WO2013005337A1 - Exhaust purification apparatus for internal combustion engine - Google Patents
Exhaust purification apparatus for internal combustion engine Download PDFInfo
- Publication number
- WO2013005337A1 WO2013005337A1 PCT/JP2011/065636 JP2011065636W WO2013005337A1 WO 2013005337 A1 WO2013005337 A1 WO 2013005337A1 JP 2011065636 W JP2011065636 W JP 2011065636W WO 2013005337 A1 WO2013005337 A1 WO 2013005337A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dpf
- control
- ash
- internal combustion
- combustion engine
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9477—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9495—Controlling the catalytic process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
- F01N9/002—Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/70—Non-metallic catalysts, additives or dopants
- B01D2255/707—Additives or dopants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/915—Catalyst supported on particulate filters
- B01D2255/9155—Wall flow filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/04—Sulfur or sulfur oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to an exhaust purification device for an internal combustion engine.
- a diesel particulate filter (hereinafter referred to as “DPF”) is installed in the exhaust gas passage of the internal combustion engine, Generally, PM in exhaust gas is collected and removed.
- PM regeneration since the PM collected in the DPF gradually accumulates, regeneration (hereinafter referred to as “PM regeneration”) is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF. ”).
- PM regeneration operation is usually performed by heating the DPF while supplying a reducing agent such as hydrocarbon (HC) to the DPF.
- a reducing agent such as hydrocarbon (HC)
- Ash is generated when the engine oil mixed in the cylinder of the engine burns, and the generated ash particles are covered with PM in the DPF.
- the ash particles covered with PM are exposed to high temperature conditions during the PM regeneration operation in the DPF, and the PM covering the ash particles is burned and removed.
- Ash deposition occurs because the ash particles are agglomerated and increased in size by further applying heat to the ash particles from which the PM has been burned and removed.
- the improvement to the conventional DPF and the improvement to the regeneration operation of the DPF are intended to improve the collection efficiency of the DPF and improve the performance of the PM regeneration operation, and not to the accumulation of ash.
- an invention disclosed in Patent Document 1 for example, there is an invention disclosed in Patent Document 1, and Patent Document 1 shows a configuration of a DPF capable of burning PM at a relatively low temperature. Yes.
- the structure of the DPF disclosed in Patent Document 1 is characterized in that, in the DPF and the exhaust gas purification method using the DPF, a catalyst made of a solid superacid having an active metal supported on the DPF is held on the filter surface. is there.
- Patent Document 1 reduces the combustion temperature of PM with a solid super strong acid carrying an active metal, and regenerates DPF at a lower temperature than before, preferably continuously, and CO, HC, NO, NO 2 can be removed at the same time.
- Patent Document 1 is intended to improve the performance of the PM regeneration operation, and does not correspond to the accumulation of ash. If the use of the DPF is continued, the PM regeneration operation is performed. However, this does not solve the problem that the pressure loss of the DPF gradually increases, and unless the PM regeneration temperature is gradually increased, sufficient regeneration cannot be performed and the fuel consumption deteriorates.
- Patent Document 2 which is selected from platinum, palladium and rhodium as a catalyst for a diesel engine exhaust gas purification device.
- SOF Solid Organic Fraction
- unburned hydrocarbons, etc. contained in particulate matter in diesel engine exhaust gas from a low temperature range.
- the invention of Patent Document 2 aims at an effect similar to the invention of Patent Document 1 and does not relate to DPF.
- JP 2006-289175 A Japanese Patent Laid-Open No. 10-033985
- the present invention provides an exhaust emission control device for an internal combustion engine that can suppress the accumulation of ash on the DPF and suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time. It is aimed.
- the present invention provides a configuration in which the ash deposited on the DPF is discharged after being reduced in particle size to regenerate the DPF (hereinafter referred to as “ash regeneration”), and the CaSO 4 having a reduced particle size is retained.
- ash regeneration the ash deposited on the DPF is discharged after being reduced in particle size to regenerate the DPF
- CaSO 4 having a reduced particle size is retained.
- the ash regeneration operation proceeds effectively and the ash is removed at a high release rate, it is possible to suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time. It is an object of the present invention to provide an epoch-making DPF that has the advantageous effect of being able to be made.
- the accumulated ash can be discharged with a reduced particle size.
- a DPF that is smaller than the conventional DPF can be used from the beginning of the installation of the DPF. Not only cost reduction, but also energy cost of PM regeneration operation can be reduced.
- the fact that a small DPF can be used means that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced.
- the inventor of the present application studied the problem of ash accumulation inside the DPF, analyzed the cause of ash accumulation, and the main components of ash were calcium (Ca) contained in engine oil and SOx in exhaust gas. It was found that ash is ion-bonded, CaSO 4 is the main component, and Ca salt has a high melting point, so that in the exhaust gas, ash flows into the DPF as a solid and aggregates to increase the particle size.
- Ca calcium
- the inventors of the present application have confirmed by experiments that the size of ash is on the order of submicrons, and that the ash slips through the DPF when the ash size is reduced to the order of nanomicrons.
- Ca ions associated with stronger acid than SO 3 on the surface of the DPF is different from the stronger acid than SO 3 on the surface of the DPF, if a stronger acid is present in the atmosphere It was confirmed by an experiment that it binds to a stronger acid in the atmosphere, is released from the DPF, and passes through the DPF to be discharged.
- the particle size will be submicron.
- CaSO 4 deposited in the DPF turned into, in a reducing atmosphere becomes CaSO 3 SO 4 is reduced in CaSO 4
- Ca ions CaSO 3 is bonded with the acid on the surface of the DPF, on the surface of the DPF Disperse in atomic form.
- SO 4 is present in the atmosphere, the Ca on the surface of the DPF combines with the SO 4 in the atmosphere and becomes sub-nanometer-sized CaSO 4 and is released from the DPF.
- the exhaust gas atmosphere is a stoichiometric or rich atmosphere, it is the above-described reducing atmosphere, and when it is a lean atmosphere, the lean atmosphere contains SO 4 . Therefore, if control for making the atmosphere stoichiometric or rich and control for making the lean atmosphere next are performed on the above-mentioned DPF, ash Ca ions deposited on the DPF in the stoichiometric or rich atmosphere are converted to DPF. Then, in a lean atmosphere, Ca on the surface of the DPF is combined with SO 4 in the lean atmosphere and released from the DPF, and the fine particle size is reduced to a sub-nanometer size. CaSO 4 is converted to pass through the DPF and discharged.
- the first CaSO 4 having a large particle size of submicron and deposited on the DPF is finally released again from the DPF as CaSO 4.
- No. 4 is reduced in size to a sub-nanometer size and passes through the DPF and is discharged.
- the present invention supplies SO 4 required for the release of ash when the flow rate of exhaust gas passing through the DPF is high, and CaSO 4 having a reduced particle size is effectively used. It is intended to be released. That is, according to the present invention, CaSO 4 having a reduced particle size is released without stagnation, and the ash regeneration operation proceeds effectively.
- the ash regeneration operation and the PM regeneration operation are performed in accordance with the ash accumulation state and the PM accumulation state, respectively.
- the frequency of the ash regeneration operation may be less than the frequency of the PM regeneration operation.
- the ash regeneration operation and the PM regeneration operation can be performed at substantially the same temperature, the ash regeneration operation is performed as one of a plurality of PM regeneration operations using the temperature increase of the PM regeneration operation. It is efficient to carry out it subsequently.
- an exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine, wherein the DPF is a DPF whose surface is coated with a solid acid,
- the acid strength is higher than the acid strength of SO 3 and lower than the acid strength of SO 4
- SO 4 is increased by raising the temperature upstream of the DPF whose surface is coated with a solid acid.
- An SOx absorption / release catalyst device having a characteristic of releasing ash, and further, an ash regeneration operation control that removes ash accumulated in the DPF, and the control of the ash regeneration operation increases the temperature of the DPF;
- the control of the air-fuel ratio of the atmosphere in the DPF and the control of releasing SO 4 from the SOx adsorption / release catalyst device are provided, and the control of the air-fuel ratio of the atmosphere in the DPF increases the temperature of the DPF.
- the stoichiometric or air-fuel ratio rich atmosphere is first changed to the air-fuel ratio lean atmosphere, and the control for releasing SO 4 from the SOx adsorption / release catalyst device increases the DPF temperature.
- an exhaust gas purification apparatus for an internal combustion engine which is control for releasing SO 4 from the SOx absorption / release catalyst device when the flow rate of the exhaust gas passing through the DPF exceeds a predetermined value.
- the DPF is constituted by applying a solid acid having an acid strength stronger than SO 3 and weaker than SO 4 on the surface of the DPF.
- a solid acid having an acid strength stronger than SO 3 and weaker than SO 4 on the surface of the DPF.
- the first large-sized CaSO 4 is released from the DPF as a reduced particle size CaSO 4 and passes through the DPF. Discharged.
- the ash is released when the flow rate of the exhaust gas passing through the DPF is high. Necessary SO 4 is supplied so that CaSO 4 having a reduced particle size is effectively released.
- An exhaust purification device for an internal combustion engine that can suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time is provided.
- a PM regeneration operation control in which the PM accumulated in the DPF is combusted and removed by raising the temperature of the DPF, and the ash regeneration operation is controlled in a plurality of ways.
- the ash regeneration operation is controlled following one of the plurality of PM regeneration operations.
- the frequency of the ash regeneration operation may be less than the frequency of the PM regeneration operation, and the ash regeneration operation and the PM regeneration operation can be performed at substantially the same temperature.
- the CaSO 4 having a large particle size that has been buried in the PM comes to be exposed to a reducing atmosphere and is reduced to CaSO 4.
- the ash that becomes 3 comes into contact with the solid acid on the surface of the DPF, and the ash regeneration operation following the PM regeneration operation effectively proceeds.
- the control for releasing SO 4 from the SOx adsorption / release catalyst device is further performed when the operating state of the internal combustion engine is in an acceleration state.
- An exhaust gas purification device for an internal combustion engine according to 2 is provided.
- the condition that the flow rate of the exhaust gas is high is likely to occur. Therefore, when the operating state of the internal combustion engine is in the accelerated state, the exhaust gas It is possible to determine whether the flow rate of the ash is high and control to supply SO 4 to efficiently determine the timing of the ash regeneration operation.
- An exhaust purification device for an internal combustion engine that can suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time is provided.
