WO2013005265A1 - Three-dimensional coordinate measuring device and three-dimensional coordinate measuring method - Google Patents
Three-dimensional coordinate measuring device and three-dimensional coordinate measuring method Download PDFInfo
- Publication number
- WO2013005265A1 WO2013005265A1 PCT/JP2011/005654 JP2011005654W WO2013005265A1 WO 2013005265 A1 WO2013005265 A1 WO 2013005265A1 JP 2011005654 W JP2011005654 W JP 2011005654W WO 2013005265 A1 WO2013005265 A1 WO 2013005265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- viewpoint
- angle
- target
- point
- optical axis
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 33
- 238000004364 calculation method Methods 0.000 claims abstract description 85
- 230000003287 optical effect Effects 0.000 claims abstract description 82
- 238000000605 extraction Methods 0.000 claims abstract description 35
- 238000003384 imaging method Methods 0.000 claims description 96
- 238000005259 measurement Methods 0.000 claims description 19
- 238000000691 measurement method Methods 0.000 claims 3
- 238000001514 detection method Methods 0.000 description 29
- 238000010586 diagram Methods 0.000 description 25
- 238000012545 processing Methods 0.000 description 14
- 238000012937 correction Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 239000013598 vector Substances 0.000 description 10
- 230000006870 function Effects 0.000 description 8
- 239000000284 extract Substances 0.000 description 7
- 239000000470 constituent Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
- G06T2207/10012—Stereo images
Definitions
- the present invention relates to a three-dimensional coordinate measuring apparatus and a three-dimensional coordinate measuring method for measuring three-dimensional coordinates of a target point using two images obtained by photographing the target point from different viewpoints.
- a stereo method is known as a method of measuring the coordinates of relative points using an image.
- a target point is imaged by two cameras (imaging devices) placed at different positions, or a target point is imaged from two different positions by one camera.
- the coordinates of the target point are calculated using these two images.
- the stereo method calculates three-dimensional coordinates of a target point based on subtle differences in images based on parallax, as in human binocular vision (see, for example, Patent Document 1 and Patent Document 2). .
- Patent Document 2 calculates the three-dimensional coordinates of the target point even when the two cameras are deviated from the parallel stereo arrangement by correcting the deviation of the shooting direction of the cameras. It is possible.
- Patent Document 2 has a problem that correction cannot be performed when the arrangement of the two cameras deviates greatly from the stereo arrangement.
- an object of the present invention is to provide a three-dimensional coordinate measuring apparatus that can improve the degree of freedom of setting of two cameras.
- a three-dimensional coordinate measuring apparatus is a three-dimensional coordinate measuring apparatus that measures three-dimensional coordinates of a target point, and is a first imaging device from a first viewpoint.
- An image acquisition unit that acquires a first target image in which the target point is captured and a second target image in which the target point is captured by a second imaging device from a second viewpoint; For each pixel in the image captured by the imaging device, a line segment connecting each point of the three-dimensional coordinate system projected onto the pixel and the first viewpoint, and the optical axis of the first imaging device Information on the first pixel viewpoint projection angle, which is an angle formed, and for each pixel in the image captured by the second imaging device, each point of the three-dimensional coordinate system projected on the pixel and the second A second image that is an angle formed by a line segment connecting the viewpoint and the optical axis of the second imaging device.
- first optical axis information indicating the optical axis direction of the first imaging device
- second optical axis information indicating the optical axis direction of the second imaging device
- the storage unit that holds the inter-viewpoint information indicating the relative position between the second viewpoint and the second viewpoint, and the information about the first pixel viewpoint projection angle is used to project the first target image onto the first target image.
- a first viewpoint projection angle extraction unit that obtains a first target viewpoint projection angle that is the first pixel viewpoint projection angle corresponding to a target point, and information about the second pixel viewpoint projection angle
- a second viewpoint projection angle extraction unit that acquires a second target viewpoint projection angle that is the second pixel viewpoint projection angle corresponding to the target point projected on the second target image;
- a coordinate calculating unit for calculating three-dimensional coordinates of the point.
- the three-dimensional coordinate measuring apparatus can easily calculate the three-dimensional coordinates of the target point using the viewpoint projection angle even when the two cameras are not arranged in parallel stereo.
- the three-dimensional coordinate measuring apparatus can improve the degree of freedom of setting two cameras.
- the storage unit further includes information indicating a first rotation angle that is an angle at which the first imaging device rotates about the optical axis of the first imaging device, and the second The imaging device holds information indicating a second rotation angle that is an angle of rotation about the optical axis of the second imaging device, and the coordinate calculation unit includes the first and second objects.
- the three-dimensional coordinates of the target point are calculated using the viewpoint projection angle, the optical axis directions of the first and second imaging devices, the inter-viewpoint information, and the first and second rotation angles. May be.
- the three-dimensional coordinate measuring apparatus can easily calculate the three-dimensional coordinates of the target point even when the camera rotates about the optical axis of the camera.
- the coordinate calculation unit uses the first target viewpoint projection angle, the optical axis direction of the first imaging device, and the first rotation angle to use the first viewpoint and the second viewpoint.
- a first target angle that is an angle formed by a line segment that connects the first viewpoint and a line segment that connects the first viewpoint and the target point, and calculates the second target viewpoint projection angle, A line segment connecting the first viewpoint and the second viewpoint using the optical axis direction of the second imaging device and the second rotation angle, and the second viewpoint and the target point.
- a second target angle that is an angle formed by a connecting line segment is calculated, and the three-dimensional coordinates of the target point are calculated using the inter-viewpoint information, the first target angle, and the second target angle. May be calculated.
- the first optical axis information includes a first reference line that passes through the first viewpoint and is perpendicular to a line segment that connects the first viewpoint and the second viewpoint; Information indicating a first photographing angle that is an angle formed with an optical axis of one imaging device, and the second optical axis information passes through the second viewpoint and the first viewpoint and the A second reference line that is perpendicular to a line connecting the second viewpoint and is parallel to the first reference line and an optical axis of the second imaging device; Information indicating a shooting angle, wherein the coordinate calculation unit includes an angle formed by a line segment connecting the first viewpoint and the second viewpoint and the first reference line, and the first viewpoint projection angle.
- And calculating the first target angle using the first imaging angle and the first rotation angle, and a line segment connecting the first viewpoint and the second viewpoint, and the second And the angle formed by the reference line, the second viewpoint projection angle, the second imaging angle, may calculate the second target angle using a said second rotation angle.
- the image acquisition unit further includes a first reference point, which is any three of three or more reference points whose relative coordinates are known, from the first viewpoint to the first imaging device.
- the second reference point which is any one of the first reference image picked up by (1) and the three or more reference points, was picked up by the second image pickup device from the second viewpoint.
- a second reference image is acquired, and the three-dimensional coordinate measuring apparatus further uses the information of the first pixel viewpoint projection angle to project the first of the three points to be projected onto the first reference image.
- a third viewpoint projection angle extraction unit that obtains three first reference viewpoint projection angles that are the first pixel viewpoint projection angles corresponding to the reference point, and information on the second pixel viewpoint projection angle.
- a fourth viewpoint projection angle extraction unit that obtains three second reference viewpoint projection angles that are point projection angles; and the relative coordinates of the three first reference viewpoint projection angles and the three first reference points.
- a second imaging surface which is an imaging surface of the second reference image, using an angle calculation unit, the three second reference viewpoint projection angles and the relative coordinates of the three second reference points;
- a second inclination angle calculating unit for calculating a second inclination angle formed with a second reference plane including the three second reference points, the three first reference points, and the three reference points.
- the optical axis direction of the first imaging device and the second imaging device The optical axis direction of the a first rotation angle A, and a setting information calculating unit that calculates a second rotation angle.
- the three-dimensional coordinate measuring apparatus can easily calculate the optical axis directions of the first and second imaging apparatuses using the viewpoint projection angle.
- the setting information calculation unit includes a relative positional relationship between the three first reference points and the three second reference points, the first inclination angle, and the second inclination angle. May be used to calculate the three-dimensional coordinates of the first viewpoint and the second viewpoint, and to calculate the inter-viewpoint information from the three-dimensional coordinates of the first viewpoint and the second viewpoint. .
- the three-dimensional coordinate measuring apparatus can easily calculate the inter-viewpoint distance using the viewpoint projection angle.
- the present invention can be realized not only as such a three-dimensional coordinate measuring apparatus, but also as a three-dimensional coordinate measuring method using characteristic means included in the three-dimensional coordinate measuring apparatus as a step. It can also be realized as a program that causes a computer to execute typical steps. Needless to say, such a program can be distributed via a non-transitory computer-readable recording medium such as a CD-ROM and a transmission medium such as the Internet.
- the present invention can provide a three-dimensional coordinate measuring apparatus that can improve the degree of freedom of setting of two cameras.
- FIG. 8 is a diagram for explaining the first adjustment operation according to the embodiment of the present invention.
- FIG. 9A is a diagram showing a reference point projected on the first imaging surface according to the embodiment of the present invention.
- FIG. 9B is a diagram showing a reference point projected on the second imaging surface according to the embodiment of the present invention.
- FIG. 10 is a flowchart of the tilt angle calculation process according to the embodiment of the present invention.
- FIG. 11 is a diagram for explaining the tilt angle calculation processing according to the embodiment of the present invention.
- FIG. 12 is a diagram for explaining the tilt angle calculation processing according to the embodiment of the present invention.
- FIG. 13 is a diagram for explaining a first adjustment operation according to the embodiment of the present invention.
- FIG. 14 is a diagram showing a configuration of a system including a three-dimensional coordinate measuring apparatus at the time of the second adjustment operation according to the embodiment of the present invention.
- FIG. 15 is a flowchart of the second adjustment operation according to the embodiment of the present invention.
- FIG. 16 is a diagram for explaining a viewpoint projection angle according to the embodiment of the present invention.
- FIG. 17A is a diagram showing an example of an image before distortion correction according to the embodiment of the present invention.
- FIG. 17B is a diagram showing an example of an image after distortion correction according to the embodiment of the present invention.
- FIG. 18 is a diagram for explaining a second adjustment operation according to the embodiment of the present invention.
- the 3D coordinate measuring apparatus extracts the viewpoint projection angle of the target point in each image from two images obtained by capturing the target point from different viewpoints. Then, the three-dimensional coordinate measuring apparatus calculates the coordinates of the target point using the viewpoint projection angle.
- the three-dimensional coordinate measuring apparatus can calculate the three-dimensional coordinates of the target point even when the two cameras are not arranged in parallel stereo.
- the three-dimensional coordinate measuring apparatus can improve the degree of freedom in setting two cameras.
- FIG. 1 is a diagram showing a configuration of a three-dimensional coordinate measurement system according to an embodiment of the present invention.
- the three-dimensional coordinate measurement system shown in FIG. This three-dimensional coordinate measurement system includes a three-dimensional coordinate measurement device 90, cameras 10A and 10B that are imaging devices, and cables 30A and 30B.
- the camera 10A is the target structure 50 is the first imaging device for generating image data 60A by capturing the first viewpoint M 1.
- Camera 10B is a target structure 50 is the second imaging device for generating image data 60B by capturing from a second viewpoint M 2.
- the first viewpoint M 1 and second viewpoint M 2 corresponds to the position of the principal point of the photographic lens of the camera 10A and 10B.
- O 1 and O 2 written by two-dot chain lines indicate the optical axes of the cameras 10A and 10B (the optical axes of the photographing lenses), respectively.
- the relative positional relationship between the camera 10A and the camera 10B and the optical axes O 1 and O 2 are set in advance.
- the camera 10A and the camera 10B are connected via a predetermined member. Thereby, the relative positional relationship between the camera 10A and the camera 10B and the orientation (optical axis) of the camera 10A and the camera 10B are fixed.
- the image data 60A generated by the camera 10A is sent to the three-dimensional coordinate measuring device 90 via the cable 30A.
- the image data 60B generated by the camera 10B is sent to the three-dimensional coordinate measuring apparatus 90 via the cable 30B.
- the three-dimensional coordinate measuring device 90 is, for example, a personal computer.
- the three-dimensional coordinate measuring apparatus 90 measures the three-dimensional coordinates of the target point W using the image data 60A and 60B.
- FIG. 2 is a block diagram showing a characteristic functional configuration of the three-dimensional coordinate measuring apparatus 90 according to the embodiment of the present invention.
- the function of the processing unit shown in FIG. 2 is realized by a processor included in a personal computer executing a program.
- the three-dimensional coordinate measuring apparatus 90 calculates the three-dimensional coordinates 112 of the target point W using two images obtained by capturing the target point W from different viewpoints.
- the three-dimensional coordinates 112 is, for example, the coordinates of the first point of view M 1 in the three-dimensional coordinate system with the origin.
- the three-dimensional coordinate system of the three-dimensional coordinates 112 is not limited to this, and an arbitrary three-dimensional coordinate system may be used.
- the three-dimensional coordinates 112 may be relative coordinates between a predetermined point and the target point, or may be information indicating a distance between the predetermined point and the target point W.
- the point defined here in advance for example, a first viewpoint M 1 or the second viewpoint M 2.
- the point this predetermined may be any point existing between the first view point M 1 and the second viewpoint M 2.
- the three-dimensional coordinate measuring apparatus 90 includes an image acquisition unit 101, a storage unit 102, a first viewpoint projection angle extraction unit 103A, a second viewpoint projection angle extraction unit 103B, and a coordinate calculation unit. 105 and a camera setting detection unit 106.
- Image acquisition unit 101 the first target image target point W is imaged (image data 60A) by the first camera 10A from the viewpoint M 1, target point W by the second viewpoint M 2 from the camera 10B is imaged The obtained second target image (image data 60B) is acquired.
- the storage unit 102 holds the first viewpoint projection angle information 111A, the second viewpoint projection angle information 111B, the first shooting angle ⁇ A , the second shooting angle ⁇ B, and the inter-viewpoint distance d. To do.
- FIG. 3 is a diagram showing the relationship between the cameras 10A and 10B and the target point W.
- the reference line R is a straight line that passes through the second viewpoint M 2 and is perpendicular to the line segment M 1 M 2 .
- the reference line L and the reference line R are parallel lines.
- FIG. 3 two-dimensional coordinates and angles are illustrated, but actually three-dimensional coordinates and angles are used. Also in this case, since the same method as shown below can be used, the description will be given here with reference to FIG.
- the first shooting angle ⁇ A is an angle formed between the first reference line L and the optical axis O 1 of the camera 10A.
- the second shooting angle ⁇ B is an angle formed by the second reference line R and the optical axis O 2 of the camera 10B.
- the first shooting angle ⁇ A is first optical axis information indicating the optical axis direction of the camera 10A
- the second shooting angle ⁇ B is second light indicating the optical axis direction of the camera 10B.
- Distance between viewpoints d show first viewpoint M 1 and the distance between the second viewpoint M 2, the first viewpoint M 1 and the arrangement relationship between the second viewpoint M 2.
- first viewpoint M 1 and the positional relationship between the second viewpoint M 2 for example, a camera 10A (first viewpoint M 1) and a camera 10B (first viewpoint M 2) either the right of This is information indicating which is arranged on the left side. That is, distance between viewpoints d is the relative position information indicating the first viewpoint M 1 and second viewpoint M 2 and the relative coordinate (relative position).
- the first viewpoint projection angle information 111A is information indicating the viewpoint projection angle of each pixel (corresponding to the first pixel viewpoint projection angle of the present invention) in an image taken by the camera 10A.
- the viewpoint projection angle is an angle formed by a line segment connecting each point of the three-dimensional coordinate system projected onto the pixel and the viewpoint and the optical axis of the imaging device (camera).
- the viewpoint projection angle is a value determined according to the camera setting, and is a value uniquely determined for each setting state of the camera.
- the first viewpoint projection angle information 111A is a table indicating viewpoint projection angles corresponding to each of a plurality of pixels.
- the second viewpoint projection angle information 111B is information indicating the viewpoint projection angle of each pixel (corresponding to the second pixel viewpoint projection angle of the present invention) in the image captured by the camera 10B.
- the second viewpoint projection angle information 111B is a table indicating viewpoint projection angles corresponding to each of a plurality of pixels.
- the first viewpoint projection angle information 111A, the second viewpoint projection angle information 111B, the first shooting angle ⁇ A , the second shooting angle ⁇ B, and the inter-viewpoint distance d are set in advance. It may be stored in the storage unit 102 or may be calculated by the camera setting detection unit 106 as described later.
- first viewpoint projection angle information 111A, the second viewpoint projection angle information 111B, the first shooting angle ⁇ A , the second shooting angle ⁇ B, and the inter-viewpoint distance d are stored in a plurality of memories. It may be divided and stored in the unit 102.
- the first viewpoint projection angle extraction unit 103A uses the viewpoint projection angle ⁇ A1 corresponding to the target point W projected on the first target image (the first viewpoint of the present invention). (Corresponding to the target viewpoint projection angle).
- the second viewpoint projection angle extraction unit 103B uses the second viewpoint projection angle information 111B to generate a viewpoint projection angle ⁇ B1 corresponding to the target point W projected on the second target image (the second viewpoint of the present invention). (Corresponding to the target viewpoint projection angle).
- the coordinate calculation unit 105 includes the target viewpoint projection angles ⁇ A1 and ⁇ B1 acquired by the first viewpoint projection angle extraction unit 103A and the second viewpoint projection angle extraction unit 103B, the first imaging angle ⁇ A, and the second The three-dimensional coordinates 112 of the target point W are calculated using the shooting angle ⁇ B and the inter-viewpoint distance d.
- the three-dimensional coordinates 112 of the target point W calculated by the coordinate calculation unit 105 are displayed on, for example, a display unit (not shown) included in the three-dimensional coordinate measurement device 90.
- the three-dimensional coordinates 112 may be output to the outside of the three-dimensional coordinate measuring device 90 or may be stored in a storage unit provided in the three-dimensional coordinate measuring device 90.
- the camera setting detection unit 106 includes first viewpoint projection angle information 111A, second viewpoint projection angle information 111B, a first shooting angle ⁇ A , a second shooting angle ⁇ B, and an inter-viewpoint distance d.
- the first viewpoint projection angle information 111A, the second viewpoint projection angle information 111B, the first shooting angle ⁇ A , the second shooting angle ⁇ B, and the inter-viewpoint distance d are calculated. Store in the storage unit.
- FIG. 4 is a flowchart of the three-dimensional coordinate measurement process performed by the three-dimensional coordinate measurement apparatus 90.
- the image acquisition unit 101 acquires a first target image and a second target image (S101).
- the first target image, the target point W by the first camera 10A from the view point M 1 is an image that has been captured.
- the second target image, the target point W by the second viewpoint M 2 from the camera 10B is an image that has been captured.
- the first viewpoint projection angle extraction unit 103A extracts the coordinates of the target point W from the first target image. Then, the first viewpoint projection angle extraction unit 103A refers to the first viewpoint projection angle information 111A and acquires the viewpoint projection angle ⁇ A1 corresponding to the extracted coordinates of the target point W. Similarly, the second viewpoint projection angle extraction unit 103B extracts the coordinates of the target point W from the second target image. Then, the second viewpoint projection angle extraction unit 103B refers to the second viewpoint projection angle information 111B to acquire the viewpoint projection angle ⁇ B1 corresponding to the extracted coordinates of the target point W (S102).
- the coordinate calculation unit 105 uses the first shooting angle ⁇ A , the second shooting angle ⁇ B, and the viewpoint projection angles ⁇ A1 and ⁇ B1 to use the first target angle ⁇ shown in FIG. A2 and the second target angle ⁇ B2 are calculated (S103).
- the first target angle ⁇ A2 is an angle formed by the line segment M 1 M 2 and the line segment M 1 W.
- the second target angle ⁇ B2 is an angle formed by the line segment M 1 M 2 and the line segment M 2 W.
- the coordinate calculation unit 105 calculates the first target angle ⁇ A2 using the following (Equation 1). In addition, the coordinate calculation unit 105 calculates the second target angle ⁇ B2 using the following (Formula 2).
- ⁇ A2 ⁇ L ⁇ A ⁇ A1 (Formula 1)
- ⁇ B2 ⁇ R ⁇ B ⁇ B1 (Formula 2)
- ⁇ L is an angle formed by the first reference line L and the line segment M 1 M 2 .
- ⁇ R is an angle formed by the second reference line R and the line segment M 1 M 2 . Further, here, theta L and theta R, are both 90 degrees.
- the coordinate calculation unit 105 calculates the three-dimensional coordinate 112 of the target point W using the first target angle ⁇ A2 , the second target angle ⁇ B2, and the inter-viewpoint distance d (S104). .
- distance between viewpoints d is information indicating the first viewpoint M 1 and the relative positional relationship between the second viewpoint M 2.
- the coordinate calculation unit 105 uses a three-dimensional coordinate system in which the coordinates of the first viewpoint M 1 are the origin (0, 0, 0) and the coordinates of the second viewpoint M 2 are (d, 0, 0). Set. Then, the coordinate calculation unit 105 calculates the coordinates of the target point W in the set three-dimensional coordinate system.
- the three-dimensional coordinate calculation unit 105 can calculate the three-dimensional coordinates 112 of the target point W by the following method.
- the coordinate calculation unit 105 calculates a first vector passing through the first viewpoint M 1 and the target point W using the first target angle ⁇ A2 . Specifically, the coordinate calculation unit 105, through the first view point M 1, and to calculate the direction of the vector represented by the first target angle theta A2 as the first vector. Note that the coordinate calculation unit 105 may use the first shooting angle ⁇ A and the viewpoint projection angle ⁇ A1 instead of the first target angle ⁇ A2 .
- the coordinate calculation section 105 uses the second target angle theta B2, calculates a second vector that passes through the second viewpoint M 2 and the target point W. Further, the coordinate calculation unit 105 may use the second shooting angle ⁇ B and the viewpoint projection angle ⁇ B1 instead of the second target angle ⁇ B2 .
- the coordinate calculation unit 105 calculates the coordinates of the closest point between the first vector and the second vector as the three-dimensional coordinates 112 of the target point W.
- the three-dimensional coordinate measuring apparatus 90 can calculate the three-dimensional coordinates 112 of the target point W.
