+

WO2013058260A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2013058260A1
WO2013058260A1 PCT/JP2012/076775 JP2012076775W WO2013058260A1 WO 2013058260 A1 WO2013058260 A1 WO 2013058260A1 JP 2012076775 W JP2012076775 W JP 2012076775W WO 2013058260 A1 WO2013058260 A1 WO 2013058260A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
liquid crystal
gradation
display
value
Prior art date
Application number
PCT/JP2012/076775
Other languages
French (fr)
Japanese (ja)
Inventor
山川亮
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013058260A1 publication Critical patent/WO2013058260A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve

Definitions

  • the present invention relates to a display device, particularly a non-light-emitting display device such as a liquid crystal display device.
  • liquid crystal display devices have been widely used in liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight compared to conventional cathode ray tubes.
  • Such a liquid crystal display device includes a backlight device that emits light, and a liquid crystal panel that displays a desired image by acting as a shutter for light from a light source provided in the backlight device. Yes.
  • gradation correction processing (gamma correction) using a predetermined gamma curve is performed on luminance information (gradation value) for each pixel included in an external video signal. Processing) is performed.
  • Patent Document 1 for example, a plurality of gamma curves are used for a conventional liquid crystal display device according to the combination of the brightness of the backlight device and the environmental illuminance at the installation location of the liquid crystal panel.
  • a conventional liquid crystal display device even when the luminance of the backlight device is changed based on the luminance information for each pixel included in the video signal from the outside, the visibility in the low gradation region is improved. It was possible.
  • the conventional liquid crystal display device as described above may not be able to improve the display quality.
  • the screen of the liquid crystal panel display panel, display unit
  • FIG. 18 is a diagram for explaining a main configuration of a conventional liquid crystal display device.
  • FIG. 19A to FIG. 19H are timing charts showing an operation example in each part of the liquid crystal panel shown in FIG.
  • FIGS. 20A and 20B are graphs showing examples of target gamma curves and measurement results at the center BC and the end BE shown in FIG. 18, respectively.
  • an active matrix substrate is used for a liquid crystal panel LP included in a conventional liquid crystal display device, and a plurality of data lines (source lines) and a plurality of data lines (source lines) are provided on the active matrix substrate.
  • a plurality of scanning wirings (gate wirings) are provided in a matrix (not shown).
  • the plurality of source wirings are equally distributed and connected to a plurality of, for example, eight source drivers 51.
  • the plurality of gate wirings are equally distributed and connected to a plurality of, for example, four gate drivers (not shown) provided on the left end side and the right end side of the liquid crystal panel LP, respectively. That is, in the liquid crystal panel LP, the left end portion and the right end portion of each gate wiring are connected to the gate drivers on the left end portion side and the right end portion side, respectively.
  • light emitting diodes 53 as light sources are provided outside the gate drivers on the left end side and the right end side (that is, on the left end side and the right end side of the liquid crystal panel LP).
  • a plurality of, for example, eight light emitting diodes 53 mounted LED substrates 54 are provided on the left end side and the right end side of the liquid crystal panel LP. Illumination light from the light emitting diode 53 is irradiated to the entire surface of the liquid crystal panel LP through a light guide plate (not shown).
  • the liquid crystal panel LP a plurality of pixels are provided at the intersection of the source wiring and the gate wiring.
  • the source driver 51 also applies the gradation voltage after the gradation correction processing using a predetermined gamma curve is performed on the luminance information (gradation value) for each pixel included in the video signal from the outside. Is supplied to the corresponding source wiring as a gradation signal.
  • the scanning signal is supplied from the gate driver to the left end portion and the right end portion of the gate wiring, respectively.
  • the grayscale voltage is set to the pixel in the liquid crystal layer (not shown). Charged to the unit. Thereby, in the liquid crystal panel LP, the transmittance is controlled in units of pixels, and a desired image is displayed.
  • the grayscale voltage at the pixel at the central portion BC of the liquid crystal panel LP is higher than that at the end BE of the liquid crystal panel LP.
  • the battery has become insufficiently charged. For this reason, in conventional liquid crystal display devices, the entire screen may not be displayed with a desired luminance when an image is displayed.
  • any pixel P included in the end BE of the liquid crystal panel LP when the gate clock GLK is turned on at time T1, the gate driver is The scanning signal Goutge is supplied to the corresponding gate wiring. Subsequently, when the control signal LS to the source driver 51 is turned on at a time point T2, a gradation signal (gradation voltage) Sout se is supplied from the source driver 51 to the corresponding source wiring. That is, in the pixel P, charging of the gradation voltage starts from the time point T2.
  • the arbitrary pixel P included in the end portion BE is located in the vicinity of the light emitting diode (light source) 53, the ambient temperature of the pixel P is high due to the heat from the light emitting diode 53.
  • the waveform dullness of the gradation signal Soutse at is small. That is, as shown in FIG. 19D, the gradation signal Soutse rises almost simultaneously when the control signal LS is turned on at time T2, and the charge rate in the liquid crystal layer of the pixel P decreases. Instead, the charging is appropriately started from time T2.
  • the gate clock GLK is turned on at time T3
  • the supply of the scanning signal Goutge to the corresponding gate wiring is stopped.
  • the control signal LS to the source driver 51 is turned on at time T4
  • the supply of the gradation signal Soutse to the corresponding source wiring is stopped.
  • charging of the gradation voltage is stopped at time T3. That is, in the pixel P, the period between the time point T2 and the time point T3 is the grayscale voltage charging period.
  • the gate driver corresponds to the corresponding gate.
  • a scanning signal Gout gc is supplied to the wiring.
  • the control signal LS to the source driver 51 is turned on at time T2 and the gradation signal (gradation voltage) Sout sc is supplied from the source driver 51 to the corresponding source wiring.
  • the pixel P ′ is away from the light emitting diode 53, it is not heated by the heat from the light emitting diode 53. For this reason, the ambient temperature of the pixel P ′ is lower than the ambient temperature of the pixel P, and the waveform of the gradation signal Sout sc in the source wiring is greatly dull. That is, as shown in FIG. 19 (h), the gradation signal Sout sc does not rise almost simultaneously even when the control signal LS is turned on at time T2, and becomes a predetermined value at time T5. For this reason, in the pixel P ′, charging of the gradation voltage is insufficient from the time point T2 to the time point T5, and is started from the time point T5. As a result, the charging rate in the liquid crystal layer of the pixel P ′ is reduced.
  • the gate clock GLK is turned on at time T3
  • the supply of the scanning signal Gout gc to the corresponding gate wiring is stopped.
  • the control signal LS to the source driver 51 is turned on at time T4
  • the supply of the gradation signal Sout sc to the corresponding source wiring is stopped.
  • the charging of the gradation voltage is stopped at time T3. That is, in the pixel P ′, the period from the time point T5 to the time point T3 is the gradation voltage charging period, which is shorter than the charging period of the pixel P.
  • output light are output.
  • the relationship between the brightness and the brightness was not the same, and the display quality could not be improved.
  • the measurement result curve 60 indicated by the solid line in FIG. 20A is substantially the same as the target gamma curve 61 indicated by the dotted line in FIG. Match.
  • a curve 62 as a measurement result indicated by a solid line in FIG. 20B is a curve 61 corresponding to a target gamma curve 61 indicated by a dotted line in FIG. Compared with
  • the relationship between the gradation value and the luminance of the output light is not the same, and the display quality may not be improved.
  • the display quality may not be improved.
  • the gamma curve 61 and the curve 60 substantially coincide with each other in consideration of the influence of the ambient temperature due to the heat from the light emitting diode 53 (reduction of the charging period of the gradation voltage). This is because the voltage is set large.
  • an object of the present invention is to provide a display device capable of improving the display quality even when the display section is enlarged.
  • a display device includes a backlight unit having a light source, and a plurality of pixels, and displays information using illumination light from the backlight unit.
  • a display device comprising: A control unit that performs drive control of at least the display unit using the input video signal, The display unit is provided with a plurality of display areas, Based on the temperature distribution when the light source of the backlight unit is driven to turn on, the control unit applies a gradation value for each pixel included in the input video signal for each of the plurality of display areas.
  • a gradation voltage instruction unit that determines a correction value and performs drive control of the display unit is provided.
  • the control unit performs drive control of at least the display unit using the input video signal. Further, the control unit corrects the gradation value for each pixel included in the input video signal for each of the plurality of display areas based on the temperature distribution when the light source of the backlight unit is driven to turn on. And a gradation voltage instruction unit for controlling the driving of the display unit is provided.
  • a display device that can improve display quality even when the screen of the display unit is enlarged.
  • the gradation voltage instruction unit may correspond to a corresponding level included in the video signal from the outside so that the luminance of the output light output from the pixel to the outside becomes a desired value. It is preferable to correct the tone value to a predetermined tone value.
  • the characteristics of the brightness and gradation value of the output light can be improved, and the display quality can be reliably improved even when the display screen is enlarged.
  • the gradation voltage instruction unit uses an arithmetic unit that obtains a predetermined gradation value by calculation using a gradation value for each pixel included in an external video signal. May be.
  • the predetermined gradation value is appropriately obtained by the calculation unit.
  • the gradation voltage instruction unit uses a lookup table that associates a gradation value for each pixel included in an external video signal with a predetermined gradation value. May be.
  • the predetermined gradation value is appropriately obtained by the lookup table.
  • the gradation voltage instruction unit may determine a corrected gradation value by using predetermined different gamma curves according to the plurality of display areas. preferable.
  • the corrected gradation value can be appropriately determined according to the display area, and the display quality can be improved reliably.
  • the backlight unit is provided with a temperature sensor
  • the gradation voltage instruction unit may determine a correction value for a gradation value for each pixel included in the input video signal using a detection result of the temperature sensor.
  • the temperature distribution when the light source of the backlight unit is turned on by the temperature sensor can be grasped more accurately, and the correction value for the gradation value for each pixel can be determined more appropriately. .
  • the display quality can be improved more reliably even when the screen of the display unit is enlarged.
  • the backlight unit is provided with a plurality of light emitting areas that allow the light of the light source to enter the plurality of display areas, respectively.
  • the control unit is configured to perform drive control of the display unit and the backlight unit using an input video signal,
  • the gradation voltage instruction unit may determine a correction value for a gradation value for each pixel included in the input video signal using lighting states of light sources corresponding to the plurality of light emitting areas.
  • the correction value for the gradation value for each pixel can be determined more appropriately while determining the lighting state of the light source in each of the plurality of light emitting areas, that is, the temperature state in the corresponding light emitting area.
  • the display quality can be improved more reliably even when the screen of the display unit is enlarged.
  • a liquid crystal panel is used as the display unit.
  • a gate driver and a plurality of source drivers provided at different positions from the gate driver are provided,
  • it is preferable that gradation voltages using different gamma curves are input from the gradation voltage instruction unit according to the plurality of display areas.
  • liquid crystal display device excellent in display quality can be easily configured.
  • the present invention it is possible to provide a display device capable of improving the display quality even when the screen of the display unit is enlarged.
  • FIG. 1 is a diagram for explaining a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG.
  • FIG. 3 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 2.
  • FIG. 4 is a block diagram illustrating a configuration example of the backlight control unit illustrated in FIG.
  • FIG. 5 is a diagram for explaining a source driver and a display area provided in the liquid crystal panel and the light emitting diode shown in FIG.
  • FIGS. 6A and 6B are graphs for explaining specific examples of correction values determined by the gradation voltage instruction unit shown in FIG. 3 for different display areas.
  • FIG. 6A and 6B are graphs for explaining specific examples of correction values determined by the gradation voltage instruction unit shown in FIG. 3 for different display areas.
  • FIG. 7 is a diagram for explaining a liquid crystal display device according to a second embodiment of the present invention.
  • FIG. 8 is a diagram for explaining a main configuration of the backlight device shown in FIG.
  • FIG. 9 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG.
  • FIG. 10 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 9.
  • FIG. 11 is a diagram illustrating a liquid crystal display device according to the third embodiment of the present invention.
  • FIG. 12 is a diagram for explaining a main configuration of the backlight device shown in FIG.
  • FIG. 13 is a diagram illustrating a specific example of a plurality of light emitting areas provided in the backlight device illustrated in FIG.
  • FIG. 14 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG.
  • FIG. 15 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 13.
  • FIG. 16 is a block diagram illustrating a configuration example of the backlight control unit illustrated in FIG. 13.
  • FIGS. 17A and 17B are graphs for explaining specific examples of correction values determined by the gradation voltage instruction unit shown in FIG. 14 for different display areas.
  • FIG. 18 is a diagram for explaining a main configuration of a conventional liquid crystal display device.
  • FIG. 19A to FIG. 19H are timing charts showing an operation example in each part of the liquid crystal panel shown in FIG.
  • FIGS. 20A and 20B are graphs showing examples of target gamma curves and measurement results at the center BC and the end BE shown in FIG. 18, respectively.
  • FIG. 1 is a diagram for explaining a liquid crystal display device according to a first embodiment of the present invention.
  • the liquid crystal display device 1 of the present embodiment is provided with a liquid crystal panel 2 as a display unit for displaying information and a backlight device 3 as a backlight unit.
  • the liquid crystal panel 2 displays information using illumination light from the backlight device 3, and the liquid crystal panel 2 and the backlight device 3 are transmissive liquid crystal displays.
  • the device 1 is integrated.
