+

WO2013002027A1 - Sun tracking device - Google Patents

Sun tracking device Download PDF

Info

Publication number
WO2013002027A1
WO2013002027A1 PCT/JP2012/065115 JP2012065115W WO2013002027A1 WO 2013002027 A1 WO2013002027 A1 WO 2013002027A1 JP 2012065115 W JP2012065115 W JP 2012065115W WO 2013002027 A1 WO2013002027 A1 WO 2013002027A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
axis
motor
rotation
transmission unit
Prior art date
Application number
PCT/JP2012/065115
Other languages
French (fr)
Japanese (ja)
Inventor
忠彦 加藤
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Publication of WO2013002027A1 publication Critical patent/WO2013002027A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar tracking device, and more particularly to a solar tracking device that can reduce the number of reduction gears and motors, and can be reduced in size and weight, and at the same time, can be reduced in manufacturing cost.
  • a photovoltaic power generation system that photoelectrically converts sunlight to generate electricity
  • a solar thermal power generation system that reflects and collects sunlight and condenses power by solar heat, and reflects sunlight to the shade and uses daylighting and solar heat
  • a solar utilization system has been developed.
  • a solar tracking device that changes the inclination of the light receiving unit that receives sunlight according to the azimuth and altitude of the sun is employed.
  • one axis that changes the inclination of the light receiving unit corresponding to the azimuth of the sun the other axis that changes the inclination of the light receiving unit corresponding to the altitude of the sun
  • 2 A motor is known that includes two motors that respectively rotate and drive two shafts and two speed reducers that reduce the number of rotations of these motors and output them to the respective shafts (Patent Document 1).
  • Patent Document 1 requires two motors and two reduction gears with a high reduction ratio in order to independently rotate the two shafts corresponding to the speed at which the sun moves on the celestial sphere. . Since the motor and the speed reducer are driven two by two, there is a problem that the apparatus becomes larger and the weight increases and the manufacturing cost further increases.
  • the present invention has been made to solve the above-described problems, and provides a solar tracking device that can reduce the number of motors and speed reducers, can be reduced in size and weight, and can be reduced in manufacturing cost. It is an object.
  • the position of the axial center is fixed with respect to the ground, and it rotates about the axial center corresponding to one of the azimuth or altitude of the sun.
  • a first axis configured to be capable of rotating, and a second axis configured to be rotatable around the first axis corresponding to the other of the azimuth or altitude of the sun and to which a light receiving unit that receives sunlight is fixed And.
  • One of the first transmission unit or the second transmission unit transmits rotation to one of the first shaft and the second shaft by the first one-way clutch. Thereby, at least one of the first axis or the second axis is rotated in accordance with the azimuth or altitude of the sun.
  • the speed at which the first axis and the second axis rotate, that is, the inclination of the light receiving unit at each time is determined by the speed transmission ratio of the first transmission unit and the second transmission unit. Therefore, it is possible to enable the light receiving unit to track the sun by setting the speed transmission ratio of the first transmission unit and the second transmission unit according to the latitude and longitude of the installation location of the sun tracking device.
  • an error speed transmission ratio error
  • the rotational position of the first axis or the second axis that is not at the target rotational position.
  • the rotation is transmitted from the drive shaft to the first transmission unit and the second transmission unit.
  • One of the first transmission unit or the second transmission unit is configured to block transmission of rotation to one of the first shaft or the second shaft by the first one-way clutch, and the other of the first transmission unit or the second transmission unit is the first one. The rotation is transmitted to the other of the first axis and the second axis.
  • the other of the first axis and the second axis can be rotated without rotating one of the first axis and the second axis, and the discrepancy between the position of the sun on the celestial sphere and the inclination of the light receiving unit can be reduced. Can be resolved. As a result, the light can be tracked by the light receiving unit.
  • the solar tracking device can be reduced in size and weight, and the manufacturing cost can be reduced by the difference between the reduced motor and reduction gear and the added first one-way clutch.
  • the parts of the first transmission unit and the second transmission unit can be shared. There is an effect that can.
  • the motor is first rotated in the other direction to rotate the other of the first axis or the second axis, and then the motor. It is possible to rotate one of the first axis and the second axis by rotating in one direction.
  • the speed at which the inclination of the light receiving portion changes due to the rotation of the motor in one direction is one of the first shaft and the second shaft to which the rotation is transmitted via the first one-way clutch.
  • the speed component around is set smaller than the speed component around the other of the first axis or the second axis. Therefore, when the motor is rotated in one direction so that one of the first axis or the second axis matches the azimuth or altitude of the sun and the inclination of the light receiving unit is made to correspond to the azimuth or altitude of the sun, the first axis or the second axis The other of the axes rotates slightly ahead of the sun's orientation or altitude at that time.
  • the motor when the motor is rotated in the other direction to transmit the rotation in the other direction of the motor to the other of the first axis or the second axis so as to adjust the preceding amount, the other of the first axis or the second axis is moved to the sun. Can be rotated in the direction opposite to the tracking direction to match the azimuth or altitude of the sun at that time. Note that one of the first axis and the second axis is maintained in a state that matches the direction or altitude of the sun because the rotation of the motor in the other direction is blocked by the first one-way clutch.
  • the speed component around one of the first axis or the second axis to which the rotation of the motor in one direction is transmitted via the first one-way clutch is the speed around the other of the first axis or the second axis. If it is set to be larger than the component, when the motor is rotated in one direction so that one of the first axis or the second axis matches the azimuth or altitude of the sun, for the other of the first axis or the second axis, It rotates slightly later than the direction or altitude of the sun at that time.
  • the motor To adjust the delay, the motor must be rotated in the other direction to rotate the other of the first shaft and the second shaft by about 360 °, and this adjustment takes a long time.
  • one of the first shaft and the second shaft cannot be rotated, so that the sun cannot be tracked during this time. Therefore, the accuracy of tracking the sun decreases. According to the solar tracking device of claim 2, this can be prevented, and in addition to the effect of claim 1, the other of the first axis or the second axis can be adjusted in a short time, and the sun can be adjusted. There is an effect that the accuracy of tracking can be improved.
  • the order of correcting the rotational position of the first axis or the second axis is not limited.
  • the first one-way clutch is disposed on the first axis or the second axis that is set so as to rotate corresponding to the direction of the sun.
  • positioned can always be made to respond
  • the azimuth angle gradually increases, while the altitude angle gradually increases from sunrise to a certain time, but thereafter gradually decreases until sunset.
  • the first or second shaft provided with the first one-way clutch is set to rotate corresponding to the altitude of the sun, the altitude angle gradually increases from sunrise until a certain time, and then gradually until sunset. Therefore, it becomes necessary to return the first axis or the second axis to the other direction.
  • the first shaft or the second shaft can be used even if it is desired to slightly return the first shaft or the second shaft in the other direction. It must be rotated about 360 ° in the direction. The rotation of about 360 ° takes a long time, and the inclination of the light receiving unit during this time does not correspond to the sun, so the accuracy of tracking the sun is reduced.
  • the first axis or the second axis provided with the first one-way clutch is set to rotate with respect to the direction of the sun, so that the first axis or the second axis is unidirectional from sunrise to sunset. It is sufficient to rotate it to the other direction, and it is not necessary to return to the other direction. Since the time when the sun cannot be tracked can be eliminated, in addition to the effect of the first or second aspect, there is an effect that the accuracy of tracking the sun can be improved.
  • the sun tracking device of claim 4 when the rotation of the motor in one direction is transmitted to the drive shaft, the other of the first transmission unit or the second transmission unit is the first shaft or The transmission of rotation to the other side of the second shaft is blocked. Accordingly, one of the first axis and the second axis can be rotated without rotating the other of the first axis and the second axis, and the sun can be tracked by one of the first axis and the second axis.
  • the other of the first transmission unit or the second transmission unit transmits the rotation to the other of the first shaft or the second shaft by the second one-way clutch.
  • the other of the first axis or the second axis can be rotated without rotating one of the first axis or the second axis, and the sun can be tracked by the other of the first axis or the second axis.
  • the motor for tracking the sun in one direction and the other direction there is an effect that the rotation control can be simplified.
  • the first transmission unit or the second transmission unit including the first one-way clutch or the second one-way clutch has the drive shaft that receives a load from the first shaft or the second shaft. Since it is set to be non-rotatable, in addition to the effect of any one of claims 1 to 4, it is possible to prevent the inclination of the light receiving portion from being changed by wind force or the like without providing a mechanical or electrical brake mechanism. effective.
  • the position of the axis center is fixed with respect to the ground, and the first structure is configured to be rotatable about the axis corresponding to one of the azimuth or altitude of the sun.
  • An axis, and a second axis on which a light receiving unit for receiving sunlight is fixed are configured to be rotatable around the first axis corresponding to the other of the azimuth or altitude of the sun.
  • the speed at which the first axis and the second axis rotate, that is, the inclination of the light receiving unit at each time is determined by the speed transmission ratio of the transmission unit. Therefore, it is possible to enable the light receiving unit to track the sun by setting the speed transmission ratio of the transmission unit according to the latitude and longitude of the installation location of the sun tracking device.
  • speed transmission ratio error an error in the transmission unit
  • an installation error in the sun tracking device, or the like occurs, a mismatch occurs between the position of the sun on the celestial sphere and the inclination of the light receiving unit. That is, the light receiving unit cannot track the sun.
  • the motor is driven to rotate in the other direction.
  • the transmission unit interrupts transmission of the rotation to the first shaft by the one-way clutch. Accordingly, the second axis can be rotated without rotating the first axis, and the mismatch between the position of the sun on the celestial sphere and the inclination of the light receiving unit can be eliminated. As a result, the light can be tracked by the light receiving unit.
  • the first axis and the second axis are driven by the motor and the speed reducer one by one without driving the first axis and the second axis independently by the two motors and the speed reducer. Therefore, the solar tracking device can be reduced in size and weight, and the manufacturing cost can be reduced by the difference between the reduced motor and reduction gear and the added one-way clutch.
  • the motor Since the order of correcting the rotational position of the first axis or the second axis is not limited, the motor is first rotated in the other direction to rotate the second axis, and then the motor is rotated in one direction. It is possible to rotate the first axis and the second axis.
  • the second shaft is set to be non-rotatable by the input of the load from the first shaft. Even if no mechanical or electrical brake mechanism is provided, there is an effect that the inclination of the light receiving portion can be prevented from changing due to wind force or the like.
  • (A) is a perspective view of the solar tracking device in 1st Embodiment
  • (b) is a perspective view of the solar tracking device which showed the internal structure typically.
  • (A) is a skeleton diagram of the solar tracking device in front view when the motor is rotated in one direction
  • (b) is a skeleton diagram of the solar tracking device in side view when the motor is rotated in one direction
  • (C) is a skeleton diagram of the solar tracking device in a front view when the motor is rotated in the other direction
  • (d) is a skeleton diagram of the solar tracking device in a side view when the motor is rotated in the other direction.
  • (A) is a skeleton figure of the solar tracking device in a front view when the motor is rotated in one direction in the solar tracking device in the second embodiment, and (b) is a side view when the motor is rotated in one direction. It is a skeleton figure of the solar tracking device in vision, (c) is a skeleton diagram of the solar tracking device in front view when the motor is rotated in the other direction, and (d) is a side view when the motor is rotated in the other direction. It is a skeleton figure of the solar tracking device in vision.
  • (A) is a skeleton figure of the solar tracking device in a front view when the motor is rotated in one direction in the solar tracking device in the third embodiment, and (b) is a side view when the motor is rotated in one direction. It is a skeleton figure of the solar tracking device in vision, (c) is a skeleton diagram of the solar tracking device in front view when the motor is rotated in the other direction, and (d) is a side view when the motor is rotated in the other direction. It is a skeleton figure of the solar tracking device in vision.
  • (A) is a skeleton figure of the solar tracking device in a front view when the motor is rotated in one direction in the solar tracking device in the fourth embodiment, and (b) is a side view when the motor is rotated in one direction. It is a skeleton figure of the solar tracking device in vision, (c) is a skeleton diagram of the solar tracking device in front view when the motor is rotated in the other direction, and (d) is a side view when the motor is rotated in the other direction. It is a skeleton figure of the solar tracking device in vision. It is a perspective view of the solar tracking apparatus in 5th Embodiment.
  • FIG. 1A is a perspective view of the solar tracking device 1 according to the first embodiment of the present invention.
  • the solar tracking device 1 is provided with the base part 2 fixed with respect to the earth, and the housing
  • the motor 4 is driven, the drive shaft 6 is rotated via the speed reducer 5, and the second shaft 8 is rotated to change the inclination of the light receiving unit 9.
  • the light receiving unit 9 is a member that is fixed to the second shaft 8 and whose inclination is changed according to the azimuth and altitude of the sun as the casing 3 and the second shaft 8 rotate.
  • the light receiving unit 9 is a solar cell panel that directly converts solar energy into electric power according to a system in which the solar tracking device 1 is incorporated, a solar power generation system that collects sunlight and uses it as a heat source, Therefore, a reflecting mirror that reflects sunlight is appropriately selected and employed.
  • FIG. 1B is a perspective view of the solar tracking device 1 schematically showing the internal structure from which the housing 3 (see FIG. 1A) is removed, and the base 2 and the light receiving unit 9 are not shown. ing.
  • the drive shaft 6 and the second shaft 8 are disposed so as to be orthogonal to each other, and the first shaft 7 is disposed so as to be orthogonal to the drive shaft 6 and the second shaft 8, respectively.
  • the first shaft 7 is erected on the base 2 (see FIG. 1A) so that the position of the shaft center O is fixed by a bearing (not shown) or the like and is rotatable around the shaft center O. Has been.
  • the motor 4 is configured to be able to output rotations in one direction and the other direction, and the speed of the motor 4 is reduced by the speed reducer 5.
  • the drive shaft 6 is a member that is rotated by the output of the speed reducer 5, and the first transmission unit 10 and the second transmission unit 20 are disposed at a predetermined interval in the axial direction.
  • the first transmission unit 10 is a member that transmits rotation in one direction of the drive shaft 6 to the first shaft 7 and blocks transmission of rotation in the other direction of the drive shaft 6 to the first shaft 7.
  • the first transmission unit 10 is configured by a worm gear having a sprag type one-way clutch, and includes a one-way clutch (first one-way clutch 11) disposed on the drive shaft 6 and the first one-way.
  • a worm 12 formed on the outer periphery of the clutch 11 and a worm wheel 13 disposed on the first shaft 7 so as to mesh with the worm 12 are provided.
  • the second transmission unit 20 is a member that transmits the rotation in one direction and the other direction of the drive shaft 6 from the drive shaft 6 to the second shaft 8.
  • the second transmission portion 20 is constituted by a worm gear, and a worm 21 formed on the drive shaft 6 and a worm wheel 22 disposed on the second shaft 8 so as to mesh with the worm 21.
  • the rotation in one direction of the motor 4 is transmitted to the first shaft 7 and the second shaft 8 by the first transmission unit 10 and the second transmission unit 20, and the rotation in the other direction of the motor 4 is the second transmission unit. 20 is transmitted to the second shaft 8.
  • the speed transmission ratio of the first transmission unit 10 and the second transmission unit 20 due to the rotation of the motor 4 in one direction is such that the rotation speed of the second shaft 8 per rotation of the drive shaft 6 is the rotation speed of the first shaft 7. It is set to be larger. Accordingly, the speed at which the inclination of the light receiving unit 9 changes due to the rotation of the motor 4 in one direction is set such that the speed component around the first axis 7 is smaller than the speed component around the second axis 8.
  • FIG. 2A is a skeleton diagram of the solar tracking device 1 in a front view when the motor 4 is rotated in one direction
  • FIG. 2B is a sun track in a side view when the motor 4 is rotated in one direction
  • FIG. 2 is a skeleton diagram of the device 1.
  • the drive shaft 6 is rotated in one direction, and accordingly, the worm 21 of the second transmission portion 20 is rotated in one direction.
  • the sprag 11a of the first one-way clutch 11 is locked, and the worm 12 rotates in one direction.
  • FIG. 2 shows that the sprag 11a is hatched and locked (see FIG. 2 (a)), and the free sprag 21a unlocked is shown in white (FIG. 2 (c)). reference). Note that hatching or whiteness indicating this lock or free is the same in FIGS. 3 to 5.
  • the worm wheels 13 and 22 respectively meshed with the worms 12 and 21 are rotated in one direction as shown in FIG.
  • the first shaft 7 rotates in the azimuth direction
  • the second shaft 8 rotates in one direction of the altitude direction.
  • the rotational speed of the motor 4, the reduction ratio of the speed reducer 5, and the speed transmission ratios of the first transmission unit 10 and the second transmission unit 20 are set so as to match the moving speed of the sun on the celestial sphere (dedicated parts are used).
  • the inclination of the light receiving unit 9 fixed to the second axis 8 can be changed according to the azimuth and altitude of the sun.
  • FIG. 2C is a skeleton diagram of the solar tracking device 1 in a front view when the motor 4 is rotated in the other direction
  • FIG. 2D is a sun tracking in a side view when the motor 4 is rotated in the other direction.
  • FIG. 2 is a skeleton diagram of the device 1.
  • Rotating the worm 21 in the other direction causes the worm wheel 22 meshing with the worm 21 to rotate in the other direction, as shown in FIG.
  • the rotation of the first axis 7 in the azimuth direction is stopped, and the second axis 8 is rotated in the other direction of the altitude direction, so that there is a mismatch between the position of the sun on the celestial sphere and the inclination of the light receiving unit 9.
  • the light receiving unit 9 can track the sun.
  • the motor 4 and the speed reducer 5 can be reduced to one each.
  • the solar tracking device 1 can be reduced in size and weight, and the manufacturing cost can be reduced by the difference between the reduced motor and reduction gear and the added first one-way clutch 11.
  • the first transmission unit 10 and the second transmission unit 20 are eliminated.
  • the parts of the unit 20 can be shared.
  • the speed at which the inclination of the light receiving unit 9 changes due to the rotation of the motor 4 in one direction is set so that the speed component around the first axis 7 is smaller than the speed component around the second axis 8.
  • 4 is rotated in one direction so that the first axis 7 coincides with the direction of the sun and the inclination of the light receiving unit 9 corresponds to the direction of the sun, the second axis 8 is slightly ahead of the altitude of the sun at that time. Then rotate.
  • the motor 4 is rotated in the other direction and the rotation of the motor 4 in the other direction is transmitted to the second shaft 8 so as to adjust the preceding amount, the second shaft 8 is rotated in the direction opposite to the sun tracking direction.
  • the inclination of the light receiving unit 9 can be made to correspond to the azimuth and altitude of the sun.
  • the speed transmission ratio of the first transmission unit 10 and the second transmission unit 20 due to the rotation of the motor 4 in one direction indicates that the rotation speed of the second shaft 8 per rotation of the drive shaft 6 is the rotation of the first shaft 7. If the speed is set to be smaller than the speed, the speed component around the second axis 8 where the inclination of the light receiving unit 9 changes due to the rotation of the motor 4 in one direction is smaller than the speed component around the first axis 7. Become. In this case, when the motor 4 is rotated in one direction so that the first shaft 7 matches the direction of the sun, the second shaft 8 rotates slightly later than the sun's altitude at that time.
  • the motor 4 To adjust the delay, the motor 4 must be rotated in the other direction to rotate the second shaft 8 by about 360 °, which takes a long time. Moreover, since the 1st axis
  • the altitude angle gradually increases from sunrise to a certain time, and then gradually decreases until sunset. It is necessary to return the first shaft 7 in the other direction.
  • the transmission of the rotation of the motor 4 in the other direction of the first shaft 7 is interrupted by the first one-way clutch 11, even when it is desired to slightly return the first shaft 7 in the other direction, the first shaft 7 is approximately 360 ° in one direction. Must be rotated. This takes a long time, and since the inclination of the light receiving unit 9 during that time is irrelevant to the sun, the accuracy of tracking the sun is reduced.
  • the first shaft 7 that is blocked from rotating in the other direction by the first one-way clutch 11 is set to rotate with respect to the direction of the sun, so from sunrise to sunset, The need to return the first shaft 7 in the other direction can be eliminated.
  • the inclination of the light receiving unit 9 can always correspond to the direction of the sun, and the accuracy of tracking the sun can be improved.
  • the first axis 7 is arranged corresponding to the direction of the sun
  • the second axis 8 is arranged corresponding to the altitude of the sun. Since the rotation of the second shaft 8 in one direction and the other direction of the motor 4 is transmitted by the second transmission unit 20, the second shaft 8 can be rotated in one direction and the other direction according to the altitude of the sun, The sun's altitude direction can be tracked freely.
  • the drive shaft 6 is set to be non-rotatable by the input of a load from the first shaft 7. Specifically, it is set so that the worm 12 (drive shaft 6) cannot be rotated from the worm wheel 13 (first shaft 7) even in the absence of a mechanical or electrical brake mechanism. More specifically, the transmission efficiency of the first transmission unit 10 when the worm 12 is rotated from the worm wheel 13 is set to 0 or negative. Thereby, it is possible to prevent the drive shaft 6 from rotating around the first shaft 7 by wind force or the like, to prevent the inclination of the light receiving unit 9 from changing, and to improve the sun tracking accuracy.
  • the second transmission unit 20 can be set so that the worm 21 (drive shaft 6) cannot be rotated from the worm wheel 22 (second shaft 8) by adjusting the transmission efficiency. It is also possible to make the worm 21 unrotatable from the worm wheel 22 by using the friction (mechanical brake mechanism) of the motor 4 and the speed reducer 5.
  • FIG. 3A is a skeleton diagram of the solar tracking device 101 in a front view when the motor 4 is rotated in one direction in the solar tracking device 101 in the second embodiment, and FIG. It is a skeleton figure of the sun tracking device 101 in the side view when rotated in one direction.
  • the first transmission unit 110 is a member that transmits the rotation in one direction and the other direction of the drive shaft 6 from the drive shaft 6 to the first shaft 7.
  • the first transmission unit 110 is configured by a worm gear, and a worm 111 formed on the drive shaft 6 and a worm wheel 112 disposed on the first shaft 7 so as to mesh with the worm 111. And.
  • the second transmission unit 120 is a member that transmits the rotation in one direction of the drive shaft 6 to the second shaft 8 and blocks the transmission of the rotation in the other direction of the drive shaft 6 to the second shaft 8.
  • second transmission unit 120 is configured by a worm gear having a sprag type one-way clutch, and includes a one-way clutch (first one-way clutch 121) disposed on drive shaft 6 and the first one-way.
  • a worm 122 formed on the outer periphery of the clutch 121 and a worm wheel 123 disposed on the second shaft 8 so as to mesh with the worm 122 are provided.
  • the rotation of the motor 4 in one direction is transmitted to the first shaft 7 and the second shaft 8 by the first transmission unit 110 and the second transmission unit 120, and the motor 4 The rotation in the other direction is transmitted to the first shaft 7 by the first transmission unit 110.
  • the speed transmission ratio of the first transmission unit 110 and the second transmission unit 120 due to the rotation of the motor 4 in one direction is such that the rotation speed of the first shaft 7 per rotation of the drive shaft 6 is the rotation speed of the second shaft 8. It is set to be larger. Accordingly, the speed at which the inclination of the light receiving unit 9 changes due to the rotation of the motor 4 in one direction is set such that the speed component around the first axis 7 is smaller than the speed component around the second axis 8.
  • the drive shaft 6 is rotated in one direction.
  • the sprag 121a of the first one-way clutch 121 is locked, and the worm 122 is integrated. Rotate in the direction. Also in the first transmission unit 110, the worm 111 rotates in one direction.
  • the first shaft 7 rotates in the azimuth direction
  • the second shaft 8 rotates in one direction of the altitude direction.
  • the speed transmission ratio of the first transmission unit 110 and the second transmission unit 120 due to the rotation of the motor 4 in one direction is such that the rotation speed of the first shaft 7 per rotation of the drive shaft 6 is larger than the rotation speed of the second shaft 8. Therefore, when the inclination in the altitude direction of the light receiving unit 9 corresponds to the altitude of the sun, the inclination in the azimuth direction of the light receiving unit 9 precedes the azimuth of the sun on the celestial sphere.
  • FIG. 3C is a skeleton diagram of the solar tracking device 1 in a front view when the motor 4 is rotated in the other direction
  • FIG. 3D is a solar tracking in a side view when the motor 4 is rotated in the other direction
  • FIG. 2 is a skeleton diagram of the device 1.
  • the drive shaft 6 is rotated in the other direction, and the second transmission portion 120 unlocks the sprag 121 a of the first one-way clutch 121, and the worm 122 Transmission of power to is interrupted.
  • the worm 111 rotates in the other direction.
  • the worm wheel 112 that meshes with the worm 111 rotates in the other direction as shown in FIG.
  • the inclination of the light receiving unit 9 in the azimuth direction can be made to correspond to the azimuth of the sun. it can.
  • the light receiving unit 9 can track the sun.
  • the drive shaft 6 is set to be non-rotatable by the input of a load from the second shaft 8. Specifically, it is set so that the worm 122 (drive shaft 6) cannot be rotated from the worm wheel 123 (second shaft 8) even when there is no mechanical or electrical brake mechanism. More specifically, the transmission efficiency of the second transmission unit 120 when rotating the worm 122 from the worm wheel 123 is set to 0 or negative. Thereby, it can prevent that the inclination of the light-receiving part 9 changes with a wind force etc., and can improve the tracking accuracy of the sun.
  • the first transmission unit 110 can be similarly set so that the worm 111 (drive shaft 6) cannot be rotated from the worm wheel 122 (first shaft 7) by adjusting the transmission efficiency. It is also possible to make the worm 111 non-rotatable from the worm wheel 122 using the friction (mechanical brake mechanism) of the motor 4 and the speed reducer 5.
  • FIG. 4A is a skeleton diagram of the solar tracking device 201 in a front view when the motor 4 is rotated in one direction in the solar tracking device 201 in the third embodiment, and FIG. It is a skeleton figure of the sun tracking device 201 in the side view when rotated in one direction.
  • the first transmission unit 210 transmits the rotation of the drive shaft 6 in one direction to the first shaft 7, while the rotation of the drive shaft 6 in the other direction to the first shaft 7. It is a member that blocks transmission.
  • the first transmission unit 210 is configured by a worm gear having a sprag type one-way clutch, and includes a one-way clutch (first one-way clutch 211) disposed on the drive shaft 6, and the first one-way.
  • a worm 212 formed on the outer periphery of the clutch 211 and a worm wheel 213 disposed on the first shaft 7 so as to mesh with the worm 212 are provided.
  • the second transmission unit 220 is a member that transmits the rotation in the other direction of the drive shaft 6 to the second shaft 8 and blocks the transmission of the rotation in one direction of the drive shaft 6 to the second shaft 8.
  • the second transmission unit 220 is configured by a worm gear including a sprag type one-way clutch, and includes a one-way clutch (second one-way clutch 221) disposed on the drive shaft 6, and the second one-way.
  • a worm 222 formed on the outer periphery of the clutch 221 and a worm wheel 223 disposed on the second shaft 8 so as to mesh with the worm 222 are provided.
  • the drive shaft 6 is rotated in one direction.
  • the sprag 211a of the first one-way clutch 211 is locked, and the worm 212 is integrated. Rotate in the direction.
  • the sprag 221a of the second one-way clutch 221 is unlocked, and the worm 222 is not driven.
  • the worm wheel 213 that meshes with the worm 212 rotates in one direction as shown in FIG.
  • the first axis 7 rotates in the azimuth direction
  • the inclination of the light receiving unit 9 in the azimuth direction can correspond to the azimuth of the sun.
  • the worm wheel 223 that meshes with the worm 222 rotates in the other direction, as shown in FIG.
  • the second shaft 8 rotates in the altitude direction
  • the inclination of the light receiving unit 9 in the altitude direction can correspond to the solar altitude.
  • the first shaft 7 and the second shaft 8 can be independently rotated by the first one-way clutch 211 and the second one-way clutch 221 by rotating the motor 4 in one direction or the other direction. Rotation control of the motor 4 for tracking can be simplified.
  • the drive shaft 6 is set to be non-rotatable by the input of a load from the first shaft 7. Specifically, it is set so that the worm 212 (drive shaft 6) cannot be rotated from the worm wheel 213 (first shaft 7) even when there is no mechanical or electrical brake mechanism. More specifically, the transmission efficiency of the first transmission unit 210 when the worm 212 is rotated from the worm wheel 213 is set to 0 or negative.
  • the drive shaft 6 is set to be non-rotatable by the input of a load from the second shaft 8. Specifically, it is set so that the worm 222 (drive shaft 6) cannot be rotated from the worm wheel 223 (second shaft 8) even in the absence of a mechanical or electrical brake mechanism. More specifically, the transmission efficiency of the second transmission unit 220 when rotating the worm 222 from the worm wheel 223 is set to 0 or negative.
  • the 1st transmission part 210 and the 2nd transmission part 220 as mentioned above, it can prevent that the inclination of the light-receiving part 9 changes with a wind force etc., and can improve the tracking accuracy of the sun.
  • FIG. 5A is a skeleton diagram of the solar tracking device 301 in a front view when the motor 4 is rotated in one direction in the solar tracking device 301 in the fourth embodiment, and FIG. It is a skeleton figure of the sun tracking device 301 in the side view when rotated in one direction.
  • the second shaft 308 is a member that is rotated by the output of the speed reducer 5, and is disposed so as to be orthogonal to the first shaft 7, and the transmission unit 310 and the light receiving unit 9 are disposed. Has been.
  • the transmission unit 310 is a member that transmits the rotation of the second shaft 308 in one direction to the first shaft 7 while blocking the transmission of the rotation of the second shaft 308 in the other direction to the first shaft 7.
  • transmission unit 310 is configured by a worm gear including a sprag type one-way clutch, and is formed on the outer circumference of one-way clutch 311 disposed on second shaft 308 and one-way clutch 311.
  • a worm 312 and a worm wheel 313 disposed on the first shaft 7 so as to mesh with the worm 312 are provided.
  • the sun tracking device 301 Since the sun tracking device 301 is configured as described above, rotations in one direction and the other direction of the motor 4 are transmitted from the second shaft 308 to the light receiving unit 9. Further, the rotation of the motor 4 in one direction is transmitted to the first shaft 7 by the transmission unit 310.
  • the speed transmission ratio of the transmission unit 310 is set so that the rotation speed of the second shaft 308 is larger than the rotation speed of the first shaft 7 in one direction of rotation of the motor 4.
  • the second shaft 308 is rotated in one direction, and in the transmission section 310, the sprag 311a of the one-way clutch 311 is locked, and the worm 312 is rotated in one direction. To do. Further, as the second shaft 308 rotates, the inclination of the light receiving unit 9 in the altitude direction changes.
  • the worm wheel 313 that meshes with the worm 312 rotates in one direction as shown in FIG.
  • the first axis 7 rotates in the azimuth direction
  • the inclination of the light receiving unit 9 in the azimuth direction changes.
  • the speed transmission ratio of the transmission unit 310 due to the rotation of the motor 4 in one direction is set so that the rotation speed of the second shaft 308 is larger than the rotation speed of the first shaft 7.
  • FIG. 5C is a skeleton diagram of the solar tracking device 301 in a front view when the motor 4 is rotated in the other direction
  • FIG. 5D is a solar tracking in a side view when the motor 4 is rotated in the other direction
  • 2 is a skeleton diagram of the device 301.
  • the first shaft 7 and the second shaft 308 can be driven by the motor 4 and the speed reducer 5 so that the sun can be tracked. Can be reduced.
  • the solar tracking device 301 can be reduced in size and weight, and the manufacturing cost can be reduced by the difference between the reduced motor and reduction gear and the added one-way clutch 311. Further, since it is not necessary to individually set the speed transmission ratio of the transmission unit 310 for each installation location of the solar tracking device 301 (dedicated parts), it is possible to make the components of the transmission unit 310 common.
  • the second shaft 308 is set to be non-rotatable by the input of a load from the first shaft 7.
  • the worm 312 (second shaft 308) cannot be rotated from the worm wheel 313 (first shaft 7) even in the absence of a mechanical or electrical brake mechanism.
  • the transmission efficiency when rotating the worm 312 from the worm wheel 313 is set to 0 or negative.
  • the second shaft 308 can be made non-rotatable even when an external force such as wind power is applied by using the friction of the motor 4 or the speed reducer 5.
  • FIG. 6 is a perspective view of a solar tracking device 401 according to the fifth embodiment. In FIG. 6, the motor 4, the speed reducer 5, and the drive shaft 6 are not shown.
  • the solar tracking device 401 includes a base portion 402 that is fixed to the ground, a first shaft 407 that is laterally supported while being pivotally supported by the base portion 402, and a first shaft 407.
  • a substantially U-shaped frame 403 that is fixed and swings as the first shaft 407 rotates is provided, and a second shaft 408 that is pivotally supported by the frame 403 and to which the light receiving unit 9 is fixed.
  • the first shaft 407 and the second shaft 408 are linked to a drive shaft (not shown), and the drive shaft is configured to be rotated by outputs of a motor and a speed reducer (not shown).
  • the inclination of the light receiving unit 9 is changed by the rotation of the shaft 408.
  • the first shaft 407 is provided horizontally and the second shaft 408 is supported by the frame 304, so that the light receiving unit 9 can be provided immediately above the base unit 402. Therefore, the area of the light receiving unit 9 can be increased.
  • first transmission units 10, 110, 210, the second transmission units 20, 120, 220, and the transmission unit 310 are configured by worm gears.
  • present invention is not necessarily limited thereto.
  • other transmission mechanisms include bevel gears (straight teeth or bent teeth), crown gears, and the like.
  • the second shafts 308 and 408 are orthogonal to the first shaft 7 and 407.
  • each axis is not necessarily limited to this, and it is naturally possible to make each axis obliquely cross at an angle other than orthogonal.
  • the bevel angular is used for the first transmission unit 10, 110, 210, the second transmission unit 20, 120, 220 and the transmission unit 310. Transmission can be made possible.
  • the one-way clutch (the first one-way clutch 11, 121, 211, the second one-way clutch 221 and the one-way clutch 311) is a sprag type has been described, but the present invention is not necessarily limited to this. Of course, it is possible to employ one-way clutches such as a roller type and a ratchet type.
  • the case where the first shaft 7 is arranged in the vertical direction (substantially orthogonal to the ground) and the case where the first shaft 407 is arranged in the horizontal direction (substantially parallel to the ground) are described.
  • the inclination of the light receiving unit 9 can be changed by linking the first shafts 7 and 407 and the second shafts 8, 308, and 408.
  • the motor 4 when correcting the inclination of the light receiving unit 9, the motor 4 is first rotated in the direction in which the first one-way clutch 11, 121, 211 or the one-way clutch 311 is locked, and then the first one-way.
  • the motor 4 is rotated in a direction in which the clutch 11, 121, 211 or the one-way clutch 311 is free
  • the present invention is not necessarily limited thereto.
  • the motor 4 is rotated in such a direction that the first one-way clutch 11, 121, 211 or the one-way clutch 311 becomes free, and then the motor 4 in a direction in which the first one-way clutch 11, 121, 211 or the one-way clutch 311 is locked. It is of course possible to correct the inclination of the light receiving unit 9 by rotating. This is because the same effect can be realized regardless of the order of rotation of the motor 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a sun tracking device wherein the number of reduction devices and motors can be reduced, size reduction and weight reduction are possible, and production costs can be reduced. The rotation of a motor (4) in one direction is transferred to a drive shaft (6) from a reduction device (5), and the rotation is transferred in a first transfer part (10) and a second transfer part (20). The rotation is transferred to a first shaft (7) by a first one-way clutch (11) for the first transfer part (10); therefore, the first shaft (7) is at least rotated according to the azimuth or the altitude of the sun. On the other hand, if the rotation of the motor (4) in the other direction is transferred to the drive axis (6), the transfer of the rotation to the first shaft (7) is interrupted by the first one-way clutch (11), and a second transfer part (20) transfers the rotation to a second shaft (8). Thus, without rotating the first shaft (7), the second shaft (8) can be rotated. As a result, the inclination of a light receiving part (9) can be changed freely.

