+

WO2013005590A1 - 研削加工盤及び研削加工方法 - Google Patents

研削加工盤及び研削加工方法 Download PDF

Info

Publication number
WO2013005590A1
WO2013005590A1 PCT/JP2012/066076 JP2012066076W WO2013005590A1 WO 2013005590 A1 WO2013005590 A1 WO 2013005590A1 JP 2012066076 W JP2012066076 W JP 2012066076W WO 2013005590 A1 WO2013005590 A1 WO 2013005590A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
workpiece
grindstone
start position
gauge
Prior art date
Application number
PCT/JP2012/066076
Other languages
English (en)
French (fr)
Inventor
孝司 西出
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN2012800005894A priority Critical patent/CN103052470A/zh
Priority to EP12807325.1A priority patent/EP2730372A4/en
Priority to KR1020137005926A priority patent/KR101503616B1/ko
Priority to US14/130,542 priority patent/US9050703B2/en
Publication of WO2013005590A1 publication Critical patent/WO2013005590A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece

Definitions

  • the present invention relates to grinding technology.
  • teaching work for the inner ring includes manual operation of the cutting shaft up to a position where the grindstone hits (contacts) the inner surface of the inner ring.
  • teaching work on the outer ring includes manual operation of the cutting shaft up to a position where the grindstone hits (contacts) the raceway groove of the outer ring.
  • teaching work applying work
  • workers engaged in teaching work are required to have high skills for grinding.
  • the teaching work may take time, and the time required for switching the setting of the workpiece may be prolonged. As a result, it may be difficult to increase the efficiency of grinding for the workpiece.
  • an error may occur in the position where the grindstone is applied to the workpiece due to the difference in the skill for grinding for each worker.
  • the workpiece cannot be accurately ground, and as a result, defective products may be generated and the yield may be significantly reduced.
  • the present invention is intended to solve such problems, and its purpose is to shorten the time required for switching the setting of the workpiece and to accurately apply the grindstone to the workpiece. It is to provide a grinding technique that enables the workpiece to be precisely ground.
  • the present invention is a grinding machine having a grindstone for grinding a workpiece and a grindstone control system for moving the grindstone relative to the workpiece.
  • a first control unit that sets the temporary grinding start position S0 ′ of the grindstone with respect to the first workpiece by calculation, and the temporary grinding start position set by the first control unit
  • a grinding wheel is separated from the first workpiece by a distance corresponding
  • the in-process gauge detects the grinding state of the first workpiece by measuring the diameter of the first workpiece
  • the fourth control unit detects the in-process gauge near the grinding completion position S4.
  • the actual grinding start position S0 is determined by separating the grindstone from the first workpiece by a distance corresponding to S4 based on the gauge signal from.
  • the margin amount S ⁇ is set in consideration of an error amount that occurs when the grindstone is disposed opposite to the first workpiece at the start of grinding.
  • the fourth control unit in switching between the setting for grinding for a certain workpiece and the setting for grinding for another workpiece, temporarily sets the grinding for the first workpiece at the initial setting.
  • the grinding work is performed on the first workpiece while moving the grinding wheel relative to the first workpiece from the grinding start position S0 ′, and the grinding stone is moved near the grinding completion position S4 based on the gauge signal from the in-process gauge.
  • the actual grinding start position S0 is determined by separating it from the first workpiece by a distance corresponding to S4, and in grinding processing for the second and subsequent workpieces after setting switching, the grindstone is used as the workpiece from the actual grinding start position S0.
  • the workpiece is ground while moving relative to it, and the workpiece is imprinted near the grinding completion position S4. Based on the gauge signal from Sugeji, the process of moving the grinding wheel to the actual grinding start position S0 is repeated.
  • teaching work for applying a grindstone to a workpiece is not necessary, and switching of workpiece settings can be performed automatically.
  • the time required for switching the setting of the workpiece can be shortened, and the workpiece can be precisely ground by accurately applying the grindstone to the workpiece. Therefore, according to this invention, generation
  • (A) is a schematic diagram showing a positional relationship between a grinding start position and a grinding completion position in a grinding machine according to an embodiment of the present invention, and (b) is a grinding method according to an embodiment of the present invention.
  • (A) is a block diagram showing a configuration of a grindstone control system in a grinding machine according to an embodiment of the present invention
  • (b) is a flowchart showing an initial grinding process at the time of switching workpiece settings
  • FIG. 1A and FIG. 2A show a configuration of a grinding machine for realizing the grinding technique of the present embodiment.
  • the grinding machine has a grindstone 4 that grinds the workpiece 2 and a grindstone control system NC that moves the grindstone 4 relative to the workpiece 2.
  • the grindstone 4 is supported by a quill-type support shaft 6 (also referred to as a cutting shaft or a servo shaft), and the support shaft 6 is incorporated in a grinder main body 8 controlled by the grindstone control system NC. Yes.
  • the grindstone control system NC is a predetermined calculation process based on the workpiece specification database 10 in which specifications necessary for grinding of the workpieces 2 are registered in advance, and the specifications of the workpieces registered in the workpiece specification database 10. And an arithmetic processing unit 12 that executes In addition, as the workpiece
  • the specifications of various workpieces 2 registered in the workpiece specification database 10 are information necessary for grinding the workpiece 2.
  • the diameter (inner diameter) ID of the workpiece 2 before grinding and the position where the grindstone 4 is moved in grinding (for example, rapid feed completion position S1, rough feed completion position S2, finish feed completion position S3, fine finish feed completion Information such as a grinding feed position such as the position S4) is an example of these specifications.
  • the rapid feed completion position S1 indicates a range until the grindstone 4 hits the work 2 for the first time during the grinding process, in other words, a range where the grindstone 4 does not hit the work 2.