  • the liquid crystal panel 2 includes a liquid crystal layer and an active matrix substrate and a color filter substrate as a pair of substrates that sandwich the liquid crystal layer (not shown).
  • a pixel electrode, a thin film transistor (TFT), or the like is formed between the liquid crystal layer in accordance with a plurality of pixels included in the display surface of the liquid crystal panel 2.
  • TFT thin film transistor
  • the color filter substrate a color filter, a common electrode, and the like are formed between the liquid crystal layer (not shown).
  • the liquid crystal panel 2 is provided with a control device (not shown) that controls the driving of the liquid crystal panel 2, and operates the liquid crystal layer in units of pixels to drive the display surface in units of pixels. A desired image is displayed on the display surface.
  • a normally black mode for example, is used. That is, the liquid crystal panel 2 of the present embodiment is configured such that when no voltage is applied to the liquid crystal layer, black display is performed and the transmittance in the liquid crystal layer increases according to the applied voltage. Has been.
  • the backlight device 3 includes a light emitting diode 4 as a light source, an LED substrate 5 as a light source substrate on which the light emitting diode 4 is mounted, and light from the light emitting diode 4 in a predetermined propagation direction (the horizontal direction in FIG. 1). ) And a light guide plate 6 for emitting the light on the liquid crystal panel (object to be irradiated) 2 side is provided.
  • the light guide plate 6 is made of, for example, a synthetic resin such as a transparent acrylic resin having a rectangular cross section.
  • the light guide plate 6 is disposed so as to face the light emitting diode 4, and light from the light emitting diode 4 is used.
  • the backlight device 3 is provided below the light-emitting diode 4 and the light guide plate 6, a reflection plate 8 that reflects light from the light-emitting diode 4 and the light guide plate 6, and the liquid crystal panel 2 side of the light-emitting diode 4.
  • a reflection plate 9 is provided as a reflection part that is provided and reflects light from the light emitting diode 4.
  • a diffusion sheet 10, a prism sheet 11, and a reflective polarizing sheet 12 are sequentially provided from the light guide plate 6 side as optical members provided between the light guide plate 6 and the liquid crystal panel 2.
  • the backlight device 3 includes a bottomed chassis 13 that houses the light-emitting diode 4, the light guide plate 6, the diffusion sheet 10, the prism sheet 11, and the reflective polarizing sheet 12, and an L-shaped cross section having an opening.
  • a bezel 14 which is assembled to the chassis 13 and constitutes an outer container of the backlight device 3 is provided.
  • a P (plastic) chassis 15 is installed on the bezel 14, and the liquid crystal panel 2 is placed on the P chassis 15. The device 3 is assembled with each other.
  • a light-emitting diode is applied by applying a paint having a high light reflectance such as silver or white on the bottom surface of the chassis 13 facing the light-emitting diode 4 and the light guide plate 6. It is good also as a structure which reflects the light from 4 and the light from the light-guide plate 6.
  • liquid crystal panel 2 of the present embodiment will be specifically described with reference to FIGS.
  • FIG. 2 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG.
  • FIG. 3 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 2.
  • FIG. 4 is a block diagram illustrating a configuration example of the backlight control unit illustrated in FIG.
  • a video signal is input to the control unit 16 from the outside of the liquid crystal display device 1 via a signal source (not shown) such as a TV (receiver) or a PC. Further, the control unit 16 substantially performs drive control of the liquid crystal panel 2 using the input video signal. Further, the control unit 16 is configured to substantially perform drive control of the backlight device 3 using the input video signal.
  • control unit 16 uses the video signal to drive and control the liquid crystal panel 2 in units of pixels.
  • the video signal is used to control the light emitting diodes 4 of the backlight device 3.
  • a backlight control unit 18 that performs drive control and a frame memory 19 configured to be able to store display data in units of frames included in the video signal are provided.
  • an ASIC Application ⁇ ⁇ Specific Integrated Circuit
  • Predetermined arithmetic processing can be performed on display data at high speed.
  • the panel control unit 17 and the backlight control unit 18 are provided as described above, in the liquid crystal display device 1 of the present embodiment, the panel control unit 17 and the backlight control unit 18 are each provided with a liquid crystal panel (display). Part) 2 and the backlight device (backlight part) 3 can be appropriately driven, and high-quality display can be easily performed. That is, in the liquid crystal display device 1 of the present embodiment, the dark portion of the image on the display surface of the liquid crystal panel 2 lowers the luminance of the illumination light from the corresponding light emitting area, and the bright portion of the image is illuminated from the corresponding light emitting area. The dynamic contrast can be improved by increasing the luminance of light.
  • the backlight control unit 18 is configured to perform drive control of the light emitting diode 4 using only the dimming instruction signal from the outside without using the input video signal. Also good.
  • the panel control unit 17 is provided with an image processing unit 25 that generates each instruction signal to the source driver 20 and the gate driver 21 shown in FIG. 2 based on the video signal. ing. Further, the panel control unit 17 is provided with a gradation voltage instruction unit 26. As will be described in detail later, an instruction signal to the source driver 20 generated by the image processing unit 25 is a gradation voltage instruction unit 26. After being corrected at, it is output to the source driver 20.
  • the backlight control unit 18 is provided with an LED drive control unit 27 that substantially controls the drive of each light-emitting diode 4 using a video signal. That is, the LED drive control unit 27 generates an instruction signal for each light emitting diode 4 using the video signal, and controls lighting driving of each light emitting diode 4.
  • a source driver 20 and a gate driver 21 are drive circuits that drive a plurality of pixels P provided in the liquid crystal panel 2 in units of pixels, and the source driver 20 and the gate driver 21 include a plurality of sources.
  • Wirings S1 to SM M is an integer of 2 or more, hereinafter collectively referred to as “S”) and a plurality of gate wirings G1 to GN (N is an integer of 2 or more, hereinafter collectively referred to as “G”) .
  • the source lines S1 to SM and the gate lines G1 to GN are arranged in a matrix, and the areas of the plurality of pixels P are formed in the areas partitioned in the matrix.
  • the plurality of pixels P include red, green, and blue pixels P. Further, the red, green, and blue pixels P are sequentially arranged in parallel with each of the gate wirings G1 to GN, for example, in this order.
  • a plurality of source drivers 20 and gate drivers 21 are provided, and are sequentially arranged along the horizontal direction and the vertical direction of the liquid crystal panel 2.
  • the plurality of source drivers 20 and the plurality of gate drivers 21 are installed in accordance with a plurality of display areas provided on the display surface of the liquid crystal panel 2, and the pixels P included in the corresponding display areas are arranged. It is driven appropriately.
  • the plurality of light emitting diodes 4, the plurality of source drivers 17, and the plurality of display areas in the liquid crystal panel 2 of the present embodiment will be specifically described.
  • FIG. 5 is a diagram illustrating the source driver and display area provided in the liquid crystal panel and the light emitting diode shown in FIG.
  • a plurality of, for example, eight source drivers 20-1 to 20-8 include eight flexible printed circuit boards. (SOF) 28, respectively.
  • One end of each flexible printed circuit board 28 is connected to the source wiring S on the active matrix substrate outside the effective display area A.
  • the same number of source lines S that is, (M / 8) source lines S are connected to each of the source drivers 20-1 to 20-8.
  • each flexible printed circuit board 28 is connected to one of the two printed circuit boards 29.
  • an instruction signal corresponding to information displayed on the display unit of the liquid crystal panel 2 is input from the panel control unit 17 to each of the source drivers 20-1 to 20-8. Yes. Thereafter, each of the source drivers 20-1 to 20-8 outputs a gradation signal to the corresponding source line S.
  • a plurality of, for example, four gate drivers are provided on the left end side and the right end side of the liquid crystal panel 2 (not shown). These gate drivers are each mounted on a flexible printed circuit board (SOF) (not shown), like the source driver. One end of each flexible printed circuit board is connected to the gate wiring G on the active matrix substrate outside the effective display area A. Further, the left end and the right end of each gate line G are connected to the gate drivers on the left end side and the right end side, respectively, and the same number of gate lines G are connected to each gate driver on the left end side and the right end side. That is, (N / 4) gate wirings G are connected (not shown).
  • SOF flexible printed circuit board
  • each gate driver is connected to the panel control unit 17 (not shown) via a corresponding flexible printed circuit board and wiring (not shown) provided on the active matrix substrate.
  • Each gate driver receives an instruction signal from the panel control unit 17 and outputs a scanning signal to be described later to the corresponding gate wiring G.
  • a plurality of, for example, eight light emitting diodes 4 mounted on the LED substrate 5 are arranged on each of the left end side and the right end side.
  • each display area A1 to A8 includes a plurality of pixels P provided at the intersections of the source lines S and the gate lines G arranged in a matrix. These display areas A1 to A8 are respectively set according to the source drivers 20-1 to 20-8 connected to the internal source lines S, and the left and right end portions of the liquid crystal panel 2 are set. Display areas are formed at different distances from the light emitting diode (light source) 4 provided on the side.
  • the liquid crystal panel 2 is provided with a plurality of source drivers 20-1 to 20-8 arranged at different positions from the light emitting diode 4 as shown in FIG. Further, in the plurality of source drivers 20-1 to 20-8, as will be described in detail later, the gradation voltages using different gamma curves according to the distance from the light emitting diode 4 are converted into the gradation voltage instructions. It is input from the unit 26.
  • the gate of the switching element 22 provided for each pixel P is connected to each of the gate wirings G1 to GN.
  • the source of the switching element 22 is connected to each of the source lines S1 to SM.
  • a pixel electrode 23 provided for each pixel P is connected to the drain of each switching element 22.
  • the common electrode 24 is configured to face the pixel electrode 23 with the liquid crystal layer provided on the liquid crystal panel 2 interposed therebetween.
  • the gate driver 21 sequentially outputs gate signals (scanning signals) for turning on the gates of the corresponding switching elements 22 to the gate wirings G1 to GN based on the instruction signal from the image processing unit 25. .
  • the source driver 20 outputs a gradation signal (gradation voltage) corresponding to the luminance (gradation) of the display image to the corresponding source lines S1 to SM based on the instruction signal from the gradation voltage instruction unit 26. To do.
  • the gradation voltage instruction unit 26 includes a plurality of display areas A1 to A8 based on the temperature distribution when the light emitting diode (light source) 4 of the backlight device (backlight unit) is driven to light. Every time, a correction value (corrected gradation value) for the gradation value for each pixel included in the input video signal is determined, and the drive control of the liquid crystal panel (display unit) 2 is substantially performed. It is configured.
  • the gradation voltage instruction unit 26 sets the corresponding gradation value included in the external video signal so that the luminance of the output light output from the pixel P toward the outside becomes a desired value.
  • the gradation value is corrected to a predetermined gradation value (corrected gradation value).
  • the gradation voltage instruction unit 26 determines a corrected gradation value by using predetermined different gamma curves in accordance with a plurality of display areas A1 to A8 of the liquid crystal panel 2. (Details will be described later).
  • the gradation voltage instruction unit 26 uses a gradation value for each pixel P included in an external video signal to set a predetermined gradation value.
  • a calculation unit 26a obtained by calculation and a memory 26b in which data necessary for calculation processing such as mathematical formulas and parameters used in the calculation unit 26a are stored in advance are provided.
  • the source driver 20 which the image process part 25 produced
  • the gradation voltage instruction unit 26 outputs the corrected gradation value determined by the calculation unit 26a to the image processing unit 25, and the image processing unit 25 corrects the gradation value after correction.
  • the instruction signal (gradation signal) to the source driver 20 may be corrected and output to the source driver 20 (the same applies to the embodiments described later).
  • 6 (a) and 6 (b) are graphs for explaining specific examples of correction values determined by the gradation voltage instruction unit shown in FIG. 3 for different display areas.
  • the gradation voltage instruction unit 26 of the present embodiment divides the plurality of display areas A1 to A8 into, for example, two sets, and uses a predetermined gamma curve that is different from each other in advance and corrects the display areas A1 to A8.
  • the gradation value is determined. Specifically, the gradation voltage instruction unit 26 is divided into display areas A1, A2, A7, A8 closer to the light emitting diode 4 and display areas A3, A4, A5, A6 farther from the light emitting diode 4.
  • the gamma curves used for the source drivers 20-3, 20-4, 20-5, and 20-6 assigned to A5 and A6 are configured to have different values.
  • the calculation unit 26a is farther from the source driver 20-, 20-2, 20-7, 20-8 closer to the light-emitting diode 4 than the source driver 20- 3.
  • a predetermined gradation value (corrected gradation value) is obtained using a value larger than the value of the gamma curve used for 3, 20-4, 20-5, and 20-6. Yes.
  • the gradation voltage instruction unit 26 since the heat from the light emitting diode (light source) 4 is difficult to be transmitted and the ambient temperature is relatively low, the gradation voltage is likely to be insufficiently charged, and the charging rate of the liquid crystal layer for each pixel P
  • the source drivers 20-3, 20-4, 20-5 and 20-6 assigned to the distant display areas A3, A4, A5 and A6 the light emitting diode (light source) 4 Since the ambient temperature is relatively high, it is difficult for the grayscale voltage to be insufficiently charged, the charge rate of the liquid crystal layer for each pixel P is unlikely to decrease, and the closer source drivers 20-1, 20-2, By using a value smaller than the value of the gamma curve used for 20-7 and 20-8, a predetermined gradation value (corrected gradation value) is obtained.