- the three-dimensional coordinate measuring apparatus 90 holds the viewpoint projection angle with respect to each pixel of the image captured by the camera 10A and the camera 10B in advance, and sets the viewpoint projection angle to be held. Using this, the three-dimensional coordinates 112 of the target point W are calculated. Specifically, the three-dimensional coordinate measuring apparatus 90 extracts the viewpoint projection angle of the target point in each image from two images obtained by capturing the target point from different viewpoints. Then, the three-dimensional coordinate measuring apparatus calculates the coordinates of the target point using the viewpoint projection angle.
- the three-dimensional coordinate measuring apparatus 90 can easily calculate the three-dimensional coordinates of the target point W. Further, the three-dimensional coordinate measuring device 90 calculates the three-dimensional coordinates of the target point W even when the two cameras are not arranged in parallel stereo by using the first photographing angle ⁇ A and the second photographing angle ⁇ B. it can. As described above, the three-dimensional coordinate measuring apparatus 90 according to the embodiment of the present invention can improve the degree of freedom in setting two cameras.
- Patent Document 1 essential information is required for the captured image. Specifically, in Patent Document 1, a license plate is required, and in Patent Document 2, “at least two straight lines that are mutually changed in real space” are required. On the other hand, the three-dimensional coordinate measuring apparatus 90 according to the present embodiment does not need such information.
- the first reference line L uses a straight line that passes through the first viewpoint M 1 and is perpendicular to the line segment M 1 M 2
- it may be a straight line passing through the first viewpoint M 1.
- the second reference line R may be any straight line passing through the second point of view M 2.
- the first shooting angle ⁇ A and the second shooting angle ⁇ B may be information indicating the optical axis directions of the cameras 10A and 10B.
- the first reference line L and the second reference line R may be straight lines that are parallel to each other and are not perpendicular to the line segment M 1 M 2 .
- the angle formed by the line segment M 1 M 2 and the optical axis of the camera may be used as the first shooting angle ⁇ A and the second shooting angle ⁇ B.
- distance between viewpoints d may be information indicating the first viewpoint M 1 and the relative positional relationship between the second viewpoint M 2.
- first viewpoint M 1 coordinates and a second viewpoint M 2 coordinates in the three-dimensional coordinate system may be used instead of the distance between viewpoints d.
- first adjustment operation for detecting the first shooting angle ⁇ A , the second shooting angle ⁇ B and the inter-viewpoint distance d by the camera setting detection unit 106 will be described.
- first viewpoint projection angle information 111A and the second viewpoint projection angle information 111B are held in the storage unit 102.
- FIG. 5 is a diagram showing a configuration of the three-dimensional coordinate measurement system according to the present embodiment during the first adjustment operation.
- the camera 10A when the first adjusting operation, the camera 10A generates image data 61A (first reference image) by imaging the reference structure 40 from the first viewpoint M 1.
- Camera 10B by imaging the reference structure 40 from the second viewpoint M 2, and generates an image data 61B (second reference image).
- the reference structure 40 has three reference points A, B, and C whose relative coordinates are known in a three-dimensional coordinate system.
- the triangle defined by the points A, B, and C is referred to as the reference structure 40.
- FIG. 6 is a block diagram illustrating a configuration of the camera setting detection unit 106.
- the camera setting detection unit 106 includes a third viewpoint projection angle extraction unit 121A, a fourth viewpoint projection angle extraction unit 121B, a first tilt angle calculation unit 122A, and a second tilt.
- An angle calculation unit 122B and a setting information calculation unit 123 are provided.
- the third viewpoint projection angle extraction unit 121A uses three viewpoint projection angles (corresponding to each of the reference points A, B, and C projected on the first reference image). (Corresponding to the first reference viewpoint projection angle of the present invention).
- the fourth viewpoint projection angle extraction unit 121B uses the second viewpoint projection angle information 111B to provide three viewpoint projection angles (corresponding to each of the reference points A, B, and C projected on the second reference image). (Corresponding to the second reference viewpoint projection angle of the present invention).
- the first inclination angle calculation unit 122A calculates the first inclination angle using the three first reference viewpoint projection angles and the relative coordinates of the three reference points A, B, and C.
- the first inclination angle is an angle formed by a first imaging surface that is an imaging surface of the first reference image and a reference plane including three reference points A, B, and C.
- the second tilt angle calculation unit 122B calculates the second tilt angle using the three second reference viewpoint projection angles and the relative coordinates of the three reference points A, B, and C.
- the second inclination angle is an angle formed by the second imaging surface, which is the imaging surface of the second reference image, and the reference plane including the three reference points A, B, and C.
- the setting information calculation unit 123 calculates the first shooting angle ⁇ A and the second shooting angle ⁇ B using the first tilt angle and the second tilt angle. Also, setting information calculating unit 123 calculates a first inclined angle, with a second inclination angle, the first view point M 1 and the second three-dimensional coordinates of the viewpoint M 2. Then, setting information calculation unit 123, from the first viewpoint M 1 and second three-dimensional coordinates of the viewpoint M 2, calculates interview distance d.
- FIG. 7 is a flowchart of the first adjustment operation by the three-dimensional coordinate measuring apparatus 90.
- the image acquisition unit 101 acquires the first reference image and the second reference image as shown in FIG. 8 (S111).
- the case where the three reference points included in the first reference image and the second reference image are the same will be described as an example.
- the three reference points included in the image and the second reference image may be different.
- the first reference image, the first reference point is any three points of the three points or more reference points relative coordinates is known, is captured by the camera 10A from the first viewpoint M 1 Any image can be used.
- the second reference image, the second reference point is any three points among the three points or more reference points may be an image captured by the second viewpoint M 1 from the camera 10B .
- each calculation process by considering the relative positional relationship between the first reference point and the second reference point, the same as the case where the first reference point and the second reference point are the same. Processing can be performed.
- the third viewpoint projection angle extraction unit 121A uses the optical center position C p1 in the first reference image as the origin and the reference point A projected on the first acquired image.
- B and C the coordinates of points A 01 , B 01 and C 01 are extracted from the first reference image.
- the third viewpoint projection angle extraction unit 121A uses the first viewpoint projection angle information 111A to calculate the first reference viewpoint projection angle corresponding to the coordinates of the extracted points A 01 , B 01 and C 01. Extract.
- the fourth viewpoint projection angle extraction unit 121B uses the optical center position C p2 in the second reference image as the origin, and the reference point A projected on the second reference image.
- the fourth viewpoint projection angle extraction unit 121B uses the second viewpoint projection angle information 111B to calculate the second reference viewpoint projection angle corresponding to the coordinates of the extracted points A 02 , B 02 and C 02. Extract (S112).
- the first inclination angle calculation unit 122A is a first angle that is an angle formed between the first imaging surface that is the imaging surface of the first reference image and the reference plane that includes the reference points A, B, and C.
- the inclination angle is calculated.
- the second inclination angle calculation unit 122B is a second angle that is an angle formed between the second imaging surface that is the imaging surface of the second reference image and the reference plane that includes the reference points A, B, and C.
- An inclination angle is calculated (S113).
- FIG. 10 is a flowchart of the process (S113) for calculating the first tilt angle and the second tilt angle.
- FIG. 11 is a diagram for explaining the processing shown in FIG.
- the process of calculating the first tilt angle will be described with reference to FIGS. 10 and 11.
- the first inclination angle calculation unit 122A sets one of the three reference points A, B, and C, for example, an X 1 -Y 1 -Z 1 coordinate system with the point A as the origin. (S141). At this time, the first tilt angle calculating unit 122A has the X 1 axis and Y 1 axis is set in parallel to the first imaging plane taken from the first viewpoint M 1. In addition, the first inclination angle calculation unit 122A sets the Z 1 axis to be perpendicular to the first imaging surface imaged from the first viewpoint M 1 .
- the first inclination angle calculating section 122A sets a reference point B and C and equivalent virtual points B 1 and C 1 coordinates (S142).
- the point B 1 corresponds to the point B
- the point C 1 corresponds to the point C.
- the coordinates of the point B 1 are set as (B 1x , 0, 0)
- the coordinates of the point C 1 are set as (0, C 1y , 0).
- the first inclination angle calculation unit 122A finely and separately separates the points B 1 and C 1 into an angle ⁇ 1n around the X 1 axis, an angle ⁇ 1n around the Y 1 axis, and an angle ⁇ 1n around the Z 1 axis.
- a plurality of rotated conversion reference points, points B 1n ′ (B 1nx ′, B 1ny ′, B 1nz ′) and point C 1n ′ (C 1nx ′, C 1ny ′, C 1nz ′) are calculated ( S143).
- n 1, 2, 3,...
- the first inclination angle calculation unit 122A uses the viewpoint projection angle extracted by the third viewpoint projection angle extraction unit 121A to convert the point B 1n ′ and the point C 1n ′ into the X 1 -Y 1 plane.
- a plurality of transformation projection reference points projected onto the points B 1n ′′ (B 1nx ′′, B 1ny ′′, 0) and point C 1n ′′ (C 1nx ′′, C 1ny ′′, 0) are calculated (S144). .
- n 1, 2, 3,...
- the viewpoint projection angle of the plane Z 1 -X 1 at the point B 01 extracted by the third viewpoint projection angle extraction unit 121A is ⁇ 1x
- the viewpoint projection angle of the Z 1 -Y 1 plane at the point B 01 is epsilon 1y, 1x viewpoint projection angle of Z 1 -X 1 side of the point C 01 phi, the viewpoint projection angle of Z 1 -Y 1 side of the point C 01 and phi 1y.
- each of B 1ny ′′, C 1nx ′′, and C 1ny ′′ is expressed by (Expression 4) to (Expression 6).
- the first inclination angle calculation unit 122A determines the converted projection reference points B 1 ′′ and C 1 ′′ in which the triangle A 01 B 01 C 01 and the triangle AB 1n “C 1n ” are most similar.
- the first inclination angle ( ⁇ 1 , ⁇ 1 , ⁇ 1 ) is calculated (S145).
- the line segment A 01 B 01 has the same length as the line segment AB 1n ′′, and the point B 01 and the point C 01 are moved so that the point A 01 coincides with the point A
- the first inclination angle ( ⁇ 1 , ⁇ 1 , ⁇ 1 ) is set so that the sum of the length of the line segment B 01 B 1n ′′ and the length of the line segment C 01 C 1n ′′ is minimized.
- the similarity comparison calculation method is not limited to the above method.
- the line segment A 01 B 01 "with the same length as the line segment A 01 B 01 segment AB 1n" segment AB 1n moving the point C 01 to match with.
- the first inclination angles ( ⁇ 1 , ⁇ 1 , ⁇ 1 ) may be calculated so that the shift amount between the point C 01 and the point C 1n ′′ is minimized.
- the second inclination angle calculation unit 122B calculates a second inclination angle ( ⁇ 2 , ⁇ 2 , ⁇ 2 ) that is an angle formed by the second imaging surface and a plane including the reference point. .
- the calculation of the tilt angle has been described based on the embodiment.
- the calculation methods of the first and second tilt angles are not limited to this embodiment.
- the first inclination angle calculation unit 122A has X 1 -Y 1 -Z whose origin is one of three reference points A, B, and C whose coordinates are known. Although one coordinate system has been set, the origin may be selected from other than the three reference points whose coordinates are known.
- the first inclination angle calculation unit 122A places the point A at a certain position on the viewpoint projection angle line of the point A. Then, the first inclination angle calculation unit 122A sequentially slides the point B on the viewpoint projection angle line of the point B at a specified pitch and within a certain range. At this time, the first inclination angle calculation unit 122A arranges the point C on the circumference with the line segment AB as an axis for each position of the point B. Then, the first inclination angle calculation unit 122A stores a condition in which the point C is closest to the viewpoint projection angle line of the point C among the positions on the circumference.
- the first inclination angle calculation unit 122A slides the point B sequentially, and calculates the closest point of the point C at that time. Then, the first inclination angle calculation unit 122A may calculate the inclination angle from the condition of the closest approach point among the closest points of the point C corresponding to all the slide positions of the point B.
- the first inclination angle calculation unit 122A places the point A at a certain position on the viewpoint projection angle line of the point A and places the point B on or near the viewpoint projection angle line of the point B. At this time, the point C exists on the circumference with the line segment AB as an axis. Therefore, the first inclination angle calculation unit 122A stores a condition in which the point C is closest to the viewpoint projection angle line of the point C among the positions on the circumference. The first inclination angle calculation unit 122A moves the point A within a certain range and performs the above calculation for each moved position. Then, the first inclination angle calculation unit 122A may calculate the inclination angle from the condition of the closest approach point among the closest points of the point C corresponding to all positions of the point A.
- the setting information calculation unit 123 calculates two vectors.
- the two vectors for example, the determined points B 1 "(point B 1n") in step S145, the straight line B 1 'B connecting the' B 1 corresponding to 'point B 1n at that time 1 ", and, C 1 point determined in step S145" is (point C 1n ") and, linear C 1 'C 1 connecting the' C 1 corresponding to the 'C 1n terms of their time".
- the setting information calculation unit 123 calculates the three-dimensional coordinates with the first viewpoint M 1 by calculating the coordinates of the closest point of the two vectors.
- setting information calculating unit 123 calculates a second three-dimensional coordinates of the viewpoint M 2.
- using the following method may calculate the first three-dimensional coordinates of the viewpoint M 1.
- the triangle ABM 1 connecting the the point M 1 points A and B, the length and ⁇ M 1 AB and ⁇ M 1 BA line segment AB is known. Therefore, the three-dimensional coordinates of the first viewpoint M 1 can be calculated using the triangle ABM 1 . Further, since 1AM 1 B is known from the viewpoint projection angle, similarly, the three-dimensional coordinates of the first viewpoint M 1 can be calculated using the triangle ABM 1 .
- setting information calculation unit 123 by using the three-dimensional coordinates of the first point of view M 1, and a second three-dimensional coordinates of the viewpoint M 2, and calculates the distance between viewpoints d (S115).
- the setting information calculation unit 123 calculates the first shooting angle ⁇ A and the second shooting angle ⁇ B (S116). Specifically, by the above process, the first viewpoint M 1, and second viewpoint M 2, reference point A, the three-dimensional coordinates of the B and C are calculated. Therefore, the setting information calculation unit 123 calculates, for example, the angles ⁇ A4 and ⁇ B4 illustrated in FIG. 13 from the coordinates of the reference point A, the first viewpoint M 1 , and the second viewpoint M 2 . Furthermore, the setting information calculation unit 123 calculates the first shooting angle ⁇ A using the following (formula 7). In addition, the setting information calculation unit 123 calculates the second shooting angle ⁇ B using the following (Equation 8).
- ⁇ A ⁇ L ⁇ A3 ⁇ A4 (Formula 7)
- ⁇ B ⁇ R ⁇ B3 ⁇ B4 (Formula 8)
- ⁇ L is an angle formed by the first reference line L and the line segment M 1 M 2 .
- ⁇ R is an angle formed by the second reference line R and the line segment M 1 M 2 .
- theta L and theta R are both 90 degrees.
- ⁇ A3 is the viewpoint projection angle of the reference point A in the first reference image
- ⁇ B3 is the viewpoint projection angle of the reference point A in the second reference image.
- the setting information calculation unit 123 can calculate the first shooting angle ⁇ A and the second shooting angle ⁇ B.
- the calculation method of the first shooting angle ⁇ A and the second shooting angle ⁇ B by the setting information calculation unit 123 is not limited to the above method.
- the direction of the optical axis O 1 is calculated from the first tilt angle
- the first photographing angle ⁇ A is calculated from the direction of the optical axis O 1. May be.
- the first shooting angle ⁇ A , the second shooting angle ⁇ B and the inter-viewpoint distance d calculated by the setting information calculation unit 123 are stored in the storage unit 102.
- the first shooting angle ⁇ A , the second shooting angle ⁇ B, and the inter-viewpoint distance d can be easily calculated using the reference structure 40.
- the first shooting angle ⁇ A , the second shooting angle ⁇ B and the inter-viewpoint distance d can be easily calculated.
- readjustment can be easily performed even when the arrangement of the cameras 10A and 10B is adjusted according to the object or the measurement environment, and even when the arrangement of the cameras 10A and 10B is shifted due to vibration or the like.
- the relative positions of the two cameras 10A and 10B need not be fixed, and the second adjustment operation can be performed individually.
- the process of detecting the first viewpoint projection angle information 111A and the process of detecting the second viewpoint projection angle information 111B are the same, only the process of detecting the first viewpoint projection angle information 111A will be described below. explain.
- FIG. 14 is a diagram illustrating a configuration of a system including the three-dimensional coordinate measuring apparatus 90 during the second adjustment operation.
- the camera 10A images the calibration plate 70 from the viewpoint M.
- the viewpoint M corresponds to the position of the principal point of the photographing lens of the camera 10A.
- O written by a two-dot chain line indicates the optical axis of the photographing lens (the optical axis of the camera).
- the calibration plate 70 is a transparent plate having high rigidity and has a grid pattern on the surface.
- a weight 72 is attached to the calibration plate 70 with a thread 71.
- the camera setting detection unit 106 performs image pixel distortion correction using the image data 62 ⁇ / b> A obtained by capturing the calibration plate 70, the thread 71, and the weight 72 from the viewpoint M. Further, the camera setting detection unit 106 calculates a viewpoint projection angle (corresponding to the first and second pixel viewpoint projection angles of the present invention) of an arbitrary image pixel (pixel).
- FIG. 15 is a flowchart of the second adjustment operation.
- the camera setting detection unit 106 sets the optical center position C p that is the center point of the imaging surface (S201), performs distortion correction (S202), and views the viewpoint of an arbitrary image pixel (pixel).
- the projection angle ⁇ is calculated (S203).
- the viewpoint projection angle ⁇ of an arbitrary image pixel is an arbitrary point P 3 on the three-dimensional space projected on the two-dimensional coordinates of the arbitrary image pixel P on the image and the viewpoint as shown in FIG. This is the angle between the line segment connecting M and the optical axis O of the camera.
- the optical axis O of the camera and the imaging surface are orthogonal. Therefore, a viewpoint M, and the distance x between the optical center position C p is the intersection of the optical axis O and the imaging surface of the camera, for example, the origin of the optical center position C p, the two-dimensional coordinates of an arbitrary image pixels P Can be used to calculate the viewpoint projection angle ⁇ of any image pixel P.
- the optical center position Cp is set (S201).
- the calibration plate 70 is assumed to be kept horizontal by a level or the like.
- the calibration plate 70 is imaged by the camera 10A from above.
- the image pickup surface is (1) a grid around the attachment position of the thread 71 such that (1) the attachment position of the calibration plate 70 and the thread 71 and the attachment position of the weight 72 and the thread 71 overlap. Adjust so that the eye display is symmetrical.
- the mounting position of the thread 71 on the calibration plate 70 is the optical center position C p.
- the camera setting detection unit 106 calculates parameters for performing image distortion correction (S202).
- the image when the calibration plate 70 is photographed is an image in which the grid's eyes are distorted due to the characteristics of the photographing lens of the camera 10A.
- the camera setting detection unit 106 performs normalization processing on the captured image to calculate parameters for adjusting the captured image to an image as illustrated in FIG. 17B.
- the subsequent processing including the above-described measurement processing of the three-dimensional coordinates of the target point W and the first adjustment operation, for example, in the image acquisition unit 101, for the image captured by the camera 10A using the parameter. Then, distortion correction is performed.
- the camera setting detection unit 106 calculates the viewpoint projection angle ⁇ of an arbitrary image pixel P (S203).
- FIG. 18 is a diagram for explaining processing for calculating the distance between the calibration plate and the viewpoint.
- the camera setting detection unit 106 acquires an image of a plate before movement, which is an image after distortion correction obtained by photographing the calibration plate 70 as shown in FIG. 17B.
- the calibration plate 70 is moved closer to the viewpoint M by the distance y while keeping the calibration plate 70 horizontal.
- the camera setting detection unit 106 acquires an image of the plate after movement, which is an image after distortion correction obtained by imaging the calibration plate 70.
- the camera setting detection unit 106 uses the image of the plate before movement and the image of the plate after movement, for example, two points P 1 ′ and P 2 ′ with the optical center position C p as the origin. Extract dimension coordinates.
- an intersection of a straight line connecting the viewpoint M and P 1 and the imaging surface is defined as P 1 ′. Further, corresponding to P 1 of the calibration plate 70 surface before the movement, the point of the calibration plate 70 surface after the movement and P 2.
- P 2 ′ be the intersection of the straight line connecting the viewpoints M and P 2 and the imaging surface.
- Q be the intersection of a straight line passing through the point P 2 and the point P 2 ′ and the surface of the calibration plate 70 before the movement.
- d 2 represents the length of the line segment C 1 P 1
- d 3 represents the length of the line segment P 1 ′ P 2 ′
- d 4 represents the length of the line segment C p P 1 ′.
- viewpoint projection angle ⁇ 1 of the point Q is expressed by the following (formula 10).
- the distance z between the calibration plate 70 and the viewpoint M is expressed by the following (formula 11).
- d 5 indicates the length of the line segment C 1 Q.
- d 6 indicates the length of the line segment C p P.
- the viewpoint projection angle ⁇ of the arbitrary image pixel P can be calculated.
- the calibration plate 70 is marked with a grid, but the calibration plate may be marked with a known interval.
- the camera setting detection unit 106 calculates the viewpoint projection angle for each pixel in the image captured by the camera 10A, and stores the first viewpoint projection angle information 111A indicating the viewpoint projection angle for each pixel. Store in the unit 102. Similarly, the camera setting detection unit 106 calculates the viewpoint projection angle for each pixel in the image captured by the camera 10B, and stores the second viewpoint projection angle information 111B indicating the viewpoint projection angle for each pixel. To remember.
- the three-dimensional coordinate measuring apparatus according to the embodiment of the present invention has been described above, but the present invention is not limited to this embodiment.
- the first viewpoint projection angle information 111A is a table indicating viewpoint projection angles corresponding to each of a plurality of pixels, but is an expression indicating a correspondence relationship between pixels and viewpoint projection angles. Also good.
- the said formula is said (Formula 14).