  • Each position S2, S3, S4 indicates a range until each grinding feed of rough feed grinding, finish feed grinding, and fine finish feed grinding is executed after the grindstone 4 is applied to the workpiece 2 (FIG. 1 (b)).
  • the arithmetic processing unit 12 incorporates a computer (not shown) for executing various arithmetic processes necessary for grinding based on the above specifications.
  • the computer includes a ROM (not shown) that stores various arithmetic processing programs, a RAM (not shown) that defines a work area for executing the arithmetic processing programs, and a CPU that executes the arithmetic processing programs on the RAM. (Not shown).
  • the arithmetic processing described above is executed based on the specifications of various workpieces registered in the workpiece specification database 10, and the grinding machine body 8 is controlled based on the arithmetic processing results (for example, Feed control, rotation control, etc.).
  • the grindstone 4 supported by the support shaft 6 is moved relative to the workpiece 2, and grinding processing of the workpiece 2 (each of the above-described coarse feed grinding, finish feed grinding, and fine feed grinding) Can be executed.
  • the support shaft 6 is feed-controlled and rotation-controlled by, for example, an AC servomotor (not shown). Thereby, movement control of the grindstone 4 to the grinding feed positions S0, S1, S2, S3, S4 described above is performed.
  • the arithmetic processing unit 12 controls the grinding machine body 8 based on the specification data for the workpiece 2 that matches the “model number” assigned to each workpiece 2.
  • the “model number” is input from the input instruction unit 14 provided in the grindstone control system NC.
  • the arithmetic processing unit 12 detects the current position (coordinate) signal and the target position (coordinate) signal while detecting the rotational position and rotational speed of the output shaft of the AC servomotor by an encoder (rotation detector) (not shown). And feedback control (feed control, rotation control) for the support shaft 6 is performed.
  • the arithmetic processing unit 12 operates the AC servo motor in a direction to decrease the difference from the target position (coordinate) signal. (Rotate). By repeating such a procedure until the target value is finally reached or enters the allowable range, the movement control of the grindstone 4 to the grinding feed positions S0, S1, S2, S3, S4 is performed.
  • the current position information (coordinates) of the AC servo motor can be recorded digitally.
  • the movement of the grindstone 4 to the grinding feed positions S0, S1, S2, S3, S4 so that the grindstone 4 reaches the target value at a time by giving a difference to the target position (coordinate) signal for this information. May be controlled. By doing so, it is possible to improve the efficiency of the routine from switching the setting of the workpiece 2 to grinding.
  • the grinding state of the workpiece 2 is always detected by the in-process gauge 16.
  • a gauge signal indicating that is sent from the in-process gauge 16 to the grindstone control system NC (specifically, It is output to the arithmetic processing unit 12).
  • the in-process gauge 16 is provided with a pair of styluses 16a facing each other. By setting the pair of styluses 16a on the grinding portion of the workpiece 2, the grinding state of the workpiece 2 is changed. It can always be detected. In this case, in order to cancel the influence of the eccentricity of the workpiece 2 during grinding, it is preferable to set the pair of styluses 16a so that the diameter (inner diameter) ID of the workpiece 2 is measured.
  • the arithmetic processing unit 12 When the gauge signal from the in-process gauge 16 is output (in other words, when the gauge signal from the in-process gauge 16 is input to the arithmetic processing unit 12), the arithmetic processing unit 12 is based on the gauge signal.
  • the grinder main body 8 is controlled. Thereby, the moving state of the grindstone 4 with respect to the workpiece 2 (specifically, each of the above-described coarse feed grinding, finish feed grinding, and fine finish feed grinding) is switched (see FIG. 1B).
  • the arithmetic processing unit 12 switches the subsequent movement state (grind feed) of the grindstone 4 to finish feed.
  • the arithmetic processing unit 12 switches the subsequent movement state (grind feed) of the grindstone 4 to fine feed.
  • the arithmetic processing unit 12 sends the grindstone 4 back to the actual grinding start position S0.
  • an inner ring is used as an example of the work 2.
  • the part to be ground is usually the inner diameter surface or the outer diameter surface of the work 2, for example, but here, as an example, the inner surface 2s of the work (inner ring) 2 is ground.
  • a setting for grinding a certain workpiece 2 and a setting for grinding the other workpiece 2 can be switched. That is, in this operation flow, the setting is switched to the work (inner ring) 2 having a different “model number”.
  • the grinding process for the inner diameter surface 2s of the first workpiece (inner ring) 2 before the setting is switched will be described.
  • the pair of styluses 16a of the in-process gauge 16 is set to measure the inner diameter of the workpiece (inner ring) 2, that is, the diameter ID of the inner diameter surface 2s.
  • the grinding wheel control system NC calculates a temporary grinding start position S0 ′ at which the grinding wheel 4 should be positioned with respect to the inner diameter surface 2s of the workpiece 2 when grinding the first workpiece (inner ring) 2 before the setting is switched. (P3 in FIG. 2B).
  • the calculation of the temporary grinding start position S0 ′ is performed by the arithmetic processing unit 12 based on the specifications of the first workpiece (inner ring) 2 registered in the workpiece specification database 10. That is, with reference to the center position CP of the support shaft 6 that supports the grindstone 4, the diameter (inner diameter) ID of the first workpiece (inner ring) 2 before grinding, the diameter WD of the grindstone, the first workpiece after grinding (inner ring) 2) From the grinding completion position S4 of 2 and the actual grinding start position S0 of the grinding wheel 4 for the second and subsequent workpieces (inner rings) 2 before grinding, the grinding wheel 4 with respect to the inner surface 2s of the first workpiece (inner ring) 2 A temporary grinding start position S0 ′ is calculated.
  • the center position CP of the support shaft 6 that supports the grindstone 4 is stored in advance in the arithmetic processing unit 12 as control information for the feed control AC servo motor of the support shaft 6.
  • the center position CP of the support shaft 6 that supports the grindstone 4 is a position where the rotation center line of a backing plate (not shown) that rotatably holds the workpiece (inner ring) 2 coincides with the center line of the grindstone 4. It is.