  • the calculation unit 26 a has a source closer to the light emitting diode 4.
  • a gamma curve having a value of “2.3” is used for the drivers 20-1, 20-2, 20-7, and 20-8.
  • the calculation unit 26a uses the gamma curve shown in the curve 71 for the source drivers 20-1, 20-2, 20-7, and 20-8, so that the light emitting diode 4 In the display areas A1, A2, A7, and A8 where adverse effects due to heat (that is, the reduction in the charging rate) are unlikely to occur, the value of the gamma curve can be set to the desired value of “2.2”.
  • a gamma curve having a value of “2.1” is used for the source drivers 20-3, 20-4, 20-5, and 20-6 farther from the light emitting diode 4. It has become.
  • the value of the gamma curve that is, the value of ⁇ is “2.2” and “2.1” in the curve 70 and the curve 72, respectively.
  • the calculation unit 26a uses the gamma curve shown by the curve 72 for the source drivers 20-3, 20-4, 20-5, and 20-6, so that the light emitting diode 4 In the display areas A3, A4, A5, and A6 that are likely to be adversely affected by heat (that is, the reduction in the charging rate), the value of the gamma curve can be set to the desired value of “2.2”.
  • the gradation voltage instruction unit 26 performs a verification test or simulation using an actual product to perform gradation values (input gradations) for a plurality of pixels P included in an external video signal.
  • a corrected gradation value (output gradation data) is obtained in advance so that the luminance of the output light output from the pixel P toward the outside becomes a desired value.
  • data such as mathematical formulas and parameters necessary for calculation processing for calculating output gradation data from these input gradation data are obtained. It is determined and stored in the memory 26b in advance.
  • the calculation unit 26a calculates a predetermined gradation value by using the gradation value included in the video signal from the outside and the data stored in the memory 26b. After the determination, the gradation voltage instruction unit 26 corrects the instruction signal (gradation signal) to the source driver 20 generated by the image processing unit 25 using the corrected gradation value calculated by the calculation unit 26a. To the source driver 20. Thereby, in the present embodiment, as described above, the corrected gradation value is determined using predetermined different gamma curves in accordance with the display areas A1 to A8.
  • the data stored in the memory 26b may be appropriately calculated when the arithmetic unit 26a performs arithmetic processing, or the data may be dynamically received from the outside. .
  • the installation of the memory 26b can be omitted.
  • the control unit 16 includes each of the display areas A1 to A8 in the input video signal based on the temperature distribution when the light emitting diode (light source) 4 of the backlight device 3 is turned on.
  • a gradation voltage instruction unit 26 that determines a correction value for the gradation value for each pixel and performs drive control of the liquid crystal panel 2 is provided.
  • the gradation voltage instruction unit 26 corresponds to a corresponding level included in the video signal from the outside so that the luminance of the output light output from the pixel P toward the outside has a desired value.
  • the tone value is corrected to a predetermined tone value.
  • the gradation voltage instruction unit 26 uses the gradation value for each pixel P included in the external video signal to calculate a predetermined gradation value by calculation. Is used, the above-described predetermined gradation value is appropriately obtained by the calculation unit 26a.
  • the gradation voltage instruction unit 26 determines a corrected gradation value using predetermined different gamma curves according to the plurality of display areas A1 to A8. ing. Thereby, in this embodiment, even when the screen of the liquid crystal panel 2 is enlarged, the corrected gradation value can be appropriately determined according to the display areas A1 to A8, and the display quality is ensured. Can be improved.
  • the gradation voltage instruction unit 26 that can improve the display quality is used, so that the display quality is excellent.
  • the liquid crystal display device 1 can be easily configured.
  • the liquid crystal panel 2 is used as the display panel.
  • the gate driver 21 and a plurality of source drivers 20-1 to 20- provided at different positions from the gate driver 21 are used. 8 are provided.
  • gradation voltages using different gamma curves are input from the gradation voltage instruction unit 26 in accordance with the plurality of display areas A1 to A8.
  • the source drivers 20-1, 20-2, 20-7, and 20-8 closer to the light emitting diode 4 and the farther source drivers 20-3, 20-8. -4, 20-5, and 20-6 have been described using gamma curves having different values.
  • the present embodiment is not limited to this, and for example, each of the eight source drivers 20- For 1 to 20-8, gamma curves having mutually different values may be used.
  • a plurality of display areas A1 to A8 Is divided into two upper and lower display areas, and in these two upper and lower display areas, gamma curves having different values may be used on the assumption that the influence of heat from the light emitting diode 4 is different.
  • FIG. 7 is a diagram for explaining a liquid crystal display device according to a second embodiment of the present invention.
  • FIG. 8 is a diagram for explaining a main configuration of the backlight device shown in FIG.
  • FIG. 9 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG.
  • FIG. 10 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 9.
  • the main difference between the present embodiment and the first embodiment is that a LUT (Look Up Table) is used in place of the calculation unit, a temperature sensor is provided in the backlight unit, and a gradation voltage instruction is provided.
  • the unit is to determine a correction value for the gradation value for each pixel included in the input video signal using the detection result of the temperature sensor.
  • symbol is attached
  • a direct type backlight device 3 is used as a backlight unit.
  • the backlight device 3 has an opening on the liquid crystal panel 2 side, a housing 31 that houses the light emitting diode 4, and a diffusion plate 30 that is provided so as to cover the opening of the housing 31.
  • the backlight device 3 includes a total of 32 light-emitting diodes 4 installed in the housing 31. Further, in the backlight device 3, as shown by a one-dot chain line in FIG. 8, four light emitting diodes 4 are assigned to the display areas A1 to A8. Furthermore, in the backlight device 3, as shown in FIG. 8, a total of 35 temperature sensors 32 are installed at the boundary between two adjacent display areas.
  • the detection result of the temperature sensor 32 is input to the control unit 16, and the panel control unit 33 provided in the control unit 16 is operated at the temperature. Using the detection result of the sensor 32, the drive control of the liquid crystal panel 2 is performed.
  • the panel control unit 33 of the present embodiment uses the image processing unit 25 and the detection result of the temperature sensor to generate a floor for each pixel P included in the input video signal.
  • a gradation voltage instruction unit 34 for determining a correction value (corrected gradation value) for the tone value is provided.
  • the gradation voltage instruction unit 34 uses an LUT 34a.
  • gradation values before and after the correction processing are stored in association with each other for each predetermined temperature unit. That is, in the LUT 34a, the gradation value (input gradation data) for each of the plurality of pixels P included in the external video signal and the luminance of the output light output from the pixel P to the outside are desired.
  • the corrected gradation value (output gradation data) as a value is associated with each other for each predetermined temperature unit. Then, when the input gradation data for the pixel P included in the video signal from the outside is input, the gradation voltage instruction unit 34 also uses the detection result of the temperature sensor 32 at the position corresponding to the pixel P. The corresponding output gradation data is obtained from the LUT 34a, and is used as the corrected gradation value. Then, the gradation voltage instruction unit 34 corrects the instruction signal (gradation signal) to the source driver 20 generated by the image processing unit 25 using the corrected gradation value, and outputs it to the source driver 20. To do. Thus, in the present embodiment, the corrected gradation value is determined using predetermined different gamma curves in accordance with the detection results of the display areas A1 to A8 and the temperature sensor 32.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the gradation voltage instruction unit 34 uses the detection result of the temperature sensor 32 to determine a correction value for the gradation value for each pixel included in the input video signal.
  • the temperature distribution when the light emitting diode (light source) 4 of the backlight device (backlight unit) is driven to be turned on by the temperature sensor 32 can be grasped more accurately. It becomes possible to determine a correction value for the gradation value more appropriately.
  • the display quality can be improved more reliably.
  • the gradation voltage instruction unit 34 uses the LUT 34a in which the gradation value for each pixel P included in the external video signal is associated with a predetermined gradation value. Therefore, the predetermined gradation value is appropriately obtained by the LUT 34a.
  • FIG. 11 is a diagram illustrating a liquid crystal display device according to the third embodiment of the present invention.
  • FIG. 12 is a diagram for explaining a main configuration of the backlight device shown in FIG.
  • FIG. 13 is a diagram illustrating a specific example of a plurality of light emitting areas provided in the backlight device illustrated in FIG. 11 and a plurality of display areas irradiated with light from these light emitting areas.
  • FIG. 14 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG.
  • FIG. 15 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 13.
  • FIG. 16 is a block diagram illustrating a configuration example of the backlight control unit illustrated in FIG. 13.
  • the backlight unit is provided with a plurality of light emitting areas that allow the light of the light source to enter the plurality of display areas.
  • the input video signal is used to control the driving of the display unit and the backlight unit, and the gradation voltage instruction unit uses the lighting state of the light source corresponding to the plurality of light emitting areas to input the video.
  • This is a point for determining a correction value for the gradation value for each pixel included in the signal.
  • symbol is attached
  • a direct type backlight device 3 is used as a backlight unit, as in the second embodiment.
  • the backlight device 3 has an opening on the liquid crystal panel 2 side, a housing 31 that houses the light emitting diode 4, and a diffusion plate 30 that is provided so as to cover the opening of the housing 31.
  • the backlight device 3 includes a total of 32 light-emitting diodes 4 installed in the housing 31.
  • the backlight device 3 of the present embodiment has a light emitting diode (light source) for a plurality of display areas A-1 to A-32 set in the liquid crystal panel (display unit) 2.
  • a plurality of light emitting areas (1) to (32) through which the four lights are respectively incident are provided. That is, one light emitting diode 4 is assigned to each light emitting area (1) to (32), and illumination light is irradiated to the corresponding display areas A-1 to A-32. Yes.
  • each of the four display areas arranged in the vertical direction in FIG. 13 includes the source line S connected to one source driver 20.
  • the source driver 20-1 is assigned to the display areas A-1, A-9, A-17, and A-25, and the display areas A-2, A-10, A-18, and A-26 are assigned. Is assigned a source driver 20-2. Further, the source driver 20-3 is assigned to the display areas A-3, A-11, A-19, and A-27, and the display areas A-4, A-12, A-20, and A-28 are allocated. Is assigned the source driver 20-4.
  • the source driver 20-5 is assigned to the display areas A-5, A-13, A-21, and A-29, and the display areas A-6, A-14, A-22, and A-30 are assigned. Is assigned the source driver 20-6.
  • the source driver 20-7 is assigned to the display areas A-7, A-15, A-23, and A-31, and the display areas A-8, A-16, A-24, and A-32 are assigned. Is assigned a source driver 20-8.
  • the matrix light emitting areas (1) to (32) and the matrix display areas A-1 to A-32 are set in a one-to-one relationship.
  • an area active (local dimming) backlight that is appropriately irradiated according to information to be displayed by illumination light from one light emitting area is configured.
  • control unit 16 of the present embodiment is provided with a panel control unit 35 and a backlight control unit 36.
  • the panel control unit 35 and the backlight control unit 36 perform drive control of the liquid crystal panel (display unit) 2 and the backlight device (backlight unit) 3 using the video signal input to the control unit 16, respectively. It is configured as follows.
  • the panel control unit 35 of the present embodiment includes the image processing unit 25 and the lighting state of the light emitting diodes (light sources) 4 corresponding to the plurality of light emitting areas (1) to (32). Is used to determine a correction value for the gradation value for each pixel P included in the input video signal.
  • the luminance value of each light emitting area is notified from an area luminance calculation unit described later provided in the backlight control unit 36, and an instruction signal to the source driver 20 is notified. After being corrected to a signal reflecting the luminance value of each light emitting area, the signal is output from the panel control unit 35 to the source driver 20 (details will be described later).
  • the gradation voltage instruction unit 37 uses an LUT 37a.
  • the gradation voltage instruction unit 37 receives the luminance value of each light emitting area from the area luminance calculation unit.
  • the luminance value of each light emitting area is a luminance value after being corrected using the luminance value of the surrounding light emitting area, and is a value that takes into account the influence of light crosstalk from the surrounding light emitting area.
  • the LUT 37a holds the gradation values before and after the correction processing in association with each other for each luminance value of the light emitting area.
  • the gradation value (input gradation data) for each of the plurality of pixels P included in the external video signal and the luminance of the output light output from the pixel P to the outside are desired.
  • the corrected gradation value (output gradation data) as a value is associated with each other for each luminance value of the light emitting area.
  • the gradation voltage instruction unit 37 also uses the luminance value of the light emitting area at the position corresponding to the pixel P to use the LUT 37a.
  • the corresponding output gradation data is obtained from the above and used as the corrected gradation value.
  • the gradation voltage instruction unit 37 corrects the instruction signal (gradation signal) to the source driver 20 generated by the image processing unit 25 using the corrected gradation value, and outputs it to the source driver 20. To do.
  • the backlight control unit 36 is provided with a region luminance calculation unit 38 and an LED drive control unit 39.
  • the area luminance calculation unit 38 acquires the luminance information of the pixels P included in the corresponding display area from the input video signal for each light emitting area.
  • the area luminance calculation unit 38 performs luminance calculation processing that is obtained by calculating the luminance values of red, green, and blue colors in each light emitting area using the acquired luminance information of the pixel P. (Details will be described later).
  • the area luminance calculation unit 38 performs an area crosstalk correction process described later on the luminance value of each color obtained by performing the luminance calculation process, thereby affecting the influence of crosstalk of light from the surrounding light emitting areas. Thus, the corrected luminance value of each color is obtained. Then, the area luminance calculation unit 38 outputs the calculated luminance value of each color after correction of each light emitting area to the gradation voltage instruction unit 37 and the LED drive control unit 39.