- the first viewpoint projection angle extraction unit 103A may calculate the viewpoint projection angle of the target point W in the first target image using (Equation 14).
- the camera setting detection unit 106 needs to obtain the distance x between the viewpoint M and the optical center position C p using the above (Equation 13).
- the second viewpoint projection angle information 111B may be an expression indicating a correspondence relationship between a pixel and a viewpoint projection angle.
- shooting may be performed from three or more viewpoints.
- the number of reference points whose relative coordinates are known may be four or more. In this case, it is only necessary that at least three of the four or more reference points are photographed in each of the first and second reference images. Further, the combination of at least three reference points captured in each of the first reference image and the second reference image may be different. Furthermore, it is preferable that four or more reference points are arranged in a three-dimensional manner rather than in the same plane. For example, four or more of the apexes of a triangular pyramid or a quadrangular pyramid can be used as the reference point. Thereby, a wide range and stable angle detection can be performed.
- first and second inclination angles are angles with respect to different reference planes (first and second reference planes).
- the first and second inclination angles may be adjusted to one of the reference planes.
- the first and second tilt angles may be calculated as angles unified in the three-dimensional coordinate system.
- first tilt angle and the second tilt angle may be calculated by performing nonlinear approximation calculation using a large number of reference points whose relative coordinates are known.
- the correspondence can be identified by using a special marker or line.
- a reference point for verification whose relative coordinates are known may be used in order to prevent reversal (turn over) due to rotation of the reference point and calculation of an incorrect solution (tilt angle).
- restrictions for example, rotation conditions
- restrictions may be added so as not to calculate an incorrect solution.
- the storage unit 102 holds in advance a first rotation angle around the optical axis of the camera 10A and a second rotation angle around the optical axis of the camera 10B.
- the image acquisition part 101 performs correction
- the image acquisition unit 101 performs correction to rotate the second target image acquired from the camera 10B according to the second rotation angle.
- the three-dimensional coordinate measuring apparatus 90 calculates the three-dimensional coordinates of the target point W by performing the above-described processing on the corrected first target image and second target image.
- the target to be corrected according to the first rotation angle and the second rotation angle is not limited to the first and second target images.
- the coordinate calculation unit 105 may calculate the three-dimensional coordinates of the target point in consideration of the first and second rotation angles.
- the first and second rotation angles can be detected by the following method.
- the camera setting detection unit 106 calculates the first and second reference viewpoint projection angles of the reference points A, B, and C when the line segment M 1 M 2 and the baseline are parallel by the method described above. Keep it. Further, the camera setting detection unit 106 projects the first and second reference viewpoints of the reference points A, B, and C in the actual setting state (when the camera 10A and the camera 10B are rotated around the optical axis). Calculate the corner. Then, the camera setting detection unit 106 calculates the first rotation angle based on the calculated angle difference between the two first reference viewpoint projection angles. Similarly, the camera setting detection unit 106 calculates a second rotation angle based on the calculated angle difference between the two second reference viewpoint projection angles.
- the angle information such as the viewpoint projection angle used above is not limited to a value indicating the angle itself, but may be a vector represented by coordinates of two points, for example.
- part or all of the functions of the three-dimensional coordinate measuring apparatus may be realized by a processor such as a CPU executing a program.
- connection relationship between the constituent elements is exemplified for specifically explaining the present invention, and the connection relationship for realizing the function of the present invention is not limited to this.
- division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be. Further, the functions of a plurality of functional blocks having similar functions may be processed by the three-dimensional coordinate measuring apparatus in parallel or in time division.
- the present invention may be the above program or a non-transitory computer-readable recording medium on which the above program is recorded.
- the program can be distributed via a transmission medium such as the Internet.
- the configuration of the three-dimensional coordinate measuring apparatus is for illustration in order to specifically describe the present invention, and the three-dimensional coordinate measuring apparatus according to the present invention is not necessarily provided with all of the above configurations. Absent. In other words, the three-dimensional coordinate measuring apparatus according to the present invention only needs to have a minimum configuration capable of realizing the effects of the present invention.
- the three-dimensional coordinate measuring apparatus 90 may not include the camera setting detection unit 106.
- the camera setting detection unit 106 may have only a function of performing one of the first adjustment operation and the second adjustment operation.
- the present invention can be applied to a three-dimensional coordinate measuring apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
A three-dimensional coordinate measuring device (90) is provided with: a first perspective projection angle extraction unit (103A) that acquires a first target perspective projection angle (θA1) corresponding to a target point (W) that is projected by a first target image (60A) imaged from a first perspective (M1); a second perspective projection angle extraction unit (103B) that acquires a second target perspective projection angle (θB1) corresponding to the target point (W) that is projected by a second target image (60B) imaged from a second perspective (M2); and a coordinate calculation unit (105) that calculates three-dimensional coordinates (112) of the target point (W) by using the first target perspective projection angle (θA1), the second target perspective projection angle (θB1), the direction of the optical axis (θA) of a first image capture device (10A), the direction of the optical axis (θB) of a second image capture device (10B), and the distance (d) between the perspectives.
Description
本発明は、異なる視点から対象点が撮影された2枚の画像を用いて、当該対象点の三次元座標を計測する三次元座標計測装置及び三次元座標計測方法に関する。
The present invention relates to a three-dimensional coordinate measuring apparatus and a three-dimensional coordinate measuring method for measuring three-dimensional coordinates of a target point using two images obtained by photographing the target point from different viewpoints.
画像を用いて相対点の座標を計測する方法として、ステレオ法が知られている。
A stereo method is known as a method of measuring the coordinates of relative points using an image.
ステレオ法は、異なる位置に置かれた2つのカメラ(撮像装置)で対象点を撮像する、または、1つのカメラで異なる2つの位置から対象点を撮像する。そしてステレオ法は、この2つの画像を用いて、対象点の座標を算出する。具体的には、ステレオ法は、人間の両眼視のように、視差に基づく画像の微妙な違いに基づき、対象点の三次元座標を算出する(例えば、特許文献1及び特許文献2参照)。
In the stereo method, a target point is imaged by two cameras (imaging devices) placed at different positions, or a target point is imaged from two different positions by one camera. In the stereo method, the coordinates of the target point are calculated using these two images. Specifically, the stereo method calculates three-dimensional coordinates of a target point based on subtle differences in images based on parallax, as in human binocular vision (see, for example, Patent Document 1 and Patent Document 2). .
しかしながら、特許文献1記載の技術では、2台のカメラは平行ステレオ配置にしなければならず、正確なカメラの設定が必要となる。
However, in the technique described in Patent Document 1, two cameras must be arranged in parallel stereo, and accurate camera settings are required.
それに対して、特許文献2記載の技術は、カメラの撮影方向のずれを補正することで、2台のカメラが平行ステレオ配置からずれている場合でも、対象点の三次元座標を算出することを可能としている。
On the other hand, the technique described in Patent Document 2 calculates the three-dimensional coordinates of the target point even when the two cameras are deviated from the parallel stereo arrangement by correcting the deviation of the shooting direction of the cameras. It is possible.
ただし、特許文献2記載の技術では、2台のカメラの配置がステレオ配置から大きくずれる場合には、補正を行うことができないという課題を有する。
However, the technique described in Patent Document 2 has a problem that correction cannot be performed when the arrangement of the two cameras deviates greatly from the stereo arrangement.
そこで、本発明は、2台のカメラの設定の自由度を向上できる三次元座標計測装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a three-dimensional coordinate measuring apparatus that can improve the degree of freedom of setting of two cameras.
上記目的を達成するために、本発明の一形態に係る三次元座標計測装置は、対象点の三次元座標を計測する三次元座標計測装置であって、第1の視点から第1の撮像装置により前記対象点が撮像された第1の対象画像と、第2の視点から第2の撮像装置により前記対象点が撮像された第2の対象画像とを取得する画像取得部と、前記第1の撮像装置で撮像された画像における画素毎に、当該画素に投影される三次元座標系の各点と前記第1の視点とを結ぶ線分と、前記第1の撮像装置の光軸とのなす角度である第1の画素視点投影角の情報と、前記第2の撮像装置で撮像された画像における画素毎に、当該画素に投影される前記三次元座標系の各点と前記第2の視点とを結ぶ線分と、前記第2の撮像装置の光軸とのなす角度である第2の画素視点投影角の情報と、前記第1の撮像装置の光軸方向を示す第1の光軸情報と、前記第2の撮像装置の光軸方向を示す第2の光軸情報と、前記第1の視点と前記第2の視点との相対位置を示す視点間情報とを保持する記憶部と、前記第1の画素視点投影角の情報を用いて、前記第1の対象画像に投影される前記対象点に対応する前記第1の画素視点投影角である第1の対象視点投影角を取得する第1の視点投影角抽出部と、前記第2の画素視点投影角の情報を用いて、前記第2の対象画像に投影される前記対象点に対応する前記第2の画素視点投影角である第2の対象視点投影角を取得する第2の視点投影角抽出部と、前記第1及び第2の対象視点投影角と、前記第1及び第2の撮像装置の光軸方向と、前記視点間情報とを用いて、前記対象点の三次元座標を算出する座標算出部とを備える。
In order to achieve the above object, a three-dimensional coordinate measuring apparatus according to an aspect of the present invention is a three-dimensional coordinate measuring apparatus that measures three-dimensional coordinates of a target point, and is a first imaging device from a first viewpoint. An image acquisition unit that acquires a first target image in which the target point is captured and a second target image in which the target point is captured by a second imaging device from a second viewpoint; For each pixel in the image captured by the imaging device, a line segment connecting each point of the three-dimensional coordinate system projected onto the pixel and the first viewpoint, and the optical axis of the first imaging device Information on the first pixel viewpoint projection angle, which is an angle formed, and for each pixel in the image captured by the second imaging device, each point of the three-dimensional coordinate system projected on the pixel and the second A second image that is an angle formed by a line segment connecting the viewpoint and the optical axis of the second imaging device. Information on viewpoint projection angles, first optical axis information indicating the optical axis direction of the first imaging device, second optical axis information indicating the optical axis direction of the second imaging device, and the first The storage unit that holds the inter-viewpoint information indicating the relative position between the second viewpoint and the second viewpoint, and the information about the first pixel viewpoint projection angle is used to project the first target image onto the first target image. Using a first viewpoint projection angle extraction unit that obtains a first target viewpoint projection angle that is the first pixel viewpoint projection angle corresponding to a target point, and information about the second pixel viewpoint projection angle, A second viewpoint projection angle extraction unit that acquires a second target viewpoint projection angle that is the second pixel viewpoint projection angle corresponding to the target point projected on the second target image; Two target viewpoint projection angles, the optical axis directions of the first and second imaging devices, and the inter-viewpoint information. And a coordinate calculating unit for calculating three-dimensional coordinates of the point.
この構成によれば、本発明の一形態に係る三次元座標計測装置は、2台のカメラが平行ステレオ配置でない場合でも、視点投影角を用いて対象点の三次元座標を容易に算出できる。このように、本発明の一形態に係る三次元座標計測装置は、2台のカメラの設定の自由度を向上できる。
According to this configuration, the three-dimensional coordinate measuring apparatus according to an aspect of the present invention can easily calculate the three-dimensional coordinates of the target point using the viewpoint projection angle even when the two cameras are not arranged in parallel stereo. As described above, the three-dimensional coordinate measuring apparatus according to one embodiment of the present invention can improve the degree of freedom of setting two cameras.
また、前記記憶部は、さらに、前記第1の撮像装置が、当該第1の撮像装置の光軸を中心として回転している角度である第1の回転角を示す情報と、前記第2の撮像装置が、当該第2の撮像装置の光軸を中心として回転している角度である第2の回転角を示す情報とを保持し、前記座標算出部は、前記第1及び第2の対象視点投影角と、前記第1及び第2の撮像装置の光軸方向と、前記視点間情報と、前記第1及び第2の回転角とを用いて、前記対象点の前記三次元座標を算出してもよい。
In addition, the storage unit further includes information indicating a first rotation angle that is an angle at which the first imaging device rotates about the optical axis of the first imaging device, and the second The imaging device holds information indicating a second rotation angle that is an angle of rotation about the optical axis of the second imaging device, and the coordinate calculation unit includes the first and second objects. The three-dimensional coordinates of the target point are calculated using the viewpoint projection angle, the optical axis directions of the first and second imaging devices, the inter-viewpoint information, and the first and second rotation angles. May be.
この構成によれば、本発明の一形態に係る三次元座標計測装置は、カメラが、当該カメラの光軸を中心に回転している場合でも対象点の三次元座標を容易に算出できる。
According to this configuration, the three-dimensional coordinate measuring apparatus according to one aspect of the present invention can easily calculate the three-dimensional coordinates of the target point even when the camera rotates about the optical axis of the camera.
また、前記座標算出部は、前記第1の対象視点投影角と、前記第1の撮像装置の光軸方向と、前記第1の回転角とを用いて、前記第1の視点と前記第2の視点とを結ぶ線分と、前記第1の視点と前記対象点とを結ぶ線分とがなす角度である第1の対象角を算出し、前記第2の対象視点投影角と、前記第2の撮像装置の光軸方向と、前記第2の回転角とを用いて、前記第1の視点と前記第2の視点とを結ぶ線分と、前記第2の視点と前記対象点とを結ぶ線分とがなす角度である第2の対象角を算出し、前記視点間情報と、前記第1の対象角と、前記第2の対象角とを用いて、前記対象点の三次元座標を算出してもよい。
In addition, the coordinate calculation unit uses the first target viewpoint projection angle, the optical axis direction of the first imaging device, and the first rotation angle to use the first viewpoint and the second viewpoint. A first target angle that is an angle formed by a line segment that connects the first viewpoint and a line segment that connects the first viewpoint and the target point, and calculates the second target viewpoint projection angle, A line segment connecting the first viewpoint and the second viewpoint using the optical axis direction of the second imaging device and the second rotation angle, and the second viewpoint and the target point. A second target angle that is an angle formed by a connecting line segment is calculated, and the three-dimensional coordinates of the target point are calculated using the inter-viewpoint information, the first target angle, and the second target angle. May be calculated.
また、前記第1の光軸情報は、前記第1の視点を通り、かつ、前記第1の視点と前記第2の視点とを結ぶ線分と垂直である第1の基準線と、前記第1の撮像装置の光軸とのなす角度である第1の撮影角を示す情報であり、前記第2の光軸情報は、前記第2の視点を通り、かつ、前記第1の視点と前記第2の視点とを結ぶ線分と垂直であり、かつ、前記第1の基準線と平行な第2の基準線と、前記第2の撮像装置の光軸とのなす角度である第2の撮影角を示す情報であり、前記座標算出部は、前記第1の視点と前記第2の視点とを結ぶ線分と前記第1の基準線とがなす角度と、前記第1の視点投影角と、前記第1の撮影角と、前記第1の回転角とを用いて前記第1の対象角を算出し、前記第1の視点と前記第2の視点とを結ぶ線分と前記第2の基準線とがなす角度と、前記第2の視点投影角と、前記第2の撮影角と、前記第2の回転角とを用いて前記第2の対象角を算出してもよい。
The first optical axis information includes a first reference line that passes through the first viewpoint and is perpendicular to a line segment that connects the first viewpoint and the second viewpoint; Information indicating a first photographing angle that is an angle formed with an optical axis of one imaging device, and the second optical axis information passes through the second viewpoint and the first viewpoint and the A second reference line that is perpendicular to a line connecting the second viewpoint and is parallel to the first reference line and an optical axis of the second imaging device; Information indicating a shooting angle, wherein the coordinate calculation unit includes an angle formed by a line segment connecting the first viewpoint and the second viewpoint and the first reference line, and the first viewpoint projection angle. And calculating the first target angle using the first imaging angle and the first rotation angle, and a line segment connecting the first viewpoint and the second viewpoint, and the second And the angle formed by the reference line, the second viewpoint projection angle, the second imaging angle, may calculate the second target angle using a said second rotation angle.
また、前記画像取得部は、さらに、相対座標が既知である3点以上の基準点のうちのいずれか3点である第1の基準点が、前記第1の視点から前記第1の撮像装置により撮像された第1の基準画像と、前記3点以上の基準点のうちのいずれか3点である第2の基準点が、前記第2の視点から前記第2の撮像装置により撮像された第2の基準画像とを取得し、前記三次元座標計測装置は、さらに、前記第1の画素視点投影角の情報を用いて、前記第1の基準画像に投影される前記3点の第1の基準点に対応する前記第1の画素視点投影角である3つの第1の基準視点投影角を取得する第3の視点投影角抽出部と、前記第2の画素視点投影角の情報を用いて、前記第2の基準画像に投影される前記3点の第2の基準点に対応する前記第2の画素視点投影角である3つの第2の基準視点投影角を取得する第4の視点投影角抽出部と、前記3つの第1の基準視点投影角と前記3点の第1の基準点の相対座標とを用いて、前記第1の基準画像の撮像面である第1の撮像面と前記3点の基準点を含む第1の基準平面とのなす第1の傾斜角を算出する第1の傾斜角算出部と、前記3つの第2の基準視点投影角と前記3点の第2の基準点の相対座標とを用いて、前記第2の基準画像の撮像面である第2の撮像面と前記3点の第2の基準点を含む第2の基準平面とのなす第2の傾斜角を算出する第2の傾斜角算出部と、前記3点の第1の基準点と前記3点の第2の基準点との相対位置関係と、前記第1の傾斜角と、前記第2の傾斜角とを用いて、前記第1の撮像装置の光軸方向と、前記第2の撮像装置の光軸方向と、前記第1の回転角と、前記第2の回転角とを算出する設定情報算出部とを備えてもよい。
Further, the image acquisition unit further includes a first reference point, which is any three of three or more reference points whose relative coordinates are known, from the first viewpoint to the first imaging device. The second reference point, which is any one of the first reference image picked up by (1) and the three or more reference points, was picked up by the second image pickup device from the second viewpoint. A second reference image is acquired, and the three-dimensional coordinate measuring apparatus further uses the information of the first pixel viewpoint projection angle to project the first of the three points to be projected onto the first reference image. A third viewpoint projection angle extraction unit that obtains three first reference viewpoint projection angles that are the first pixel viewpoint projection angles corresponding to the reference point, and information on the second pixel viewpoint projection angle. The second pixels corresponding to the three second reference points projected onto the second reference image A fourth viewpoint projection angle extraction unit that obtains three second reference viewpoint projection angles that are point projection angles; and the relative coordinates of the three first reference viewpoint projection angles and the three first reference points. Are used to calculate a first inclination angle between a first imaging plane that is an imaging plane of the first reference image and a first reference plane that includes the three reference points. A second imaging surface, which is an imaging surface of the second reference image, using an angle calculation unit, the three second reference viewpoint projection angles and the relative coordinates of the three second reference points; A second inclination angle calculating unit for calculating a second inclination angle formed with a second reference plane including the three second reference points, the three first reference points, and the three reference points. Using the relative positional relationship with the second reference point, the first inclination angle, and the second inclination angle, the optical axis direction of the first imaging device and the second imaging device The optical axis direction of the a first rotation angle A, and a setting information calculating unit that calculates a second rotation angle.
この構成によれば、本発明の一形態に係る三次元座標計測装置は、視点投影角を用いて、第1及び第2の撮像装置の光軸方向を容易に算出できる。
According to this configuration, the three-dimensional coordinate measuring apparatus according to an aspect of the present invention can easily calculate the optical axis directions of the first and second imaging apparatuses using the viewpoint projection angle.
また、前記設定情報算出部は、前記3点の第1の基準点と前記3点の第2の基準点との相対位置関係と、前記第1の傾斜角と、前記第2の傾斜角とを用いて、前記第1の視点及び前記第2の視点の三次元座標を算出し、前記第1の視点及び前記第2の視点の三次元座標から、前記視点間情報を算出してもよい。
In addition, the setting information calculation unit includes a relative positional relationship between the three first reference points and the three second reference points, the first inclination angle, and the second inclination angle. May be used to calculate the three-dimensional coordinates of the first viewpoint and the second viewpoint, and to calculate the inter-viewpoint information from the three-dimensional coordinates of the first viewpoint and the second viewpoint. .
この構成によれば、本発明の一形態に係る三次元座標計測装置は、視点投影角を用いて視点間距離を容易に算出できる。
According to this configuration, the three-dimensional coordinate measuring apparatus according to an aspect of the present invention can easily calculate the inter-viewpoint distance using the viewpoint projection angle.
なお、本発明は、このような三次元座標計測装置として実現できるだけでなく、三次元座標計測装置に含まれる特徴的な手段をステップとする三次元座標計測方法として実現したり、そのような特徴的なステップをコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD-ROM等の非一時的なコンピュータ読み取り可能な記録媒体、及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。
The present invention can be realized not only as such a three-dimensional coordinate measuring apparatus, but also as a three-dimensional coordinate measuring method using characteristic means included in the three-dimensional coordinate measuring apparatus as a step. It can also be realized as a program that causes a computer to execute typical steps. Needless to say, such a program can be distributed via a non-transitory computer-readable recording medium such as a CD-ROM and a transmission medium such as the Internet.
本発明は、2台のカメラの設定の自由度を向上できる三次元座標計測装置を提供できる。
The present invention can provide a three-dimensional coordinate measuring apparatus that can improve the degree of freedom of setting of two cameras.
以下、本発明の実施の形態について図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. The numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. The present invention is limited only by the claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are not necessarily required to achieve the object of the present invention. It will be described as constituting a preferred form.
本発明の実施の形態に係る三次元座標計測装置は、異なる視点より対象点が撮影された2つの画像から、各画像における対象点の視点投影角を抽出する。そして、当該三次元座標計測装置は、当該視点投影角を用いて、対象点の座標を算出する。
The 3D coordinate measuring apparatus according to the embodiment of the present invention extracts the viewpoint projection angle of the target point in each image from two images obtained by capturing the target point from different viewpoints. Then, the three-dimensional coordinate measuring apparatus calculates the coordinates of the target point using the viewpoint projection angle.