Description

太陽追尾装置Solar tracking device
 本発明は太陽追尾装置に関し、特に、減速機およびモータの数を削減することができ、小型化および軽量化できると共に製造コストを低減できる太陽追尾装置に関するものである。 The present invention relates to a solar tracking device, and more particularly to a solar tracking device that can reduce the number of reduction gears and motors, and can be reduced in size and weight, and at the same time, can be reduced in manufacturing cost.
 従来より、太陽光を光電変換して発電を行う太陽光発電システム、太陽光を反射させて集光し太陽熱により汽力発電を行う太陽熱発電システム、太陽光を反射させ日陰に導き採光照明や太陽熱利用等をする太陽利用システムが開発されている。それらシステムにおいて、発電効率や採光量等を向上させるために、太陽光を受ける受光部の傾きを太陽の方位および高度に応じて変化させる太陽追尾装置が採用される。従来の太陽追尾装置としては、例えば、太陽の方位に対応させて受光部の傾きを変化させる一方の軸と、太陽の高度に対応させて受光部の傾きを変化させる他方の軸と、それら2つの軸をそれぞれ回転駆動する2つのモータと、それらモータの回転数を減じて各々の軸に出力する2つの減速機とを備えるものが知られている(特許文献1)。 Conventionally, a photovoltaic power generation system that photoelectrically converts sunlight to generate electricity, a solar thermal power generation system that reflects and collects sunlight and condenses power by solar heat, and reflects sunlight to the shade and uses daylighting and solar heat A solar utilization system has been developed. In these systems, in order to improve the power generation efficiency, the amount of light collected, and the like, a solar tracking device that changes the inclination of the light receiving unit that receives sunlight according to the azimuth and altitude of the sun is employed. As a conventional sun tracking device, for example, one axis that changes the inclination of the light receiving unit corresponding to the azimuth of the sun, the other axis that changes the inclination of the light receiving unit corresponding to the altitude of the sun, and 2 A motor is known that includes two motors that respectively rotate and drive two shafts and two speed reducers that reduce the number of rotations of these motors and output them to the respective shafts (Patent Document 1).
特開2010-258369号公報JP 2010-258369 A
 しかしながら特許文献1に開示される技術は、天球上を太陽が移動する速度に対応して2つの軸を独立して回転させるために、モータ及び高減速比の減速機が2つずつ必要となる。モータ及び減速機を2つずつ駆動させるから、装置が大型化すると共に重量が大きくなり、さらに製造コストが増加するという問題点があった。 However, the technique disclosed in Patent Document 1 requires two motors and two reduction gears with a high reduction ratio in order to independently rotate the two shafts corresponding to the speed at which the sun moves on the celestial sphere. . Since the motor and the speed reducer are driven two by two, there is a problem that the apparatus becomes larger and the weight increases and the manufacturing cost further increases.
 本発明は、上述した問題を解決するためになされたものであり、モータ及び減速機の数を削減することができ、小型化および軽量化できると共に製造コストを低減できる太陽追尾装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and provides a solar tracking device that can reduce the number of motors and speed reducers, can be reduced in size and weight, and can be reduced in manufacturing cost. It is an object.
課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention
 この目的を達成するために請求項1記載の太陽追尾装置によれば、大地に対して軸心の位置が固定されると共に、太陽の方位または高度の一方に対応して軸心の回りに回転可能に構成される第1軸と、その第1軸の回りに太陽の方位または高度の他方に対応して回転可能に構成されると共に、太陽光を受光する受光部が固定される第2軸とを備えている。モータの一方向の回転が減速機により減速されて駆動軸に伝達されると、その駆動軸から第1伝達部および第2伝達部に回転が伝達される。第1伝達部または第2伝達部の一方は、第1ワンウェイクラッチにより、第1軸または第2軸の一方に回転を伝達する。これにより、少なくとも第1軸または第2軸の一方は、太陽の方位または高度に対応して回転される。 In order to achieve this object, according to the solar tracking device of the first aspect, the position of the axial center is fixed with respect to the ground, and it rotates about the axial center corresponding to one of the azimuth or altitude of the sun. A first axis configured to be capable of rotating, and a second axis configured to be rotatable around the first axis corresponding to the other of the azimuth or altitude of the sun and to which a light receiving unit that receives sunlight is fixed And. When the rotation of the motor in one direction is reduced by the speed reducer and transmitted to the drive shaft, the rotation is transmitted from the drive shaft to the first transmission unit and the second transmission unit. One of the first transmission unit or the second transmission unit transmits rotation to one of the first shaft and the second shaft by the first one-way clutch. Thereby, at least one of the first axis or the second axis is rotated in accordance with the azimuth or altitude of the sun.
 ここで、第1軸および第2軸が回転する速度、即ち各時刻における受光部の傾きは、第1伝達部および第2伝達部の速度伝達比によって決定される。従って、太陽追尾装置の設置場所の緯度や経度に応じて第1伝達部および第2伝達部の速度伝達比を設定することで、受光部が太陽を追尾できるようにすることは可能である。しかし、第1伝達部および第2伝達部の誤差(速度伝達比の誤差)や太陽追尾装置の据え付け誤差等が生じると、天球上の太陽の位置と受光部の傾きとの間に不一致が生じる。即ち、受光部が太陽を追尾できなくなる。 Here, the speed at which the first axis and the second axis rotate, that is, the inclination of the light receiving unit at each time is determined by the speed transmission ratio of the first transmission unit and the second transmission unit. Therefore, it is possible to enable the light receiving unit to track the sun by setting the speed transmission ratio of the first transmission unit and the second transmission unit according to the latitude and longitude of the installation location of the sun tracking device. However, when an error (speed transmission ratio error) between the first transmission unit and the second transmission unit, an installation error of the sun tracking device, or the like occurs, a mismatch occurs between the position of the sun on the celestial sphere and the inclination of the light receiving unit. . That is, the light receiving unit cannot track the sun.
 太陽を追尾するには、目標とする回転位置にない第1軸または第2軸の回転位置を補正する必要がある。そのような場合にモータが他方向に回転駆動され、モータの他方向の回転が駆動軸に伝達されると、駆動軸から第1伝達部および第2伝達部に回転が伝達される。第1伝達部または第2伝達部の一方は、第1ワンウェイクラッチにより、第1軸または第2軸の一方への回転の伝達を遮断し、第1伝達部または第2伝達部の他方は第1軸または第2軸の他方に回転を伝達する。これにより第1軸または第2軸の一方を回転させることなく、第1軸または第2軸の他方を回転させることができ、天球上の太陽の位置と受光部の傾きとの間の不一致を解消できる。その結果、受光部に太陽を追尾させることができる。 To track the sun, it is necessary to correct the rotational position of the first axis or the second axis that is not at the target rotational position. In such a case, when the motor is rotationally driven in the other direction and the rotation of the motor in the other direction is transmitted to the drive shaft, the rotation is transmitted from the drive shaft to the first transmission unit and the second transmission unit. One of the first transmission unit or the second transmission unit is configured to block transmission of rotation to one of the first shaft or the second shaft by the first one-way clutch, and the other of the first transmission unit or the second transmission unit is the first one. The rotation is transmitted to the other of the first axis and the second axis. As a result, the other of the first axis and the second axis can be rotated without rotating one of the first axis and the second axis, and the discrepancy between the position of the sun on the celestial sphere and the inclination of the light receiving unit can be reduced. Can be resolved. As a result, the light can be tracked by the light receiving unit.
 以上のように、2つのモータ及び減速機により第1軸および第2軸を独立して回転させなくても、1つずつのモータ及び減速機により第1軸および第2軸を回転させて太陽を追尾できるので、モータ及び減速機の数を削減することができる。その結果、太陽追尾装置を小型化および軽量化できると共に、削減されたモータ及び減速機と追加された第1ワンウェイクラッチとの差分だけ製造コストを低減できる効果がある。 As described above, even if the first shaft and the second shaft are not rotated independently by the two motors and the speed reducer, the first shaft and the second shaft are rotated by the motor and the speed reducer one by one. Therefore, the number of motors and speed reducers can be reduced. As a result, the solar tracking device can be reduced in size and weight, and the manufacturing cost can be reduced by the difference between the reduced motor and reduction gear and the added first one-way clutch.
 また、太陽追尾装置の設置場所ごとに第1伝達部および第2伝達部の速度伝達比を個別に設定する必要がなくなるので、第1伝達部および第2伝達部の部品の共通化を図ることができる効果がある。 In addition, since it is not necessary to individually set the speed transmission ratio of the first transmission unit and the second transmission unit for each installation location of the solar tracking device, the parts of the first transmission unit and the second transmission unit can be shared. There is an effect that can.
 なお、第1軸または第2軸の回転位置を補正する順序を限定するものではないので、初めにモータを他方向に回転して第1軸または第2軸の他方を回転させ、次にモータを一方向に回転して第1軸または第2軸の一方を回転させるようにすることは可能である。 Since the order of correcting the rotational position of the first axis or the second axis is not limited, the motor is first rotated in the other direction to rotate the other of the first axis or the second axis, and then the motor. It is possible to rotate one of the first axis and the second axis by rotating in one direction.
 請求項2記載の太陽追尾装置によれば、モータの一方向の回転により受光部の傾きが変化する速度は、第1ワンウェイクラッチを介して回転が伝達される第1軸または第2軸の一方の回りの速度成分が、第1軸または第2軸の他方の回りの速度成分より小さく設定されている。そのため、モータを一方向に回転させて第1軸または第2軸の一方を太陽の方位または高度に合致させ、受光部の傾きを太陽の方位または高度に対応させると、第1軸または第2軸の他方については、その時刻における太陽の方位または高度より少し先行して回転する。 According to the solar tracking device of the second aspect, the speed at which the inclination of the light receiving portion changes due to the rotation of the motor in one direction is one of the first shaft and the second shaft to which the rotation is transmitted via the first one-way clutch. The speed component around is set smaller than the speed component around the other of the first axis or the second axis. Therefore, when the motor is rotated in one direction so that one of the first axis or the second axis matches the azimuth or altitude of the sun and the inclination of the light receiving unit is made to correspond to the azimuth or altitude of the sun, the first axis or the second axis The other of the axes rotates slightly ahead of the sun's orientation or altitude at that time.
 そこで、その先行分を調整するように、モータを他方向に回転して第1軸または第2軸の他方にモータの他方向の回転を伝達すると、第1軸または第2軸の他方が太陽の追尾方向と逆向きに回転されて、その時刻における太陽の方位または高度に合致させることができる。なお、第1軸または第2軸の一方は、第1ワンウェイクラッチによりモータの他方向の回転が遮断されるので、太陽の方位または高度に合致した状態が維持される。 Therefore, when the motor is rotated in the other direction to transmit the rotation in the other direction of the motor to the other of the first axis or the second axis so as to adjust the preceding amount, the other of the first axis or the second axis is moved to the sun. Can be rotated in the direction opposite to the tracking direction to match the azimuth or altitude of the sun at that time. Note that one of the first axis and the second axis is maintained in a state that matches the direction or altitude of the sun because the rotation of the motor in the other direction is blocked by the first one-way clutch.
 これに対し、第1ワンウェイクラッチを介してモータの一方向の回転が伝達される第1軸または第2軸の一方の回りの速度成分が、第1軸または第2軸の他方の回りの速度成分より大きく設定されている場合は、モータを一方向に回転して第1軸または第2軸の一方を太陽の方位または高度に合致させると、第1軸または第2軸の他方については、その時刻における太陽の方位または高度より少し遅れて回転する。 On the other hand, the speed component around one of the first axis or the second axis to which the rotation of the motor in one direction is transmitted via the first one-way clutch is the speed around the other of the first axis or the second axis. If it is set to be larger than the component, when the motor is rotated in one direction so that one of the first axis or the second axis matches the azimuth or altitude of the sun, for the other of the first axis or the second axis, It rotates slightly later than the direction or altitude of the sun at that time.
 その遅れ分を調整するには、モータを他方向に回転して第1軸または第2軸の他方を約360°回転させなければならず、この調整に長時間を要する。また、モータを他方向に回転している間は、第1軸または第2軸の一方を回転させることができないので、この間は太陽を追尾できない。従って、太陽を追尾する精度が低下する。請求項2記載の太陽追尾装置によれば、これを防止することができ、請求項1の効果に加え、第1軸または第2軸の他方の調整を短時間で行うことができ、太陽を追尾する精度を向上できる効果がある。なお、第1軸または第2軸の回転位置を補正する順序を限定するものではない。 To adjust the delay, the motor must be rotated in the other direction to rotate the other of the first shaft and the second shaft by about 360 °, and this adjustment takes a long time. In addition, while the motor is rotating in the other direction, one of the first shaft and the second shaft cannot be rotated, so that the sun cannot be tracked during this time. Therefore, the accuracy of tracking the sun decreases. According to the solar tracking device of claim 2, this can be prevented, and in addition to the effect of claim 1, the other of the first axis or the second axis can be adjusted in a short time, and the sun can be adjusted. There is an effect that the accuracy of tracking can be improved. Note that the order of correcting the rotational position of the first axis or the second axis is not limited.
 請求項3記載の太陽追尾装置によれば、第1ワンウェイクラッチは、太陽の方位に対応して回転するように設定される第1軸または第2軸に配設されているので、太陽を追尾するときに、第1ワンウェイクラッチが配設された第1軸または第2軸を常に太陽の方位に対応させることができる。 According to the solar tracking device of claim 3, the first one-way clutch is disposed on the first axis or the second axis that is set so as to rotate corresponding to the direction of the sun. When doing, the 1st axis | shaft or 2nd axis | shaft in which the 1st one-way clutch was arrange | positioned can always be made to respond | correspond to the direction of the sun.
 ここで、日の出から日の入りまでの太陽の天球上の位置を考えると、方位角は漸次増加する一方、高度角は日の出からある時間までは漸次増加するものの、その後は日の入りまで漸次減少する。第1ワンウェイクラッチが配設された第1軸または第2軸を、太陽の高度に対応して回転するように設定した場合、高度角は日の出からある時間まで漸次増加し、その後は日の入りまで漸次減少するので、その第1軸または第2軸を他方向に戻す必要が生じる。しかし、第1軸または第2軸は、第1ワンウェイクラッチによりモータの他方向の回転の伝達が遮断されているので、第1軸または第2軸を他方向にわずかに戻したいときでも、一方向に約360°回転させなければならない。この約360°の回転に長時間を要し、この間の受光部の傾きは太陽に対応していないため、太陽を追尾する精度が低下する。 Here, considering the position of the sun on the celestial sphere from sunrise to sunset, the azimuth angle gradually increases, while the altitude angle gradually increases from sunrise to a certain time, but thereafter gradually decreases until sunset. When the first or second shaft provided with the first one-way clutch is set to rotate corresponding to the altitude of the sun, the altitude angle gradually increases from sunrise until a certain time, and then gradually until sunset. Therefore, it becomes necessary to return the first axis or the second axis to the other direction. However, since the transmission of the rotation in the other direction of the motor is blocked by the first one-way clutch, the first shaft or the second shaft can be used even if it is desired to slightly return the first shaft or the second shaft in the other direction. It must be rotated about 360 ° in the direction. The rotation of about 360 ° takes a long time, and the inclination of the light receiving unit during this time does not correspond to the sun, so the accuracy of tracking the sun is reduced.
 これに対し、第1ワンウェイクラッチが配設された第1軸または第2軸を太陽の方位に対して回転するように設定することで、第1軸または第2軸を日の出から日の入りまで一方向に回転させれば良く、他方向に戻す必要をなくすことができる。太陽が追尾できなくなる時間をなくすことができるので、請求項1又は2の効果に加え、太陽を追尾する精度を向上できる効果がある。 On the other hand, the first axis or the second axis provided with the first one-way clutch is set to rotate with respect to the direction of the sun, so that the first axis or the second axis is unidirectional from sunrise to sunset. It is sufficient to rotate it to the other direction, and it is not necessary to return to the other direction. Since the time when the sun cannot be tracked can be eliminated, in addition to the effect of the first or second aspect, there is an effect that the accuracy of tracking the sun can be improved.
 請求項4記載の太陽追尾装置によれば、モータの一方向の回転が駆動軸に伝達されると、第1伝達部または第2伝達部の他方は、第2ワンウェイクラッチにより、第1軸または第2軸の他方への回転の伝達を遮断する。これにより第1軸または第2軸の他方を回転させることなく、第1軸または第2軸の一方を回転させることができ、第1軸または第2軸の一方による太陽の追尾ができる。 According to the sun tracking device of claim 4, when the rotation of the motor in one direction is transmitted to the drive shaft, the other of the first transmission unit or the second transmission unit is the first shaft or The transmission of rotation to the other side of the second shaft is blocked. Accordingly, one of the first axis and the second axis can be rotated without rotating the other of the first axis and the second axis, and the sun can be tracked by one of the first axis and the second axis.