  • the provisional grinding start position S0 ′ is set by calculation described later by the calculation processing unit 12 in consideration of a predetermined margin amount S ⁇ between the temporary grinding start position S0 and the actual grinding start position S0.
  • the margin S ⁇ is set in consideration of the amount of error that occurs when the grindstone 4 is disposed opposite to the inner diameter surface 2s of the first workpiece (inner ring) 2 at the start of grinding (see FIG. 1A).
  • the in this case for example, the following six factors are assumed as the error amount added as the margin amount S ⁇ .
  • the following factors are examples, and the technical scope of the present invention is not limited thereby, and other factors can be added as the error amount of the margin amount S ⁇ .
  • the arithmetic processing unit 12 sets the temporary grinding start position S0 ′ to a position that is relatively far away from the inner diameter surface 2s of the first workpiece (inner ring) 2 before grinding.
  • the arithmetic processing unit 12 controls the grinder main body 8 based on the setting data, and feeds and controls the support shaft 6 to control the grindstone 4 to the temporary grinding start position S0 ′.
  • the grindstone 4 is positioned at the temporary grinding start position S0 ′ (P4 in FIG. 2B).
  • the arithmetic processing unit 12 grinds the inner surface 2s of the first workpiece (inner ring) 2 while moving the grindstone 4 relative to the first workpiece (inner ring) 2 from the temporary grinding start position S0 ′. Processing is executed (P5 in FIG. 2B). Specifically, the grinding process for the first workpiece (inner ring) 2 is performed according to the grinding cycle shown in FIG.
  • the arithmetic processing unit 12 moves (rapid feed) the grindstone 4 from the temporary grinding start position S0 ′ to the rapid feed completion position S1 (FIG. 2). (C1) T1).
  • the arithmetic processing unit 12 controls the grinder main body 8 to switch the moving state of the grindstone 4 from the rapid feed to the rough feed state.
  • the coarse grind is started while the grindstone 4 is moved (rough feed) (T2 in FIG. 2C).
  • the grinding state of the inner diameter surface 2s of the first workpiece (inner ring) 2 is always detected by the pair of styluses 16a of the in-process gauge 16 (T3 in FIG. 2C). ). In the vicinity of the rough feed completion position S2, the gauge signal 1 from the in-process gauge 16 is output to the arithmetic processing unit 12.
  • the arithmetic processing unit 12 controls the grinding machine body 8 based on the input gauge signal 1 (T4 in FIG. 2 (c)), and roughly moves the moving state of the grindstone 4 relative to the first workpiece (inner ring) 2. Switch from grinding to finish feed grinding. Thereby, finish feed grinding is started (T5 in FIG. 2C).
  • the grinding state of the inner surface 2s of the first workpiece (inner ring) 2 is always detected by the pair of styluses 16a of the in-process gauge 16 (T6 in FIG. 2C). ). In the vicinity of the finish feed completion position S3, the gauge signal 2 from the in-process gauge 16 is output to the arithmetic processing unit 12.
  • the arithmetic processing unit 12 controls the grinding machine body 8 based on the input gauge signal 2 (T7 in FIG. 2 (c)), and finishes the movement state of the grindstone 4 with respect to the first workpiece (inner ring) 2 Switch from grinding to precision feed grinding. Thereby, fine feed grinding is started (T8 in FIG. 2C).
  • the grinding state of the inner surface 2s of the first workpiece (inner ring) 2 is always detected by the pair of styluses 16a of the in-process gauge 16 (see FIG. 2C). T9).
  • the gauge signal 3 from the in-process gauge 16 is output to the arithmetic processing unit 12 in the vicinity of the fine finish feeding completion position S4.
  • the arithmetic processing unit 12 controls the grinder main body 8 based on the input gauge signal 3 (T10 in FIG. 2C) and moves it away from the inner surface 2s of the first workpiece (inner ring) 2.
  • the grindstone 4 is sent back.
  • the feed back amount is an amount corresponding to S4, and the grindstone 4 is separated from the inner diameter surface 2s of the first workpiece (inner ring) 2 by the feed back amount (T11 in FIG. 2C).
  • the arithmetic processing unit 12 determines the actual grinding start position S0 (P6 in FIG. 2 (b)).
  • the fine finish feed grinding described above can be omitted by utilizing the action of quill bending. Even in that case, the feed back control of the grindstone 4 is performed based on the input of the gauge signal 3 described above. In this case, the input of the gauge signal 2 is omitted.
  • the feed back amount is an amount corresponding to S4, and the grindstone 4 is separated from the inner diameter surface 2s of the first workpiece (inner ring) 2 by the feed back amount.
  • the arithmetic processing unit 12 sets the provisional grinding start position S0 ′ by the following formula in consideration of the predetermined margin S ⁇ based on the determined actual grinding start position S0.
  • S0 ' ID-WD-S4-S ⁇
  • the grindstone 4 is moved relative to the inner diameter surface 2s of the initial work (inner ring) 2 at the beginning of setting from the temporary grinding start position S0 ′. Grinding of the inner surface 2s of the first workpiece (inner ring) 2 can be executed. Then, in the vicinity of the grinding completion position S4, based on the gauge signal 3 from the in-process gauge 16, the grinding wheel 4 is separated from the inner diameter surface 2s of the first workpiece (inner ring) 2 by S4 to start actual grinding. The position S0 is determined.
  • the grindstone 4 is moved relative to the inner diameter surface 2s of the workpiece (inner ring) 2 from the actual grinding start position S0.
  • the grinding process to the inner surface 2s of the workpiece (inner ring) 2 is executed.
  • the process of moving the grindstone 4 to the actual grinding start position S0 is repeated again based on the gauge signal 3 from the in-process gauge 16.
  • the gauge signal may be output when the grindstone has not yet reached each of the positions S2, S3, S4, or when the position has slightly exceeded each of the positions S2, S3, S4.
  • the gauge signal is output in the vicinity of each of the positions S2, S3, and S4 in the process of moving the grindstone toward the positions S2, S3, and S4. It is described as something.
  • the positional relationship between the work (inner ring) 2 and the grindstone 4 can be automatically set. Thereby, since the time required for switching the setting of the workpiece (inner ring) 2 can be shortened, the grinding process for the workpiece (inner ring) 2 can be made more efficient.
  • the grindstone 4 can be accurately applied to the workpiece (inner ring) 2 even if the skill of grinding for each worker engaged in setting switching is superior or inferior. Thereby, since it can grind with respect to the workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