これにより、本発明の実施の形態に係る三次元座標計測装置は、2台のカメラが平行ステレオ配置でない場合でも対象点の三次元座標を算出できる。このように、本発明の実施の形態に係る三次元座標計測装置は、2台のカメラの設定の自由度を向上できる。
Thereby, the three-dimensional coordinate measuring apparatus according to the embodiment of the present invention can calculate the three-dimensional coordinates of the target point even when the two cameras are not arranged in parallel stereo. As described above, the three-dimensional coordinate measuring apparatus according to the embodiment of the present invention can improve the degree of freedom in setting two cameras.
まず、本発明の実施の形態に係る三次元座標計測装置を含む三次元座標計測システムの構成を説明する。
First, the configuration of a three-dimensional coordinate measurement system including a three-dimensional coordinate measurement apparatus according to an embodiment of the present invention will be described.
図1は、本発明の実施の形態に係る三次元座標計測システムの構成を示す図である。
FIG. 1 is a diagram showing a configuration of a three-dimensional coordinate measurement system according to an embodiment of the present invention.
図1に示す三次元座標計測システムは、対象構造物50に含まれる対象点Wの三次元座標を計測する。この三次元座標計測システムは、三次元座標計測装置90と、撮像装置であるカメラ10A及び10Bと、ケーブル30A及び30Bとを含む。
1 measures the three-dimensional coordinates of the target point W included in the target structure 50. The three-dimensional coordinate measurement system shown in FIG. This three-dimensional coordinate measurement system includes a three-dimensional coordinate measurement device 90, cameras 10A and 10B that are imaging devices, and cables 30A and 30B.
カメラ10Aは、対象構造物50を、第1の視点M1から撮像することにより画像データ60Aを生成する第1の撮像装置である。カメラ10Bは、対象構造物50を、第2の視点M2から撮像することにより画像データ60Bを生成する第2の撮像装置である。ここで、第1の視点M1及び第2の視点M2は、カメラ10A及び10Bの撮影レンズの主点の位置に対応している。また、図1中、2点鎖線で書かれているO1及びO2は、それぞれカメラ10A及び10Bの光軸(撮影レンズの光軸)を示している。
The camera 10A is the target structure 50 is the first imaging device for generating image data 60A by capturing the first viewpoint M 1. Camera 10B is a target structure 50 is the second imaging device for generating image data 60B by capturing from a second viewpoint M 2. Here, the first viewpoint M 1 and second viewpoint M 2 corresponds to the position of the principal point of the photographic lens of the camera 10A and 10B. Further, in FIG. 1, O 1 and O 2 written by two-dot chain lines indicate the optical axes of the cameras 10A and 10B (the optical axes of the photographing lenses), respectively.
また、カメラ10Aとカメラ10Bとの相対位置関係と、光軸O1及びO2とは予め設定されている。例えば、カメラ10Aとカメラ10Bとは所定の部材を介して連結されている。これにより、カメラ10Aとカメラ10Bとの相対位置関係と、カメラ10A及びカメラ10Bの向き(光軸)とは固定されている。
The relative positional relationship between the camera 10A and the camera 10B and the optical axes O 1 and O 2 are set in advance. For example, the camera 10A and the camera 10B are connected via a predetermined member. Thereby, the relative positional relationship between the camera 10A and the camera 10B and the orientation (optical axis) of the camera 10A and the camera 10B are fixed.
カメラ10Aで生成された画像データ60Aは、ケーブル30Aを介して、三次元座標計測装置90へ送られる。カメラ10Bで生成された画像データ60Bは、ケーブル30Bを介して、三次元座標計測装置90へ送られる。
The image data 60A generated by the camera 10A is sent to the three-dimensional coordinate measuring device 90 via the cable 30A. The image data 60B generated by the camera 10B is sent to the three-dimensional coordinate measuring apparatus 90 via the cable 30B.
ケーブル30A及び30Bは、例えば、USB(Universal Serial Bus)ケーブルである。なお、ケーブル30A及び30Bは、USB以外のケーブルであってもよい。また、カメラ10A及び10Bは、画像データ60A及び60Bを、無線通信を介して、三次元座標計測装置90へ送ってもよい。また、カメラ10A、10B及び三次元座標計測装置90に着脱可能な記録媒体を用いて、画像データ60A及び60Bを三次元座標計測装置90へ送ってもよい。
Cables 30A and 30B are, for example, USB (Universal Serial Bus) cables. The cables 30A and 30B may be cables other than USB. The cameras 10A and 10B may send the image data 60A and 60B to the three-dimensional coordinate measuring apparatus 90 via wireless communication. Alternatively, the image data 60A and 60B may be sent to the three-dimensional coordinate measuring device 90 using a recording medium that can be attached to and detached from the cameras 10A and 10B and the three-dimensional coordinate measuring device 90.
三次元座標計測装置90は、例えば、パーソナルコンピュータである。この三次元座標計測装置90は、画像データ60A及び60Bを用いて対象点Wの三次元座標を計測する。
The three-dimensional coordinate measuring device 90 is, for example, a personal computer. The three-dimensional coordinate measuring apparatus 90 measures the three-dimensional coordinates of the target point W using the image data 60A and 60B.
図2は、本発明の実施の形態に係る三次元座標計測装置90の特徴的な機能構成を示すブロック図である。例えば、図2に示す処理部の機能は、パーソナルコンピュータに含まれるプロセッサがプログラムを実行することにより実現される。
FIG. 2 is a block diagram showing a characteristic functional configuration of the three-dimensional coordinate measuring apparatus 90 according to the embodiment of the present invention. For example, the function of the processing unit shown in FIG. 2 is realized by a processor included in a personal computer executing a program.
この三次元座標計測装置90は、異なる視点から対象点Wが撮影された2枚の画像を用いて、対象点Wの三次元座標112を算出する。ここで、三次元座標112は、例えば、第1の視点M1を原点とする三次元座標系における座標である。なお、三次元座標112の三次元座標系は、これに限定されるものではなく任意の三次元座標系でもよい。また、三次元座標112は、予め定められた点と対象点との相対座標であってもよいし、予め定められた点と対象点Wとの距離を示す情報であってもよい。ここで予め定められた点とは、例えば、第1の視点M1又は第2の視点M2である。なお、この予め定められた点は、第1の視点M1と第2の視点M2との間に存在する任意の点であってもよい。
The three-dimensional coordinate measuring apparatus 90 calculates the three-dimensional coordinates 112 of the target point W using two images obtained by capturing the target point W from different viewpoints. Here, the three-dimensional coordinates 112 is, for example, the coordinates of the first point of view M 1 in the three-dimensional coordinate system with the origin. Note that the three-dimensional coordinate system of the three-dimensional coordinates 112 is not limited to this, and an arbitrary three-dimensional coordinate system may be used. The three-dimensional coordinates 112 may be relative coordinates between a predetermined point and the target point, or may be information indicating a distance between the predetermined point and the target point W. The point defined here in advance, for example, a first viewpoint M 1 or the second viewpoint M 2. Incidentally, the point this predetermined, may be any point existing between the first view point M 1 and the second viewpoint M 2.
図2に示すように三次元座標計測装置90は、画像取得部101と、記憶部102と、第1の視点投影角抽出部103Aと、第2の視点投影角抽出部103Bと、座標算出部105と、カメラ設定検出部106とを備える。
As shown in FIG. 2, the three-dimensional coordinate measuring apparatus 90 includes an image acquisition unit 101, a storage unit 102, a first viewpoint projection angle extraction unit 103A, a second viewpoint projection angle extraction unit 103B, and a coordinate calculation unit. 105 and a camera setting detection unit 106.
画像取得部101は、第1の視点M1からカメラ10Aにより対象点Wが撮像された第1の対象画像(画像データ60A)と、第2の視点M2からカメラ10Bにより対象点Wが撮像された第2の対象画像(画像データ60B)とを取得する。
Image acquisition unit 101, the first target image target point W is imaged (image data 60A) by the first camera 10A from the viewpoint M 1, target point W by the second viewpoint M 2 from the camera 10B is imaged The obtained second target image (image data 60B) is acquired.
記憶部102は、第1の視点投影角情報111Aと、第2の視点投影角情報111Bと、第1の撮影角θAと、第2の撮影角θBと、視点間距離dとを保持する。
The storage unit 102 holds the first viewpoint projection angle information 111A, the second viewpoint projection angle information 111B, the first shooting angle θ A , the second shooting angle θ B, and the inter-viewpoint distance d. To do.
図3は、カメラ10A及び10Bと対象点Wとの関係を示す図である。図3に示す第1の基準線Lは、第1の視点M1を通り、かつ、第1の視点M1と第2の視点M2とを結ぶ線分M1M2と垂直な直線である。基準線Rは、第2の視点M2を通り、かつ、線分M1M2と垂直な直線である。また、基準線L及び基準線Rは平行線である。
FIG. 3 is a diagram showing the relationship between the cameras 10A and 10B and the target point W. As shown in FIG. The first reference line L shown in FIG. 3, as the first viewpoint M 1, and a line segment M 1 M 2 perpendicular straight line connecting a first point of view M 1 and the second viewpoint M 2 is there. The reference line R is a straight line that passes through the second viewpoint M 2 and is perpendicular to the line segment M 1 M 2 . The reference line L and the reference line R are parallel lines.
なお、図3では二次元の座標及び角度等を図示しているが、実際には、三次元の座標及び角度等が用いられる。また、この場合でも、以下に示す方法と同様の方法を用いることができるので、ここでは説明の簡略化のために図3を用いて説明を行う。
In FIG. 3, two-dimensional coordinates and angles are illustrated, but actually three-dimensional coordinates and angles are used. Also in this case, since the same method as shown below can be used, the description will be given here with reference to FIG.
第1の撮影角θAは、第1の基準線Lと、カメラ10Aの光軸O1とのなす角度である。第2の撮影角θBは、第2の基準線Rと、カメラ10Bの光軸O2とのなす角度である。言い換えると、第1の撮影角θAは、カメラ10Aの光軸方向を示す第1の光軸情報であり、第2の撮影角θBは、カメラ10Bの光軸方向を示す第2の光軸情報である。
The first shooting angle θ A is an angle formed between the first reference line L and the optical axis O 1 of the camera 10A. The second shooting angle θ B is an angle formed by the second reference line R and the optical axis O 2 of the camera 10B. In other words, the first shooting angle θ A is first optical axis information indicating the optical axis direction of the camera 10A, and the second shooting angle θ B is second light indicating the optical axis direction of the camera 10B. Axis information.
視点間距離dは、第1の視点M1と第2の視点M2との間の距離と、第1の視点M1と第2の視点M2との配置関係とを示す。ここで第1の視点M1と第2の視点M2との配置関係とは、例えば、カメラ10A(第1の視点M1)及びカメラ10B(第1の視点M2)のうちいずれか右側に配置されており、いずれが左側に配置されているかを示す情報である。つまり、視点間距離dは、第1の視点M1と第2の視点M2との相対座標(相対位置)を示す相対位置情報である。
Distance between viewpoints d show first viewpoint M 1 and the distance between the second viewpoint M 2, the first viewpoint M 1 and the arrangement relationship between the second viewpoint M 2. Wherein the first viewpoint M 1 and the positional relationship between the second viewpoint M 2, for example, a camera 10A (first viewpoint M 1) and a camera 10B (first viewpoint M 2) either the right of This is information indicating which is arranged on the left side. That is, distance between viewpoints d is the relative position information indicating the first viewpoint M 1 and second viewpoint M 2 and the relative coordinate (relative position).
第1の視点投影角情報111Aは、カメラ10Aで撮影された画像における、各画素の視点投影角(本発明の第1の画素視点投影角に相当)を示す情報である。ここで視点投影角とは、画素に投影される三次元座標系の各点と視点とを結ぶ線分と、撮像装置(カメラ)の光軸とのなす角度である。また、視点投影角は、カメラの設定に応じて決定される値であり、カメラの設定状態ごとに一意に決定される値である。例えば、第1の視点投影角情報111Aは、複数の画素の各々に対応する視点投影角を示すテーブルである。
The first viewpoint projection angle information 111A is information indicating the viewpoint projection angle of each pixel (corresponding to the first pixel viewpoint projection angle of the present invention) in an image taken by the camera 10A. Here, the viewpoint projection angle is an angle formed by a line segment connecting each point of the three-dimensional coordinate system projected onto the pixel and the viewpoint and the optical axis of the imaging device (camera). The viewpoint projection angle is a value determined according to the camera setting, and is a value uniquely determined for each setting state of the camera. For example, the first viewpoint projection angle information 111A is a table indicating viewpoint projection angles corresponding to each of a plurality of pixels.
第2の視点投影角情報111Bは、カメラ10Bで撮影された画像における、各画素の視点投影角(本発明の第2の画素視点投影角に相当)を示す情報である。例えば、第2の視点投影角情報111Bは、複数の画素の各々に対応する視点投影角を示すテーブルである。
The second viewpoint projection angle information 111B is information indicating the viewpoint projection angle of each pixel (corresponding to the second pixel viewpoint projection angle of the present invention) in the image captured by the camera 10B. For example, the second viewpoint projection angle information 111B is a table indicating viewpoint projection angles corresponding to each of a plurality of pixels.
また、これらの第1の視点投影角情報111Aと、第2の視点投影角情報111Bと、第1の撮影角θAと、第2の撮影角θBと、視点間距離dとは、予め記憶部102に記憶されていてもよいし、後述するように、カメラ設定検出部106により算出されてもよい。
The first viewpoint projection angle information 111A, the second viewpoint projection angle information 111B, the first shooting angle θ A , the second shooting angle θ B, and the inter-viewpoint distance d are set in advance. It may be stored in the storage unit 102 or may be calculated by the camera setting detection unit 106 as described later.
また、第1の視点投影角情報111Aと、第2の視点投影角情報111Bと、第1の撮影角θAと、第2の撮影角θBと、視点間距離dとは、複数の記憶部102に分割して記憶されていてもよい。
Further, the first viewpoint projection angle information 111A, the second viewpoint projection angle information 111B, the first shooting angle θ A , the second shooting angle θ B, and the inter-viewpoint distance d are stored in a plurality of memories. It may be divided and stored in the unit 102.
第1の視点投影角抽出部103Aは、第1の視点投影角情報111Aを用いて、第1の対象画像に投影される対象点Wに対応する視点投影角θA1(本発明の第1の対象視点投影角に相当)を取得する。
Using the first viewpoint projection angle information 111A, the first viewpoint projection angle extraction unit 103A uses the viewpoint projection angle θ A1 corresponding to the target point W projected on the first target image (the first viewpoint of the present invention). (Corresponding to the target viewpoint projection angle).
第2の視点投影角抽出部103Bは、第2の視点投影角情報111Bを用いて、第2の対象画像に投影される対象点Wに対応する視点投影角θB1(本発明の第2の対象視点投影角に相当)を取得する。
The second viewpoint projection angle extraction unit 103B uses the second viewpoint projection angle information 111B to generate a viewpoint projection angle θ B1 corresponding to the target point W projected on the second target image (the second viewpoint of the present invention). (Corresponding to the target viewpoint projection angle).
座標算出部105は、第1の視点投影角抽出部103A及び第2の視点投影角抽出部103Bにより取得された対象視点投影角θA1及びθB1と、第1の撮影角θA及び第2の撮影角θBと、視点間距離dとを用いて、対象点Wの三次元座標112を算出する。
The coordinate calculation unit 105 includes the target viewpoint projection angles θ A1 and θ B1 acquired by the first viewpoint projection angle extraction unit 103A and the second viewpoint projection angle extraction unit 103B, the first imaging angle θ A, and the second The three-dimensional coordinates 112 of the target point W are calculated using the shooting angle θ B and the inter-viewpoint distance d.
座標算出部105により算出された対象点Wの三次元座標112は、例えば、三次元座標計測装置90が備える表示部(図示せず)に表示される。なお、三次元座標112は、三次元座標計測装置90の外部に出力されてもよいし、三次元座標計測装置90が備える記憶部に記憶されてもよい。
The three-dimensional coordinates 112 of the target point W calculated by the coordinate calculation unit 105 are displayed on, for example, a display unit (not shown) included in the three-dimensional coordinate measurement device 90. The three-dimensional coordinates 112 may be output to the outside of the three-dimensional coordinate measuring device 90 or may be stored in a storage unit provided in the three-dimensional coordinate measuring device 90.
カメラ設定検出部106は、第1の視点投影角情報111Aと、第2の視点投影角情報111Bと、第1の撮影角θAと、第2の撮影角θBと、視点間距離dとを算出し、算出した第1の視点投影角情報111Aと、第2の視点投影角情報111Bと、第1の撮影角θAと、第2の撮影角θBと、視点間距離dとを記憶部に記憶する。
The camera setting detection unit 106 includes first viewpoint projection angle information 111A, second viewpoint projection angle information 111B, a first shooting angle θ A , a second shooting angle θ B, and an inter-viewpoint distance d. The first viewpoint projection angle information 111A, the second viewpoint projection angle information 111B, the first shooting angle θ A , the second shooting angle θ B, and the inter-viewpoint distance d are calculated. Store in the storage unit.
次に、三次元座標計測装置90の動作を説明する。
Next, the operation of the three-dimensional coordinate measuring apparatus 90 will be described.
図4は、三次元座標計測装置90による三次元座標計測処理のフローチャートである。
FIG. 4 is a flowchart of the three-dimensional coordinate measurement process performed by the three-dimensional coordinate measurement apparatus 90.
まず、画像取得部101は、第1の対象画像及び第2の対象画像を取得する(S101)。ここで、第1の対象画像は、第1の視点M1からカメラ10Aにより対象点Wが撮像された画像である。第2の対象画像は、第2の視点M2からカメラ10Bにより対象点Wが撮像された画像である。
First, the image acquisition unit 101 acquires a first target image and a second target image (S101). Here, the first target image, the target point W by the first camera 10A from the view point M 1 is an image that has been captured. The second target image, the target point W by the second viewpoint M 2 from the camera 10B is an image that has been captured.
次に、第1の視点投影角抽出部103Aは、第1の対象画像から対象点Wの座標を抽出する。そして、第1の視点投影角抽出部103Aは、第1の視点投影角情報111Aを参照して、抽出した対象点Wの座標に対応する視点投影角θA1を取得する。同様に、第2の視点投影角抽出部103Bは、第2の対象画像から対象点Wの座標を抽出する。そして、第2の視点投影角抽出部103Bは、第2の視点投影角情報111Bを参照して、抽出した対象点Wの座標に対応する視点投影角θB1を取得する(S102)。
Next, the first viewpoint projection angle extraction unit 103A extracts the coordinates of the target point W from the first target image. Then, the first viewpoint projection angle extraction unit 103A refers to the first viewpoint projection angle information 111A and acquires the viewpoint projection angle θ A1 corresponding to the extracted coordinates of the target point W. Similarly, the second viewpoint projection angle extraction unit 103B extracts the coordinates of the target point W from the second target image. Then, the second viewpoint projection angle extraction unit 103B refers to the second viewpoint projection angle information 111B to acquire the viewpoint projection angle θ B1 corresponding to the extracted coordinates of the target point W (S102).
次に、座標算出部105は、第1の撮影角θAと、第2の撮影角θBと、視点投影角θA1及びθB1とを用いて、図3に示す第1の対象角θA2及び第2の対象角θB2を算出する(S103)。ここで、図3に示すように、第1の対象角θA2は、線分M1M2と、線分M1Wとのなす角度である。第2の対象角θB2は、線分M1M2と、線分M2Wとのなす角度である。
Next, the coordinate calculation unit 105 uses the first shooting angle θ A , the second shooting angle θ B, and the viewpoint projection angles θ A1 and θ B1 to use the first target angle θ shown in FIG. A2 and the second target angle θ B2 are calculated (S103). Here, as illustrated in FIG. 3, the first target angle θ A2 is an angle formed by the line segment M 1 M 2 and the line segment M 1 W. The second target angle θ B2 is an angle formed by the line segment M 1 M 2 and the line segment M 2 W.
具体的には、座標算出部105は、下記(式1)を用いて、第1の対象角θA2を算出する。また、座標算出部105は、下記(式2)を用いて、第2の対象角θB2を算出する。
Specifically, the coordinate calculation unit 105 calculates the first target angle θ A2 using the following (Equation 1). In addition, the coordinate calculation unit 105 calculates the second target angle θ B2 using the following (Formula 2).
θA2=θL-θA-θA1 (式1)
θB2=θR-θB-θB1 (式2) θ A2 = θ L −θ A −θ A1 (Formula 1)
θ B2 = θ R −θ B −θ B1 (Formula 2)
θB2=θR-θB-θB1 (式2) θ A2 = θ L −θ A −θ A1 (Formula 1)
θ B2 = θ R −θ B −θ B1 (Formula 2)
ここで、θLは、第1の基準線Lと線分M1M2とがなす角度である。θRは、第2の基準線Rと線分M1M2とがなす角度である。また、ここでは、θL及びθRは、共に90度である。
Here, θ L is an angle formed by the first reference line L and the line segment M 1 M 2 . θ R is an angle formed by the second reference line R and the line segment M 1 M 2 . Further, here, the theta L and theta R, are both 90 degrees.
次に、座標算出部105は、第1の対象角θA2と、第2の対象角θB2と、視点間距離dとを用いて、対象点Wの三次元座標112を算出する(S104)。
Next, the coordinate calculation unit 105 calculates the three-dimensional coordinate 112 of the target point W using the first target angle θ A2 , the second target angle θ B2, and the inter-viewpoint distance d (S104). .
ここで、第1の対象角θA2と第2の対象角θB2とから、対象点W、第1の視点M1及び第2の視点M2を頂点とする三角形WM1M2の3つの内角が分かる。さらに、三角形WM1M2の一辺M1M2の長さ(視点間距離d)が既知なので、対象点Wの三次元座標112を算出する。
Here, from the first target angle θ A2 and the second target angle θ B2 , three triangles WM 1 M 2 having the target point W, the first viewpoint M 1 and the second viewpoint M 2 as vertices are used. You can see the inner corner. Furthermore, since the length (inter-viewpoint distance d) of one side M 1 M 2 of the triangle WM 1 M 2 is known, the three-dimensional coordinates 112 of the target point W are calculated.