 一方、モータの他方向の回転が駆動軸に伝達されると、第1伝達部または第2伝達部の他方は、第2ワンウェイクラッチにより、第1軸または第2軸の他方に回転を伝達する。これにより第1軸または第2軸の一方を回転させることなく、第1軸または第2軸の他方を回転させることができ、第1軸または第2軸の他方による太陽の追尾ができる。以上のように、第2ワンウェイクラッチにより第1軸と第2軸とを独立して回転できるので、請求項1又は3の効果に加え、太陽を追尾するためのモータの一方向および他方向の回転制御を簡素化できる効果がある。 On the other hand, when the rotation in the other direction of the motor is transmitted to the drive shaft, the other of the first transmission unit or the second transmission unit transmits the rotation to the other of the first shaft or the second shaft by the second one-way clutch. . Thereby, the other of the first axis or the second axis can be rotated without rotating one of the first axis or the second axis, and the sun can be tracked by the other of the first axis or the second axis. As described above, since the first shaft and the second shaft can be rotated independently by the second one-way clutch, in addition to the effect of the first or third aspect, the motor for tracking the sun in one direction and the other direction There is an effect that the rotation control can be simplified.
 請求項5記載の太陽追尾装置によれば、第1ワンウェイクラッチ又は第2ワンウェイクラッチを備える第1伝達部または第2伝達部は、第1軸または第2軸からの荷重の入力により駆動軸が回転不能に設定されているので、請求項1から4のいずれかの効果に加え、機械的または電気的なブレーキ機構を設けなくても、風力等により受光部の傾きが変化することを防止できる効果がある。 According to the solar tracking device of the fifth aspect, the first transmission unit or the second transmission unit including the first one-way clutch or the second one-way clutch has the drive shaft that receives a load from the first shaft or the second shaft. Since it is set to be non-rotatable, in addition to the effect of any one of claims 1 to 4, it is possible to prevent the inclination of the light receiving portion from being changed by wind force or the like without providing a mechanical or electrical brake mechanism. effective.
 請求項6記載の太陽追尾装置によれば、大地に対して軸心の位置が固定されると共に、太陽の方位または高度の一方に対応して軸心の回りに回転可能に構成される第1軸と、その第1軸の回りに太陽の方位または高度の他方に対応して回転可能に構成されると共に、太陽光を受光する受光部が固定される第2軸とを備えている。モータの一方向の回転が減速機により減速されて第2軸に伝達されると、伝達部により、第2軸から第1軸に回転が伝達される。伝達部は、ワンウェイクラッチにより、第1軸に回転を伝達する。これにより、第1軸は太陽の方位に対応して回転され、第2軸は太陽の高度に対応して回転される。 According to the solar tracking device of the sixth aspect, the position of the axis center is fixed with respect to the ground, and the first structure is configured to be rotatable about the axis corresponding to one of the azimuth or altitude of the sun. An axis, and a second axis on which a light receiving unit for receiving sunlight is fixed, are configured to be rotatable around the first axis corresponding to the other of the azimuth or altitude of the sun. When the rotation of the motor in one direction is reduced by the speed reducer and transmitted to the second axis, the rotation is transmitted from the second axis to the first axis by the transmission unit. The transmission unit transmits rotation to the first shaft by a one-way clutch. Thereby, the first axis is rotated corresponding to the direction of the sun, and the second axis is rotated corresponding to the altitude of the sun.
 ここで、第1軸および第2軸が回転する速度、即ち各時刻における受光部の傾きは、伝達部の速度伝達比によって決定される。従って、太陽追尾装置の設置場所の緯度や経度に応じて伝達部の速度伝達比を設定することで、受光部が太陽を追尾できるようにすることは可能である。しかし、伝達部の誤差(速度伝達比の誤差)や太陽追尾装置の据え付け誤差等が生じると、天球上の太陽の位置と受光部の傾きとの間に不一致が生じる。即ち、受光部が太陽を追尾できなくなる。 Here, the speed at which the first axis and the second axis rotate, that is, the inclination of the light receiving unit at each time is determined by the speed transmission ratio of the transmission unit. Therefore, it is possible to enable the light receiving unit to track the sun by setting the speed transmission ratio of the transmission unit according to the latitude and longitude of the installation location of the sun tracking device. However, when an error in the transmission unit (speed transmission ratio error), an installation error in the sun tracking device, or the like occurs, a mismatch occurs between the position of the sun on the celestial sphere and the inclination of the light receiving unit. That is, the light receiving unit cannot track the sun.
 太陽を追尾するには、目標とする回転位置にない第1軸または第2軸の回転位置を補正する必要がある。そのような場合にモータが他方向に回転駆動される。モータの他方向の回転が第2軸に伝達されると、伝達部は、ワンウェイクラッチにより第1軸への回転の伝達を遮断する。これにより第1軸を回転させることなく、第2軸を回転させることができ、天球上の太陽の位置と受光部の傾きとの間の不一致を解消できる。その結果、受光部に太陽を追尾させることができる。 To track the sun, it is necessary to correct the rotational position of the first axis or the second axis that is not at the target rotational position. In such a case, the motor is driven to rotate in the other direction. When the rotation of the motor in the other direction is transmitted to the second shaft, the transmission unit interrupts transmission of the rotation to the first shaft by the one-way clutch. Accordingly, the second axis can be rotated without rotating the first axis, and the mismatch between the position of the sun on the celestial sphere and the inclination of the light receiving unit can be eliminated. As a result, the light can be tracked by the light receiving unit.
 以上のように、2つのモータ及び減速機により第1軸および第2軸を独立して駆動させなくても、1つずつのモータ及び減速機により第1軸および第2軸を駆動させて太陽を追尾できるので、太陽追尾装置を小型化および軽量化できると共に、削減されたモータ及び減速機と追加されたワンウェイクラッチとの差分だけ製造コストを低減できる効果がある。 As described above, the first axis and the second axis are driven by the motor and the speed reducer one by one without driving the first axis and the second axis independently by the two motors and the speed reducer. Therefore, the solar tracking device can be reduced in size and weight, and the manufacturing cost can be reduced by the difference between the reduced motor and reduction gear and the added one-way clutch.
 また、太陽追尾装置の設置場所ごとに伝達部の速度伝達比を個別に設定する必要がなくなるので、伝達部の部品の共通化を図ることができる効果がある。 Also, since it is not necessary to set the speed transmission ratio of the transmission unit for each installation location of the solar tracking device, there is an effect that the components of the transmission unit can be shared.
 なお、第1軸または第2軸の回転位置を補正する順序を限定するものではないので、初めにモータを他方向に回転して第2軸を回転させ、次にモータを一方向に回転して第1軸および第2軸を回転させるようにすることは可能である。 Since the order of correcting the rotational position of the first axis or the second axis is not limited, the motor is first rotated in the other direction to rotate the second axis, and then the motor is rotated in one direction. It is possible to rotate the first axis and the second axis.
 請求項7記載の太陽追尾装置によれば、ワンウェイクラッチを備える伝達部は、第1軸からの荷重の入力により第2軸が回転不能に設定されているので、請求項6記載の効果に加え、機械的または電気的なブレーキ機構を設けなくても、風力等により受光部の傾きが変化することを防止できる効果がある。 According to the solar tracking device of the seventh aspect, in addition to the effect of the sixth aspect, in the transmission unit including the one-way clutch, the second shaft is set to be non-rotatable by the input of the load from the first shaft. Even if no mechanical or electrical brake mechanism is provided, there is an effect that the inclination of the light receiving portion can be prevented from changing due to wind force or the like.
(a)は第1実施の形態における太陽追尾装置の斜視図であり、(b)は内部構造を模式的に示した太陽追尾装置の斜視図である。(A) is a perspective view of the solar tracking device in 1st Embodiment, (b) is a perspective view of the solar tracking device which showed the internal structure typically. (a)はモータを一方向に回転したときの正面視における太陽追尾装置のスケルトン図であり、(b)はモータを一方向に回転したときの側面視における太陽追尾装置のスケルトン図であり、(c)はモータを他方向に回転したときの正面視における太陽追尾装置のスケルトン図であり、(d)はモータを他方向に回転したときの側面視における太陽追尾装置のスケルトン図である。(A) is a skeleton diagram of the solar tracking device in front view when the motor is rotated in one direction, (b) is a skeleton diagram of the solar tracking device in side view when the motor is rotated in one direction, (C) is a skeleton diagram of the solar tracking device in a front view when the motor is rotated in the other direction, and (d) is a skeleton diagram of the solar tracking device in a side view when the motor is rotated in the other direction. (a)は第2実施の形態における太陽追尾装置において、モータを一方向に回転したときの正面視における太陽追尾装置のスケルトン図であり、(b)はモータを一方向に回転したときの側面視における太陽追尾装置のスケルトン図であり、(c)はモータを他方向に回転したときの正面視における太陽追尾装置のスケルトン図であり、(d)はモータを他方向に回転したときの側面視における太陽追尾装置のスケルトン図である。(A) is a skeleton figure of the solar tracking device in a front view when the motor is rotated in one direction in the solar tracking device in the second embodiment, and (b) is a side view when the motor is rotated in one direction. It is a skeleton figure of the solar tracking device in vision, (c) is a skeleton diagram of the solar tracking device in front view when the motor is rotated in the other direction, and (d) is a side view when the motor is rotated in the other direction. It is a skeleton figure of the solar tracking device in vision. (a)は第3実施の形態における太陽追尾装置において、モータを一方向に回転したときの正面視における太陽追尾装置のスケルトン図であり、(b)はモータを一方向に回転したときの側面視における太陽追尾装置のスケルトン図であり、(c)はモータを他方向に回転したときの正面視における太陽追尾装置のスケルトン図であり、(d)はモータを他方向に回転したときの側面視における太陽追尾装置のスケルトン図である。(A) is a skeleton figure of the solar tracking device in a front view when the motor is rotated in one direction in the solar tracking device in the third embodiment, and (b) is a side view when the motor is rotated in one direction. It is a skeleton figure of the solar tracking device in vision, (c) is a skeleton diagram of the solar tracking device in front view when the motor is rotated in the other direction, and (d) is a side view when the motor is rotated in the other direction. It is a skeleton figure of the solar tracking device in vision. (a)は第4実施の形態における太陽追尾装置において、モータを一方向に回転したときの正面視における太陽追尾装置のスケルトン図であり、(b)はモータを一方向に回転したときの側面視における太陽追尾装置のスケルトン図であり、(c)はモータを他方向に回転したときの正面視における太陽追尾装置のスケルトン図であり、(d)はモータを他方向に回転したときの側面視における太陽追尾装置のスケルトン図である。(A) is a skeleton figure of the solar tracking device in a front view when the motor is rotated in one direction in the solar tracking device in the fourth embodiment, and (b) is a side view when the motor is rotated in one direction. It is a skeleton figure of the solar tracking device in vision, (c) is a skeleton diagram of the solar tracking device in front view when the motor is rotated in the other direction, and (d) is a side view when the motor is rotated in the other direction. It is a skeleton figure of the solar tracking device in vision. 第5実施の形態における太陽追尾装置の斜視図である。It is a perspective view of the solar tracking apparatus in 5th Embodiment.
 以下、本発明の好ましい実施の形態について添付図面を参照して説明する。図1(a)は本発明の第1実施の形態における太陽追尾装置1の斜視図である。なお図1(a)では、受光部9の中間部分の図示を省略している。図1(a)に示すように、太陽追尾装置1は、大地に対して固定される台部2と、その台部2に対して回転可能に構成される筐体3とを備えており、モータ4を駆動し減速機5を介して駆動軸6を回転させ、第2軸8を回転させることにより受光部9の傾きを変化させる装置である。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1A is a perspective view of the solar tracking device 1 according to the first embodiment of the present invention. In FIG. 1A, an intermediate portion of the light receiving unit 9 is not shown. As shown to Fig.1 (a), the solar tracking device 1 is provided with the base part 2 fixed with respect to the earth, and the housing | casing 3 comprised rotatably with respect to the base part 2, In this device, the motor 4 is driven, the drive shaft 6 is rotated via the speed reducer 5, and the second shaft 8 is rotated to change the inclination of the light receiving unit 9.
 受光部9は、第2軸8に固定されており、筐体3及び第2軸8の回転に伴い、太陽の方位および高度に応じて傾きが変化される部材である。受光部9は、太陽追尾装置1が組み込まれるシステムに応じて、太陽光のエネルギーを直接的に電力に変換する太陽電池パネル、太陽光を集光して熱源として利用する太陽熱発電システムや採光のために太陽光を反射する反射鏡等が適宜選択され採用される。 The light receiving unit 9 is a member that is fixed to the second shaft 8 and whose inclination is changed according to the azimuth and altitude of the sun as the casing 3 and the second shaft 8 rotate. The light receiving unit 9 is a solar cell panel that directly converts solar energy into electric power according to a system in which the solar tracking device 1 is incorporated, a solar power generation system that collects sunlight and uses it as a heat source, Therefore, a reflecting mirror that reflects sunlight is appropriately selected and employed.
 次に図1(b)を参照して、太陽追尾装置1の内部構造について説明する。図1(b)は筐体3(図1(a)参照)を取り外した内部構造を模式的に示した太陽追尾装置1の斜視図であり、台部2及び受光部9の図示を省略している。図1(b)に示すように、駆動軸6及び第2軸8は直交するように配置され、駆動軸6及び第2軸8にそれぞれ直交するように第1軸7が配置されている。第1軸7は台部2(図1(a)参照)に立設されて軸心Oの位置が軸受(図示せず)等により固定されると共に、軸心Oの回りに回転可能に構成されている。 Next, the internal structure of the solar tracking device 1 will be described with reference to FIG. FIG. 1B is a perspective view of the solar tracking device 1 schematically showing the internal structure from which the housing 3 (see FIG. 1A) is removed, and the base 2 and the light receiving unit 9 are not shown. ing. As shown in FIG. 1B, the drive shaft 6 and the second shaft 8 are disposed so as to be orthogonal to each other, and the first shaft 7 is disposed so as to be orthogonal to the drive shaft 6 and the second shaft 8, respectively. The first shaft 7 is erected on the base 2 (see FIG. 1A) so that the position of the shaft center O is fixed by a bearing (not shown) or the like and is rotatable around the shaft center O. Has been.
 モータ4は一方向および他方向の回転を出力可能に構成されており、減速機5によりモータ4の回転数が減速される。駆動軸6は減速機5の出力により回転される部材であり、軸方向に所定の間隔をあけて第1伝達部10及び第2伝達部20が配設されている。 The motor 4 is configured to be able to output rotations in one direction and the other direction, and the speed of the motor 4 is reduced by the speed reducer 5. The drive shaft 6 is a member that is rotated by the output of the speed reducer 5, and the first transmission unit 10 and the second transmission unit 20 are disposed at a predetermined interval in the axial direction.
 第1伝達部10は、駆動軸6の一方向の回転を第1軸7に伝達する一方、駆動軸6の他方向の回転の第1軸7への伝達を遮断する部材である。本実施の形態では、第1伝達部10は、スプラグタイプのワンウェイクラッチを備えるウォームギヤにより構成されており、駆動軸6に配設されたワンウェイクラッチ(第1ワンウェイクラッチ11)と、その第1ワンウェイクラッチ11の外周に形設されたウォーム12と、ウォーム12と噛合するように第1軸7に配設されたウォームホイール13とを備えている。 The first transmission unit 10 is a member that transmits rotation in one direction of the drive shaft 6 to the first shaft 7 and blocks transmission of rotation in the other direction of the drive shaft 6 to the first shaft 7. In the present embodiment, the first transmission unit 10 is configured by a worm gear having a sprag type one-way clutch, and includes a one-way clutch (first one-way clutch 11) disposed on the drive shaft 6 and the first one-way. A worm 12 formed on the outer periphery of the clutch 11 and a worm wheel 13 disposed on the first shaft 7 so as to mesh with the worm 12 are provided.
 第2伝達部20は、駆動軸6の一方向および他方向の回転を駆動軸6から第2軸8に伝達する部材である。本実施の形態では、第2伝達部20はウォームギヤにより構成されており、駆動軸6に形設されたウォーム21と、ウォーム21と噛合するように第2軸8に配設されたウォームホイール22とを備えている。以上のように、モータ4の一方向の回転は第1伝達部10及び第2伝達部20により第1軸7及び第2軸8に伝達され、モータ4の他方向の回転は第2伝達部20により第2軸8に伝達される。 The second transmission unit 20 is a member that transmits the rotation in one direction and the other direction of the drive shaft 6 from the drive shaft 6 to the second shaft 8. In the present embodiment, the second transmission portion 20 is constituted by a worm gear, and a worm 21 formed on the drive shaft 6 and a worm wheel 22 disposed on the second shaft 8 so as to mesh with the worm 21. And. As described above, the rotation in one direction of the motor 4 is transmitted to the first shaft 7 and the second shaft 8 by the first transmission unit 10 and the second transmission unit 20, and the rotation in the other direction of the motor 4 is the second transmission unit. 20 is transmitted to the second shaft 8.
