintained at 120 ° C.
  • the esterification reaction is terminated to obtain a polyester polyol having a number average molecular weight of about 500, a hydroxyl value of 216 mgKOH / g, and an acid value of 96 mgKOH / g. It was.
  • Polyester polyol Production example of EGSucA In Production Example 13, 98.1 parts of maleic anhydride is 118.1 parts of succinic acid, 78.5 parts of ethylene glycol is 71.6 parts, and the internal temperature is 205 ° C. A polyester polyol having a number average molecular weight of about 1000, a hydroxyl value of 112.2 mgKOH / g, and an acid value of 0.4 mgKOH / g was obtained in the same manner as in Production Example 13 except that the temperature was 220 ° C.
  • polyester polyol (Example 9) to (Example 15) According to the examples in Table 4 to Table 6, polyester polyol, curing agent, catalyst and solvent were mixed to obtain an adhesive.
  • the coating method and the evaluation method were as follows.
  • the solvent-type adhesive is a corona of a PET film (“E-5102” manufactured by Toyobo Co., Ltd.) having a thickness of 12 ⁇ m so that the coating amount is 5.0 g / m 2 (solid content). It was applied to the treated surface, and the solvent was volatilized and dried with a dryer set at a temperature of 70 ° C., and the adhesive surface of the PET film on which the adhesive was applied, and a 70 ⁇ m thick CPP film (“ZK93KM, manufactured by Toray Industries, Inc.) ]) was laminated with the corona-treated surface to prepare a composite film having a layer structure of PET film / adhesive layer / CPP film. Next, this composite film was aged at 40 ° C. for 3 to 5 days to cure the adhesive, and the oxygen barrier laminate film of the present invention was obtained.
  • a PET film (“E-5102” manufactured by Toyobo Co., Ltd.) having a thickness of 12 ⁇ m so that the coating amount is 5.0 g
  • Coating method 2 The solventless adhesive is heated to about 100 ° C. and applied to a PET film so that the coating amount is 5.0 g / m 2 using a roll coater manufactured by Polytype Co., Ltd.
  • a composite film having a layer structure of PET film / adhesive layer / CPP film was prepared by laminating with the film. Subsequently, this composite film was subjected to aging at 40 ° C. for 3 days to cure the adhesive, thereby obtaining the oxygen barrier laminate film of the present invention.
  • Adhesive strength The oxygen barrier laminate film after aging was cut into a width of 15 mm parallel to the coating direction, and a PET / CPP film was used with a Tensilon universal testing machine manufactured by Orientec Co., Ltd. Then, the atmospheric temperature was set to 25 ° C., the peeling speed was set to 300 mm / min, and the tensile strength when peeling by the 180 ° peeling method was defined as the adhesive strength.
  • the unit of adhesive strength was N / 15 mm.
  • Oxygen transmission rate Oxygen barrier laminated film after aging was used in an atmosphere of 23 ° C. and 90% RH in accordance with JIS-K7126 (isobaric method) using an oxygen transmission rate measuring device OX-TRAN2 / 21MH manufactured by Mocon. Measured below. Note that RH represents humidity.
  • the polyester polyol shown in the production example was mixed with ethyl acetate and methyl ethyl ketone (described as MEK) so as to have a nonvolatile content of 50%, and the solubility was confirmed.
  • MEK methyl ethyl ketone
  • the monomer refers to the polyvalent carboxylic acid and polyhydric alcohol.
  • Production Examples 23 to 29, Examples 16 to 22 and Comparative Examples 9 and 10 relate to the polyester resin composition according to (III).
  • Production Example 23 Production Example of Polyester Polyol (A): Gly (OPAEG) 2MA In the same manner as in Production Example 13, the title compound was obtained.
  • Production Example 24 Production Example of Polyester Polyol (A): Gly (OPAEG) 2OPA 1316.8 parts of phthalic anhydride in Production Example 23 is 1023.7 parts, 573.9 parts of ethylene glycol is 446.2 parts, and glycerin A polyester polyol having a hydroxyl value of 309.8 mgKOH / g was obtained in the same manner as in Production Example 23 except that 409.3 parts was changed to 318.2 parts.
  • polyester polyol was obtained. Polyester polyol (A) Number of functional groups designed per molecule: 2 hydroxyl groups, 1 carboxy group
  • polyester polyol had a number average molecular weight of about 720, a hydroxyl value of 156 mgKOH / g, and an acid value of 77.8 mgKOH / g. Got.
  • polyester polyol was obtained. Polyester polyol (A) Number of functional groups designed per molecule: 2 hydroxyl groups, 1 carboxy group
  • Production Example 27 Production Example of Polyester Polyol (A): Gly (OPAEG) 2TMT 1316.8 parts of phthalic anhydride in Production Example 23 is 274.0 parts, 573.9 parts of ethylene glycol is 119.4 parts, and glycerin A polyester polyol having a hydroxyl value of 306.8 mgKOH / g was obtained in the same manner as in Production Example 1 except that 409.3 parts were changed to 85.2 parts.
  • polyester polyol having a number average molecular weight of about 860, a hydroxyl value of 195.4 mgKOH / g, and an acid value of 0.9 mgKOH / g.
  • Polyester polyol (A) Number of functional groups designed per molecule Hydroxyl groups: 3, carboxy groups: 0
  • polyester polyol having a number average molecular weight of about 650, a hydroxyl value of 261.2 mgKOH / g, and an acid value of 0.8 mgKOH / g.
  • Polyester polyol (A) Number of functional groups designed per molecule Hydroxyl groups: 3, carboxy groups: 0
  • the solvent-type adhesive is a corona of a PET film (“E-5102” manufactured by Toyobo Co., Ltd.) having a thickness of 12 ⁇ m so that the coating amount is 5.0 g / m 2 (solid content). It was applied to the treated surface, and the solvent was volatilized and dried with a dryer set at a temperature of 70 ° C., and the adhesive surface of the PET film on which the adhesive was applied, and a 70 ⁇ m thick CPP film (“ZK93KM, manufactured by Toray Industries, Inc.) ]) was laminated with the corona-treated surface to prepare a composite film having a layer structure of PET film / adhesive layer / CPP film. Next, this composite film was aged at 40 ° C. for 3 days to cure the adhesive, and the oxygen barrier laminate film of the present invention was obtained.
  • a PET film (“E-5102” manufactured by Toyobo Co., Ltd.) having a thickness of 12 ⁇ m so that the coating amount is 5.0 g /
  • the solventless adhesive is heated to about 100 ° C., and a corona of a 12 ⁇ m thick PET film (“E-5102” manufactured by Toyobo Co., Ltd.) using a roll coater manufactured by Polytype Co., Ltd. After coating the treated surface so that the coating amount is 5.0 g / m 2 , the coated surface is laminated with a corona-treated surface of a 70 ⁇ m thick CPP film (“ZK93KM” manufactured by Toray Industries, Inc.), and a PET film / adhesive layer / A composite film having a layer structure of a CPP film was produced. Subsequently, this composite film was subjected to aging at 40 ° C. for 3 days to cure the adhesive, thereby obtaining the oxygen barrier laminate film of the present invention.
  • a corona of a 12 ⁇ m thick PET film (“E-5102” manufactured by Toyobo Co., Ltd.) using a roll coater manufactured by Polytype Co., Ltd.
  • the coated surface is
  • Adhesive strength The oxygen barrier laminate film after aging was cut into a width of 15 mm parallel to the coating direction, and a PET / CPP film was used with a Tensilon universal testing machine manufactured by Orientec Co., Ltd. Then, the atmospheric temperature was set to 25 ° C., the peeling speed was set to 300 mm / min, and the tensile strength when peeling by the 180 ° peeling method was defined as the adhesive strength.
  • the unit of adhesive strength was N / 15 mm.
  • the atmosphere temperature was set to 25 ° C.
  • the peeling speed was set to 300 mm / min
  • one end in the length direction of the obtained test piece was PET film A and the other end was Fixed the PET film B, conducted a tensile test, and determined the obtained strength as the initial cohesive force.
  • the unit was N / cm 2 .
  • the evaluation value was the maximum measured intensity, and the results are shown in the table.
  • Laminate suitability As an assessment of laminate suitability, the appearance of the film immediately after lamination was evaluated according to the following criteria. ⁇ : Uniformly wet and good appearance. (Triangle
  • Oxygen transmission rate Oxygen barrier laminate film after aging was measured at 23 ° C. and 90% RH in accordance with JIS-K7126 (isobaric method) using an oxygen transmission rate measuring device OX-TRAN2 / 21MH manufactured by Mocon. Measured under atmosphere.
  • the oxygen barrier laminated film using the adhesives of Examples 16 to 22 has a high oxygen barrier property and initial cohesive strength under 90% RH compared with the polyester polyol (A) not containing a carboxy group. And also had good adhesive strength.
  • the oxygen permeability was relatively good but not at a sufficient level, and the initial cohesion was also at a significantly low level.
  • gas barrier multilayer film of the present invention has gas barrier properties, it can be suitably used as various packaging materials. Further, since the barrier coating material and the gas barrier adhesive constituting the gas barrier multilayer film of the present invention have gas barrier properties, in the case of the gas barrier coating material, in addition to the film laminating primer for the packaging material, for display elements In addition to coating agents for electronic materials such as coating agents for gas barrier substrates, coating materials for building materials, coatings for industrial materials, and gas barrier properties can be suitably used. In addition, in the case of gas barrier adhesives, it is suitable for adhesives for film laminates for packaging materials, primers for film laminates, adhesives for protective films for solar cells, sealing materials for display elements, etc. Can be used for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a multilayer film having gas barrier properties, an adhesive, and a coating material, and further relates to a polyester resin composition that makes it possible to provide the multilayer film having gas barrier properties, the adhesive, and the coating material. The problem of the present invention is to provide a multilayer gas barrier film with excellent gas barrier properties. An additional problem is to provide the following: a polyester resin composition with gas barrier properties which has as its primary component the polyester resin that is used as the gas barrier layer in the multilayer film having gas barrier properties; a multilayer film with gas barrier properties comprising film coated with the resin composition; and a coating material. By providing a multilayer film with gas barrier properties having a gas barrier layer that is obtained by hardening a polyester resin composition formed by reacting polyester polyol with a hardening agent, this problem is solved by means of a polyester resin composition having a specific structure.