  • the luminance calculation processing and the region crosstalk correction processing in the region luminance calculation unit 38 will be described.
  • the nine light emitting areas (1), (2), (3), (9), (10), (11), (17), (18), (19) A case where the luminance value of the light emitting area (10) located at the center is obtained will be described as an example.
  • Luminance calculation processing is performed on the video signals in the display areas A-1, A-2, A-3, A-9, A-10, A-11, A-17, A-18, and A-19, respectively. Accordingly, red, blue, and green in the corresponding light emitting areas (1), (2), (3), (9), (10), (11), (17), (18), and (19) The luminance value of each color is obtained.
  • the area luminance calculation unit 38 acquires luminance information of a plurality of pixels P (for example, 640 ⁇ 360 pixels P) included in the display area A-1 from the frame memory 19. Then, the area luminance calculation unit 38 performs luminance calculation processing on the acquired luminance information, thereby extracting, for example, data of the maximum luminance value for each color of red, blue, and green, and displaying the display area A ⁇ .
  • the luminance value of each color in the light emitting area (1) corresponding to 1. That is, when the area luminance calculation unit 38 executes the luminance calculation process, the luminance value of the pixel P to be displayed in red at the highest luminance among the plurality of pixels P included in the display area A-1 is emitted. It is selected as the red luminance value in area (1).
  • the area luminance calculation unit 38 can prevent the luminance value from being extracted as the maximum luminance value when there is a pixel P having an abnormally high luminance value compared to the surrounding pixels P due to noise mixing. It is configured as follows.
  • the luminance value of the pixel P to be displayed in green with the highest luminance is selected as the green luminance value in the light emitting area (1).
  • the luminance value of the pixel P to be displayed in blue with the highest luminance is selected as the blue luminance value in the light emitting area (1).
  • the area luminance calculation unit 38 determines the luminance values of the selected red, blue, and green colors as the luminance values of the light emitting area (1).
  • the area luminance calculation unit 38 corrects the obtained luminance value by using a correction coefficient stored in a memory (not shown), thereby red, blue, and green colors. In addition, the luminance value after correction of each light emitting area is calculated.
  • the area luminance calculation unit 38 corrects each color of the light emitting area (10) by using the luminance value of each color of the light emitting area (10) obtained by the luminance calculation processing and the correction coefficient held in the memory. Later luminance values are calculated. Then, the area luminance calculation unit 38 outputs the calculated luminance value of each color after correction of each light emitting area to the gradation voltage instruction unit 37 and the LED drive control unit 39.
  • the above-described correction coefficient is determined based on the result of a test or simulation using an actual product, the change in luminance due to the internal structure of the liquid crystal panel 2 and the presence / absence of a diffusion plate or an optical sheet is taken into consideration.
  • the influence of crosstalk in the liquid crystal display device 1 can be more reliably eliminated, and the display quality can be improved more easily.
  • the LED drive control unit 39 constitutes a drive control unit that drives and turns on the light source, and responds based on the corrected luminance values of the plurality of light emitting areas from the region luminance calculation unit 38.
  • the lighting period of the light emitting diode 4 is determined, and the light emitting diode 4 is driven to be lit by PWM dimming according to the determined lighting period. That is, the LED drive control unit 39 determines the on / off duty in the PWM dimming according to the luminance value determined by the region luminance calculation unit 38, and a signal that indicates the determined on / off duty. Is output to the lighting drive circuit (not shown) as an instruction signal. Then, the lighting drive circuit supplies the power to each light emitting diode 4 based on the instruction signal, thereby driving each of the light emitting diodes 4 to light.
  • the gradation voltage instruction unit 37 when the luminance value of each color of red, green, and blue in each light emitting area (1) to (32) is transmitted from the area luminance calculation unit 38 to the gradation voltage instruction unit 37, the gradation voltage instruction unit 37. Acquires the corrected gradation value from the LUT 37a using these luminance values. Then, using the acquired corrected gradation value, the gradation voltage instruction unit 37 corrects the instruction signal to the source driver 20 input from the image processing unit 25, and the source driver as a new instruction signal. 20 is output.
  • FIGS. 17A and 17B are graphs for explaining specific examples of correction values determined by the gradation voltage instruction unit shown in FIG. 14 for different display areas.
  • the gradation voltage instruction unit 37 has a luminance value (that is, a light emitting diode in the light emitting area) of the corresponding light emitting areas (1) to (32) for each of the plurality of display areas A-1 to A-32. 4), the corrected gradation value is obtained from the LUT 37a.
  • the gradation voltage instruction unit 37 determines the luminance value of the light emitting area. Is equal to or greater than a predetermined value (that is, when the light-emitting diode 4 in the light emitting area is turned on with a predetermined brightness or higher), for example, “2.3” for the source driver corresponding to the light emitting area.
  • a predetermined value that is, when the light-emitting diode 4 in the light emitting area is turned on with a predetermined brightness or higher
  • the gamma curve of the value of is used. Specifically, in FIG.
  • the gradation voltage instruction unit 37 applies the gamma indicated by the curve 81 to the source driver 20 assigned to the display area corresponding to the light emitting area that is turned on at a predetermined brightness or higher.
  • the value of the gamma curve can be set to the desired value of “2.2” in the display area where the adverse effect due to heat from the light emitting diode 4 (that is, the reduction in the charging rate) is unlikely to occur. it can.
  • the gradation voltage instruction unit 37 when the luminance value of the light emitting area is less than the predetermined value (that is, when the light emitting diode 4 in the light emitting area is turned on with less than the predetermined brightness (turned off).
  • a gamma curve having a value of “2.1” is used for the source driver corresponding to the light emitting area.
  • the gradation voltage instruction unit 37 applies the gamma indicated by the curve 82 to the source driver 20 assigned to the display area corresponding to the light emitting area that is turned on with less than a predetermined brightness.
  • the value of the gamma curve is set to “2.2” Value.
  • the present embodiment can achieve the same operations and effects as those of the second embodiment.
  • the backlight device (backlight unit) 3 has a plurality of light emitting areas (light emitting diodes (light sources) 4) respectively incident on the plurality of display areas A-1 to A-32. 1) to (32) are provided.
  • the control unit 16 is configured to perform drive control of the liquid crystal panel (display unit) 2 and the backlight device 3 using the input video signal.
  • the gradation voltage instruction unit 37 uses the lighting states of the light emitting diodes 4 corresponding to the plurality of light emitting areas (1) to (32) to perform the gradation value for each pixel included in the input video signal. The correction value is determined.
  • the present invention is applied to a transmissive liquid crystal display device.
  • the display device of the present invention is not limited to this, and a transflective liquid crystal display device or a liquid crystal display device is not limited thereto.
  • the present invention can be applied to various display devices such as a projection display device using a panel as a light valve.
  • the light emitting diode is used as the light source.
  • the light source of the present invention is not limited to this, and a discharge tube such as a cold cathode fluorescent tube or a hot cathode fluorescent tube is used. You can also.
  • the gradation voltage instruction unit is configured to display red (R), green (G), and green in a plurality of display areas based on the temperature distribution when the light source of the backlight unit is driven to turn on. For each blue (B) pixel, a correction value for the gradation value for each pixel included in the input video signal may be determined to control the display unit.
  • the gradation voltage instruction unit of the present invention may be applied to a normally white mode liquid crystal panel.
  • the gradation voltage instruction unit determines a corrected gradation value using predetermined different gamma curves according to a plurality of display areas.
  • the gradation voltage instruction unit according to the present invention is configured such that, based on the temperature distribution when the light source of the backlight unit is turned on, the level of each pixel included in the input video signal is displayed for each of the plurality of display areas. Any method may be used as long as a correction value for the tone value is determined and drive control of the display unit is performed, and a predetermined gamma curve may not be used.
  • the corrected gradation value is appropriately determined according to the display area even when the screen of the display unit is enlarged. This is preferable in that the display quality can be improved with certainty.
  • the present invention is useful for a display device that can improve display quality even when the screen of the display unit is enlarged.
  • Liquid crystal display device Liquid crystal panel (display unit) 3 Backlight device (backlight part) 4 Light emitting diode (light source) 16 Control unit 20, 20-1 to 20-8 Source driver 21 Gate driver 26, 34, 37 Gradation voltage instruction unit 26a Arithmetic unit 34a, 37a LUT 32 Temperature sensors A1 to A8, A1 to A32 Display area (1) to (32) Light emission area

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal display device (display device) (1), which is provided with a backlight device (backlight) (3) and a liquid crystal panel (display) (2), wherein a gradation voltage instruction unit (25) is provided to a control unit (16). Based on a temperature distribution when light-emitting diodes (light source) (4) of the backlight device (3) are lit up, the gradation voltage instruction unit (25) determines, for each of a plurality of display areas, a correction value for a gradation value for each pixel contained in an inputted video signal, and drives and controls the liquid crystal panel (2).

Description

表示装置Display device
 本発明は、表示装置、特に液晶表示装置などの非発光型の表示装置に関する。 The present invention relates to a display device, particularly a non-light-emitting display device such as a liquid crystal display device.
 近年、例えば液晶表示装置は、在来のブラウン管に比べて薄型、軽量などの特長を有するフラットパネルディスプレイとして、液晶テレビ、モニター、携帯電話などに幅広く利用されている。このような液晶表示装置には、光を発光するバックライト装置と、バックライト装置に設けられた光源からの光に対しシャッターの役割を果たすことで所望画像を表示する液晶パネルとが含まれている。 In recent years, for example, liquid crystal display devices have been widely used in liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight compared to conventional cathode ray tubes. Such a liquid crystal display device includes a backlight device that emits light, and a liquid crystal panel that displays a desired image by acting as a shutter for light from a light source provided in the backlight device. Yes.
 また、上記のような液晶表示装置では、通常、外部からの映像信号に含まれた画素毎の輝度情報(階調値)に対して、所定のガンマカーブを用いた階調補正処理(ガンマ補正処理)を施すことが行われている。 Further, in the liquid crystal display device as described above, normally, gradation correction processing (gamma correction) using a predetermined gamma curve is performed on luminance information (gradation value) for each pixel included in an external video signal. Processing) is performed.
 また、従来の液晶表示装置には、例えば下記特許文献1に記載されているように、バックライト装置の輝度及び液晶パネルの設置場所の環境照度の組合せに応じて、複数のガンマカーブを用いることが提案されている。そして、この従来の液晶表示装置では、外部からの映像信号に含まれた画素毎の輝度情報に基づいて、バックライト装置の輝度を変化させたときでも、低階調域の視認性を向上させることが可能とされていた。 Further, as described in Patent Document 1 below, for example, a plurality of gamma curves are used for a conventional liquid crystal display device according to the combination of the brightness of the backlight device and the environmental illuminance at the installation location of the liquid crystal panel. Has been proposed. In this conventional liquid crystal display device, even when the luminance of the backlight device is changed based on the luminance information for each pixel included in the video signal from the outside, the visibility in the low gradation region is improved. It was possible.
特開2011-53264号公報JP 2011-53264 A
 しかしながら、上記のような従来の液晶表示装置では、表示品位を向上させることができないおそれがあった。特に、従来の液晶表示装置では、その液晶パネル(表示パネル、表示部)の大画面化を図ったときに、表示品位の向上を行うことが難しくなり易いという問題点を生じることがあった。 However, the conventional liquid crystal display device as described above may not be able to improve the display quality. In particular, in the conventional liquid crystal display device, when the screen of the liquid crystal panel (display panel, display unit) is enlarged, there is a problem that it is difficult to improve the display quality.
 ここで、図18~図20を参照して、従来の液晶表示装置での問題点について具体的に説明する。 Here, the problems in the conventional liquid crystal display device will be described in detail with reference to FIGS.
 図18は、従来の液晶表示装置の要部構成を説明する図である。図19(a)~図19(h)は、図18に示した液晶パネルの各部での動作例を示すタイミングチャートである。図20(a)及び図20(b)は、それぞれ図18に示した中央部BC及び端部BEでの目標ガンマカーブと測定結果の一例を示すグラフである。 FIG. 18 is a diagram for explaining a main configuration of a conventional liquid crystal display device. FIG. 19A to FIG. 19H are timing charts showing an operation example in each part of the liquid crystal panel shown in FIG. FIGS. 20A and 20B are graphs showing examples of target gamma curves and measurement results at the center BC and the end BE shown in FIG. 18, respectively.
 図18において、従来の液晶表示装置に含まれた液晶パネルLPには、周知のように、アクティブマトリクス基板が用いられており、このアクティブマトリクス基板上には、複数のデータ配線(ソース配線)及び複数の走査配線(ゲート配線)がマトリクス状に設けられている(図示せず。)。また、複数のソース配線は、複数、例えば8個のソースドライバ51に均等に分散されて接続されている。また、複数のゲート配線は、液晶パネルLPの左端部側及び右端部側のそれぞれに設けられた複数、例えば4個のゲートドライバ(図示せず)に均等に分散されて接続されている。すなわち、液晶パネルLPでは、各ゲート配線の左端部及び右端部がそれぞれ左端部側及び右端部側のゲートドライバに接続されている。 In FIG. 18, as is well known, an active matrix substrate is used for a liquid crystal panel LP included in a conventional liquid crystal display device, and a plurality of data lines (source lines) and a plurality of data lines (source lines) are provided on the active matrix substrate. A plurality of scanning wirings (gate wirings) are provided in a matrix (not shown). Further, the plurality of source wirings are equally distributed and connected to a plurality of, for example, eight source drivers 51. The plurality of gate wirings are equally distributed and connected to a plurality of, for example, four gate drivers (not shown) provided on the left end side and the right end side of the liquid crystal panel LP, respectively. That is, in the liquid crystal panel LP, the left end portion and the right end portion of each gate wiring are connected to the gate drivers on the left end portion side and the right end portion side, respectively.