 なお、モータ4の一方向の回転による第1伝達部10及び第2伝達部20の速度伝達比は、駆動軸6の1回転当たりにおける第2軸8の回転数が第1軸7の回転数より大きくなるように設定される。これにより、モータ4の一方向の回転により受光部9の傾きが変化する速度は、第1軸7の回りの速度成分が、第2軸8の回りの速度成分より小さく設定されている。 The speed transmission ratio of the first transmission unit 10 and the second transmission unit 20 due to the rotation of the motor 4 in one direction is such that the rotation speed of the second shaft 8 per rotation of the drive shaft 6 is the rotation speed of the first shaft 7. It is set to be larger. Accordingly, the speed at which the inclination of the light receiving unit 9 changes due to the rotation of the motor 4 in one direction is set such that the speed component around the first axis 7 is smaller than the speed component around the second axis 8.
 次に図2を参照して、太陽追尾装置1の動作について説明する。図2(a)はモータ4を一方向に回転したときの正面視における太陽追尾装置1のスケルトン図であり、図2(b)はモータ4を一方向に回転したときの側面視における太陽追尾装置1のスケルトン図である。図2(a)に示すように、モータ4を一方向に回転すると駆動軸6が一方向に回転し、それに伴い第2伝達部20のウォーム21が一方向に回転する。また、第1伝達部10では第1ワンウェイクラッチ11のスプラグ11aがロックし、ウォーム12が一方向に回転する。なお、図2では、スプラグ11aにハッチングを付してロックしたことを図示し(図2(a)参照)、ロックが解除されたフリーのスプラグ21aを白抜きで図示する(図2(c)参照)。なお、このロック又はフリーを示すハッチング又は白抜きは、図3から図5において同じである。 Next, the operation of the solar tracking device 1 will be described with reference to FIG. 2A is a skeleton diagram of the solar tracking device 1 in a front view when the motor 4 is rotated in one direction, and FIG. 2B is a sun track in a side view when the motor 4 is rotated in one direction. FIG. 2 is a skeleton diagram of the device 1. As shown in FIG. 2A, when the motor 4 is rotated in one direction, the drive shaft 6 is rotated in one direction, and accordingly, the worm 21 of the second transmission portion 20 is rotated in one direction. In the first transmission unit 10, the sprag 11a of the first one-way clutch 11 is locked, and the worm 12 rotates in one direction. 2 shows that the sprag 11a is hatched and locked (see FIG. 2 (a)), and the free sprag 21a unlocked is shown in white (FIG. 2 (c)). reference). Note that hatching or whiteness indicating this lock or free is the same in FIGS. 3 to 5.
 ウォーム12,21が一方向に回転することにより、図2(b)に示すように、ウォーム12,21にそれぞれ噛み合うウォームホイール13,22が一方向に回転する。その結果、第1軸7は方位方向に回転し、第2軸8は高度方向の一方向に回転する。天球上の太陽の移動速度に合致するようにモータ4の回転数、減速機5の減速比、第1伝達部10及び第2伝達部20の速度伝達比を設定しておく(専用部品化する)ことで、第2軸8に固定された受光部9の傾きを、太陽の方位および高度に応じて変化させることができる。 When the worms 12 and 21 are rotated in one direction, the worm wheels 13 and 22 respectively meshed with the worms 12 and 21 are rotated in one direction as shown in FIG. As a result, the first shaft 7 rotates in the azimuth direction, and the second shaft 8 rotates in one direction of the altitude direction. The rotational speed of the motor 4, the reduction ratio of the speed reducer 5, and the speed transmission ratios of the first transmission unit 10 and the second transmission unit 20 are set so as to match the moving speed of the sun on the celestial sphere (dedicated parts are used). Thus, the inclination of the light receiving unit 9 fixed to the second axis 8 can be changed according to the azimuth and altitude of the sun.
 しかし、第1伝達部10及び第2伝達部20の誤差(速度伝達比の誤差)や太陽追尾装置1の据え付け誤差等が生じると、天球上の太陽の位置と受光部9の傾きとの間に不一致が生じる。即ち、受光部9が太陽を追尾できなくなる。受光部9に太陽を追尾させるには、目標とする回転位置にない第1軸7又は第2軸8の回転位置を補正する必要がある。そのような場合に、図2(c)に示すようにモータ4を他方向に駆動する。図2(c)はモータ4を他方向に回転したときの正面視における太陽追尾装置1のスケルトン図であり、図2(d)はモータ4を他方向に回転したときの側面視における太陽追尾装置1のスケルトン図である。 However, when an error (speed transmission ratio error) of the first transmission unit 10 and the second transmission unit 20, an installation error of the solar tracking device 1, or the like occurs, the position between the sun on the celestial sphere and the inclination of the light receiving unit 9 Inconsistency occurs. That is, the light receiving unit 9 cannot track the sun. In order for the light receiving unit 9 to track the sun, it is necessary to correct the rotational position of the first shaft 7 or the second shaft 8 that is not at the target rotational position. In such a case, the motor 4 is driven in the other direction as shown in FIG. FIG. 2C is a skeleton diagram of the solar tracking device 1 in a front view when the motor 4 is rotated in the other direction, and FIG. 2D is a sun tracking in a side view when the motor 4 is rotated in the other direction. FIG. 2 is a skeleton diagram of the device 1.
 図2(c)に示すように、モータ4を他方向に回転すると駆動軸6が他方向に回転し、それに伴い第2伝達部20のウォーム21が他方向に回転する。また、第1伝達部10では第1ワンウェイクラッチ11のスプラグ11aのロックが解除され、ウォーム12への動力の伝達が遮断される。 2 (c), when the motor 4 is rotated in the other direction, the drive shaft 6 is rotated in the other direction, and accordingly, the worm 21 of the second transmission portion 20 is rotated in the other direction. Moreover, in the 1st transmission part 10, the lock | rock of the sprag 11a of the 1st one-way clutch 11 is cancelled | released, and transmission of the motive power to the worm | warm 12 is interrupted | blocked.
 ウォーム21が他方向に回転することにより、図2(d)に示すように、ウォーム21に噛み合うウォームホイール22が他方向に回転する。その結果、第1軸7の方位方向の回転が停止され、第2軸8が高度方向の他方向に回転されるので、天球上の太陽の位置と受光部9の傾きとの間の不一致を解消できる。その結果、受光部9に太陽を追尾させることができる。 Rotating the worm 21 in the other direction causes the worm wheel 22 meshing with the worm 21 to rotate in the other direction, as shown in FIG. As a result, the rotation of the first axis 7 in the azimuth direction is stopped, and the second axis 8 is rotated in the other direction of the altitude direction, so that there is a mismatch between the position of the sun on the celestial sphere and the inclination of the light receiving unit 9. Can be resolved. As a result, the light receiving unit 9 can track the sun.
 このように、モータ4及び減速機5により第1軸7及び第2軸8を回転させて太陽を追尾できるので、モータ4及び減速機5をそれぞれ1つに削減することができる。その結果、太陽追尾装置1を小型化および軽量化できると共に、削減されたモータ及び減速機と追加された第1ワンウェイクラッチ11との差分だけ製造コストを低減できる。 Thus, since the sun can be tracked by rotating the first shaft 7 and the second shaft 8 by the motor 4 and the speed reducer 5, the motor 4 and the speed reducer 5 can be reduced to one each. As a result, the solar tracking device 1 can be reduced in size and weight, and the manufacturing cost can be reduced by the difference between the reduced motor and reduction gear and the added first one-way clutch 11.
 また、太陽追尾装置1の設置場所ごとに第1伝達部10及び第2伝達部20の速度伝達比を個別に設定(専用部品化)する必要がなくなるので、第1伝達部10及び第2伝達部20の部品の共通化を図ることができる。 In addition, since it is not necessary to individually set (dedicated parts) the speed transmission ratio of the first transmission unit 10 and the second transmission unit 20 for each installation location of the solar tracking device 1, the first transmission unit 10 and the second transmission unit are eliminated. The parts of the unit 20 can be shared.
 また、モータ4の一方向の回転により受光部9の傾きが変化する速度は、第1軸7の回りの速度成分が、第2軸8の回りの速度成分より小さく設定されているので、モータ4を一方向に回転させて第1軸7を太陽の方位に合致させ、受光部9の傾きを太陽の方位に対応させると、第2軸8については、その時刻における太陽の高度より少し先行して回転する。その先行分を調整するように、モータ4を他方向に回転して第2軸8にモータ4の他方向の回転を伝達すると、第2軸8が太陽の追尾方向と逆向きに回転されて、その時刻における太陽の高度に合致させることができる。その結果、受光部9の傾きを太陽の方位および高度に対応させることができる。 Further, the speed at which the inclination of the light receiving unit 9 changes due to the rotation of the motor 4 in one direction is set so that the speed component around the first axis 7 is smaller than the speed component around the second axis 8. 4 is rotated in one direction so that the first axis 7 coincides with the direction of the sun and the inclination of the light receiving unit 9 corresponds to the direction of the sun, the second axis 8 is slightly ahead of the altitude of the sun at that time. Then rotate. When the motor 4 is rotated in the other direction and the rotation of the motor 4 in the other direction is transmitted to the second shaft 8 so as to adjust the preceding amount, the second shaft 8 is rotated in the direction opposite to the sun tracking direction. , Can match the altitude of the sun at that time. As a result, the inclination of the light receiving unit 9 can be made to correspond to the azimuth and altitude of the sun.
 逆に、モータ4の一方向の回転による第1伝達部10及び第2伝達部20の速度伝達比が、駆動軸6の1回転当たりにおける第2軸8の回転速度が第1軸7の回転速度より小さくなるように設定されていると、モータ4の一方向の回転により受光部9の傾きが変化する第2軸8の回りの速度成分は、第1軸7の回りの速度成分より小さくなる。その場合にモータ4を一方向に回転して第1軸7を太陽の方位に合致させると、第2軸8は、その時刻における太陽の高度より少し遅れて回転する。 Conversely, the speed transmission ratio of the first transmission unit 10 and the second transmission unit 20 due to the rotation of the motor 4 in one direction indicates that the rotation speed of the second shaft 8 per rotation of the drive shaft 6 is the rotation of the first shaft 7. If the speed is set to be smaller than the speed, the speed component around the second axis 8 where the inclination of the light receiving unit 9 changes due to the rotation of the motor 4 in one direction is smaller than the speed component around the first axis 7. Become. In this case, when the motor 4 is rotated in one direction so that the first shaft 7 matches the direction of the sun, the second shaft 8 rotates slightly later than the sun's altitude at that time.
 その遅れ分を調整するには、モータ4を他方向に回転して第2軸8を約360°回転させなければならず、長時間を要する。また、モータ4を他方向に回転している間は、第1軸7及び第2軸8を一方向に回転させることができないので、太陽を追尾できない。そのため、太陽を追尾する精度が低下する。本実施の形態によればこれを防止することができ、第2軸8の調整を短時間で行うことができ、太陽を追尾する精度を向上できる。 To adjust the delay, the motor 4 must be rotated in the other direction to rotate the second shaft 8 by about 360 °, which takes a long time. Moreover, since the 1st axis | shaft 7 and the 2nd axis | shaft 8 cannot be rotated to one direction while rotating the motor 4 to another direction, the sun cannot be tracked. Therefore, the accuracy of tracking the sun decreases. According to the present embodiment, this can be prevented, the second axis 8 can be adjusted in a short time, and the accuracy of tracking the sun can be improved.
 また、本実施の形態と異なり、第1軸7を太陽の高度に対応して回転するように設定した場合、高度角は日の出からある時間まで漸次増加し、その後は日の入りまで漸次減少するので、第1軸7を他方向に戻す必要が生じる。しかし、第1軸7は第1ワンウェイクラッチ11によりモータ4の他方向の回転の伝達が遮断されているので、第1軸7を他方向にわずかに戻したいときでも、一方向に約360°回転させなければならない。これに長時間を要し、その間の受光部9の傾きは太陽と無関係なため、太陽を追尾する精度が低下する。 Also, unlike the present embodiment, when the first axis 7 is set to rotate corresponding to the altitude of the sun, the altitude angle gradually increases from sunrise to a certain time, and then gradually decreases until sunset. It is necessary to return the first shaft 7 in the other direction. However, since the transmission of the rotation of the motor 4 in the other direction of the first shaft 7 is interrupted by the first one-way clutch 11, even when it is desired to slightly return the first shaft 7 in the other direction, the first shaft 7 is approximately 360 ° in one direction. Must be rotated. This takes a long time, and since the inclination of the light receiving unit 9 during that time is irrelevant to the sun, the accuracy of tracking the sun is reduced.
 これに対し本実施の形態では、第1ワンウェイクラッチ11により他方向の回転が遮断される第1軸7を、太陽の方位に対して回転するように設定されているので、日の出から日の入りまで、第1軸7を他方向に戻す必要をなくすことができる。その結果、受光部9の傾きを常に太陽の方位に対応させることができ、太陽を追尾する精度を向上できる。 On the other hand, in the present embodiment, the first shaft 7 that is blocked from rotating in the other direction by the first one-way clutch 11 is set to rotate with respect to the direction of the sun, so from sunrise to sunset, The need to return the first shaft 7 in the other direction can be eliminated. As a result, the inclination of the light receiving unit 9 can always correspond to the direction of the sun, and the accuracy of tracking the sun can be improved.
 また本実施の形態では、第1軸7を太陽の方位に対応して配設し、第2軸8を太陽の高度に対応して配設している。第2軸8は第2伝達部20によりモータ4の一方向および他方向の回転が伝達されるので、第2軸8を太陽の高度に応じて一方向および他方向に回転させることができ、太陽の高度方向の追尾を自在に行うことができる。 In the present embodiment, the first axis 7 is arranged corresponding to the direction of the sun, and the second axis 8 is arranged corresponding to the altitude of the sun. Since the rotation of the second shaft 8 in one direction and the other direction of the motor 4 is transmitted by the second transmission unit 20, the second shaft 8 can be rotated in one direction and the other direction according to the altitude of the sun, The sun's altitude direction can be tracked freely.
 また、第1ワンウェイクラッチ11を備える第1伝達部10は、第1軸7からの荷重の入力により駆動軸6が回転不能に設定されている。具体的には、機械的または電気的なブレーキ機構がない状態であっても、ウォームホイール13(第1軸7)からウォーム12(駆動軸6)を回転できないように設定されている。より具体的には、ウォームホイール13からウォーム12を回転させるときの第1伝達部10の伝達効率が0又は負に設定されている。これにより、風力等によって第1軸7の回りを駆動軸6が回転されることを防止し、受光部9の傾きが変化することを防ぎ、太陽の追尾精度を向上できる。 Further, in the first transmission unit 10 including the first one-way clutch 11, the drive shaft 6 is set to be non-rotatable by the input of a load from the first shaft 7. Specifically, it is set so that the worm 12 (drive shaft 6) cannot be rotated from the worm wheel 13 (first shaft 7) even in the absence of a mechanical or electrical brake mechanism. More specifically, the transmission efficiency of the first transmission unit 10 when the worm 12 is rotated from the worm wheel 13 is set to 0 or negative. Thereby, it is possible to prevent the drive shaft 6 from rotating around the first shaft 7 by wind force or the like, to prevent the inclination of the light receiving unit 9 from changing, and to improve the sun tracking accuracy.
 なお、第2伝達部20も同様に、伝達効率を調整することによりウォームホイール22(第2軸8)からウォーム21(駆動軸6)を回転できないように設定することは可能である。また、モータ4や減速機5のフリクション(機械的なブレーキ機構)を利用して、ウォームホイール22からウォーム21を回転不能にすることも可能である。 Similarly, the second transmission unit 20 can be set so that the worm 21 (drive shaft 6) cannot be rotated from the worm wheel 22 (second shaft 8) by adjusting the transmission efficiency. It is also possible to make the worm 21 unrotatable from the worm wheel 22 by using the friction (mechanical brake mechanism) of the motor 4 and the speed reducer 5.
 次に図3を参照して、第2実施の形態について説明する。第1実施の形態では、駆動軸6から第1軸7に動力を伝達する第1伝達部10が第1ワンウェイクラッチ11を備える場合について説明した。これに対し第2実施の形態では、駆動軸6から第2軸8に動力を伝達する第2伝達部120が第1ワンウェイクラッチ121を備える場合について説明する。なお、第2実施の形態において、第1実施の形態と同一の部分については、同一の符号を付して以下の説明を省略する。図3(a)は第2実施の形態における太陽追尾装置101において、モータ4を一方向に回転したときの正面視における太陽追尾装置101のスケルトン図であり、図3(b)はモータ4を一方向に回転したときの側面視における太陽追尾装置101のスケルトン図である。 Next, a second embodiment will be described with reference to FIG. In 1st Embodiment, the case where the 1st transmission part 10 which transmits motive power from the drive shaft 6 to the 1st shaft 7 was provided with the 1st one-way clutch 11 was demonstrated. On the other hand, 2nd Embodiment demonstrates the case where the 2nd transmission part 120 which transmits motive power from the drive shaft 6 to the 2nd shaft 8 is provided with the 1st one-way clutch 121. FIG. Note that in the second embodiment, the same portions as those in the first embodiment are denoted by the same reference numerals, and the following description is omitted. FIG. 3A is a skeleton diagram of the solar tracking device 101 in a front view when the motor 4 is rotated in one direction in the solar tracking device 101 in the second embodiment, and FIG. It is a skeleton figure of the sun tracking device 101 in the side view when rotated in one direction.
 図3(a)に示すように、第1伝達部110は、駆動軸6の一方向および他方向の回転を駆動軸6から第1軸7に伝達する部材である。本実施の形態では、第1伝達部110はウォームギヤにより構成されており、駆動軸6に形設されたウォーム111と、ウォーム111と噛合するように第1軸7に配設されたウォームホイール112とを備えている。 3A, the first transmission unit 110 is a member that transmits the rotation in one direction and the other direction of the drive shaft 6 from the drive shaft 6 to the first shaft 7. In the present embodiment, the first transmission unit 110 is configured by a worm gear, and a worm 111 formed on the drive shaft 6 and a worm wheel 112 disposed on the first shaft 7 so as to mesh with the worm 111. And.