 砥石4支持用の支持軸6のセンター位置CPを基準に、研削加工前の最初のワーク2の直径ID、砥石の直径WD、研削加工後の最初のワークの研削完了位置S4、および研削加工前の2番目以降の各砥石の実際の研削開始位置S0から、最初のワークの仮の研削開始位置S0'が演算される。上記S0'から砥石を移動させて研削加工を実行し、研削完了位置S4近傍で砥石をS4に相当する距離だけ最初のワークから離間させることで、上記S0が確定される。上記S0'は、上記S0との間に余裕量Sαを考慮し、S0'=ID-WD-S4-Sαなる演算で設定される。

Description

研削加工盤及び研削加工方法
 本発明は研削加工技術に関する。
 従来、例えば軸受の軌道輪(内輪、外輪)などの各種ワークを製造する工程では、あるワーク(例えば、内輪)の内径に対する研削加工や、他のワーク(例えば、外輪)の軌道溝に対する研削加工が行われる。そのための研削加工技術については、種々の提案がされている(例えば、特許文献1参照)。
 例えばワークのセッティングの切り替え時に砥石とワークとの位置関係をセッティングする場合、従来の研削加工技術では、主軸にワークをセッティングした後、切込軸を手動操作して切込軸に設けられている砥石をワークに当て込むティーチング作業が行われている。例えば、内輪に対するティーチング作業は、砥石が内輪の内径面に当たる(接触する)位置までの切込軸の手動操作を含む。また、外輪に対するティーチング作業は、砥石が外輪の軌道溝に当たる(接触する)位置までの切込軸の手動操作を含む。
日本国特開2010-76005号公報
 ところで、上記したティーチング作業(当て込み作業)は熟練を要するため、ティーチング作業に従事する作業者には、研削加工に対する高いスキルが要求される。作業者の熟練の程度によっては、ティーチング作業に時間がかかり、ワークのセッティングの切り替えに要する時間が長期化する虞がある。その結果、ワークに対する研削加工の効率化を図ることが困難になってしまう虞がある。
 また、上記したティーチング作業では、作業者毎の研削加工に対するスキルの違いから、ワークに対する砥石の当て込み位置に誤差が生じる場合がある。この誤差の程度によっては、当該ワークに対して精度よく研削加工を行うことができなくなり、その結果、不良品が発生して歩留まりが著しく低下してしまう虞がある。
 本発明は、このような問題を解決するためのものであり、その目的は、ワークのセッティングの切り替えに要する時間の短縮化を可能にすると共に、ワークに対して砥石を正確に当て込むことで、当該ワークを精度よく研削加工可能にする研削加工技術を提供することである。
 この目的を達成するために、本発明は、ワークに研削加工を施す砥石と、前記砥石をワークに対して相対的に移動させる砥石制御システムと、を有する研削加工盤であって、前記砥石を支持する支持軸のセンター位置を基準に、研削加工前の最初のワークの直径ID、砥石の直径WD、研削加工後の最初のワークの研削完了位置S4、および研削加工前の2番目以降の各ワークに対する砥石の実際の研削開始位置S0に基づき、最初のワークに対する砥石の仮の研削開始位置S0′を演算によって設定する第1制御部と、第1制御部で設定された仮の研削開始位置S0′に砥石を位置決めする第2制御部と、仮の研削開始位置S0′から砥石を最初のワークに対して相対移動させながら、当該最初のワークに研削加工を実行する第3制御部と、研削完了位置S4近傍で、インプロセスゲージからのゲージ信号に基づいて、砥石を、S4に相当する距離だけ最初のワークから離間させることで、実際の研削開始位置S0を確定する第4制御部と、を備えており、第1制御部が、仮の研削開始位置S0′を、実際の研削開始位置S0との間に所定の余裕量Sαを考慮して、S0′=ID-WD-S4-Sαなる演算によって設定する。
 また、本発明において、インプロセスゲージは、最初のワークの直径を計測することで、当該最初のワークの研削加工状態を検出し、第4制御部は、研削完了位置S4近傍で、インプロセスゲージからのゲージ信号に基づいて、砥石をS4に相当する距離だけ最初のワークから離間させることで、実際の研削開始位置S0を確定する。
 また、本発明において、余裕量Sαは、研削加工開始時に砥石を最初のワークに対向配置した際に生じる誤差量を考慮して設定される。
 また、本発明において、あるワークに対する研削加工のためのセッティングと、他のワークに対する研削加工のためのセッティングとの切り替えにおいて、第4制御部は、セッティング当初の最初のワークに対する研削加工では、仮の研削開始位置S0′から砥石を最初のワークに対して相対移動させながら当該最初のワークに研削加工を実行し、研削完了位置S4近傍で、インプロセスゲージからのゲージ信号に基づいて、砥石をS4に相当する距離だけ最初のワークから離間させることで実際の研削開始位置S0を確定し、セッティング切り替え後の2番目以降の各ワークに対する研削加工では、実際の研削開始位置S0から砥石をワークに対して相対移動させながら当該ワークに研削加工を実行し、研削完了位置S4近傍で、インプロセスゲージからのゲージ信号に基づいて、砥石を実際の研削開始位置S0まで移動させるプロセスが繰り返される。
 本発明によれば、砥石をワークに当て込むティーチング作業が不要となり、ワークのセッティングの切り替えを自動的に行えるようになる。これにより、ワークのセッティング切り替えに要する時間の短縮化が可能になると共に、ワークに対して砥石を正確に当て込むことで当該ワークを精度よく研削加工することが可能になる。したがって、本発明によれば、不良品の発生を低減することができ、研削加工効率に優れた研削加工技術を実現することができる。
(a)は、本発明の一実施形態に係る研削加工盤において、研削開始位置と研削完了位置との位置関係を示す模式図、(b)は、本発明の一実施形態に係る研削加工方法を実現するための研削サイクルの一例を示す図。 (a)は、本発明の一実施形態に係る研削加工盤において、砥石制御システムの構成を示すブロック図、(b)は、ワークのセッティングの切り替え時における最初の研削加工プロセスを示すフローチャート、(c)は、研削加工サイクルのサブルーチンを示すフローチャート。
 以下、本発明の一実施形態に係る研削加工技術について、添付図面を参照して説明する。
 図1(a)及び図2(a)には、本実施形態の研削加工技術を実現するための研削加工盤の構成が示されている。研削加工盤は、ワーク2に研削加工を施す砥石4と、砥石4をワーク2に対して相対的に移動させる砥石制御システムNCと、を有している。この場合、砥石4は、クイルタイプの支持軸6(切込軸、サーボ軸ともいう)に支持されており、支持軸6は、砥石制御システムNCによって制御される研削盤本体8に組み込まれている。
 砥石制御システムNCは、各種ワーク2の研削加工に必要な緒元が予め登録されたワーク諸元データベース10と、ワーク諸元データベース10に登録された各種ワークの諸元に基づいて所定の演算処理を実行する演算処理部12と、を有している。なお、ワーク2としては、軸受の内輪や外輪が例として挙げられる。
 ワーク諸元データベース10に登録された各種ワーク2の諸元は、ワーク2の研削加工に必要な情報である。例えば、研削加工前のワーク2の直径(内径)IDや、研削加工において砥石4を移動させる位置(例えば、急速送り完了位置S1、粗送り完了位置S2、仕上送り完了位置S3、精仕上送り完了位置S4などの研削送り位置)などの情報が、これら諸元の例として挙げられる。なお、急速送り完了位置S1は、研削加工に際して砥石4が初めてワーク2に当るまでの範囲を指し、換言すると、砥石4がワーク2に当たらない範囲を指す。各位置S2,S3,S4は、砥石4がワーク2に当て込まれた後の、粗送り研削、仕上送り研削、精仕上送り研削の各研削送りが実行されるまでの範囲をそれぞれ指す(図1(b)参照)。