 また、この液晶表示装置では、図18に示すように、左端部側及び右端部側のゲートドライバの外側(すなわち、液晶パネルLPの左端部側及び右端部側)に、光源としての発光ダイオード53が各々設けられている。すなわち、同図18に示すように、従来の液晶表示装置では、複数、例えば8個の発光ダイオード53を実装したLED基板54が液晶パネルLPの左端部側及び右端部側に設けられており、図示を省略した導光板を介して、液晶パネルLPの全面に対して、発光ダイオード53からの照明光を照射するようになっている。 In this liquid crystal display device, as shown in FIG. 18, light emitting diodes 53 as light sources are provided outside the gate drivers on the left end side and the right end side (that is, on the left end side and the right end side of the liquid crystal panel LP). Are provided. That is, as shown in FIG. 18, in the conventional liquid crystal display device, a plurality of, for example, eight light emitting diodes 53 mounted LED substrates 54 are provided on the left end side and the right end side of the liquid crystal panel LP. Illumination light from the light emitting diode 53 is irradiated to the entire surface of the liquid crystal panel LP through a light guide plate (not shown).
 また、液晶パネルLPでは、複数の画素がソース配線とゲート配線との交差部単位に設けられている。また、ソースドライバ51は、外部からの映像信号に含まれた画素毎の輝度情報(階調値)に対して、所定のガンマカーブを用いた階調補正処理を施された後の階調電圧を階調信号として、対応するソース配線に供給される。また、液晶パネルLPでは、走査信号が上記ゲートドライバからゲート配線の左端部及び右端部にそれぞれ供給されることにより、液晶パネルLPでは、その液晶層(図示せず)において、階調電圧が画素単位に充電される。これにより、液晶パネルLPでは、画素単位に透過率が制御されて、所望の画像を表示される。 Further, in the liquid crystal panel LP, a plurality of pixels are provided at the intersection of the source wiring and the gate wiring. The source driver 51 also applies the gradation voltage after the gradation correction processing using a predetermined gamma curve is performed on the luminance information (gradation value) for each pixel included in the video signal from the outside. Is supplied to the corresponding source wiring as a gradation signal. Further, in the liquid crystal panel LP, the scanning signal is supplied from the gate driver to the left end portion and the right end portion of the gate wiring, respectively. Thus, in the liquid crystal panel LP, the grayscale voltage is set to the pixel in the liquid crystal layer (not shown). Charged to the unit. Thereby, in the liquid crystal panel LP, the transmittance is controlled in units of pixels, and a desired image is displayed.
 しかしながら、従来の液晶表示装置では、発光ダイオード(光源)53からの熱に起因して、液晶パネルLPの端部BEの画素に比べて、液晶パネルLPの中央部BCの画素での階調電圧の充電が不十分になった。このため、従来の液晶表示装置では、画像表示をしたときに、画面全面が所望の輝度にて表示されないことがあった。 However, in the conventional liquid crystal display device, due to heat from the light emitting diode (light source) 53, the grayscale voltage at the pixel at the central portion BC of the liquid crystal panel LP is higher than that at the end BE of the liquid crystal panel LP. The battery has become insufficiently charged. For this reason, in conventional liquid crystal display devices, the entire screen may not be displayed with a desired luminance when an image is displayed.
 具体的にいえば、液晶パネルLPの端部BEに含まれた任意の画素Pにおいて、図19(a)に例示するように、ゲートクロックGLKが時点T1でオン状態となると、上記ゲートドライバが対応するゲート配線に対し走査信号Gout geが供給される。続いて、ソースドライバ51への制御信号LSが時点T2でオン状態となると、ソースドライバ51から対応するソース配線に対し階調信号(階調電圧)Sout seが供給される。すなわち、上記画素Pにおいて、階調電圧の充電が時点T2から開始される。 More specifically, in any pixel P included in the end BE of the liquid crystal panel LP, as illustrated in FIG. 19A, when the gate clock GLK is turned on at time T1, the gate driver is The scanning signal Goutge is supplied to the corresponding gate wiring. Subsequently, when the control signal LS to the source driver 51 is turned on at a time point T2, a gradation signal (gradation voltage) Sout se is supplied from the source driver 51 to the corresponding source wiring. That is, in the pixel P, charging of the gradation voltage starts from the time point T2.
 また、この端部BEに含まれた任意の画素Pでは、発光ダイオード(光源)53の近傍に位置しているので、発光ダイオード53からの熱によって当該画素Pの周囲温度が高いため、ソース配線での階調信号Sout seの波形の鈍りが小さいものとなる。すなわち、階調信号Sout seは、図19(d)に示すように、制御信号LSが時点T2でオン状態となると、ほぼ同時に立ち上がり、当該画素Pの液晶層での充電率の低下を生じることなく、時点T2から充電が適切に開始される。 Further, since the arbitrary pixel P included in the end portion BE is located in the vicinity of the light emitting diode (light source) 53, the ambient temperature of the pixel P is high due to the heat from the light emitting diode 53. The waveform dullness of the gradation signal Soutse at is small. That is, as shown in FIG. 19D, the gradation signal Soutse rises almost simultaneously when the control signal LS is turned on at time T2, and the charge rate in the liquid crystal layer of the pixel P decreases. Instead, the charging is appropriately started from time T2.
 その後、ゲートクロックGLKが時点T3でオン状態となると、上記対応するゲート配線に対し走査信号Gout geの供給が停止される。続いて、ソースドライバ51への制御信号LSが時点T4でオン状態となると、上記対応するソース配線に対し階調信号Sout seの供給が停止される。また、上記画素Pでは、時点T3で階調電圧の充電が停止される。すなわち、画素Pでは、時点T2から時点T3の間が階調電圧の充電期間である。 Thereafter, when the gate clock GLK is turned on at time T3, the supply of the scanning signal Goutge to the corresponding gate wiring is stopped. Subsequently, when the control signal LS to the source driver 51 is turned on at time T4, the supply of the gradation signal Soutse to the corresponding source wiring is stopped. In the pixel P, charging of the gradation voltage is stopped at time T3. That is, in the pixel P, the period between the time point T2 and the time point T3 is the grayscale voltage charging period.
 一方、液晶パネルLPの中央部BCに含まれた任意の画素P’では、図19(e)に例示するように、ゲートクロックGLKが時点T1でオン状態となると、上記ゲートドライバが対応するゲート配線に対し走査信号Gout gcが供給される。その後、ソースドライバ51への制御信号LSが時点T2でオン状態となって、ソースドライバ51から対応するソース配線に対し階調信号(階調電圧)Sout scが供給される。 On the other hand, in the arbitrary pixel P ′ included in the central portion BC of the liquid crystal panel LP, as illustrated in FIG. 19E, when the gate clock GLK is turned on at the time T1, the gate driver corresponds to the corresponding gate. A scanning signal Gout gc is supplied to the wiring. Thereafter, the control signal LS to the source driver 51 is turned on at time T2, and the gradation signal (gradation voltage) Sout sc is supplied from the source driver 51 to the corresponding source wiring.
 しかしながら、この画素P’では、発光ダイオード53から離れているため、発光ダイオード53からの熱によってあまり加熱されない。このため、当該画素P’の周囲温度は上記画素Pの周囲温度に比べて低いものとなり、ソース配線での階調信号Sout scの波形の鈍りが大きいものとなる。すなわち、階調信号Sout scは、図19(h)に示すように、制御信号LSが時点T2でオン状態となっても、ほぼ同時に立ち上がらずに、時点T5で所定値となる。このため、画素P’では、階調電圧の充電は時点T2から時点T5までの期間は不十分なものとなり、時点T5から開始される。この結果、当該画素P’の液晶層での充電率の低下を生じる。 However, since the pixel P ′ is away from the light emitting diode 53, it is not heated by the heat from the light emitting diode 53. For this reason, the ambient temperature of the pixel P ′ is lower than the ambient temperature of the pixel P, and the waveform of the gradation signal Sout sc in the source wiring is greatly dull. That is, as shown in FIG. 19 (h), the gradation signal Sout sc does not rise almost simultaneously even when the control signal LS is turned on at time T2, and becomes a predetermined value at time T5. For this reason, in the pixel P ′, charging of the gradation voltage is insufficient from the time point T2 to the time point T5, and is started from the time point T5. As a result, the charging rate in the liquid crystal layer of the pixel P ′ is reduced.
 その後、ゲートクロックGLKが時点T3でオン状態となると、上記対応するゲート配線に対し走査信号Gout gcの供給が停止される。続いて、ソースドライバ51への制御信号LSが時点T4でオン状態となると、上記対応するソース配線に対し階調信号Sout scの供給が停止される。また、上記画素P’では、時点T3で階調電圧の充電が停止される。すなわち、画素P’では、時点T5から時点T3の間が階調電圧の充電期間であり、画素Pの充電期間に比べて、短い時間となる。 Thereafter, when the gate clock GLK is turned on at time T3, the supply of the scanning signal Gout gc to the corresponding gate wiring is stopped. Subsequently, when the control signal LS to the source driver 51 is turned on at time T4, the supply of the gradation signal Sout sc to the corresponding source wiring is stopped. In the pixel P ′, the charging of the gradation voltage is stopped at time T3. That is, in the pixel P ′, the period from the time point T5 to the time point T3 is the gradation voltage charging period, which is shorter than the charging period of the pixel P.
 この結果、図20(a)及び図20(b)に示すように、液晶パネルLPの中央部BC及び端部BEにおいて、階調値(例えば、8ビット=256階調の場合)と出力光の輝度との関係が同じものとならず、表示品位を向上させることができなかった。 As a result, as shown in FIGS. 20 (a) and 20 (b), at the central portion BC and the end portion BE of the liquid crystal panel LP, gradation values (for example, 8 bits = 256 gradations) and output light are output. The relationship between the brightness and the brightness was not the same, and the display quality could not be improved.
 具体的にいえば、液晶パネルLPの中央部BCにおいては、図20(a)に点線にて示す目標とするガンマカーブ61に対して、同図に実線にて示す測定結果のカーブ60がほぼ一致している。 More specifically, in the central portion BC of the liquid crystal panel LP, the measurement result curve 60 indicated by the solid line in FIG. 20A is substantially the same as the target gamma curve 61 indicated by the dotted line in FIG. Match.
 これに対して、液晶パネルLPの端部BEにおいては、図20(b)に点線にて示す目標とするガンマカーブ61に対して、同図に実線にて示す測定結果のカーブ62がカーブ61に比べて大きくずれている。 On the other hand, at the end BE of the liquid crystal panel LP, a curve 62 as a measurement result indicated by a solid line in FIG. 20B is a curve 61 corresponding to a target gamma curve 61 indicated by a dotted line in FIG. Compared with
 以上のように、液晶パネルLPの中央部BC及び端部BEにおいて、階調値と出力光の輝度との関係が同じものとならず、表示品位を向上させることができないことがあった。特に、従来の液晶表示装置では、その液晶パネル(表示部)の大画面化を図ったときに、表示品位の向上を行うことが難しくなり易かった。尚、中央部BCにおいて、ガンマカーブ61とカーブ60がほぼ一致しているのは、発光ダイオード53からの熱による周囲温度の影響(階調電圧の充電期間の短縮)を考慮して、階調電圧を大きく設定しているためである。 As described above, in the central part BC and the end part BE of the liquid crystal panel LP, the relationship between the gradation value and the luminance of the output light is not the same, and the display quality may not be improved. In particular, in the conventional liquid crystal display device, when the screen of the liquid crystal panel (display unit) is enlarged, it is difficult to improve display quality. In the central part BC, the gamma curve 61 and the curve 60 substantially coincide with each other in consideration of the influence of the ambient temperature due to the heat from the light emitting diode 53 (reduction of the charging period of the gradation voltage). This is because the voltage is set large.
 上記の課題を鑑み、本発明は、表示部の大画面化を図ったときでも、表示品位を向上させることができる表示装置を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a display device capable of improving the display quality even when the display section is enlarged.
 上記の目的を達成するために、本発明にかかる表示装置は、光源を有するバックライト部と、複数の画素を備えるとともに、前記バックライト部からの照明光を用いて、情報を表示する表示部とを具備した表示装置であって、
 入力された映像信号を用いて、少なくとも前記表示部の駆動制御を行う制御部を備え、
 前記表示部には、複数の表示エリアが設けられ、
 前記制御部には、前記バックライト部の前記光源が点灯駆動されたときの温度分布を基に、前記複数の表示エリア毎に、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定して、前記表示部の駆動制御を行う階調電圧指示部が設けられていることを特徴とするものである。
In order to achieve the above object, a display device according to the present invention includes a backlight unit having a light source, and a plurality of pixels, and displays information using illumination light from the backlight unit. A display device comprising:
A control unit that performs drive control of at least the display unit using the input video signal,
The display unit is provided with a plurality of display areas,
Based on the temperature distribution when the light source of the backlight unit is driven to turn on, the control unit applies a gradation value for each pixel included in the input video signal for each of the plurality of display areas. A gradation voltage instruction unit that determines a correction value and performs drive control of the display unit is provided.