- an ash regeneration configuration is provided, and in the ash regeneration operation, the CaSO 4 having a reduced particle size is released without stagnation, and the ash regeneration operation proceeds effectively. Since the ash is removed at a high release rate, the accumulation of ash on the DPF is suppressed, and an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption can be suppressed over a long period of time. There is a common effect that the exhaust purification device provides.
- FIG. 1 is a diagram for explaining a schematic configuration of an embodiment of an apparatus arrangement when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
- FIG. 2 is a diagram for explaining the effect of implementing the present invention.
- FIG. 3 is a flowchart illustrating a schematic configuration of an embodiment of control according to the present invention.
- FIG. 4 is a diagram for explaining the principle of the present invention.
- FIG. 5 is a diagram for explaining the principle of the present invention.
- FIG. 6 is a diagram for explaining the principle of the present invention.
- FIG. 7 is a diagram for explaining the principle of control of the present invention.
- FIG. 8 is a diagram for explaining an embodiment of the control of the present invention.
- FIG. 9 is a diagram for explaining another embodiment of the control of the present invention.
- FIG. 10 is a diagram for explaining still another embodiment of the control of the present invention.
- FIG. 1 is a diagram showing a basic configuration of the present invention.
- a solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is formed on the surface of DPF 2, specifically, on the surface of a DPF substrate of DPF 2.
- an SOx absorption / release catalyst device 30 is provided upstream of the DPF 2 in the exhaust system of the internal combustion engine 1.
- the exhaust gas of the internal combustion engine 1 is guided to the DPF 2 via the SOx absorption / release catalyst device 30, SOx in the exhaust gas is collected and removed by the SOx absorption / release catalyst device 30, and PM in the exhaust gas is captured by the DPF 2.
- the exhaust gas that has been collected and removed and from which SOx and PM have been removed is discharged. Since PM collected in the DPF 2 is gradually accumulated, a PM regeneration operation is performed periodically or by detecting a decrease in the performance of the DPF 2 and burning and removing the PM collected in the DPF 2.
- the ash 3 deposited in the DPF is reduced in size, so that the particles reduced in size pass through the filter gap of the DPF and are discharged together with the exhaust gas.
- the present invention will be described in detail with reference to FIG. 6.
- the ash particles generated by the engine and covered with the PM are regenerated into the PM within the DPF.
- Ashes 3 exposed to high temperature conditions during operation are burned and removed from the PM particles that have covered the ash particles, and heat is further applied to the ash particles from which the PM has been burned and removed to aggregate the ash particles, thereby increasing the particle size.
- the particles of ash 3 are mainly composed of calcium sulfate (CaSO 4 ).
- the atmosphere is a reducing atmosphere, for example, a stoichiometric atmosphere or a rich atmosphere in FIG. It is reduced to calcium (CaSO 3 ).
- Ca dispersed in atomic form on the solid acid 6 sO 4 is stronger acid than the solid acid 6 And is sulfated again to form calcium sulfate (CaSO 4 ), which is released from the solid acid.
- Calcium sulfate (CaSO 4 ) at this time is a particle having a fine particle size of 1 nanometer or less, and the fine particle size passes through the DPF as an aerosol. The accumulated ash is removed.
- the acid strength of the solid acid 6 applied on the DPF substrate 5 must be larger than the acid strength of SO 3 and smaller than the acid strength of SO 4 .
- the acid strength of the solid acid 6 is equal to or lower than the acid strength of SO 3 , Ca in the ash particles reduced to CaSO 3 does not bind to the solid acid 6 and therefore ash 3 does not decompose, and This is because when the solid acid 6 is a super strong acid that is equal to or higher than the acid strength of SO 4 , even if SO 4 exists in the atmosphere, Ca is not released from the solid acid 6.
- a solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is applied on the DPF base 5 and the air-fuel ratio of the atmosphere in the DPF is set to the stoichiometric or air-fuel ratio first during the ash regeneration operation.
- the ash having a large particle size in the DPF becomes ash particles having a fine particle size, passes through the DPF, and is discharged.
- the present invention supplies SO 4 necessary for ash release when the flow rate of exhaust gas passing through the DPF is high, so that CaSO 4 having a reduced particle size can be effectively released. .
- the thin line graph indicates the vehicle speed indicated by the left vertical axis
- the bold line graph indicates the right vertical axis.
- Exhaust gas flow rate but when the exhaust gas flow rate Ga exceeds the threshold value, as shown by the oblique line, the air-fuel ratio in the third graph from the top is close to the stoichiometric value on the rich side of the threshold value, that is, the lean region.
- release of SO 4 from the SOx adsorption / release catalyst device is started (in the control of FIG. 3 described later, this is referred to as “acceleration rich control”).
- the lowermost graph in FIG. 7 is a graph showing the SOx release concentration from the SOx absorption / release catalyst device, and when the exhaust gas flow rate Ga exceeds the threshold value, the release of SO 4 from the SOx absorption / release catalyst device starts. It is shown that.
- D P3 of FIG. 2 shows an increase in pressure loss of the DPF when the ash regeneration control of the present invention is not performed, and D P2 performs the ash regeneration control of the present invention, but the flow rate of the exhaust gas passing through the DPF in the case where the not controlled supplying SO 4 needed for the release of ash in accordance with the time fast, shows an increase in the pressure loss of the DPF, D P3, the control supplies SO 4 of the present invention, D It shows that it is more advantageous than P1 and DP2 .
- Figure 3 is obtained by the flow chart of the control described above, at step 100, if it is determined to perform the ash regeneration, i.e., when entering the ash reproducing area Z A in FIG. 7, the process proceeds to step 200, Start control of ash regeneration operation.
- step 300 it is determined whether or not the exhaust gas flow rate Ga exceeds a threshold value during the ash regeneration operation. If the threshold value is exceeded, the process proceeds to step 400, where acceleration rich control is performed.
- the acceleration rich control is a control in which the air-fuel ratio is controlled to a region close to the stoichiometric range in the lean region, and at the same time, the release of SO 4 from the SOx adsorption / release catalyst device is started.
- step 300 if the exhaust gas flow rate Ga does not exceed the threshold value, it is determined whether to continue the ash regeneration operation, whether in the case of ash reproducing area Z A is exceeded further exhaust gas flow rate Ga is the threshold This determination is repeated, and the acceleration rich control is repeated when the exhaust gas flow rate Ga exceeds the threshold value.
- FIG. 8 illustrates in more detail, and FIG. 8 shows the relationship of the supplied SOx with respect to the air-fuel ratio in the DPF and the temperature. That is, in FIG. 8, “small” and “many” indicate that “the supply amount of SOx is small” and “the supply amount of SOx is large”, respectively, and the relationship of FIG. 8 is controlled.
- a map is incorporated into the control system, and combined control of the air-fuel ratio and the SOx supply amount is performed.
- FIG. 9 shows another embodiment of the control according to the present invention.
- the control is the same as that shown in FIG. 7, but shows the control when combined with the afterburn control of the internal combustion engine.
- the graph a indicated by a thin line is the case without after injection
- the graph b indicated by the thick line is the case with after injection
- the exhaust gas flow rate Ga is When the threshold value is exceeded, after-injection is performed, and the air-fuel ratio of the environment in the DPF is shifted to a region close to stoichiometry in the lean region, and the same control effect as the control of FIG. 7 is obtained. .
- FIG. 10 shows still another embodiment of the control according to the present invention.
- the control is the same as the control in FIG. 7 except that an exhaust fuel addition valve is provided and combined with the control of the fuel addition valve.
- the graph c indicated by a thin line of the two graphs is a case where the fuel addition valve control is not performed, and the graph d indicated by a bold line is a case where the fuel addition valve control is performed.
- the fuel addition valve control when fuel addition valve control is performed, when the exhaust gas flow rate Ga exceeds a threshold value, the fuel addition valve control is performed to shift the air-fuel ratio of the environment in the DPF to a region close to stoichiometry in the lean region.
- the same control effect as the control of FIG. 7 is obtained.
- a solid acid corresponding to an acid strength of SO 3 or higher and SO 4 or lower is applied on the DPF base material, and the air-fuel ratio of the atmosphere in the DPF is first stoichiometrically or during the ash regeneration operation.
- the air-fuel ratio rich atmosphere is set and the flow rate of the exhaust gas passing through the DPF exceeds a predetermined value, the air-fuel ratio is changed to a lean atmosphere close to the stoichiometric so as to release SO 4 from the SOx adsorption / release catalyst device.
- the ash having a large particle size in the DPF 2 is completely removed, and an exhaust gas purification apparatus for an internal combustion engine having a DPF whose performance does not deteriorate indefinitely can be configured.
- a DPF smaller than the conventional one can be used from the beginning of the installation of the DPF, which not only reduces the manufacturing cost of the DPF but also reduces the energy cost of the PM regeneration operation. be able to.
- the fact that a small DPF can be used has the effect that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced. It should be noted.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
Provided is an exhaust purification apparatus for an internal combustion engine with a DPF disposed in the exhaust system of the internal combustion engine, such that accumulation of ash in the DPF can be suppressed, and increases in pressure loss and PM regeneration temperature as well as a decrease in fuel efficiency can be suppressed over a long period. A surface of the DPF is coated with a solid acid with an acid strength greater than the acid strength of SO3 and smaller than the acid strength of SO4. An SOx adsorbing/releasing catalytic apparatus is provided upstream of the DPF in the exhaust system of the internal combustion engine. The exhaust purification apparatus performs: control for increasing the temperature of the DPF; air-fuel ratio control for the atmosphere within the DPF; and control for causing SO4 to be released from the SOx adsorbing/releasing catalytic apparatus when the flow rate of exhaust passing through the DPF exceeds a predetermined value during the control for increasing the temperature of the DPF.
Description
本発明は、内燃機関の排気浄化装置に関する。
The present invention relates to an exhaust purification device for an internal combustion engine.
内燃機関の排気ガス中の粒子状物質(以下「PM」という)の粒子数を低減するためには、内燃機関の排気ガス通路にディーゼルパティキュレートフィルタ(以下「DPF」という)を設置して、排気中のPMを捕集、除去することが一般に行われている。
In order to reduce the number of particles of particulate matter (hereinafter referred to as “PM”) in the exhaust gas of the internal combustion engine, a diesel particulate filter (hereinafter referred to as “DPF”) is installed in the exhaust gas passage of the internal combustion engine, Generally, PM in exhaust gas is collected and removed.