 演算処理部12には、上記した諸元に基づいて、研削加工に必要な各種の演算処理を実行するためのコンピュータ(図示しない)が内蔵されている。当該コンピュータは、各種の演算処理プログラムが記憶されたROM(図示しない)と、演算処理プログラムを実行するための作業領域を規定するRAM(図示しない)と、RAM上で演算処理プログラムを実行するCPU(図示しない)と、を有している。
 このような演算処理部12では、ワーク諸元データベース10に登録された各種ワークの諸元に基づいて上記した演算処理が実行され、その演算処理結果に基づいて研削盤本体8が制御(例えば、送り制御、回転制御など)される。これにより、支持軸6に支持された砥石4がワーク2に対して相対的に移動され、当該ワーク2に対する研削加工(上記した粗送り研削、仕上送り研削、精仕上送り研削の各研削送り)を実行することができる。この場合、支持軸6は、例えばACサーボモータ(図示しない)によって送り制御、回転制御される。これにより、上記した研削送り位置S0,S1,S2,S3,S4までの砥石4の移動制御が行われる。
 具体的には、ワーク2毎に割り振られている「型番」に一致したワーク2についての諸元データに基づいて、演算処理部12が研削盤本体8を制御する。「型番」は、砥石制御システムNCに設けられた入力指示部14から入力される。このとき、演算処理部12は、エンコーダ(回転検出器)(図示しない)によってACサーボモータの出力軸の回転位置や回転速度を検知しながら、現在位置(座標)信号と目標位置(座標)信号とを比較して、支持軸6に対するフィードバック制御(送り制御、回転制御)を行う。
 ここで、現在位置(座標)信号と目標位置(座標)信号との間に差がある場合、演算処理部12は、目標位置(座標)信号との差分を減少させる方向にACサーボモータを動作(回転)させる。このような手順を、最終的に目標値に到達するか、許容範囲に入るまで繰り返すことで、上記した研削送り位置S0,S1,S2,S3,S4までの砥石4の移動制御が行われる。
 なお、別の方法として、例えばACサーボモータの現在位置情報(座標)をデジタル的に記録しておくことも可能である。この情報に対して目標位置(座標)信号までの差分を与えることによって砥石4を目標値に一度に到達させるように、上記した研削送り位置S0,S1,S2,S3,S4まで砥石4の移動が制御されてもよい。そうすることで、ワーク2のセッティングの切り替えから研削加工に至るルーチンの効率化を図ることができる。
 ここで、ワーク2の研削加工状態は、インプロセスゲージ16によって常時検出されている。ワーク2の直径(内径)IDが予め設定された値(例えば、所定の仕上寸法)になったとき、そのことを示すゲージ信号が、インプロセスゲージ16から砥石制御システムNC(具体的には、演算処理部12)に出力される。
 なお、インプロセスゲージ16には、一対の触針16aが対向して設けられており、この一対の触針16aをワーク2の研削加工部位にセッティングすることで、そのワーク2の研削加工状態を常時検出することができる。この場合、研削加工中におけるワーク2の偏心の影響をキャンセルするため、ワーク2の直径(内径)IDが計測されるように一対の触針16aをセッティングすることが好ましい。
 また、インプロセスゲージ16からのゲージ信号が出力されたとき(換言すると、インプロセスゲージ16からのゲージ信号が演算処理部12に入力されたとき)、演算処理部12はこのゲージ信号に基づいて研削盤本体8を制御する。これにより、ワーク2に対する砥石4の移動状態(具体的には、上記した粗送り研削、仕上送り研削、精仕上送り研削の各研削送り)が切り替えられる(図1(b)参照)。
 例えば粗送り中にゲージ信号1が入力されたときには、演算処理部12が、その後の砥石4の移動状態(研削送り)を仕上げ送りに切り替える。また、例えば仕上げ送り中にゲージ信号2が入力されたときには、演算処理部12が、その後の砥石4の移動状態(研削送り)を精仕上送りに切り替える。そして、例えば精仕上送り中にゲージ信号3が入力されたときには、演算処理部12が、砥石4を実際の研削開始位置S0まで送り戻す。
 ここで、本実施形態の研削加工技術において、具体的な構成に基づく動作フローについて説明する。本動作フローでは、ワーク2の一例として、内輪が用いられる。また、研削加工を施す部位は、通常、例えばワーク2の内径面や外径面であるが、ここでは一例として、ワーク(内輪)2の内径面2sに対して研削加工が施される。
 また、本動作フローでは、特に、あるワーク2に対する研削加工のためのセッティングと、他のワーク2に対する研削加工のためのセッティングとが切り替えられる。即ち、本動作フローでは、「型番」の異なるワーク(内輪)2へのセッティングの切り替えが行われる。ここでは、セッティングの切り替え前、即ち、最初のワーク(内輪)2の内径面2sに対する研削加工プロセスについて説明する。この場合、上記したインプロセスゲージ16の一対の触針16aは、ワーク(内輪)2の内径、即ち、内径面2sの直径IDを計測するようにセッティングされる。
 図2(a),(b)に示すように、入力指示部14から新たな「型番」データが入力され、該当する最初のワーク(内輪)2が指定されると(図2(b)のP1)、これにより、指定されたワーク(内輪)2の直径(内径)IDが定まる。続いて、入力指示部14から砥石4の直径WDが入力、指定される(図2(b)のP2)。これにより、砥石制御システムNCは、セッティング切り替え前の最初のワーク(内輪)2に対する研削加工に際し、ワーク2の内径面2sに対して砥石4を位置決めさせるべき仮の研削開始位置S0′を、演算によって設定する(図2(b)のP3)。
 仮の研削開始位置S0′の演算は、演算処理部12によって、ワーク諸元データベース10に登録された当該最初のワーク(内輪)2の諸元に基づいて行われる。即ち、砥石4を支持する支持軸6のセンター位置CPを基準に、研削加工前の最初のワーク(内輪)2の直径(内径)ID、砥石の直径WD、研削加工後の最初のワーク(内輪)2の研削完了位置S4、および研削加工前の2番目以降の各ワーク(内輪)2に対する砥石4の実際の研削開始位置S0から、最初のワーク(内輪)2の内径面2sに対する砥石4の仮の研削開始位置S0′が演算される。
 なお、砥石4を支持する支持軸6のセンター位置CPは、支持軸6の送り制御用ACサーボモータの制御用情報として、演算処理部12に予め記憶されている。ここで、砥石4を支持する支持軸6のセンター位置CPは、ワーク(内輪)2を回転自在に保持するバッキングプレート(図示しない)の回転中心線と、砥石4の中心線とが一致する位置である。
 本実施形態では、仮の研削開始位置S0′が、実際の研削開始位置S0との間の所定の余裕量Sαを考慮して、演算処理部12により後述する演算によって設定される。このとき、余裕量Sαは、研削加工開始時に最初のワーク(内輪)2の内径面2sに砥石4を対向配置させた際(図1(a)参照)に生じる誤差量を考慮して設定される。この場合、余裕量Sαとして加味される誤差量としては、例えば以下の6つの要因が想定される。なお、以下の要因は一例であり、これにより本発明の技術的範囲が限定されることはなく、これ以外の要因も余裕量Sαの誤差量として加味することができる。
(1)ワーク2が外輪の場合、ワーク2を回転可能に支持するバッキングプレート(図示しない)の位置ズレ