 第2伝達部120は、駆動軸6の一方向の回転を第2軸8に伝達する一方、駆動軸6の他方向の回転の第2軸8への伝達を遮断する部材である。本実施の形態では、第2伝達部120は、スプラグタイプのワンウェイクラッチを備えるウォームギヤにより構成されており、駆動軸6に配設されたワンウェイクラッチ(第1ワンウェイクラッチ121)と、その第1ワンウェイクラッチ121の外周に形設されたウォーム122と、ウォーム122と噛合するように第2軸8に配設されたウォームホイール123とを備えている。以上のように太陽追尾装置101は構成されているので、モータ4の一方向の回転は第1伝達部110及び第2伝達部120により第1軸7及び第2軸8に伝達され、モータ4の他方向の回転は第1伝達部110により第1軸7に伝達される。 The second transmission unit 120 is a member that transmits the rotation in one direction of the drive shaft 6 to the second shaft 8 and blocks the transmission of the rotation in the other direction of the drive shaft 6 to the second shaft 8. In the present embodiment, second transmission unit 120 is configured by a worm gear having a sprag type one-way clutch, and includes a one-way clutch (first one-way clutch 121) disposed on drive shaft 6 and the first one-way. A worm 122 formed on the outer periphery of the clutch 121 and a worm wheel 123 disposed on the second shaft 8 so as to mesh with the worm 122 are provided. Since the solar tracking device 101 is configured as described above, the rotation of the motor 4 in one direction is transmitted to the first shaft 7 and the second shaft 8 by the first transmission unit 110 and the second transmission unit 120, and the motor 4 The rotation in the other direction is transmitted to the first shaft 7 by the first transmission unit 110.
 なお、モータ4の一方向の回転による第1伝達部110及び第2伝達部120の速度伝達比は、駆動軸6の1回転当たりにおける第1軸7の回転数が第2軸8の回転数より大きくなるように設定されている。これにより、モータ4の一方向の回転により受光部9の傾きが変化する速度は、第1軸7の回りの速度成分が、第2軸8の回りの速度成分より小さく設定されている。 The speed transmission ratio of the first transmission unit 110 and the second transmission unit 120 due to the rotation of the motor 4 in one direction is such that the rotation speed of the first shaft 7 per rotation of the drive shaft 6 is the rotation speed of the second shaft 8. It is set to be larger. Accordingly, the speed at which the inclination of the light receiving unit 9 changes due to the rotation of the motor 4 in one direction is set such that the speed component around the first axis 7 is smaller than the speed component around the second axis 8.
 図3(a)に示すように、モータ4を一方向に回転すると駆動軸6が一方向に回転し、第2伝達部120では第1ワンウェイクラッチ121のスプラグ121aがロックし、ウォーム122が一方向に回転する。また、第1伝達部110においてもウォーム111が一方向に回転する。 As shown in FIG. 3A, when the motor 4 is rotated in one direction, the drive shaft 6 is rotated in one direction. In the second transmission unit 120, the sprag 121a of the first one-way clutch 121 is locked, and the worm 122 is integrated. Rotate in the direction. Also in the first transmission unit 110, the worm 111 rotates in one direction.
 ウォーム111,122が一方向に回転することにより、図3(b)に示すように、ウォーム111,122にそれぞれ噛み合うウォームホイール112,123が一方向に回転する。その結果、第1軸7は方位方向に回転し、第2軸8は高度方向の一方向に回転する。モータ4の一方向の回転による第1伝達部110及び第2伝達部120の速度伝達比は、駆動軸6の1回転当たりにおける第1軸7の回転速度が第2軸8の回転速度より大きくなるように設定されているので、受光部9の高度方向の傾きが太陽の高度に対応している場合に、受光部9の方位方向の傾きは、天球上の太陽の方位より先行する。 As the worms 111 and 122 rotate in one direction, the worm wheels 112 and 123 that mesh with the worms 111 and 122, respectively, rotate in one direction as shown in FIG. As a result, the first shaft 7 rotates in the azimuth direction, and the second shaft 8 rotates in one direction of the altitude direction. The speed transmission ratio of the first transmission unit 110 and the second transmission unit 120 due to the rotation of the motor 4 in one direction is such that the rotation speed of the first shaft 7 per rotation of the drive shaft 6 is larger than the rotation speed of the second shaft 8. Therefore, when the inclination in the altitude direction of the light receiving unit 9 corresponds to the altitude of the sun, the inclination in the azimuth direction of the light receiving unit 9 precedes the azimuth of the sun on the celestial sphere.
 これを解消するため、図3(c)に示すようにモータ4を他方向に回転駆動する。図3(c)はモータ4を他方向に回転したときの正面視における太陽追尾装置1のスケルトン図であり、図3(d)はモータ4を他方向に回転したときの側面視における太陽追尾装置1のスケルトン図である。 In order to solve this problem, the motor 4 is rotated in the other direction as shown in FIG. FIG. 3C is a skeleton diagram of the solar tracking device 1 in a front view when the motor 4 is rotated in the other direction, and FIG. 3D is a solar tracking in a side view when the motor 4 is rotated in the other direction. FIG. 2 is a skeleton diagram of the device 1.
 図3(c)に示すように、モータ4を他方向に回転すると駆動軸6が他方向に回転し、第2伝達部120では第1ワンウェイクラッチ121のスプラグ121aのロックが解除され、ウォーム122への動力の伝達が遮断される。また、第1伝達部110では、ウォーム111が他方向に回転する。 As shown in FIG. 3C, when the motor 4 is rotated in the other direction, the drive shaft 6 is rotated in the other direction, and the second transmission portion 120 unlocks the sprag 121 a of the first one-way clutch 121, and the worm 122 Transmission of power to is interrupted. In the first transmission unit 110, the worm 111 rotates in the other direction.
 ウォーム111が他方向に回転することにより、図3(d)に示すように、ウォーム111に噛み合うウォームホイール112が他方向に回転する。その結果、第2軸8の高度方向の回転が停止され、第1軸7が方位方向の他方向に回転されるので、受光部9の方位方向の傾きを、太陽の方位に対応させることができる。その結果、受光部9に太陽を追尾させることができる。 When the worm 111 rotates in the other direction, the worm wheel 112 that meshes with the worm 111 rotates in the other direction as shown in FIG. As a result, since the rotation of the second shaft 8 in the altitude direction is stopped and the first shaft 7 is rotated in the other direction of the azimuth direction, the inclination of the light receiving unit 9 in the azimuth direction can be made to correspond to the azimuth of the sun. it can. As a result, the light receiving unit 9 can track the sun.
 また、第1ワンウェイクラッチ121を備える第2伝達部120は、第2軸8からの荷重の入力により駆動軸6が回転不能に設定されている。具体的には、機械的または電気的なブレーキ機構がない状態であっても、ウォームホイール123(第2軸8)からウォーム122(駆動軸6)を回転できないように設定されている。より具体的には、ウォームホイール123からウォーム122を回転させるときの第2伝達部120の伝達効率が0又は負に設定されている。これにより、風力等によって受光部9の傾きが変化することを防止でき、太陽の追尾精度を向上できる。 Further, in the second transmission unit 120 including the first one-way clutch 121, the drive shaft 6 is set to be non-rotatable by the input of a load from the second shaft 8. Specifically, it is set so that the worm 122 (drive shaft 6) cannot be rotated from the worm wheel 123 (second shaft 8) even when there is no mechanical or electrical brake mechanism. More specifically, the transmission efficiency of the second transmission unit 120 when rotating the worm 122 from the worm wheel 123 is set to 0 or negative. Thereby, it can prevent that the inclination of the light-receiving part 9 changes with a wind force etc., and can improve the tracking accuracy of the sun.
 なお、第1伝達部110も同様に、伝達効率を調整することによりウォームホイール122(第1軸7)からウォーム111(駆動軸6)を回転できないように設定することは可能である。また、モータ4や減速機5のフリクション(機械的なブレーキ機構)を利用して、ウォームホイール122からウォーム111を回転不能にすることも可能である。 The first transmission unit 110 can be similarly set so that the worm 111 (drive shaft 6) cannot be rotated from the worm wheel 122 (first shaft 7) by adjusting the transmission efficiency. It is also possible to make the worm 111 non-rotatable from the worm wheel 122 using the friction (mechanical brake mechanism) of the motor 4 and the speed reducer 5.
 次に図4を参照して、第3実施の形態について説明する。第1実施の形態および第2実施の形態では、第1伝達部10,110又は第2伝達部20,120の一方がワンウェイクラッチ(第1ワンウェイクラッチ11,121)を備える場合について説明した。これに対し第3実施の形態では、第1伝達部210及び第2伝達部220の両方がワンウェイクラッチを備える場合について説明する。なお、第3実施の形態において、第1実施の形態と同一の部分については、同一の符号を付して以下の説明を省略する。図4(a)は第3実施の形態における太陽追尾装置201において、モータ4を一方向に回転したときの正面視における太陽追尾装置201のスケルトン図であり、図4(b)はモータ4を一方向に回転したときの側面視における太陽追尾装置201のスケルトン図である。 Next, a third embodiment will be described with reference to FIG. In 1st Embodiment and 2nd Embodiment, the case where one of the 1st transmission parts 10 and 110 or the 2nd transmission parts 20 and 120 was equipped with the one-way clutch (1st one-way clutches 11 and 121) was demonstrated. On the other hand, 3rd Embodiment demonstrates the case where both the 1st transmission part 210 and the 2nd transmission part 220 are provided with a one-way clutch. Note that in the third embodiment, identical symbols are assigned to parts identical to those in the first embodiment and description below is omitted. FIG. 4A is a skeleton diagram of the solar tracking device 201 in a front view when the motor 4 is rotated in one direction in the solar tracking device 201 in the third embodiment, and FIG. It is a skeleton figure of the sun tracking device 201 in the side view when rotated in one direction.
 図4(a)に示すように、第1伝達部210は、駆動軸6の一方向の回転を第1軸7に伝達する一方、駆動軸6の他方向の回転の第1軸7への伝達を遮断する部材である。本実施の形態では、第1伝達部210は、スプラグタイプのワンウェイクラッチを備えるウォームギヤにより構成されており、駆動軸6に配設されたワンウェイクラッチ(第1ワンウェイクラッチ211)と、その第1ワンウェイクラッチ211の外周に形設されたウォーム212と、ウォーム212と噛合するように第1軸7に配設されたウォームホイール213とを備えている。 As shown in FIG. 4A, the first transmission unit 210 transmits the rotation of the drive shaft 6 in one direction to the first shaft 7, while the rotation of the drive shaft 6 in the other direction to the first shaft 7. It is a member that blocks transmission. In the present embodiment, the first transmission unit 210 is configured by a worm gear having a sprag type one-way clutch, and includes a one-way clutch (first one-way clutch 211) disposed on the drive shaft 6, and the first one-way. A worm 212 formed on the outer periphery of the clutch 211 and a worm wheel 213 disposed on the first shaft 7 so as to mesh with the worm 212 are provided.
 第2伝達部220は、駆動軸6の他方向の回転を第2軸8に伝達する一方、駆動軸6の一方向の回転の第2軸8への伝達を遮断する部材である。本実施の形態では、第2伝達部220は、スプラグタイプのワンウェイクラッチを備えるウォームギヤにより構成されており、駆動軸6に配設されたワンウェイクラッチ(第2ワンウェイクラッチ221)と、その第2ワンウェイクラッチ221の外周に形設されたウォーム222と、ウォーム222と噛合するように第2軸8に配設されたウォームホイール223とを備えている。 The second transmission unit 220 is a member that transmits the rotation in the other direction of the drive shaft 6 to the second shaft 8 and blocks the transmission of the rotation in one direction of the drive shaft 6 to the second shaft 8. In the present embodiment, the second transmission unit 220 is configured by a worm gear including a sprag type one-way clutch, and includes a one-way clutch (second one-way clutch 221) disposed on the drive shaft 6, and the second one-way. A worm 222 formed on the outer periphery of the clutch 221 and a worm wheel 223 disposed on the second shaft 8 so as to mesh with the worm 222 are provided.
 以上のように太陽追尾装置201は構成されているので、モータ4の一方向の回転は第1伝達部210により第1軸7に伝達され、モータ4の他方向の回転は第2伝達部220により第2軸8に伝達される。 Since the solar tracking device 201 is configured as described above, rotation in one direction of the motor 4 is transmitted to the first shaft 7 by the first transmission unit 210, and rotation in the other direction of the motor 4 is transmitted to the second transmission unit 220. Is transmitted to the second shaft 8.
 図4(a)に示すように、モータ4を一方向に回転すると駆動軸6が一方向に回転し、第1伝達部210では第1ワンウェイクラッチ211のスプラグ211aがロックし、ウォーム212が一方向に回転する。一方、第2伝達部220では第2ワンウェイクラッチ221のスプラグ221aのロックが解除され、ウォーム222は駆動されない。 As shown in FIG. 4A, when the motor 4 is rotated in one direction, the drive shaft 6 is rotated in one direction. In the first transmission unit 210, the sprag 211a of the first one-way clutch 211 is locked, and the worm 212 is integrated. Rotate in the direction. On the other hand, in the second transmission unit 220, the sprag 221a of the second one-way clutch 221 is unlocked, and the worm 222 is not driven.
 ウォーム212が一方向に回転することにより、図4(b)に示すように、ウォーム212に噛み合うウォームホイール213が一方向に回転する。その結果、第1軸7は方位方向に回転し、受光部9の方位方向の傾きを太陽の方位に対応させることができる。 As the worm 212 rotates in one direction, the worm wheel 213 that meshes with the worm 212 rotates in one direction as shown in FIG. As a result, the first axis 7 rotates in the azimuth direction, and the inclination of the light receiving unit 9 in the azimuth direction can correspond to the azimuth of the sun.
 また、図4(c)に示すように、モータ4を他方向に回転すると駆動軸6が他方向に回転し、第2伝達部220では第2ワンウェイクラッチ221のスプラグ221aがロックし、ウォーム222が他方向に回転する。一方、第1伝達部210では第1ワンウェイクラッチ211のスプラグ211aのロックが解除され、ウォーム212は駆動されない。 As shown in FIG. 4C, when the motor 4 is rotated in the other direction, the drive shaft 6 is rotated in the other direction, and in the second transmission unit 220, the sprag 221a of the second one-way clutch 221 is locked. Rotates in the other direction. On the other hand, in the first transmission unit 210, the sprag 211a of the first one-way clutch 211 is unlocked, and the worm 212 is not driven.
 ウォーム222が他方向に回転することにより、図4(d)に示すように、ウォーム222に噛み合うウォームホイール223が他方向に回転する。その結果、第2軸8は高度方向に回転し、受光部9の高度方向の傾きを太陽の高度に対応させることができる。以上のように、モータ4を一方向または他方向に回転させることによって、第1ワンウェイクラッチ211及び第2ワンウェイクラッチ221により第1軸7と第2軸8とを独立して回転できるので、太陽を追尾するためのモータ4の回転制御を簡素化できる。 As the worm 222 rotates in the other direction, the worm wheel 223 that meshes with the worm 222 rotates in the other direction, as shown in FIG. As a result, the second shaft 8 rotates in the altitude direction, and the inclination of the light receiving unit 9 in the altitude direction can correspond to the solar altitude. As described above, the first shaft 7 and the second shaft 8 can be independently rotated by the first one-way clutch 211 and the second one-way clutch 221 by rotating the motor 4 in one direction or the other direction. Rotation control of the motor 4 for tracking can be simplified.
 また、第1ワンウェイクラッチ211を備える第1伝達部210は、第1軸7からの荷重の入力により駆動軸6が回転不能に設定されている。具体的には、機械的または電気的なブレーキ機構がない状態であっても、ウォームホイール213(第1軸7)からウォーム212(駆動軸6)を回転できないように設定されている。より具体的には、ウォームホイール213からウォーム212を回転させるときの第1伝達部210の伝達効率が0又は負に設定されている。 Further, in the first transmission unit 210 including the first one-way clutch 211, the drive shaft 6 is set to be non-rotatable by the input of a load from the first shaft 7. Specifically, it is set so that the worm 212 (drive shaft 6) cannot be rotated from the worm wheel 213 (first shaft 7) even when there is no mechanical or electrical brake mechanism. More specifically, the transmission efficiency of the first transmission unit 210 when the worm 212 is rotated from the worm wheel 213 is set to 0 or negative.
 また、第2ワンウェイクラッチ221を備える第2伝達部220は、第2軸8からの荷重の入力により駆動軸6が回転不能に設定されている。具体的には、機械的または電気的なブレーキ機構がない状態であっても、ウォームホイール223(第2軸8)からウォーム222(駆動軸6)を回転できないように設定されている。より具体的には、ウォームホイール223からウォーム222を回転させるときの第2伝達部220の伝達効率が0又は負に設定されている。第1伝達部210及び第2伝達部220を以上のように設定することにより、風力等によって受光部9の傾きが変化することを防止でき、太陽の追尾精度を向上できる。 Further, in the second transmission unit 220 including the second one-way clutch 221, the drive shaft 6 is set to be non-rotatable by the input of a load from the second shaft 8. Specifically, it is set so that the worm 222 (drive shaft 6) cannot be rotated from the worm wheel 223 (second shaft 8) even in the absence of a mechanical or electrical brake mechanism. More specifically, the transmission efficiency of the second transmission unit 220 when rotating the worm 222 from the worm wheel 223 is set to 0 or negative. By setting the 1st transmission part 210 and the 2nd transmission part 220 as mentioned above, it can prevent that the inclination of the light-receiving part 9 changes with a wind force etc., and can improve the tracking accuracy of the sun.