この場合、DPF内に捕集されたPMは次第に堆積していくので、定期的に或いはDPFの性能低下を検知して、DPF内に捕集されたPMを燃焼除去する再生(以下「PM再生」という)運転を行う。
In this case, since the PM collected in the DPF gradually accumulates, regeneration (hereinafter referred to as “PM regeneration”) is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF. ”).
PM再生運転は、通常、DPFに還元剤、例えばハイドロカーボン(HC)等、を供給しつつ、DPFを加熱することによって行われる。
PM regeneration operation is usually performed by heating the DPF while supplying a reducing agent such as hydrocarbon (HC) to the DPF.
DPFによって排気中のPMを捕集し、DPF内に捕集されたPMを燃焼除去するPM再生運転を行う構成に対しては、その性能向上やコスト低減のため、従来から様々な改良が提案されている。
Various improvements have been proposed to improve the performance and reduce the cost of the PM regeneration operation that collects PM in the exhaust gas using the DPF and burns and removes the PM collected in the DPF. Has been.
しかし、従来のDPFにおいては、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなる、という問題があり、燃費が悪化する。この問題は、DPF内部にアッシュが堆積することが原因である。
However, in the conventional DPF, if the use of the DPF is continued, even if the PM regeneration operation is performed, the pressure loss of the DPF gradually increases, and if the PM regeneration temperature is not gradually increased, sufficient regeneration is achieved. There is a problem that it will not be performed, and fuel consumption deteriorates. This problem is caused by the accumulation of ash inside the DPF.
アッシュは、エンジンのシリンダー内部に混入したエンジンオイルが燃焼することにより生成し、生成したアッシュ粒子は、DPF内でPMに覆われる。PMに覆われたアッシュ粒子は、DPF内でPM再生運転時の高温条件に晒され、アッシュ粒子を覆っていたPMが燃焼除去される。アッシュの堆積は、このPMが燃焼除去されたアッシュ粒子に、更に熱が加わることによって、アッシュ粒子が凝集し、大粒径化するために発生するものである。
Ash is generated when the engine oil mixed in the cylinder of the engine burns, and the generated ash particles are covered with PM in the DPF. The ash particles covered with PM are exposed to high temperature conditions during the PM regeneration operation in the DPF, and the PM covering the ash particles is burned and removed. Ash deposition occurs because the ash particles are agglomerated and increased in size by further applying heat to the ash particles from which the PM has been burned and removed.
しかし、このようなアッシュの堆積に対しては、今まで有効な解決手段がなく、DPFにアッシュが堆積することによる影響を極力小さくするために、例えば、あらかじめ大容量のDPFを設置しておくという対策がとられていた。
However, there is no effective solution to the accumulation of ash so far, and in order to minimize the influence of the accumulation of ash on the DPF, for example, a large-capacity DPF is installed in advance. Measures were taken.
すなわち、従来のDPFに対する改良や、DPFの再生運転に対する改良は、DPFの捕集効率の改善や、PM再生運転の性能向上を目的とするものであり、アッシュの堆積に対するものではない。PM再生運転の性能向上を目的とするものとしては、例えば特許文献1に示された発明があり、特許文献1には、比較的低温でPMを燃焼させることができるDPFの構成が示されている。
That is, the improvement to the conventional DPF and the improvement to the regeneration operation of the DPF are intended to improve the collection efficiency of the DPF and improve the performance of the PM regeneration operation, and not to the accumulation of ash. As an object for improving the performance of the PM regeneration operation, for example, there is an invention disclosed in Patent Document 1, and Patent Document 1 shows a configuration of a DPF capable of burning PM at a relatively low temperature. Yes.
特許文献1に示されたDPFの構成は、DPF及びこれを用いた排ガス浄化方法において、DPFに活性金属を担持した固体超強酸からなる触媒を、フィルタ表面に保持することを特徴とするものである。
The structure of the DPF disclosed in Patent Document 1 is characterized in that, in the DPF and the exhaust gas purification method using the DPF, a catalyst made of a solid superacid having an active metal supported on the DPF is held on the filter surface. is there.
すなわち、特許文献1の発明は、活性金属を担持した固体超強酸により、PMの燃焼温度を低下させ、従来よりも低温でDPFを、できれば連続的に再生すると共に、CO、HC、NO、NO2をも同時に除去することができるというものである。
That is, the invention of Patent Document 1 reduces the combustion temperature of PM with a solid super strong acid carrying an active metal, and regenerates DPF at a lower temperature than before, preferably continuously, and CO, HC, NO, NO 2 can be removed at the same time.
したがって、特許文献1の発明は、PM再生運転の性能向上を目的としたものであり、アッシュの堆積に対応するものではなく、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなり、燃費が悪化する、という問題を解決するものではない。
Therefore, the invention of Patent Document 1 is intended to improve the performance of the PM regeneration operation, and does not correspond to the accumulation of ash. If the use of the DPF is continued, the PM regeneration operation is performed. However, this does not solve the problem that the pressure loss of the DPF gradually increases, and unless the PM regeneration temperature is gradually increased, sufficient regeneration cannot be performed and the fuel consumption deteriorates.
また、特許文献1の発明に類似する触媒構成を開示したものとして、特許文献2の発明があるが、特許文献2には、ディーゼルエンジン排ガス浄化装置用触媒として、白金、パラジウム及びロジウムから選ばれる少なくとも1種の貴金属と、固体の超強酸とを有する触媒を利用すると、ディーゼルエンジン排ガス中の微粒子物質に含まれるSOF(Soluble Organic Fraction)や未燃焼炭化水素などを低温域から浄化することができ、高温域においても二酸化硫黄の酸化抑制効果を示すと記載されており、特許文献2の発明は、特許文献1の発明と類似する効果を狙ったものであり、また、DPFに関するものではない。したがって、DPFへのアッシュの堆積に対応するものではなく、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなり、燃費が悪化する、という問題を解決するものではない。
Further, as a disclosure of a catalyst structure similar to the invention of Patent Document 1, there is an invention of Patent Document 2, which is selected from platinum, palladium and rhodium as a catalyst for a diesel engine exhaust gas purification device. By using a catalyst having at least one kind of noble metal and a solid super strong acid, it is possible to purify SOF (Soluable Organic Fraction), unburned hydrocarbons, etc. contained in particulate matter in diesel engine exhaust gas from a low temperature range. Further, it is described that the effect of suppressing oxidation of sulfur dioxide is exhibited even in a high temperature range, and the invention of Patent Document 2 aims at an effect similar to the invention of Patent Document 1 and does not relate to DPF. Therefore, it does not correspond to the accumulation of ash on the DPF. If the use of the DPF is continued, the pressure loss of the DPF gradually increases and the PM regeneration temperature gradually increases even if the PM regeneration operation is performed. If this is not done, it will not solve the problem that sufficient regeneration will not be performed and fuel consumption will deteriorate.
本発明は、DPFへのアッシュの堆積を抑制し、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置を提供することを目的としている。
The present invention provides an exhaust emission control device for an internal combustion engine that can suppress the accumulation of ash on the DPF and suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time. It is aimed.
すなわち、本発明は、DPFに堆積したアッシュを細粒径化して排出し、DPFを再生(以下「アッシュ再生」という)する構成を提供し、また、細粒径化されたCaSO4が滞留せずに放出され、アッシュ再生運転が、効果的に進行し、アッシュが高い放出率で除去されるので、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、という有利な効果を奏する、画期的なDPFを提供するものである。
That is, the present invention provides a configuration in which the ash deposited on the DPF is discharged after being reduced in particle size to regenerate the DPF (hereinafter referred to as “ash regeneration”), and the CaSO 4 having a reduced particle size is retained. As the ash regeneration operation proceeds effectively and the ash is removed at a high release rate, it is possible to suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time. It is an object of the present invention to provide an epoch-making DPF that has the advantageous effect of being able to be made.
本発明によれば、堆積したアッシュを細粒径化させて排出することができるので、更に付随する効果として、DPFの設置当初から従来よりも小型のDPFを使用することができ、DPFの製造コストの低減のみならず、PM再生運転のエネルギーコストを低減することもできる。また、小型のDPFを使用することができるということは、DPFの車両への搭載スペースを低減することができ、当該DPFを搭載した車両の重量を低減することができるということである。
According to the present invention, the accumulated ash can be discharged with a reduced particle size. As a further effect, a DPF that is smaller than the conventional DPF can be used from the beginning of the installation of the DPF. Not only cost reduction, but also energy cost of PM regeneration operation can be reduced. In addition, the fact that a small DPF can be used means that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced.
本願の発明者は、DPF内部へのアッシュの堆積の問題を研究し、アッシュの堆積原因を分析して、アッシュの主成分が、エンジンオイル中に含まれるカルシウム(Ca)と排気中のSOxとがイオン結合した、CaSO4が主体であり、Ca塩は融点が高いため、排気中ではアッシュが固体としてDPFに流入し、凝集して、大粒径化するという知見を得た。
The inventor of the present application studied the problem of ash accumulation inside the DPF, analyzed the cause of ash accumulation, and the main components of ash were calcium (Ca) contained in engine oil and SOx in exhaust gas. It was found that ash is ion-bonded, CaSO 4 is the main component, and Ca salt has a high melting point, so that in the exhaust gas, ash flows into the DPF as a solid and aggregates to increase the particle size.
更に、本願の発明者は、アッシュの大きさはサブミクロンのオーダーであり、これをナノミクロンのオーダーまで細粒径化すると、アッシュがDPFをすり抜けることを、実験により確認した。
Furthermore, the inventors of the present application have confirmed by experiments that the size of ash is on the order of submicrons, and that the ash slips through the DPF when the ash size is reduced to the order of nanomicrons.
更に、本願の発明者は、サブミクロンの大きさに大粒径化したCaSO4を、還元雰囲気におくと、CaSO4のSO4が還元されてSO3となり、Caとの結合が弱まること、及び、このときDPFの表面上にSO3よりも強い酸が存在すると、CaSO3のCaとSO3との結合が切断され、CaイオンがDPFの表面上のSO3よりも強い酸の上に原子状に分散して結合するということを、実験により確認した。
Furthermore, the inventors of the present application, a CaSO 4 that large grain size to the size of submicron, when placed in a reducing atmosphere, it becomes SO 3 SO 4 of CaSO 4 is reduced, the bond between Ca weakened, At this time, if an acid stronger than SO 3 is present on the surface of the DPF, the bond between Ca and SO 3 in the CaSO 3 is cleaved, and the Ca ions are stronger than the SO 3 on the surface of the DPF. It was confirmed by experiments that the atoms were dispersed and bonded in an atomic form.