(2)ワーク2が外輪の場合、外輪溝の直径の寸法ズレ
(3)砥石4の直径WDの測定誤差によるズレ
(4)クイルタイプの支持軸6の傾斜量(ベンディング量)によるズレ
(5)一対のシューでワーク2を保持する場合、当該シューの磨耗によるズレ
(6)一対のシューでワーク2を保持する場合、当該シューの研磨精度のズレ
 具体的には、演算処理部12により、仮の研削開始位置S0′が、研削加工前の最初のワーク(内輪)2の内径面2sから比較的大きく離間した位置に設定される。演算処理部12は、この設定データに基づいて研削盤本体8を制御し、支持軸6を送り制御、回転制御することで、仮の研削開始位置S0′に砥石4を停止位置制御する。このとき、砥石4は、仮の研削開始位置S0′に位置決めされる(図2(b)のP4)。
 次に、演算処理部12は、仮の研削開始位置S0′から最初のワーク(内輪)2に対して砥石4を相対移動させながら、当該最初のワーク(内輪)2の内径面2sへの研削加工を実行する(図2(b)のP5)。具体的には、最初のワーク(内輪)2に対する研削加工は、図2(c)に示された研削加工サイクルに従って実行される。
 まず、図1(b)及び図2(c)に示すように、演算処理部12は、仮の研削開始位置S0′から急速送り完了位置S1まで砥石4を移動(急速送り)させる(図2(c)のT1)。次に、演算処理部12は、研削盤本体8を制御し、砥石4の移動状態を急速送りから粗送り状態に切り替える。その後、砥石4が最初のワーク(内輪)2の内径面2sに当て込まれた状態で、砥石4が移動(粗送り)されながら粗送り研削が開始される(図2(c)のT2)。
 粗送り研削が実行されている間、最初のワーク(内輪)2の内径面2sに対する研削加工状態は、インプロセスゲージ16の一対の触針16aによって常時検出される(図2(c)のT3)。粗送り完了位置S2近傍で、インプロセスゲージ16からのゲージ信号1が、演算処理部12に出力される。
 演算処理部12は、入力されたゲージ信号1に基づいて(図2(c)のT4)、研削盤本体8を制御し、最初のワーク(内輪)2に対する砥石4の移動状態を、粗送り研削から仕上送り研削に切り替える。これにより、仕上送り研削が開始される(図2(c)のT5)。
 仕上送り研削が実行されている間、最初のワーク(内輪)2の内径面2sに対する研削加工状態は、インプロセスゲージ16の一対の触針16aによって常時検出される(図2(c)のT6)。仕上送り完了位置S3近傍で、インプロセスゲージ16からのゲージ信号2が、演算処理部12に出力される。
 演算処理部12は、入力されたゲージ信号2に基づいて(図2(c)のT7)、研削盤本体8を制御し、最初のワーク(内輪)2に対する砥石4の移動状態を、仕上送り研削から精仕上送り研削に切り替える。これにより、精仕上送り研削が開始される(図2(c)のT8)。
 精仕上送り研削が実行されている間、最初のワーク(内輪)2の内径面2sに対する研削加工状態は、インプロセスゲージ16の一対の触針16aによって常時検出される(図2(c)のT9)。精仕上送り完了位置S4近傍で、インプロセスゲージ16からのゲージ信号3が、演算処理部12に出力される。
 演算処理部12は、入力されたゲージ信号3に基づいて(図2(c)のT10)、研削盤本体8を制御し、最初のワーク(内輪)2の内径面2sから離間する方向に向けて砥石4を送り戻す。このとき、送り戻し量はS4に相当する量であり、砥石4は、当該送り戻し量だけ、最初のワーク(内輪)2の内径面2sから離間される(図2(c)のT11)。
 これにより、図2(b)に示されたセッティング当初の研削加工プロセスにおいて、演算処理部12によって、実際の研削開始位置S0が確定される(図2(b)のP6)。なお、上記した精仕上送り研削は、クイルベンディングの作用を利用することによって、省略することができる。その場合も、上記したゲージ信号3の入力に基づいて、砥石4の送り戻し制御が行われる。なお、この場合、ゲージ信号2の入力は省略される。このとき、送り戻し量はS4分に相当する量であり、砥石4は、当該送り戻し量だけ、最初のワーク(内輪)2の内径面2sから離間される。
 このとき、演算処理部12は、確定した実際の研削開始位置S0に基づき、上記した所定の余裕量Sαを考慮して、仮の研削開始位置S0′を以下の式により設定する。
    S0′=ID-WD-S4-Sα
 このように、本実施形態の研削加工技術によれば、仮の研削開始位置S0′から、セッティング当初の最初のワーク(内輪)2の内径面2sに対して砥石4を相対移動させながら、当該最初のワーク(内輪)2の内径面2sの研削加工を実行できる。そして、研削完了位置S4近傍で、インプロセスゲージ16からのゲージ信号3に基づいて、砥石4を、S4分だけ最初のワーク(内輪)2の内径面2sから離間させることで、実際の研削開始位置S0を確定させる。
 そして、セッティング切り替え後の2番目以降の各ワーク(内輪)2の内径面2sに対する研削加工では、実際の研削開始位置S0から砥石4をワーク(内輪)2の内径面2sに対して相対移動させながら、当該ワーク(内輪)2の内径面2sへの研削加工が実行される。研削加工が研削完了位置S4近傍で、インプロセスゲージ16からのゲージ信号3に基づいて、砥石4を、実際の研削開始位置S0まで移動させるプロセスが再び繰り返される。
 尚、ワーク2の外径には個体差があり、またワーク2が研削部に固定される位置はワーク2毎に微小に変動する。このことから、インプロセスゲージ16からゲージ信号が出力される時点における砥石の位置は、ワーク2毎に微小に変動する。ゲージ信号は、砥石が各位置S2,S3,S4まで未だ至っていない場合や、または各位置S2,S3,S4を僅かに行き過ぎた場合に出力されることがある。本明細書においては、このように位置S2,S3,S4に向けて砥石を移動させる過程においてゲージ信号が出力されることを、各位置S2,S3,S4の「近傍」でゲージ信号が出力されるものとして説明している。
 以上、本実施形態によれば、上記したティーチング作業(当て込み作業)が不要となるため、ワーク(内輪)2と砥石4との位置関係のセッティングを自動的に行うことができる。これにより、ワーク(内輪)2のセッティングの切り替えに要する時間の短縮化を図ることができるため、ワーク(内輪)2に対する研削加工の効率化を図ることができる。
 この場合、セッティングの切り替えに従事する作業者毎の研削加工に対するスキルに優劣があったとしても、ワーク(内輪)2に対して砥石4を正確に当て込むことができる。これにより、ワーク(内輪)2に対して精度よく研削加工を行うことができるため、不良品の発生を低減することができ、その結果、歩留まりを飛躍的に向上させることができる。
 なお、本発明は、上記した実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能である。上記した実施形態では、ワーク2として内輪を想定したが、これに限定されない。ワーク2としての外輪の内径面(例えば、外輪軌道溝)に対する研削加工について、上記した実施形態に係る技術思想を適用することができることは言うまでもない。
 本出願は2011年7月4日出願の日本特許出願(特願2011-148538)に基づくものであり、その内容はここに参照として取り込まれる。
2 ワーク(内輪、外輪)
4 砥石
6 支持軸(切込軸、サーボ軸)
CP 支持軸のセンター位置(中心)
ID 研削加工前のワークの直径(内径)
WD 砥石の直径
S4 研削完了位置
S0 実際の研削開始位置
S0′ 仮の研削開始位置
Sα 余裕量