 次に図5を参照して、第4実施の形態について説明する。第1実施の形態から第3実施の形態では、減速機5が駆動軸6にモータ4の回転を出力する場合について説明した。これに対し、第4実施の形態では駆動軸6を省略し、減速機5が第2軸308にモータ4の回転を出力する場合について説明する。なお、第4実施の形態において、第1実施の形態と同一の部分については、同一の符号を付して以下の説明を省略する。図5(a)は第4実施の形態における太陽追尾装置301において、モータ4を一方向に回転したときの正面視における太陽追尾装置301のスケルトン図であり、図5(b)はモータ4を一方向に回転したときの側面視における太陽追尾装置301のスケルトン図である。図5(a)に示すように、第2軸308は減速機5の出力により回転される部材であり、第1軸7に直交するように配置され、伝達部310及び受光部9が配設されている。 Next, a fourth embodiment will be described with reference to FIG. In the first to third embodiments, the case where the reduction gear 5 outputs the rotation of the motor 4 to the drive shaft 6 has been described. In contrast, in the fourth embodiment, the case where the drive shaft 6 is omitted and the reduction gear 5 outputs the rotation of the motor 4 to the second shaft 308 will be described. Note that in the fourth embodiment, identical symbols are assigned to parts identical to those in the first embodiment and description below is omitted. FIG. 5A is a skeleton diagram of the solar tracking device 301 in a front view when the motor 4 is rotated in one direction in the solar tracking device 301 in the fourth embodiment, and FIG. It is a skeleton figure of the sun tracking device 301 in the side view when rotated in one direction. As shown in FIG. 5A, the second shaft 308 is a member that is rotated by the output of the speed reducer 5, and is disposed so as to be orthogonal to the first shaft 7, and the transmission unit 310 and the light receiving unit 9 are disposed. Has been.
 伝達部310は、第2軸308の一方向の回転を第1軸7に伝達する一方、第2軸308の他方向の回転の第1軸7への伝達を遮断する部材である。本実施の形態では、伝達部310は、スプラグタイプのワンウェイクラッチを備えるウォームギヤにより構成されており、第2軸308に配設されたワンウェイクラッチ311と、そのワンウェイクラッチ311の外周に形設されたウォーム312と、ウォーム312と噛合するように第1軸7に配設されたウォームホイール313とを備えている。 The transmission unit 310 is a member that transmits the rotation of the second shaft 308 in one direction to the first shaft 7 while blocking the transmission of the rotation of the second shaft 308 in the other direction to the first shaft 7. In the present embodiment, transmission unit 310 is configured by a worm gear including a sprag type one-way clutch, and is formed on the outer circumference of one-way clutch 311 disposed on second shaft 308 and one-way clutch 311. A worm 312 and a worm wheel 313 disposed on the first shaft 7 so as to mesh with the worm 312 are provided.
 以上のように太陽追尾装置301は構成されているので、モータ4の一方向および他方向の回転は第2軸308より受光部9に伝達される。また伝達部310により、モータ4の一方向の回転は第1軸7に伝達される。なお、伝達部310の速度伝達比は、モータ4の一方向の回転において、第2軸308の回転速度が第1軸7の回転速度より大きくなるように設定されている。 Since the sun tracking device 301 is configured as described above, rotations in one direction and the other direction of the motor 4 are transmitted from the second shaft 308 to the light receiving unit 9. Further, the rotation of the motor 4 in one direction is transmitted to the first shaft 7 by the transmission unit 310. The speed transmission ratio of the transmission unit 310 is set so that the rotation speed of the second shaft 308 is larger than the rotation speed of the first shaft 7 in one direction of rotation of the motor 4.
 図5(a)に示すように、モータ4を一方向に回転すると第2軸308が一方向に回転し、伝達部310ではワンウェイクラッチ311のスプラグ311aがロックし、ウォーム312が一方向に回転する。また、第2軸308の回転に伴い、受光部9の高度方向における傾きが変化する。 As shown in FIG. 5A, when the motor 4 is rotated in one direction, the second shaft 308 is rotated in one direction, and in the transmission section 310, the sprag 311a of the one-way clutch 311 is locked, and the worm 312 is rotated in one direction. To do. Further, as the second shaft 308 rotates, the inclination of the light receiving unit 9 in the altitude direction changes.
 ウォーム312が一方向に回転することにより、図5(b)に示すように、ウォーム312に噛み合うウォームホイール313が一方向に回転する。その結果、第1軸7は方位方向に回転し、受光部9の方位方向における傾きが変化する。モータ4の一方向の回転による伝達部310の速度伝達比は、第2軸308の回転速度が第1軸7の回転速度より大きくなるように設定されているので、受光部9の方位方向の傾きが太陽の方位に対応している場合に、受光部9の高度方向の傾きは太陽の高度より先行する。 When the worm 312 rotates in one direction, the worm wheel 313 that meshes with the worm 312 rotates in one direction as shown in FIG. As a result, the first axis 7 rotates in the azimuth direction, and the inclination of the light receiving unit 9 in the azimuth direction changes. The speed transmission ratio of the transmission unit 310 due to the rotation of the motor 4 in one direction is set so that the rotation speed of the second shaft 308 is larger than the rotation speed of the first shaft 7. When the inclination corresponds to the azimuth of the sun, the inclination of the light receiving unit 9 in the altitude direction precedes the solar altitude.
 受光部9に太陽を追尾させるには、目標とする回転位置にない第2軸308の回転位置を補正する必要がある。そのような場合に、図5(c)に示すようにモータ4を他方向に回転駆動する。図5(c)はモータ4を他方向に回転したときの正面視における太陽追尾装置301のスケルトン図であり、図5(d)はモータ4を他方向に回転したときの側面視における太陽追尾装置301のスケルトン図である。 In order for the light receiving unit 9 to track the sun, it is necessary to correct the rotational position of the second shaft 308 that is not at the target rotational position. In such a case, the motor 4 is rotationally driven in the other direction as shown in FIG. FIG. 5C is a skeleton diagram of the solar tracking device 301 in a front view when the motor 4 is rotated in the other direction, and FIG. 5D is a solar tracking in a side view when the motor 4 is rotated in the other direction. 2 is a skeleton diagram of the device 301. FIG.
 図5(c)に示すように、モータ4を他方向に回転すると第2軸308が他方向に回転し、伝達部310ではワンウェイクラッチ311のスプラグ311aのロックが解除され、ウォーム312への動力の伝達が遮断される。また、第2軸308の他方向の回転により、受光部9の高度方向における傾きが変化する。その結果、受光部9の高度方向の傾きを変化させ、太陽の高度に対応させることができる。 As shown in FIG. 5C, when the motor 4 is rotated in the other direction, the second shaft 308 is rotated in the other direction, and in the transmission unit 310, the sprag 311a of the one-way clutch 311 is unlocked, and the power to the worm 312 is released. Is interrupted. In addition, the inclination of the light receiving unit 9 in the altitude direction changes due to the rotation of the second shaft 308 in the other direction. As a result, the inclination of the light receiving unit 9 in the altitude direction can be changed to correspond to the altitude of the sun.
 第4実施の形態における太陽追尾装置301においても、モータ4及び減速機5により第1軸7及び第2軸308を駆動させて太陽を追尾できるので、モータ4及び減速機5をそれぞれ1つに削減することができる。その結果、太陽追尾装置301を小型化および軽量化できると共に、削減されたモータ及び減速機と追加されたワンウェイクラッチ311との差分だけ製造コストを低減できる。また、太陽追尾装置301の設置場所ごとに伝達部310の速度伝達比を個別に設定(専用部品化)する必要がないので、伝達部310の部品の共通化を図ることができる。 Also in the sun tracking device 301 in the fourth embodiment, the first shaft 7 and the second shaft 308 can be driven by the motor 4 and the speed reducer 5 so that the sun can be tracked. Can be reduced. As a result, the solar tracking device 301 can be reduced in size and weight, and the manufacturing cost can be reduced by the difference between the reduced motor and reduction gear and the added one-way clutch 311. Further, since it is not necessary to individually set the speed transmission ratio of the transmission unit 310 for each installation location of the solar tracking device 301 (dedicated parts), it is possible to make the components of the transmission unit 310 common.
 また、ワンウェイクラッチ311を備える伝達部310は、第1軸7からの荷重の入力により第2軸308が回転不能に設定されている。具体的には、機械的または電気的なブレーキ機構がない状態であっても、ウォームホイール313(第1軸7)からウォーム312(第2軸308)を回転できないように設定されている。より具体的には、ウォームホイール313からウォーム312を回転させるときの伝達効率が0又は負に設定されている。これにより、風力等によって第1軸7の回りを第2軸308が回転されることを防止し、受光部9の傾きが変化することを防ぎ、太陽の追尾精度を向上できる。なお、第2軸308は、モータ4や減速機5のフリクションを利用して、風力等の外力が加わっても回転不能にできる。 Further, in the transmission unit 310 including the one-way clutch 311, the second shaft 308 is set to be non-rotatable by the input of a load from the first shaft 7. Specifically, the worm 312 (second shaft 308) cannot be rotated from the worm wheel 313 (first shaft 7) even in the absence of a mechanical or electrical brake mechanism. More specifically, the transmission efficiency when rotating the worm 312 from the worm wheel 313 is set to 0 or negative. Thereby, it is possible to prevent the second shaft 308 from rotating around the first shaft 7 by wind force or the like, to prevent the inclination of the light receiving unit 9 from changing, and to improve the sun tracking accuracy. Note that the second shaft 308 can be made non-rotatable even when an external force such as wind power is applied by using the friction of the motor 4 or the speed reducer 5.
 次に図6を参照して、第5実施の形態について説明する。第1実施の形態から第4実施の形態では、第1軸7が台部2に立設される場合について説明した。これに対し第5実施の形態では、第1軸407が台部402に横設される場合について説明する。なお、第5実施の形態において、第1実施の形態と同一の部分については、同一の符号を付して以下の説明を省略する。図6は第5実施の形態における太陽追尾装置401の斜視図である。なお図6では、モータ4、減速機5及び駆動軸6の図示を省略している。 Next, a fifth embodiment will be described with reference to FIG. In the first to fourth embodiments, the case where the first shaft 7 is erected on the base 2 has been described. On the other hand, in the fifth embodiment, a case where the first shaft 407 is installed horizontally on the platform 402 will be described. Note that in the fifth embodiment, identical symbols are assigned to parts identical to those in the first embodiment and description below is omitted. FIG. 6 is a perspective view of a solar tracking device 401 according to the fifth embodiment. In FIG. 6, the motor 4, the speed reducer 5, and the drive shaft 6 are not shown.
 図5に示すように、太陽追尾装置401は、大地に対して固定される台部402と、その台部402に軸支されつつ横設される第1軸407と、その第1軸407に固定され第1軸407の回転に伴い揺動される略コ字状のフレーム403と、そのフレーム403に軸支されると共に受光部9が固定される第2軸408とを備えている。第1軸407及び第2軸408は駆動軸(図示せず)に連係されており、駆動軸は図示しないモータ及び減速機の出力により回転されるように構成され、第1軸407及び第2軸408の回転により受光部9の傾きが変化される。太陽追尾装置401は、第1軸407が横設されており第2軸408がフレーム304に支持されているので、台部402の直上に受光部9を設けることができる。そのため受光部9の面積を大きくすることができる。 As shown in FIG. 5, the solar tracking device 401 includes a base portion 402 that is fixed to the ground, a first shaft 407 that is laterally supported while being pivotally supported by the base portion 402, and a first shaft 407. A substantially U-shaped frame 403 that is fixed and swings as the first shaft 407 rotates is provided, and a second shaft 408 that is pivotally supported by the frame 403 and to which the light receiving unit 9 is fixed. The first shaft 407 and the second shaft 408 are linked to a drive shaft (not shown), and the drive shaft is configured to be rotated by outputs of a motor and a speed reducer (not shown). The inclination of the light receiving unit 9 is changed by the rotation of the shaft 408. In the sun tracking device 401, the first shaft 407 is provided horizontally and the second shaft 408 is supported by the frame 304, so that the light receiving unit 9 can be provided immediately above the base unit 402. Therefore, the area of the light receiving unit 9 can be increased.
 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記実施の形態で挙げた数値(例えば、各構成の数量等)は一例であり、他の数値を採用することは当然可能である。 The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed. For example, the numerical values (for example, the quantity of each component) given in the above embodiment are examples, and other numerical values can naturally be adopted.
 上記各実施の形態では、第1伝達部10,110,210、第2伝達部20,120,220及び伝達部310がウォームギヤにより構成される場合について説明したが、必ずしもこれに限られるものではなく、他の伝達機構を採用することは当然可能である。他の伝達機構としては、例えばベベルギヤ(直歯または曲り歯)、クラウンギヤ等が挙げられる。 In each of the above embodiments, the case where the first transmission units 10, 110, 210, the second transmission units 20, 120, 220, and the transmission unit 310 are configured by worm gears has been described. However, the present invention is not necessarily limited thereto. Of course, it is possible to employ other transmission mechanisms. Examples of other transmission mechanisms include bevel gears (straight teeth or bent teeth), crown gears, and the like.
 また上記各実施の形態では、駆動軸6に対して第1軸7及び第2軸8が直交方向に配設される場合、第1軸7,407に対して第2軸308,408が直交方向に配設される場合について説明したが、必ずしもこれに限られるものではなく、直交以外の他の角度で各軸を斜交させることは当然可能である。各軸が直交以外の他の角度で斜交するような場合、第1伝達部10,110,210、第2伝達部20,120,220及び伝達部310にベベルアンギュラーを用いることで動力の伝達を可能にできる。 In each of the above embodiments, when the first shaft 7 and the second shaft 8 are disposed in the orthogonal direction with respect to the drive shaft 6, the second shafts 308 and 408 are orthogonal to the first shaft 7 and 407. Although the case where it is arranged in the direction has been described, it is not necessarily limited to this, and it is naturally possible to make each axis obliquely cross at an angle other than orthogonal. When each axis is obliquely crossed at an angle other than orthogonal, the bevel angular is used for the first transmission unit 10, 110, 210, the second transmission unit 20, 120, 220 and the transmission unit 310. Transmission can be made possible.
 上記各実施の形態では、ワンウェイクラッチ(第1ワンウェイクラッチ11,121,211、第2ワンウェイクラッチ221及びワンウェイクラッチ311)がスプラグタイプの場合について説明したが、必ずしもこれに限られるものではなく、他のワンウェイクラッチ、例えばローラタイプ、ラチェットタイプを採用することは当然可能である。 In each of the above embodiments, the case where the one-way clutch (the first one-way clutch 11, 121, 211, the second one-way clutch 221 and the one-way clutch 311) is a sprag type has been described, but the present invention is not necessarily limited to this. Of course, it is possible to employ one-way clutches such as a roller type and a ratchet type.
 上記各実施の形態では、モータ4及び減速機5が別部材として構成される場合について説明したが、必ずしもこれに限られるものではなく、ギヤードモータ等のようにモータ4及び減速機5が一体に構成された機構を採用することは当然可能である。 In each of the above-described embodiments, the case where the motor 4 and the speed reducer 5 are configured as separate members has been described. However, the present invention is not necessarily limited to this, and the motor 4 and the speed reducer 5 are integrated as in a geared motor or the like. It is naturally possible to adopt a structured mechanism.
 上記各実施の形態では、第1軸7が鉛直方向に配置される場合(大地に対して略直交)、第1軸407が水平方向に配置される場合(大地に対して略平行)について説明したが、必ずしもこれらに限られるものではなく、第1軸7,407を大地に対して斜交させて配置することは当然可能である。この場合も第1軸7,407と第2軸8,308,408とを連係させて、受光部9の傾きを変化させることができる。 In each of the embodiments described above, the case where the first shaft 7 is arranged in the vertical direction (substantially orthogonal to the ground) and the case where the first shaft 407 is arranged in the horizontal direction (substantially parallel to the ground) are described. However, it is not necessarily limited to these, and it is naturally possible to arrange the first shafts 7 and 407 obliquely with respect to the ground. Also in this case, the inclination of the light receiving unit 9 can be changed by linking the first shafts 7 and 407 and the second shafts 8, 308, and 408.
 上記各実施の形態では、受光部9の傾きを補正するときは、初めに第1ワンウェイクラッチ11,121,211又はワンウェイクラッチ311がロックする方向にモータ4を回転させて、次に第1ワンウェイクラッチ11,121,211又はワンウェイクラッチ311がフリーとなる方向にモータ4を回転させる場合について説明したが、必ずしもこれに限られるものではない。初めに第1ワンウェイクラッチ11,121,211又はワンウェイクラッチ311がフリーとなる方向にモータ4を回転させて、次に第1ワンウェイクラッチ11,121,211又はワンウェイクラッチ311がロックする方向にモータ4を回転させることで受光部9の傾きを補正することは当然可能である。モータ4の回転順に関らず、同様の効果を実現できるからである。 In each of the above embodiments, when correcting the inclination of the light receiving unit 9, the motor 4 is first rotated in the direction in which the first one-way clutch 11, 121, 211 or the one-way clutch 311 is locked, and then the first one-way. Although the case where the motor 4 is rotated in a direction in which the clutch 11, 121, 211 or the one-way clutch 311 is free has been described, the present invention is not necessarily limited thereto. First, the motor 4 is rotated in such a direction that the first one-way clutch 11, 121, 211 or the one-way clutch 311 becomes free, and then the motor 4 in a direction in which the first one-way clutch 11, 121, 211 or the one-way clutch 311 is locked. It is of course possible to correct the inclination of the light receiving unit 9 by rotating. This is because the same effect can be realized regardless of the order of rotation of the motor 4.
 1,101,201,301,401 太陽追尾装置
 4                 モータ
 5                 減速機
 6                 駆動軸
 7,407             第1軸
 8,308,408         第2軸
 9                 受光部
 10,110,210        第1伝達部
 20,120,220        第2伝達部
 11,121,211        第1ワンウェイクラッチ
 221               第2ワンウェイクラッチ
 310               伝達部
 311               ワンウェイクラッチ
1, 101, 201, 301, 401 Solar tracking device 4 Motor 5 Reducer 6 Drive shaft 7,407 First shaft 8, 308, 408 Second shaft 9 Light receiving unit 10, 110, 210 First transmission unit 20, 120, 220 Second transmission part 11, 121, 211 First one-way clutch 221 Second one-way clutch 310 Transmission part 311 One-way clutch