また、視点間距離dは、第1の視点M1と第2の視点M2との相対位置関係を示す情報である。言い換えると、この視点間距離dを用いて、任意の三次元座標系において、第1の視点M1及び第2の視点M2の三次元座標を定義できる。例えば、座標算出部105は、第1の視点M1の座標を原点(0,0,0)とし、第2の視点M2の座標を(d,0,0)とする三次元座標系を設定する。そして、座標算出部105は、設定した三次元座標系における対象点Wの座標を算出する。
Further, distance between viewpoints d is information indicating the first viewpoint M 1 and the relative positional relationship between the second viewpoint M 2. In other words, by using the distance between viewpoints d, in any three-dimensional coordinate system can define a first viewpoint M 1 and second three-dimensional coordinates of the viewpoint M 2. For example, the coordinate calculation unit 105 uses a three-dimensional coordinate system in which the coordinates of the first viewpoint M 1 are the origin (0, 0, 0) and the coordinates of the second viewpoint M 2 are (d, 0, 0). Set. Then, the coordinate calculation unit 105 calculates the coordinates of the target point W in the set three-dimensional coordinate system.
また、例えば、三次元座標算出部105は、以下の方法で対象点Wの三次元座標112を算出できる。
Also, for example, the three-dimensional coordinate calculation unit 105 can calculate the three-dimensional coordinates 112 of the target point W by the following method.
まず、座標算出部105は、第1の対象角θA2を用いて、第1の視点M1と対象点Wとを通る第1のベクトルを算出する。具体的には、座標算出部105は、第1の視点M1を通り、かつ、第1の対象角θA2で示される方向のベクトルを第1のベクトルとして算出する。なお、座標算出部105は、第1の対象角θA2の代わりに、第1の撮影角θA及び視点投影角θA1を用いてもよい。
First, the coordinate calculation unit 105 calculates a first vector passing through the first viewpoint M 1 and the target point W using the first target angle θ A2 . Specifically, the coordinate calculation unit 105, through the first view point M 1, and to calculate the direction of the vector represented by the first target angle theta A2 as the first vector. Note that the coordinate calculation unit 105 may use the first shooting angle θ A and the viewpoint projection angle θ A1 instead of the first target angle θ A2 .
同様に、座標算出部105は、第2の対象角θB2を用いて、第2の視点M2と対象点Wとを通る第2のベクトルを算出する。また、座標算出部105は、第2の対象角θB2の代わりに、第2の撮影角θB及び視点投影角θB1を用いてもよい。
Similarly, the coordinate calculation section 105 uses the second target angle theta B2, calculates a second vector that passes through the second viewpoint M 2 and the target point W. Further, the coordinate calculation unit 105 may use the second shooting angle θ B and the viewpoint projection angle θ B1 instead of the second target angle θ B2 .
次に、座標算出部105は、第1のベクトルと第2のベクトルとの最接近点の座標を、対象点Wの三次元座標112として算出する。
Next, the coordinate calculation unit 105 calculates the coordinates of the closest point between the first vector and the second vector as the three-dimensional coordinates 112 of the target point W.
以上の処理により、三次元座標計測装置90は、対象点Wの三次元座標112を算出できる。
Through the above processing, the three-dimensional coordinate measuring apparatus 90 can calculate the three-dimensional coordinates 112 of the target point W.
このように、本発明の実施の形態に係る三次元座標計測装置90は、カメラ10A及びカメラ10Bで撮影された画像の各画素に対する視点投影角を予め保持しておき、保持する視点投影角を用いて、対象点Wの三次元座標112を算出する。具体的には、三次元座標計測装置90は、異なる視点より対象点が撮影された2つの画像から、各画像における対象点の視点投影角を抽出する。そして、当該三次元座標計測装置は、当該視点投影角を用いて、対象点の座標を算出する。
As described above, the three-dimensional coordinate measuring apparatus 90 according to the embodiment of the present invention holds the viewpoint projection angle with respect to each pixel of the image captured by the camera 10A and the camera 10B in advance, and sets the viewpoint projection angle to be held. Using this, the three-dimensional coordinates 112 of the target point W are calculated. Specifically, the three-dimensional coordinate measuring apparatus 90 extracts the viewpoint projection angle of the target point in each image from two images obtained by capturing the target point from different viewpoints. Then, the three-dimensional coordinate measuring apparatus calculates the coordinates of the target point using the viewpoint projection angle.
これにより、本発明の実施の形態に係る三次元座標計測装置90は、対象点Wの三次元座標を容易に算出できる。さらに、三次元座標計測装置90は、第1の撮影角θA及び第2の撮影角θBを用いることで、2台のカメラが平行ステレオ配置でない場合でも対象点Wの三次元座標を算出できる。このように、本発明の実施の形態に係る三次元座標計測装置90は、2台のカメラの設定の自由度を向上できる。
Thereby, the three-dimensional coordinate measuring apparatus 90 according to the embodiment of the present invention can easily calculate the three-dimensional coordinates of the target point W. Further, the three-dimensional coordinate measuring device 90 calculates the three-dimensional coordinates of the target point W even when the two cameras are not arranged in parallel stereo by using the first photographing angle θ A and the second photographing angle θ B. it can. As described above, the three-dimensional coordinate measuring apparatus 90 according to the embodiment of the present invention can improve the degree of freedom in setting two cameras.
また、上記特許文献1及び特許文献2記載の技術では、撮像画像に必須の情報が必要になる。具体的には、特許文献1ではナンバープレートが必要であり、特許文献2では「実空間における互いに変更な少なくとも2本の直線」が必要である。一方で、本実施の形態に係る三次元座標計測装置90では、これらの情報が必要ない。
Further, in the techniques described in Patent Document 1 and Patent Document 2, essential information is required for the captured image. Specifically, in Patent Document 1, a license plate is required, and in Patent Document 2, “at least two straight lines that are mutually changed in real space” are required. On the other hand, the three-dimensional coordinate measuring apparatus 90 according to the present embodiment does not need such information.
なお、上記説明では、第1の基準線Lは、第1の視点M1を通り、かつ線分M1M2に垂直な直線を用いる例を述べたが、第1の基準線Lは、第1の視点M1を通る直線であればよい。この場合でも、上記と同様の処理を行うことができる。同様に、第2の基準線Rは、第2の視点M2を通る直線であればよい。言い換えると、第1の撮影角θA及び第2の撮影角θBは、カメラ10A及び10Bの光軸方向を示す情報であればよい。例えば、第1の基準線L及び第2の基準線Rは、互いに平行かつ線分M1M2に対して垂直でない直線であってもよい。また、線分M1M2と、カメラの光軸とのなす角を、第1の撮影角θA及び第2の撮影角θBとして用いてもよい。
In the above description, the example in which the first reference line L uses a straight line that passes through the first viewpoint M 1 and is perpendicular to the line segment M 1 M 2 has been described. it may be a straight line passing through the first viewpoint M 1. Even in this case, the same processing as described above can be performed. Similarly, the second reference line R may be any straight line passing through the second point of view M 2. In other words, the first shooting angle θ A and the second shooting angle θ B may be information indicating the optical axis directions of the cameras 10A and 10B. For example, the first reference line L and the second reference line R may be straight lines that are parallel to each other and are not perpendicular to the line segment M 1 M 2 . Further, the angle formed by the line segment M 1 M 2 and the optical axis of the camera may be used as the first shooting angle θ A and the second shooting angle θ B.
また、視点間距離dは、第1の視点M1と第2の視点M2との相対位置関係を示す情報であればよい。例えば、視点間距離dの代わりに、三次元座標系における第1の視点M1の座標及び第2の視点M2の座標を用いてもよい。
Further, distance between viewpoints d may be information indicating the first viewpoint M 1 and the relative positional relationship between the second viewpoint M 2. For example, instead of the distance between viewpoints d, may be used first viewpoint M 1 coordinates and a second viewpoint M 2 coordinates in the three-dimensional coordinate system.
次に、カメラ設定検出部106による第1の撮影角θA、第2の撮影角θB及び視点間距離dを検出する第1の調整動作を説明する。なお、第1の調整動作時には、第1の視点投影角情報111A及び第2の視点投影角情報111Bは、記憶部102に保持されている。
Next, a first adjustment operation for detecting the first shooting angle θ A , the second shooting angle θ B and the inter-viewpoint distance d by the camera setting detection unit 106 will be described. During the first adjustment operation, the first viewpoint projection angle information 111A and the second viewpoint projection angle information 111B are held in the storage unit 102.
図5は、第1の調整動作時における、本実施の形態に係る三次元座標計測システムの構成を示す図である。
FIG. 5 is a diagram showing a configuration of the three-dimensional coordinate measurement system according to the present embodiment during the first adjustment operation.
図5に示すように、第1の調整動作時には、カメラ10Aは、第1の視点M1から基準構造物40を撮像することで画像データ61A(第1の基準画像)を生成する。カメラ10Bは、第2の視点M2から基準構造物40を撮像することで、画像データ61B(第2の基準画像)を生成する。
As shown in FIG. 5, when the first adjusting operation, the camera 10A generates image data 61A (first reference image) by imaging the reference structure 40 from the first viewpoint M 1. Camera 10B, by imaging the reference structure 40 from the second viewpoint M 2, and generates an image data 61B (second reference image).
基準構造物40は、三次元座標系において、相対座標が既知である3点の基準点A、B、Cを有している。言い換えると、点A、B、Cによって定義される三角形を基準構造物40と呼ぶ。
The reference structure 40 has three reference points A, B, and C whose relative coordinates are known in a three-dimensional coordinate system. In other words, the triangle defined by the points A, B, and C is referred to as the reference structure 40.
図6は、カメラ設定検出部106の構成を示すブロック図である。図6に示すように、カメラ設定検出部106は、第3の視点投影角抽出部121Aと、第4の視点投影角抽出部121Bと、第1の傾斜角算出部122Aと、第2の傾斜角算出部122Bと、設定情報算出部123とを備える。
FIG. 6 is a block diagram illustrating a configuration of the camera setting detection unit 106. As shown in FIG. 6, the camera setting detection unit 106 includes a third viewpoint projection angle extraction unit 121A, a fourth viewpoint projection angle extraction unit 121B, a first tilt angle calculation unit 122A, and a second tilt. An angle calculation unit 122B and a setting information calculation unit 123 are provided.
第3の視点投影角抽出部121Aは、第1の視点投影角情報111Aを用いて、第1の基準画像に投影される基準点A、B及びCの各々に対応する3つの視点投影角(本発明の第1の基準視点投影角に相当)を取得する。
Using the first viewpoint projection angle information 111A, the third viewpoint projection angle extraction unit 121A uses three viewpoint projection angles (corresponding to each of the reference points A, B, and C projected on the first reference image). (Corresponding to the first reference viewpoint projection angle of the present invention).
第4の視点投影角抽出部121Bは、第2の視点投影角情報111Bを用いて、第2の基準画像に投影される基準点A、B及びCの各々に対応する3つの視点投影角(本発明の第2の基準視点投影角に相当)を取得する。
The fourth viewpoint projection angle extraction unit 121B uses the second viewpoint projection angle information 111B to provide three viewpoint projection angles (corresponding to each of the reference points A, B, and C projected on the second reference image). (Corresponding to the second reference viewpoint projection angle of the present invention).
第1の傾斜角算出部122Aは、3つの第1の基準視点投影角と、3点の基準点A、B及びCの相対座標とを用いて、第1の傾斜角を算出する。ここで、第1の傾斜角は、第1の基準画像の撮像面である第1の撮像面と、3点の基準点A、B及びCを含む基準平面とのなす角度である。
The first inclination angle calculation unit 122A calculates the first inclination angle using the three first reference viewpoint projection angles and the relative coordinates of the three reference points A, B, and C. Here, the first inclination angle is an angle formed by a first imaging surface that is an imaging surface of the first reference image and a reference plane including three reference points A, B, and C.
第2の傾斜角算出部122Bは、3つの第2の基準視点投影角と、3点の基準点A、B及びCの相対座標とを用いて、第2の傾斜角を算出する。ここで、第2の傾斜角は、第2の基準画像の撮像面である第2の撮像面と、3点の基準点A、B及びCを含む基準平面とのなす角度である。
The second tilt angle calculation unit 122B calculates the second tilt angle using the three second reference viewpoint projection angles and the relative coordinates of the three reference points A, B, and C. Here, the second inclination angle is an angle formed by the second imaging surface, which is the imaging surface of the second reference image, and the reference plane including the three reference points A, B, and C.
設定情報算出部123は、第1の傾斜角と、第2の傾斜角とを用いて、第1の撮影角θAと、第2の撮影角θBとを算出する。また、設定情報算出部123は、第1の傾斜角と、第2の傾斜角とを用いて、第1の視点M1及び第2の視点M2の三次元座標を算出する。そして、設定情報算出部123は、第1の視点M1及び第2の視点M2の三次元座標から、視点間距離dを算出する。
The setting information calculation unit 123 calculates the first shooting angle θ A and the second shooting angle θ B using the first tilt angle and the second tilt angle. Also, setting information calculating unit 123 calculates a first inclined angle, with a second inclination angle, the first view point M 1 and the second three-dimensional coordinates of the viewpoint M 2. Then, setting information calculation unit 123, from the first viewpoint M 1 and second three-dimensional coordinates of the viewpoint M 2, calculates interview distance d.
図7は、三次元座標計測装置90による第1の調整動作のフローチャートである。
FIG. 7 is a flowchart of the first adjustment operation by the three-dimensional coordinate measuring apparatus 90.
まず、画像取得部101は、図8に示すように、第1の基準画像及び第2の基準画像を取得する(S111)。
First, the image acquisition unit 101 acquires the first reference image and the second reference image as shown in FIG. 8 (S111).
なお、本実施の形態では、説明の簡略化のため、第1の基準画像及び第2の基準画像に含まれる3点の基準点が同一である場合を例に説明するが、第1の基準画像及び第2の基準画像に含まれる3点の基準点は異なってもよい。言い換えると、第1の基準画像は、相対座標が既知である3点以上の基準点のうちのいずれか3点である第1の基準点が、第1の視点M1からカメラ10Aにより撮像された画像であればよい。また、第2の基準画像は、上記3点以上の基準点のうちのいずれか3点である第2の基準点が、第2の視点M1からカメラ10Bにより撮像された画像であればよい。この場合、各演算処理において、さらに、第1の基準点と第2の基準点との相対位置関係を考慮することで、第1の基準点と第2の基準点とが同じ場合と同様の処理を行うことができる。
In the present embodiment, for the sake of simplification of description, the case where the three reference points included in the first reference image and the second reference image are the same will be described as an example. The three reference points included in the image and the second reference image may be different. In other words, the first reference image, the first reference point is any three points of the three points or more reference points relative coordinates is known, is captured by the camera 10A from the first viewpoint M 1 Any image can be used. The second reference image, the second reference point is any three points among the three points or more reference points may be an image captured by the second viewpoint M 1 from the camera 10B . In this case, in each calculation process, by considering the relative positional relationship between the first reference point and the second reference point, the same as the case where the first reference point and the second reference point are the same. Processing can be performed.
次に、第3の視点投影角抽出部121Aは、図9Aに示すように、例えば、第1の基準画像における光学中心位置Cp1を原点として、第1の取得画像に投影される基準点A、B及びCである点A01、B01及びC01の座標を第1の基準画像から抽出する。次に、第3の視点投影角抽出部121Aは、第1の視点投影角情報111Aを用いて、抽出した点A01、B01及びC01の座標に対応する第1の基準視点投影角を抽出する。同様に、第4の視点投影角抽出部121Bは、図9Bに示すように、例えば、第2の基準画像における光学中心位置Cp2を原点として、第2の基準画像に投影される基準点A、B及びCである点A02、B02及びC02の座標を第2の基準画像から抽出する。次に、第4の視点投影角抽出部121Bは、第2の視点投影角情報111Bを用いて、抽出した点A02、B02及びC02の座標に対応する第2の基準視点投影角を抽出する(S112)。
Next, as illustrated in FIG. 9A, the third viewpoint projection angle extraction unit 121A, for example, uses the optical center position C p1 in the first reference image as the origin and the reference point A projected on the first acquired image. , B and C, the coordinates of points A 01 , B 01 and C 01 are extracted from the first reference image. Next, the third viewpoint projection angle extraction unit 121A uses the first viewpoint projection angle information 111A to calculate the first reference viewpoint projection angle corresponding to the coordinates of the extracted points A 01 , B 01 and C 01. Extract. Similarly, as illustrated in FIG. 9B, the fourth viewpoint projection angle extraction unit 121B, for example, uses the optical center position C p2 in the second reference image as the origin, and the reference point A projected on the second reference image. , B and C, the coordinates of points A 02 , B 02 and C 02 are extracted from the second reference image. Next, the fourth viewpoint projection angle extraction unit 121B uses the second viewpoint projection angle information 111B to calculate the second reference viewpoint projection angle corresponding to the coordinates of the extracted points A 02 , B 02 and C 02. Extract (S112).
次に、第1の傾斜角算出部122Aは、第1の基準画像の撮像面である第1の撮像面と、基準点A、B及びCを含む基準平面とのなす角である第1の傾斜角を算出する。同様に、第2の傾斜角算出部122Bは、第2の基準画像の撮像面である第2の撮像面と、基準点A、B及びCを含む基準平面とのなす角である第2の傾斜角を算出する(S113)。
Next, the first inclination angle calculation unit 122A is a first angle that is an angle formed between the first imaging surface that is the imaging surface of the first reference image and the reference plane that includes the reference points A, B, and C. The inclination angle is calculated. Similarly, the second inclination angle calculation unit 122B is a second angle that is an angle formed between the second imaging surface that is the imaging surface of the second reference image and the reference plane that includes the reference points A, B, and C. An inclination angle is calculated (S113).
以下、この第1及び第2の傾斜角を算出する処理の一例を詳細に説明する。
Hereinafter, an example of processing for calculating the first and second inclination angles will be described in detail.
図10は、第1の傾斜角及び第2の傾斜角を算出する処理(S113)のフローチャートである。また、図11は、図10に示す処理を説明するための図である。以下、図10及び図11を用いて、第1の傾斜角を算出する処理を説明する。
FIG. 10 is a flowchart of the process (S113) for calculating the first tilt angle and the second tilt angle. FIG. 11 is a diagram for explaining the processing shown in FIG. Hereinafter, the process of calculating the first tilt angle will be described with reference to FIGS. 10 and 11.
まず、第1の傾斜角算出部122Aは、3点の基準点A、B及びCのうちいずれか1点、例えば、点Aを原点とするX1-Y1-Z1座標系を設定する(S141)。このとき、第1の傾斜角算出部122Aは、X1軸及びY1軸を、第1の視点M1より撮像された第1の撮像面と平行になるように設定する。また、第1の傾斜角算出部122Aは、Z1軸を、第1の視点M1より撮像された第1の撮像面と垂直になるように設定する。
First, the first inclination angle calculation unit 122A sets one of the three reference points A, B, and C, for example, an X 1 -Y 1 -Z 1 coordinate system with the point A as the origin. (S141). At this time, the first tilt angle calculating unit 122A has the X 1 axis and Y 1 axis is set in parallel to the first imaging plane taken from the first viewpoint M 1. In addition, the first inclination angle calculation unit 122A sets the Z 1 axis to be perpendicular to the first imaging surface imaged from the first viewpoint M 1 .
次に、第1の傾斜角算出部122Aは、基準点B及びCと同等な仮想点B1及びC1の座標を設定する(S142)。ここで、点B1は点Bに相当し、点C1は点Cに相当する。例えば、本実施の形態では、点B1の座標を(B1x,0,0)、点C1の座標を(0,C1y,0)と設定する。
Next, the first inclination angle calculating section 122A sets a reference point B and C and equivalent virtual points B 1 and C 1 coordinates (S142). Here, the point B 1 corresponds to the point B, and the point C 1 corresponds to the point C. For example, in the present embodiment, the coordinates of the point B 1 are set as (B 1x , 0, 0), and the coordinates of the point C 1 are set as (0, C 1y , 0).
そして、第1の傾斜角算出部122Aは、点B1及びC1を、X1軸まわりに角度α1n、Y1軸まわりに角度β1n、Z1軸まわりに角度γ1n、細かく別々に回転させた複数の変換基準点である、点B1n’(B1nx’,B1ny’,B1nz’)及び点C1n’(C1nx’,C1ny’,C1nz’)を算出する(S143)。ここで、n=1、2、3・・・である。
The first inclination angle calculation unit 122A finely and separately separates the points B 1 and C 1 into an angle α 1n around the X 1 axis, an angle β 1n around the Y 1 axis, and an angle γ 1n around the Z 1 axis. A plurality of rotated conversion reference points, points B 1n ′ (B 1nx ′, B 1ny ′, B 1nz ′) and point C 1n ′ (C 1nx ′, C 1ny ′, C 1nz ′) are calculated ( S143). Here, n = 1, 2, 3,...
次に、第1の傾斜角算出部122Aは、第3の視点投影角抽出部121Aにより抽出された視点投影角を用いて、点B1n’及び点C1n’を、X1-Y1平面に投影させた複数の変換投影基準点である、点B1n”(B1nx”,B1ny”,0)及び点C1n”(C1nx”,C1ny”,0)を算出する(S144)。ここで、n=1、2、3・・・である。
Next, the first inclination angle calculation unit 122A uses the viewpoint projection angle extracted by the third viewpoint projection angle extraction unit 121A to convert the point B 1n ′ and the point C 1n ′ into the X 1 -Y 1 plane. A plurality of transformation projection reference points projected onto the points B 1n ″ (B 1nx ″, B 1ny ″, 0) and point C 1n ″ (C 1nx ″, C 1ny ″, 0) are calculated (S144). . Here, n = 1, 2, 3,...