更に、本願の発明者は、DPFの表面上のSO3よりも強い酸と結合したCaイオンは、DPFの表面上のSO3よりも強い酸と比べて、更に強い酸が雰囲気中に存在すると、雰囲気中の更に強い酸と結合して、DPFから放出され、DPFをすり抜けて排出されるというということを、実験により確認した。
Furthermore, the inventors of the present application, Ca ions associated with stronger acid than SO 3 on the surface of the DPF is different from the stronger acid than SO 3 on the surface of the DPF, if a stronger acid is present in the atmosphere It was confirmed by an experiment that it binds to a stronger acid in the atmosphere, is released from the DPF, and passes through the DPF to be discharged.
以上を整理すると、DPFの表面上のSO3よりも強い酸として、この酸の酸強度を、SO3よりも強くSO4よりも弱い酸強度とすれば、サブミクロンの大きさに大粒径化してDPF内に堆積したCaSO4は、還元雰囲気において、CaSO4のSO4が還元されてCaSO3となり、CaSO3のCaイオンが、DPFの表面上の酸と結合し、DPFの表面上に原子状に分散する。次に、雰囲気中にSO4を存在させれば、DPFの表面上のCaは、雰囲気中のSO4と結合して、サブナノメートルの大きさのCaSO4となってDPFから放出される。
To summarize the above, if the acid strength of this acid is stronger than SO 3 on the surface of the DPF and the acid strength of this acid is stronger than SO 3 and weaker than SO 4 , the particle size will be submicron. CaSO 4 deposited in the DPF turned into, in a reducing atmosphere, becomes CaSO 3 SO 4 is reduced in CaSO 4, Ca ions CaSO 3 is bonded with the acid on the surface of the DPF, on the surface of the DPF Disperse in atomic form. Next, if SO 4 is present in the atmosphere, the Ca on the surface of the DPF combines with the SO 4 in the atmosphere and becomes sub-nanometer-sized CaSO 4 and is released from the DPF.
排気ガスの雰囲気が、ストイキ又はリッチ雰囲気である場合には、上述の還元雰囲気であり、リーン雰囲気である場合には、リーン雰囲気にはSO4が含まれている。そこで、上述のDPFに対して、雰囲気をストイキ又はリッチ雰囲気にする制御と、次にリーン雰囲気にする制御と、を行えば、ストイキ又はリッチ雰囲気において、DPFに堆積したアッシュのCaイオンが、DPFの表面上に原子状に分散し、次に次にリーン雰囲気において、DPFの表面上のCaが、リーン雰囲気中のSO4と結合してDPFから放出され、サブナノメートルの大きさに細粒径化したCaSO4となってDPFをすり抜け、排出される。
When the exhaust gas atmosphere is a stoichiometric or rich atmosphere, it is the above-described reducing atmosphere, and when it is a lean atmosphere, the lean atmosphere contains SO 4 . Therefore, if control for making the atmosphere stoichiometric or rich and control for making the lean atmosphere next are performed on the above-mentioned DPF, ash Ca ions deposited on the DPF in the stoichiometric or rich atmosphere are converted to DPF. Then, in a lean atmosphere, Ca on the surface of the DPF is combined with SO 4 in the lean atmosphere and released from the DPF, and the fine particle size is reduced to a sub-nanometer size. CaSO 4 is converted to pass through the DPF and discharged.
すなわち、以上の過程では、最初の、サブミクロンの大きさに大粒径化してDPFに堆積したCaSO4が、最終的に、再びCaSO4となってDPFから放出されるが、放出されるCaSO4は、サブナノメートルの大きさに細粒径化されており、DPFをすり抜けて排出される。
That is, in the above process, the first CaSO 4 having a large particle size of submicron and deposited on the DPF is finally released again from the DPF as CaSO 4. No. 4 is reduced in size to a sub-nanometer size and passes through the DPF and is discharged.
しかし、以上のアッシュ再生運転を行う場合、DPFを通過する排気ガスの流速が遅いと、細粒径化されたCaSO4が滞留して再凝集し、DPFからの放出が起こりにくくなるという問題がある。
However, when the above ash regeneration operation is performed, if the flow rate of the exhaust gas passing through the DPF is low, the CaSO 4 having a reduced particle size stays and re-aggregates, which makes it difficult to release from the DPF. is there.
本発明は、この問題を解決するために、DPFを通過する排気ガスの流速が速いときに、アッシュの放出に必要なSO4を供給し、細粒径化されたCaSO4が、効果的に放出されるようにするものである。すなわち、本発明によって、細粒径化されたCaSO4が滞留せずに放出され、アッシュ再生運転が、効果的に進行する。
In order to solve this problem, the present invention supplies SO 4 required for the release of ash when the flow rate of exhaust gas passing through the DPF is high, and CaSO 4 having a reduced particle size is effectively used. It is intended to be released. That is, according to the present invention, CaSO 4 having a reduced particle size is released without stagnation, and the ash regeneration operation proceeds effectively.
また、以上のアッシュ再生運転を行う場合、通常、アッシュは、DPF内に堆積したPMの中に埋没した状態にある。したがって、この状態でアッシュ再生を行おうとしても、サブミクロンの大きさに大粒径化してDPF内に堆積したCaSO4が還元雰囲気と接触することができないために、CaSO4のSO4が還元されない。或いは、還元されてCaSO3となったアッシュも、DPFの表面上の固体酸に接触することができない。したがって、アッシュを効果的に分解するためには、PM再生運転によってPMを燃焼、除去した後、アッシュ再生運転を行うことが好ましい。
Moreover, when performing the above ash reproduction | regeneration operation | movement, normally, the ash is in the state buried in PM deposited in DPF. Therefore, even trying to ash reproduced in this state, in order to CaSO 4 deposited in the DPF with large grain size to the size of the sub-micron can not be in contact with a reducing atmosphere, SO 4 of CaSO 4 is reduced Not. Alternatively, the ash reduced to CaSO 3 cannot contact the solid acid on the surface of the DPF. Therefore, in order to effectively decompose the ash, it is preferable to perform the ash regeneration operation after burning and removing PM by the PM regeneration operation.
アッシュ再生運転とPM再生運転とは、それぞれ、アッシュの堆積状況と、PMの堆積状況と、に応じて行うが、通常、アッシュ再生運転の頻度は、PM再生運転の頻度よりも少なくてよく、また、アッシュ再生運転とPM再生運転とは、ほぼ同一の温度で行うことができるので、アッシュ再生運転は、PM再生運転の温度上昇を利用して、複数のPM再生運転のうちの1つに引き続いて実施するのが効率的である。
The ash regeneration operation and the PM regeneration operation are performed in accordance with the ash accumulation state and the PM accumulation state, respectively. Usually, the frequency of the ash regeneration operation may be less than the frequency of the PM regeneration operation. In addition, since the ash regeneration operation and the PM regeneration operation can be performed at substantially the same temperature, the ash regeneration operation is performed as one of a plurality of PM regeneration operations using the temperature increase of the PM regeneration operation. It is efficient to carry out it subsequently.
更に、内燃機関の運転状態が加速状態にあるときは、排気ガスの流速が速いという条件になりやすい。したがって、上述のアッシュ再生運転を行う場合、内燃機関の運転状態が加速状態にあるときに、排気ガスの流速が速いかどうかを判定し、SO4を供給する制御を行うようにすると、アッシュ再生運転のタイミングを、効率的に決定することができる。
Further, when the operating state of the internal combustion engine is in an accelerated state, the condition that the flow rate of the exhaust gas is high is likely to occur. Therefore, when performing the above-described ash regeneration operation, when the operation state of the internal combustion engine is in the acceleration state, it is determined whether the flow rate of the exhaust gas is fast, and control for supplying SO 4 is performed. The timing of operation can be determined efficiently.
請求項1に記載の発明によれば、内燃機関の排気系にDPFを配置した、内燃機関の排気浄化装置であって、DPFが、表面上に固体酸をコーティングしたDPFであり、固体酸の酸強度が、SO3の酸強度よりも大きくSO4の酸強度よりも小さく、内燃機関の排気系において、表面上に固体酸をコーティングした前記DPFの上流に、温度を上昇させることによりSO4を放出する特性を有するSOx吸放出触媒装置を備え、更に、DPF内に堆積したアッシュを除去する、アッシュ再生運転の制御を備え、アッシュ再生運転の制御が、DPFの温度を上昇させる制御と、DPF内の雰囲気の空燃比の制御と、SOx吸放出触媒装置からSO4を放出する制御と、を備え、DPF内の雰囲気の空燃比の制御が、DPFの温度を上昇させる制御の間に、先にストイキ又は空燃比リッチ雰囲気とし、次に空燃比リーン雰囲気に変化させる制御であり、SOx吸放出触媒装置からSO4を放出する制御が、DPFの温度を上昇させる制御の間、DPFを通過する排気の流量が所定値を超えた場合に、SOx吸放出触媒装置からSO4を放出する制御である、内燃機関の排気浄化装置が提供される。
According to the first aspect of the present invention, there is provided an exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine, wherein the DPF is a DPF whose surface is coated with a solid acid, The acid strength is higher than the acid strength of SO 3 and lower than the acid strength of SO 4 , and in the exhaust system of the internal combustion engine, SO 4 is increased by raising the temperature upstream of the DPF whose surface is coated with a solid acid. An SOx absorption / release catalyst device having a characteristic of releasing ash, and further, an ash regeneration operation control that removes ash accumulated in the DPF, and the control of the ash regeneration operation increases the temperature of the DPF; The control of the air-fuel ratio of the atmosphere in the DPF and the control of releasing SO 4 from the SOx adsorption / release catalyst device are provided, and the control of the air-fuel ratio of the atmosphere in the DPF increases the temperature of the DPF. In this control, the stoichiometric or air-fuel ratio rich atmosphere is first changed to the air-fuel ratio lean atmosphere, and the control for releasing SO 4 from the SOx adsorption / release catalyst device increases the DPF temperature. During this time, there is provided an exhaust gas purification apparatus for an internal combustion engine, which is control for releasing SO 4 from the SOx absorption / release catalyst device when the flow rate of the exhaust gas passing through the DPF exceeds a predetermined value.