 上記のように構成された表示装置では、制御部が入力された映像信号を用いて、少なくとも表示部の駆動制御を行う。また、制御部には、バックライト部の光源が点灯駆動されたときの温度分布を基に、複数の表示エリア毎に、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定して、表示部の駆動制御を行う階調電圧指示部が設けられている。これにより、上記従来例と異なり、表示部の大画面化を図ったときでも、表示品位を向上させることができる表示装置を構成することができる。 In the display device configured as described above, the control unit performs drive control of at least the display unit using the input video signal. Further, the control unit corrects the gradation value for each pixel included in the input video signal for each of the plurality of display areas based on the temperature distribution when the light source of the backlight unit is driven to turn on. And a gradation voltage instruction unit for controlling the driving of the display unit is provided. Thus, unlike the conventional example, it is possible to configure a display device that can improve display quality even when the screen of the display unit is enlarged.
 また、上記表示装置において、前記階調電圧指示部は、前記画素から外部に向かって出力される出力光の輝度が所望の値となるように、外部からの映像信号に含まれた対応する階調値を、予め定められた階調値に補正することが好ましい。 In the above display device, the gradation voltage instruction unit may correspond to a corresponding level included in the video signal from the outside so that the luminance of the output light output from the pixel to the outside becomes a desired value. It is preferable to correct the tone value to a predetermined tone value.
 この場合、上記出力光の輝度と階調値との特性を向上させることができ、表示部の大画面化を図ったときでも、表示品位を確実に向上させることができる。 In this case, the characteristics of the brightness and gradation value of the output light can be improved, and the display quality can be reliably improved even when the display screen is enlarged.
 また、上記表示装置において、前記階調電圧指示部には、外部からの映像信号に含まれた画素毎の階調値を用いて、予め定められた階調値を演算によって求める演算部が用いられてもよい。 Further, in the above display device, the gradation voltage instruction unit uses an arithmetic unit that obtains a predetermined gradation value by calculation using a gradation value for each pixel included in an external video signal. May be.
 この場合、演算部によって上記予め定められた階調値が適切に求められる。 In this case, the predetermined gradation value is appropriately obtained by the calculation unit.
 また、上記表示装置において、前記階調電圧指示部には、外部からの映像信号に含まれた画素毎の階調値と、予め定められた階調値とを関連付けたルックアップテーブルが用いられてもよい。 In the display device, the gradation voltage instruction unit uses a lookup table that associates a gradation value for each pixel included in an external video signal with a predetermined gradation value. May be.
 この場合、ルックアップテーブルによって上記予め定められた階調値が適切に求められる。 In this case, the predetermined gradation value is appropriately obtained by the lookup table.
 また、上記表示装置において、前記階調電圧指示部は、前記複数の表示エリアに応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定することが好ましい。 In the display device, the gradation voltage instruction unit may determine a corrected gradation value by using predetermined different gamma curves according to the plurality of display areas. preferable.
 この場合、表示部の大画面化を図ったときでも、表示エリアに応じて、補正後の階調値を適切に決定することができ、表示品位を確実に向上させることができる。 In this case, even when the screen of the display unit is enlarged, the corrected gradation value can be appropriately determined according to the display area, and the display quality can be improved reliably.
 また、上記表示装置において、前記バックライト部には、温度センサが設けられ、
 前記階調電圧指示部は、前記温度センサの検出結果を用いて、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定してもよい。
In the display device, the backlight unit is provided with a temperature sensor,
The gradation voltage instruction unit may determine a correction value for a gradation value for each pixel included in the input video signal using a detection result of the temperature sensor.
 この場合、温度センサによってバックライト部の光源が点灯駆動されたときの温度分布をより正確に把握することができ、画素毎の階調値に対する補正値をより適切に決定することが可能となる。この結果、表示部の大画面化を図ったときでも、表示品位をより確実に向上させることができる。 In this case, the temperature distribution when the light source of the backlight unit is turned on by the temperature sensor can be grasped more accurately, and the correction value for the gradation value for each pixel can be determined more appropriately. . As a result, the display quality can be improved more reliably even when the screen of the display unit is enlarged.
 また、上記表示装置において、前記バックライト部には、前記複数の表示エリアに対し、前記光源の光をそれぞれ入射させる複数の発光エリアが設けられ、
 前記制御部は、入力された映像信号を用いて、前記表示部及び前記バックライト部の駆動制御を行うよう構成され、
 前記階調電圧指示部は、前記複数の発光エリアに対応する光源の点灯状態を用いて、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定してもよい。
Further, in the display device, the backlight unit is provided with a plurality of light emitting areas that allow the light of the light source to enter the plurality of display areas, respectively.
The control unit is configured to perform drive control of the display unit and the backlight unit using an input video signal,
The gradation voltage instruction unit may determine a correction value for a gradation value for each pixel included in the input video signal using lighting states of light sources corresponding to the plurality of light emitting areas.
 この場合、複数の各発光エリアでの光源の点灯状態、つまり対応する発光エリアでの温度状態を判別しつつ、画素毎の階調値に対する補正値をより適切に決定することができる。この結果、表示部の大画面化を図ったときでも、表示品位をより確実に向上させることができる。 In this case, the correction value for the gradation value for each pixel can be determined more appropriately while determining the lighting state of the light source in each of the plurality of light emitting areas, that is, the temperature state in the corresponding light emitting area. As a result, the display quality can be improved more reliably even when the screen of the display unit is enlarged.
 また、上記表示装置において、前記表示部として、液晶パネルが用いられるとともに、
 前記液晶パネルでは、ゲートドライバと、前記ゲートドライバから互いに異なる位置に設けられた複数のソースドライバとが設けられ、
 前記複数のソースドライバでは、前記複数の表示エリアに応じて、互いに異なるガンマカーブを使用した階調電圧が、前記階調電圧指示部から入力されることが好ましい。
In the display device, a liquid crystal panel is used as the display unit.
In the liquid crystal panel, a gate driver and a plurality of source drivers provided at different positions from the gate driver are provided,
In the plurality of source drivers, it is preferable that gradation voltages using different gamma curves are input from the gradation voltage instruction unit according to the plurality of display areas.
 この場合、表示品位に優れた液晶表示装置を容易に構成することができる。 In this case, a liquid crystal display device excellent in display quality can be easily configured.
 本発明によれば、表示部の大画面化を図ったときでも、表示品位を向上させることができる表示装置を提供することが可能となる。 According to the present invention, it is possible to provide a display device capable of improving the display quality even when the screen of the display unit is enlarged.
図1は、本発明の第1の実施形態にかかる液晶表示装置を説明する図である。FIG. 1 is a diagram for explaining a liquid crystal display device according to a first embodiment of the present invention. 図2は、図1に示した液晶パネルの要部構成を説明する図である。FIG. 2 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG. 図3は、図2に示したパネル制御部の構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 2. 図4は、図2に示したバックライト制御部の構成例を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration example of the backlight control unit illustrated in FIG. 図5は、上記液晶パネルに設けられたソースドライバ及び表示エリアと、図1に示した発光ダイオードを説明する図である。FIG. 5 is a diagram for explaining a source driver and a display area provided in the liquid crystal panel and the light emitting diode shown in FIG. 図6(a)及び図6(b)は、異なる表示エリアに対して図3に示した階調電圧指示部にて決定される補正値の具体例をそれぞれ説明するグラフである。FIGS. 6A and 6B are graphs for explaining specific examples of correction values determined by the gradation voltage instruction unit shown in FIG. 3 for different display areas. 図7は、本発明の第2の実施形態にかかる液晶表示装置を説明する図である。FIG. 7 is a diagram for explaining a liquid crystal display device according to a second embodiment of the present invention. 図8は、図7に示したバックライト装置の要部構成を説明する図である。FIG. 8 is a diagram for explaining a main configuration of the backlight device shown in FIG. 図9は、図7に示した液晶パネルの要部構成を説明する図である。FIG. 9 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG. 図10は、図9に示したパネル制御部の構成例を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 9. 図11は、本発明の第3の実施形態にかかる液晶表示装置を説明する図である。FIG. 11 is a diagram illustrating a liquid crystal display device according to the third embodiment of the present invention. 図12は、図11に示したバックライト装置の要部構成を説明する図である。FIG. 12 is a diagram for explaining a main configuration of the backlight device shown in FIG. 図13は、図11に示したバックライト装置に設けられた複数の発光エリアと、これらの発光エリアから光が照射される複数の表示エリアの具体例を説明する図である。FIG. 13 is a diagram illustrating a specific example of a plurality of light emitting areas provided in the backlight device illustrated in FIG. 11 and a plurality of display areas irradiated with light from these light emitting areas. 図14は、図11に示した液晶パネルの要部構成を説明する図である。FIG. 14 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG. 図15は、図13に示したパネル制御部の構成例を示すブロック図である。FIG. 15 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 13. 図16は、図13に示したバックライト制御部の構成例を示すブロック図である。FIG. 16 is a block diagram illustrating a configuration example of the backlight control unit illustrated in FIG. 13. 図17(a)及び図17(b)は、異なる表示エリアに対して図14に示した階調電圧指示部にて決定される補正値の具体例をそれぞれ説明するグラフである。FIGS. 17A and 17B are graphs for explaining specific examples of correction values determined by the gradation voltage instruction unit shown in FIG. 14 for different display areas. 図18は、従来の液晶表示装置の要部構成を説明する図である。FIG. 18 is a diagram for explaining a main configuration of a conventional liquid crystal display device. 図19(a)~図19(h)は、図18に示した液晶パネルの各部での動作例を示すタイミングチャートである。FIG. 19A to FIG. 19H are timing charts showing an operation example in each part of the liquid crystal panel shown in FIG. 図20(a)及び図20(b)は、それぞれ図18に示した中央部BC及び端部BEでの目標ガンマカーブと測定結果の一例を示すグラフである。FIGS. 20A and 20B are graphs showing examples of target gamma curves and measurement results at the center BC and the end BE shown in FIG. 18, respectively.
 以下、本発明の表示装置の好ましい実施形態について、図面を参照しながら説明する。なお、以下の説明では、本発明を透過型の液晶表示装置に適用した場合を例示して説明する。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。 Hereinafter, preferred embodiments of the display device of the present invention will be described with reference to the drawings. In the following description, the case where the present invention is applied to a transmissive liquid crystal display device will be described as an example. Moreover, the dimension of the structural member in each figure does not faithfully represent the actual dimension of the structural member, the dimensional ratio of each structural member, or the like.
 [第1の実施形態]
 図1は、本発明の第1の実施形態にかかる液晶表示装置を説明する図である。図1において、本実施形態の液晶表示装置1では、情報を表示する表示部としての液晶パネル2と、バックライト部としてのバックライト装置3とが設けられている。そして、液晶表示装置1では、液晶パネル2がバックライト装置3からの照明光を用いて、情報表示を行うようになっており、これら液晶パネル2とバックライト装置3とが透過型の液晶表示装置1として一体化されている。
[First Embodiment]
FIG. 1 is a diagram for explaining a liquid crystal display device according to a first embodiment of the present invention. In FIG. 1, the liquid crystal display device 1 of the present embodiment is provided with a liquid crystal panel 2 as a display unit for displaying information and a backlight device 3 as a backlight unit. In the liquid crystal display device 1, the liquid crystal panel 2 displays information using illumination light from the backlight device 3, and the liquid crystal panel 2 and the backlight device 3 are transmissive liquid crystal displays. The device 1 is integrated.
 液晶パネル2は、液晶層と、この液晶層を狭持する一対の基板としてのアクティブマトリクス基板及びカラーフィルタ基板を備えている(図示せず)。アクティブマトリクス基板では、後に詳述するように、液晶パネル2の表示面に含まれる複数の画素に応じて、画素電極や薄膜トランジスタ(TFT:Thin Film Transistor)などが上記液晶層との間に形成されている。一方、カラーフィルタ基板には、カラーフィルタや共通電極などが上記液晶層との間に形成されている(図示せず)。 The liquid crystal panel 2 includes a liquid crystal layer and an active matrix substrate and a color filter substrate as a pair of substrates that sandwich the liquid crystal layer (not shown). In the active matrix substrate, as will be described in detail later, a pixel electrode, a thin film transistor (TFT), or the like is formed between the liquid crystal layer in accordance with a plurality of pixels included in the display surface of the liquid crystal panel 2. ing. On the other hand, on the color filter substrate, a color filter, a common electrode, and the like are formed between the liquid crystal layer (not shown).
 また、液晶パネル2では、当該液晶パネル2の駆動制御を行う制御装置(図示せず)が設けられており、上記液晶層を画素単位に動作することで表示面を画素単位に駆動して、当該表示面上に所望画像を表示するようになっている。 Further, the liquid crystal panel 2 is provided with a control device (not shown) that controls the driving of the liquid crystal panel 2, and operates the liquid crystal layer in units of pixels to drive the display surface in units of pixels. A desired image is displayed on the display surface.