Description

ガスバリア性多層フィルム、接着剤、及びコーティング材Gas barrier multilayer film, adhesive, and coating material
 本発明は、ガスバリア性多層フィルム、接着剤、及びコーティング材に関し、更には、当該ガスバリア性多層フィルム、接着剤、及びコーティング材の提供が可能となるポリエステル樹脂組成物に関する。 The present invention relates to a gas barrier multilayer film, an adhesive, and a coating material, and further relates to a polyester resin composition that can provide the gas barrier multilayer film, the adhesive, and the coating material.
 食品や飲料等の包装に用いられる包装材料は、様々な流通、冷蔵等の保存や加熱殺菌などの処理等から内容物を保護するため、強度や割れにくさ、耐レトルト性、耐熱性といった機能ばかりでなく、内容物を確認できるよう透明性に優れるなど多岐に渡る機能が要求されている。その一方で、ヒートシールにより袋を密閉する場合には、熱加工性に優れる無延伸のポリオレフィン類フィルムが必須であるが、無延伸ポリオレフィンフィルムには包装材料として不足している機能も多い。特に内容物の品質保持という目的から高いバリア性が特に要求されている。このようなバリア包装材料は、通常、異種のポリマー材料を積層させた複合フレキシブルフィルムとして用いられている。
 バリア機能を多層フィルムに付与する際、内層(シーラント側)に用いる無延伸ポリオレフィンフィルム類はガスバリア性に乏しい上、コーティングや蒸着によりバリア機能を付与することが困難である。そのため、外層側に用いている各種フィルム(ポリエチレンテレフタレート(以下PETと略す)等のポリエステル系樹脂や、ポリアミド樹脂、延伸ポリオレフィン樹脂)にバリア機能を付与することが多い。
Packaging materials used for packaging food and beverages have functions such as strength, resistance to cracking, retort resistance, and heat resistance to protect the contents from various distribution, storage such as refrigeration and heat sterilization. In addition to this, a wide variety of functions are required such as excellent transparency so that the contents can be confirmed. On the other hand, when the bag is sealed by heat sealing, an unstretched polyolefin film having excellent heat processability is essential, but the unstretched polyolefin film has many functions that are insufficient as a packaging material. In particular, a high barrier property is required for the purpose of maintaining the quality of the contents. Such a barrier packaging material is usually used as a composite flexible film in which different polymer materials are laminated.
When imparting a barrier function to a multilayer film, unstretched polyolefin films used for the inner layer (sealant side) have poor gas barrier properties and are difficult to impart a barrier function by coating or vapor deposition. Therefore, a barrier function is often imparted to various films (polyester resins such as polyethylene terephthalate (hereinafter abbreviated as PET), polyamide resins, stretched polyolefin resins) used on the outer layer side.
 これらの外層側フィルムにコーティングによりバリア機能を付与する場合、バリアコーティング材料としては、耐レトルト性及びガスバリア性の高い塩化ビニリデンが多用されてきたが、廃棄の焼成時にダイオキシンが発生する等の問題がある。また、ポリビニルアルコール樹脂やエチレン-ポリビニルアルコール共重合体をバリアコーティング材料として用いた場合低湿度下ではガスバリア性は高いが、高湿度下やボイル処理、レトルト処理後になるとガスバリア性が著しく低下する問題があった。また、シリカやアルミナ等の金属酸化物の蒸着層をガスバリア層として設けたフィルムは高価な上、柔軟性に乏しくクラック、ピンホールによりバリア性能がばらつく問題点がある。 In the case of providing a barrier function to these outer layer side films by coating, vinylidene chloride having high retort resistance and gas barrier properties has been frequently used as a barrier coating material, but there are problems such as generation of dioxin during disposal firing. is there. In addition, when a polyvinyl alcohol resin or ethylene-polyvinyl alcohol copolymer is used as a barrier coating material, the gas barrier property is high at low humidity, but the gas barrier property is remarkably lowered at high humidity, after boil treatment or after retort treatment. there were. In addition, a film provided with a vapor deposition layer of a metal oxide such as silica or alumina as a gas barrier layer is expensive and has a problem that the flexibility is poor and the barrier performance varies due to cracks and pinholes.
 ガスバリア材として、例えば特許文献1では、ウレタン基及び尿素基を有し、且つウレタン基濃度および尿素基濃度の合計が15質量%以上であるガスバリア性ポリウレタン樹脂を含む水性分散体を使用したガスバリア性ポリウレタン樹脂およびこれを含むガスバリア性フィルムが記載されている。しかしながら水性分散体は耐水性がないために水を含む食品、飲料等への使用には問題がある。 As a gas barrier material, for example, in Patent Document 1, a gas barrier property using an aqueous dispersion containing a gas barrier polyurethane resin having a urethane group and a urea group and having a total of a urethane group concentration and a urea group concentration of 15% by mass or more. A polyurethane resin and a gas barrier film containing the same are described. However, since the aqueous dispersion has no water resistance, there is a problem in using it in foods, beverages and the like containing water.
 また、例えば特許文献2では、活性水素含有化合物(A)および有機ポリイソシアネート化合物(B)を反応させてなる樹脂硬化物を含む熱硬化型ガスバリア性ポリウレタン樹脂であって、該樹脂硬化物中にメタキシレンジイソシネート由来の骨格構造が20質量%以上含有され、かつ前記(A)および(B)の内、3官能以上の化合物の占める割合が、(A)と(B)の総量に対して7質量%以上であることを特徴とする熱硬化型ガスバリア性ポリウレタン樹脂を使用したガスバリア性複合フィルムが記載されている。 Further, for example, in Patent Document 2, a thermosetting gas barrier polyurethane resin containing a cured resin obtained by reacting an active hydrogen-containing compound (A) and an organic polyisocyanate compound (B), The skeleton structure derived from meta-xylene diisocyanate is contained in an amount of 20% by mass or more, and the ratio of the trifunctional or higher compound in the (A) and (B) is based on the total amount of (A) and (B). And a gas barrier composite film using a thermosetting gas barrier polyurethane resin characterized by being 7 mass% or more.
 しかしながら、該組成物は極性が高い溶剤を使用しなければならないため、作業性に乏しい。例えばアセトンのような溶解性の高い溶剤を使用した場合には、沸点が低く且つ外気の水を取り込みやすいため、水とイソシアネートとの反応によって調製粘度が上昇しやすいといった問題があった。 However, the composition has poor workability because a highly polar solvent must be used. For example, when a highly soluble solvent such as acetone is used, there is a problem that the viscosity of the preparation is likely to increase due to the reaction between water and isocyanate because the boiling point is low and the water in the outside air is easily taken up.
 また、特許文献3には、炭素-炭素不飽和結合及び反応性官能基を有する酸素吸収性樹脂成分、及び前記反応性官能基と反応して、前記酸素吸収性樹脂成分と架橋構造を形成し得る架橋剤を含む酸素吸収性塗料が記載されている。本引用文献では内容物を劣化から保護するという意味合いでは本発明と目的は同じであるが、本引用文献は酸素を吸収する事により内容物の劣化を防ぐ手法であり、本願の酸素を遮断する手法とは異なる。更に本引用文献を実施するには酸素バリア性を有するフィルム等が必須であり、酸素バリア性の高いフィルムが無い状態では内容物の劣化を防ぐ事ができない。更に、酸素吸収性能が飽和した後は内容物の劣化を防ぐ事ができないという問題点があった。 Patent Document 3 discloses that an oxygen-absorbing resin component having a carbon-carbon unsaturated bond and a reactive functional group, and reacting with the reactive functional group to form a cross-linked structure with the oxygen-absorbing resin component. An oxygen-absorbing paint containing the resulting cross-linking agent is described. In this cited reference, the purpose of the present invention is the same as that of the present invention in the sense that the contents are protected from deterioration, but this cited reference is a technique for preventing deterioration of the contents by absorbing oxygen, and blocks the oxygen of the present application. It is different from the method. Furthermore, in order to carry out the cited document, a film having an oxygen barrier property is indispensable, and deterioration of contents cannot be prevented without a film having a high oxygen barrier property. Furthermore, there is a problem in that deterioration of the contents cannot be prevented after the oxygen absorption performance is saturated.
 また、特許文献4には、ポリエステルポリオール、ポリエーテルポリオール、ポリエーテルエステルポリオール及びポリウレタンポリオールより成る群から選ばれた有機ポリマーポリオール化合物と、該有機ポリマーポリオール化合物の片末端にカルボン酸無水物を付加してなる片末端にカルボキシ基が導入された有機ポリマーポリオール化合物と、ポリイソシアネート化合物とを配合して成ることを特徴とする無溶剤型複合ラミネート用接着剤組成物が記載されている。 In Patent Document 4, an organic polymer polyol compound selected from the group consisting of polyester polyol, polyether polyol, polyether ester polyol and polyurethane polyol, and a carboxylic acid anhydride is added to one end of the organic polymer polyol compound. There is described a solventless composite laminate adhesive composition characterized by comprising an organic polymer polyol compound having a carboxyl group introduced at one end and a polyisocyanate compound.
 しかしながら、特許文献4には作業性と接着性に関する記載はあるが、酸素バリア性に関する記載は無く、酸素バリア性の性能を有していない。 However, Patent Document 4 has a description on workability and adhesiveness, but does not have a description on oxygen barrier properties and does not have oxygen barrier properties.
特許4524463号公報Japanese Patent No. 4524463 特許4054972号公報Japanese Patent No. 4054972 特開2003-268310号公報JP 2003-268310 A 特開平7-97557号公報Japanese Unexamined Patent Publication No. 7-97557
 本発明が解決しようとする課題は、ガスバリア性に優れるガスバリア性多層フィルムを提供することにある。また、該ガスバリア性多層フィルムにガスバリア層として用いられるポリエステル樹脂を主体とするガスバリア性ポリエステル樹脂組成物、及び該樹脂組成物をフィルムに塗布したガスバリア性多層フィルム、及びコーティング材を提供することにある。 The problem to be solved by the present invention is to provide a gas barrier multilayer film having excellent gas barrier properties. Another object of the present invention is to provide a gas barrier polyester resin composition mainly comprising a polyester resin used as a gas barrier layer in the gas barrier multilayer film, a gas barrier multilayer film in which the resin composition is applied to the film, and a coating material. .
 本発明者らは、上記課題を解決するため、鋭意検討を行った結果、ポリエステルポリオールと硬化剤とを反応させてなるポリエステル樹脂組成物を硬化させて得られるガスバリア層を有するガスバリア性多層フィルムの提供のため、ある特定の構造を有するポリエステル樹脂組成物が、本発明の課題を解決することを見出し、本発明を完成するに至った。 As a result of intensive investigations to solve the above problems, the present inventors have found that a gas barrier multilayer film having a gas barrier layer obtained by curing a polyester resin composition obtained by reacting a polyester polyol and a curing agent. For the purpose of provision, it has been found that a polyester resin composition having a specific structure solves the problems of the present invention, and the present invention has been completed.
 即ち、本発明は、
ポリエステルポリオールと硬化剤とを反応させてなるポリエステル樹脂組成物を硬化させて得られるガスバリア層を有するガスバリア性多層フィルムにおいて、
前記ポリエステル樹脂組成物が、下記(I)~(III)から選ばれる何れかであるガスバリア性多層フィルム、を提供するものである。
(I)一般式(1)で表されるポリエステルポリオールと硬化剤とを反応させてなるポリエステル樹脂組成物。
That is, the present invention
In a gas barrier multilayer film having a gas barrier layer obtained by curing a polyester resin composition obtained by reacting a polyester polyol and a curing agent,
The present invention provides a gas barrier multilayer film in which the polyester resin composition is any one selected from the following (I) to (III).
(I) A polyester resin composition obtained by reacting a polyester polyol represented by the general formula (1) with a curing agent.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R~Rは、各々独立に、水素原子、又は一般式(2) (In the formula (1), R 1 to R 3 each independently represents a hydrogen atom, or a compound represented by the general formula (2)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(2)中、nは1~5の整数を表し、Xは、置換基を有してもよい1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、及び2,3-アントラセンジイル基から成る群から選ばれるアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す)で表される基を表す。但し、R~Rのうち少なくとも一つは、一般式(2)で表される基を表す。)
(II)分子内に重合性炭素-炭素二重結合を有し、且つ2個以上の水酸基を有するポリエステルポリオール(A)と2個以上のイソシアネート基を有するポリイソシアネート(B)とを含有してなる酸素バリア性接着剤用樹脂組成物。
(III)ポリエステルポリオール(C)と2個以上のイソシアネート基を有するポリイソシアネート(D)とを含有してなる酸素バリア性接着剤用樹脂組成物であって、
ポリエステルポリオール(C)が、3個以上の水酸基を有するポリエステルポリオールにカルボン酸無水物又は多価カルボン酸を反応させることにより得られる少なくとも1個のカルボキシ基と2個以上の水酸基を有するものである酸素バリア性接着剤用樹脂組成物。
(In the formula (2), n represents an integer of 1 to 5, and X represents an optionally substituted 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 2 Represents an arylene group selected from the group consisting of 1,3-anthraquinonediyl group and 2,3-anthracenediyl group, and Y represents an alkylene group having 2 to 6 carbon atoms. However, at least one of R 1 to R 3 represents a group represented by the general formula (2). )
(II) containing a polyester polyol (A) having a polymerizable carbon-carbon double bond in the molecule and having two or more hydroxyl groups, and a polyisocyanate (B) having two or more isocyanate groups. A resin composition for an oxygen barrier adhesive.
(III) A resin composition for an oxygen barrier adhesive comprising a polyester polyol (C) and a polyisocyanate (D) having two or more isocyanate groups,
The polyester polyol (C) has at least one carboxy group and two or more hydroxyl groups obtained by reacting a carboxylic anhydride or a polyvalent carboxylic acid with a polyester polyol having three or more hydroxyl groups. Resin composition for oxygen barrier adhesive.
 本発明により、ガスバリア性に優れるガスバリア性多層フィルムを提供することにある。また、該ガスバリア性多層フィルムにガスバリア層として用いられるガスバリア性に優れるポリエステル樹脂を主体とするガスバリア性ポリエステル樹脂組成物、及び該樹脂組成物をフィルムに塗布したガスバリア性多層フィルム、及びコーティング材を提供することができる。 According to the present invention, a gas barrier multilayer film having excellent gas barrier properties is provided. Also provided are a gas barrier polyester resin composition mainly composed of a polyester resin excellent in gas barrier properties used as a gas barrier layer in the gas barrier multilayer film, a gas barrier multilayer film in which the resin composition is applied to the film, and a coating material. can do.
 以下詳細に本発明を説明する。
1)前記(I)に係るポリエステル樹脂組成物について
(グリセロール骨格を有するポリエステル樹脂化合物)
 前記樹脂組成物(I)に係るグリセロール骨格を有する一般式(1)において、R~Rは、水素原子、又は一般式(2)
The present invention is described in detail below.
1) Polyester resin composition according to (I) (polyester resin compound having a glycerol skeleton)
In the general formula (1) having a glycerol skeleton according to the resin composition (I), R 1 to R 3 are a hydrogen atom or a general formula (2)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(2)中、nは1~5の整数を表し、Xは、置換基を有してもよい1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、及び2,3-アントラセンジイル基から成る群から選ばれるアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す)で表される基を表す。但し、R~Rのうち少なくとも一つは、一般式(2)で表される基を表す。)で表される基である。 (In the formula (2), n represents an integer of 1 to 5, and X represents an optionally substituted 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 2 Represents an arylene group selected from the group consisting of 1,3-anthraquinonediyl group and 2,3-anthracenediyl group, and Y represents an alkylene group having 2 to 6 carbon atoms. However, at least one of R 1 to R 3 represents a group represented by the general formula (2). ).
 前記一般式(1)において、R、R及びRの少なくとも1つは前記一般式(2)で表される基である必要がある。中でも、R、R及びR全てが前記一般式(2)で表される基であることが好ましい。 In the general formula (1), at least one of R 1 , R 2 and R 3 needs to be a group represented by the general formula (2). Among them, it is preferable that all of R 1 , R 2 and R 3 are groups represented by the general formula (2).
 また、R、R及びRのいずれか1つが前記一般式(2)で表される基である化合物と、R、R及びRのいずれか2つが前記一般式(2)で表される基である化合物と、R、R及びRの全てが前記一般式(2)で表される基である化合物の、いずれか2つ以上の化合物が混合物となっていてもよい。 Further, R 1, any one of R 2 and R 3 is a group represented by the general formula (2) compound, R 1, R 2, and any two of the general formula R 3 (2) Any two or more compounds of the compound represented by the general formula (2) and the compound in which all of R 1 , R 2 and R 3 are groups represented by the general formula (2) are mixed. Also good.
 Xは、1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、及び2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表す。Xが置換基によって置換されている場合、1又は複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。 X is selected from the group consisting of 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 2,3-anthraquinonediyl group, and 2,3-anthracenediyl group, The arylene group which may have is represented. When X is substituted with a substituent, it may be substituted with one or more substituents, which are attached to any carbon atom on X that is different from the free radical. Examples of the substituent include chloro group, bromo group, methyl group, ethyl group, i-propyl group, hydroxyl group, methoxy group, ethoxy group, phenoxy group, methylthio group, phenylthio group, cyano group, nitro group, amino group, Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group, and a naphthyl group.
 前記一般式(2)において、Yは、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、1,6-ヘキシレン基、メチルペンチレン基、ジメチルブチレン基、等の、炭素原子数2~6のアルキレン基を表す。Yは、中でも、プロピレン基、エチレン基が好ましくエチレン基が最も好ましい。 In the general formula (2), Y represents an ethylene group, propylene group, butylene group, neopentylene group, 1,5-pentylene group, 3-methyl-1,5-pentylene group, 1,6-hexylene group, methylpentylene. Represents an alkylene group having 2 to 6 carbon atoms, such as a len group or a dimethyl butylene group; Among them, Y is preferably a propylene group or an ethylene group, and most preferably an ethylene group.
 前記一般式(1)で表されるグリセロール骨格を有するポリエステル樹脂化合物は、グリセロールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸又はその無水物と、多価アルコール成分とを必須成分として反応させて得る。 The polyester resin compound having a glycerol skeleton represented by the general formula (1) is essential for glycerol, an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted in the ortho position, or an anhydride thereof, and a polyhydric alcohol component. Obtained by reacting as a component.
 カルボン酸がオルト位に置換された芳香族多価カルボン酸又はその無水物としては、オルトフタル酸又はその無水物、ナフタレン2,3-ジカルボン酸又はその無水物、ナフタレン1,2-ジカルボン酸又はその無水物、アントラキノン2,3-ジカルボン酸又はその無水物、及び2,3-アントラセンカルボン酸又はその無水物等が挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。 The aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted in the ortho position or its anhydride includes orthophthalic acid or its anhydride, naphthalene 2,3-dicarboxylic acid or its anhydride, naphthalene 1,2-dicarboxylic acid or its An anhydride, anthraquinone 2,3-dicarboxylic acid or its anhydride, 2,3-anthracene carboxylic acid or its anhydride, etc. are mentioned. These compounds may have a substituent on any carbon atom of the aromatic ring. Examples of the substituent include chloro group, bromo group, methyl group, ethyl group, i-propyl group, hydroxyl group, methoxy group, ethoxy group, phenoxy group, methylthio group, phenylthio group, cyano group, nitro group, amino group, Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group, and a naphthyl group.
 また、多価アルコール成分としては炭素原子数2~6のアルキレンジオールが挙げられる。例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール等のジオールを例示することができる。 Also, examples of the polyhydric alcohol component include alkylene diols having 2 to 6 carbon atoms. For example, diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, etc. Can be illustrated.
 このような、前記一般式(1)で表されるグリセロール骨格を有するポリエステル樹脂化合物としては、芳香族多価カルボン酸としてオルトフタル酸無水物を用い、多価アルコールとしてエチレングリコールを用いたポリエステル樹脂(GLY(oPAEG)mと略す、mは本発明のポリエステル樹脂に含まれるカッコ内の基の総数を表す。)、芳香族多価カルボン酸としてナフタレン2,3-ジカルボン酸を用い、多価アルコールとしてエチレングリコールを用いたポリエステル樹脂(GLY(oNAEG)mと略す、mは前記と同義である。)等を挙げることが出来る。 As such a polyester resin compound having a glycerol skeleton represented by the general formula (1), a polyester resin (orthophthalic anhydride as an aromatic polycarboxylic acid and ethylene glycol as a polyhydric alcohol ( GLY (oPAEG) m, where m represents the total number of groups in parentheses contained in the polyester resin of the present invention), naphthalene 2,3-dicarboxylic acid as an aromatic polycarboxylic acid, and polyhydric alcohol as Examples thereof include polyester resins using ethylene glycol (abbreviated as GLY (oNAEG) m, where m is as defined above).
 なお本願においてグリセロール骨格の含有量は、本願の接着剤樹脂全固形分の質量に対して、前記一般式(1)におけるR~Rを除いた残基(C=89.07)がどのくらい含まれるかを、式(a)を用いて計算する。 In the present application, the content of the glycerol skeleton is the residue (C 3 H 5 O 3 = 89) excluding R 1 to R 3 in the general formula (1) with respect to the total solid content of the adhesive resin of the present application. .07) is included using equation (a).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
P:グリセロール骨格を有するポリエステル樹脂化合物を表す。 P: represents a polyester resin compound having a glycerol skeleton.
 本発明では、高いバリア性を発現するため、ポリエステル樹脂組成物中に5質量%以上のグリセロール残基を有することに特徴がある。 The present invention is characterized by having a glycerol residue of 5% by mass or more in the polyester resin composition in order to express a high barrier property.
(ガスバリア性ポリエステル樹脂組成物固形分の質量算出方法)
 ガスバリア性ポリエステル樹脂組成物の質量部から希釈溶剤質量、硬化剤に含まれる揮発成分質量、無機成分を除く質量を接着剤樹脂全固形分の質量とする。
 一方、ポリエステル成分の原料であるアシル基がオルト位に置換された芳香族多価カルボン酸又はその無水物は、骨格が非対称構造である。従って、得られるポリエステルの分子鎖の回転抑制が生じると推定され、これによりガスバリア性に優れると推定している。また、この非対称構造に起因して基材密着性を阻害する結晶性が低いために酢酸エチルやメチルエチルケトン等の溶剤にも高い溶解性を示し且つガスバリア性に優れると推定される。
(Gas barrier polyester resin composition solid content mass calculation method)
The mass excluding the mass of the diluent solvent, the mass of the volatile component contained in the curing agent and the inorganic component from the mass part of the gas barrier polyester resin composition is defined as the mass of the total solid content of the adhesive resin.
On the other hand, the aromatic polyvalent carboxylic acid in which the acyl group as the raw material of the polyester component is substituted in the ortho position or its anhydride has an asymmetric structure. Therefore, it is presumed that the rotation of the molecular chain of the resulting polyester is suppressed, and thus it is presumed that the gas barrier property is excellent. In addition, it is presumed that due to this asymmetric structure, the crystallinity that inhibits the adhesion to the substrate is low, so that it exhibits high solubility in solvents such as ethyl acetate and methyl ethyl ketone and is excellent in gas barrier properties.
(多価アルコール)
 本発明で使用するポリエステル樹脂化合物は、多価アルコールとして、炭素原子数2~6のアルキレンジオール以外の多価アルコール成分を、本発明の効果を損なわない範囲において共重合させてもよい。具体的には、グリセロール、エリスリトール、ペンタエリトール、ジペンタエリスリトール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラエチレングリコール、トリプロピレングリコール等の脂肪族多価アルコール、シクロヘキサンジメタノール、トリシクロデカンジメタノール等の脂環族多価アルコール、ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ヒスフェノールF、テトラメチルビフェノール等の芳香族多価フェノール、或いはこれらのエチレンオキサイド伸長物、水添化脂環族を例示することができる。
(Polyhydric alcohol)
In the polyester resin compound used in the present invention, a polyhydric alcohol component other than an alkylene diol having 2 to 6 carbon atoms may be copolymerized as a polyhydric alcohol as long as the effects of the present invention are not impaired. Specifically, aliphatic polyhydric alcohols such as glycerol, erythritol, pentaerythritol, dipentaerythritol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, tetraethylene glycol, tripropylene glycol, Cycloaliphatic polyhydric alcohols such as cyclohexanedimethanol and tricyclodecanedimethanol, aromatic polyhydric phenols such as hydroquinone, resorcinol, catechol, naphthalene diol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, or the like Examples thereof include ethylene oxide elongated products and hydrogenated alicyclic groups.
(多価カルボン酸)
 本発明のポリエステル樹脂は、多価カルボン酸成分としてカルボン酸がオルト位に置換された芳香族多価カルボン酸又はその無水物を必須とするが、本発明の効果を損なわない範囲において、他の多価カルボン酸成分を共重合させてもよい。具体的には、脂肪族多価カルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等を、不飽和結合含有多価カルボン酸としては、無水マレイン酸、マレイン酸、フマル酸等を、脂環族多価カルボン酸としては1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等を、芳香族多価カルボン酸としては、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、ジフェン酸及びその無水物、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の無水物或いはエステル形成性誘導体;p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の多塩基酸を単独で或いは二種以上の混合物で使用することができる。
(Polyvalent carboxylic acid)
The polyester resin of the present invention essentially comprises an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted in the ortho position or an anhydride thereof as the polyvalent carboxylic acid component, but within the range not impairing the effects of the present invention, A polyvalent carboxylic acid component may be copolymerized. Specifically, as the aliphatic polyvalent carboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, etc., as the unsaturated bond-containing polyvalent carboxylic acid, maleic anhydride, maleic acid, Fumaric acid, etc., 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid etc. as alicyclic polyvalent carboxylic acid, terephthalic acid, isophthalic acid, pyromellitic as aromatic polyvalent carboxylic acid Acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, diphenic acid and its anhydride, 1,2-bis ( Phenoxy) ethane-p, p'-dicarboxylic acid and anhydrides or ester-forming derivatives of these dicarboxylic acids; Polybasic acids such as droxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid and ester-forming derivatives of these dihydroxycarboxylic acids can be used alone or in a mixture of two or more.
 中でも、コハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,8-ナフタル酸、ジフェン酸が好ましい。 Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalic acid and diphenic acid are preferred.
 製造方法の具体的な例を示すと、原材料として用いるグリセロールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸又はその無水物と、多価アルコール成分を一括して仕込んだ後、攪拌混合しながら昇温し、脱水縮合反応させる。JIS-K0070に記載の酸価測定法にて1mgKOH/g以下、同じくJIS-K0070に記載の水酸基価測定方法にて得られる水酸基価ZmgKOH/gが下記式(b)の右辺の数値(mgKOH/g)の±5%以内に入るまで反応を継続することで目的とするポリエステル樹脂を得ることができる。 As a specific example of the production method, glycerol used as a raw material, an aromatic polycarboxylic acid in which the carboxylic acid is substituted in the ortho position, or an anhydride thereof, and a polyhydric alcohol component are collectively charged, The temperature is raised while stirring and mixing to cause a dehydration condensation reaction. 1 mgKOH / g or less by the acid value measuring method described in JIS-K0070, and the hydroxyl value ZmgKOH / g obtained by the hydroxyl value measuring method described in JIS-K0070 is the numerical value on the right side of the following formula (b) (mgKOH / The desired polyester resin can be obtained by continuing the reaction until it is within ± 5% of g).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
(式(b)中、Mnは所定の3官能ポリエステル樹脂の設定数平均分子量を表す。) (In the formula (b), Mn represents a set number average molecular weight of a predetermined trifunctional polyester resin.)
 或いは、各々の原料を多段階に分けて反応させてもよい。また、反応温度にて揮発してしまったジオール成分を追加しながら、水酸基価を±5%以内に入るように調製してもよい。 Alternatively, each raw material may be reacted in multiple stages. Moreover, you may prepare so that a hydroxyl value may enter into less than +/- 5%, adding the diol component which volatilized at reaction temperature.
 反応に用いられる触媒としては、モノブチル酸化錫、ジブチル酸化錫等錫系触媒、テトラ-イソプロピル-チタネート、テトラ-ブチル-チタネート等のチタン系触媒、テトラ-ブチル-ジルコネート等のジルコニア系触媒等の酸触媒が挙げられる。エステル反応に対する活性が高い、テトラ-イソプロピル-チタネート、テトラ-ブチル-チタネート等の上記チタン系触媒と上記ジルコニア触媒を組み合わせて用いることが好ましい。前記触媒量は、使用する反応原料全質量に対して1~1000ppm用いられ、より好ましくは10~100ppmである。1ppmを下回ると触媒としての効果が得られにくく、1000ppmを上回ると後のウレタン化の反応を阻害する傾向がある。しかし、反応を無触媒で進行させることが出来る場合には、触媒は必須ではない。 Catalysts used in the reaction include acids such as tin-based catalysts such as monobutyltin oxide and dibutyltin oxide, titanium-based catalysts such as tetra-isopropyl-titanate and tetra-butyl-titanate, and zirconia-based catalysts such as tetra-butyl-zirconate. A catalyst is mentioned. It is preferable to use a combination of the titanium-based catalyst such as tetra-isopropyl-titanate or tetra-butyl-titanate, which has high activity for ester reaction, and the zirconia catalyst. The amount of the catalyst is 1 to 1000 ppm, more preferably 10 to 100 ppm, based on the total mass of the reaction raw material used. If it is less than 1 ppm, it is difficult to obtain an effect as a catalyst, and if it exceeds 1000 ppm, the subsequent urethanization reaction tends to be inhibited. However, a catalyst is not essential if the reaction can proceed without catalyst.
 前記グリセロール骨格を有するポリエステル樹脂化合物の数平均分子量は450~5000が好ましく、更に好ましくは450~2000の範囲である。 The number average molecular weight of the polyester resin compound having a glycerol skeleton is preferably 450 to 5,000, and more preferably 450 to 2,000.
 硬化剤としては、後述のポリイソシアネートが最も好ましく、適度な反応時間を付与でき、溶解性と酸素バリア能に特に優れる。この時のウレタン基濃度としては1.0~6.0mmol/gの範囲が好ましい。 As the curing agent, the polyisocyanate described below is most preferable, can give an appropriate reaction time, and is particularly excellent in solubility and oxygen barrier ability. The urethane group concentration at this time is preferably in the range of 1.0 to 6.0 mmol / g.
 本発明で使用するグリセロール骨格を有するポリエステル樹脂化合物は、ガラス転移温度が-30℃~70℃の範囲が好ましい。より好ましくは-20℃~50℃である。ガラス転移温度が70℃よりも高すぎる場合、室温付近でのポリエステル樹脂の柔軟性が低くなることにより、基材への密着性が劣る傾向がある。一方-30℃寄りも低すぎる場合、常温付近でのポリエステル樹脂の分子運動が激しいことにより十分なガスバリア性が出ないおそれがある。 The polyester resin compound having a glycerol skeleton used in the present invention preferably has a glass transition temperature in the range of −30 ° C. to 70 ° C. More preferably, it is −20 ° C. to 50 ° C. When the glass transition temperature is too higher than 70 ° C., the flexibility of the polyester resin near room temperature tends to be low, and the adhesion to the substrate tends to be poor. On the other hand, if the temperature is too low at about -30 ° C., there is a risk that sufficient gas barrier properties may not be obtained due to the intense molecular motion of the polyester resin near room temperature.
2)前記(II)に係るポリエステル樹脂組成物について
 前記(II)に係る樹脂組成物は、多価カルボン酸と多価アルコールを反応することにより得られ、多価カルボン酸、多価アルコールの成分として重合性炭素-炭素二重結合をもつ成分を使用することにより、ポリエステルポリオール(A)の分子内に重合性炭素二重結合を導入したものである。
2) Regarding the polyester resin composition according to (II) The resin composition according to (II) is obtained by reacting a polyvalent carboxylic acid and a polyhydric alcohol, and is a component of polyvalent carboxylic acid and polyhydric alcohol. As a component having a polymerizable carbon-carbon double bond, a polymerizable carbon double bond is introduced into the molecule of the polyester polyol (A).
(多価カルボン酸)
 本発明のポリエステルポリオール(A)は、多価カルボン酸成分として具体的には、脂肪族多価カルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等を、脂環族多価カルボン酸としては1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等を、芳香族多価カルボン酸としては、オルトフタル酸、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の無水物或いはエステル形成性誘導体;p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の多塩基酸を単独で或いは二種以上の混合物で使用することができる。また、これらの酸無水物も使用することができる。中でも、バリア性を得る為にはコハク酸、1,3-シクロペンタンジカルボン酸、オルトフタル酸、オルトフタル酸の酸無水物、イソフタル酸が好ましく、更にはオルトフタル酸及びその酸無水物がより好ましい。
(Polyvalent carboxylic acid)