すなわち、請求項1の発明では、DPFの表面上に、SO3よりも強くSO4よりも弱い酸強度の固体酸を塗布することによって、DPFを構成する。このように構成したDPFに対して、還元雰囲気にした排気ガスを通過させると、大粒径化してDPFに堆積したCaSO4は、還元雰囲気中で、CaSO4のSO4が還元されてCaSO3となり、CaSO3のCaイオンがDPFの表面上の固体酸と結合し、次に、雰囲気中にSO4を存在させれば、DPFの表面上のCaは、雰囲気中のSO4と結合して、CaSO4となってDPFから放出される。この過程を経て放出されたCaSO4は、細粒径化されているため、最初の大粒径化したCaSO4が、細粒径化されたCaSO4となってDPFから放出され、DPFをすり抜けて排出される。ここで、細粒径化されたCaSO4が滞留して再凝集し、DPFからの放出が起こりにくくなることを避けるために、DPFを通過する排気ガスの流速が速いときに、アッシュの放出に必要なSO4を供給し、細粒径化されたCaSO4が、効果的に放出されるようにする。したがって、細粒径化されたCaSO4が滞留せずに放出され、アッシュ再生運転が、効果的に進行し、アッシュが高い放出率で除去されるので、DPFへのアッシュの堆積を抑制し、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置が提供される。
That is, in the invention of claim 1, the DPF is constituted by applying a solid acid having an acid strength stronger than SO 3 and weaker than SO 4 on the surface of the DPF. Relative thus constituted DPF, when passing the exhaust gas in a reducing atmosphere, CaSO 4 deposited on the DPF with large grain size is in a reducing atmosphere, SO 4 of CaSO 4 is reduced CaSO 3 If the Ca ions of CaSO 3 bind to the solid acid on the surface of the DPF, and then SO 4 is present in the atmosphere, the Ca on the surface of the DPF binds to SO 4 in the atmosphere. , CaSO 4 is released from the DPF. Since the CaSO 4 released through this process has a reduced particle size, the first large-sized CaSO 4 is released from the DPF as a reduced particle size CaSO 4 and passes through the DPF. Discharged. Here, in order to avoid the fact that CaSO 4 having a reduced particle size stays and re-aggregates, and the release from the DPF is less likely to occur, the ash is released when the flow rate of the exhaust gas passing through the DPF is high. Necessary SO 4 is supplied so that CaSO 4 having a reduced particle size is effectively released. Therefore, CaSO 4 having a reduced particle size is released without stagnation, the ash regeneration operation effectively proceeds, and the ash is removed at a high release rate, thereby suppressing the accumulation of ash on the DPF, An exhaust purification device for an internal combustion engine that can suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time is provided.
請求項2に記載の発明によれば、更に、DPFの温度を上昇させて前記DPF内に堆積したPMを燃焼、除去する、PM再生運転の制御を備え、アッシュ再生運転の制御を、複数のPM再生運転のうちの1つに引き続いて実施する、請求項1に記載の内燃機関の排気浄化装置、が提供される。
According to the second aspect of the present invention, there is further provided a PM regeneration operation control in which the PM accumulated in the DPF is combusted and removed by raising the temperature of the DPF, and the ash regeneration operation is controlled in a plurality of ways. The exhaust emission control device for an internal combustion engine according to claim 1, which is performed subsequent to one of the PM regeneration operations.
すなわち、請求項2の発明では、アッシュ再生運転の制御を、複数のPM再生運転のうちの1つに引き続いて実施する。通常、アッシュ再生運転の頻度は、PM再生運転の頻度よりも少なくてよく、また、アッシュ再生運転とPM再生運転とは、ほぼ同一の温度で行うことができるので、アッシュ再生運転の制御を、複数のPM再生運転のうちの1つに引き続いて実施すると、PMの中に埋没した状態にあった大粒径化したCaSO4が、還元雰囲気に晒されるようになり、また、還元されてCaSO3となったアッシュが、DPFの表面上の固体酸に接触するようになり、PM再生運転に続くアッシュ再生運転が、効果的に進行する。また、DPFを通過する排気ガスの流速が速いときに、アッシュの放出に必要なSO4を供給し、細粒径化されたCaSO4が、効果的に放出されるようにする。したがって、細粒径化されたCaSO4が滞留せずに放出され、アッシュ再生運転が、効果的に進行し、アッシュが高い放出率で除去されるので、DPFへのアッシュの堆積を抑制し、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置が提供される。
That is, in the invention of claim 2, the ash regeneration operation is controlled following one of the plurality of PM regeneration operations. Usually, the frequency of the ash regeneration operation may be less than the frequency of the PM regeneration operation, and the ash regeneration operation and the PM regeneration operation can be performed at substantially the same temperature. When carried out following one of the plurality of PM regeneration operations, the CaSO 4 having a large particle size that has been buried in the PM comes to be exposed to a reducing atmosphere and is reduced to CaSO 4. The ash that becomes 3 comes into contact with the solid acid on the surface of the DPF, and the ash regeneration operation following the PM regeneration operation effectively proceeds. Further, when the flow rate of the exhaust gas passing through the DPF is high, SO 4 necessary for ash release is supplied so that CaSO 4 having a reduced particle size is effectively released. Therefore, CaSO 4 having a reduced particle size is released without stagnation, the ash regeneration operation effectively proceeds, and the ash is removed at a high release rate, thereby suppressing the accumulation of ash on the DPF, An exhaust purification device for an internal combustion engine that can suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time is provided.
請求項3に記載の発明によれば、SOx吸放出触媒装置からSO4を放出する制御が、更に、内燃機関の運転状態が加速状態にあるときに実施される制御である、請求項1又は2に記載の内燃機関の排気浄化装置、が提供される。
According to the third aspect of the present invention, the control for releasing SO 4 from the SOx adsorption / release catalyst device is further performed when the operating state of the internal combustion engine is in an acceleration state. An exhaust gas purification device for an internal combustion engine according to 2, is provided.
すなわち、請求項3の発明では、内燃機関の運転状態が加速状態にあるときは、排気ガスの流速が速いという条件になりやすので、内燃機関の運転状態が加速状態にあるときに、排気ガスの流速が速いかどうかを判定して、SO4を供給する制御を行うようにし、アッシュ再生運転のタイミングを、効率的に決定することができる。したがって、細粒径化されたCaSO4が滞留せずに放出され、アッシュ再生運転が、効果的に進行し、アッシュが高い放出率で除去されるので、DPFへのアッシュの堆積を抑制し、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置が提供される。
That is, in the third aspect of the invention, when the operating state of the internal combustion engine is in an accelerated state, the condition that the flow rate of the exhaust gas is high is likely to occur. Therefore, when the operating state of the internal combustion engine is in the accelerated state, the exhaust gas It is possible to determine whether the flow rate of the ash is high and control to supply SO 4 to efficiently determine the timing of the ash regeneration operation. Therefore, CaSO 4 having a reduced particle size is released without stagnation, the ash regeneration operation effectively proceeds, and the ash is removed at a high release rate, thereby suppressing the accumulation of ash on the DPF, An exhaust purification device for an internal combustion engine that can suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time is provided.
各請求項に記載の発明によれば、アッシュ再生の構成が提供され、アッシュ再生運転において、細粒径化されたCaSO4が滞留せずに放出され、アッシュ再生運転が、効果的に進行し、アッシュが高い放出率で除去されるので、DPFへのアッシュの堆積を抑制し、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置が提供するという、共通の効果を奏する。
According to the invention described in each claim, an ash regeneration configuration is provided, and in the ash regeneration operation, the CaSO 4 having a reduced particle size is released without stagnation, and the ash regeneration operation proceeds effectively. Since the ash is removed at a high release rate, the accumulation of ash on the DPF is suppressed, and an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption can be suppressed over a long period of time. There is a common effect that the exhaust purification device provides.
図1は、本発明を内燃機関の排気浄化装置に適用した場合の、装置配置の実施形態の概略構成を説明する図である。
図2は、本発明を実施する効果を説明する図である。
図3は、本発明の制御の実施形態の概略構成を説明するフローチャートである。
図4は、本発明の原理を説明する図である。
図5は、本発明の原理を説明する図である。
図6は、本発明の原理を説明する図である。
図7は、本発明の制御の原理を説明する図である。
図8は、本発明の制御の実施形態を説明する図である。
図9は、本発明の制御の別の実施形態を説明する図である。
図10は、本発明の制御の更に別の実施形態を説明する図である。 FIG. 1 is a diagram for explaining a schematic configuration of an embodiment of an apparatus arrangement when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
FIG. 2 is a diagram for explaining the effect of implementing the present invention.
FIG. 3 is a flowchart illustrating a schematic configuration of an embodiment of control according to the present invention.
FIG. 4 is a diagram for explaining the principle of the present invention.
FIG. 5 is a diagram for explaining the principle of the present invention.
FIG. 6 is a diagram for explaining the principle of the present invention.
FIG. 7 is a diagram for explaining the principle of control of the present invention.
FIG. 8 is a diagram for explaining an embodiment of the control of the present invention.
FIG. 9 is a diagram for explaining another embodiment of the control of the present invention.
FIG. 10 is a diagram for explaining still another embodiment of the control of the present invention.
図2は、本発明を実施する効果を説明する図である。
図3は、本発明の制御の実施形態の概略構成を説明するフローチャートである。
図4は、本発明の原理を説明する図である。
図5は、本発明の原理を説明する図である。
図6は、本発明の原理を説明する図である。
図7は、本発明の制御の原理を説明する図である。
図8は、本発明の制御の実施形態を説明する図である。
図9は、本発明の制御の別の実施形態を説明する図である。
図10は、本発明の制御の更に別の実施形態を説明する図である。 FIG. 1 is a diagram for explaining a schematic configuration of an embodiment of an apparatus arrangement when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
FIG. 2 is a diagram for explaining the effect of implementing the present invention.
FIG. 3 is a flowchart illustrating a schematic configuration of an embodiment of control according to the present invention.
FIG. 4 is a diagram for explaining the principle of the present invention.
FIG. 5 is a diagram for explaining the principle of the present invention.
FIG. 6 is a diagram for explaining the principle of the present invention.
FIG. 7 is a diagram for explaining the principle of control of the present invention.