Claims (7)

  1.  大地に対して軸心の位置が固定されると共に、太陽の方位または高度の一方に対応して前記軸心の回りに回転可能に構成される第1軸と、
     その第1軸の回りに太陽の方位または高度の他方に対応して回転可能に構成されると共に、太陽光を受光する受光部が固定される第2軸と、
     一方向および他方向の回転を出力可能なモータと、
     そのモータの回転数を減じて出力する減速機と、
     その減速機の回転が伝達される駆動軸と、
     その駆動軸から前記第1軸に回転を伝達する第1伝達部および前記駆動軸から前記第2軸に回転を伝達する第2伝達部とを備え、
     前記第1伝達部または前記第2伝達部の一方は、
     前記第1軸または前記第2軸の一方に前記モータの一方向の回転を伝達する一方、前記第1軸または前記第2軸の一方への前記モータの他方向の回転の伝達を遮断する第1ワンウェイクラッチを備えていることを特徴とする太陽追尾装置。
    A first axis that is fixed with respect to the ground and is configured to be rotatable about the axis in accordance with one of the azimuth or altitude of the sun;
    A second axis on which a light receiving unit for receiving sunlight is fixed and is configured to be rotatable around the first axis corresponding to the other of the azimuth or altitude of the sun;
    A motor capable of outputting rotation in one direction and the other direction;
    A speed reducer that reduces the number of rotations of the motor and outputs it,
    A drive shaft to which the rotation of the speed reducer is transmitted,
    A first transmission unit that transmits rotation from the drive shaft to the first shaft and a second transmission unit that transmits rotation from the drive shaft to the second shaft;
    One of the first transmission unit or the second transmission unit is
    Transmitting the rotation of the motor in one direction to one of the first shaft or the second shaft, while blocking transmission of rotation of the motor in the other direction to one of the first shaft or the second shaft. A solar tracking device comprising a one-way clutch.
  2.  前記モータの一方向の回転により前記受光部の傾きが変化する速度は、前記第1ワンウェイクラッチを介して回転が伝達される前記第1軸または前記第2軸の一方の回りの速度成分が、前記第1軸または前記第2軸の他方の回りの速度成分より小さく設定されていることを特徴とする請求項1記載の太陽追尾装置。 The speed at which the inclination of the light-receiving portion changes due to the rotation of the motor in one direction is a speed component around one of the first axis and the second axis through which the rotation is transmitted via the first one-way clutch. The solar tracking device according to claim 1, wherein the solar tracking device is set to be smaller than a velocity component around the other of the first axis or the second axis.
  3.  前記第1ワンウェイクラッチは、太陽の方位に対応して回転するように設定される前記第1軸または前記第2軸に配設されていることを特徴とする請求項1又は2に記載の太陽追尾装置。 3. The sun according to claim 1, wherein the first one-way clutch is disposed on the first axis or the second axis that is set to rotate in accordance with the direction of the sun. Tracking device.
  4.  前記第1伝達部または前記第2伝達部の他方は、前記第1ワンウェイクラッチが伝達する前記モータの回転方向と逆方向の回転を前記第1軸または前記第2軸の他方に伝達する一方、前記第1ワンウェイクラッチが伝達する前記モータの回転方向と同方向の回転の前記第1軸または前記第2軸の他方への伝達を遮断する第2ワンウェイクラッチを備えていることを特徴とする請求項1又は3に記載の太陽追尾装置。 The other of the first transmission unit or the second transmission unit transmits rotation in the direction opposite to the rotation direction of the motor transmitted by the first one-way clutch to the other of the first shaft or the second shaft. A second one-way clutch is provided that blocks transmission of rotation in the same direction as the rotation direction of the motor transmitted by the first one-way clutch to the other of the first shaft or the second shaft. Item 4. A solar tracking device according to item 1 or 3.
  5.  前記第1ワンウェイクラッチ又は前記第2ワンウェイクラッチを備える前記第1伝達部または前記第2伝達部は、前記第1軸または前記第2軸からの荷重の入力により前記駆動軸が回転不能に設定されていることを特徴とする請求項1から4のいずれかに記載の太陽追尾装置。 In the first transmission unit or the second transmission unit including the first one-way clutch or the second one-way clutch, the drive shaft is set to be non-rotatable by input of a load from the first shaft or the second shaft. The solar tracking device according to claim 1, wherein the solar tracking device is a solar tracking device.
  6.  大地に対して軸心の位置が固定されると共に、太陽の方位または高度の一方に対応して前記軸心の回りに回転可能に構成される第1軸と、
     その第1軸の回りに太陽の方位または高度の他方に対応して回転可能に構成されると共に、太陽光を受光する受光部が固定される第2軸と、
     一方向および他方向の回転を出力可能なモータと、
     そのモータの回転数を減じて前記第2軸に出力する減速機と、
     前記第2軸から前記第1軸に回転を伝達する伝達部とを備え、
     その伝達部は、前記モータの一方向の回転を前記第1軸に伝達する一方、前記モータの他方向の回転の前記第1軸への伝達を遮断するワンウェイクラッチを備えていることを特徴とする太陽追尾装置。
    A first axis that is fixed with respect to the ground and is configured to be rotatable about the axis in accordance with one of the azimuth or altitude of the sun;
    A second axis on which a light receiving unit for receiving sunlight is fixed and is configured to be rotatable around the first axis corresponding to the other of the azimuth or altitude of the sun;
    A motor capable of outputting rotation in one direction and the other direction;
    A speed reducer that reduces the number of rotations of the motor and outputs it to the second shaft;
    A transmission unit that transmits rotation from the second shaft to the first shaft;
    The transmission unit includes a one-way clutch that transmits rotation of the motor in one direction to the first shaft, while blocking transmission of rotation in the other direction of the motor to the first shaft. Solar tracking device.
  7.  前記ワンウェイクラッチを備える前記伝達部は、前記第1軸からの荷重の入力により前記第2軸が回転不能に設定されていることを特徴とする請求項6記載の太陽追尾装置。 The solar tracking device according to claim 6, wherein the transmission unit including the one-way clutch is set such that the second shaft cannot rotate by input of a load from the first shaft.
PCT/JP2012/065115 2011-06-29 2012-06-13 Sun tracking device WO2013002027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011143865A JP5209761B2 (en) 2011-06-29 2011-06-29 Solar tracking device
JP2011-143865 2011-06-29