The polyester polyol (A) of the present invention is a polyvalent carboxylic acid component, specifically, an aliphatic polyvalent carboxylic acid such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, etc. 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, etc. as aromatic polycarboxylic acids, and orthophthalic acid, terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic as aromatic polycarboxylic acids Acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid And anhydrides or ester-forming derivatives of these dicarboxylic acids; p-hydroxybenzoic acid, p- (2 Polyhydroxy acids such as -hydroxyethoxy) benzoic acid and ester-forming derivatives of these dihydroxycarboxylic acids can be used alone or in a mixture of two or more. These acid anhydrides can also be used. Among these, in order to obtain barrier properties, succinic acid, 1,3-cyclopentanedicarboxylic acid, orthophthalic acid, acid anhydride of orthophthalic acid, and isophthalic acid are preferable, and orthophthalic acid and its acid anhydride are more preferable.
(重合性炭素-炭素二重結合をもつ多価カルボン酸)
 多価カルボン酸において重合性炭素-炭素二重結合をもつ多価カルボン酸として無水マレイン酸、マレイン酸、フマル酸、4-シクロヘキセン-1,2-ジカルボン酸及びその酸無水物、3-メチル-4-シクロヘキセン-1,2-ジカルボン酸及びその無水物等があげられる。中でも、炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、無水マレイン酸、マレイン酸、フマル酸が好ましい。
(Polyvalent carboxylic acid having a polymerizable carbon-carbon double bond)
Maleic anhydride, maleic acid, fumaric acid, 4-cyclohexene-1,2-dicarboxylic acid and acid anhydrides thereof as polyvalent carboxylic acids having a polymerizable carbon-carbon double bond in the polyvalent carboxylic acid, 3-methyl- Examples thereof include 4-cyclohexene-1,2-dicarboxylic acid and its anhydride. Of these, maleic anhydride, maleic acid, and fumaric acid are preferred because it is presumed that the smaller the number of carbon atoms, the less the molecular chain becomes excessively flexible and the less oxygen permeates.
(多価アルコール成分)
 本発明で使用する多価アルコールは、具体的には、脂肪族ジオールとしては、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、芳香族多価フェノールとして、ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ヒスフェノールF、テトラメチルビフェノールや、これらの、エチレンオキサイド伸長物、水添化脂環族を例示することができる。中でも酸素原子間の炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールが好ましく、更にはエチレングクリコールがより好ましい。
(Polyhydric alcohol component)
Specifically, the polyhydric alcohol used in the present invention includes, as the aliphatic diol, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, cyclohexanedimethanol, 1,5-pentanediol, 3-methyl-1 , 5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, aromatic polyphenol , Hydroquinone, resorcinol, catechol, naphthalene diol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, ethylene oxide De extension product, there can be mentioned hydrogenated alicyclic. In particular, the smaller the number of carbon atoms between oxygen atoms, the less likely the molecular chain to become excessively flexible and less oxygen permeation. Therefore, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexane Methanol is preferable, and ethylene glucol is more preferable.
(重合性炭素-炭素二重結合をもつ多価アルコール)
 多価アルコールにおいて重合性炭素-炭素二重結合をもつ多価アルコールとして2-ブテン-1,4-ジオール等があげられる。
(Polyhydric alcohol with polymerizable carbon-carbon double bond)
Examples of the polyhydric alcohol having a polymerizable carbon-carbon double bond in the polyhydric alcohol include 2-butene-1,4-diol.
上記ポリエステルポリオール(A)では、重合性炭素-炭素二重結合をもつ多価カルボン酸、多価アルコールを使用することによりポリエステルポリオール(A)に重合性二重結合を導入したが、水酸基を有するポリエステルポリオールと重合性二重結合を有するカルボン酸、又はカルボン酸無水物との反応であってもよい。この場合のカルボン酸としてはマレイン酸、無水マレイン酸、又はフマル酸等の重合性二重結合を有するカルボン酸、オレイン酸、ソルビン酸等の不飽和脂肪酸等を用いることができる。この場合のポリエステルポリオールとしては2個以上の水酸基を有するポリエステルポリオールで好ましいが、ポリイソシアネートとの架橋により分子伸長を考慮すると、水酸基は3個以上有することがより好ましい。ポリエステルポリオールの水酸基が1又は2個の場合、重合性二重結合を有するカルボン酸を反応することにより得たポリエステルポリオール(A)の水酸基が0又は1個となり、ポリイソシアネート(B)との反応による分子伸長が起こり難くなり、接着剤としてのラミネート強度やシール強度、耐熱性等の特性が得られ難くなる。 In the polyester polyol (A), a polymerizable double bond is introduced into the polyester polyol (A) by using a polyvalent carboxylic acid having a polymerizable carbon-carbon double bond and a polyhydric alcohol, but has a hydroxyl group. It may be a reaction between a polyester polyol and a carboxylic acid having a polymerizable double bond, or a carboxylic acid anhydride. As the carboxylic acid in this case, a carboxylic acid having a polymerizable double bond such as maleic acid, maleic anhydride or fumaric acid, an unsaturated fatty acid such as oleic acid or sorbic acid, or the like can be used. The polyester polyol in this case is preferably a polyester polyol having two or more hydroxyl groups, but it is more preferable to have three or more hydroxyl groups in consideration of molecular elongation due to crosslinking with polyisocyanate. When the polyester polyol has 1 or 2 hydroxyl groups, the polyester polyol (A) obtained by reacting with a carboxylic acid having a polymerizable double bond has 0 or 1 hydroxyl group and reacts with the polyisocyanate (B). It becomes difficult to cause molecular elongation due to, and it becomes difficult to obtain properties such as laminate strength, seal strength, and heat resistance as an adhesive.
 これらのポリエステルポリオール(A)の数平均分子量は450~5000であると接着能と酸素バリア能とのバランスに優れる程度の架橋密度が得られるため特に好ましい。また硬化剤としては、後述のポリイソシアネートが最も好ましく、適度な反応時間を付与でき、接着強度と酸素バリア能に特に優れる。分子量が450より小さい場合、塗工時の接着剤の凝集力が小さくなりすぎ、ラミネート時にフィルムがズレたり、貼り合せたフィルムが浮き上がるといった不具合が起こり、逆に分子量が5000よりも高い場合、塗工時の粘度が高くなり過ぎて塗工が出来ないことや、粘着性が低い事よりラミネートができないといった不具合が発生する。また、数平均分子量は得られた水酸基価と設計上の水酸基の官能基数から計算により求めた。 These polyester polyols (A) having a number average molecular weight of 450 to 5,000 are particularly preferable because a crosslinking density with an excellent balance between adhesive ability and oxygen barrier ability can be obtained. As the curing agent, the polyisocyanate described below is most preferable, can give an appropriate reaction time, and is particularly excellent in adhesive strength and oxygen barrier ability. When the molecular weight is less than 450, the cohesive force of the adhesive at the time of coating becomes too small, causing the problem that the film shifts during lamination or the bonded film rises. Conversely, if the molecular weight is higher than 5000, The problem is that the viscosity at the time of construction is too high to be applied, and that the lamination is impossible due to low adhesiveness. The number average molecular weight was obtained by calculation from the obtained hydroxyl value and the number of functional groups of the designed hydroxyl group.
本発明で使用するポリエステルポリオール(A)は、ガラス転移温度が-30℃~80℃の範囲が好ましい。より好ましくは0℃~60℃である。更に好ましくは25℃~60℃である。ガラス転移温度が80℃よりも高すぎる場合、室温付近でのポリエステルポリオールの柔軟性が低くなることにより、基材への密着性が劣ることで接着力が低下するおそれがある。一方-30℃よりも低すぎる場合、常温付近でのポリエステルポリオールの分子運動が激しいことにより十分な酸素バリア性が出ないおそれがある。 The polyester polyol (A) used in the present invention preferably has a glass transition temperature in the range of −30 ° C. to 80 ° C. More preferably, it is 0 ° C to 60 ° C. More preferably, it is 25 ° C to 60 ° C. When the glass transition temperature is too higher than 80 ° C., the flexibility of the polyester polyol near room temperature is lowered, and thus the adhesiveness to the substrate may be deteriorated due to poor adhesion to the substrate. On the other hand, when the temperature is lower than −30 ° C., there is a possibility that sufficient oxygen barrier properties may not be obtained due to intense molecular motion of the polyester polyol at around room temperature.
 前記ポリエステルポリオール(A)の水酸基価が20~250mgKOH/g、酸価が0~100mgKOH/gであることが好ましい。水酸基価はJIS-K0070に記載の水酸基価測定方法にて、酸価はJIS-K0070に記載の酸価測定法にて、測定することができる。水酸基価が20mgKOH/gより小さい場合、分子量が大きすぎる為に粘度が高くなり、良好な塗工適性が得られない。逆に水酸基価が250mgKOH/gを超える場合、分子量が小さくなりすぎる為、硬化塗膜の架橋密度が高くなりすぎ、良好な接着強度が得られない。 It is preferable that the polyester polyol (A) has a hydroxyl value of 20 to 250 mgKOH / g and an acid value of 0 to 100 mgKOH / g. The hydroxyl value can be measured by the hydroxyl value measuring method described in JIS-K0070, and the acid value can be measured by the acid value measuring method described in JIS-K0070. When the hydroxyl value is smaller than 20 mgKOH / g, the molecular weight is too large, the viscosity becomes high, and good coating suitability cannot be obtained. On the other hand, when the hydroxyl value exceeds 250 mgKOH / g, the molecular weight becomes too small, so that the crosslinking density of the cured coating film becomes too high, and good adhesive strength cannot be obtained.
また、ポリエステルポリオール(A)を構成する全モノマー成分100質量部に対して、重合性炭素-炭素二重結合を有するモノマー成分が、5~60質量部であることに特徴を有する。
この範囲より低いと重合性二重結合間の架橋点が少なくなり、バリア性が得られ難くなり、高いと架橋点が多くなることにより硬化塗膜の柔軟性が著しく低下してラミネート強度が得られ難くなり好ましくない。そのため、重合性炭素-炭素二重結合をもつ多価カルボン酸、多価アルコール成分以外の、多価カルボン酸、多価アルコール成分の使用量は一定以下とする必要がある。
Further, it is characterized in that the monomer component having a polymerizable carbon-carbon double bond is 5 to 60 parts by mass with respect to 100 parts by mass of all monomer components constituting the polyester polyol (A).
If it is lower than this range, the number of crosslinking points between the polymerizable double bonds will be reduced, and it will be difficult to obtain barrier properties. If it is higher, the number of crosslinking points will be increased, and the flexibility of the cured coating will be significantly reduced, resulting in a laminate strength. This is not preferable because it is difficult to be performed. For this reason, the amount of polyvalent carboxylic acid and polyhydric alcohol component used other than the polyvalent carboxylic acid and polyhydric alcohol component having a polymerizable carbon-carbon double bond must be kept below a certain level.
 また、本発明のポリエステルポリオール(A)として、乾性油、又は半乾性油を挙げることができる。乾性油、又は半乾性油としては、炭素二重結合を有する公知慣用の乾性油、半乾性油等を挙げることができる。 Also, examples of the polyester polyol (A) of the present invention include a drying oil or a semi-drying oil. Examples of the drying oil or semi-drying oil include publicly known and commonly used drying oils having a carbon double bond and semi-drying oils.
 更にポリエステルポリオール(A)をジイソシアネート化合物との反応によるウレタン伸長により数平均分子量1000~15000としたポリオールを接着剤として用いても良い。該ポリオールには一定以上の分子量成分とウレタン結合とが存在するために、優れた酸素バリア性を持つ上、初期凝集力に優れ、ラミネート時に使用する接着剤としてさらに優れる。 Further, a polyol having a number average molecular weight of 1000 to 15000 by urethane elongation by reaction of the polyester polyol (A) with a diisocyanate compound may be used as an adhesive. Since the polyol has a certain molecular weight component and a urethane bond, the polyol has an excellent oxygen barrier property, an excellent initial cohesive force, and is further excellent as an adhesive used during lamination.
3)前記(III)に係るポリエステル樹脂組成物について
 次に、前記(III)に係る樹脂組成物について説明する。
まず、(III)に係るポリエステルポリオール(A)は、3個以上の水酸基を有するポリエステルポリオール(I)にカルボン酸無水物又は多価カルボン酸を反応させることにより得られる少なくとも1個のカルボキシ基と2個以上の水酸基を有するものである。3個以上の水酸基を有するポリエステルポリオール(I)は多価カルボン酸または多価アルコールの一部を三価以上とすることで得られる。
3) About the polyester resin composition which concerns on said (III) Next, the resin composition which concerns on said (III) is demonstrated.
First, the polyester polyol (A) according to (III) includes at least one carboxy group obtained by reacting a polyester polyol (I) having three or more hydroxyl groups with a carboxylic acid anhydride or a polyvalent carboxylic acid. It has two or more hydroxyl groups. The polyester polyol (I) having three or more hydroxyl groups can be obtained by making a part of the polyvalent carboxylic acid or polyhydric alcohol trivalent or higher.
 ポリエステルポリオール(A)の多価カルボン酸成分および多価アルコール成分として、好ましくは、オルトフタル酸及びその無水物を少なくとも1種以上含む多価カルボン酸成分と、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含む多価アルコール成分からなる3個以上の水酸基を有するポリエステルポリオール(I)に、カルボン酸無水物又は多価カルボン酸を反応させることにより得られ、少なくとも1個のカルボキシ基と2個以上の水酸基を有するものである。 The polyvalent carboxylic acid component and the polyhydric alcohol component of the polyester polyol (A) are preferably a polyvalent carboxylic acid component containing at least one or more of orthophthalic acid and its anhydride, ethylene glycol, propylene glycol, butylene glycol, neo Carboxylic anhydride or polycarboxylic acid is reacted with polyester polyol (I) having three or more hydroxyl groups comprising at least one polyhydric alcohol component selected from the group consisting of pentyl glycol and cyclohexanedimethanol. And having at least one carboxy group and two or more hydroxyl groups.
(オルトフタル酸及びその無水物)
 オルトフタル酸及びその無水物は、骨格が非対称構造である。従って、得られるポリエステルの分子鎖の回転抑制が生じると推定され、これにより酸素バリア性に優れると推定している。また、この非対称構造に起因して非結晶性を示し、十分な基材密着性が付与され、接着力と酸素バリア性に優れると推定される。さらにドライラミネート接着剤として用いる場合には必須である溶媒溶解性も高いことで取扱い性にも優れる特徴を持つ。
(Orthophthalic acid and its anhydride)
Orthophthalic acid and its anhydride have an asymmetric structure in the skeleton. Therefore, it is presumed that the rotation of the molecular chain of the resulting polyester is suppressed, and it is presumed that this provides excellent oxygen barrier properties. Further, it is presumed that due to this asymmetric structure, it exhibits non-crystallinity, imparts sufficient substrate adhesion, and is excellent in adhesion and oxygen barrier properties. Furthermore, when used as a dry laminate adhesive, the solvent solubility, which is essential, is also high, so that it has excellent handling characteristics.
(多価カルボン酸 その他の成分)
 本発明のポリエステルポリオール(I)は、本発明の効果を損なわない範囲において、他の多価カルボン酸成分を共重合させてもよい。具体的には、脂肪族多価カルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等を、不飽和結合含有多価カルボン酸としては、無水マレイン酸、マレイン酸、フマル酸等を、脂環族多価カルボン酸としては1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等を、芳香族多価カルボン酸としては、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の無水物あるいはエステル形成性誘導体;p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の多塩基酸を単独であるいは二種以上の混合物で使用することができる。中でも、コハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸が好ましい。また、三価以上の多価カルボン酸として、トリメリット酸およびその酸無水物、ピロメリット酸及びその酸無水物等があげられるが、合成時のゲル化を防ぐ為には三価以上の多価カルボン酸としては三価カルボン酸が好ましい。
(Polyvalent carboxylic acid and other components)
The polyester polyol (I) of the present invention may be copolymerized with other polyvalent carboxylic acid components as long as the effects of the present invention are not impaired. Specifically, as the aliphatic polyvalent carboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, etc., as the unsaturated bond-containing polyvalent carboxylic acid, maleic anhydride, maleic acid, Fumaric acid, etc., 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid etc. as alicyclic polyvalent carboxylic acid, terephthalic acid, isophthalic acid, pyromellitic as aromatic polyvalent carboxylic acid Acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p '-Dicarboxylic acids and anhydrides or ester-forming derivatives of these dicarboxylic acids; p-hydroxybenzoic acid, p- ( Polybasic acids such as 2-hydroxyethoxy) benzoic acid and ester-forming derivatives of these dihydroxycarboxylic acids can be used alone or in a mixture of two or more. Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, and isophthalic acid are preferable. Trivalent or higher polyvalent carboxylic acids include trimellitic acid and its acid anhydride, pyromellitic acid and its acid anhydride, etc. In order to prevent gelation during synthesis, a trivalent or higher polyvalent carboxylic acid may be used. A trivalent carboxylic acid is preferred as the divalent carboxylic acid.
(多価アルコール成分)
 本発明で使用する多価アルコールは、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含むことが好ましい。中でも、酸素原子間の炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、エチレングリコールを使用することが最も好ましい。
(Polyhydric alcohol component)
The polyhydric alcohol used in the present invention preferably contains at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol. Among them, ethylene glycol is most preferably used because it is presumed that the smaller the number of carbon atoms between oxygen atoms, the less the molecular chain becomes excessively flexible and the less oxygen permeates.
(多価アルコール その他の成分)
 本発明では前述の多価アルコール成分を使用することが好ましいが、本発明の効果を損なわない範囲において、他の多価アルコール成分を共重合させてもよい。具体的には、脂肪族ジオールとしては1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、芳香族多価フェノールとして、ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ヒスフェノールF、テトラメチルビフェノールや、これらの、エチレンオキサイド伸長物、水添化脂環族を例示することができる。三価以上の多価アルコールとして、グリセリン、トリメチロールプロパン、トリメチロールエタン、トリス(2-ヒドロキシエチル)イソシアヌレート、1,2,4-ブタントリオール、ペンタエリスリトール、ジペンタエリスルトール等があげられるが、合成時のゲル化を防ぐ為には三価以上の多価アルコールとしては三価アルコールが好ましい。
(Polyhydric alcohol and other ingredients)
In the present invention, the above-mentioned polyhydric alcohol component is preferably used, but other polyhydric alcohol components may be copolymerized within a range not impairing the effects of the present invention. Specifically, aliphatic diols include 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, Triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, aromatic polyphenols, hydroquinone, resorcinol, catechol, naphthalene diol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, and ethylene Examples thereof include an oxide extension product and a hydrogenated alicyclic group. Examples of the trihydric or higher polyhydric alcohol include glycerin, trimethylolpropane, trimethylolethane, tris (2-hydroxyethyl) isocyanurate, 1,2,4-butanetriol, pentaerythritol, dipentaerythritol and the like. However, in order to prevent gelation during synthesis, the trihydric or higher polyhydric alcohol is preferably a trihydric alcohol.
 次に、本発明のポリエステルポリオール(I)とカルボン酸無水物又は多価カルボン酸との反応は、以下の様にして行う。 Next, the reaction between the polyester polyol (I) of the present invention and the carboxylic acid anhydride or polyvalent carboxylic acid is carried out as follows.
 即ち、前記ポリエステルポリオール(I)に、多価カルボン酸又はその酸無水物をポリエステルポリオール(I)の水酸基と反応させることにより得ることができる。ポリエステルポリオール(I)と多価カルボン酸との比率は反応後のポリエステルポリオール(A)の水酸基が2個以上必要であることより、多価カルボン酸はポリエステルポリオール(I)の水酸基の1/3以下と反応させることが好ましい。ここで用いられるカルボン酸無水物又は多価カルボン酸に制限はないが、多価カルボン酸とポリエステルポリオール(I)との反応時のゲル化を考慮すると、二価あるいは三価のカルボン酸無水物を使用することが好ましい。二価のカルボン酸無水物としては無水コハク酸、無水マレイン酸、1,2-シクロヘキサンジカルボン酸無水物、4-シクロヘキセン-1,2-ジカルボン酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、無水フタル酸、2,3-ナフタレンジカルボン酸無水物等が使用でき、三価のカルボン酸無水物としてはトリメリット酸無水物等が使用できる。 That is, it can be obtained by reacting the polyester polyol (I) with a polyvalent carboxylic acid or an acid anhydride thereof with a hydroxyl group of the polyester polyol (I). The ratio between the polyester polyol (I) and the polyvalent carboxylic acid is that 1 or more hydroxyl groups of the polyester polyol (A) after the reaction are required, so that the polyvalent carboxylic acid is 1/3 of the hydroxyl groups of the polyester polyol (I). It is preferable to react with: Although there is no restriction | limiting in the carboxylic acid anhydride or polyhydric carboxylic acid used here, when the gelatinization at the time of reaction with polyhydric carboxylic acid and polyester polyol (I) is considered, it is a bivalent or trivalent carboxylic acid anhydride. Is preferably used. Divalent carboxylic acid anhydrides include succinic anhydride, maleic anhydride, 1,2-cyclohexanedicarboxylic anhydride, 4-cyclohexene-1,2-dicarboxylic anhydride, 5-norbornene-2,3-dicarboxylic acid Anhydride, phthalic anhydride, 2,3-naphthalenedicarboxylic acid anhydride, and the like can be used, and trimellitic acid anhydride can be used as the trivalent carboxylic acid anhydride.
 前記ポリエステルポリオール(A)の数平均分子量は450~5000であると接着能と酸素バリア能とのバランスに優れる程度の架橋密度が得られるため特に好ましい。また硬化剤としては、後述のポリイソシアネートが最も好ましく、適度な反応時間を付与でき、接着強度と酸素バリア能に特に優れる。分子量が450より小さい場合、塗工時の接着剤の凝集力が小さくなりすぎ、ラミネート時にフィルムがズレたり、貼り合せたフィルムが浮き上がるといった不具合が起こり、逆に分子量が5000よりも高い場合、塗工時の粘度が高くなり過ぎて塗工が出来ないことや、粘着性が低い事よりラミネートができないといった不具合が発生する。また、数平均分子量は得られた水酸基価と設計上の水酸基の官能基数から計算により求めた。 The number average molecular weight of the polyester polyol (A) is particularly preferably from 450 to 5,000 because a crosslinking density with an excellent balance between adhesion ability and oxygen barrier ability can be obtained. As the curing agent, the polyisocyanate described below is most preferable, can give an appropriate reaction time, and is particularly excellent in adhesive strength and oxygen barrier ability. When the molecular weight is less than 450, the cohesive force of the adhesive at the time of coating becomes too small, causing the problem that the film shifts during lamination or the bonded film rises. Conversely, if the molecular weight is higher than 5000, The problem is that the viscosity at the time of construction is too high to be applied, and that the lamination is impossible due to low adhesiveness. The number average molecular weight was obtained by calculation from the obtained hydroxyl value and the number of functional groups of the designed hydroxyl group.
 本発明で使用するポリエステルポリオール(A)は、ガラス転移温度が-30℃~80℃の範囲が好ましい。より好ましくは0℃~60℃である。更に好ましくは25℃~60℃である。ガラス転移温度が80℃よりも高い場合、室温付近でのポリエステルポリオールの柔軟性が低くなることにより、基材への密着性が劣ることで接着力が低下するおそれがある。一方-30℃よりも低い場合、常温付近でのポリエステルポリオールの分子運動が激しいことにより十分な酸素バリア性が出ないおそれがある。 The polyester polyol (A) used in the present invention preferably has a glass transition temperature in the range of −30 ° C. to 80 ° C. More preferably, it is 0 ° C to 60 ° C. More preferably, it is 25 ° C to 60 ° C. When the glass transition temperature is higher than 80 ° C., the flexibility of the polyester polyol near room temperature is lowered, and thus the adhesiveness to the substrate may be deteriorated due to poor adhesion to the substrate. On the other hand, when the temperature is lower than −30 ° C., there is a possibility that sufficient oxygen barrier properties may not be obtained due to the intense molecular motion of the polyester polyol near room temperature.
 前記ポリエステルポリオール(A)の水酸基価が20~250であり、酸価が20~200であることが好ましい。水酸基価はJIS-K0070に記載の水酸基価測定方法にて、酸価はJIS-K0070に記載の酸価測定法にて、測定することができる。水酸基価が20mgKOH/gより小さい場合、分子量が大きすぎる為に粘度が高くなり、良好な塗工適性が得られない。逆に水酸基価が250mgKOH/gを超える場合、分子量が小さくなりすぎる為、硬化塗膜の架橋密度が高くなりすぎ、良好な接着強度が得られない。酸価が20mgKOH/gより小さい場合、分子間の相互作用が小さくなり、良好な酸素バリア性、良好な初期凝集力が得られない。逆に酸価が200mgKOH/gを超える場合、ポリエステルポリオール(A)とポリイソシアネート(B)との反応が早くなり過ぎ、良好な塗工適性が得られない。 It is preferable that the polyester polyol (A) has a hydroxyl value of 20 to 250 and an acid value of 20 to 200. The hydroxyl value can be measured by the hydroxyl value measuring method described in JIS-K0070, and the acid value can be measured by the acid value measuring method described in JIS-K0070. When the hydroxyl value is smaller than 20 mgKOH / g, the molecular weight is too large, the viscosity becomes high, and good coating suitability cannot be obtained. On the other hand, when the hydroxyl value exceeds 250 mgKOH / g, the molecular weight becomes too small, so that the crosslinking density of the cured coating film becomes too high, and good adhesive strength cannot be obtained. When the acid value is less than 20 mgKOH / g, the interaction between molecules becomes small, and good oxygen barrier properties and good initial cohesive force cannot be obtained. On the contrary, when the acid value exceeds 200 mgKOH / g, the reaction between the polyester polyol (A) and the polyisocyanate (B) becomes too fast, and good coating suitability cannot be obtained.
 更にポリエステルポリオール(A)をジイソシアネート化合物との反応によるウレタン伸長により数平均分子量1000~15000としたポリオールを接着剤として用いても良い。該ポリオールには一定以上の分子量成分とウレタン結合とが存在するために、優れた酸素バリア性を持つ上、初期凝集力に優れ、ラミネート時に使用する接着剤としてさらに優れる。 Further, a polyol having a number average molecular weight of 1000 to 15000 by urethane elongation by reaction of the polyester polyol (A) with a diisocyanate compound may be used as an adhesive. Since the polyol has a certain molecular weight component and a urethane bond, the polyol has an excellent oxygen barrier property, an excellent initial cohesive force, and is further excellent as an adhesive used during lamination.
(硬化剤)
 本発明で使用する硬化剤は、前記ポリエステル樹脂の水酸基と反応しうる硬化剤であれば特に限定はなく、ポリイソシアネートやエポキシ化合物等の公知の硬化剤を使用できる。中でも、接着性や耐レトルト性の観点から、ポリイソシアネートを使用することが好ましい。
(Curing agent)
The curing agent used in the present invention is not particularly limited as long as it is a curing agent capable of reacting with the hydroxyl group of the polyester resin, and known curing agents such as polyisocyanates and epoxy compounds can be used. Among these, it is preferable to use polyisocyanate from the viewpoints of adhesiveness and retort resistance.
 ポリイソシアネート化合物としては芳香族、脂肪族のジイソシアネート、3価以上のポリイソシアネートがあり、低分子化合物、高分子化合物のいずれでもよい。たとえば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネート或いはこれらのイソシアネート化合物の3量体、およびこれらのイソシアネート化合物の過剰量と、たとえばエチレングリコール、プロピレングリコール、メタキシリレンアルコール、1,3-ビスヒドロキシエチルベンゼン、1,4-ビスヒドロキシエチルベンゼン、トリメチロールプロパン、グリセロール、ペンタエリスリトール、エリスリトール、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メタキシリレンジアミンなどの低分子活性水素化合物およびそのアルキレンオキシド付加物、各種ポリエステル樹脂類、ポリエーテルポリオール類、ポリアミド類の高分子活性水素化合物などと反応させて得られるアダクト体が挙げられる。 Polyisocyanate compounds include aromatic and aliphatic diisocyanates and trivalent or higher polyisocyanates, which may be either low molecular compounds or high molecular compounds. For example, tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate or trimers of these isocyanate compounds, and excess of these isocyanate compounds Amount and, for example, ethylene glycol, propylene glycol, metaxylylene alcohol, 1,3-bishydroxyethylbenzene, 1,4-bishydroxyethylbenzene, trimethylolpropane, glycerol, pentaerythritol, erythritol, sorbitol, ethylenediamine, monoethanolamine, Diethanolamine, triethanol Examples include adducts obtained by reacting low molecular active hydrogen compounds such as amines and metaxylylenediamines and their alkylene oxide adducts, various polyester resins, polyether polyols, and high molecular active hydrogen compounds of polyamides. .
 イソシアネート化合物としてはブロック化イソシアネートであってもよい。イソシアネートブロック化剤としては、例えばフェノール、チオフェノール、メチルチオフェノール、エチルチオフェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノールなどのフェノール類、アセトキシム、メチルエチルケトオキシム、シクロヘキサノンオキシムなそのオキシム類、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、エチレンクロルヒドリン、1,3-ジクロロ-2-プロパノールなどのハロゲン置換アルコール類、t-ブタノール、t-ペンタノール、などの第3級アルコール類、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピロラクタムなどのラクタム類が挙げられ、その他にも芳香族アミン類、イミド類、アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステルなどの活性メチレン化合物、メルカプタン類、イミン類、尿素類、ジアリール化合物類重亜硫酸ソーダなども挙げられる。ブロック化イソシアネートは上記イソシアネート化合物とイソシアネートブロック化剤とを従来公知の適宜の方法より付加反応させて得られる。 The isocyanate compound may be a blocked isocyanate. As the isocyanate blocking agent, for example, phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, chlorophenol, acetoxime, methyl ethyl ketoxime, cyclohexanone oxime oximes, methanol, Alcohols such as ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; tertiary alcohols such as t-butanol and t-pentanol; Examples include lactams such as caprolactam, δ-valerolactam, γ-butyrolactam, β-propylolactam, and other aromatic amines, imides, acetylacetate. , Acetoacetic ester, active methylene compounds such as malonic acid ethyl ester, mercaptans, imines, ureas, and also such as diaryl compounds sodium bisulfite. The blocked isocyanate can be obtained by subjecting the above isocyanate compound and an isocyanate blocking agent to an addition reaction by a conventionally known appropriate method.
 また、本発明で用いるポリエステル樹脂の末端にカルボン酸が残存した場合には、エポキシ化合物を硬化剤として用いることが出来る。エポキシ化合物としてはビスフェノールAのジグリシジルエーテルおよびそのオリゴマー、水素化ビスフェノールAのジグリシジルエーテルおよびそのオリゴマー、オルソフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、p-オキシ安息香酸ジグリシジルエステル、テトラハイドロフタル酸ジグリシジルエステル、ヘキサハイドロフタル酸ジグリシジルエステル、コハク酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテルおよびポリアルキレングリコールジグリシジルエーテル類、トリメリット酸トリグリシジルエステル、トリグリシジルイソシアヌレート、1,4-ジグリシジルオキシベンゼン、ジグリシジルプロピレン尿素、グリセロールトリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グリセロールアルキレンオキサイド付加物のトリグリシジルエーテルなどを挙げることができる。 Further, when carboxylic acid remains at the terminal of the polyester resin used in the present invention, an epoxy compound can be used as a curing agent. Epoxy compounds include bisphenol A diglycidyl ether and oligomers thereof, hydrogenated bisphenol A diglycidyl ether and oligomers thereof, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, and p-oxybenzoic acid diglyceride. Glycidyl ester, tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, succinic acid diglycidyl ester, adipic acid diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1 , 4-Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether and polyalkylene glycol Cole diglycidyl ethers, trimellitic acid triglycidyl ester, triglycidyl isocyanurate, 1,4-diglycidyloxybenzene, diglycidyl propylene urea, glycerol triglycidyl ether, trimethylolethane triglycidyl ether, trimethylolpropane triglycidyl ether , Pentaerythritol tetraglycidyl ether, triglycidyl ether of glycerol alkylene oxide adduct, and the like.
 エポキシ化合物を硬化剤として用いる場合には、硬化を促進する目的で汎用公知のエポキシ硬化促進剤を本発明の目的であるガスバリア性が損なわれない範囲で適宜添加してもよい。 When using an epoxy compound as a curing agent, a general-purpose known epoxy curing accelerator may be appropriately added for the purpose of accelerating curing as long as the gas barrier property which is the object of the present invention is not impaired.
 中でも、硬化剤が前記ポリイソシアネートであることが好ましく、前記メタキシレン骨格を含むポリイソシアネートであると、ウレタン基の水素結合だけでなく芳香環同士のπ-πスタッキングによってガスバリア性を向上させることが出来るという理由から好ましい。 Among them, the curing agent is preferably the polyisocyanate, and when the polyisocyanate includes the metaxylene skeleton, the gas barrier property can be improved by not only hydrogen bonding of the urethane group but also π-π stacking of aromatic rings. It is preferable because it can be done.
 前記メタキシレン骨格を含むポリイソシアネートとしては、キシリレンジイソシアネートの3量体、アミンとの反応により合成されるビューレット体、アルコールと反応してなるアダクト体があるが、3量体、ビューレット体と比べ、ポリイソシアネートのドライラミネート接着剤に用いられる有機溶剤への溶解性が得られやすいという理由からアダクト体がより好ましい。アダクト体としては、上記の低分子活性水素化合物の中から適宜選択されるアルコールと反応してなるアダクト体が使用できるが、中でも、トリメチロールプロパン、グリセロール、トリエタノールアミン、メタキシレンジアミンのエチレンオキシド付加物とのアダクト体が特に好ましい。 Examples of the polyisocyanate containing a metaxylene skeleton include xylene diisocyanate trimer, burette synthesized by reaction with amine, and adduct formed by reaction with alcohol. The adduct body is more preferable because the solubility of the polyisocyanate in the organic solvent used for the dry laminate adhesive is easily obtained. As the adduct, an adduct obtained by reacting with an alcohol appropriately selected from the above low molecular active hydrogen compounds can be used. Among them, addition of ethylene oxide of trimethylolpropane, glycerol, triethanolamine, metaxylenediamine, etc. Adduct bodies with objects are particularly preferred.