FIG. 8 is a diagram for explaining an embodiment of the control of the present invention.
FIG. 9 is a diagram for explaining another embodiment of the control of the present invention.
FIG. 10 is a diagram for explaining still another embodiment of the control of the present invention.
以下、添付図面を用いて本発明の実施形態について説明する。なお、複数の添付図面において、同一又は相当する部材には、同一の符号を付している。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the plurality of accompanying drawings, the same or corresponding members are denoted by the same reference numerals.
図1は、本発明の基本構成を示す図であり、DPF2の表面上に、詳細にはDPF2のDPF基材の表面上に、酸強度がSO3以上でSO4以下に相当する固体酸を塗布する。また、内燃機関1の排気系の、DPF2の上流に、SOx吸放出触媒装置30を備える。内燃機関1の排気は、SOx吸放出触媒装置30を経由してDPF2に導かれ、排気中のSOxは、SOx吸放出触媒装置30によって捕集、除去され、排気中のPMは、DPF2によって捕集、除去され、SOx及びPMの除去された排気が排出される。DPF2に捕集されたPMは次第に堆積していくので、定期的に或いはDPF2の性能低下を検知して、DPF2内に捕集されたPMを燃焼除去するPM再生運転を行う。
FIG. 1 is a diagram showing a basic configuration of the present invention. A solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is formed on the surface of DPF 2, specifically, on the surface of a DPF substrate of DPF 2. Apply. Further, an SOx absorption / release catalyst device 30 is provided upstream of the DPF 2 in the exhaust system of the internal combustion engine 1. The exhaust gas of the internal combustion engine 1 is guided to the DPF 2 via the SOx absorption / release catalyst device 30, SOx in the exhaust gas is collected and removed by the SOx absorption / release catalyst device 30, and PM in the exhaust gas is captured by the DPF 2. The exhaust gas that has been collected and removed and from which SOx and PM have been removed is discharged. Since PM collected in the DPF 2 is gradually accumulated, a PM regeneration operation is performed periodically or by detecting a decrease in the performance of the DPF 2 and burning and removing the PM collected in the DPF 2.
しかし、PM再生運転を繰り返し行っていると、図4に示すように、DPF内にアッシュ3が堆積し、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなる、という問題があり、燃費が悪化する。
However, when the PM regeneration operation is repeatedly performed, as shown in FIG. 4, the ash 3 accumulates in the DPF, and even when the PM regeneration operation is performed, the pressure loss of the DPF gradually increases, and the PM regeneration temperature is increased. There is a problem that sufficient regeneration cannot be performed unless the value is gradually increased, and fuel consumption deteriorates.
本発明では、図5に示すように、DPF内に堆積したアッシュ3を細粒径化するので、細粒径化された粒子が、DPFのフィルタ隙間を通り抜け、排気とともに排出される。
In the present invention, as shown in FIG. 5, the ash 3 deposited in the DPF is reduced in size, so that the particles reduced in size pass through the filter gap of the DPF and are discharged together with the exhaust gas.
本発明を、図6によって詳しく説明すると、まず、図6(a)に示すように、DPFを使用し続けた場合、エンジンで生成しPMに覆われているアッシュ粒子が、DPF内でPM再生運転時の高温条件に晒され、アッシュ粒子を覆っていたPMが燃焼除去され、PMが燃焼除去されたアッシュ粒子に、更に熱が加わってアッシュ粒子が凝集し、大粒径化したアッシュ3として堆積する。このときアッシュ3の粒子は、硫酸カルシウム(CaSO4)が主成分であるが、図6(a)において雰囲気が還元雰囲気、例えばストイキ雰囲気又はリッチ雰囲気の場合には、アッシュ3の粒子は、亜硫酸カルシウム(CaSO3)に還元される。したがって、DPF基材5の上にSO3以上の酸強度の固体酸6が存在する場合には、図6(b)に示すように、アッシュ粒子中のカルシウム(Ca)が、SO3より強い酸である固体酸6と結合し、アッシュ3は分解する。このときCaは、固体酸6上に原子状に分散する。次に、固体酸6上に原子状に分散したCaが、SO4を含んだ雰囲気に晒されると、例えば、内燃機関からの排気中には、通常SOxが含まれており、リーン雰囲気の中ではSO4が多く含まれるため、リーン雰囲気に晒されると、図6(c)に示すように、固体酸6上に原子状に分散したCaが、固体酸6よりも強い酸であるSO4と結合して再度硫酸塩化し、硫酸カルシウム(CaSO4)となり、固体酸上から放出される。このときの硫酸カルシウム(CaSO4)は、大きさが1ナノメートル以下の細粒径の粒子となっており、この細粒径化粒子は、エアロゾルとなってDPFをすり抜け、その結果、DPFに堆積したアッシュが除去される。
The present invention will be described in detail with reference to FIG. 6. First, as shown in FIG. 6A, when the DPF is continuously used, the ash particles generated by the engine and covered with the PM are regenerated into the PM within the DPF. Ashes 3 exposed to high temperature conditions during operation are burned and removed from the PM particles that have covered the ash particles, and heat is further applied to the ash particles from which the PM has been burned and removed to aggregate the ash particles, thereby increasing the particle size. accumulate. At this time, the particles of ash 3 are mainly composed of calcium sulfate (CaSO 4 ). However, when the atmosphere is a reducing atmosphere, for example, a stoichiometric atmosphere or a rich atmosphere in FIG. It is reduced to calcium (CaSO 3 ). Therefore, when the solid acid 6 having an acid strength of SO 3 or more is present on the DPF substrate 5, as shown in FIG. 6B, calcium (Ca) in the ash particles is stronger than SO 3. It binds to solid acid 6 which is an acid, and ash 3 decomposes. At this time, Ca is dispersed atomically on the solid acid 6. Next, when Ca dispersed atomically on the solid acid 6 is exposed to an atmosphere containing SO 4 , for example, the exhaust from the internal combustion engine usually contains SOx, and the lean atmosphere in order to sO 4 is contained in a large amount, when exposed to a lean atmosphere, as shown in FIG. 6 (c), Ca dispersed in atomic form on the solid acid 6, sO 4 is stronger acid than the solid acid 6 And is sulfated again to form calcium sulfate (CaSO 4 ), which is released from the solid acid. Calcium sulfate (CaSO 4 ) at this time is a particle having a fine particle size of 1 nanometer or less, and the fine particle size passes through the DPF as an aerosol. The accumulated ash is removed.
この場合、DPF基材5の上に塗布する固体酸6の酸強度は、SO3の酸強度よりも大きく、SO4の酸強度よりも小さくなければならない。固体酸6の酸強度が、SO3の酸強度以下の場合には、CaSO3に還元されたアッシュ粒子中のCaが、固体酸6と結合せず、したがってアッシュ3は分解せず、また、固体酸6がSO4の酸強度以上の超強酸である場合には、雰囲気中にSO4が存在しても、Caが固体酸6から放出されないからである。
In this case, the acid strength of the solid acid 6 applied on the DPF substrate 5 must be larger than the acid strength of SO 3 and smaller than the acid strength of SO 4 . When the acid strength of the solid acid 6 is equal to or lower than the acid strength of SO 3 , Ca in the ash particles reduced to CaSO 3 does not bind to the solid acid 6 and therefore ash 3 does not decompose, and This is because when the solid acid 6 is a super strong acid that is equal to or higher than the acid strength of SO 4 , even if SO 4 exists in the atmosphere, Ca is not released from the solid acid 6.
したがって、DPF基材5の上に、酸強度がSO3以上、SO4以下に相当する固体酸を塗布し、アッシュ再生運転中に、DPF内の雰囲気の空燃比を、先にストイキ又は空燃比リッチ雰囲気とし、次に空燃比リーン雰囲気に変化させるように制御すると、DPF内の大粒径化したアッシュが、細粒径化したアッシュ粒子となってDPFをすり抜け、排出される。
Therefore, a solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is applied on the DPF base 5 and the air-fuel ratio of the atmosphere in the DPF is set to the stoichiometric or air-fuel ratio first during the ash regeneration operation. When control is performed so as to change to a rich atmosphere and then change to an air-fuel ratio lean atmosphere, the ash having a large particle size in the DPF becomes ash particles having a fine particle size, passes through the DPF, and is discharged.
また、以上のアッシュ再生運転を行う場合、DPFを通過する排気ガスの流速が遅いと、細粒径化されたCaSO4が滞留して再凝集し、DPFからの放出が起こりにくくなるという問題がある。すなわち、図5において、DPF内に堆積したアッシュ3が細粒径化した場合、DPFを通過する排気ガスの流速が遅いと、細粒径化したCaSO4が再凝集し、DPFからの放出が起こりにくくなる。
Further, when performing the above ash regeneration operation, if the flow rate of the exhaust gas passing through the DPF is slow, the CaSO 4 having a reduced particle size stays and re-aggregates, which makes it difficult to release from the DPF. is there. That is, in FIG. 5, when the ash 3 deposited in the DPF has a small particle size, if the flow rate of the exhaust gas passing through the DPF is slow, the CaSO 4 having a small particle size re-aggregates and the release from the DPF Less likely to occur.
そこで、本発明は、DPFを通過する排気ガスの流速が速いときに、アッシュの放出に必要なSO4を供給し、細粒径化されたCaSO4が、効果的に放出されるようにする。
Therefore, the present invention supplies SO 4 necessary for ash release when the flow rate of exhaust gas passing through the DPF is high, so that CaSO 4 having a reduced particle size can be effectively released. .
これを図7に基づいて説明すると、図7の最上段の2本のグラフは、細線のグラフが、左側の縦軸で示す車両の車速であり、太線のグラフが、右側の縦軸で示す排気ガス流量であるが、排気ガス流量Gaが、斜線で示すように、閾値を超えた場合に、上から3番目のグラフの空燃比を、閾値よりもリッチ側、すなわちリーン領域においてストイキに近い領域に制御し、同時に、SOx吸放出触媒装置からのSO4の放出を開始する(後述の図3の制御では、これを「加速リッチ制御」という)。図7の最下段のグラフは、SOx吸放出触媒装置からのSOx放出濃度を示すグラフであり、排気ガス流量Gaが閾値を超えた場合に、SOx吸放出触媒装置からのSO4の放出が開始されることを示している。
This will be described with reference to FIG. 7. In the two uppermost graphs in FIG. 7, the thin line graph indicates the vehicle speed indicated by the left vertical axis, and the bold line graph indicates the right vertical axis. Exhaust gas flow rate, but when the exhaust gas flow rate Ga exceeds the threshold value, as shown by the oblique line, the air-fuel ratio in the third graph from the top is close to the stoichiometric value on the rich side of the threshold value, that is, the lean region. At the same time, release of SO 4 from the SOx adsorption / release catalyst device is started (in the control of FIG. 3 described later, this is referred to as “acceleration rich control”). The lowermost graph in FIG. 7 is a graph showing the SOx release concentration from the SOx absorption / release catalyst device, and when the exhaust gas flow rate Ga exceeds the threshold value, the release of SO 4 from the SOx absorption / release catalyst device starts. It is shown that.