 また、本実施形態の液晶パネル2には、例えばノーマリブラックモードのものが用いられている。すなわち、本実施形態の液晶パネル2では、上記液晶層に電圧が印加されていないとき、黒色表示が行われるとともに、印加される電圧に応じて、液晶層での透過率が増加するように構成されている。 For the liquid crystal panel 2 of the present embodiment, a normally black mode, for example, is used. That is, the liquid crystal panel 2 of the present embodiment is configured such that when no voltage is applied to the liquid crystal layer, black display is performed and the transmittance in the liquid crystal layer increases according to the applied voltage. Has been.
 また、バックライト装置3には、光源としての発光ダイオード4と、発光ダイオード4が実装された光源基板としてのLED基板5と、発光ダイオード4からの光を所定の伝搬方向(図1の左右方向)に導くとともに、液晶パネル(被照射物)2側に当該光を出射する導光板6が設けられている。この導光板6には、例えば断面矩形状で透明なアクリル樹脂などの合成樹脂が用いられており、この導光板6は、発光ダイオード4と対向して配置されて、当該発光ダイオード4からの光を入光する入光面6aと、液晶パネル2側に光を発光する発光面6bと、発光面6bに対向する対向面6cを備えている。 Further, the backlight device 3 includes a light emitting diode 4 as a light source, an LED substrate 5 as a light source substrate on which the light emitting diode 4 is mounted, and light from the light emitting diode 4 in a predetermined propagation direction (the horizontal direction in FIG. 1). ) And a light guide plate 6 for emitting the light on the liquid crystal panel (object to be irradiated) 2 side is provided. The light guide plate 6 is made of, for example, a synthetic resin such as a transparent acrylic resin having a rectangular cross section. The light guide plate 6 is disposed so as to face the light emitting diode 4, and light from the light emitting diode 4 is used. A light incident surface 6a, a light emitting surface 6b that emits light toward the liquid crystal panel 2, and a facing surface 6c that faces the light emitting surface 6b.
 また、バックライト装置3は、発光ダイオード4及び導光板6の下方に設けられるとともに、これら発光ダイオード4及び導光板6からの光を反射する反射板8と、発光ダイオード4の液晶パネル2側に設けられるとともに、発光ダイオード4からの光を反射する反射部としての反射板9を備えている。また、バックライト装置3には、導光板6と液晶パネル2との間に設けられた光学部材として、例えば拡散シート10、プリズムシート11、及び反射型偏光シート12が導光板6側から順次設けられており、導光板6の発光面6bからの光を均一な輝度をもつ平面状の上記照明光に変えて液晶パネル2に与えるようになっている。 The backlight device 3 is provided below the light-emitting diode 4 and the light guide plate 6, a reflection plate 8 that reflects light from the light-emitting diode 4 and the light guide plate 6, and the liquid crystal panel 2 side of the light-emitting diode 4. A reflection plate 9 is provided as a reflection part that is provided and reflects light from the light emitting diode 4. In the backlight device 3, for example, a diffusion sheet 10, a prism sheet 11, and a reflective polarizing sheet 12 are sequentially provided from the light guide plate 6 side as optical members provided between the light guide plate 6 and the liquid crystal panel 2. Thus, the light from the light emitting surface 6b of the light guide plate 6 is changed to the above-mentioned planar illumination light having a uniform luminance and given to the liquid crystal panel 2.
 さらに、バックライト装置3には、発光ダイオード4、導光板6、及び拡散シート10、プリズムシート11、及び反射型偏光シート12を収容する有底状のシャーシ13と、開口部を有する断面L字状の枠体により構成されるとともに、シャーシ13に組み付けられて、バックライト装置3の外容器を構成するベゼル14が設けられている。そして、本実施形態の液晶表示装置1では、ベゼル14上にP(プラスチック)シャーシ15が設置されるとともに、このPシャーシ15に液晶パネル2が載置されることにより、液晶パネル2とバックライト装置3とが互いに組み付けられる。 Furthermore, the backlight device 3 includes a bottomed chassis 13 that houses the light-emitting diode 4, the light guide plate 6, the diffusion sheet 10, the prism sheet 11, and the reflective polarizing sheet 12, and an L-shaped cross section having an opening. And a bezel 14 which is assembled to the chassis 13 and constitutes an outer container of the backlight device 3 is provided. In the liquid crystal display device 1 of the present embodiment, a P (plastic) chassis 15 is installed on the bezel 14, and the liquid crystal panel 2 is placed on the P chassis 15. The device 3 is assembled with each other.
 尚、上記の説明以外に、反射板8に代えて、シャーシ13の発光ダイオード4及び導光板6に対向する底面に、銀色や白色などの光反射率の高い塗料を塗布することにより、発光ダイオード4からの光及び導光板6からの光を反射する構成としてもよい。 In addition to the above description, instead of the reflector plate 8, a light-emitting diode is applied by applying a paint having a high light reflectance such as silver or white on the bottom surface of the chassis 13 facing the light-emitting diode 4 and the light guide plate 6. It is good also as a structure which reflects the light from 4 and the light from the light-guide plate 6. FIG.
 次に、図2~図4を参照して、本実施形態の液晶パネル2について具体的に説明する。 Next, the liquid crystal panel 2 of the present embodiment will be specifically described with reference to FIGS.
 図2は、図1に示した液晶パネルの要部構成を説明する図である。図3は、図2に示したパネル制御部の構成例を示すブロック図である。図4は、図2に示したバックライト制御部の構成例を示すブロック図である。 FIG. 2 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG. FIG. 3 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 2. FIG. 4 is a block diagram illustrating a configuration example of the backlight control unit illustrated in FIG.
 図2において、制御部16には、TV(受像機)あるいはPCなどの信号源(図示せず)を介して液晶表示装置1の外部から映像信号が入力されるようになっている。また、この制御部16は、入力された映像信号を用いて、液晶パネル2の駆動制御を実質的に行うようになっている。さらに、制御部16は、入力された映像信号を用いて、バックライト装置3の駆動制御も実質的に行うように構成されている。 In FIG. 2, a video signal is input to the control unit 16 from the outside of the liquid crystal display device 1 via a signal source (not shown) such as a TV (receiver) or a PC. Further, the control unit 16 substantially performs drive control of the liquid crystal panel 2 using the input video signal. Further, the control unit 16 is configured to substantially perform drive control of the backlight device 3 using the input video signal.
 具体的にいえば、制御部16には、上記映像信号を用いて、液晶パネル2を画素単位に駆動制御するパネル制御部17、映像信号を用いて、バックライト装置3の各発光ダイオード4の駆動制御を行うバックライト制御部18、及び映像信号に含まれたフレーム単位の表示データを記憶可能に構成されたフレームメモリ19が設けられている。パネル制御部17及びバックライト制御部18には、例えばASIC(Application Specific Integrated Circuit)が各々用いられており、これらパネル制御部17及びバックライト制御部18が、フレームメモリ19に逐次格納される上記表示データに対して、所定の演算処理を高速に行えるようになっている。また、このように、パネル制御部17及びバックライト制御部18が設けられているので、本実施形態の液晶表示装置1では、これらパネル制御部17及びバックライト制御部18がそれぞれ液晶パネル(表示部)2及びバックライト装置(バックライト部)3を適切に駆動することが可能となり、高品位な表示を容易に行うことができるようになっている。つまり、本実施形態の液晶表示装置1では、液晶パネル2の表示面での映像の暗い部分は対応する発光エリアからの照明光の輝度を下げ、映像の明るい部分は対応する発光エリアからの照明光の輝度を上げることにより、ダイナミックコントラストを向上することができるよう構成されている。 More specifically, the control unit 16 uses the video signal to drive and control the liquid crystal panel 2 in units of pixels. The video signal is used to control the light emitting diodes 4 of the backlight device 3. A backlight control unit 18 that performs drive control and a frame memory 19 configured to be able to store display data in units of frames included in the video signal are provided. For example, an ASIC (Application 制 御 Specific Integrated Circuit) is used for each of the panel control unit 17 and the backlight control unit 18, and the panel control unit 17 and the backlight control unit 18 are sequentially stored in the frame memory 19. Predetermined arithmetic processing can be performed on display data at high speed. In addition, since the panel control unit 17 and the backlight control unit 18 are provided as described above, in the liquid crystal display device 1 of the present embodiment, the panel control unit 17 and the backlight control unit 18 are each provided with a liquid crystal panel (display). Part) 2 and the backlight device (backlight part) 3 can be appropriately driven, and high-quality display can be easily performed. That is, in the liquid crystal display device 1 of the present embodiment, the dark portion of the image on the display surface of the liquid crystal panel 2 lowers the luminance of the illumination light from the corresponding light emitting area, and the bright portion of the image is illuminated from the corresponding light emitting area. The dynamic contrast can be improved by increasing the luminance of light.
 尚、上記の説明以外に、バックライト制御部18が、入力された映像信号を用いずに、例えば外部からの調光指示信号だけを用いて、発光ダイオード4の駆動制御を行うよう構成してもよい。 In addition to the above description, the backlight control unit 18 is configured to perform drive control of the light emitting diode 4 using only the dimming instruction signal from the outside without using the input video signal. Also good.
 また、図3に示すように、パネル制御部17には、上記映像信号を基に、図2に示したソースドライバ20及びゲートドライバ21への各指示信号を生成する画像処理部25が設けられている。また、このパネル制御部17には、階調電圧指示部26が設けられており、後に詳述するように、画像処理部25が生成したソースドライバ20への指示信号は階調電圧指示部26にて補正された後、ソースドライバ20に出力されるようになっている。 As shown in FIG. 3, the panel control unit 17 is provided with an image processing unit 25 that generates each instruction signal to the source driver 20 and the gate driver 21 shown in FIG. 2 based on the video signal. ing. Further, the panel control unit 17 is provided with a gradation voltage instruction unit 26. As will be described in detail later, an instruction signal to the source driver 20 generated by the image processing unit 25 is a gradation voltage instruction unit 26. After being corrected at, it is output to the source driver 20.
 また、図4に示すように、バックライト制御部18には、映像信号を用いて、各発光ダイオード4の駆動制御を実質的に行うLED駆動制御部27が設けられている。つまり、このLED駆動制御部27は、映像信号を用いて、各発光ダイオード4への指示信号を生成し、当該各発光ダイオード4の点灯駆動を制御する。 As shown in FIG. 4, the backlight control unit 18 is provided with an LED drive control unit 27 that substantially controls the drive of each light-emitting diode 4 using a video signal. That is, the LED drive control unit 27 generates an instruction signal for each light emitting diode 4 using the video signal, and controls lighting driving of each light emitting diode 4.
 また、図2において、ソースドライバ20及びゲートドライバ21は、液晶パネル2に設けられた複数の画素Pを画素単位に駆動する駆動回路であり、ソースドライバ20及びゲートドライバ21には、複数のソース配線S1~SM(Mは、2以上の整数、以下、“S”にて総称する。)及び複数のゲート配線G1~GN(Nは、2以上の整数、以下、“G”にて総称する。)がそれぞれ接続されている。これらソース配線S1~SM及びゲート配線G1~GNは、マトリクス状に配列されており、当該マトリクス状に区画された各領域には、上記複数の各画素Pの領域が形成されている。これら複数の画素Pには、赤色、緑色、及び青色の画素Pが含まれている。また、これらの赤色、緑色、及び青色の画素Pは、例えばこの順番で、各ゲート配線G1~GNに平行に順次配設されている。 In FIG. 2, a source driver 20 and a gate driver 21 are drive circuits that drive a plurality of pixels P provided in the liquid crystal panel 2 in units of pixels, and the source driver 20 and the gate driver 21 include a plurality of sources. Wirings S1 to SM (M is an integer of 2 or more, hereinafter collectively referred to as “S”) and a plurality of gate wirings G1 to GN (N is an integer of 2 or more, hereinafter collectively referred to as “G”) .) Are connected to each other. The source lines S1 to SM and the gate lines G1 to GN are arranged in a matrix, and the areas of the plurality of pixels P are formed in the areas partitioned in the matrix. The plurality of pixels P include red, green, and blue pixels P. Further, the red, green, and blue pixels P are sequentially arranged in parallel with each of the gate wirings G1 to GN, for example, in this order.
 また、ソースドライバ20及びゲートドライバ21は、各々複数設けられており、液晶パネル2の横方向及び縦方向に沿って順次配列されている。また、これらの複数のソースドライバ20及び複数のゲートドライバ21は、液晶パネル2の表示面に設けられた複数の表示エリアに応じて設置されており、対応する表示エリアに含まれた画素Pを適宜駆動するようになっている。 Further, a plurality of source drivers 20 and gate drivers 21 are provided, and are sequentially arranged along the horizontal direction and the vertical direction of the liquid crystal panel 2. The plurality of source drivers 20 and the plurality of gate drivers 21 are installed in accordance with a plurality of display areas provided on the display surface of the liquid crystal panel 2, and the pixels P included in the corresponding display areas are arranged. It is driven appropriately.
 ここで、図5を参照して、本実施形態の液晶パネル2での複数の発光ダイオード4、複数のソースドライバ17、及び複数の表示エリアについて具体的に説明する。 Here, with reference to FIG. 5, the plurality of light emitting diodes 4, the plurality of source drivers 17, and the plurality of display areas in the liquid crystal panel 2 of the present embodiment will be specifically described.
 図5は、上記液晶パネルに設けられたソースドライバ及び表示エリアと、図1に示した発光ダイオードを説明する図である。 FIG. 5 is a diagram illustrating the source driver and display area provided in the liquid crystal panel and the light emitting diode shown in FIG.