ここで、第3の視点投影角抽出部121Aにより抽出された、点B01のZ1-X1面の視点投影角をε1x、点B01のZ1-Y1面の視点投影角をε1y、点C01のZ1-X1面の視点投影角をφ1x、点C01のZ1-Y1面の視点投影角をφ1yとする。第1の撮像面における基準点A、B、Cである点A01、B01、C01を結ぶ三角形A01B01C01と、点A、点B1n”、点C1n”を結ぶ三角形AB1n”C1n”が相似となるときには、図12に示すように、∠B1n’M1Cp1及び∠B1n”M1Cp1はε1xとなる。
Here, the viewpoint projection angle of the plane Z 1 -X 1 at the point B 01 extracted by the third viewpoint projection angle extraction unit 121A is ε 1x , and the viewpoint projection angle of the Z 1 -Y 1 plane at the point B 01 is epsilon 1y, 1x viewpoint projection angle of Z 1 -X 1 side of the point C 01 phi, the viewpoint projection angle of Z 1 -Y 1 side of the point C 01 and phi 1y. Reference point A in the first imaging plane, B, triangle formed by connecting the triangular A 01 B 01 C 01 connecting the A 01, B 01, C 01 point that is C, point A, point B 1n ", point C 1n" the When AB 1n “C 1n ” is similar, ∠B 1n ′ M 1 C p1 and ∠B 1n ″ M 1 C p1 are ε 1x as shown in FIG.
したがって、B1nx”は、(式3)で示される。
Therefore, B 1nx ″ is expressed by (Equation 3).
同様にして、B1ny”、C1nx”及びC1ny”の各々は、(式4)~(式6)で表される。
Similarly, each of B 1ny ″, C 1nx ″, and C 1ny ″ is expressed by (Expression 4) to (Expression 6).
最後に、第1の傾斜角算出部122Aは、三角形A01B01C01と、三角形AB1n”C1n”とが最も相似となる変換投影基準点B1”及びC1”を決定することにより、第1の傾斜角(α1,β1,γ1)を算出する(S145)。
Finally, the first inclination angle calculation unit 122A determines the converted projection reference points B 1 ″ and C 1 ″ in which the triangle A 01 B 01 C 01 and the triangle AB 1n “C 1n ” are most similar. Thus, the first inclination angle (α 1 , β 1 , γ 1 ) is calculated (S145).
具体的な相似比較計算法として、線分A01B01を、線分AB1n”と同じ長さにするとともに、点A01を点Aと一致させるように点B01及び点C01を移動させる。この状態において、線分B01B1n”の長さと線分C01C1n”の長さとの和が最小となるように、第1の傾斜角(α1,β1,γ1)を算出する方法がある。
As a specific similarity calculation method, the line segment A 01 B 01 has the same length as the line segment AB 1n ″, and the point B 01 and the point C 01 are moved so that the point A 01 coincides with the point A In this state, the first inclination angle (α 1 , β 1 , γ 1 ) is set so that the sum of the length of the line segment B 01 B 1n ″ and the length of the line segment C 01 C 1n ″ is minimized. There is a method to calculate.
ただし、相似比較計算法は、上記の方法に限られない。例えば、線分A01B01を、線分AB1n”と同じ長さにするとともに、線分A01B01を線分AB1n”と一致させるように点C01を移動させる。そして、この状態において、点C01と点C1n”とのずれ量が最小となるように、第1の傾斜角(α1,β1,γ1)を算出してもよい。
However, the similarity comparison calculation method is not limited to the above method. For example, the line segment A 01 B 01, "with the same length as the line segment A 01 B 01 segment AB 1n" segment AB 1n moving the point C 01 to match with. In this state, the first inclination angles (α 1 , β 1 , γ 1 ) may be calculated so that the shift amount between the point C 01 and the point C 1n ″ is minimized.
同様にして、第2の傾斜角算出部122Bは、第2の撮像面と、基準点を含む平面とのなす角である第2の傾斜角(α2,β2,γ2)を算出する。
Similarly, the second inclination angle calculation unit 122B calculates a second inclination angle (α 2 , β 2 , γ 2 ) that is an angle formed by the second imaging surface and a plane including the reference point. .
このようにして、第1の傾斜角及び第2の傾斜角が算出される。
In this way, the first tilt angle and the second tilt angle are calculated.
以上、傾斜角の算出について、実施の形態に基づいて説明したが、第1及び第2の傾斜角の算出方法は、この実施の形態に限定されるものではない。
As described above, the calculation of the tilt angle has been described based on the embodiment. However, the calculation methods of the first and second tilt angles are not limited to this embodiment.
例えば、本実施の形態では、第1の傾斜角算出部122Aは、座標が既知である3点の基準点A、B及びCのうちいずれか1点を原点とするX1-Y1-Z1座標系を設定していたが、原点は、座標が既知である3点の基準点以外から選定してもよい。
For example, in the present embodiment, the first inclination angle calculation unit 122A has X 1 -Y 1 -Z whose origin is one of three reference points A, B, and C whose coordinates are known. Although one coordinate system has been set, the origin may be selected from other than the three reference points whose coordinates are known.
また、例えば、第1の傾斜角算出部122Aは、点Aを、点Aの視点投影角線上のある位置に置く。そして、第1の傾斜角算出部122Aは、点Bを、点Bの視点投影角線上をある指定ピッチで、かつある範囲内を順次スライドさせる。このとき、第1の傾斜角算出部122Aは、点Bの位置ごとに線分ABを軸とした円周上に点Cを配置する。そして、第1の傾斜角算出部122Aは、当該円周上の位置のうち、点Cが、点Cの視点投影角線に最接近した条件を記憶しておく。このように、第1の傾斜角算出部122Aは、点Bを順次スライドさせて、その時の点Cの最接近点を算出する。そして、第1の傾斜角算出部122Aは、点Bの全てのスライド位置に対応する点Cの最接近点のうち、最も接近した最接近点の条件から傾斜角を算出してもよい。
For example, the first inclination angle calculation unit 122A places the point A at a certain position on the viewpoint projection angle line of the point A. Then, the first inclination angle calculation unit 122A sequentially slides the point B on the viewpoint projection angle line of the point B at a specified pitch and within a certain range. At this time, the first inclination angle calculation unit 122A arranges the point C on the circumference with the line segment AB as an axis for each position of the point B. Then, the first inclination angle calculation unit 122A stores a condition in which the point C is closest to the viewpoint projection angle line of the point C among the positions on the circumference. Thus, the first inclination angle calculation unit 122A slides the point B sequentially, and calculates the closest point of the point C at that time. Then, the first inclination angle calculation unit 122A may calculate the inclination angle from the condition of the closest approach point among the closest points of the point C corresponding to all the slide positions of the point B.
また、例えば、第1の傾斜角算出部122Aは、点Aを点Aの視点投影角線上のある位置に置くとともに、点Bを点Bの視点投影角線上又はその近傍に置く。このとき、点Cは線分ABを軸とした円周上に存在する。よって、第1の傾斜角算出部122Aは、円周上の位置のうち、点Cが、点Cの視点投影角線に最接近した条件を記憶しておく。そして、第1の傾斜角算出部122Aは、点Aをある範囲内を移動させるとともに、移動させた位置ごとに上記の計算を行う。そして、第1の傾斜角算出部122Aは、点Aの全ての位置に対応する点Cの最接近点のうち、最も接近した最接近点の条件から傾斜角を算出してもよい。
Also, for example, the first inclination angle calculation unit 122A places the point A at a certain position on the viewpoint projection angle line of the point A and places the point B on or near the viewpoint projection angle line of the point B. At this time, the point C exists on the circumference with the line segment AB as an axis. Therefore, the first inclination angle calculation unit 122A stores a condition in which the point C is closest to the viewpoint projection angle line of the point C among the positions on the circumference. The first inclination angle calculation unit 122A moves the point A within a certain range and performs the above calculation for each moved position. Then, the first inclination angle calculation unit 122A may calculate the inclination angle from the condition of the closest approach point among the closest points of the point C corresponding to all positions of the point A.
再度、図7を用いて、三次元座標計測装置90による処理を説明する。
Again, the process by the three-dimensional coordinate measuring apparatus 90 will be described with reference to FIG.
図7において、第1及び第2の傾斜角の算出処理(S113)が完了した後、設定情報算出部123は、第1の視点M1及び第2の視点M2の座標(相対座標)を算出する(S114)。
7, after the calculation of the first and second inclination angle (S113) is completed, the setting information calculation unit 123, a first aspect M 1 and second viewpoint M 2 coordinates (relative coordinates) Calculate (S114).
具体的には、設定情報算出部123は、2本のベクトルを算出する。ここで、2本のベクトルとは、例えば、ステップS145において決定した点B1”(点B1n”)と、そのときの点B1n’に対応するB1’とを結ぶ直線B1’B1”、及び、ステップS145において決定した点C1”(点C1n”)と、そのときの点C1n’に対応するC1’とを結ぶ直線C1’C1”とである。
Specifically, the setting information calculation unit 123 calculates two vectors. Here, the two vectors, for example, the determined points B 1 "(point B 1n") in step S145, the straight line B 1 'B connecting the' B 1 corresponding to 'point B 1n at that time 1 ", and, C 1 point determined in step S145" is (point C 1n ") and, linear C 1 'C 1 connecting the' C 1 corresponding to the 'C 1n terms of their time".
そして、設定情報算出部123は、2本のベクトルの最接近点の座標を算出することにより、第1の視点M1との三次元座標を算出する。
Then, the setting information calculation unit 123 calculates the three-dimensional coordinates with the first viewpoint M 1 by calculating the coordinates of the closest point of the two vectors.
同様の方法により、設定情報算出部123は、第2の視点M2の三次元座標を算出する。
By the same method, setting information calculating unit 123 calculates a second three-dimensional coordinates of the viewpoint M 2.
なお、以下の方法を用いて、第1の視点M1の三次元座標を算出してもよい。
Incidentally, using the following method may calculate the first three-dimensional coordinates of the viewpoint M 1.
ここで、点Aと点Bと点M1とを結ぶ三角形ABM1において、線分ABの長さ並びに∠M1AB及び∠M1BAは既知である。よって、三角形ABM1を用いて、第1の視点M1の三次元座標を算出することができる。また、∠AM1Bが視点投影角により既知であるので、同様に、三角形ABM1を用いて、第1の視点M1の三次元座標を算出することができる。
Here, the triangle ABM 1 connecting the the point M 1 points A and B, the length and ∠M 1 AB and ∠M 1 BA line segment AB is known. Therefore, the three-dimensional coordinates of the first viewpoint M 1 can be calculated using the triangle ABM 1 . Further, since 1AM 1 B is known from the viewpoint projection angle, similarly, the three-dimensional coordinates of the first viewpoint M 1 can be calculated using the triangle ABM 1 .
次に、設定情報算出部123は、第1の視点M1の三次元座標と、第2の視点M2の三次元座標とを用いて、視点間距離dを算出する(S115)。
Then, setting information calculation unit 123, by using the three-dimensional coordinates of the first point of view M 1, and a second three-dimensional coordinates of the viewpoint M 2, and calculates the distance between viewpoints d (S115).
さらに、設定情報算出部123は、第1の撮影角θA及び第2の撮影角θBを算出する(S116)。具体的には、上記の処理により、第1の視点M1と、第2の視点M2と、基準点A、B及びCとの三次元座標が算出されている。よって、設定情報算出部123は、例えば、基準点A、第1の視点M1、及び第2の視点M2の座標から、図13に示す角θA4及びθB4を算出する。さらに、設定情報算出部123は、下記(式7)を用いて、第1の撮影角θAを算出する。また、設定情報算出部123は、下記(式8)を用いて、第2の撮影角θBを算出する。
Further, the setting information calculation unit 123 calculates the first shooting angle θ A and the second shooting angle θ B (S116). Specifically, by the above process, the first viewpoint M 1, and second viewpoint M 2, reference point A, the three-dimensional coordinates of the B and C are calculated. Therefore, the setting information calculation unit 123 calculates, for example, the angles θ A4 and θ B4 illustrated in FIG. 13 from the coordinates of the reference point A, the first viewpoint M 1 , and the second viewpoint M 2 . Furthermore, the setting information calculation unit 123 calculates the first shooting angle θ A using the following (formula 7). In addition, the setting information calculation unit 123 calculates the second shooting angle θ B using the following (Equation 8).
θA=θL-θA3-θA4 (式7)
θB=θR-θB3-θB4 (式8) θ A = θ L −θ A3 −θ A4 (Formula 7)
θ B = θ R −θ B3 −θ B4 (Formula 8)
θB=θR-θB3-θB4 (式8) θ A = θ L −θ A3 −θ A4 (Formula 7)
θ B = θ R −θ B3 −θ B4 (Formula 8)
ここで、θLは、第1の基準線Lと線分M1M2とがなす角度である。θRは、第2の基準線Rと線分M1M2とがなす角度である。また、ここでは、θL及びθRは、共に90度である。また、θA3は、第1の基準画像における基準点Aの視点投影角であり、θB3は第2の基準画像における基準点Aの視点投影角である。
Here, θ L is an angle formed by the first reference line L and the line segment M 1 M 2 . θ R is an angle formed by the second reference line R and the line segment M 1 M 2 . Further, here, the theta L and theta R, are both 90 degrees. Θ A3 is the viewpoint projection angle of the reference point A in the first reference image, and θ B3 is the viewpoint projection angle of the reference point A in the second reference image.
このように、設定情報算出部123は、第1の撮影角θA及び第2の撮影角θBを算出できる。
As described above, the setting information calculation unit 123 can calculate the first shooting angle θ A and the second shooting angle θ B.
なお、設定情報算出部123による第1の撮影角θA及び第2の撮影角θBの算出方法は上記の方法に限らない。例えば、光軸O1は、第1の撮像面に垂直なので、第1の傾斜角から光軸O1の方向を算出し、光軸O1の方向から第1の撮影角θAを算出してもよい。なお、第2の撮影角θBに関しても同様である。
Note that the calculation method of the first shooting angle θ A and the second shooting angle θ B by the setting information calculation unit 123 is not limited to the above method. For example, since the optical axis O 1 is perpendicular to the first imaging surface, the direction of the optical axis O 1 is calculated from the first tilt angle, and the first photographing angle θ A is calculated from the direction of the optical axis O 1. May be. The same applies to the second shooting angle θ B.
そして、設定情報算出部123により算出された、第1の撮影角θA、第2の撮影角θB及び視点間距離dは、記憶部102に記憶される。
Then, the first shooting angle θ A , the second shooting angle θ B and the inter-viewpoint distance d calculated by the setting information calculation unit 123 are stored in the storage unit 102.
以上より、本実施の形態では、基準構造物40を用いて容易に第1の撮影角θA、第2の撮影角θB及び視点間距離dを算出できる。これにより、撮影現場においてカメラ10A及び10Bの配置等が変わった場合でも、容易に第1の撮影角θA、第2の撮影角θB及び視点間距離dを算出できる。例えば、対象物又は測定環境に応じて、カメラ10A及び10Bの配置等を調整する場合、及び、振動等でカメラ10A及び10Bの配置がずれた場合でも、容易に再調整が可能となる。
As described above, in the present embodiment, the first shooting angle θ A , the second shooting angle θ B, and the inter-viewpoint distance d can be easily calculated using the reference structure 40. Thus, even when the arrangement of the cameras 10A and 10B is changed at the shooting site, the first shooting angle θ A , the second shooting angle θ B and the inter-viewpoint distance d can be easily calculated. For example, readjustment can be easily performed even when the arrangement of the cameras 10A and 10B is adjusted according to the object or the measurement environment, and even when the arrangement of the cameras 10A and 10B is shifted due to vibration or the like.
次に、カメラ設定検出部106による第1の視点投影角情報111A及び第2の視点投影角情報111Bを検出する第2の調整動作を説明する。なお、第2の調整動作時には、2つのカメラ10A及び10Bの相対位置は固定されている必要はなく、個別に第2の調整動作を行うことが可能である。また、第1の視点投影角情報111Aを検出する処理と、第2の視点投影角情報111Bを検出する処理とは同様なので、以下では、第1の視点投影角情報111Aを検出する処理のみを説明する。
Next, a second adjustment operation for detecting the first viewpoint projection angle information 111A and the second viewpoint projection angle information 111B by the camera setting detection unit 106 will be described. In the second adjustment operation, the relative positions of the two cameras 10A and 10B need not be fixed, and the second adjustment operation can be performed individually. In addition, since the process of detecting the first viewpoint projection angle information 111A and the process of detecting the second viewpoint projection angle information 111B are the same, only the process of detecting the first viewpoint projection angle information 111A will be described below. explain.
図14は、第2の調整動作時における、三次元座標計測装置90を含むシステムの構成を示す図である。
FIG. 14 is a diagram illustrating a configuration of a system including the three-dimensional coordinate measuring apparatus 90 during the second adjustment operation.
カメラ10Aは、視点Mからキャリブレーション板70を撮像する。ここで、視点Mは、カメラ10Aの撮影レンズの主点の位置に対応している。また、図14中、2点鎖線で書かれているOは、撮影レンズの光軸(カメラの光軸)を示している。
The camera 10A images the calibration plate 70 from the viewpoint M. Here, the viewpoint M corresponds to the position of the principal point of the photographing lens of the camera 10A. In FIG. 14, O written by a two-dot chain line indicates the optical axis of the photographing lens (the optical axis of the camera).
キャリブレーション板70は、剛性が高い透明な板であり、表面には碁盤の目が記されている。また、キャリブレーション板70には、糸71によって錘72が取り付けられている。
The calibration plate 70 is a transparent plate having high rigidity and has a grid pattern on the surface. A weight 72 is attached to the calibration plate 70 with a thread 71.
カメラ設定検出部106は、視点Mより、キャリブレーション板70、糸71及び錘72が撮像された画像データ62Aを用いて、画像ピクセルの歪み補正を行う。さらに、カメラ設定検出部106は、任意の画像ピクセル(画素)の視点投影角(本発明の第1及び第2の画素視点投影角に相当する)を算出する。
The camera setting detection unit 106 performs image pixel distortion correction using the image data 62 </ b> A obtained by capturing the calibration plate 70, the thread 71, and the weight 72 from the viewpoint M. Further, the camera setting detection unit 106 calculates a viewpoint projection angle (corresponding to the first and second pixel viewpoint projection angles of the present invention) of an arbitrary image pixel (pixel).
図15は、第2の調整動作のフローチャートである。
FIG. 15 is a flowchart of the second adjustment operation.
第2の調整動作において、カメラ設定検出部106は、撮像面の中心点である光学中心位置Cpを設定し(S201)、歪み補正を行い(S202)、任意の画像ピクセル(画素)の視点投影角θを算出する(S203)。
In the second adjustment operation, the camera setting detection unit 106 sets the optical center position C p that is the center point of the imaging surface (S201), performs distortion correction (S202), and views the viewpoint of an arbitrary image pixel (pixel). The projection angle θ is calculated (S203).
ここで、任意の画像ピクセルの視点投影角θとは、図16に示すように、画像上の任意の画像ピクセルPの二次元座標に投影される三次元空間上の任意の点P3と視点Mとを結ぶ線分と、カメラの光軸Oとのなす角のことである。なお、図16において、カメラの光軸Oと撮像面とは直交する。よって、視点Mと、カメラの光軸Oと撮像面の交点である光学中心位置Cpとの距離xと、例えば、光学中心位置Cpを原点とする、任意の画像ピクセルPの二次元座標とを用いて、任意の画像ピクセルPの視点投影角θを算出することができる。
Here, the viewpoint projection angle θ of an arbitrary image pixel is an arbitrary point P 3 on the three-dimensional space projected on the two-dimensional coordinates of the arbitrary image pixel P on the image and the viewpoint as shown in FIG. This is the angle between the line segment connecting M and the optical axis O of the camera. In FIG. 16, the optical axis O of the camera and the imaging surface are orthogonal. Therefore, a viewpoint M, and the distance x between the optical center position C p is the intersection of the optical axis O and the imaging surface of the camera, for example, the origin of the optical center position C p, the two-dimensional coordinates of an arbitrary image pixels P Can be used to calculate the viewpoint projection angle θ of any image pixel P.
まず、光学中心位置Cpの設定を行う(S201)。ここでキャリブレーション板70は水準器などにより、水平が保たれているものとする。次に、キャリブレーション板70を上方からカメラ10Aで撮像する。そして、撮像面を、(1)キャリブレーション板70と糸71との取り付け位置と、錘72と糸71との取り付け位置とが重なるように、(2)糸71の取り付け位置を中心に、碁盤の目の表示が対称になるように調整する。このときの、キャリブレーション板70上の糸71の取り付け位置が光学中心位置Cpとなる。
First, the optical center position Cp is set (S201). Here, the calibration plate 70 is assumed to be kept horizontal by a level or the like. Next, the calibration plate 70 is imaged by the camera 10A from above. Then, the image pickup surface is (1) a grid around the attachment position of the thread 71 such that (1) the attachment position of the calibration plate 70 and the thread 71 and the attachment position of the weight 72 and the thread 71 overlap. Adjust so that the eye display is symmetrical. At this time, the mounting position of the thread 71 on the calibration plate 70 is the optical center position C p.
次に、カメラ設定検出部106は、画像の歪み補正を行うためのパラメータを算出する(S202)。図17Aに示すように、歪み補正前においては、キャリブレーション板70を撮影したときの画像は、カメラ10Aの撮影レンズの特性により碁盤の目が歪んだ画像となる。カメラ設定検出部106は、撮像した画像に正規化処理を行うことにより、撮像した画像を図17Bに示すような画像に調整するためのパラメータを算出する。そして、上述した対象点Wの三次元座標の計測処理及び第1の調整動作を含む以降の処理においては、例えば、画像取得部101において、当該パラメータを用いた、カメラ10Aで撮影された画像に対する、歪み補正が行われる。
Next, the camera setting detection unit 106 calculates parameters for performing image distortion correction (S202). As shown in FIG. 17A, before distortion correction, the image when the calibration plate 70 is photographed is an image in which the grid's eyes are distorted due to the characteristics of the photographing lens of the camera 10A. The camera setting detection unit 106 performs normalization processing on the captured image to calculate parameters for adjusting the captured image to an image as illustrated in FIG. 17B. In the subsequent processing including the above-described measurement processing of the three-dimensional coordinates of the target point W and the first adjustment operation, for example, in the image acquisition unit 101, for the image captured by the camera 10A using the parameter. Then, distortion correction is performed.
最後に、カメラ設定検出部106は、任意の画像ピクセルPの視点投影角θを算出する(S203)。
Finally, the camera setting detection unit 106 calculates the viewpoint projection angle θ of an arbitrary image pixel P (S203).