以上の制御を行うと、図2のDP3で示すように、いつまでもDPFの圧損が増加しないDPFを構成することができる。すなわち、図2のDP1は、本発明のアッシュ再生制御を行わない場合のDPFの圧損の増加を示し、DP2は、本発明のアッシュ再生制御を行うが、DPFを通過する排気ガスの流速が速いときに合わせてアッシュの放出に必要なSO4を供給する制御を行わない場合の、DPFの圧損の増加を示しており、DP3は、本発明のSO4を供給する制御が、DP1やDP2に比べて有利であることを示している。
Doing the above control, as shown by D P3 of FIG. 2, also the pressure loss of the DPF forever can constitute the DPF does not increase. That is, D P1 in FIG. 2 indicates an increase in pressure loss of the DPF when the ash regeneration control of the present invention is not performed, and D P2 performs the ash regeneration control of the present invention, but the flow rate of the exhaust gas passing through the DPF in the case where the not controlled supplying SO 4 needed for the release of ash in accordance with the time fast, shows an increase in the pressure loss of the DPF, D P3, the control supplies SO 4 of the present invention, D It shows that it is more advantageous than P1 and DP2 .
図3は、上述の制御をフローチャートにしたものであり、ステップ100で、アッシュ再生を行うと判断した場合、すなわち、図7のアッシュ再生領域ZAに入った場合には、ステップ200に進み、アッシュ再生運転の制御を開始する。ステップ300で、アッシュ再生運転中に排気ガス流量Gaが閾値を超えたかどうか判定し、閾値を超えた場合には、ステップ400に進み、加速リッチ制御を行う。加速リッチ制御とは、上述したように、空燃比を、リーン領域におけるストイキに近い領域に制御し、同時に、SOx吸放出触媒装置からのSO4の放出を開始する制御である。
Figure 3 is obtained by the flow chart of the control described above, at step 100, if it is determined to perform the ash regeneration, i.e., when entering the ash reproducing area Z A in FIG. 7, the process proceeds to step 200, Start control of ash regeneration operation. In step 300, it is determined whether or not the exhaust gas flow rate Ga exceeds a threshold value during the ash regeneration operation. If the threshold value is exceeded, the process proceeds to step 400, where acceleration rich control is performed. As described above, the acceleration rich control is a control in which the air-fuel ratio is controlled to a region close to the stoichiometric range in the lean region, and at the same time, the release of SO 4 from the SOx adsorption / release catalyst device is started.
ステップ300で、排気ガス流量Gaが閾値を超えない場合には、アッシュ再生運転を継続するかどうか判定し、アッシュ再生領域ZAである場合には、更に排気ガス流量Gaが閾値を超えたかどうかの判定を繰り返し、排気ガス流量Gaが閾値を超えた場合の加速リッチ制御を繰り返す。
In step 300, if the exhaust gas flow rate Ga does not exceed the threshold value, it is determined whether to continue the ash regeneration operation, whether in the case of ash reproducing area Z A is exceeded further exhaust gas flow rate Ga is the threshold This determination is repeated, and the acceleration rich control is repeated when the exhaust gas flow rate Ga exceeds the threshold value.
図3のフローチャートの説明における加速リッチ制御、すなわち図7における、空燃比を、リーン領域におけるストイキに近い領域に制御し、同時に、SOx吸放出触媒装置からのSO4の放出を開始する制御を、より詳細に説明するものが、図8であり、図8は、DPF内の空燃比と温度に対して、供給するSOxの関係を示している。すなわち、図8において、「少」「多」とは、それぞれ、「SOxの供給量が少ない」ことと、「SOxの供給量が多い」ことと、を示しており、図8の関係を制御マップとして制御系に組み込み、空燃比とSOx供給量との組み合わせ制御を行う。
The acceleration rich control in the description of the flowchart of FIG. 3, that is, the control of controlling the air-fuel ratio in FIG. 7 to a region close to the stoichiometric in the lean region and simultaneously starting the release of SO 4 from the SOx adsorption / release catalyst device, FIG. 8 illustrates in more detail, and FIG. 8 shows the relationship of the supplied SOx with respect to the air-fuel ratio in the DPF and the temperature. That is, in FIG. 8, “small” and “many” indicate that “the supply amount of SOx is small” and “the supply amount of SOx is large”, respectively, and the relationship of FIG. 8 is controlled. A map is incorporated into the control system, and combined control of the air-fuel ratio and the SOx supply amount is performed.
図9は、本発明の制御の、別の実施例であり、図7の制御と同様の制御を行うが、内燃機関のアフターバーン制御と組み合わせた場合の制御を示し、図9の下段のグラフにおいて、2つのグラフのうち、細線で示すグラフaが、アフター噴射なしの場合であり、太線で示すグラフbが、アフター噴射ありの場合であり、アフター噴射ありの場合は、排気ガス流量Gaが閾値を超えた場合に、アフター噴射を行って、DPF内の環境の空燃比を、リーン領域においてストイキに近い領域に移行させて、図7の制御と同様の制御効果を得ることを示している。
FIG. 9 shows another embodiment of the control according to the present invention. The control is the same as that shown in FIG. 7, but shows the control when combined with the afterburn control of the internal combustion engine. Among the two graphs, the graph a indicated by a thin line is the case without after injection, the graph b indicated by the thick line is the case with after injection, and when the after injection is present, the exhaust gas flow rate Ga is When the threshold value is exceeded, after-injection is performed, and the air-fuel ratio of the environment in the DPF is shifted to a region close to stoichiometry in the lean region, and the same control effect as the control of FIG. 7 is obtained. .
また、図10は、本発明の制御の、更に別の実施例であり、図7の制御と同様の制御を行うが、排気燃料添加弁を備え、燃料添加弁の制御と組み合わせた場合の制御を示し、図9の下段のグラフにおいて、2つのグラフのうち、細線で示すグラフcが、燃料添加弁制御を行わない場合であり、太線で示すグラフdが、燃料添加弁制御を行う場合であり、燃料添加弁制御を行う場合は、排気ガス流量Gaが閾値を超えた場合に、燃料添加弁制御を行って、DPF内の環境の空燃比を、リーン領域においてストイキに近い領域に移行させて、図7の制御と同様の制御効果を得ることを示している。
FIG. 10 shows still another embodiment of the control according to the present invention. The control is the same as the control in FIG. 7 except that an exhaust fuel addition valve is provided and combined with the control of the fuel addition valve. In the lower graph of FIG. 9, the graph c indicated by a thin line of the two graphs is a case where the fuel addition valve control is not performed, and the graph d indicated by a bold line is a case where the fuel addition valve control is performed. Yes, when fuel addition valve control is performed, when the exhaust gas flow rate Ga exceeds a threshold value, the fuel addition valve control is performed to shift the air-fuel ratio of the environment in the DPF to a region close to stoichiometry in the lean region. Thus, it is shown that the same control effect as the control of FIG. 7 is obtained.
以上のように、DPF基材の上に、酸強度がSO3以上、SO4以下に相当する固体酸を塗布し、アッシュ再生運転中に、DPF内の雰囲気の空燃比を、先にストイキ又は空燃比リッチ雰囲気とし、更に、DPFを通過する排気の流量が所定値を超えた場合に、空燃比を、ストイキに近いリーン雰囲気に変化させ、SOx吸放出触媒装置からSO4を放出するように制御すると、DPF2内の大粒径化したアッシュが、完全に除去され、いつまでも性能が低下しないDPFを備えた内燃機関の排気浄化装置を構成することができ、DPF2の性能を、長期間にわたって飛躍的に向上させることができるという、有利な効果を奏する。更に、この効果に付随する更なる効果として、DPFの設置当初から、従来よりも小型のDPFを使用することができ、DPFの製造コストの低減のみならず、PM再生運転のエネルギーコストも低減することができる。更に、小型のDPFを使用することができるということは、DPFの車両への搭載スペースを低減することができ、当該DPFを搭載した車両の重量を低減することができるという効果があることにも注目すべきである。
As described above, a solid acid corresponding to an acid strength of SO 3 or higher and SO 4 or lower is applied on the DPF base material, and the air-fuel ratio of the atmosphere in the DPF is first stoichiometrically or during the ash regeneration operation. When the air-fuel ratio rich atmosphere is set and the flow rate of the exhaust gas passing through the DPF exceeds a predetermined value, the air-fuel ratio is changed to a lean atmosphere close to the stoichiometric so as to release SO 4 from the SOx adsorption / release catalyst device. When controlled, the ash having a large particle size in the DPF 2 is completely removed, and an exhaust gas purification apparatus for an internal combustion engine having a DPF whose performance does not deteriorate indefinitely can be configured. The advantageous effect that it can be improved automatically. Furthermore, as a further effect that accompanies this effect, a DPF smaller than the conventional one can be used from the beginning of the installation of the DPF, which not only reduces the manufacturing cost of the DPF but also reduces the energy cost of the PM regeneration operation. be able to. Furthermore, the fact that a small DPF can be used has the effect that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced. It should be noted.