 (I)に係る樹脂組成物において、前記グリセロール骨格を有するポリエステル樹脂化合物と前記硬化剤とは、グリセロール骨格を有するポリエステル樹脂化合物と硬化剤との割合がグリセロール骨格を有するポリエステル樹脂化合物の水酸基と硬化剤の反応成分とが1/0.5~1/5(当量比)となるように配合することが好ましく、より好ましくは1/1~1/3である。該範囲を超えて硬化剤成分が過剰な場合、余剰な硬化剤成分が残留することで接着後に接着層からブリードアウトするおそれがあり、一方、硬化剤成分が不足の場合には接着強度不足のおそれがある。 In the resin composition according to (I), the ratio of the polyester resin compound having a glycerol skeleton and the curing agent is that the ratio of the polyester resin compound having a glycerol skeleton and the curing agent is a hydroxyl group of the polyester resin compound having a glycerol skeleton and curing. It is preferable to blend such that the reaction component of the agent is 1 / 0.5 to 1/5 (equivalent ratio), more preferably 1/1 to 1/3. If the curing agent component is excessive beyond this range, the excess curing agent component may be left out and bleed out from the adhesive layer after bonding. On the other hand, if the curing agent component is insufficient, the adhesive strength is insufficient. There is a fear.
 前記硬化剤は、その種類に応じて選択された公知の硬化剤或いは促進剤を併用することもできる。例えば接着促進剤としては、加水分解性アルコキシシラン化合物等のシランカップリング剤、チタネート系カップリング剤、アルミニウム系等のカップリング剤、エポキシ樹脂等が挙げられる。シランカップリング剤やチタネート系カップリング剤は、各種フィルム材料に対する接着剤を向上させる意味でも好ましい。 The above-mentioned curing agent can be used in combination with a known curing agent or accelerator selected according to the type. Examples of the adhesion promoter include silane coupling agents such as hydrolyzable alkoxysilane compounds, titanate coupling agents, aluminum coupling agents, and epoxy resins. Silane coupling agents and titanate coupling agents are also preferred in terms of improving the adhesive to various film materials.
 (II)に係る樹脂組成物において、前記ポリエステルポリオール(A)と前記硬化剤とは、ポリエステルポリオール(A)と硬化剤との割合がポリエステルポリオール(A)の水酸基と硬化剤の反応成分とが1/0.5~1/10(当量比)となるように配合することが好ましく、より好ましくは1/1~1/5である。該範囲を超えて硬化剤成分が過剰な場合、余剰な硬化剤成分が残留することで接着後に接着層からブリードアウトするおそれがあり、一方硬化剤成分が不足の場合には接着強度不足のおそれがある。 In the resin composition according to (II), the polyester polyol (A) and the curing agent are such that the ratio of the polyester polyol (A) and the curing agent is a hydroxyl group of the polyester polyol (A) and a reaction component of the curing agent. It is preferably blended so as to be 1 / 0.5 to 1/10 (equivalent ratio), more preferably 1/1 to 1/5. If the curing agent component is excessive beyond this range, the excess curing agent component may be left out and bleed out from the adhesive layer after bonding. On the other hand, if the curing agent component is insufficient, the adhesive strength may be insufficient. There is.
 重合性二重結合の重合を促進する為の触媒として公知の重合触媒を使用することができる。重合触媒としては遷移金属錯体があげられる。遷移金属錯体は、重合性二重結合を酸化重合させる能力を備える化合物であれば特に限定しないが、種々の金属或いはその錯体を用いることができる。例えば、コバルト、マンガン、鉛、カルシウム、セリウム、ジルコニウム、亜鉛、鉄、銅等の金属と、オクチル酸、ナフテン酸、ネオデカン酸、ステアリン酸、樹脂酸、トール油脂肪酸、桐油脂肪酸、アマニ油脂肪酸、大豆油脂肪酸等との塩を用いることができる。遷移金属錯体はポリエステルポリオール(A)に対して0~10質量部が好ましく、より好ましくは0~3質量部である。 A known polymerization catalyst can be used as a catalyst for promoting polymerization of a polymerizable double bond. Examples of the polymerization catalyst include transition metal complexes. Although a transition metal complex will not be specifically limited if it is a compound provided with the capability to oxidatively polymerize a polymerizable double bond, A various metal or its complex can be used. For example, metals such as cobalt, manganese, lead, calcium, cerium, zirconium, zinc, iron, copper, octyl acid, naphthenic acid, neodecanoic acid, stearic acid, resin acid, tall oil fatty acid, tung oil fatty acid, linseed oil fatty acid, A salt with soybean oil fatty acid or the like can be used. The transition metal complex is preferably 0 to 10 parts by mass, more preferably 0 to 3 parts by mass with respect to the polyester polyol (A).
 前記硬化剤は、その種類に応じて選択された公知の硬化剤或いは促進剤を併用することもできる。例えば接着促進剤としては、加水分解性アルコキシシラン化合物等のシランカップリング剤、チタネート系カップリング剤、アルミニウム系等のカップリング剤、エポキシ樹脂等が挙げられる。シランカップリング剤やチタネート系カップリング剤は、各種フィルム材料に対する接着剤を向上させる意味でも好ましい。 The above-mentioned curing agent can be used in combination with a known curing agent or accelerator selected according to the type. Examples of the adhesion promoter include silane coupling agents such as hydrolyzable alkoxysilane compounds, titanate coupling agents, aluminum coupling agents, and epoxy resins. Silane coupling agents and titanate coupling agents are also preferred in terms of improving the adhesive to various film materials.
 また(III)に係る樹脂組成物において、前記ポリエステルポリオール(A)と前記硬化剤とは、ポリエステルポリオール(A)と硬化剤との割合がポリエステルポリオール(A)の水酸基と硬化剤の反応成分とが1/0.5~1/10(当量比)となるように配合することが好ましく、より好ましくは1/1~1/5である。該範囲を超えて硬化剤成分が過剰な場合、余剰な硬化剤成分が残留することで接着後に接着層からブリードアウトするおそれがあり、一方、硬化剤成分が不足の場合には接着強度不足のおそれがある。 In the resin composition according to (III), the polyester polyol (A) and the curing agent are such that the ratio of the polyester polyol (A) and the curing agent is a reaction component of the hydroxyl group of the polyester polyol (A) and the curing agent. Is preferably 1 / 0.5 to 1/10 (equivalent ratio), more preferably 1/1 to 1/5. If the curing agent component is excessive beyond this range, the excess curing agent component may be left out and bleed out from the adhesive layer after bonding. On the other hand, if the curing agent component is insufficient, the adhesive strength is insufficient. There is a fear.
 前記硬化剤は、その種類に応じて選択された公知の硬化剤或いは促進剤を併用することもできる。例えば接着促進剤としては、加水分解性アルコキシシラン化合物等のシランカップリング剤、チタネート系カップリング剤、アルミニウム系等のカップリング剤、エポキシ樹脂等が挙げられる。シランカップリング剤やチタネート系カップリング剤は、各種フィルム材料に対する接着剤を向上させる意味でも好ましい。 The above-mentioned curing agent can be used in combination with a known curing agent or accelerator selected according to the type. Examples of the adhesion promoter include silane coupling agents such as hydrolyzable alkoxysilane compounds, titanate coupling agents, aluminum coupling agents, and epoxy resins. Silane coupling agents and titanate coupling agents are also preferred in terms of improving the adhesive to various film materials.
(その他の成分)
 本発明のポリエステル樹脂組成物は、ガスバリア性を損なわない範囲で、各種の添加剤を配合してもよい。添加剤としては、例えば、シリカ、アルミナ、マイカ、タルク、アルミニウムフレーク、ガラスフレークなどの無機充填剤、層状無機化合物、安定剤(酸化防止剤、熱安定剤、紫外線吸収剤等)、可塑剤、帯電防止剤、滑剤、ブロッキング防止剤、着色剤、フィラー、結晶核剤等が例示できる。膨潤性無機層状化合物としては、例えば、含水ケイ酸塩(フィロケイ酸塩鉱物等)、カオリナイト族粘土鉱物(ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライト等)、アンチゴライト族粘土鉱物(アンチゴライト、クリソタイル等)、スメクタイト族粘土鉱物(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイト等)、バーミキュライト族粘土鉱物(バーミキュライト等)、雲母又はマイカ族粘土鉱物(白雲母、金雲母等の雲母、マーガライト、テトラシリリックマイカ、テニオライト等)が挙げられる。これらの鉱物は天然粘土鉱物であっても合成粘土鉱物であってもよい。膨潤性無機層状化合物は単独で又は二種以上組み合わせて使用される。
(Other ingredients)
The polyester resin composition of the present invention may contain various additives as long as the gas barrier property is not impaired. Examples of additives include inorganic fillers such as silica, alumina, mica, talc, aluminum flakes, and glass flakes, layered inorganic compounds, stabilizers (antioxidants, heat stabilizers, ultraviolet absorbers, etc.), plasticizers, Examples thereof include an antistatic agent, a lubricant, an antiblocking agent, a colorant, a filler, and a crystal nucleating agent. Examples of swellable inorganic layered compounds include hydrous silicates (phyllosilicate minerals, etc.), kaolinite group clay minerals (halloysite, kaolinite, enderite, dickite, nacrite, etc.), antigolite group clay minerals (anti Golite, chrysotile, etc.), smectite group clay minerals (montmorillonite, beidellite, nontronite, saponite, hectorite, soconite, stevensite, etc.), vermiculite group clay minerals (vermiculite etc.), mica or mica group clay minerals (white mica, Mica such as phlogopite, margarite, tetrasilic mica, teniolite, etc.). These minerals may be natural clay minerals or synthetic clay minerals. The swellable inorganic layered compounds are used alone or in combination of two or more.
 また、硬化塗膜の耐酸性を向上させる方法として公知の酸無水物を併用することもできる。酸無水物としては、例えば、フタル酸無水物、コハク酸無水物、ヘット酸無水物、ハイミック酸無水物、マレイン酸無水物、テトラヒドロフタル酸無水物、ヘキサヒドラフタル酸無水物、テトラプロムフタル酸無水物、テトラクロルフタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノテトラカルボン酸無水物、2,3,6,7-ナフタリンテトラカルボン酸2無水物、5-(2,5-オキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、スチレン無水マレイン酸共重合体等が挙げられる。 Also, known acid anhydrides can be used in combination as a method for improving the acid resistance of the cured coating film. Examples of the acid anhydride include phthalic acid anhydride, succinic acid anhydride, het acid anhydride, hymic acid anhydride, maleic acid anhydride, tetrahydrophthalic acid anhydride, hexahydraphthalic acid anhydride, tetraprom phthalic acid Anhydride, tetrachlorophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenotetracarboxylic anhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 5- (2 , 5-oxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, styrene maleic anhydride copolymer and the like.
 また、必要に応じて、更に酸素捕捉機能を有する化合物等を添加してもよい。酸素捕捉機能を有する化合物としては、例えば、ヒンダードフェノール類、ビタミンC、ビタミンE、有機燐化合物、没食子酸、ピロガロール等の酸素と反応する低分子有機化合物や、コバルト、マンガン、ニッケル、鉄、銅等の遷移金属化合物等が挙げられる。 Further, if necessary, a compound having an oxygen scavenging function may be added. Examples of the compound having an oxygen scavenging function include low molecular organic compounds that react with oxygen such as hindered phenols, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, pyrogallol, cobalt, manganese, nickel, iron, Examples include transition metal compounds such as copper.
 また、塗布直後の各種フィルム材料に対する粘着性を向上させるために、必要に応じてキシレン樹脂、テルペン樹脂、フェノール樹脂、ロジン樹脂などの粘着付与剤を添加しても良い。これらを添加する場合には、エポキシ樹脂とエポキシ樹脂硬化剤の総量100質量部に対して0.01~5質量部の範囲が好ましい。 Moreover, in order to improve the adhesiveness to various film materials immediately after coating, a tackifier such as a xylene resin, a terpene resin, a phenol resin, or a rosin resin may be added as necessary. When these are added, the range of 0.01 to 5 parts by mass is preferable with respect to 100 parts by mass of the total amount of the epoxy resin and the epoxy resin curing agent.
 また、重合性二重結合を反応させる方法として活性エネルギー線を使用することもできる。活性エネルギー線としては公知の技術が使用でき、電子線、紫外線、或いはγ線等の電離放射線等を照射して硬化させることができる。紫外線で硬化させる場合、高圧水銀灯、エキシマランプ、メタルハライドランプ等を備えた公知の紫外線照射装置を使用することができる。 Moreover, an active energy ray can also be used as a method of reacting a polymerizable double bond. A known technique can be used as the active energy ray, and it can be cured by irradiation with ionizing radiation such as electron beam, ultraviolet ray, or γ ray. In the case of curing with ultraviolet rays, a known ultraviolet irradiation device equipped with a high pressure mercury lamp, an excimer lamp, a metal halide lamp or the like can be used.
 紫外線を照射して硬化させる場合には、必要に応じて、紫外線の照射によりラジカル等を発生する光(重合)開始剤をポリエステルポリオール(A)100質量部に対して0.1~20質量部程度添加することが好ましい。 In the case of curing by irradiating with ultraviolet rays, if necessary, 0.1 to 20 parts by mass of a light (polymerization) initiator that generates radicals and the like by irradiation with ultraviolet rays with respect to 100 parts by mass of the polyester polyol (A). It is preferable to add a certain amount.
 ラジカル発生型の光(重合)開始剤としては、ベンジル、ベンゾフェノン、ミヒラーズケトン、2-クロロチオキサントン、2,4-ジエチルチオキサントン等の水素引き抜きタイプや、ベンゾインエチルエーテル、ジエトキシアセトフェノン、ベンジルメチルケタール、ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチルフェニルケトン等の光開裂タイプが挙げられる。これらの中から単独或いは複数のものを組み合わせて使用することができる。 Radical-generating photo (polymerization) initiators include hydrogen abstraction types such as benzyl, benzophenone, Michler's ketone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, diethoxyacetophenone, benzylmethyl ketal, hydroxy Examples include photocleavage types such as cyclohexyl phenyl ketone and 2-hydroxy-2-methylphenyl ketone. These can be used alone or in combination.
 (I)~(III)に係る樹脂組成物は、ポリエステルポリオール(A)とポリイソシアネート(B)との硬化塗膜のガラス転移温度は-30℃~80℃の範囲が好ましい。より好ましくは0℃~60℃である。更に好ましくは25℃~60℃である。ガラス転移温度が80℃よりも高すぎる場合、室温付近でのポリエステルポリオールの柔軟性が低くなることにより、基材への密着性が低下するおそれがある。一方-30℃よりも低すぎる場合、常温付近でのポリエステルポリオールの分子運動が激しいことにより十分な酸素バリア性が出ないおそれがある。 In the resin compositions according to (I) to (III), the glass transition temperature of the cured coating film of the polyester polyol (A) and the polyisocyanate (B) is preferably in the range of −30 ° C. to 80 ° C. More preferably, it is 0 ° C to 60 ° C. More preferably, it is 25 ° C to 60 ° C. When the glass transition temperature is too higher than 80 ° C., the flexibility of the polyester polyol near the room temperature is lowered, which may reduce the adhesion to the substrate. On the other hand, when the temperature is lower than −30 ° C., there is a possibility that sufficient oxygen barrier properties may not be obtained due to intense molecular motion of the polyester polyol at around room temperature.
 本発明のポリエステル樹脂組成物を硬化させてなるガスバリア性多層フィルムは、ポリエステル樹脂組成物塗工液を基材となるフィルムに塗布、硬化させることによって得られる。塗工液は溶剤型又は無溶剤型のいずれの形態であってもよい。溶剤型の場合、溶剤はポリエステル樹脂及び硬化剤の製造時に反応媒体として使用され、更に塗装時に希釈剤として使用される。使用できる溶剤としては例えば酢酸エチル、酢酸ブチル、セロソルブアセテート等のエステル類、アセトン、メチルエチルケトン、イソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、トルエン、キシレン等の芳香族炭化水素類、メチレンクロリド、エチレンクロリド等のハロゲン化炭化水素類、ジメチルスルホキシド、ジメチルスルホアミド等が挙げられる。特に本発明のポリエステル樹脂組成物はこれらのうち酢酸エチルやメチルエチルケトン溶剤への溶解性に優れることから、酢酸エチルやメチルエチルケトンを使用するのが好ましい。 The gas barrier multilayer film obtained by curing the polyester resin composition of the present invention is obtained by applying and curing a polyester resin composition coating liquid on a film serving as a base material. The coating liquid may be either a solvent type or a solventless type. In the case of the solvent type, the solvent is used as a reaction medium during the production of the polyester resin and the curing agent, and is further used as a diluent during coating. Examples of solvents that can be used include esters such as ethyl acetate, butyl acetate and cellosolve acetate, ketones such as acetone, methyl ethyl ketone, isobutyl ketone and cyclohexanone, ethers such as tetrahydrofuran and dioxane, and aromatic hydrocarbons such as toluene and xylene. , Halogenated hydrocarbons such as methylene chloride and ethylene chloride, dimethyl sulfoxide, dimethyl sulfoamide and the like. In particular, since the polyester resin composition of the present invention is excellent in solubility in ethyl acetate or methyl ethyl ketone solvent, it is preferable to use ethyl acetate or methyl ethyl ketone.
 本発明のポリエステル樹脂の塗工方法としては特に限定はなく公知の方法で行えばよい。例えば、粘度が調整できる溶剤型の場合は、グラビアロール塗工方式等で塗布することが多い。また無溶剤型で、室温での粘度が高くグラビアロール塗工が適さない場合は、加温しながらロールコーターで塗工することもできる。ロールコーターを使用する場合は、本発明のガスバリア性ポリエステル樹脂組成物の粘度が500~2500mPa・s程度となるように室温~120℃程度まで加熱した状態で、塗工することが好ましい。 The method for applying the polyester resin of the present invention is not particularly limited, and may be performed by a known method. For example, in the case of a solvent type whose viscosity can be adjusted, it is often applied by a gravure roll coating method or the like. Moreover, when it is a solventless type and has a high viscosity at room temperature and is not suitable for gravure roll coating, it can be coated with a roll coater while heating. When using a roll coater, the coating is preferably performed in a state where the gas barrier polyester resin composition of the present invention is heated from room temperature to about 120 ° C. so that the viscosity is about 500 to 2500 mPa · s.
 本発明のポリエステル樹脂組成物は、ガスバリア性ポリエステル樹脂組成物として、ポリマー、紙、金属などに対し、ガスバリア性を必要とする各種用途のガスバリア性ポリエステル樹脂組成物としても使用できる。以下具体的用途の1つとしてフィルムラミネート用ガスバリア性ポリエステル樹脂組成物について説明する。 The polyester resin composition of the present invention can be used as a gas barrier polyester resin composition for various applications that require gas barrier properties against polymers, paper, metals, etc. as a gas barrier polyester resin composition. Hereinafter, a gas barrier polyester resin composition for film lamination will be described as one specific application.
 本発明のポリエステル樹脂組成物を硬化されてなるガスバリア性多層フィルムは、フィルムラミネート用ガスバリア性多層フィルムとして使用できる。 The gas barrier multilayer film obtained by curing the polyester resin composition of the present invention can be used as a gas barrier multilayer film for film lamination.
 本発明で使用する積層用のフィルムは、特に限定はなく、所望の用途に応じた熱可塑性樹脂フィルムを適宜選択することができる。例えば食品包装用としては、PETフィルム、ポリスチレンフィルム、ポリアミドフィルム、ポリアクリロニトリルフィルム、ポリエチレンフィルム(LLDPE:低密度ポリエチレンフィルム、HDPE:高密度ポリエチレンフィルム)やポリプロピレンフィルム(CPP:無延伸ポリプロピレンフィルム、OPP:二軸延伸ポリプロピレンフィルム)等のポリオレフィンフィルム、ポリビニルアルコールフィルム、エチレン-ビニルアルコール共重合体フィルム等が挙げられる。これらは延伸処理を施してあってもよい。延伸処理方法としては、押出成膜法等で樹脂を溶融押出してシート状にした後、同時二軸延伸或いは逐次二軸延伸を行うことが一般的である。また逐次二軸延伸の場合は、はじめに縦延伸処理を行い、次に横延伸を行うことが一般的である。具体的にはロール間の速度差を利用した縦延伸とテンターを用いた横延伸を組み合わせる方法が多く用いられる。 The film for lamination used in the present invention is not particularly limited, and a thermoplastic resin film can be appropriately selected according to a desired application. For example, for food packaging, PET film, polystyrene film, polyamide film, polyacrylonitrile film, polyethylene film (LLDPE: low density polyethylene film, HDPE: high density polyethylene film) and polypropylene film (CPP: unstretched polypropylene film, OPP: Examples thereof include polyolefin films such as biaxially stretched polypropylene film), polyvinyl alcohol films, and ethylene-vinyl alcohol copolymer films. These may be subjected to stretching treatment. As the stretching treatment method, it is common to perform simultaneous biaxial stretching or sequential biaxial stretching after the resin is melt-extruded by extrusion film forming method or the like to form a sheet. Further, in the case of sequential biaxial stretching, it is common to first perform longitudinal stretching and then perform lateral stretching. Specifically, a method of combining longitudinal stretching using a speed difference between rolls and transverse stretching using a tenter is often used.
 また、フィルム表面には、膜切れやはじきなどの欠陥のない接着層が形成されるように必要に応じて火炎処理やコロナ放電処理などの各種表面処理を施してもよい。 In addition, the surface of the film may be subjected to various surface treatments such as flame treatment and corona discharge treatment as necessary so that an adhesive layer free from defects such as film breakage and repellency is formed.
 前記熱可塑性樹脂フィルムの一方に本発明のガスバリア性ポリエステル樹脂組成物を塗布した後に乾燥工程、エージング工程を経ることで得られた本発明のポリエステル樹脂組成物を硬化させてなるガスバリア性多層フィルムを公知のドライラミネート接着剤を用いて、もう一方の熱可塑性樹脂フィルムを重ねてラミネーションにより貼り合わせることで、ガスバリア性多層フィルムが得られる。ラミネーション方法には、ドライラミネーション、ノンソルベントラミネーション、押出しラミネーション等公知のラミネーションを用いることが可能である。ドライラミネーション方法は、具体的には、基材フィルムの一方に本発明のガスバリア性ポリエステル樹脂組成物をグラビアロール方式で塗工後、もう一方の基材フィルムを重ねてドライラミネーション(乾式積層法)により貼り合わせる。ラミネートロールの温度は室温~60℃程度が好ましい。またノンソルベントラミネーションは基材フィルムに予め室温~120℃程度に加熱しておいた本発明のガスバリア性ポリエステル樹脂組成物を室温~120℃程度に加熱したロールコーターなどのロールにより塗布後、直ちにその表面に新たなフィルム材料を貼り合わせることによりラミネートフィルムを得ることができる。ラミネート圧力は、10~300kg/cm程度が好ましい。 A gas barrier multilayer film obtained by curing the polyester resin composition of the present invention obtained by applying the gas barrier polyester resin composition of the present invention to one of the thermoplastic resin films and then passing through a drying step and an aging step. A gas barrier multilayer film can be obtained by laminating another thermoplastic resin film and laminating them together by lamination using a known dry laminate adhesive. As the lamination method, known lamination such as dry lamination, non-solvent lamination, extrusion lamination, etc. can be used. Specifically, the dry lamination method is a dry lamination (dry lamination method) in which the gas barrier polyester resin composition of the present invention is applied to one of the base films by a gravure roll method, and the other base film is stacked. Paste together. The temperature of the laminate roll is preferably about room temperature to 60 ° C. Non-solvent lamination is applied immediately after applying the gas barrier polyester resin composition of the present invention, which has been heated to room temperature to about 120 ° C., on a base film with a roll such as a roll coater heated to room temperature to about 120 ° C. A laminate film can be obtained by pasting a new film material on the surface. The laminating pressure is preferably about 10 to 300 kg / cm 2 .
 押出しラミネート法の場合には、基材フィルムに接着補助剤(アンカーコート剤)として本発明のガスバリア性ポリエステル樹脂組成物の有機溶剤溶液をグラビアロールなどのロールにより塗布し、室温~140℃で溶剤の乾燥、硬化反応を行なった後に、押出し機により溶融させたポリマー材料をラミネートすることによりラミネートフィルムを得ることができる。溶融させるポリマー材料としては低密度ポリエチレン樹脂や直線状低密度ポリエチレン樹脂、エチレン-酢酸ビニル共重合体樹脂などのポリオレフィン系樹脂が好ましい。 In the case of the extrusion laminating method, an organic solvent solution of the gas barrier polyester resin composition of the present invention is applied to a base film as an adhesion aid (anchor coating agent) with a roll such as a gravure roll, and the solvent is used at room temperature to 140 ° C. After performing the drying and curing reaction, a laminated film can be obtained by laminating the polymer material melted by the extruder. The polymer material to be melted is preferably a polyolefin resin such as a low density polyethylene resin, a linear low density polyethylene resin, or an ethylene-vinyl acetate copolymer resin.
 また、本発明のガスバリア性多層フィルムは、作製後エージングを行うことが好ましい。エージング条件は、硬化剤としてポリイソシアネートを使用する場合であれば、室温~80℃で、12~240時間の間であり、この間に、ポリエステル樹脂と硬化剤とが反応し、接着強度が生じる。 Further, the gas barrier multilayer film of the present invention is preferably subjected to aging after production. If polyisocyanate is used as a curing agent, the aging condition is from room temperature to 80 ° C. for 12 to 240 hours, during which the polyester resin and the curing agent react to produce adhesive strength.
 本発明では、さらに高いバリア機能を付与するために、必要に応じてアルミニウム等の金属、或いはシリカやアルミナ等の金属酸化物の蒸着層を積層したフィルムを併用してもよい。 In the present invention, in order to give a higher barrier function, a film in which a vapor deposition layer of a metal such as aluminum or a metal oxide such as silica or alumina may be laminated as necessary.
 本発明のガスバリア性ポリエステル樹脂組成物は、同種又は異種の複数の樹脂フィルムを接着してなる積層フィルム用のガスバリア性ポリエステル樹脂組成物として好ましく使用できる。樹脂フィルムは、目的に応じて適宜選択すればよいが、例えば包装材として使用する際は、最外層をPET、OPP、ポリアミドから選ばれた熱可塑性樹脂フィルムを使用し、最内層を無延伸ポリプロピレン(以下CPPと略す)、低密度ポリエチレンフィルム(以下LLDPEと略す)から選ばれる熱可塑性樹脂フィルムを使用した2層からなる複合フィルム、或いは、例えばPET、ポリアミド、OPPから選ばれた最外層を形成する熱可塑性樹脂フィルムと、OPP、PET、ポリアミドから選ばれた中間層を形成する熱可塑性樹脂フィルム、CPP、LLDPEから選ばれた最内層を形成する熱可塑性樹脂フィルムを使用した3層からなる複合フィルム、さらに、例えばOPP、PET、ポリアミドから選ばれた最外層を形成する熱可塑性樹脂フィルムと、PET、ナイロンから選ばれた第1中間層を形成する熱可塑製フィルムとPET、ポリアミドから選ばれた第2中間層を形成する熱可塑製フィルム、LLDPE、CPPから選ばれた最内層を形成する熱可塑性樹脂フィルムを使用した4層からなる複合フィルムは、酸素及び水蒸気バリア性フィルムとして、食品包装材として好ましく使用できる。このように本発明のガスバリア性ポリエステル樹脂組成物の用途はPET/CPPフィルムには限定されずに広く用いることができる。 The gas barrier polyester resin composition of the present invention can be preferably used as a gas barrier polyester resin composition for a laminated film formed by bonding a plurality of the same or different resin films. The resin film may be appropriately selected depending on the purpose. For example, when used as a packaging material, the outermost layer is a thermoplastic resin film selected from PET, OPP, and polyamide, and the innermost layer is unstretched polypropylene. (Hereinafter abbreviated as CPP), a composite film consisting of two layers using a thermoplastic resin film selected from a low density polyethylene film (hereinafter abbreviated as LLDPE), or an outermost layer selected from, for example, PET, polyamide and OPP A three-layer composite using a thermoplastic resin film, a thermoplastic resin film that forms an intermediate layer selected from OPP, PET, and polyamide, and a thermoplastic resin film that forms an innermost layer selected from CPP and LLDPE Heat to form an outermost layer selected from a film, for example, OPP, PET, polyamide Selected from a plastic film, a thermoplastic film forming a first intermediate layer selected from PET and nylon, and a thermoplastic film forming a second intermediate layer selected from PET and polyamide, LLDPE, and CPP A composite film composed of four layers using a thermoplastic resin film forming the innermost layer can be preferably used as a food packaging material as an oxygen and water vapor barrier film. Thus, the use of the gas barrier polyester resin composition of the present invention is not limited to PET / CPP films and can be widely used.
 本発明のガスバリア性ポリエステル樹脂組成物は高いガスバリア性を有する事を特徴としていることから、該ガスバリア性ポリエステル樹脂組成物により形成されるラミネートフィルムは、PVDCコート層やポリビニルアルコール(PVA)コート層、エチレン‐ビニルアルコール共重合体(EVOH)フィルム層、メタキシリレンアジパミドフィルム層、アルミナやシリカなどを蒸着した無機蒸着フィルム層などの一般に使用されているガスバリア性材料を使用することなく非常に高いレベルのガスバリア性が発現する。また、これら従来のガスバリア性材料とシーラント材料とを貼り合せるガスバリア性ポリエステル樹脂組成物として併用することにより、得られるフィルムのガスバリア性を著しく向上させることもできる。 Since the gas barrier polyester resin composition of the present invention is characterized by having a high gas barrier property, a laminate film formed from the gas barrier polyester resin composition includes a PVDC coat layer, a polyvinyl alcohol (PVA) coat layer, Without using commonly used gas barrier materials such as ethylene-vinyl alcohol copolymer (EVOH) film layer, metaxylylene adipamide film layer, inorganic vapor-deposited film layer deposited with alumina, silica, etc. A high level of gas barrier properties is manifested. Moreover, the gas barrier property of the film obtained can also be remarkably improved by using together as a gas barrier polyester resin composition which bonds these conventional gas barrier materials and sealant materials together.
 本発明の(II)及び(III)に係る樹脂組成物は、ガスバリア性接着剤として利用が可能である。 The resin composition according to (II) and (III) of the present invention can be used as a gas barrier adhesive.
 本発明の接着剤は、溶剤型又は無溶剤型のいずれの形態であってもよい。溶剤型の場合、溶剤はポリエステルポリオール及び硬化剤の製造時に反応媒体として使用してもよい。更に塗装時に希釈剤として使用される。使用できる溶剤としては、例えば酢酸エチル、酢酸ブチル、セロソルブアセテート等のエステル類、アセトン、メチルエチルケトン、イソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、トルエン、キシレン等の芳香族炭化水素類、メチレンクロリド、エチレンクロリド等のハロゲン化炭化水素類、ジメチルスルホキシド、ジメチルスルホアミド等が挙げられる。これらのうち通常は酢酸エチルやメチルエチルケトンを使用するのが好ましい。また、無溶剤で使用する場合は必ずしも有機溶剤に可溶である必要は無いと考えられるが、合成時の反応釜の洗浄やラミネート時の塗工機等の洗浄を考慮すると、有機溶剤に対する溶解性が必要である。 The adhesive of the present invention may be either a solvent type or a solventless type. In the case of the solvent type, the solvent may be used as a reaction medium during the production of the polyester polyol and the curing agent. Furthermore, it is used as a diluent during painting. Examples of the solvent that can be used include esters such as ethyl acetate, butyl acetate, and cellosolve acetate, ketones such as acetone, methyl ethyl ketone, isobutyl ketone, and cyclohexanone, ethers such as tetrahydrofuran and dioxane, and aromatic hydrocarbons such as toluene and xylene. , Halogenated hydrocarbons such as methylene chloride and ethylene chloride, dimethyl sulfoxide, dimethyl sulfoamide and the like. Of these, it is usually preferable to use ethyl acetate or methyl ethyl ketone. In addition, when used without a solvent, it is not always necessary to be soluble in an organic solvent, but considering the washing of a reaction kettle during synthesis and the washing of a coating machine during lamination, Sex is necessary.
 本発明の接着剤は、基材フィルム等に塗工して使用することができる。塗工方法としては特に限定はなく公知の方法で行えばよい。例えば粘度が調整できる溶剤型の場合は、グラビアロール塗工方式等で塗布することが多い。また無溶剤型で、室温での粘度が高くグラビアロール塗工が適さない場合は、加温しながらロールコーターで塗工することもできる。ロールコーターを使用する場合は、本発明の接着剤の粘度が500~2500mPa・s程度となるように室温~120℃程度まで加熱した状態で、塗工することが好ましい。 The adhesive of the present invention can be used by being applied to a substrate film or the like. The coating method is not particularly limited and may be performed by a known method. For example, in the case of a solvent type whose viscosity can be adjusted, it is often applied by a gravure roll coating method. Moreover, when it is a solventless type and has a high viscosity at room temperature and is not suitable for gravure roll coating, it can be coated with a roll coater while heating. In the case of using a roll coater, it is preferable to coat the adhesive of the present invention in a state heated to about room temperature to about 120 ° C. so that the viscosity of the adhesive of the present invention is about 500 to 2500 mPa · s.
 本発明の接着剤は、酸素バリア性接着剤として、ポリマー、紙、金属などに対し、酸素バリア性を必要とする各種用途の接着剤として使用できる。以下具体的用途の1つとしてフィルムラミネート用接着剤について説明する。 The adhesive of the present invention can be used as an oxygen barrier adhesive for various applications that require oxygen barrier properties against polymers, paper, metals, and the like. Hereinafter, an adhesive for film lamination will be described as one of specific applications.
 本発明の接着剤は、フィルムラミネート用接着剤として使用できる。ラミネートされた積層フィルムは、酸素バリア性に優れるため、酸素バリア性積層フィルムとして使用できる。 The adhesive of the present invention can be used as an adhesive for film lamination. Since the laminated film is excellent in oxygen barrier properties, it can be used as an oxygen barrier laminated film.