図18は、キャリブレーション板と視点との距離を算出するための処理を説明するための図である。
FIG. 18 is a diagram for explaining processing for calculating the distance between the calibration plate and the viewpoint.
まず、カメラ設定検出部106は、図17Bに示すような、キャリブレーション板70を撮影した歪み補正後の画像である、移動前の板の画像を取得する。次に、キャリブレーション板70を水平に保ったまま、キャリブレーション板70を視点Mに距離y接近させる。カメラ設定検出部106は、この状態において、キャリブレーション板70を撮像した歪み補正後の画像である、移動後の板の画像を取得する。そして、カメラ設定検出部106は、移動前の板の画像と移動後の板の画像を用いて、例えば、光学中心位置Cpを原点とする、点P1’、及び点P2’の二次元座標を抽出する。
First, the camera setting detection unit 106 acquires an image of a plate before movement, which is an image after distortion correction obtained by photographing the calibration plate 70 as shown in FIG. 17B. Next, the calibration plate 70 is moved closer to the viewpoint M by the distance y while keeping the calibration plate 70 horizontal. In this state, the camera setting detection unit 106 acquires an image of the plate after movement, which is an image after distortion correction obtained by imaging the calibration plate 70. Then, the camera setting detection unit 106 uses the image of the plate before movement and the image of the plate after movement, for example, two points P 1 ′ and P 2 ′ with the optical center position C p as the origin. Extract dimension coordinates.
ここで、視点Mと光学中心位置Cpとを結ぶ直線と、キャリブレーション板70の表面との交点をC1とする。また、キャリブレーション板70表面の任意の点をP1とする。また、視点MとP1とを結ぶ直線と、撮像面との交点をP1’とする。また、移動前のキャリブレーション板70表面のP1に対応する、移動後のキャリブレーション板70表面の点をP2とする。また、視点MとP2とを結ぶ直線と、撮像面との交点をP2’とする。また、点P2と点P2’とを通る直線と、移動前のキャリブレーション板70の表面との交点をQとする。
Here, a line connecting the viewpoint M and the optical center position C p, the intersection of the surface of the calibration plate 70 and C 1. Further, the arbitrary point of the calibration plate 70 surface and P 1. In addition, an intersection of a straight line connecting the viewpoint M and P 1 and the imaging surface is defined as P 1 ′. Further, corresponding to P 1 of the calibration plate 70 surface before the movement, the point of the calibration plate 70 surface after the movement and P 2. Also, let P 2 ′ be the intersection of the straight line connecting the viewpoints M and P 2 and the imaging surface. Further, let Q be the intersection of a straight line passing through the point P 2 and the point P 2 ′ and the surface of the calibration plate 70 before the movement.
このとき、線分P1Qの長さd1は、下記(式9)で表される。
At this time, the length d 1 of the line segment P 1 Q is expressed by the following (formula 9).
ここで、d2は線分C1P1の長さ、d3は線分P1’P2’の長さ、d4は線分CpP1’の長さを示す。
Here, d 2 represents the length of the line segment C 1 P 1 , d 3 represents the length of the line segment P 1 ′ P 2 ′, and d 4 represents the length of the line segment C p P 1 ′.
また、点Qの視点投影角θ1は、下記(式10)で表される。
Further, the viewpoint projection angle θ 1 of the point Q is expressed by the following (formula 10).
したがって、キャリブレーション板70と視点Mとの距離zは、下記(式11)で表される。
Therefore, the distance z between the calibration plate 70 and the viewpoint M is expressed by the following (formula 11).
ここで、d5は、線分C1Qの長さを示す。
Here, d 5 indicates the length of the line segment C 1 Q.
そして、キャリブレーション板70と視点Mとの距離zを用いて、例えば、図18に示すP1’の視点投影角θ2は、(式12)で表される。
Then, using the distance z between the calibration plate 70 and the viewpoint M, for example, the viewpoint projection angle θ 2 of P 1 ′ shown in FIG. 18 is expressed by (Equation 12).
視点Mと光学中心位置Cpとを結ぶ線分の長さxは、(式13)で表される。
Viewpoint M and the length x of a line connecting the optical center position C p is expressed by (Equation 13).
したがって、任意のピクセル点Pの視点投影角θは、(式14)を用いて算出することができる。
Therefore, the viewpoint projection angle θ of any pixel point P can be calculated using (Equation 14).
ここで、d6は、線分CpPの長さを示す。
Here, d 6 indicates the length of the line segment C p P.
つまり、光学中心位置Cpを原点とする、任意の画像ピクセルPの二次元座標は既知であるため、任意の画像ピクセルPの視点投影角θを算出することができる。
That is, since the two-dimensional coordinates of an arbitrary image pixel P with the optical center position C p as the origin are known, the viewpoint projection angle θ of the arbitrary image pixel P can be calculated.
なお、上記説明では、キャリブレーション板70には碁盤の目が記されているものとしていたが、キャリブレーション板には、間隔が既知である印が記されていてもよい。
In the above description, the calibration plate 70 is marked with a grid, but the calibration plate may be marked with a known interval.
また、上記説明では、キャリブレーション時に糸及び錘を用いる例を述べたが、糸及び錘の代わりに、キャリブレーション板に対して垂直に照射される、ランプ光源からの光線又はレーザ光を用いてもよい。
In the above description, an example in which a thread and a weight are used at the time of calibration has been described. Instead of using a thread and a weight, a light beam or laser light from a lamp light source that is irradiated perpendicularly to the calibration plate is used. Also good.
以上のように、カメラ設定検出部106は、カメラ10Aにより撮影された画像における画素ごとの視点投影角を算出し、当該画素ごとの視点投影角を示す第1の視点投影角情報111Aを、記憶部102に記憶する。同様に、カメラ設定検出部106は、カメラ10Bにより撮影された画像における画素ごとの視点投影角を算出し、当該画素ごとの視点投影角を示す第2の視点投影角情報111Bを、記憶部102に記憶する。
As described above, the camera setting detection unit 106 calculates the viewpoint projection angle for each pixel in the image captured by the camera 10A, and stores the first viewpoint projection angle information 111A indicating the viewpoint projection angle for each pixel. Store in the unit 102. Similarly, the camera setting detection unit 106 calculates the viewpoint projection angle for each pixel in the image captured by the camera 10B, and stores the second viewpoint projection angle information 111B indicating the viewpoint projection angle for each pixel. To remember.
以上、本発明の実施の形態に係る三次元座標計測装置について説明したが、本発明は、この実施の形態に限定されるものではない。
The three-dimensional coordinate measuring apparatus according to the embodiment of the present invention has been described above, but the present invention is not limited to this embodiment.
例えば、上記説明では、第1の視点投影角情報111Aは、複数の画素の各々に対応する視点投影角を示すテーブルあるとしたが、画素と視点投影角との対応関係を示す式であってもよい。例えば、当該式とは、上記(式14)である。この場合、第1の視点投影角抽出部103Aは、この(式14)を用いて、第1の対象画像における対象点Wの視点投影角を算出すればよい。なお、この場合、カメラ設定検出部106は、上記(式13)を用いて、視点Mと光学中心位置Cpとの距離xを求めておく必要がある。同様に、第2の視点投影角情報111Bは、画素と視点投影角との対応関係を示す式であってもよい。
For example, in the above description, the first viewpoint projection angle information 111A is a table indicating viewpoint projection angles corresponding to each of a plurality of pixels, but is an expression indicating a correspondence relationship between pixels and viewpoint projection angles. Also good. For example, the said formula is said (Formula 14). In this case, the first viewpoint projection angle extraction unit 103A may calculate the viewpoint projection angle of the target point W in the first target image using (Equation 14). In this case, the camera setting detection unit 106 needs to obtain the distance x between the viewpoint M and the optical center position C p using the above (Equation 13). Similarly, the second viewpoint projection angle information 111B may be an expression indicating a correspondence relationship between a pixel and a viewpoint projection angle.
また、上記説明では、2つの視点から撮影を行う例を述べたが、3つ以上の視点から撮影を行ってもよい。
In the above description, an example in which shooting is performed from two viewpoints has been described. However, shooting may be performed from three or more viewpoints.
また、相対座標が既知である基準点の数は、4点以上であってもよい。この場合、第1及び第2の基準画像の各々には、この4点以上の基準点のうち、少なくとも3点の基準点が撮影されていればよい。また、各第1の基準画像及び第2の基準画像に撮影される少なくとも3点の基準点の組み合わせは異なってもよい。さらに、4点以上の基準点は同一平面に配置されるのではなく、立体的に配置されていることが好ましい。例えば、三角錐、又は四角錐の頂点のうち4点以上を基準点として用いることができる。これにより、広範囲で安定的な角度検出を行える。例えば、上述した3点の基準点のみを用いる場合では、3点の基準点を含む平面と視点との角度が無いと誤差が発生しやすくなる。一方で、例えば、2つの視点から、上記三角錐の異なる面を撮影することで、このような場合でも安定して角度検出を行える。
Also, the number of reference points whose relative coordinates are known may be four or more. In this case, it is only necessary that at least three of the four or more reference points are photographed in each of the first and second reference images. Further, the combination of at least three reference points captured in each of the first reference image and the second reference image may be different. Furthermore, it is preferable that four or more reference points are arranged in a three-dimensional manner rather than in the same plane. For example, four or more of the apexes of a triangular pyramid or a quadrangular pyramid can be used as the reference point. Thereby, a wide range and stable angle detection can be performed. For example, when only the above-described three reference points are used, an error is likely to occur if there is no angle between the plane including the three reference points and the viewpoint. On the other hand, for example, by photographing different surfaces of the triangular pyramid from two viewpoints, angle detection can be performed stably even in such a case.
この場合、第1及び第2の傾斜角は、異なる基準平面(第1及び第2の基準平面)に対する角度である。なお、第1及び第2の傾斜角はどちらかの基準平面に合わせたものであってもよい。または、第1及び第2の傾斜角は、三次元座標系で統一された角度で算出されてもよい。
In this case, the first and second inclination angles are angles with respect to different reference planes (first and second reference planes). The first and second inclination angles may be adjusted to one of the reference planes. Alternatively, the first and second tilt angles may be calculated as angles unified in the three-dimensional coordinate system.
また、相対座標が既知である基準点の数を多く用いて、非線形近似計算を行うことにより、第1の傾斜角及び第2の傾斜角を算出してもよい。
Further, the first tilt angle and the second tilt angle may be calculated by performing nonlinear approximation calculation using a large number of reference points whose relative coordinates are known.
また、例えば、相対座標が既知である3点の基準点A、B、Cと、第1の撮像面における基準点A、B,Cである点A01,B01、C01とのうち、点Aと点A01、点Bと点B01、点Cと点C01のそれぞれが対応づけられない場合には、特別なマーカー又はラインを使用することにより、対応関係を識別することができる。
Further, for example, among the three reference points A, B, and C whose relative coordinates are known and the points A 01 , B 01 , and C 01 that are the reference points A, B, and C on the first imaging surface, When the point A and the point A 01 , the point B and the point B 01 , and the point C and the point C 01 are not associated with each other, the correspondence can be identified by using a special marker or line. .
また、基準点の回転による反転(裏返り)及び誤った解(傾斜角)の算出を防ぐために相対座標が既知の検証用の基準点を用いてもよい。
In addition, a reference point for verification whose relative coordinates are known may be used in order to prevent reversal (turn over) due to rotation of the reference point and calculation of an incorrect solution (tilt angle).
また、誤った解を算出しないために制限(例えば、回転条件)を加えてもよい。
Also, restrictions (for example, rotation conditions) may be added so as not to calculate an incorrect solution.
また、上記説明は、三次元座標計測時において、カメラ10A及び10Bの撮像面のベースライン(画像の水平画素方向)と、第1の視点M1と第2の視点M2とを結ぶ線分M1M2とが平行な場合を前提として説明している。言い換えると、カメラ10A及びカメラ10Bが光軸を中心として回転していない場合を前提としている。なお、カメラ10A及びカメラ10Bの少なくとも一方が、光軸を中心として回転して設定されている場合には、以下の処理を行えばよい。
Further, the above description, connecting during the three-dimensional coordinate measurement, the baseline of the imaging surface of the camera 10A and 10B (horizontal pixel direction of the image), the first viewpoint M 1 and the second viewpoint M 2 segments Description is made on the assumption that M 1 and M 2 are parallel. In other words, it is assumed that the camera 10A and the camera 10B are not rotated about the optical axis. When at least one of the camera 10A and the camera 10B is set to rotate around the optical axis, the following processing may be performed.
例えば、記憶部102は、予めカメラ10Aの光軸を中心とした第1の回転角と、カメラ10Bの光軸を中心とした第2の回転角とを保持している。そして、三次元座標計測時には、画像取得部101は、カメラ10Aから取得した第1の対象画像を第1の回転角に応じて回転する補正を行う。同様に、画像取得部101は、カメラ10Bから取得した第2の対象画像を第2の回転角に応じて回転する補正を行う。そして、三次元座標計測装置90は、補正後の第1の対象画像及び第2の対象画像に対して上述した処理を行うことで対象点Wの三次元座標を算出する。
For example, the storage unit 102 holds in advance a first rotation angle around the optical axis of the camera 10A and a second rotation angle around the optical axis of the camera 10B. And at the time of three-dimensional coordinate measurement, the image acquisition part 101 performs correction | amendment which rotates the 1st target image acquired from camera 10A according to a 1st rotation angle. Similarly, the image acquisition unit 101 performs correction to rotate the second target image acquired from the camera 10B according to the second rotation angle. Then, the three-dimensional coordinate measuring apparatus 90 calculates the three-dimensional coordinates of the target point W by performing the above-described processing on the corrected first target image and second target image.
なお、第1の回転角及び第2の回転角に応じて補正を行う対象は、第1及び第2の対象画像に限らない。例えば、座標算出部105が、第1及び第2の回転角を加味し、対象点の三次元座標を算出してもよい。
Note that the target to be corrected according to the first rotation angle and the second rotation angle is not limited to the first and second target images. For example, the coordinate calculation unit 105 may calculate the three-dimensional coordinates of the target point in consideration of the first and second rotation angles.
また、この第1及び第2の回転角は、以下の方法で検出できる。例えば、カメラ設定検出部106は、上述した方法により、線分M1M2とベースラインとが平行な場合の各基準点A、B、Cの第1及び第2の基準視点投影角を算出しておく。さらに、カメラ設定検出部106は、実際の設定状態(カメラ10A及びカメラ10Bが光軸を中心として回転している場合)の各基準点A、B、Cの第1及び第2の基準視点投影角を算出する。そして、カメラ設定検出部106は、算出した2つの第1の基準視点投影角の角度差に基づき第1の回転角を算出する。同様に、カメラ設定検出部106は、算出した2つの第2の基準視点投影角の角度差に基づき第2の回転角を算出する。
Further, the first and second rotation angles can be detected by the following method. For example, the camera setting detection unit 106 calculates the first and second reference viewpoint projection angles of the reference points A, B, and C when the line segment M 1 M 2 and the baseline are parallel by the method described above. Keep it. Further, the camera setting detection unit 106 projects the first and second reference viewpoints of the reference points A, B, and C in the actual setting state (when the camera 10A and the camera 10B are rotated around the optical axis). Calculate the corner. Then, the camera setting detection unit 106 calculates the first rotation angle based on the calculated angle difference between the two first reference viewpoint projection angles. Similarly, the camera setting detection unit 106 calculates a second rotation angle based on the calculated angle difference between the two second reference viewpoint projection angles.
また、上記で用いた視点投影角等の角度の情報は、角度そのものを示す値に限らず、例えば、2点の座標で表されるベクトルであってもよい。
Also, the angle information such as the viewpoint projection angle used above is not limited to a value indicating the angle itself, but may be a vector represented by coordinates of two points, for example.
また、本発明の実施の形態に係る、三次元座標計測装置の機能の一部または全てを、CPU等のプロセッサがプログラムを実行することにより実現してもよい。
Further, part or all of the functions of the three-dimensional coordinate measuring apparatus according to the embodiment of the present invention may be realized by a processor such as a CPU executing a program.
さらに、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。
Furthermore, the connection relationship between the constituent elements is exemplified for specifically explaining the present invention, and the connection relationship for realizing the function of the present invention is not limited to this.
また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を上記三次元座標計測装置が並列または時分割に処理してもよい。
In addition, division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be. Further, the functions of a plurality of functional blocks having similar functions may be processed by the three-dimensional coordinate measuring apparatus in parallel or in time division.
さらに、本発明は上記プログラムであってもよいし、上記プログラムが記録された非一時的なコンピュータ読み取り可能な記録媒体であってもよい。また、上記プログラムは、インターネット等の伝送媒体を介して流通させることができるのは言うまでもない。
Furthermore, the present invention may be the above program or a non-transitory computer-readable recording medium on which the above program is recorded. Needless to say, the program can be distributed via a transmission medium such as the Internet.
また、上記三次元座標計測装置の構成は、本発明を具体的に説明するために例示するためのものであり、本発明に係る三次元座標計測装置は、上記構成の全てを必ずしも備える必要はない。言い換えると、本発明に係る三次元座標計測装置は、本発明の効果を実現できる最小限の構成のみを備えればよい。
In addition, the configuration of the three-dimensional coordinate measuring apparatus is for illustration in order to specifically describe the present invention, and the three-dimensional coordinate measuring apparatus according to the present invention is not necessarily provided with all of the above configurations. Absent. In other words, the three-dimensional coordinate measuring apparatus according to the present invention only needs to have a minimum configuration capable of realizing the effects of the present invention.
例えば、上記説明では、三次元座標計測装置90は、カメラ設定検出部106を備えなくてもよい。または、カメラ設定検出部106は、上記第1の調整動作及び第2の調整動作の一方を行う機能のみを有してもよい。
For example, in the above description, the three-dimensional coordinate measuring apparatus 90 may not include the camera setting detection unit 106. Alternatively, the camera setting detection unit 106 may have only a function of performing one of the first adjustment operation and the second adjustment operation.
また、上記のステップが実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
Further, the order in which the above steps are executed is for illustration in order to specifically describe the present invention, and may be in an order other than the above. Also, some of the above steps may be executed simultaneously (in parallel) with other steps.
さらに、本発明の主旨を逸脱しない限り、本実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本発明に含まれる。
Furthermore, various modifications in which the present embodiment is modified within the scope conceived by those skilled in the art are also included in the present invention without departing from the gist of the present invention.
本発明は、三次元座標計測装置に適用できる。
The present invention can be applied to a three-dimensional coordinate measuring apparatus.