Publications (1)

Publication Number Publication Date
WO2013002027A1 true WO2013002027A1 (en) 2013-01-03

Family

ID=47423925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065115 WO2013002027A1 (en) 2011-06-29 2012-06-13 Sun tracking device

Country Status (2)

Country Link
JP (1) JP5209761B2 (en)
WO (1) WO2013002027A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056436A (en) * 2013-09-10 2015-03-23 株式会社SolarFlame Sunbeam condensation power generation device
EP3045838A4 (en) * 2013-09-10 2017-10-11 SolarFlame Corporation Heliostat device, solar thermal collection device, and solar concentrating photovoltaic device
WO2018149991A1 (en) 2017-02-17 2018-08-23 Galderma Research & Development Hydroxylated sulfonamide derivatives as inverse agonists of retinoid-related orphan receptor gamma, ror gamma (t)
JP2020198746A (en) * 2019-06-05 2020-12-10 勝美 衛藤 Solar power generation device
WO2022174363A1 (en) 2021-02-17 2022-08-25 Huawei Technologies Co., Ltd. Mimo equalization with weighted coefficients update

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018205A (en) * 2014-07-11 2016-02-01 株式会社SolarFlame Reflecting mirror and heliostat device, and solar heat collection device and sunlight condensation power generation device
JP2015118360A (en) * 2013-11-18 2015-06-25 株式会社SolarFlame Heliostat device, solar heat collection apparatus, and sunlight collection and power generation apparatus
JP6492458B2 (en) * 2014-08-25 2019-04-03 住友電気工業株式会社 Photovoltaic power generation system and panel cleaning method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150943A (en) * 1998-11-05 2000-05-30 Koji Hashimoto Sun tracking device and sun tracking method
JP2001127330A (en) * 1999-10-29 2001-05-11 Hiroisa Koizumi Solar light condensing system
JP2002252365A (en) * 2001-02-26 2002-09-06 Daido Steel Co Ltd Solar-light tracking device
JP2004146760A (en) * 2002-10-27 2004-05-20 Teijiro Yamamoto Differential voltage driven sun tracking solar electric power plant
US20090114267A1 (en) * 2007-11-06 2009-05-07 Thompson Bruce A Clock operated step function solar tracker
JP2010258369A (en) * 2009-04-28 2010-11-11 Mitsubishi Electric Corp Solar tracking mechanism controller, solar tracker, and photovoltaic power generation system
JP2011066218A (en) * 2009-09-17 2011-03-31 Daido Metal Co Ltd Solar power generation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150943A (en) * 1998-11-05 2000-05-30 Koji Hashimoto Sun tracking device and sun tracking method
JP2001127330A (en) * 1999-10-29 2001-05-11 Hiroisa Koizumi Solar light condensing system
JP2002252365A (en) * 2001-02-26 2002-09-06 Daido Steel Co Ltd Solar-light tracking device
JP2004146760A (en) * 2002-10-27 2004-05-20 Teijiro Yamamoto Differential voltage driven sun tracking solar electric power plant
US20090114267A1 (en) * 2007-11-06 2009-05-07 Thompson Bruce A Clock operated step function solar tracker
JP2010258369A (en) * 2009-04-28 2010-11-11 Mitsubishi Electric Corp Solar tracking mechanism controller, solar tracker, and photovoltaic power generation system
JP2011066218A (en) * 2009-09-17 2011-03-31 Daido Metal Co Ltd Solar power generation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056436A (en) * 2013-09-10 2015-03-23 株式会社SolarFlame Sunbeam condensation power generation device
EP3045838A4 (en) * 2013-09-10 2017-10-11 SolarFlame Corporation Heliostat device, solar thermal collection device, and solar concentrating photovoltaic device
US10008977B2 (en) 2013-09-10 2018-06-26 Solarflame Corporation Heliostat apparatus and solar heat collecting apparatus and concentrating photovoltaic apparatus
WO2018149991A1 (en) 2017-02-17 2018-08-23 Galderma Research & Development Hydroxylated sulfonamide derivatives as inverse agonists of retinoid-related orphan receptor gamma, ror gamma (t)
JP2020198746A (en) * 2019-06-05 2020-12-10 勝美 衛藤 Solar power generation device
JP7252063B2 (en) 2019-06-05 2023-04-04 勝美 衛藤 photovoltaic device
WO2022174363A1 (en) 2021-02-17 2022-08-25 Huawei Technologies Co., Ltd. Mimo equalization with weighted coefficients update

Also Published As

Publication number Publication date
JP5209761B2 (en) 2013-06-12
JP2013016527A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
WO2013002027A1 (en) Sun tracking device
JP5789142B2 (en) Solar tracking device
US10404207B2 (en) Altitude and azimuth angle concurrent driving type solar tracking apparatus
KR101168724B1 (en) A Reduction Gear of Cycloid for a Wind Power Generator
CN102261314B (en) Reduction gear for wind power generation equipment
JP2017088092A (en) Drive unit for bicycle
CN104121335A (en) Planetary speed reducer with two planetary gears
CN105429575A (en) Electronic control system-based self-adjusting photovoltaic module bracket
CN102427088A (en) Mechanical double-shaft solar tracking bracket
US9645550B2 (en) Timepiece part
JP2009127959A (en) Sun tracking light collector
US20180023668A1 (en) Panel driving device and heliostat
JP6798525B2 (en) Power distribution device
CN101839308B (en) Reduction gear for natural energy recovery system
CN205978303U (en) Sun -tracking gear
KR20140043472A (en) Decelerator structure using plurality of two-speed spur gears, and actuator module including same
CN108138912A (en) Zero-clearance right-angle transmission system and method
KR101985149B1 (en) Variable speed transmission for wind turbine generation using motor and planetary gear mechanism
WO2009104473A1 (en) Planetary mechanism
KR20130029164A (en) Driving universial joint for solar tracker
CN104514684B (en) The yaw drive system of wind power plant
KR101569302B1 (en) Drive with transmission system
CN109424699A (en) A kind of planetary gear
CN106763621A (en) A kind of improved efficient Purely mechanical changement
US20090298636A1 (en) Gear-type reduction unit, particulary for rotary platforms for sun-following devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804763

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载