 本発明で使用する積層用のフィルムは、特に限定はなく、所望の用途に応じた熱可塑性樹脂フィルムを適宜選択することができる。例えば食品包装用としては、PETフィルム、ポリスチレンフィルム、ポリアミドフィルム、ポリアクリロニトリルフィルム、ポリエチレンフィルム(LLDPE:低密度ポリエチレンフィルム、HDPE:高密度ポリエチレンフィルム)やポリプロピレンフィルム(CPP:無延伸ポリプロピレンフィルム、OPP:二軸延伸ポリプロピレンフィルム)等のポリオレフィンフィルム、ポリビニルアルコールフィルム、エチレン-ビニルアルコール共重合体フィルム等が挙げられる。これらは延伸処理を施してあってもよい。延伸処理方法としては、押出成膜法等で樹脂を溶融押出してシート状にした後、同時二軸延伸或いは逐次二軸延伸を行うことが一般的である。また逐次二軸延伸の場合は、はじめに縦延伸処理を行い、次に横延伸を行うことが一般的である。具体的にはロール間の速度差を利用した縦延伸とテンターを用いた横延伸を組み合わせる方法が多く用いられる。但し、接着剤の両側に酸素バリア性の高い透明蒸着フィルム等を使用した場合、接着剤成分のポリエステルポリオール(A)の重合性二重結合の重合が阻害され、良好なバリア性が発現しない場合がある。従って、酸素バリア性積層フィルムの酸素バリア性としては少なくとも一種のラミネートフィルムの酸素透過率が0.1cc/m・day・atm以上であることが好ましい。 The film for lamination used in the present invention is not particularly limited, and a thermoplastic resin film can be appropriately selected according to a desired application. For example, for food packaging, PET film, polystyrene film, polyamide film, polyacrylonitrile film, polyethylene film (LLDPE: low density polyethylene film, HDPE: high density polyethylene film) and polypropylene film (CPP: unstretched polypropylene film, OPP: Examples thereof include polyolefin films such as biaxially stretched polypropylene film), polyvinyl alcohol films, and ethylene-vinyl alcohol copolymer films. These may be subjected to stretching treatment. As the stretching treatment method, it is common to perform simultaneous biaxial stretching or sequential biaxial stretching after the resin is melt-extruded by extrusion film forming method or the like to form a sheet. Further, in the case of sequential biaxial stretching, it is common to first perform longitudinal stretching and then perform lateral stretching. Specifically, a method of combining longitudinal stretching using a speed difference between rolls and transverse stretching using a tenter is often used. However, when a transparent vapor-deposited film having a high oxygen barrier property is used on both sides of the adhesive, polymerization of the polymerizable double bond of the polyester polyol (A) as an adhesive component is inhibited and good barrier properties are not exhibited. There is. Accordingly, the oxygen barrier property of the oxygen barrier laminate film is preferably such that the oxygen permeability of at least one laminate film is 0.1 cc / m 2 · day · atm or more.
 また、フィルム表面には、膜切れやはじきなどの欠陥のない接着層が形成されるように必要に応じて火炎処理やコロナ放電処理などの各種表面処理を施してもよい。 In addition, the surface of the film may be subjected to various surface treatments such as flame treatment and corona discharge treatment as necessary so that an adhesive layer free from defects such as film breakage and repellency is formed.
 前記熱可塑性樹脂フィルムの一方に本発明の接着剤を塗工後、もう一方の熱可塑性樹脂フィルムを重ねてラミネーションにより貼り合わせることで、本発明の酸素バリア性積層フィルムが得られる。ラミネーション方法には、ドライラミネーション、ノンソルベントラミネーション、押出しラミネーション等公知のラミネーションを用いることが可能である。 After applying the adhesive of the present invention to one of the thermoplastic resin films, the other thermoplastic resin film is overlaid and bonded by lamination to obtain the oxygen barrier laminate film of the present invention. As the lamination method, known lamination such as dry lamination, non-solvent lamination, extrusion lamination, etc. can be used.
ドライラミネーション方法は、具体的には、基材フィルムの一方に本発明の接着剤をグラビアロール方式で塗工後、もう一方の基材フィルムを重ねてドライラミネーション(乾式積層法)により貼り合わせる。ラミネートロールの温度は室温~60℃程度が好ましい。
また、ノンソルベントラミネーションは基材フィルムに予め室温~120℃程度に加熱しておいた本発明の接着剤を室温~120℃程度に加熱したロールコーターなどのロールにより塗布後、直ちにその表面に新たなフィルム材料を貼り合わせることによりラミネートフィルムを得ることができる。ラミネート圧力は、10~300kg/cm程度が好ましい。
Specifically, in the dry lamination method, the adhesive of the present invention is applied to one of the base films by the gravure roll method, and the other base film is stacked and bonded by dry lamination (dry lamination method). The temperature of the laminate roll is preferably about room temperature to 60 ° C.
In addition, non-solvent lamination is applied to the surface immediately after applying the adhesive of the present invention, which has been heated to room temperature to about 120 ° C., with a roll such as a roll coater heated to room temperature to about 120 ° C. A laminate film can be obtained by laminating various film materials. The laminating pressure is preferably about 10 to 300 kg / cm 2 .
 押出しラミネート法の場合には、基材フィルムに接着補助剤(アンカーコート剤)として本発明の接着剤の有機溶剤溶液をグラビアロールなどのロールにより塗布し、室温~140℃で溶剤の乾燥、硬化反応を行なった後に、押出し機により溶融させたポリマー材料をラミネートすることによりラミネートフィルムを得ることができる。溶融させるポリマー材料としては低密度ポリエチレン樹脂や直線状低密度ポリエチレン樹脂、エチレン-酢酸ビニル共重合体樹脂などのポリオレフィン系樹脂が好ましい。 In the case of the extrusion laminating method, the organic solvent solution of the adhesive of the present invention is applied to the base film as an adhesion aid (anchor coating agent) by a roll such as a gravure roll, and the solvent is dried and cured at room temperature to 140 ° C. After the reaction, a laminate film can be obtained by laminating the polymer material melted by the extruder. The polymer material to be melted is preferably a polyolefin resin such as a low density polyethylene resin, a linear low density polyethylene resin, or an ethylene-vinyl acetate copolymer resin.
 また、本発明の酸素バリア性積層フィルムは、作製後エージングを行うことが好ましい。エージング条件は、硬化剤としてポリイソシアネートを使用する場合であれば、室温~80℃で、12~240時間の間であり、この間に接着強度が生じる。 In addition, the oxygen barrier laminate film of the present invention is preferably subjected to aging after production. If polyisocyanate is used as a curing agent, the aging condition is from room temperature to 80 ° C. for 12 to 240 hours, during which adhesive strength is generated.
 本発明では、さらに高いバリア機能を付与するために、必要に応じてアルミニウム等の金属、或いはシリカやアルミナ等の金属酸化物の蒸着層を積層したフィルムや、ポリビニルアルコールや、エチレン・ビニールアルコール共重合体、塩化ビニリデン等のガスバリア層を含有するバリア性フィルムを併用してもよい。 In the present invention, in order to provide an even higher barrier function, a film in which a vapor-deposited layer of a metal such as aluminum or a metal oxide such as silica or alumina is laminated, polyvinyl alcohol, or ethylene / vinyl alcohol as necessary. A barrier film containing a gas barrier layer such as a polymer or vinylidene chloride may be used in combination.
 本発明の接着剤は、同種または異種の複数の樹脂フィルムを接着してなる積層フィルム用の接着剤として好ましく使用できる。樹脂フィルムは、目的に応じて適宜選択すればよいが、例えば包装材として使用する際は、最外層をPET、OPP、ポリアミドから選ばれた熱可塑性樹脂フィルムを使用し、最内層を無延伸ポリプロピレン(以下CPPと略す)、低密度ポリエチレンフィルム(以下LLDPEと略す)から選ばれる熱可塑性樹脂フィルムを使用した2層からなる複合フィルム、或いは、例えばPET、ポリアミド、OPPから選ばれた最外層を形成する熱可塑性樹脂フィルムと、OPP、PET、ポリアミドから選ばれた中間層を形成する熱可塑性樹脂フィルム、CPP、LLDPEから選ばれた最内層を形成する熱可塑性樹脂フィルムを使用した3層からなる複合フィルム、さらに、例えばOPP、PET、ポリアミドから選ばれた最外層を形成する熱可塑性樹脂フィルムと、PET、ナイロンから選ばれた第1中間層を形成する熱可塑製フィルムとPET、ポリアミドから選ばれた第2中間層を形成する熱可塑製フィルム、LLDPE、CPPから選ばれた最内層を形成する熱可塑性樹脂フィルムを使用した4層からなる複合フィルムは、酸素及び水蒸気バリア性フィルムとして、食品包装材として好ましく使用できる。 The adhesive of the present invention can be preferably used as an adhesive for a laminated film formed by bonding a plurality of the same or different resin films. The resin film may be appropriately selected depending on the purpose. For example, when used as a packaging material, the outermost layer is a thermoplastic resin film selected from PET, OPP, and polyamide, and the innermost layer is unstretched polypropylene. (Hereinafter abbreviated as CPP), a composite film consisting of two layers using a thermoplastic resin film selected from a low density polyethylene film (hereinafter abbreviated as LLDPE), or an outermost layer selected from, for example, PET, polyamide and OPP A three-layer composite using a thermoplastic resin film, a thermoplastic resin film that forms an intermediate layer selected from OPP, PET, and polyamide, and a thermoplastic resin film that forms an innermost layer selected from CPP and LLDPE Heat to form an outermost layer selected from a film, for example, OPP, PET, polyamide Selected from a plastic film, a thermoplastic film forming a first intermediate layer selected from PET and nylon, and a thermoplastic film forming a second intermediate layer selected from PET and polyamide, LLDPE, and CPP A composite film composed of four layers using a thermoplastic resin film forming the innermost layer can be preferably used as a food packaging material as an oxygen and water vapor barrier film.
 本発明の接着剤は高い酸素バリア性を有することを特徴としていることから、該接着剤により形成されるラミネートフィルムは、PVDCコート層やポリビニルアルコール(PVA)コート層、エチレン‐ビニルアルコール共重合体(EVOH)フィルム層、メタキシリレンアジパミドフィルム層、アルミナやシリカなどを蒸着した無機蒸着フィルム層などの一般に使用されているガスバリア性材料を使用することなく非常に高いレベルのガスバリア性が発現する。また、これら従来のガスバリア性材料とシーラント材料とを貼り合せる接着剤として併用することにより、得られるフィルムのガスバリア性を著しく向上させることもできる。 Since the adhesive of the present invention is characterized by having a high oxygen barrier property, the laminate film formed by the adhesive is a PVDC coat layer, a polyvinyl alcohol (PVA) coat layer, an ethylene-vinyl alcohol copolymer. (EVOH) A very high level of gas barrier properties is achieved without using commonly used gas barrier materials such as film layers, metaxylylene adipamide film layers, and inorganic vapor deposited film layers deposited with alumina, silica, etc. To do. Moreover, the gas barrier property of the obtained film can also be remarkably improved by using together as an adhesive agent which bonds these conventional gas barrier material and sealant material together.
 次に、本発明を、実施例及び比較例により具体的に説明する。例中断りのない限り、「部」「%」は質量基準である。
製造例1~12、実施例1~8及び比較例1~4は、前記(I)に係るポリエステル樹脂組成物に関する。
Next, the present invention will be specifically described with reference to examples and comparative examples. Unless otherwise indicated, “part” and “%” are based on mass.
Production Examples 1 to 12, Examples 1 to 8 and Comparative Examples 1 to 4 relate to the polyester resin composition according to (I).
(製造例1)グリセロールとオルトフタル酸とエチレングリコールからなるポリエステル樹脂「GLY(oPAEG)1」製造方法
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、グリセロールを92.09部、無水フタル酸148.1部、エチレングリコール64.57部、及びチタニウムテトライソプロポキシド0.03部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量284のポリエステル樹脂「GLY(oPAEG)1」を得た。このポリエステル樹脂が有するグリセロールの質量%は、89.07/284.26=31.33%であった。
Production Example 1 Production Method of Polyester Resin “GLY (oPAEG) 1” Consisting of Glycerol, Orthophthalic Acid, and Ethylene Glycol In a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snider tube, and a condenser, 92.09 parts of glycerol , 148.1 parts of phthalic anhydride, 64.57 parts of ethylene glycol, and 0.03 part of titanium tetraisopropoxide, and gradually heat the inner temperature of the rectifying tube so that the temperature does not exceed 100 ° C. Maintained at 220 ° C. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain a polyester resin “GLY (oPAEG) 1” having a number average molecular weight of 284. The mass% of glycerol contained in this polyester resin was 89.07 / 284.26 = 31.33%.
(製造例2)グリセロールとオルトフタル酸とエチレングリコールからなるポリエステル樹脂「GLY(oPAEG)2」製造方法
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、グリセロールを92.09部、無水フタル酸296.2部、エチレングリコール124.1部、及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量476.43のポリエステル樹脂「GLY(oPAEG)2」を得た。このポリエステル樹脂が有するグリセロールの質量%は、18.69%であった。
Production Example 2 Production Method of Polyester Resin “GLY (oPAEG) 2” Consisting of Glycerol, Orthophthalic Acid, and Ethylene Glycol In a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snider tube, and a condenser, 92.09 parts of glycerol , 296.2 parts of phthalic anhydride, 124.1 parts of ethylene glycol and 0.05 part of titanium tetraisopropoxide, and gradually heated so that the upper temperature of the rectifying tube does not exceed 100 ° C. Maintained at 220 ° C. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain a polyester resin “GLY (oPAEG) 2” having a number average molecular weight of 476.43. The mass% of glycerol contained in this polyester resin was 18.69%.
(製造例3)グリセロールとオルトフタル酸とエチレングリコールからなるポリエステル樹脂「GLY(oPAEG)3」製造方法
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、グリセロールを92.09部、無水フタル酸444.36部、エチレングリコール186.21部、及びチタニウムテトライソプロポキシド0.07部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量668.60のポリエステル樹脂「GLY(oPAEG)3」を得た。このポリエステル樹脂が有するグリセロールの質量%は、13.32%であった。
Production Example 3 Production Method of Polyester Resin “GLY (oPAEG) 3” Consisting of Glycerol, Orthophthalic Acid, and Ethylene Glycol In a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snider tube, and a condenser, 92.09 parts of glycerol , 443.36 parts of phthalic anhydride, 186.21 parts of ethylene glycol, and 0.07 part of titanium tetraisopropoxide, and gradually heat the inner temperature of the rectifying tube so that the upper temperature does not exceed 100 ° C. Maintained at 220 ° C. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain a polyester resin “GLY (oPAEG) 3” having a number average molecular weight of 668.60. The mass% of glycerol contained in this polyester resin was 13.32%.
(製造例4)グリセロールとオルトフタル酸とエチレングリコールからなるポリエステル樹脂「GLY(oPAEG)6」製造方法
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、グリセロールを92.09部、無水フタル酸888.72部、エチレングリコール372部、及びチタニウムテトライソプロポキシド0.13部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量1245.10のポリエステル樹脂「GLY(oPAEG)6」を得た。このポリエステル樹脂が有するグリセロールの質量%は、7.15%であった。
(Production Example 4) Production Method of Polyester Resin “GLY (oPAEG) 6” Consisting of Glycerol, Orthophthalic Acid, and Ethylene Glycol In a polyester reaction vessel equipped with a stirrer, nitrogen gas introduction pipe, snider pipe, and condenser, 92.09 parts of glycerol , 888.72 parts of phthalic anhydride, 372 parts of ethylene glycol, and 0.13 part of titanium tetraisopropoxide, and gradually heated so that the upper temperature of the rectification tube does not exceed 100 ° C. Held on. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain a polyester resin “GLY (oPAEG) 6” having a number average molecular weight of 1245.10. The mass% of glycerol contained in this polyester resin was 7.15%.
(製造例5)グリセロールと2,3-ナフタレンジカルボン酸とエチレングリコールからなるポリエステル樹脂「GLY(oNAEG)2」製造方法
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、グリセロールを92.09部、無水2,3-ナフタレンジカルボン酸396.34部、エチレングリコール124.14部、及びチタニウムテトライソプロポキシド0.06部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量592.59のポリエステル樹脂「GLY(oNAEG)2」を得た。このポリエステル樹脂が有するグリセロールの質量%は、15.03%であった。
Production Example 5 Production Method of Polyester Resin “GLY (oNAEG) 2” Consisting of Glycerol, 2,3-Naphthalenedicarboxylic Acid, and Ethylene Glycol A glycerol is placed in a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snider tube, and a condenser. , 309.34 parts of anhydrous 2,3-naphthalenedicarboxylic acid, 124.14 parts of ethylene glycol, and 0.06 part of titanium tetraisopropoxide, and the upper temperature of the rectification tube does not exceed 100 ° C The internal temperature was kept at 220 ° C. by gradually heating. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain a polyester resin “GLY (oNAEG) 2” having a number average molecular weight of 592.59. The mass% of glycerol contained in this polyester resin was 15.03%.
(製造例6)トリメチロールプロパンとオルトフタル酸無水とエチレングリコールからなるポリエステルポリオール「TMP(oPAEG)3」製造方法
 製造例3におけるグリセロール92.09の代わりにトリメチロールプロパン134.17部へ置き換えた以外は製造例3と同様にして、数平均分子量710.68ポリエステルポリオール「TMP(oPAEG)3」を得た。
このポリエステルポリオールが有するグリセロールの質量%は0.0%であった。
Production Example 6 Production Method of Polyester Polyol “TMP (oPAEG) 3” Composed of Trimethylolpropane, Orthophthalic Anhydride, and Ethylene Glycol, except that instead of glycerol 92.09 in Production Example 3, it was replaced with 134.17 parts of trimethylolpropane In the same manner as in Production Example 3, a number average molecular weight 710.68 polyester polyol “TMP (oPAEG) 3” was obtained.
The mass% of glycerol contained in this polyester polyol was 0.0%.
(製造例7)トリメチロールプロパンとオルトフタル酸無水とエチレングリコールからなるポリエステルポリオール「TMP(oPAEG)6」製造方法
製造例4におけるグリセロール92.09部の代わりにトリメチロールプロパン134.17部へ置き換えた以外は製造例4と同様にして、数平均分子量1287.18のポリエステルポリオール「TMP(oPAEG)6」を得た。
このポリエステルポリオールが有するグリセロールの質量%は0.0%であった。
(Production Example 7) Polyester polyol "TMP (oPAEG) 6" comprising trimethylolpropane, orthophthalic anhydride and ethylene glycol Production method Production Example 4 was replaced with 134.17 parts of trimethylolpropane instead of 92.09 parts of glycerol. The polyester polyol “TMP (oPAEG) 6” having a number average molecular weight of 1287.18 was obtained in the same manner as in Production Example 4 except for the above.
The mass% of glycerol contained in this polyester polyol was 0.0%.
(製造例8)オルトフタル酸とエチレングリコールからなるポリエステル樹脂「EGoPA」製造方法
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、無水フタル酸396.34部、エチレングリコール173.73部、及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量600のポリエステル樹脂「oPAEG」を得た。このポリエステル樹脂が有するグリセロールの質量%は、0.0%であった。
Production Example 8 Production Method of Polyester Resin “EGoPA” Consisting of Orthophthalic Acid and Ethylene Glycol In a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snider tube, and a condenser, 396.34 parts of phthalic anhydride, ethylene glycol 173. 73 parts and 0.05 part of titanium tetraisopropoxide were charged, and the inner temperature was kept at 220 ° C. by gradually heating so that the upper temperature of the rectifying tube did not exceed 100 ° C. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain a polyester resin “oPAEG” having a number average molecular weight of 600. The mass% of glycerol contained in this polyester resin was 0.0%.
(製造例9)グリセロールとイソフタル酸とエチレングリコールポリエステル樹脂「GLY(iPAEG)3」製造方法
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、グリセロールを92.09部、イソフタル酸498.39部、エチレングリコール186.21部、及びチタニウムテトライソプロポキシド0.07部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量668.6のポリエステル樹脂「GLY(iPAEG)3」を得た。このポリエステル樹脂が有するグリセロールの質量%は、13.32%であった。
Production Example 9 Production Method of Glycerol, Isophthalic Acid, and Ethylene Glycol Polyester Resin “GLY (iPAEG) 3” In a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snider tube, and a condenser, 92.09 parts of glycerol and isophthal Acid 498.39 parts, ethylene glycol 186.21 parts, and titanium tetraisopropoxide 0.07 parts are charged, and the inner temperature of the rectifying tube is gradually increased to 220 ° C. so that the upper temperature of the rectification tube does not exceed 100 ° C. Retained. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain a polyester resin “GLY (iPAEG) 3” having a number average molecular weight of 668.6. The mass% of glycerol contained in this polyester resin was 13.32%.
(製造例10)1,3-ビス{ビス-[2-ヒドロキシエチル]アミノメチル}ベンゼンとXDIとのアダクト体の製造方法
 1,3-ビス{ビス-[2-ヒドロキシエチル]アミノメチル}ベンゼンの製造
還流冷却管、滴下漏斗を備えた反応容器にジエタノールアミン105g、炭酸カリウム69.1g、無水エタノール2L加え、還流させる。この反応容器に1,3-ビス(ブロモメチル)ベンゼン131.98gを、滴下漏斗を用いて2時間かけてゆっくり滴下し、更に48時間還流を続けた。生成した臭化カリウムをガラスフィルターにて取り除き、反応に用いたエタノールを減圧除去することで、1,3-ビス{ビス-[2-ヒドロキシエチル]アミノメチル}ベンゼンを得た。
(Production Example 10) Method for producing adduct of 1,3-bis {bis- [2-hydroxyethyl] aminomethyl} benzene and XDI 1,3-bis {bis- [2-hydroxyethyl] aminomethyl} benzene In a reaction vessel equipped with a reflux condenser and a dropping funnel, 105 g of diethanolamine, 69.1 g of potassium carbonate and 2 L of absolute ethanol are added and refluxed. To this reaction vessel, 131.98 g of 1,3-bis (bromomethyl) benzene was slowly dropped over 2 hours using a dropping funnel, and the reflux was further continued for 48 hours. The produced potassium bromide was removed with a glass filter, and ethanol used in the reaction was removed under reduced pressure to obtain 1,3-bis {bis- [2-hydroxyethyl] aminomethyl} benzene.
(製造例11)1,3-ビス{ビス-[2-ヒドロキシエチル]アミノメチル}ベンゼンとXDIとのアダクト体の製造
 攪拌機、窒素ガス導入管、冷却コンデンサー、滴下漏斗を備えた反応容器にキシリレンジイソシアネート790.36部を入れて70℃に加熱しながら攪拌した。
前記1,3-ビス{ビス-[2-ヒドロキシエチル]アミノメチル}ベンゼン312.40部を1時間かけて滴下した。滴下後3時間70℃で攪拌を続け、あらかじめ水分量を1000ppmまで脱水したメチルエチルケトン473部を加えて攪拌し、室温まで徐冷後100メッシュの真鍮製の金網にて中に浮いたゲル物を分離し、メタキシレンジアミンにエチレンオキシドが4モル付加した化合物のXDIアダクト体を得た。JIS-K-6910にしたがって求めた上記アダクト体溶液の不揮発分は70.0%、JIS-K1603に従って求めたNCO%は9.6%であった。
(Production Example 11) Production of adduct body of 1,3-bis {bis- [2-hydroxyethyl] aminomethyl} benzene and XDI In a reaction vessel equipped with a stirrer, nitrogen gas introduction pipe, cooling condenser, and dropping funnel 790.36 parts of range isocyanate was added and stirred while heating to 70 ° C.
312.40 parts of the 1,3-bis {bis- [2-hydroxyethyl] aminomethyl} benzene was added dropwise over 1 hour. Stirring is continued at 70 ° C. for 3 hours after the dropping, and 473 parts of methyl ethyl ketone dehydrated to 1000 ppm in advance is added and stirred. After slowly cooling to room temperature, the gel substance floating inside is separated with a 100 mesh brass wire mesh. Thus, an XDI adduct of a compound obtained by adding 4 moles of ethylene oxide to metaxylenediamine was obtained. The non-volatile content of the adduct solution determined according to JIS-K-6910 was 70.0%, and the NCO% determined according to JIS-K1603 was 9.6%.
(製造例12)トリメチロールプロパンと2,6―トリレンジイソシアネートとのアダクト体の製造
 攪拌機、窒素ガス導入管、冷却コンデンサー、滴下漏斗を備えた反応容器に2,6―トリレンジイソシアネート522.48部を入れて70℃に加熱しながら攪拌した。
トリメチロールプロパン134.17部を1時間かけて滴下した。滴下後3時間70℃で攪拌を続け、あらかじめ水分量を1000ppmまで脱水したメチルエチルケトン284部を加えて攪拌し、室温まで徐冷後100メッシュの真鍮製の金網にて中に浮いたゲル物を分離し、トリメチロールプロパンと2,6-トリレンジイソシアネートとのアダクト体を得た。JIS-K-6910にしたがって求めた上記アダクト体溶液の不揮発分は70.0%、JIS-K1603に従って求めたNCO%は13.40%であった。
(Production Example 12) Production of adduct of trimethylolpropane and 2,6-tolylene diisocyanate 2,6-tolylene diisocyanate 522.48 in a reaction vessel equipped with a stirrer, nitrogen gas introduction tube, cooling condenser, and dropping funnel A portion was added and stirred while heating to 70 ° C.
134.17 parts of trimethylolpropane was added dropwise over 1 hour. Stirring is continued at 70 ° C. for 3 hours after dropping, and 284 parts of methyl ethyl ketone dehydrated to 1000 ppm in advance is added and stirred. After slowly cooling to room temperature, the gel substance floating inside is separated with a 100 mesh brass wire mesh. An adduct of trimethylolpropane and 2,6-tolylene diisocyanate was obtained. The non-volatile content of the adduct body solution determined according to JIS-K-6910 was 70.0%, and the NCO% determined according to JIS-K1603 was 13.40%.
(硬化剤a)
 三井化学製「タケネートD-110N」(メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体 不揮発成分75.0% NCO% 11.5%)と三井化学製「タケネート500」(メタキシリレンジイソシアネート不揮発分>99%,NCO% 44.6%)を50/50(質量比)の割合で混合し硬化剤aとした。
硬化剤aの不揮発分は、87.5%、NCO% 28.05%である。
(Curing agent a)
“Takenate D-110N” manufactured by Mitsui Chemicals (trimethylolpropane adduct of metaxylylene diisocyanate, nonvolatile component 75.0% NCO% 11.5%) and “Takenate 500” (metaxylylene diisocyanate nonvolatile content> 99 by Mitsui Chemicals) %, NCO% 44.6%) at a ratio of 50/50 (mass ratio) to obtain a curing agent a.
The non-volatile content of the curing agent a is 87.5% and NCO% 28.05%.
(硬化剤b)
 三井化学製「タケネートD-110N」(メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体 不揮発成分 75.0% NCO% 11.5%)を硬化剤bとした。
(Curing agent b)
“Takenate D-110N” manufactured by Mitsui Chemicals (trimethylolpropane adduct of metaxylylene diisocyanate non-volatile component 75.0% NCO% 11.5%) was used as the curing agent b.
(硬化剤c)
 製造例12にて合成したトリメチロールプロパンと2,6―トリレンジイソシアネートとのアダクト体(不揮発分は70.0%、NCO%は9.4%)を硬化剤cとした。
(Curing agent c)
The adduct body of trimethylolpropane synthesized in Production Example 12 and 2,6-tolylene diisocyanate (nonvolatile content: 70.0%, NCO%: 9.4%) was used as the curing agent c.
(硬化剤d)
 製造例10にて合成した1,3-ビス{ビス-[2-ヒドロキシエチル]アミノメチル}ベンゼンとXDIとのアダクト体(不揮発分70%、NCO%9.6%)を硬化剤dとした。
(Curing agent d)
The adduct body of 1,3-bis {bis- [2-hydroxyethyl] aminomethyl} benzene and XDI synthesized in Production Example 10 (nonvolatile content: 70%, NCO%: 9.6%) was used as the curing agent d. .
(実施例1~8 比較例1~4)
 前記製造方法で得たポリエステルポリオールをメチルエチルケトンで希釈して、不揮発分50%の樹脂溶液を得、更に硬化剤a、b、c、d、を表1~表3に示す様に配合し、後述の塗工方法で使用するポリエステル樹脂塗工液を得た。
Examples 1 to 8 Comparative Examples 1 to 4
The polyester polyol obtained by the above production method is diluted with methyl ethyl ketone to obtain a resin solution having a non-volatile content of 50%, and further, curing agents a, b, c, d are blended as shown in Tables 1 to 3, and will be described later. A polyester resin coating solution used in the coating method was obtained.
(塗工方法)
 ポリエステル樹脂塗工液を、バーコーターを用いて、塗布量5.0g/m(固形分)となるように厚さ12μmのPETフィルム(東洋紡績(株)製「E-5100」)に塗布し、温度70℃に設定したドライヤーで希釈溶剤を揮発させ乾燥し、次いで、この複合フィルムを40℃/3日間かけて硬化させ、本発明のガスバリア性多層フィルムを得た。
(Coating method)
Using a bar coater, apply the polyester resin coating solution to a 12 μm thick PET film (“E-5100” manufactured by Toyobo Co., Ltd.) so that the coating amount is 5.0 g / m 2 (solid content). Then, the diluting solvent was volatilized and dried with a drier set at a temperature of 70 ° C., and then the composite film was cured over 40 ° C./3 days to obtain a gas barrier multilayer film of the present invention.
(酸素透過率)
 エージングが終了したガスバリア性多層フィルムを、モコン社製酸素透過率測定装置OX-TRAN2/21MHを用いてJIS-K7126(等圧法)に準じ、23℃、0%RHおよび90%RHの雰囲気下で測定した。
(Oxygen permeability)
The gas barrier multilayer film that has been aged is used in an atmosphere of 23 ° C., 0% RH and 90% RH in accordance with JIS-K7126 (isobaric method) using an oxygen permeability measuring device OX-TRAN2 / 21MH manufactured by Mocon. It was measured.
(参考例)
 厚さ12μmのPET(2軸延伸ポリエチレンテレフタレート)フィルム(東洋紡績(株)製E-5100)の酸素透過率を測定した。結果を表1~表3に示す。
(Reference example)
The oxygen transmission rate of a 12 μm thick PET (biaxially stretched polyethylene terephthalate) film (E-5100 manufactured by Toyobo Co., Ltd.) was measured. The results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
*:メチルエチルケトン、酢酸エチルに溶解しなかったため、塗工液とできず酸素透過率測定ができなかった) *: Since it was not dissolved in methyl ethyl ketone and ethyl acetate, it could not be used as a coating solution and oxygen permeability could not be measured.
 この結果、実施例1~8の樹脂組成物を塗布した酸素バリア性多層フィルムは、いずれも酸素透過率が30cc/m・day・atm以下であった。 As a result, the oxygen barrier multilayer films coated with the resin compositions of Examples 1 to 8 all had an oxygen permeability of 30 cc / m 2 · day · atm or less.
 一方、比較例1~3はグリセロールを含まないために酸素透過率は35~45cc/m・day・atmに留まった。更に、比較例4ではポリエステル樹脂のフタル酸をイソフタル酸に変えたところ、溶剤溶解性が失われ、フィルムに塗布できなかった。 On the other hand, since Comparative Examples 1 to 3 did not contain glycerol, the oxygen permeability remained at 35 to 45 cc / m 2 · day · atm. Further, in Comparative Example 4, when the phthalic acid of the polyester resin was changed to isophthalic acid, the solvent solubility was lost and the film could not be applied to the film.
製造例13~22、実施例9~15及び比較例5~8は、前記(II)に係るポリエステル樹脂組成物に関する。
(製造例13)ポリエステルポリオール(A):EGMAの製造例
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水マレイン酸98.1部、エチレングリコール78.5部及びチタニウムテトライソプロポキシドを多価カルボン酸と多価アルコールとの合計量に対して100ppmに相当する量を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を205℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量約600、水酸基価182mgKOH/g、酸価0.9mgKOH/gのポリエステルポリオールを得た。
Production Examples 13 to 22, Examples 9 to 15 and Comparative Examples 5 to 8 relate to the polyester resin composition according to (II).
(Production Example 13) Polyester polyol (A): Production example of EGMA In a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a rectification tube, a water separator, etc., 98.1 parts of maleic anhydride, 78. 5 parts and titanium tetraisopropoxide were charged in an amount corresponding to 100 ppm with respect to the total amount of polyvalent carboxylic acid and polyhydric alcohol, and gradually heated so that the upper temperature of the rectifying tube did not exceed 100 ° C. The internal temperature was maintained at 205 ° C. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain a polyester polyol having a number average molecular weight of about 600, a hydroxyl value of 182 mgKOH / g, and an acid value of 0.9 mgKOH / g.
(製造例14)ポリエステルポリオール(A):Gly(OPAEG)2MAの製造例
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸1316.8部、エチレングリコールを573.9部、グリセリン409.3部及びチタニウムテトライソプロポキシドを多価カルボン酸と多価アルコールとの合計量に対して100ppmに相当する量を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、ポリエステルポリオールを得た。
(Production Example 14) Production Example of Polyester Polyol (A): Gly (OPAEG) 2MA In a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a rectification tube, a water separator, etc., 1316.8 parts of phthalic anhydride, Ethylene glycol (573.9 parts), glycerin (409.3 parts) and titanium tetraisopropoxide were charged in an amount corresponding to 100 ppm with respect to the total amount of polyvalent carboxylic acid and polyhydric alcohol, and the rectifying tube upper temperature was 100. The internal temperature was kept at 220 ° C by gradually heating so as not to exceed ° C. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain a polyester polyol.
 次いで温度を120℃まで下げ、これに無水マレイン酸421.8部を仕込み120℃を保持した。酸価が無水マレイン酸の仕込み量から計算した酸価の概ね半分になったところでエステル化反応を終了し、数平均分子量約500、水酸基価216mgKOH/g、酸価96mgKOH/gのポリエステルポリオールを得た。 Next, the temperature was lowered to 120 ° C., and 421.8 parts of maleic anhydride was added thereto, and maintained at 120 ° C. When the acid value is approximately half of the acid value calculated from the charged amount of maleic anhydride, the esterification reaction is terminated to obtain a polyester polyol having a number average molecular weight of about 500, a hydroxyl value of 216 mgKOH / g, and an acid value of 96 mgKOH / g. It was.
(製造例15)ポリエステルポリオール(A):THEI(OPAEG)2MAの製造例
 製造例14における無水フタル酸1316.8部を992.4部とし、エチレングリコール573.9部を432.5部とし、グリセリン409.3部をトリス(2-ヒドロキシエチル)イソシアヌレート875.1部とし、無水マレイン酸421.8部を343.2部とした以外は、製造例14と同様の方法で行い、数平均分子量約720、水酸基価156mgKOH/g、酸価77.8mgKOH/gのポリエステルポリオールを得た。
(Production Example 15) Production Example of Polyester Polyol (A): THEI (OPAEG) 2MA 1316.8 parts of phthalic anhydride in Production Example 14 is 992.4 parts, and 573.9 parts of ethylene glycol is 432.5 parts. The number average was obtained in the same manner as in Production Example 14 except that 409.3 parts of glycerin was changed to 875.1 parts of tris (2-hydroxyethyl) isocyanurate and 421.8 parts of maleic anhydride was changed to 343.2 parts. A polyester polyol having a molecular weight of about 720, a hydroxyl value of 156 mgKOH / g, and an acid value of 77.8 mgKOH / g was obtained.
(製造例16)ポリエステルポリオール(A)EGMA-XDIの製造例
 製造例13で得られたポリエステルポリオール1228.0部に対し、メタキシリレンジイソシアネート188.0部を加え、80℃に加熱して遊離のイソシアナト基(以下NCO基と略す)が実質的に無くなるまでウレタン化反応を行い、数平均分子量約1420、水酸基価79mgKOH/gのポリエステルポリオールを得た。
(Production Example 16) Polyester Polyol (A) Production Example of EGMA-XDI To 1228.0 parts of the polyester polyol obtained in Production Example 13, 188.0 parts of metaxylylene diisocyanate was added and heated to 80 ° C. to release. The urethanization reaction was carried out until the isocyanato group (hereinafter abbreviated as NCO group) substantially disappeared to obtain a polyester polyol having a number average molecular weight of about 1420 and a hydroxyl value of 79 mgKOH / g.
(製造例17)ポリエステルポリオール:THEI(OPAEG)3の製造例
 製造例13における無水マレイン酸98.1部を無水フタル酸1136.5部とし、エチレングリコール84.2部を495.3部、トリス(2-ヒドロキシエチル)イソシアヌレート668.1部とし、内温を205℃を220℃とした以外は、製造例13と同様の方法を行い、数平均分子量約860、水酸基価195mgKOH/g、酸価0.8mgKOH/gのポリエステルポリオールを得た。