10A、10B カメラ
30A、30B ケーブル
40 基準構造物
50 対象構造物
60A、60B、61A、61B、62A 画像データ
70 キャリブレーション板
71 糸
72 錘
90 三次元座標計測装置
101 画像取得部
102 記憶部
103A 第1の視点投影角抽出部
103B 第2の視点投影角抽出部
105 座標算出部
106 カメラ設定検出部
111A 第1の視点投影角情報
111B 第2の視点投影角情報
112 三次元座標
121A 第3の視点投影角抽出部
121B 第4の視点投影角抽出部
122A 第1の傾斜角算出部
122B 第2の傾斜角算出部
123 設定情報算出部 10A, 10B Camera 30A, 30B Cable 40 Reference structure 50 Target structure 60A, 60B, 61A, 61B, 62A Image data 70 Calibration plate 71 Thread 72 Weight 90 Three-dimensional coordinate measuring device 101 Image acquisition unit 102 Storage unit 103A First 1 viewpoint projection angle extraction unit 103B second viewpoint projection angle extraction unit 105 coordinate calculation unit 106 camera setting detection unit 111A first viewpoint projection angle information 111B second viewpoint projection angle information 112 three-dimensional coordinates 121A third viewpoint Projection angle extraction unit 121B Fourth viewpoint projection angle extraction unit 122A First tilt angle calculation unit 122B Second tilt angle calculation unit 123 Setting information calculation unit
30A、30B ケーブル
40 基準構造物
50 対象構造物
60A、60B、61A、61B、62A 画像データ
70 キャリブレーション板
71 糸
72 錘
90 三次元座標計測装置
101 画像取得部
102 記憶部
103A 第1の視点投影角抽出部
103B 第2の視点投影角抽出部
105 座標算出部
106 カメラ設定検出部
111A 第1の視点投影角情報
111B 第2の視点投影角情報
112 三次元座標
121A 第3の視点投影角抽出部
121B 第4の視点投影角抽出部
122A 第1の傾斜角算出部
122B 第2の傾斜角算出部
123 設定情報算出部 10A,
Claims (8)
- 対象点の三次元座標を計測する三次元座標計測装置であって、
第1の視点から第1の撮像装置により前記対象点が撮像された第1の対象画像と、第2の視点から第2の撮像装置により前記対象点が撮像された第2の対象画像とを取得する画像取得部と、
前記第1の撮像装置で撮像された画像における画素毎に、当該画素に投影される三次元座標系の各点と前記第1の視点とを結ぶ線分と、前記第1の撮像装置の光軸とのなす角度である第1の画素視点投影角の情報と、前記第2の撮像装置で撮像された画像における画素毎に、当該画素に投影される前記三次元座標系の各点と前記第2の視点とを結ぶ線分と、前記第2の撮像装置の光軸とのなす角度である第2の画素視点投影角の情報と、前記第1の撮像装置の光軸方向を示す第1の光軸情報と、前記第2の撮像装置の光軸方向を示す第2の光軸情報と、前記第1の視点と前記第2の視点との相対位置を示す視点間情報とを保持する記憶部と、
前記第1の画素視点投影角の情報を用いて、前記第1の対象画像に投影される前記対象点に対応する前記第1の画素視点投影角である第1の対象視点投影角を取得する第1の視点投影角抽出部と、
前記第2の画素視点投影角の情報を用いて、前記第2の対象画像に投影される前記対象点に対応する前記第2の画素視点投影角である第2の対象視点投影角を取得する第2の視点投影角抽出部と、
前記第1及び第2の対象視点投影角と、前記第1及び第2の撮像装置の光軸方向と、前記視点間情報とを用いて、前記対象点の三次元座標を算出する座標算出部とを備える
三次元座標計測装置。 A three-dimensional coordinate measuring apparatus for measuring the three-dimensional coordinates of a target point,
A first target image in which the target point is imaged by a first imaging device from a first viewpoint, and a second target image in which the target point is imaged by a second imaging device from a second viewpoint. An image acquisition unit to acquire;
For each pixel in the image captured by the first imaging device, a line segment connecting each point of the three-dimensional coordinate system projected onto the pixel and the first viewpoint, and the light of the first imaging device Information on a first pixel viewpoint projection angle that is an angle formed with an axis, and each point of the three-dimensional coordinate system projected onto the pixel for each pixel in an image captured by the second imaging device, Information about the second pixel viewpoint projection angle, which is an angle formed by a line segment connecting the second viewpoint and the optical axis of the second imaging device, and the optical axis direction of the first imaging device. 1 optical axis information, second optical axis information indicating the optical axis direction of the second imaging device, and inter-viewpoint information indicating a relative position between the first viewpoint and the second viewpoint are stored. A storage unit to
Using the information on the first pixel viewpoint projection angle, a first target viewpoint projection angle that is the first pixel viewpoint projection angle corresponding to the target point projected on the first target image is acquired. A first viewpoint projection angle extraction unit;
Using the information on the second pixel viewpoint projection angle, a second target viewpoint projection angle that is the second pixel viewpoint projection angle corresponding to the target point projected on the second target image is acquired. A second viewpoint projection angle extraction unit;
A coordinate calculation unit that calculates three-dimensional coordinates of the target point using the first and second target viewpoint projection angles, the optical axis directions of the first and second imaging devices, and the inter-viewpoint information. A three-dimensional coordinate measuring device. - 前記記憶部は、さらに、
前記第1の撮像装置が、当該第1の撮像装置の光軸を中心として回転している角度である第1の回転角を示す情報と、
前記第2の撮像装置が、当該第2の撮像装置の光軸を中心として回転している角度である第2の回転角を示す情報とを保持し、
前記座標算出部は、前記第1及び第2の対象視点投影角と、前記第1及び第2の撮像装置の光軸方向と、前記視点間情報と、前記第1及び第2の回転角とを用いて、前記対象点の前記三次元座標を算出する
請求項1記載の三次元座標計測装置。 The storage unit further includes:
Information indicating a first rotation angle, which is an angle at which the first imaging device rotates around the optical axis of the first imaging device;
The second imaging device holds information indicating a second rotation angle that is an angle rotating around the optical axis of the second imaging device;
The coordinate calculation unit includes the first and second target viewpoint projection angles, the optical axis directions of the first and second imaging devices, the inter-viewpoint information, and the first and second rotation angles. The three-dimensional coordinate measurement apparatus according to claim 1, wherein the three-dimensional coordinates of the target point are calculated using a. - 前記座標算出部は、
前記第1の対象視点投影角と、前記第1の撮像装置の光軸方向と、前記第1の回転角とを用いて、前記第1の視点と前記第2の視点とを結ぶ線分と、前記第1の視点と前記対象点とを結ぶ線分とがなす角度である第1の対象角を算出し、
前記第2の対象視点投影角と、前記第2の撮像装置の光軸方向と、前記第2の回転角とを用いて、前記第1の視点と前記第2の視点とを結ぶ線分と、前記第2の視点と前記対象点とを結ぶ線分とがなす角度である第2の対象角を算出し、
前記視点間情報と、前記第1の対象角と、前記第2の対象角とを用いて、前記対象点の三次元座標を算出する
請求項2記載の三次元座標計測装置。 The coordinate calculation unit
A line segment connecting the first viewpoint and the second viewpoint using the first target viewpoint projection angle, the optical axis direction of the first imaging device, and the first rotation angle; Calculating a first target angle that is an angle formed by a line segment connecting the first viewpoint and the target point;
A line segment connecting the first viewpoint and the second viewpoint using the second target viewpoint projection angle, the optical axis direction of the second imaging device, and the second rotation angle; Calculating a second target angle that is an angle formed by a line segment connecting the second viewpoint and the target point;
The three-dimensional coordinate measurement apparatus according to claim 2, wherein the three-dimensional coordinates of the target point are calculated using the inter-viewpoint information, the first target angle, and the second target angle. - 前記第1の光軸情報は、前記第1の視点を通り、かつ、前記第1の視点と前記第2の視点とを結ぶ線分と垂直である第1の基準線と、前記第1の撮像装置の光軸とのなす角度である第1の撮影角を示す情報であり、
前記第2の光軸情報は、前記第2の視点を通り、かつ、前記第1の視点と前記第2の視点とを結ぶ線分と垂直であり、かつ、前記第1の基準線と平行な第2の基準線と、前記第2の撮像装置の光軸とのなす角度である第2の撮影角を示す情報であり、
前記座標算出部は、
前記第1の視点と前記第2の視点とを結ぶ線分と前記第1の基準線とがなす角度と、前記第1の視点投影角と、前記第1の撮影角と、前記第1の回転角とを用いて前記第1の対象角を算出し、
前記第1の視点と前記第2の視点とを結ぶ線分と前記第2の基準線とがなす角度と、前記第2の視点投影角と、前記第2の撮影角と、前記第2の回転角とを用いて前記第2の対象角を算出する
請求項3記載の三次元座標計測装置。 The first optical axis information includes a first reference line that passes through the first viewpoint and is perpendicular to a line segment that connects the first viewpoint and the second viewpoint; and Information indicating a first imaging angle that is an angle formed with the optical axis of the imaging device;
The second optical axis information passes through the second viewpoint, is perpendicular to a line segment connecting the first viewpoint and the second viewpoint, and is parallel to the first reference line. Information indicating a second imaging angle that is an angle formed between the second reference line and the optical axis of the second imaging device,
The coordinate calculation unit
An angle formed by a line segment connecting the first viewpoint and the second viewpoint and the first reference line, the first viewpoint projection angle, the first photographing angle, and the first viewpoint Calculating the first target angle using a rotation angle;
An angle formed by a line segment connecting the first viewpoint and the second viewpoint and the second reference line, the second viewpoint projection angle, the second photographing angle, and the second viewpoint. The three-dimensional coordinate measurement apparatus according to claim 3, wherein the second target angle is calculated using a rotation angle. - 前記画像取得部は、さらに、
相対座標が既知である3点以上の基準点のうちのいずれか3点である第1の基準点が、前記第1の視点から前記第1の撮像装置により撮像された第1の基準画像と、前記3点以上の基準点のうちのいずれか3点である第2の基準点が、前記第2の視点から前記第2の撮像装置により撮像された第2の基準画像とを取得し、
前記三次元座標計測装置は、さらに、
前記第1の画素視点投影角の情報を用いて、前記第1の基準画像に投影される前記3点の第1の基準点に対応する前記第1の画素視点投影角である3つの第1の基準視点投影角を取得する第3の視点投影角抽出部と、
前記第2の画素視点投影角の情報を用いて、前記第2の基準画像に投影される前記3点の第2の基準点に対応する前記第2の画素視点投影角である3つの第2の基準視点投影角を取得する第4の視点投影角抽出部と、
前記3つの第1の基準視点投影角と前記3点の第1の基準点の相対座標とを用いて、前記第1の基準画像の撮像面である第1の撮像面と前記3点の基準点を含む第1の基準平面とのなす第1の傾斜角を算出する第1の傾斜角算出部と、
前記3つの第2の基準視点投影角と前記3点の第2の基準点の相対座標とを用いて、前記第2の基準画像の撮像面である第2の撮像面と前記3点の第2の基準点を含む第2の基準平面とのなす第2の傾斜角を算出する第2の傾斜角算出部と、
前記3点の第1の基準点と前記3点の第2の基準点との相対位置関係と、前記第1の傾斜角と、前記第2の傾斜角とを用いて、前記第1の撮像装置の光軸方向と、前記第2の撮像装置の光軸方向と、前記第1の回転角と、前記第2の回転角とを算出する設定情報算出部とを備える
請求項2~4のいずれか1項に記載の三次元座標計測装置。 The image acquisition unit further includes:
A first reference image that is any one of three or more reference points whose relative coordinates are known is a first reference image captured by the first imaging device from the first viewpoint. A second reference point, which is any three of the three or more reference points, obtains a second reference image captured by the second imaging device from the second viewpoint,
The three-dimensional coordinate measuring device further includes:
Using the information of the first pixel viewpoint projection angle, the three first projection points that are the first pixel viewpoint projection angles corresponding to the three first reference points projected on the first reference image. A third viewpoint projection angle extraction unit for acquiring the reference viewpoint projection angle of
Using the information on the second pixel viewpoint projection angle, three second projections that are the second pixel viewpoint projection angles corresponding to the three second reference points projected on the second reference image. A fourth viewpoint projection angle extraction unit that acquires the reference viewpoint projection angle of
Using the three first reference viewpoint projection angles and the relative coordinates of the three first reference points, the first imaging surface, which is the imaging surface of the first reference image, and the three reference points A first inclination angle calculation unit for calculating a first inclination angle formed with a first reference plane including a point;
Using the three second reference viewpoint projection angles and the relative coordinates of the three second reference points, the second imaging surface, which is the imaging surface of the second reference image, and the three points A second inclination angle calculation unit for calculating a second inclination angle formed with a second reference plane including two reference points;
Using the relative positional relationship between the three first reference points and the three second reference points, the first inclination angle, and the second inclination angle, the first imaging is performed. The setting information calculation unit that calculates the optical axis direction of the apparatus, the optical axis direction of the second imaging apparatus, the first rotation angle, and the second rotation angle is provided. The three-dimensional coordinate measuring apparatus according to any one of the above. - 前記設定情報算出部は、
前記3点の第1の基準点と前記3点の第2の基準点との相対位置関係と、前記第1の傾斜角と、前記第2の傾斜角とを用いて、前記第1の視点及び前記第2の視点の三次元座標を算出し、
前記第1の視点及び前記第2の視点の三次元座標から、前記視点間情報を算出する
請求項5に記載の三次元座標計測装置。 The setting information calculation unit
The first viewpoint using the relative positional relationship between the first reference point of the three points and the second reference point of the three points, the first inclination angle, and the second inclination angle. And calculating the three-dimensional coordinates of the second viewpoint,
The three-dimensional coordinate measuring apparatus according to claim 5, wherein the inter-viewpoint information is calculated from the three-dimensional coordinates of the first viewpoint and the second viewpoint. - 対象点の三次元座標を計測する三次元座標計測方法であって、
第1の視点から第1の撮像装置により前記対象点が撮像された第1の対象画像と、第2の視点から第2の撮像装置により前記対象点が撮像された第2の対象画像とを取得するステップと、
前記第1の撮像装置で撮像された画像における画素毎に、当該画素に投影される三次元座標系の各点と前記第1の視点とを結ぶ線分と、前記第1の撮像装置の光軸とのなす角度である第1の画素視点投影角の情報と、前記第2の撮像装置で撮像された画像における画素毎に、当該画素に投影される前記三次元座標系の各点と前記第2の視点とを結ぶ線分と、前記第2の撮像装置の光軸とのなす角度である第2の画素視点投影角の情報と、前記第1の撮像装置の光軸方向を示す第1の光軸情報と、前記第2の撮像装置の光軸方向を示す第2の光軸情報と、前記第1の視点と前記第2の視点との相対位置を示す視点間情報とを保持するステップと、
前記第1の画素視点投影角の情報を用いて、前記第1の対象画像に投影される前記対象点に対応する前記第1の画素視点投影角である第1の対象視点投影角を取得するステップと、
前記第2の画素視点投影角の情報を用いて、前記第2の対象画像に投影される前記対象点に対応する前記第2の画素視点投影角である第2の対象視点投影角を取得するステップと、
前記第1及び第2の対象視点投影角と、前記第1及び第2の撮像装置の光軸方向と、前記視点間情報とを用いて、前記対象点の三次元座標を算出するステップとを含む
三次元座標計測方法。 A three-dimensional coordinate measurement method for measuring a three-dimensional coordinate of a target point,
A first target image in which the target point is imaged by a first imaging device from a first viewpoint, and a second target image in which the target point is imaged by a second imaging device from a second viewpoint. A step to obtain,
For each pixel in the image captured by the first imaging device, a line segment connecting each point of the three-dimensional coordinate system projected onto the pixel and the first viewpoint, and the light of the first imaging device Information on a first pixel viewpoint projection angle that is an angle formed with an axis, and each point of the three-dimensional coordinate system projected onto the pixel for each pixel in an image captured by the second imaging device, Information about the second pixel viewpoint projection angle, which is an angle formed by a line segment connecting the second viewpoint and the optical axis of the second imaging device, and the optical axis direction of the first imaging device. 1 optical axis information, second optical axis information indicating the optical axis direction of the second imaging device, and inter-viewpoint information indicating a relative position between the first viewpoint and the second viewpoint are stored. And steps to
Using the information on the first pixel viewpoint projection angle, a first target viewpoint projection angle that is the first pixel viewpoint projection angle corresponding to the target point projected on the first target image is acquired. Steps,
Using the information on the second pixel viewpoint projection angle, a second target viewpoint projection angle that is the second pixel viewpoint projection angle corresponding to the target point projected on the second target image is acquired. Steps,
Calculating the three-dimensional coordinates of the target point using the first and second target viewpoint projection angles, the optical axis directions of the first and second imaging devices, and the inter-viewpoint information; Includes 3D coordinate measurement method. - 請求項7に記載の三次元座標計測方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the three-dimensional coordinate measurement method according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013522375A JP5629874B2 (en) | 2011-07-01 | 2011-10-07 | 3D coordinate measuring apparatus and 3D coordinate measuring method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/003774 WO2013005244A1 (en) | 2011-07-01 | 2011-07-01 | Three-dimensional relative coordinate measuring device and method |
JPPCT/JP2011/003774 | 2011-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013005265A1 true WO2013005265A1 (en) | 2013-01-10 |
Family
ID=47277831
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/003774 WO2013005244A1 (en) | 2011-07-01 | 2011-07-01 | Three-dimensional relative coordinate measuring device and method |
PCT/JP2011/005654 WO2013005265A1 (en) | 2011-07-01 | 2011-10-07 | Three-dimensional coordinate measuring device and three-dimensional coordinate measuring method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/003774 WO2013005244A1 (en) | 2011-07-01 | 2011-07-01 | Three-dimensional relative coordinate measuring device and method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5070435B1 (en) |
WO (2) | WO2013005244A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018195965A (en) * | 2017-05-17 | 2018-12-06 | 日本電気株式会社 | Flying object position detection apparatus, flying object position detection system, flying object position detection method, and program |
JP2023506602A (en) * | 2020-03-20 | 2023-02-16 | コーニンクレッカ フィリップス エヌ ヴェ | 3D measurement grid tool for X-ray images |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103424104B (en) * | 2013-09-04 | 2015-11-18 | 中测新图(北京)遥感技术有限责任公司 | A kind of close shot large format digital Photogrammetric System and method |
CN104634246B (en) * | 2015-02-03 | 2017-04-12 | 李安澜 | Floating type stereo visual measuring system and measuring method for coordinates of object space |
CN104748680B (en) * | 2015-03-19 | 2018-09-14 | 酷派软件技术(深圳)有限公司 | A kind of dimension measurement method and device based on camera |
CN106441243A (en) * | 2016-09-22 | 2017-02-22 | 云南电网有限责任公司电力科学研究院 | Method and device for measuring ground clearance |
CN113884080A (en) * | 2016-11-01 | 2022-01-04 | 北京墨土科技有限公司 | Method and equipment for determining three-dimensional coordinates of positioning point and photoelectric measuring instrument |
CN108195345A (en) * | 2017-12-20 | 2018-06-22 | 合肥英睿系统技术有限公司 | A kind of distance measuring method and system based on electronic imager |
CN110108203B (en) * | 2019-04-11 | 2020-12-15 | 东莞中子科学中心 | A method and system for measuring wire position based on photogrammetry technology |
CN110595433A (en) * | 2019-08-16 | 2019-12-20 | 太原理工大学 | A method for measuring the inclination of transmission towers based on binocular vision |
CN112325767B (en) * | 2020-10-16 | 2022-07-26 | 华中科技大学鄂州工业技术研究院 | A spatial plane dimension measurement method integrating machine vision and time-of-flight measurement |
CN112991742B (en) * | 2021-04-21 | 2021-08-20 | 四川见山科技有限责任公司 | A visualization simulation method and system for real-time traffic data |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0493705A (en) * | 1990-08-09 | 1992-03-26 | Topcon Corp | Apparatus and method for measuring three-dimensional position |
JPH07218251A (en) * | 1994-02-04 | 1995-08-18 | Matsushita Electric Ind Co Ltd | Method and device for measuring stereo image |
JP2001021351A (en) * | 1999-07-07 | 2001-01-26 | Asahi Optical Co Ltd | Device and method for processing photogrammetric picture and storing medium storing photogrammetric picture processing program |
JP2004340840A (en) * | 2003-05-19 | 2004-12-02 | Honda Motor Co Ltd | Distance measuring device, distance measuring method and distance measuring program |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0680402B2 (en) * | 1985-05-28 | 1994-10-12 | 富士通株式会社 | Position measuring device |
JP3122629B2 (en) * | 1997-07-16 | 2001-01-09 | 株式会社エイ・ティ・アール知能映像通信研究所 | Arbitrary viewpoint image generation device |
JP2000121362A (en) * | 1998-10-20 | 2000-04-28 | Asahi Optical Co Ltd | Target measurement equipment for photogrammetry |
JP4282216B2 (en) * | 2000-09-19 | 2009-06-17 | オリンパス株式会社 | 3D position and orientation sensing device |
JP2004271292A (en) * | 2003-03-07 | 2004-09-30 | Meidensha Corp | Calibrator and stereo camera position/attitude calibration device |
JP4794011B2 (en) * | 2008-04-03 | 2011-10-12 | 関東自動車工業株式会社 | Image processing apparatus and robot control system |
JP2010025759A (en) * | 2008-07-18 | 2010-02-04 | Fuji Xerox Co Ltd | Position measuring system |
-
2011
- 2011-07-01 JP JP2011541976A patent/JP5070435B1/en not_active Expired - Fee Related
- 2011-07-01 WO PCT/JP2011/003774 patent/WO2013005244A1/en active Application Filing
- 2011-10-07 WO PCT/JP2011/005654 patent/WO2013005265A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0493705A (en) * | 1990-08-09 | 1992-03-26 | Topcon Corp | Apparatus and method for measuring three-dimensional position |
JPH07218251A (en) * | 1994-02-04 | 1995-08-18 | Matsushita Electric Ind Co Ltd | Method and device for measuring stereo image |
JP2001021351A (en) * | 1999-07-07 | 2001-01-26 | Asahi Optical Co Ltd | Device and method for processing photogrammetric picture and storing medium storing photogrammetric picture processing program |
JP2004340840A (en) * | 2003-05-19 | 2004-12-02 | Honda Motor Co Ltd | Distance measuring device, distance measuring method and distance measuring program |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018195965A (en) * | 2017-05-17 | 2018-12-06 | 日本電気株式会社 | Flying object position detection apparatus, flying object position detection system, flying object position detection method, and program |
JP2023506602A (en) * | 2020-03-20 | 2023-02-16 | コーニンクレッカ フィリップス エヌ ヴェ | 3D measurement grid tool for X-ray images |
JP7366286B2 (en) | 2020-03-20 | 2023-10-20 | コーニンクレッカ フィリップス エヌ ヴェ | 3D measurement grid tool for X-ray images |
Also Published As
Publication number | Publication date |
---|---|
JP5070435B1 (en) | 2012-11-14 |
JPWO2013005244A1 (en) | 2015-02-23 |
WO2013005244A1 (en) | 2013-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013005265A1 (en) | Three-dimensional coordinate measuring device and three-dimensional coordinate measuring method | |
CN110447220B (en) | Calibration device, calibration method, optical device, imaging device, and projection device | |
TWI555379B (en) | An image calibrating, composing and depth rebuilding method of a panoramic fish-eye camera and a system thereof | |
EP2751521B1 (en) | Method and system for alignment of a pattern on a spatial coded slide image | |
CN106331527B (en) | A kind of image split-joint method and device | |
WO2018076154A1 (en) | Spatial positioning calibration of fisheye camera-based panoramic video generating method | |
WO2012039043A1 (en) | Stereo image generating unit, method of generating stereo image, and stereo image generating computer program | |
US20210142517A1 (en) | System and methods for extrinsic calibration of cameras and diffractive optical elements | |
JP5011528B2 (en) | 3D distance measurement sensor and 3D distance measurement method | |
CN107808398B (en) | Camera parameter calculation device, calculation method, program, and recording medium | |
JP2009139246A (en) | Device, method and program for processing image, position detecting device and moving body equipped with this | |
CN105190234A (en) | Apparatus and method for three dimensional surface measurement | |
JPWO2008053649A1 (en) | Wide-angle image acquisition method and wide-angle stereo camera device | |
JP2016100698A (en) | Calibration device, calibration method, and program | |
JP2011086111A (en) | Imaging apparatus calibration method and image synthesis device | |
WO2020208686A1 (en) | Camera calibration device, camera calibration method, and non-transitory computer-readable medium having program stored thereon | |
KR20200103374A (en) | 3-dimensional modeling method using 2-dimensional image | |
JP7489253B2 (en) | Depth map generating device and program thereof, and depth map generating system | |
JP2019029721A (en) | Image processing apparatus, image processing method, and program | |
JP5648159B2 (en) | Three-dimensional relative coordinate measuring apparatus and method | |
JP2010176325A (en) | Device and method for generating optional viewpoint image | |
JP4764896B2 (en) | Camera calibration apparatus, camera calibration method, camera calibration program, and recording medium recording the program | |
JP4778569B2 (en) | Stereo image processing apparatus, stereo image processing method, and stereo image processing program | |
Lin et al. | Real-time low-cost omni-directional stereo vision via bi-polar spherical cameras | |
JP2018044942A (en) | Camera parameter calculation device, camera parameter calculation method, program and recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11868876 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013522375 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11868876 Country of ref document: EP Kind code of ref document: A1 |