Claims (8)

  1.  ワークに研削加工を施す砥石と、前記砥石をワークに対して相対的に移動させる砥石制御システムと、を有する研削加工盤であって、
     前記砥石を支持する支持軸のセンター位置を基準に、研削加工前の最初のワークの直径ID、砥石の直径WD、研削加工後の最初のワークの研削完了位置S4、および研削加工前の2番目以降の各ワークに対する砥石の実際の研削開始位置S0に基づき、最初のワークに対する砥石の仮の研削開始位置S0′を演算によって設定する第1制御部と、
     第1制御部で設定された仮の研削開始位置S0′に砥石を位置決めする第2制御部と、
     仮の研削開始位置S0′から砥石を最初のワークに対して相対移動させながら、当該最初のワークに研削加工を実行する第3制御部と、
     研削完了位置S4近傍で、インプロセスゲージからのゲージ信号に基づいて、砥石を、S4に相当する距離だけ最初のワークから離間させることで、実際の研削開始位置S0を確定する第4制御部と、を備えており、
     第1制御部が、仮の研削開始位置S0′を、実際の研削開始位置S0との間に所定の余裕量Sαを考慮して、
               S0′=ID-WD-S4-Sα
    なる演算によって設定することを特徴とする研削加工盤。
  2.  インプロセスゲージは、最初のワークの直径を計測することで、当該最初のワークの研削加工状態を検出し、
     第4制御部は、研削完了位置S4近傍で、インプロセスゲージからのゲージ信号に基づいて、砥石をS4に相当する距離だけ最初のワークから離間させることで、実際の研削開始位置S0を確定することを特徴とする請求項1に記載の研削加工盤。
  3.  余裕量Sαは、研削加工開始時に砥石を最初のワークに対向配置した際に生じる誤差量を考慮して設定されることを特徴とする請求項1又は2に記載の研削加工盤。
  4.  あるワークに対する研削加工のためのセッティングと、他のワークに対する研削加工のためのセッティングとの切り替えにおいて、第4制御部は、
     セッティング当初の最初のワークに対する研削加工では、仮の研削開始位置S0′から砥石を最初のワークに対して相対移動させながら当該最初のワークに研削加工を実行し、研削完了位置S4近傍で、インプロセスゲージからのゲージ信号に基づいて、砥石をS4に相当する距離だけ最初のワークから離間させることで実際の研削開始位置S0を確定し、
     セッティング切り替え後の2番目以降の各ワークに対する研削加工では、実際の研削開始位置S0から砥石をワークに対して相対移動させながら当該ワークに研削加工を実行し、研削完了位置S4近傍で、インプロセスゲージからのゲージ信号に基づいて、砥石を実際の研削開始位置S0まで移動させるプロセスが繰り返されることを特徴とする請求項1~3のいずれか1項に記載の研削加工盤。
  5.  ワークに研削加工を施す砥石と、砥石をワークに対して相対的に移動させる砥石制御システムと、を有する研削加工盤を用いた研削加工方法であって、
     砥石を支持する支持軸のセンター位置を基準に、研削加工前の最初のワークの直径ID、砥石の直径WD、研削加工後の最初のワークの研削完了位置S4、研削加工前の2番目以降の各ワークに対する砥石の実際の研削開始位置S0とし、最初のワークに対する砥石の仮の研削開始位置S0′を演算によって設定する第1工程と、
     第1工程で設定された仮の研削開始位置S0′に砥石を位置決めする第2工程と、
     仮の研削開始位置S0′から砥石を最初のワークに対して相対移動させながら、当該最初のワークに研削加工を実行する第3工程と、
     研削完了位置S4近傍で、砥石をS4に相当する距離だけ最初のワークから離間させることで、実際の研削開始位置S0を確定する第4工程と、を有しており、
     第1工程において、仮の研削開始位置S0′は、実際の研削開始位置S0との間に所定の余裕量Sαを考慮して、
               S0′=ID-WD-S4-Sα
    なる演算によって設定されることを特徴とする研削加工方法。
  6.  インプロセスゲージによって最初のワークの直径を計測することで、当該最初のワークの研削加工状態が検出されており、
     第4工程において、研削完了位置S4近傍で、インプロセスゲージからのゲージ信号に基づいて、砥石をS4に相当する距離だけ最初のワークから離間させることで、実際の研削開始位置S0を確定することを特徴とする請求項5に記載の研削加工方法。
  7.  余裕量Sαは、研削加工開始時に砥石を最初のワークに対向配置させた際に生じる誤差量を考慮して設定されることを特徴とする請求項5又は6に記載の研削加工方法。
  8.  あるワークに対する研削加工のためのセッティングと、他のワークに対する研削加工のためのセッティングとの切り替えにおいて、第4工程では、
     セッティング当初の最初のワークに対する研削加工では、仮の研削開始位置S0′から砥石を最初のワークに対して相対移動させながら当該最初のワークに研削加工を実行し、研削完了位置S4近傍で、インプロセスゲージからのゲージ信号に基づいて、砥石をS4に相当する距離だけ最初のワークから離間させることで実際の研削開始位置S0を確定し、
     セッティング切り替え後の2番目以降の各ワークに対する研削加工では、実際の研削開始位置S0から砥石をワークに対して相対移動させながら当該ワークに研削加工を実行し、研削完了位置S4近傍で、インプロセスゲージからのゲージ信号に基づいて、砥石を実際の研削開始位置S0まで移動させるプロセスが繰り返されることを特徴とする請求項5~7のいずれか1項に記載の研削加工方法。
PCT/JP2012/066076 2011-07-04 2012-06-22 研削加工盤及び研削加工方法 WO2013005590A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2012800005894A CN103052470A (zh) 2011-07-04 2012-06-22 磨床以及研磨加工方法
EP12807325.1A EP2730372A4 (en) 2011-07-04 2012-06-22 GRINDING WHEEL AND GRINDING PROCESS
KR1020137005926A KR101503616B1 (ko) 2011-07-04 2012-06-22 연삭 가공반 및 연삭 가공 방법
US14/130,542 US9050703B2 (en) 2011-07-04 2012-06-22 Grinding machine and grinding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-148538 2011-07-04
JP2011148538A JP5729178B2 (ja) 2011-07-04 2011-07-04 研削加工盤及び研削加工方法

Publications (1)

Publication Number Publication Date
WO2013005590A1 true WO2013005590A1 (ja) 2013-01-10

Family

ID=47436946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066076 WO2013005590A1 (ja) 2011-07-04 2012-06-22 研削加工盤及び研削加工方法

Country Status (6)

Country Link
US (1) US9050703B2 (ja)
EP (1) EP2730372A4 (ja)
JP (1) JP5729178B2 (ja)
KR (1) KR101503616B1 (ja)
CN (1) CN103052470A (ja)
WO (1) WO2013005590A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI824349B (zh) * 2020-12-04 2023-12-01 日商美德龍股份有限公司 自動研削系統