(Production Example 17) Production Example of Polyester Polyol: THEI (OPAEG) 3 In Production Example 13, 98.1 parts of maleic anhydride is 1136.5 parts of phthalic anhydride, 84.2 parts of ethylene glycol is 495.3 parts, Tris A number average molecular weight of about 860, a hydroxyl value of 195 mgKOH / g, an acid was obtained except that the amount of (2-hydroxyethyl) isocyanurate was 668.1 parts and the internal temperature was changed from 205 ° C. to 220 ° C. A polyester polyol having a value of 0.8 mg KOH / g was obtained.
(製造例18)ポリエステルポリオール:Gly(OPAEG)2の製造例
 製造例13における無水マレイン酸98.1部を無水フタル酸1316.80部とし、エチレングリコール84.2部を573.9部、グリセリン409.3部とし、内温を205℃を220℃とした以外は、製造例13と同様の方法を行い、数平均分子量約500、水酸基価340mgKOH/g、酸価0.5mgKOH/gのポリエステルポリオールを得た。
(Production Example 18) Production Example of Polyester Polyol: Gly (OPAEG) 2 In Production Example 13, 98.1 parts of maleic anhydride is 131.80 parts of phthalic anhydride, 84.2 parts of ethylene glycol is 573.9 parts, and glycerin. A polyester having a number average molecular weight of about 500, a hydroxyl value of 340 mgKOH / g, and an acid value of 0.5 mgKOH / g was carried out in the same manner as in Production Example 13 except that 409.3 parts and the internal temperature was changed from 205 ° C to 220 ° C. A polyol was obtained.
(製造例19)ポリエステルポリオール:THEI(OPAEG)2の製造例
製造例13における無水マレイン酸98.1部を無水フタル酸992.4部とし、エチレングリコール84.2部を432.5部、トリス(2-ヒドロキシエチル)イソシアヌレート875.1部とし、内温の205℃を220℃とした以外は、製造例13と同様の方法を行い、数平均分子量約420、水酸基価269mgKOH/g、酸価0.9mgKOH/gのポリエステルポリオールを得た。
(Production Example 19) Production Example of Polyester Polyol: THEI (OPAEG) 2 In Production Example 13, 98.1 parts of maleic anhydride is 992.4 parts of phthalic anhydride, 84.2 parts of ethylene glycol is 432.5 parts, Tris The number average molecular weight was about 420, the hydroxyl value was 269 mgKOH / g, acid was used except that the amount of (2-hydroxyethyl) isocyanurate was 875.1 parts and the internal temperature was 205 ° C. was changed to 220 ° C. A polyester polyol having a value of 0.9 mg KOH / g was obtained.
(製造例20)ポリエステルポリオール:EGSucAの製造例
 製造例13における無水マレイン酸98.1部をコハク酸118.1部、エチレングリコール78.5部を71.6部とし、内温を205℃を220℃とした以外は製造例13と同様にして、数平均分子量約1000、水酸基価112.2mgKOH/g、酸価0.4mgKOH/gのポリエステルポリオールを得た。
(Production Example 20) Polyester polyol: Production example of EGSucA In Production Example 13, 98.1 parts of maleic anhydride is 118.1 parts of succinic acid, 78.5 parts of ethylene glycol is 71.6 parts, and the internal temperature is 205 ° C. A polyester polyol having a number average molecular weight of about 1000, a hydroxyl value of 112.2 mgKOH / g, and an acid value of 0.4 mgKOH / g was obtained in the same manner as in Production Example 13 except that the temperature was 220 ° C.
(製造例21)ポリエステルポリオール:EGAAの製造例
 製造例13における無水マレイン酸98.1部をアジピン酸146.2部、エチレングリコール78.5部を81.9部とし、内温を205℃を220℃とした以外は製造例13と同様にして、数平均分子量約600、水酸基価185mgKOH/g、酸価0.8mgKOH/gのポリエステルポリオールを得た。
(Production Example 21) Production Example of Polyester Polyol: EGAA In Production Example 13, 98.1 parts of maleic anhydride is 146.2 parts of adipic acid, 78.5 parts of ethylene glycol is 81.9 parts, and the internal temperature is 205 ° C. A polyester polyol having a number average molecular weight of about 600, a hydroxyl value of 185 mgKOH / g, and an acid value of 0.8 mgKOH / g was obtained in the same manner as in Production Example 13 except that the temperature was 220 ° C.
(製造例22)ポリエステルポリオール(A):EGMA:THEI(o-PAEG)3(3:7)
 製造例14のポリエステルポリオール(A):EGMAを70部、製造例16のポリエステルポリオール:THEI(OPAEG)3を30部の割合で100℃に加温しながら混合し、ポリエステルポリオールを得た。
(Production Example 22) Polyester polyol (A): EGMA: THEI (o-PAEG) 3 (3: 7)
Polyester polyol (A) of Production Example 14: 70 parts of EGMA and polyester polyol of Production Example 16: THEI (OPAEG) 3 were mixed at a ratio of 30 parts while heating to 100 ° C. to obtain a polyester polyol.
(硬化剤)
 三井化学(株)製「タケネートD-110N」(メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体、不揮発分75%、NCO約11.5%)
三井化学(株)製「タケネート500」(メタキシリレンジイソシアネート、不揮発分100%、NCO約45%)
 住化バイエルウレタン(株)製「デスモジュールN3200」(ヘキサメチレンジイソシアネートのビウレット体、不揮発分100%、NCO約23%)
(触媒)
 DIC(株)製「DICNATE Co 8%L」(Co化合物(遷移金属錯体)含有重合触媒)
(Curing agent)
"Takenate D-110N" manufactured by Mitsui Chemicals, Inc. (trimethylolpropane adduct of metaxylylene diisocyanate, non-volatile content 75%, NCO approx. 11.5%)
“Takenate 500” manufactured by Mitsui Chemicals, Inc. (metaxylylene diisocyanate, nonvolatile content 100%, NCO approx. 45%)
"Death module N3200" manufactured by Sumika Bayer Urethane Co., Ltd. (hexuremethylene diisocyanate biuret, non-volatile content 100%, NCO approx. 23%)
(catalyst)
“DICnate Co 8% L” (Co compound (transition metal complex) -containing polymerization catalyst) manufactured by DIC Corporation
(実施例9)~(実施例15)
表4~表6の実施例に従い、ポリエステルポリオール、硬化剤、触媒および溶剤を混合し、接着剤を得た。塗工方法、評価方法は以下によった。
(Example 9) to (Example 15)
According to the examples in Table 4 to Table 6, polyester polyol, curing agent, catalyst and solvent were mixed to obtain an adhesive. The coating method and the evaluation method were as follows.
(比較例5)~(比較例8)
表4~表6の比較例に従い、ポリエステルポリオール、硬化剤、触媒および溶剤を混合し、接着剤を得た。塗工方法、評価方法は以下によった。
(Comparative Example 5) to (Comparative Example 8)
According to the comparative examples in Tables 4 to 6, polyester polyol, curing agent, catalyst and solvent were mixed to obtain an adhesive. The coating method and the evaluation method were as follows.
(塗工方法1)
 前記溶剤型接着剤を、バーコーターを用いて、塗布量5.0g/m(固形分)となるように厚さ12μmのPETフィルム(東洋紡績(株)製「E-5102」)のコロナ処理面に塗布し、温度70℃に設定したドライヤーで希釈溶剤を揮発させ乾燥し、接着剤が塗布されたPETフィルムの接着剤面と、厚さ70μmのCPPフィルム(東レ(株)製「ZK93KM」)のコロナ処理面とラミネートし、PETフィルム/接着層/CPPフィルムの層構成を有する複合フィルムを作製した。次いで、この複合フィルムを40℃/3~5日間のエージングを行い、接着剤の硬化を行って、本発明の酸素バリア性積層フィルムを得た。
(Coating method 1)
Using a bar coater, the solvent-type adhesive is a corona of a PET film (“E-5102” manufactured by Toyobo Co., Ltd.) having a thickness of 12 μm so that the coating amount is 5.0 g / m 2 (solid content). It was applied to the treated surface, and the solvent was volatilized and dried with a dryer set at a temperature of 70 ° C., and the adhesive surface of the PET film on which the adhesive was applied, and a 70 μm thick CPP film (“ZK93KM, manufactured by Toray Industries, Inc.) ]) Was laminated with the corona-treated surface to prepare a composite film having a layer structure of PET film / adhesive layer / CPP film. Next, this composite film was aged at 40 ° C. for 3 to 5 days to cure the adhesive, and the oxygen barrier laminate film of the present invention was obtained.
(塗工方法2)
前記無溶剤型接着剤を約100℃に加熱し、無溶剤用テストコーターポリタイプ社製ロールコーターを用いて、PETフィルムに塗布量5.0g/mになるよう塗布後、塗布面をCPPフィルムとラミネートし、PETフィルム/接着層/CPPフィルムの層構成を有する複合フィルムを作製した。次いで、この複合フィルムを40℃×3日間のエージンングを行い、接着剤の硬化を行って、本発明の酸素バリア性積層フィルムを得た。
(Coating method 2)
The solventless adhesive is heated to about 100 ° C. and applied to a PET film so that the coating amount is 5.0 g / m 2 using a roll coater manufactured by Polytype Co., Ltd. A composite film having a layer structure of PET film / adhesive layer / CPP film was prepared by laminating with the film. Subsequently, this composite film was subjected to aging at 40 ° C. for 3 days to cure the adhesive, thereby obtaining the oxygen barrier laminate film of the present invention.
(評価方法)
(1)接着強度
 エージングが終了した酸素バリア性積層フィルムを、塗工方向と平行に15mm幅に切断し、PETフィルムとCPPフィルムとの間を、(株)オリエンテック製テンシロン万能試験機を用いて、雰囲気温度25℃、剥離速度を300mm/分に設定し、180度剥離方法で剥離した際の引っ張り強度を接着強度とした。接着強度の単位はN/15mmとした。
(Evaluation methods)
(1) Adhesive strength The oxygen barrier laminate film after aging was cut into a width of 15 mm parallel to the coating direction, and a PET / CPP film was used with a Tensilon universal testing machine manufactured by Orientec Co., Ltd. Then, the atmospheric temperature was set to 25 ° C., the peeling speed was set to 300 mm / min, and the tensile strength when peeling by the 180 ° peeling method was defined as the adhesive strength. The unit of adhesive strength was N / 15 mm.
(2)酸素透過率
 エージングが終了した酸素バリア性積層フィルムを、モコン社製酸素透過率測定装置OX-TRAN2/21MHを用いてJIS-K7126(等圧法)に準じ、23℃90%RHの雰囲気下で測定した。なおRHとは、湿度を表す。
(2) Oxygen transmission rate Oxygen barrier laminated film after aging was used in an atmosphere of 23 ° C. and 90% RH in accordance with JIS-K7126 (isobaric method) using an oxygen transmission rate measuring device OX-TRAN2 / 21MH manufactured by Mocon. Measured below. Note that RH represents humidity.
(硬化塗膜のガラス転移温度測定)
 表4~表6に従い、ポリエステルポリオール、硬化剤、触媒および溶剤を混合し、CPPフィルムの非コロナ処理面にアプリケーターを用いて塗工を行い、減圧乾燥の後、40℃/3日間の処理を行った。硬化塗膜をCPPフィルムから剥離し、ティー・エイ・インスツルメント・ジャパン(株)製、レオメトリックシステムアナライザーRSAIIIにて、-50℃~200℃の範囲、1Hz、昇温スピード3℃/分の条件で弾性率の測定を行った。得られた動的貯蔵弾性率と動的損失弾性率より下記式にてtanδを計算し、tanδのピーク値を示す温度をガラス転移温度とした。
(Measurement of glass transition temperature of cured coating)
In accordance with Tables 4 to 6, polyester polyol, curing agent, catalyst and solvent are mixed, and the non-corona-treated surface of the CPP film is applied using an applicator, dried at reduced pressure, and then treated at 40 ° C. for 3 days. went. The cured coating film is peeled off from the CPP film, and the range from -50 ° C to 200 ° C, 1 Hz, and the temperature increase rate is 3 ° C / min. With Rheometric System Analyzer RSAIII manufactured by TA Instruments Japan Co., Ltd. The elastic modulus was measured under the following conditions. Tan δ was calculated from the obtained dynamic storage elastic modulus and dynamic loss elastic modulus according to the following formula, and the temperature showing the peak value of tan δ was defined as the glass transition temperature.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
(溶解性)
 製造例に示したポリエステルポリオールを酢酸エチルおよびメチルエチルケトン(MEKと記載)と不揮発分50%となるように混合し、溶解性を確認した。液の状態が透明となった場合、溶解性が良好と判断して「○」と判定し、濁りが発生した場合を溶解性が不良と判断して「×」と判定した。
(Solubility)
The polyester polyol shown in the production example was mixed with ethyl acetate and methyl ethyl ketone (described as MEK) so as to have a nonvolatile content of 50%, and the solubility was confirmed. When the state of the liquid became transparent, it was judged that the solubility was good and judged as “◯”, and when turbidity occurred, the solubility was judged as poor and judged as “x”.
(二重結合成分比率)
 製造例に示したポリエステルポリールの成分において、重合性二重結合成分の全成分中の質量比を計算した。
(Double bond component ratio)
In the component of the polyester polyol shown in the production example, the mass ratio of all components of the polymerizable double bond component was calculated.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
ここでモノマーとは前記の多価カルボン酸、多価アルコールを指す。 Here, the monomer refers to the polyvalent carboxylic acid and polyhydric alcohol.
(エージング)
 エージング温度40℃で実施した期間を示した。
結果を表4~表6に示す。
(aging)
The period carried out at an aging temperature of 40 ° C. is shown.
The results are shown in Tables 4-6.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 この結果、実施例9~13と比較例5~6を比較した場合および、実施例14~15と比較例7~8とを比較した場合、ポリエステルポリオール(A)の接着剤を使用した酸素バリア積層フィルムは、重合性二重結合を含有しないポリエステルポリオールと比較して、90%RH下での酸素透過率が高い酸素バリア性を示し、良好なラミネート強度も有していた。すなわち、重合性二重結合を導入することにより、酸素透過率を下げること、酸素バリア性を付与することができた。 As a result, when Examples 9-13 and Comparative Examples 5-6 were compared, and when Examples 14-15 were compared with Comparative Examples 7-8, an oxygen barrier using an adhesive of polyester polyol (A) was used. The laminated film exhibited an oxygen barrier property with a high oxygen permeability under 90% RH as compared with a polyester polyol not containing a polymerizable double bond, and had a good laminate strength. That is, by introducing a polymerizable double bond, it was possible to lower the oxygen permeability and to impart oxygen barrier properties.
製造例23~29、実施例16~22及び比較例9,10は、前記(III)に係るポリエステル樹脂組成物に関する。
(製造例23)ポリエステルポリオール(A):Gly(OPAEG)2MAの製造例
 製造例13と同様にして、標記化合物を得た。
Production Examples 23 to 29, Examples 16 to 22 and Comparative Examples 9 and 10 relate to the polyester resin composition according to (III).
Production Example 23 Production Example of Polyester Polyol (A): Gly (OPAEG) 2MA In the same manner as in Production Example 13, the title compound was obtained.
(製造例24)ポリエステルポリオール(A):Gly(OPAEG)2OPAの製造例
 製造例23における無水フタル酸1316.8部を1023.7部とし、エチレングリコール573.9部を446.2部、グリセリン409.3部を318.2部とした以外は、製造例23と同様の方法を行い、水酸基価309.8mgKOH/gのポリエステルポリオールを得た。
Production Example 24 Production Example of Polyester Polyol (A): Gly (OPAEG) 2OPA 1316.8 parts of phthalic anhydride in Production Example 23 is 1023.7 parts, 573.9 parts of ethylene glycol is 446.2 parts, and glycerin A polyester polyol having a hydroxyl value of 309.8 mgKOH / g was obtained in the same manner as in Production Example 23 except that 409.3 parts was changed to 318.2 parts.
 次いで温度を120℃まで下げ、これに無水フタル酸511.9部を仕込み120℃を保持した。酸価が無水フタル酸の仕込み量から計算した酸価の概ね半分になったところでエステル化反応を終了し、数平均分子量約620、水酸基価183.9mgKOH/g、酸価94.7mgKOH/gのポリエステルポリオールを得た。ポリエステルポリオール(A)1分子当たりの設計上の官能基の数 水酸基:2個、カルボキシ基:1個 Next, the temperature was lowered to 120 ° C., and 511.9 parts of phthalic anhydride was added thereto to maintain 120 ° C. The esterification reaction was terminated when the acid value was approximately half of the acid value calculated from the charged amount of phthalic anhydride, and the number average molecular weight was about 620, the hydroxyl value was 183.9 mgKOH / g, and the acid value was 94.7 mgKOH / g. A polyester polyol was obtained. Polyester polyol (A) Number of functional groups designed per molecule: 2 hydroxyl groups, 1 carboxy group
(製造例25)ポリエステルポリオール(A):THEI(OPAEG)2MAの製造例
 製造例23における無水フタル酸1316.8部を992.4とし、エチレングリコール573.9部を432.5部とし、グリセリン409.3部をトリス(2-ヒドロキシエチル)イソシアヌレート875.1部とした以外は、製造例23と同様の方法を行い、水酸基価269.4mgKOH/gのポリエステルポリオールを得た。
(Production Example 25) Production Example of Polyester Polyol (A): THEI (OPAEG) 2MA 1316.8 parts of phthalic anhydride in Production Example 23 is 992.4, 573.9 parts of ethylene glycol is 432.5 parts, and glycerin A polyester polyol having a hydroxyl value of 269.4 mgKOH / g was obtained in the same manner as in Production Example 23 except that 409.3 parts were changed to 875.1 parts of tris (2-hydroxyethyl) isocyanurate.
 次いで温度を120℃まで下げ、これに無水マレイン酸343.2部を仕込み120℃を保持した。酸価が無水マレイン酸の仕込み量から計算した酸価の概ね半分になったところでエステル化反応を終了し、数平均分子量約720、水酸基価156mgKOH/g、酸価77.8mgKOH/gのポリエステルポリオールを得た。ポリエステルポリオール(A)1分子当たりの設計上の官能基の数 水酸基:2個、カルボキシ基:1個 Next, the temperature was lowered to 120 ° C., and 343.2 parts of maleic anhydride was added thereto, and the temperature was maintained at 120 ° C. The esterification reaction was terminated when the acid value was approximately half of the acid value calculated from the charged amount of maleic anhydride, and the polyester polyol had a number average molecular weight of about 720, a hydroxyl value of 156 mgKOH / g, and an acid value of 77.8 mgKOH / g. Got. Polyester polyol (A) Number of functional groups designed per molecule: 2 hydroxyl groups, 1 carboxy group
(製造例26)ポリエステルポリオール(A):THEI(OPAEG)2OPAの製造例
 製造例23における無水フタル酸1316.8部を816.3部とし、エチレングリコール573.9部を355.7部とし、グリセリン409.3部をトリス(2-ヒドロキシエチル)イソシアヌレート719.8部とした以外は、製造例22と同様の方法を行い、水酸基価207.7mgKOH/gのポリエステルポリオールを得た。
(Production Example 26) Production Example of Polyester Polyol (A): THEI (OPAEG) 2OPA 1316.8 parts of phthalic anhydride in Production Example 23 is 816.3 parts, and 573.9 parts of ethylene glycol is 355.7 parts. A polyester polyol having a hydroxyl value of 207.7 mgKOH / g was obtained in the same manner as in Production Example 22 except that 409.3 parts of glycerin was changed to 719.8 parts of tris (2-hydroxyethyl) isocyanurate.
 次いで温度を120℃まで下げ、これに無水フタル酸408.2部を仕込み120℃を保持した。酸価が無水フタル酸の仕込み量から計算した酸価の概ね半分になったところでエステル化反応を終了し、数平均分子量約780、水酸基価143.3mgKOH/g、酸価69.2mgKOH/gのポリエステルポリオールを得た。ポリエステルポリオール(A)1分子当たりの設計上の官能基の数 水酸基:2個、カルボキシ基:1個 Next, the temperature was lowered to 120 ° C., and 408.2 parts of phthalic anhydride was added thereto to maintain 120 ° C. The esterification reaction was terminated when the acid value was approximately half of the acid value calculated from the charged amount of phthalic anhydride, and had a number average molecular weight of about 780, a hydroxyl value of 143.3 mgKOH / g, and an acid value of 69.2 mgKOH / g. A polyester polyol was obtained. Polyester polyol (A) Number of functional groups designed per molecule: 2 hydroxyl groups, 1 carboxy group
(製造例27)ポリエステルポリオール(A):Gly(OPAEG)2TMTの製造例
 製造例23における無水フタル酸1316.8部を274.0部とし、エチレングリコール573.9部を119.4部、グリセリン409.3部を85.2部とした以外は、製造例1と同様の方法を行い、水酸基価306.8mgKOH/gのポリエステルポリオールを得た。
Production Example 27 Production Example of Polyester Polyol (A): Gly (OPAEG) 2TMT 1316.8 parts of phthalic anhydride in Production Example 23 is 274.0 parts, 573.9 parts of ethylene glycol is 119.4 parts, and glycerin A polyester polyol having a hydroxyl value of 306.8 mgKOH / g was obtained in the same manner as in Production Example 1 except that 409.3 parts were changed to 85.2 parts.
 次いで温度を80℃まで下げ、これにメチルエチルケトン192部に溶解した無水トリメリット酸192.1部を仕込み還流温度を保持した。酸価が無水トリメリット酸の仕込み量から計算した酸価の概ね2/3になったところでエステル化反応を終了し、メチルエチルケトンを減圧により除去し、数平均分子量約640、水酸基価174.9mgKOH/g、酸価174.5mgKOH/gのポリエステルポリオールを得た。ポリエステルポリオール(A)1分子当たりの設計上の官能基の数 水酸基:2個、カルボキシ基:2個 Next, the temperature was lowered to 80 ° C., and 192.1 parts of trimellitic anhydride dissolved in 192 parts of methyl ethyl ketone was added thereto to maintain the reflux temperature. When the acid value was approximately 2/3 of the acid value calculated from the amount of trimellitic anhydride charged, the esterification reaction was terminated, methyl ethyl ketone was removed under reduced pressure, the number average molecular weight was about 640, and the hydroxyl value was 174.9 mgKOH / g, A polyester polyol having an acid value of 174.5 mgKOH / g was obtained. Polyester polyol (A) Number of functional groups designed per molecule: 2 hydroxyl groups, 2 carboxyl groups
(製造例28)ポリエステルポリオール:THEI(OPAEG)3の製造例
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸1136.5部、エチレングリコール495.3部、トリス(2-ヒドロキシエチル)イソシアヌレート668.1部及びチタニウムテトライソプロポキシドを多価カルボン酸と多価アルコールとの合計量に対して100ppmに相当する量を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量約860、水酸基価195.4mgKOH/g、酸価0.9mgKOH/gのポリエステルポリオールを得た。ポリエステルポリオール(A)1分子当たりの設計上の官能基の数 水酸基:3個、カルボキシ基:0個
(Production Example 28) Production Example of Polyester Polyol: THEI (OPAEG) 3 In a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a rectification tube, a water separator, etc. .3 parts, tris (2-hydroxyethyl) isocyanurate 668.1 parts and titanium tetraisopropoxide in an amount corresponding to 100 ppm with respect to the total amount of polycarboxylic acid and polyhydric alcohol, The internal temperature was maintained at 220 ° C. by gradually heating so that the upper temperature did not exceed 100 ° C. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain a polyester polyol having a number average molecular weight of about 860, a hydroxyl value of 195.4 mgKOH / g, and an acid value of 0.9 mgKOH / g. Polyester polyol (A) Number of functional groups designed per molecule Hydroxyl groups: 3, carboxy groups: 0
(製造例29)ポリエステルポリオール:Gly(OPAEG)3の製造例
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸1223.3部、エチレングリコール255.3部、グリセリン253.2部及びチタニウムテトライソプロポキシドを多価カルボン酸と多価アルコールとの合計量に対して100ppmに相当する量を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量約650、水酸基価261.2mgKOH/g、酸価0.8mgKOH/gのポリエステルポリオールを得た。ポリエステルポリオール(A)1分子当たりの設計上の官能基の数 水酸基:3個、カルボキシ基:0個
(Production Example 29) Production Example of Polyester Polyol: Gly (OPAEG) 3 A polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a rectification tube, a water separator, etc. .3 parts, glycerin 253.2 parts and titanium tetraisopropoxide in an amount corresponding to 100 ppm with respect to the total amount of polyvalent carboxylic acid and polyhydric alcohol, and the upper temperature of the rectifying tube does not exceed 100 ° C. The internal temperature was kept at 220 ° C. by gradually heating. When the acid value became 1 mgKOH / g or less, the esterification reaction was terminated to obtain a polyester polyol having a number average molecular weight of about 650, a hydroxyl value of 261.2 mgKOH / g, and an acid value of 0.8 mgKOH / g. Polyester polyol (A) Number of functional groups designed per molecule Hydroxyl groups: 3, carboxy groups: 0
(硬化剤)
 三井化学製「タケネートD-110N」(メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体、不揮発分75%、NCO約11.5%)
三井化学製「タケネート500」(メタキシリレンジイソシアネート、不揮発分100%、NCO約45%)
 住化バイエルウレタン製「デスモジュールN3200」(ヘキサメチレンジイソシアネートのビウレット体、不揮発分100%、NCO約23%)
(Curing agent)
"Takenate D-110N" manufactured by Mitsui Chemicals (Trimethylolpropane adduct of metaxylylene diisocyanate, non-volatile content 75%, NCO approx. 11.5%)
"Takenate 500" manufactured by Mitsui Chemicals (metaxylylene diisocyanate, nonvolatile content 100%, NCO approximately 45%)
Sumika Bayer Urethane "Desmodur N3200" (hexamethylene diisocyanate biuret, non-volatile content 100%, NCO approx. 23%)
(接着剤の製造方法)
前記製造例で得た樹脂及び硬化剤を配合し、接着剤を得た。配合例を表1~表3に示す。
(Adhesive manufacturing method)
The resin and curing agent obtained in the above production example were blended to obtain an adhesive. Formulation examples are shown in Tables 1 to 3.
(塗工方法1)
 前記溶剤型接着剤を、バーコーターを用いて、塗布量5.0g/m(固形分)となるように厚さ12μmのPETフィルム(東洋紡績(株)製「E-5102」)のコロナ処理面に塗布し、温度70℃に設定したドライヤーで希釈溶剤を揮発させ乾燥し、接着剤が塗布されたPETフィルムの接着剤面と、厚さ70μmのCPPフィルム(東レ(株)製「ZK93KM」)のコロナ処理面とラミネートし、PETフィルム/接着層/CPPフィルムの層構成を有する複合フィルムを作製した。次いで、この複合フィルムを40℃/3日間のエージングを行い、接着剤の硬化を行って、本発明の酸素バリア性積層フィルムを得た。
(Coating method 1)
Using a bar coater, the solvent-type adhesive is a corona of a PET film (“E-5102” manufactured by Toyobo Co., Ltd.) having a thickness of 12 μm so that the coating amount is 5.0 g / m 2 (solid content). It was applied to the treated surface, and the solvent was volatilized and dried with a dryer set at a temperature of 70 ° C., and the adhesive surface of the PET film on which the adhesive was applied, and a 70 μm thick CPP film (“ZK93KM, manufactured by Toray Industries, Inc.) ]) Was laminated with the corona-treated surface to prepare a composite film having a layer structure of PET film / adhesive layer / CPP film. Next, this composite film was aged at 40 ° C. for 3 days to cure the adhesive, and the oxygen barrier laminate film of the present invention was obtained.
(塗工方法2)
 前記無溶剤型接着剤を約100℃に加熱し、無溶剤用テストコーターポリタイプ社製ロールコーターを用いて、厚さ12μmのPETフィルム(東洋紡績(株)製「E-5102」)のコロナ処理面に塗布量5.0g/mになるよう塗布後、塗布面を厚さ70μmのCPPフィルム(東レ(株)製「ZK93KM」)のコロナ処理面とラミネートし、PETフィルム/接着層/CPPフィルムの層構成を有する複合フィルムを作製した。次いで、この複合フィルムを40℃×3日間のエージンングを行い、接着剤の硬化を行って、本発明の酸素バリア性積層フィルムを得た。
(Coating method 2)
The solventless adhesive is heated to about 100 ° C., and a corona of a 12 μm thick PET film (“E-5102” manufactured by Toyobo Co., Ltd.) using a roll coater manufactured by Polytype Co., Ltd. After coating the treated surface so that the coating amount is 5.0 g / m 2 , the coated surface is laminated with a corona-treated surface of a 70 μm thick CPP film (“ZK93KM” manufactured by Toray Industries, Inc.), and a PET film / adhesive layer / A composite film having a layer structure of a CPP film was produced. Subsequently, this composite film was subjected to aging at 40 ° C. for 3 days to cure the adhesive, thereby obtaining the oxygen barrier laminate film of the present invention.
(評価方法)
(1)接着強度
 エージングが終了した酸素バリア性積層フィルムを、塗工方向と平行に15mm幅に切断し、PETフィルムとCPPフィルムとの間を、(株)オリエンテック製テンシロン万能試験機を用いて、雰囲気温度25℃、剥離速度を300mm/分に設定し、180度剥離方法で剥離した際の引っ張り強度を接着強度とした。接着強度の単位はN/15mmとした。
(Evaluation methods)
(1) Adhesive strength The oxygen barrier laminate film after aging was cut into a width of 15 mm parallel to the coating direction, and a PET / CPP film was used with a Tensilon universal testing machine manufactured by Orientec Co., Ltd. Then, the atmospheric temperature was set to 25 ° C., the peeling speed was set to 300 mm / min, and the tensile strength when peeling by the 180 ° peeling method was defined as the adhesive strength. The unit of adhesive strength was N / 15 mm.
(2)初期凝集力
 記接着剤を、バーコーターを用いて塗布量5.0g/m(固形分)となるように厚さ50μmのPETフィルムA(東洋紡績(株)製「E-5100」)のコロナ処理面に塗布し、その後希釈溶剤を揮発させ乾燥した。接着剤が塗布されたPETフィルムAの接着剤面と、厚さ50μmのPETフィルムB(東洋紡績(株)製「E-5100」)のコロナ処理面とラミネートし、PETフィルムA/接着剤層/PETフィルムBの層構成を有する複合フィルムを作製した。硬化の為のエージングを行わずに、直ちに得られた複合フィルムを幅15mm、長さ25mmに切断し試験片を作製した。
(2) Initial cohesion force The adhesive was coated with a 50 μm-thick PET film A (“E-5100” manufactured by Toyobo Co., Ltd.) using a bar coater to give a coating amount of 5.0 g / m 2 (solid content). )) Was applied to the corona-treated surface, and then the diluting solvent was evaporated and dried. Laminate the adhesive surface of the PET film A to which the adhesive has been applied and the corona-treated surface of the PET film B (“E-5100” manufactured by Toyobo Co., Ltd.) having a thickness of 50 μm to obtain a PET film A / adhesive layer A composite film having a layer structure of / PET film B was produced. Without performing aging for curing, the obtained composite film was immediately cut into a width of 15 mm and a length of 25 mm to prepare a test piece.
 次いで、(株)オリエンテック製テンシロン万能試験機を用いて、雰囲気温度25℃、剥離速度を300mm/分に設定し、得られた試験片の長さ方向の一端はPETフィルムA、もう一端にはPETフィルムBを固定し、引っ張り試験を実施し、得られた強度を初期凝集力とした。単位はN/cmとした。評価値は測定最大強度とし、結果を表に示した。 Next, using the Tensilon universal testing machine manufactured by Orientec Co., Ltd., the atmosphere temperature was set to 25 ° C., the peeling speed was set to 300 mm / min, and one end in the length direction of the obtained test piece was PET film A and the other end was Fixed the PET film B, conducted a tensile test, and determined the obtained strength as the initial cohesive force. The unit was N / cm 2 . The evaluation value was the maximum measured intensity, and the results are shown in the table.
(3)ラミネート適性
 ラミネート適性の評価として、ラミネート直後のフィルムの外観を下記の基準で評価した。
○:均一に濡れていて良好な外観。
△:均一に濡れているが、塗膜にうねりがわずかに有る。
×:塗膜にうねりが大量にある。
(3) Laminate suitability As an assessment of laminate suitability, the appearance of the film immediately after lamination was evaluated according to the following criteria.
○: Uniformly wet and good appearance.
(Triangle | delta): Although it gets wet uniformly, a coating film has a slight wave | undulation.
X: The coating film has a large amount of undulation.
(4)酸素透過率
 エージングが終了した酸素バリア性積層フィルムを、モコン社製酸素透過率測定装置OX-TRAN2/21MHを用いてJIS-K7126(等圧法)に準じ、23℃、90%RHの雰囲気下で測定した。
(4) Oxygen transmission rate Oxygen barrier laminate film after aging was measured at 23 ° C. and 90% RH in accordance with JIS-K7126 (isobaric method) using an oxygen transmission rate measuring device OX-TRAN2 / 21MH manufactured by Mocon. Measured under atmosphere.
(硬化塗膜のガラス転移温度測定)
 表7及び表8に従い、ポリエステルポリオール、硬化剤および溶剤を混合し、CPPフィルムの非コロナ処理面にアプリケーターを用いて塗工を行い、減圧乾燥機40℃/3日間の処理を行った。硬化塗膜をCPPフィルムから剥離し、ティー・エイ・インスツルメント・ジャパン(株)製、レオメトリックシステムアナライザー RSAIIIにて、-50℃~200℃の範囲、1Hz、昇温スピード3℃/分の条件で弾性率の測定を行った。得られた動的貯蔵弾性率と動的損失弾性率より下記式にてtanδを計算し、tanδのピーク値を示す温度をガラス転移温度とした。
(Measurement of glass transition temperature of cured coating)
According to Table 7 and Table 8, polyester polyol, a curing agent, and a solvent were mixed, and the non-corona-treated surface of the CPP film was coated using an applicator, and then treated at a reduced pressure dryer of 40 ° C./3 days. The cured coating film was peeled off from the CPP film, and the range from -50 ° C to 200 ° C, 1 Hz, and the temperature increase rate of 3 ° C / min were measured with RAEmetric System Analyzer RSAIII manufactured by TA Instruments Japan Co., Ltd. The elastic modulus was measured under the following conditions. Tan δ was calculated from the obtained dynamic storage elastic modulus and dynamic loss elastic modulus according to the following formula, and the temperature showing the peak value of tan δ was defined as the glass transition temperature.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 結果を表7及び表8に示す。 The results are shown in Tables 7 and 8.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 この結果、実施例16~22の接着剤を使用した酸素バリア積層フィルムは、カルボキシ基を含有しないポリエステルポリオール(A)と比較して、90%RH下での高い酸素バリア性および初期凝集力を示し、更に良好な接着強度も有していた。比較例9~10での酸素透過率は比較的良好であったが十分なレベルではなく、また、初期凝集力も著しく低いレベルであった。カルボキシ基を導入し酸価を適切な範囲に調整することにより、酸素バリア性を付与すること、および高い初期凝集力、高い接着強度を付与することができた。 As a result, the oxygen barrier laminated film using the adhesives of Examples 16 to 22 has a high oxygen barrier property and initial cohesive strength under 90% RH compared with the polyester polyol (A) not containing a carboxy group. And also had good adhesive strength. In Comparative Examples 9 to 10, the oxygen permeability was relatively good but not at a sufficient level, and the initial cohesion was also at a significantly low level. By introducing a carboxy group and adjusting the acid value to an appropriate range, it was possible to impart oxygen barrier properties, high initial cohesive strength, and high adhesive strength.
 本発明のガスバリア性多層フィルムはガスバリア性を有するため各種の包装材として好適に使用できる。また、本発明のガスバリア性多層フィルムを構成するバリア性コーティング材料、ガスバリア性接着剤は、ガスバリア性を有するので、ガスバリアコーティング材料の場合は前記包装材用のフィルムラミネート用プライマーの他、表示素子用ガスバリア性基板のコーティング剤等の電子材料用コーティング剤、建築材料用コーティング剤の他、工業材料用コーティング、ガスバリア性を所望される用途であれば好適に使用できる。また、ガスバリア接着剤の場合は包装材料用のフィルムラミネート用接着剤や、フィルムラミネート用プライマーの他、工業用途としても太陽電池用保護フィルム用の接着剤や表示素子類の封止材料等に好適に使用できる。 Since the gas barrier multilayer film of the present invention has gas barrier properties, it can be suitably used as various packaging materials. Further, since the barrier coating material and the gas barrier adhesive constituting the gas barrier multilayer film of the present invention have gas barrier properties, in the case of the gas barrier coating material, in addition to the film laminating primer for the packaging material, for display elements In addition to coating agents for electronic materials such as coating agents for gas barrier substrates, coating materials for building materials, coatings for industrial materials, and gas barrier properties can be suitably used. In addition, in the case of gas barrier adhesives, it is suitable for adhesives for film laminates for packaging materials, primers for film laminates, adhesives for protective films for solar cells, sealing materials for display elements, etc. Can be used for