1 内燃機関
2 DPF
3 アッシュ
4 細粒径化粒子
5 DPF基材
6 固体酸
30 SOx吸放出触媒装置
L1:SOx吸放出触媒装置入口
L2:DPF入口
L3:DPF出口
ZA:アッシュ再生運転
ZNOR:通常運転
ZR:空燃比リッチ運転 1Internal combustion engine 2 DPF
3 Ash 4Fine particle 5 DPF base material 6 Solid acid 30 SOx absorption / release catalyst device L 1 : SOx absorption / release catalyst device inlet L 2 : DPF inlet L 3 : DPF outlet Z A : Ash regeneration operation Z NOR : Normal Operation Z R : Air-fuel ratio rich operation
2 DPF
3 アッシュ
4 細粒径化粒子
5 DPF基材
6 固体酸
30 SOx吸放出触媒装置
L1:SOx吸放出触媒装置入口
L2:DPF入口
L3:DPF出口
ZA:アッシュ再生運転
ZNOR:通常運転
ZR:空燃比リッチ運転 1
3 Ash 4
Claims (3)
- 内燃機関の排気系にDPFを配置した、内燃機関の排気浄化装置であって、
前記DPFが、表面上に固体酸をコーティングしたDPFであり、
前記固体酸の酸強度が、SO3の酸強度よりも大きくSO4の酸強度よりも小さく、
前記内燃機関の排気系において、表面上に固体酸をコーティングした前記DPFの上流に、温度を上昇させることによりSO4を放出する特性を有するSOx吸放出触媒装置を備え、
更に、前記DPF内に堆積したアッシュを除去する、アッシュ再生運転の制御を備え、
前記アッシュ再生運転の制御が、
DPFの温度を上昇させる制御と、
DPF内の雰囲気の空燃比の制御と、
前記SOx吸放出触媒装置からSO4を放出する制御と、を備え、
前記DPF内の雰囲気の空燃比の制御が、前記DPFの温度を上昇させる制御の間に、先にストイキ又は空燃比リッチ雰囲気とし、次に空燃比リーン雰囲気に変化させる制御であり、
前記SOx吸放出触媒装置からSO4を放出する制御が、前記DPFの温度を上昇させる制御の間、前記DPFを通過する排気の流量が所定値を超えた場合に、前記SOx吸放出触媒装置からSO4を放出する制御である、
内燃機関の排気浄化装置。 An exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine,
The DPF is a DPF having a surface coated with a solid acid,
The acid strength of the solid acid is greater than the acid strength of SO 3 and less than the acid strength of SO 4 ;
In the exhaust system of the internal combustion engine, an SOx absorption / release catalyst device having a characteristic of releasing SO 4 by raising the temperature is provided upstream of the DPF whose surface is coated with a solid acid,
Furthermore, the ash regeneration operation control for removing the ash accumulated in the DPF is provided,
The control of the ash regeneration operation is
Control to increase the temperature of the DPF;
Control of the air-fuel ratio of the atmosphere in the DPF;
Control for releasing SO 4 from the SOx absorption / release catalyst device,
The control of the air-fuel ratio of the atmosphere in the DPF is a control for changing the atmosphere to the stoichiometric or air-fuel ratio rich atmosphere first and then changing to the air-fuel ratio lean atmosphere during the control to increase the temperature of the DPF.
When the control for releasing SO 4 from the SOx adsorption / release catalyst device increases the temperature of the DPF, and the flow rate of the exhaust gas passing through the DPF exceeds a predetermined value, the SOx adsorption / release catalyst device Control to release SO 4 ,
An exhaust purification device for an internal combustion engine. - 更に、前記DPFの温度を上昇させて前記DPF内に堆積したPMを燃焼、除去する、PM再生運転の制御を備え、
前記アッシュ再生運転の制御を、複数の前記PM再生運転のうちの1つに引き続いて実施する、
請求項1に記載の内燃機関の排気浄化装置。 Furthermore, it comprises control of PM regeneration operation that raises the temperature of the DPF to burn and remove PM accumulated in the DPF,
Control of the ash regeneration operation is performed following one of the plurality of PM regeneration operations.
The exhaust emission control device for an internal combustion engine according to claim 1. - 前記SOx吸放出触媒装置からSO4を放出する制御が、更に、前記内燃機関の運転状態が加速状態にあるときに実施される制御である、
請求項1又は2に記載の内燃機関の排気浄化装置。 The control for releasing SO 4 from the SOx absorption / release catalyst device is control performed when the operating state of the internal combustion engine is in an accelerated state.
The exhaust emission control device for an internal combustion engine according to claim 1 or 2.
Priority Applications (26)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/065636 WO2013005337A1 (en) | 2011-07-01 | 2011-07-01 | Exhaust purification apparatus for internal combustion engine |
CN201280031454.4A CN103619439B (en) | 2011-07-01 | 2012-06-29 | For the emission control system of internal combustion engine |
CN201280031473.7A CN103619441B (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
PCT/JP2012/067407 WO2013005852A1 (en) | 2011-07-01 | 2012-06-29 | Particulate Filter |
PCT/JP2012/067408 WO2013005853A2 (en) | 2011-07-01 | 2012-06-29 | Method of Removing Ash from Particulate Filter |
US14/110,811 US8778053B2 (en) | 2011-07-01 | 2012-06-29 | Method of removing ash from particulate filter |
US14/126,904 US9011569B2 (en) | 2011-07-01 | 2012-06-29 | Particulate filter |
CN201280032271.4A CN103635245B (en) | 2011-07-01 | 2012-06-29 | Particulate filter |
EP12738240.6A EP2726173B1 (en) | 2011-07-01 | 2012-06-29 | Method of removing ash from particulate filter |
CN201280030742.8A CN103619438B (en) | 2011-07-01 | 2012-06-29 | Method of removing ash from particulate filter |
JP2013555681A JP5626487B2 (en) | 2011-07-01 | 2012-06-29 | Particulate filter |
US14/126,947 US9057298B2 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
JP2013555657A JP2014520227A (en) | 2011-07-01 | 2012-06-29 | Exhaust gas purification device for internal combustion engine |
EP12738239.8A EP2726172B1 (en) | 2011-07-01 | 2012-06-29 | Particulate filter |
US14/127,355 US9080480B2 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
EP12741114.8A EP2726175B1 (en) | 2011-07-01 | 2012-06-29 | Exhaust Purification System for Internal Combustion Engine |
JP2013555656A JP5655961B2 (en) | 2011-07-01 | 2012-06-29 | Exhaust gas purification device for internal combustion engine |
EP12741116.3A EP2726177B1 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
CN201280031461.4A CN103619440B (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
EP12741115.5A EP2726176A2 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
JP2014514345A JP2014520229A (en) | 2011-07-01 | 2012-06-29 | Exhaust gas purification device for internal combustion engine |
PCT/JP2012/067405 WO2013005850A2 (en) | 2011-07-01 | 2012-06-29 | Exhaust Purification System for Internal Combustion Engine |
JP2013535609A JP5494893B2 (en) | 2011-07-01 | 2012-06-29 | How to remove ash from particulate filters |
US14/126,997 US9057299B2 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
PCT/JP2012/067406 WO2013005851A2 (en) | 2011-07-01 | 2012-06-29 | Exhaust Purification System for Internal Combustion Engine |
PCT/JP2012/067404 WO2013005849A1 (en) | 2011-07-01 | 2012-06-29 | Exhaust Purification System for Internal Combustion Engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/065636 WO2013005337A1 (en) | 2011-07-01 | 2011-07-01 | Exhaust purification apparatus for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013005337A1 true WO2013005337A1 (en) | 2013-01-10 |
Family
ID=47436709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/065636 WO2013005337A1 (en) | 2011-07-01 | 2011-07-01 | Exhaust purification apparatus for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013005337A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1054268A (en) * | 1996-08-08 | 1998-02-24 | Toyota Motor Corp | Exhaust emission control device for diesel engine |
JP2004513771A (en) * | 2001-05-16 | 2004-05-13 | ケイエイチ ケミカルズ カンパニー、リミテッド | Catalyst for purification of diesel engine exhaust gas |
JP2010007639A (en) * | 2008-06-30 | 2010-01-14 | Toyota Motor Corp | Exhaust emission control device for internal combustion engine |
-
2011
- 2011-07-01 WO PCT/JP2011/065636 patent/WO2013005337A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1054268A (en) * | 1996-08-08 | 1998-02-24 | Toyota Motor Corp | Exhaust emission control device for diesel engine |
JP2004513771A (en) * | 2001-05-16 | 2004-05-13 | ケイエイチ ケミカルズ カンパニー、リミテッド | Catalyst for purification of diesel engine exhaust gas |
JP2010007639A (en) * | 2008-06-30 | 2010-01-14 | Toyota Motor Corp | Exhaust emission control device for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6121402B2 (en) | Method for regenerating NOx storage catalytic converter of diesel engine with low pressure EGR | |
JP4384601B2 (en) | Exhaust control system for diesel engine powered vehicles | |
JP2020076408A (en) | Exhaust gas treatment apparatus comprising oxidation catalyst for lean burn internal combustion engine and method of recovering oxidation activity of oxidation catalyst | |
KR102025922B1 (en) | Automotive catalytic aftertreatment system | |
KR20050115274A (en) | Exhaust system for lean burn ic engine including particulate filter and nox absorbent | |
JP2007291980A (en) | Exhaust purification device | |
EP2629881B1 (en) | NOx STORAGE COMPONENT | |
JP2006274875A (en) | Exhaust emission control device | |
CN103717851B (en) | Exhaust gas purification device for internal combustion engine | |
JP2007138866A (en) | Regeneration control method for exhaust emission control system, and exhaust emission control system | |
JP6129514B2 (en) | Diesel oxidation catalyst device regeneration cycle determination method | |
EP2298432A1 (en) | Exhaust gas purifier | |
KR101724453B1 (en) | System for purifying exhaust gas and method for controlling the same | |
JP2002089240A (en) | Exhaust emission control device and exhaust emission control method using this | |
WO2013005341A1 (en) | Exhaust gas purifier for internal combustion engine | |
WO2013005337A1 (en) | Exhaust purification apparatus for internal combustion engine | |
WO2013005340A1 (en) | Exhaust purification apparatus for internal combustion engine | |
WO2013005335A1 (en) | Exhaust purification apparatus for internal combustion engine | |
WO2013005339A1 (en) | Exhaust purification device for internal combustion engine | |
JPWO2013005337A1 (en) | Exhaust gas purification device for internal combustion engine | |
WO2013005338A1 (en) | Exhaust purification apparatus for internal combustion engine | |
WO2013005334A1 (en) | Exhaust purification apparatus for internal combustion engine | |
WO2013005342A1 (en) | Exhaust purification device for internal combustion engine | |
JP2010005552A (en) | Exhaust gas purifying apparatus of internal combustion engine | |
WO2013005336A1 (en) | Exhaust purification apparatus for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012502379 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11868920 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11868920 Country of ref document: EP Kind code of ref document: A1 |