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708324B2 (ja) * 2011-07-11 2015-04-30 日本精工株式会社 研削加工盤及び研削加工方法
CN106217154B (zh) * 2016-07-01 2018-04-20 哈尔滨汽轮机厂有限责任公司 一种半联轴器工作面精准磨削方法
KR102574589B1 (ko) * 2016-07-01 2023-09-06 남양넥스모 주식회사 워크 연삭 장치 및 그 제어방법
CN106272072B (zh) * 2016-08-29 2019-05-31 佛山市新鹏机器人技术有限公司 盥洗用具的抛光位置点测定方法和装置
CN114211328A (zh) * 2021-12-09 2022-03-22 技感半导体设备(南通)有限公司 一种磨削主轴坐标测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262498A (ja) * 1993-03-18 1994-09-20 Toyoda Mach Works Ltd 研削方法
JP2000094279A (ja) * 1998-09-17 2000-04-04 Think Laboratory Co Ltd 砥石研磨方法及び砥石交換時期検出方法
JP2004017194A (ja) * 2002-06-14 2004-01-22 Okamoto Machine Tool Works Ltd 研削装置およびそれを用いて砥石車をワ−クへ自動的に接近させる方法
JP2009184063A (ja) * 2008-02-06 2009-08-20 Jtekt Corp 研削盤および研削加工方法
JP2010076005A (ja) 2008-09-24 2010-04-08 Jtekt Corp 工作機械における段取り方法
JP2011045940A (ja) * 2009-08-25 2011-03-10 Komatsu Ntc Ltd 円筒研削方法及び装置
JP2011148538A (ja) 2010-01-25 2011-08-04 Yushin:Kk フィルム状逆止ノズルおよびフレキシブル包装袋

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2963829A (en) * 1955-12-09 1960-12-13 Hoern & Dilts Inc Grinding machines
US3156075A (en) * 1962-01-02 1964-11-10 Timken Roller Bearing Co Gaging device for work grinders
US4048764A (en) * 1973-08-06 1977-09-20 Supfina Maschinenfabrik Hentzen Kg Method for micro-finish machining of compound, circular arc-shaped profiled surfaces in annular workpieces
US5562526A (en) * 1993-03-29 1996-10-08 Toyoda Koki Kabushiki Kaisha Method and apparatus for grinding a workpiece
KR20040048034A (ko) 2002-12-02 2004-06-07 삼성전자주식회사 조리 장치 및 방법
CN100526007C (zh) * 2004-12-10 2009-08-12 中原工学院 转臂轴承内孔的磨削加工工艺及专用夹具
JP5277692B2 (ja) * 2008-03-31 2013-08-28 株式会社ジェイテクト ポストプロセス定寸制御装置
US20100022167A1 (en) * 2008-07-25 2010-01-28 Supfina Grieshaber Gmbh & Co. Kg Superfinish Machine with an Endless Polishing Band and Method for Operating a Superfinish Machine
JP5416527B2 (ja) * 2009-09-29 2014-02-12 株式会社太陽工機 研削盤
US8517797B2 (en) * 2009-10-28 2013-08-27 Jtekt Corporation Grinding machine and grinding method
JP5573459B2 (ja) * 2010-07-27 2014-08-20 株式会社ジェイテクト 研削方法および研削盤
JP5708324B2 (ja) * 2011-07-11 2015-04-30 日本精工株式会社 研削加工盤及び研削加工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262498A (ja) * 1993-03-18 1994-09-20 Toyoda Mach Works Ltd 研削方法
JP2000094279A (ja) * 1998-09-17 2000-04-04 Think Laboratory Co Ltd 砥石研磨方法及び砥石交換時期検出方法
JP2004017194A (ja) * 2002-06-14 2004-01-22 Okamoto Machine Tool Works Ltd 研削装置およびそれを用いて砥石車をワ−クへ自動的に接近させる方法
JP2009184063A (ja) * 2008-02-06 2009-08-20 Jtekt Corp 研削盤および研削加工方法
JP2010076005A (ja) 2008-09-24 2010-04-08 Jtekt Corp 工作機械における段取り方法
JP2011045940A (ja) * 2009-08-25 2011-03-10 Komatsu Ntc Ltd 円筒研削方法及び装置
JP2011148538A (ja) 2010-01-25 2011-08-04 Yushin:Kk フィルム状逆止ノズルおよびフレキシブル包装袋

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2730372A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI824349B (zh) * 2020-12-04 2023-12-01 日商美德龍股份有限公司 自動研削系統

Also Published As

Publication number Publication date
KR20130075768A (ko) 2013-07-05
US20140127972A1 (en) 2014-05-08
EP2730372A4 (en) 2014-12-24
JP2013013971A (ja) 2013-01-24
EP2730372A1 (en) 2014-05-14
CN103052470A (zh) 2013-04-17
US9050703B2 (en) 2015-06-09
JP5729178B2 (ja) 2015-06-03
KR101503616B1 (ko) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2013005590A1 (ja) 研削加工盤及び研削加工方法
JP5857660B2 (ja) 研削盤のツルーイング装置
CN102806513B (zh) 一种恒磨削量的抛光方法
JP5708324B2 (ja) 研削加工盤及び研削加工方法
WO2014002624A1 (ja) 研削加工装置およびその制御方法
JP2014000614A (ja) 研削加工装置
JP5688280B2 (ja) 平板状ワークの周縁加工装置
JP7172636B2 (ja) 工作機械のメンテナンス支援装置および工作機械システム
CN111823139A (zh) 砂轮的修整方法以及砂轮的修正装置
JP2013013971A5 (ja)
JPH04348869A (ja) アンギュラ砥石の修正装置
CN111843622B (zh) 磨削方法以及磨削机
JP2007000945A (ja) 研削方法及び装置
JP6256069B2 (ja) 心なしシュー研削のシミュレーション装置、および、心なしシュー研削のシミュレーション方法
JP2020114614A (ja) 表面粗さ推定装置および工作機械システム
JP2009113161A (ja) 研削方法および研削装置
JP4988534B2 (ja) センタレス研削盤の段取り装置、その段取り方法およびセンタレス研削盤
JPS6017660B2 (ja) 砥石摩耗補正装置を有する研削盤
JPH0970755A (ja) 砥石車のツルーイング装置
KR102574589B1 (ko) 워크 연삭 장치 및 그 제어방법
JP3651082B2 (ja) 研削装置
JP2015000469A (ja) 研削盤およびツルーイング方法
JP2010064192A (ja) 研削盤
JP2013154462A (ja) 研削盤のツルーイング装置
JP2004154869A (ja) ツルーイング方法およびツルーイング装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000589.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137005926

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14130542

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012807325

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012807325

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载