Claims (22)

  1. ポリエステルポリオールと硬化剤とを反応させてなるポリエステル樹脂組成物を硬化させて得られるガスバリア層を有するガスバリア性多層フィルムにおいて、
    前記ポリエステル樹脂組成物が、下記(I)~(III)から選ばれる何れかであるガスバリア性多層フィルム。
    (I)一般式(1)で表されるポリエステルポリオールと硬化剤とを反応させてなるポリエステル樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R~Rは、各々独立に、水素原子、又は一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、nは1~5の整数を表し、Xは、置換基を有してもよい1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、及び2,3-アントラセンジイル基から成る群から選ばれるアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す)で表される基を表す。但し、R~Rのうち少なくとも一つは、一般式(2)で表される基を表す。)
    (II)分子内に重合性炭素-炭素二重結合を有し、且つ2個以上の水酸基を有するポリエステルポリオール(A)と2個以上のイソシアネート基を有するポリイソシアネート(B)とを含有してなる酸素バリア性接着剤用樹脂組成物。
    (III)ポリエステルポリオール(C)と2個以上のイソシアネート基を有するポリイソシアネート(D)とを含有してなる酸素バリア性接着剤用樹脂組成物であって、
    ポリエステルポリオール(C)が、3個以上の水酸基を有するポリエステルポリオールにカルボン酸無水物又は多価カルボン酸を反応させることにより得られる少なくとも1個のカルボキシ基と2個以上の水酸基を有するものである酸素バリア性接着剤用樹脂組成物。
    In a gas barrier multilayer film having a gas barrier layer obtained by curing a polyester resin composition obtained by reacting a polyester polyol and a curing agent,
    A gas barrier multilayer film in which the polyester resin composition is any one selected from the following (I) to (III).
    (I) A polyester resin composition obtained by reacting a polyester polyol represented by the general formula (1) with a curing agent.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 to R 3 each independently represents a hydrogen atom, or a compound represented by the general formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), n represents an integer of 1 to 5, and X represents an optionally substituted 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 2 Represents an arylene group selected from the group consisting of 1,3-anthraquinonediyl group and 2,3-anthracenediyl group, and Y represents an alkylene group having 2 to 6 carbon atoms. However, at least one of R 1 to R 3 represents a group represented by the general formula (2). )
    (II) containing a polyester polyol (A) having a polymerizable carbon-carbon double bond in the molecule and having two or more hydroxyl groups, and a polyisocyanate (B) having two or more isocyanate groups. A resin composition for an oxygen barrier adhesive.
    (III) A resin composition for an oxygen barrier adhesive comprising a polyester polyol (C) and a polyisocyanate (D) having two or more isocyanate groups,
    The polyester polyol (C) has at least one carboxy group and two or more hydroxyl groups obtained by reacting a carboxylic anhydride or a polyvalent carboxylic acid with a polyester polyol having three or more hydroxyl groups. Resin composition for oxygen barrier adhesive.
  2. 前記(I)に記載のポリエステル樹脂組成物において、
    ポリエステルポリオールのグリセロール残基を、ポリエステル樹脂組成物中に5質量%以上含有する請求項1に記載のガスバリア性多層フィルム。
    In the polyester resin composition according to (I),
    The gas barrier multilayer film according to claim 1, wherein the polyester resin composition contains a glycerol residue of the polyester polyol in an amount of 5% by mass or more.
  3. 前記硬化剤がイソシアネート化合物である請求項2に記載のガスバリア性多層フィルム。 The gas barrier multilayer film according to claim 2, wherein the curing agent is an isocyanate compound.
  4. 前記イソシアネート化合物が、メタキシレンジイソシアネート、又はメタキシレンジイソシアネートと分子内に少なくとも3個の水酸基を有する多価アルコールとの反応生成物である請求項3に記載のガスバリア性多層フィルム。 The gas barrier multilayer film according to claim 3, wherein the isocyanate compound is metaxylene diisocyanate or a reaction product of metaxylene diisocyanate and a polyhydric alcohol having at least three hydroxyl groups in the molecule.
  5. 前記(II)に記載のポリエステル樹脂組成物において、
    ポリエステルポリオール(A)を構成する重合性炭素-炭素二重結合を有するモノマー成分が、マレイン酸、無水マレイン酸、又はフマル酸である請求項1に記載のガスバリア性多層フィルム。
    In the polyester resin composition according to (II),
    2. The gas barrier multilayer film according to claim 1, wherein the monomer component having a polymerizable carbon-carbon double bond constituting the polyester polyol (A) is maleic acid, maleic anhydride, or fumaric acid.
  6. ポリエステルポリオール(A)を構成する全モノマー成分100質量部に対して、重合性炭素-炭素二重結合を有するモノマー成分が、5~60質量部である請求項5に記載のガスバリア性多層フィルム。 The gas barrier multilayer film according to claim 5, wherein the monomer component having a polymerizable carbon-carbon double bond is 5 to 60 parts by mass with respect to 100 parts by mass of the total monomer components constituting the polyester polyol (A).
  7. ポリイソシアネート(B)が芳香族環を有するポリイソシアネートを含有する請求項5又は6に記載のガスバリア性多層フィルム。 The gas barrier multilayer film according to claim 5 or 6, wherein the polyisocyanate (B) contains a polyisocyanate having an aromatic ring.
  8. 芳香族環を有するポリイソシアネートが、メタキシレンジイソシアネート、又はメタキシレンジイソシアネートと2個以上の水酸基を有するアルコールとの反応生成物である請求項7に記載のガスバリア性多層フィルム。 The gas barrier multilayer film according to claim 7, wherein the polyisocyanate having an aromatic ring is metaxylene diisocyanate or a reaction product of metaxylene diisocyanate and an alcohol having two or more hydroxyl groups.
  9. 更に酸化重合触媒を含有する請求項5~8の何れかに記載のガスバリア性多層フィルム。 The gas barrier multilayer film according to any one of claims 5 to 8, further comprising an oxidation polymerization catalyst.
  10. ポリエステルポリオール(C)が、芳香族環を有するものである請求項1に記載のガスバリア性多層フィルム。 The gas barrier multilayer film according to claim 1, wherein the polyester polyol (C) has an aromatic ring.
  11. ポリエステルポリオール(C)の水酸基価が20~250であり、酸価が20~200である請求項10に記載のガスバリア性多層フィルム。 The gas barrier multilayer film according to claim 10, wherein the polyester polyol (C) has a hydroxyl value of 20 to 250 and an acid value of 20 to 200.
  12. ポリイソシアネート(D)が芳香族環を有するポリイソシアネートを含有するものである請求項10又は11に記載のガスバリア性多層フィルム。 The gas barrier multilayer film according to claim 10 or 11, wherein the polyisocyanate (D) contains a polyisocyanate having an aromatic ring.
  13. 芳香族環を有するポリイソシアネートが、メタキシレンジイソシアネート、又はメタキシレンジイソシアネートと2個以上の水酸基を有するアルコールとの反応生成物である請求項12に記載のガスバリア性多層フィルム。 The gas barrier multilayer film according to claim 12, wherein the polyisocyanate having an aromatic ring is metaxylene diisocyanate or a reaction product of metaxylene diisocyanate and an alcohol having two or more hydroxyl groups.
  14. 請求項1に記載のポリエステル樹脂組成物のうち、前記(I)のポリエステル樹脂組成物を硬化させて得られるガスバリア性コーティング材。 A gas barrier coating material obtained by curing the polyester resin composition (I) of the polyester resin composition according to claim 1.
  15. 請求項1に記載のポリエステル樹脂組成物のうち、前記(II)、又は(III)のポリエステル樹脂組成物を硬化させて得られるガスバリア性接着剤。 A gas barrier adhesive obtained by curing the polyester resin composition of (II) or (III) among the polyester resin composition according to claim 1.
  16. 無溶剤型である請求項14に記載のガスバリア性コーティング材。 The gas barrier coating material according to claim 14, which is a solvent-free type.
  17. 無溶剤型である請求項15に記載のガスバリア性接着剤。 The gas barrier adhesive according to claim 15, which is a solventless type.
  18. ポリエステルポリオール(A)又はポリエステルポリオール(C)を、ケトン系溶剤、エステル系溶剤、又はケトン系溶剤若しくはエステル系溶剤を含有する混合溶剤に溶解させてなる請求項14に記載のガスバリア性コーティング材。 The gas barrier coating material according to claim 14, wherein the polyester polyol (A) or the polyester polyol (C) is dissolved in a ketone solvent, an ester solvent, or a mixed solvent containing a ketone solvent or an ester solvent.
  19. ポリエステルポリオール(A)又はポリエステルポリオール(C)を、ケトン系溶剤、エステル系溶剤、又はケトン系溶剤若しくはエステル系溶剤を含有する混合溶剤に溶解させてなる請求項15に記載のガスバリア性接着剤。 The gas barrier adhesive according to claim 15, wherein the polyester polyol (A) or the polyester polyol (C) is dissolved in a ketone solvent, an ester solvent, or a mixed solvent containing a ketone solvent or an ester solvent.
  20. 請求項15に記載のガスバリア性接着剤、及びラミネートフィルムを用いて構成される酸素ガスバリア性多層フィルムにおいて、少なくとも一種のラミネートフィルムの酸素透過率が0.1cc/m・day・atm以上である酸素バリア性多層フィルム。 16. The oxygen gas barrier multilayer film comprising the gas barrier adhesive according to claim 15 and a laminate film, wherein the oxygen permeability of at least one laminate film is 0.1 cc / m 2 · day · atm or more. Oxygen barrier multilayer film.
  21. 請求項1~13に記載のガスバリア性多層フィルムに用いられるポリエステルポリオールと硬化剤とを反応させてなるポリエステル樹脂組成物。 A polyester resin composition obtained by reacting the polyester polyol used in the gas barrier multilayer film according to any one of claims 1 to 13 with a curing agent.
  22. 請求項1~13の何れかに記載のガスバリア性多層フィルムを用いた包装材。 A packaging material using the gas barrier multilayer film according to any one of claims 1 to 13.
PCT/JP2012/067067 2011-07-06 2012-07-04 Multi-layer film with gas barrier properties, adhesive, and coating material WO2013005767A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011149977A JP5543408B2 (en) 2011-07-06 2011-07-06 Gas barrier polyester resin composition and gas barrier film
JP2011-149977 2011-07-06
JP2011-154773 2011-07-13
JP2011154774A JP5273219B2 (en) 2011-07-13 2011-07-13 Oxygen barrier adhesive resin composition and adhesive
JP2011-154774 2011-07-13
JP2011154773A JP5201429B2 (en) 2011-07-13 2011-07-13 Oxygen barrier adhesive resin composition, adhesive, and laminate

Publications (1)

Publication Number Publication Date
WO2013005767A1 true WO2013005767A1 (en) 2013-01-10

Family

ID=47437114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067067 WO2013005767A1 (en) 2011-07-06 2012-07-04 Multi-layer film with gas barrier properties, adhesive, and coating material

Country Status (1)

Country Link
WO (1) WO2013005767A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103994A1 (en) * 2012-12-26 2014-07-03 Dic株式会社 Polyester resin composition, adhesive, and film
JP5790981B1 (en) * 2014-07-11 2015-10-07 Dic株式会社 Laminated body having sealant film
WO2016006125A1 (en) * 2014-07-11 2016-01-14 Dic株式会社 Laminated body with sealant film
WO2016104510A1 (en) * 2014-12-24 2016-06-30 東洋インキScホールディングス株式会社 Adhesive composition and laminate
CN106536197A (en) * 2014-07-24 2017-03-22 凸版印刷株式会社 Multilayer film, laminate, wavelength conversion sheet, backlight unit, and electroluminescent light emitting unit
CN107636035A (en) * 2015-06-18 2018-01-26 Dic株式会社 Two-component curable composition, two-component adhesive, two-component coating agent, laminate
JPWO2018110190A1 (en) * 2016-12-16 2019-10-24 ソニー株式会社 Optical element, imaging element package, imaging apparatus and electronic apparatus
CN112236494A (en) * 2018-08-01 2021-01-15 Dic株式会社 Adhesive composition and surface protective film
WO2024101165A1 (en) * 2022-11-10 2024-05-16 Dic株式会社 Gas barrier composition, coating agent and multilayer body
EP4245527A4 (en) * 2020-11-10 2024-08-14 DIC Corporation Gas barrier laminate, and packaging material
CN118638401A (en) * 2024-08-15 2024-09-13 福建满山红新材料科技股份公司 A high-strength, high-life, stretch-resistant and environmentally friendly plastic packaging bag

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243182A (en) * 1984-05-18 1985-12-03 Toyo Ink Mfg Co Ltd Adhesive for dry laminate
JPH106454A (en) * 1996-06-21 1998-01-13 Toyobo Co Ltd Polyamide film laminate and manufacture thereof
WO2011162160A1 (en) * 2010-06-21 2011-12-29 Dic株式会社 Oxygen-barrier film and adhesive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243182A (en) * 1984-05-18 1985-12-03 Toyo Ink Mfg Co Ltd Adhesive for dry laminate
JPH106454A (en) * 1996-06-21 1998-01-13 Toyobo Co Ltd Polyamide film laminate and manufacture thereof
WO2011162160A1 (en) * 2010-06-21 2011-12-29 Dic株式会社 Oxygen-barrier film and adhesive

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103994A1 (en) * 2012-12-26 2014-07-03 Dic株式会社 Polyester resin composition, adhesive, and film
JPWO2014103994A1 (en) * 2012-12-26 2017-01-12 Dic株式会社 Polyester resin composition, adhesive, and film
US9777149B2 (en) 2012-12-26 2017-10-03 Dic Corporation Polyester resin composition, adhesive and film
JP5790981B1 (en) * 2014-07-11 2015-10-07 Dic株式会社 Laminated body having sealant film
WO2016006125A1 (en) * 2014-07-11 2016-01-14 Dic株式会社 Laminated body with sealant film
EP3173230A4 (en) * 2014-07-24 2017-12-20 Toppan Printing Co., Ltd. Multilayer film, laminate, wavelength conversion sheet, backlight unit, and electroluminescent light emitting unit
CN106536197B (en) * 2014-07-24 2019-09-20 凸版印刷株式会社 Laminated film and laminated body, and wavelength conversion sheet, backlight unit, and electroluminescent unit
CN106536197A (en) * 2014-07-24 2017-03-22 凸版印刷株式会社 Multilayer film, laminate, wavelength conversion sheet, backlight unit, and electroluminescent light emitting unit
US9951259B2 (en) 2014-12-24 2018-04-24 Toyo Ink Sc Holdings Co., Ltd. Adhesive composition and laminate
JP2016121351A (en) * 2014-12-24 2016-07-07 東洋インキScホールディングス株式会社 Adhesive composition and laminate
WO2016104510A1 (en) * 2014-12-24 2016-06-30 東洋インキScホールディングス株式会社 Adhesive composition and laminate
CN107636035A (en) * 2015-06-18 2018-01-26 Dic株式会社 Two-component curable composition, two-component adhesive, two-component coating agent, laminate
CN107636035B (en) * 2015-06-18 2021-03-12 Dic株式会社 Two-component curable composition, two-component adhesive, two-component coating agent, laminate
JPWO2018110190A1 (en) * 2016-12-16 2019-10-24 ソニー株式会社 Optical element, imaging element package, imaging apparatus and electronic apparatus
JP7006617B2 (en) 2016-12-16 2022-01-24 ソニーグループ株式会社 Optical elements, image sensor packages, image sensors and electronic devices
CN112236494A (en) * 2018-08-01 2021-01-15 Dic株式会社 Adhesive composition and surface protective film
CN112236494B (en) * 2018-08-01 2022-07-26 Dic株式会社 Adhesive composition and surface protective film
EP4245527A4 (en) * 2020-11-10 2024-08-14 DIC Corporation Gas barrier laminate, and packaging material
WO2024101165A1 (en) * 2022-11-10 2024-05-16 Dic株式会社 Gas barrier composition, coating agent and multilayer body
JP7533813B1 (en) 2022-11-10 2024-08-14 Dic株式会社 Gas barrier composition, coating agent and laminate
CN118638401A (en) * 2024-08-15 2024-09-13 福建满山红新材料科技股份公司 A high-strength, high-life, stretch-resistant and environmentally friendly plastic packaging bag

Similar Documents

Publication Publication Date Title
JP5743149B2 (en) Solvent-free adhesive resin composition and adhesive
JP4962666B2 (en) Oxygen barrier film and adhesive
JP5440892B2 (en) Resin composition for adhesive containing plate-like inorganic compound, and adhesive
WO2013005767A1 (en) Multi-layer film with gas barrier properties, adhesive, and coating material
JP6002966B2 (en) Phosphate-modified compound-containing resin composition for adhesive and adhesive
JP6075623B2 (en) Gas barrier polyester resin composition and gas barrier film
JPWO2014103994A1 (en) Polyester resin composition, adhesive, and film
JP6217967B2 (en) Gas barrier multilayer film
JP5821826B2 (en) adhesive
JP5273219B2 (en) Oxygen barrier adhesive resin composition and adhesive
JP5648855B2 (en) Resin composition for adhesive having water vapor barrier property, and adhesive
JP5831778B2 (en) Water vapor barrier resin composition, adhesive, and coating agent
JP5861923B2 (en) Gas barrier multilayer film
WO2016006125A1 (en) Laminated body with sealant film
JP5201429B2 (en) Oxygen barrier adhesive resin composition, adhesive, and laminate
JP5962004B2 (en) Gas barrier cured resin composition and adhesive
JP5626587B2 (en) Gas barrier film
JP5605667B1 (en) Resin composition for adhesive containing mica, and adhesive
JP6075515B1 (en) Polyester resin composition for barrier material and barrier film
JP6155595B2 (en) Adhesive composition for dry lamination
JP5543408B2 (en) Gas barrier polyester resin composition and gas barrier film
JP2013234220A (en) Method of manufacturing resin dispersion, adhesive, and coating agent
JP2016011324A (en) Polyester resin composition for barrier material and barrier film
JP2017088701A (en) Resin composition for adhesives, vapor deposition film, and gas barrier film
JP6405874B2 (en) Resin composition containing polyamide polyester and adhesive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807002

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载