 図5に示すように、本実施形態の液晶パネル2では、複数、例えば8つのソースドライバ20-1~20-8(以下、“20”にて総称する。)が、8つのフレキシブルプリント回路基板(SOF)28にそれぞれ実装されている。各フレキシブルプリント回路基板28の一端部側は、有効表示領域Aの外側で、上記アクティブマトリクス基板上のソース配線Sに接続されている。また、各ソースドライバ20-1~20-8には、同じ数のソース配線S、つまり(M/8)本のソース配線Sが接続されている。 As shown in FIG. 5, in the liquid crystal panel 2 of the present embodiment, a plurality of, for example, eight source drivers 20-1 to 20-8 (hereinafter collectively referred to as “20”) include eight flexible printed circuit boards. (SOF) 28, respectively. One end of each flexible printed circuit board 28 is connected to the source wiring S on the active matrix substrate outside the effective display area A. Further, the same number of source lines S, that is, (M / 8) source lines S are connected to each of the source drivers 20-1 to 20-8.
 また、各フレキシブルプリント回路基板28の他端部側は、2つのプリント回路基板29のいずれか一方のプリント回路基板29に接続されている。そして、液晶パネル2では、各ソースドライバ20-1~20-8に対して、液晶パネル2の表示部に表示される情報に応じた指示信号がパネル制御部17から入力されるようになっている。その後、各ソースドライバ20-1~20-8は、対応するソース配線Sに対し、階調信号を出力する。 The other end side of each flexible printed circuit board 28 is connected to one of the two printed circuit boards 29. In the liquid crystal panel 2, an instruction signal corresponding to information displayed on the display unit of the liquid crystal panel 2 is input from the panel control unit 17 to each of the source drivers 20-1 to 20-8. Yes. Thereafter, each of the source drivers 20-1 to 20-8 outputs a gradation signal to the corresponding source line S.
 また、液晶パネル2では、当該液晶パネル2の左端部側及び右端部側において、複数、例えば4つのゲートドライバそれぞれ設けられている(図示せず)。これらのゲートドライバは、ソースドライバと同様に、各々図示しないフレキシブルプリント回路基板(SOF)にそれぞれ実装されている。また、各フレキシブルプリント回路基板の一端部側は、有効表示領域Aの外側で、上記アクティブマトリクス基板上のゲート配線Gに接続されている。また、各ゲート配線Gの左端部及び右端部がそれぞれ左端部側及び右端部側のゲートドライバに接続されており、左端部側及び右端部側の各ゲートドライバには、同じ数のゲート配線G、つまり(N/4)本のゲート配線Gが接続されている(図示せず)。 Also, in the liquid crystal panel 2, a plurality of, for example, four gate drivers are provided on the left end side and the right end side of the liquid crystal panel 2 (not shown). These gate drivers are each mounted on a flexible printed circuit board (SOF) (not shown), like the source driver. One end of each flexible printed circuit board is connected to the gate wiring G on the active matrix substrate outside the effective display area A. Further, the left end and the right end of each gate line G are connected to the gate drivers on the left end side and the right end side, respectively, and the same number of gate lines G are connected to each gate driver on the left end side and the right end side. That is, (N / 4) gate wirings G are connected (not shown).
 さらに、各ゲートドライバは、対応するフレキシブルプリント回路基板と上記アクティブマトリクス基板上に設けられた配線(図示せず)を介して、パネル制御部17に接続されている(図示せず)。そして、各ゲートドライバは、パネル制御部17からの指示信号を入力して、対応するゲート配線Gに対し、後述の走査信号を出力する。 Further, each gate driver is connected to the panel control unit 17 (not shown) via a corresponding flexible printed circuit board and wiring (not shown) provided on the active matrix substrate. Each gate driver receives an instruction signal from the panel control unit 17 and outputs a scanning signal to be described later to the corresponding gate wiring G.
 また、液晶パネル2では、図5に示すように、その左端部側及び右端部側の各々において、LED基板5に実装された複数、例えば8個の発光ダイオード4が配置されている。 Also, in the liquid crystal panel 2, as shown in FIG. 5, a plurality of, for example, eight light emitting diodes 4 mounted on the LED substrate 5 are arranged on each of the left end side and the right end side.
 また、液晶パネル2では、図5に示すように、有効表示領域Aにおいて、複数、例えば8個の表示エリアA1~A8が設定されている。各表示エリアA1~A8には、マトリクス状に配線されたソース配線Sとゲート配線Gとの交差部に設けられた複数の画素Pが含まれている。また、これら表示エリアA1~A8は、その内部のソース配線Sに接続されたソースドライバ20-1~20-8に応じてそれぞれ設定されたものであり、液晶パネル2の左端部側及び右端部側に設けられた発光ダイオード(光源)4からの距離が異なる表示エリアを構成している。 In the liquid crystal panel 2, as shown in FIG. 5, a plurality of, for example, eight display areas A1 to A8 are set in the effective display area A. Each display area A1 to A8 includes a plurality of pixels P provided at the intersections of the source lines S and the gate lines G arranged in a matrix. These display areas A1 to A8 are respectively set according to the source drivers 20-1 to 20-8 connected to the internal source lines S, and the left and right end portions of the liquid crystal panel 2 are set. Display areas are formed at different distances from the light emitting diode (light source) 4 provided on the side.
 さらに、液晶パネル2では、図5に示したように、発光ダイオード4から互いに異なる位置に配置された複数のソースドライバ20-1~20-8が設けられている。また、これら複数のソースドライバ20-1~20-8では、後に詳述するように、発光ダイオード4からの距離に応じて、互いに異なるガンマカーブを使用した階調電圧が、上記階調電圧指示部26から入力されるようになっている。 Furthermore, the liquid crystal panel 2 is provided with a plurality of source drivers 20-1 to 20-8 arranged at different positions from the light emitting diode 4 as shown in FIG. Further, in the plurality of source drivers 20-1 to 20-8, as will be described in detail later, the gradation voltages using different gamma curves according to the distance from the light emitting diode 4 are converted into the gradation voltage instructions. It is input from the unit 26.
 図2に戻って、各ゲート配線G1~GNには、画素P毎に設けられたスイッチング素子22のゲートが接続されている。一方、各ソース配線S1~SMには、スイッチング素子22のソースが接続されている。また、各スイッチング素子22のドレインには、画素P毎に設けられた画素電極23が接続されている。また、各画素Pでは、共通電極24が液晶パネル2に設けられた上記液晶層を間に挟んだ状態で画素電極23に対向するように構成されている。そして、ゲートドライバ21は、画像処理部25からの指示信号に基づいて、ゲート配線G1~GNに対して、対応するスイッチング素子22のゲートをオン状態にするゲート信号(走査信号)を順次出力する。一方、ソースドライバ20は、階調電圧指示部26からの指示信号に基づいて、表示画像の輝度(階調)に応じた階調信号(階調電圧)を対応するソース配線S1~SMに出力する。 Returning to FIG. 2, the gate of the switching element 22 provided for each pixel P is connected to each of the gate wirings G1 to GN. On the other hand, the source of the switching element 22 is connected to each of the source lines S1 to SM. Further, a pixel electrode 23 provided for each pixel P is connected to the drain of each switching element 22. In each pixel P, the common electrode 24 is configured to face the pixel electrode 23 with the liquid crystal layer provided on the liquid crystal panel 2 interposed therebetween. The gate driver 21 sequentially outputs gate signals (scanning signals) for turning on the gates of the corresponding switching elements 22 to the gate wirings G1 to GN based on the instruction signal from the image processing unit 25. . On the other hand, the source driver 20 outputs a gradation signal (gradation voltage) corresponding to the luminance (gradation) of the display image to the corresponding source lines S1 to SM based on the instruction signal from the gradation voltage instruction unit 26. To do.
 また、図3において、上記階調電圧指示部26は、バックライト装置(バックライト部)の発光ダイオード(光源)4が点灯駆動されたときの温度分布を基に、複数の表示エリアA1~A8毎に、入力された映像信号に含まれた画素毎の階調値に対する補正値(補正後の階調値)を決定して、液晶パネル(表示部)2の駆動制御を実質的に行うように構成されている。 In FIG. 3, the gradation voltage instruction unit 26 includes a plurality of display areas A1 to A8 based on the temperature distribution when the light emitting diode (light source) 4 of the backlight device (backlight unit) is driven to light. Every time, a correction value (corrected gradation value) for the gradation value for each pixel included in the input video signal is determined, and the drive control of the liquid crystal panel (display unit) 2 is substantially performed. It is configured.
 また、この階調電圧指示部26は、画素Pから外部に向かって出力される出力光の輝度が所望の値となるように、外部からの映像信号に含まれた対応する階調値を、予め定められた階調値(補正後の階調値)に補正するように構成されている。また、階調電圧指示部26は、液晶パネル2の複数の表示エリアA1~A8に応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定するようになっている(詳細は後述。)。 In addition, the gradation voltage instruction unit 26 sets the corresponding gradation value included in the external video signal so that the luminance of the output light output from the pixel P toward the outside becomes a desired value. The gradation value is corrected to a predetermined gradation value (corrected gradation value). Further, the gradation voltage instruction unit 26 determines a corrected gradation value by using predetermined different gamma curves in accordance with a plurality of display areas A1 to A8 of the liquid crystal panel 2. (Details will be described later).
 具体的にいえば、階調電圧指示部26には、図3に示すように、外部からの映像信号に含まれた画素P毎の階調値を用いて、予め定められた階調値を演算によって求める演算部26aと、演算部26aで用いられる数式やパラメータ等の演算処理に必要なデータを予め記憶しているメモリ26bが設けられている。 More specifically, as shown in FIG. 3, the gradation voltage instruction unit 26 uses a gradation value for each pixel P included in an external video signal to set a predetermined gradation value. A calculation unit 26a obtained by calculation and a memory 26b in which data necessary for calculation processing such as mathematical formulas and parameters used in the calculation unit 26a are stored in advance are provided.
 そして、階調電圧指示部26は、その演算部26aにて決定した補正後の階調値を用いて、画像処理部25が生成したソースドライバ20への指示信号(階調信号)を補正して、当該ソースドライバ20に出力する。 And the gradation voltage instruction | indication part 26 correct | amends the instruction | indication signal (gradation signal) to the source driver 20 which the image process part 25 produced | generated using the corrected gradation value determined in the calculating part 26a. To the source driver 20.
 尚、上記の説明以外に、階調電圧指示部26は、その演算部26aにて決定した補正後の階調値を画像処理部25に出力し、画像処理部25が補正後の階調値を用いて、ソースドライバ20への指示信号(階調信号)を補正して、当該ソースドライバ20に出力してもよい(後掲の各実施形態においても同様。)。 In addition to the above description, the gradation voltage instruction unit 26 outputs the corrected gradation value determined by the calculation unit 26a to the image processing unit 25, and the image processing unit 25 corrects the gradation value after correction. , The instruction signal (gradation signal) to the source driver 20 may be corrected and output to the source driver 20 (the same applies to the embodiments described later).
 以下、上記のように構成された本実施形態の液晶表示装置1の動作について説明する。尚、以下の説明では、図6も参照して、本実施形態の階調電圧指示部26の動作について主に説明する。 Hereinafter, the operation of the liquid crystal display device 1 of the present embodiment configured as described above will be described. In the following description, the operation of the gradation voltage instruction unit 26 of this embodiment will be mainly described with reference to FIG.
 図6(a)及び図6(b)は、異なる表示エリアに対して図3に示した階調電圧指示部にて決定される補正値の具体例をそれぞれ説明するグラフである。 6 (a) and 6 (b) are graphs for explaining specific examples of correction values determined by the gradation voltage instruction unit shown in FIG. 3 for different display areas.
 本実施形態の階調電圧指示部26は、複数の表示エリアA1~A8を、例えば2つの組に分けて、これらの組において予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定するようになっている。具体的には、階調電圧指示部26は、発光ダイオード4に近い方の表示エリアA1、A2、A7、A8と、発光ダイオード4から遠い方の表示エリアA3、A4、A5、A6に分けて、近い方の表示エリアA1、A2、A7、A8に割り当てられたソースドライバ20-1、20-2、20-7、20-8に用いられるガンマカーブと、遠い方の表示エリアA3、A4、A5、A6に割り当てられたソースドライバ20-3、20-4、20-5、20-6に用いられるガンマカーブを互いに異なる値のものを使用するように構成されている。 The gradation voltage instruction unit 26 of the present embodiment divides the plurality of display areas A1 to A8 into, for example, two sets, and uses a predetermined gamma curve that is different from each other in advance and corrects the display areas A1 to A8. The gradation value is determined. Specifically, the gradation voltage instruction unit 26 is divided into display areas A1, A2, A7, A8 closer to the light emitting diode 4 and display areas A3, A4, A5, A6 farther from the light emitting diode 4. , The gamma curves used for the source drivers 20-1, 20-2, 20-7, 20-8 assigned to the closer display areas A1, A2, A7, A8 and the farther display areas A3, A4, The gamma curves used for the source drivers 20-3, 20-4, 20-5, and 20-6 assigned to A5 and A6 are configured to have different values.
 すなわち、階調電圧指示部26では、演算部26aは発光ダイオード4に近い方のソースドライバ20-1、20-2、20-7、20-8に対しては、遠い方のソースドライバ20-3、20-4、20-5、20-6に用いるガンマカーブの値よりも大きい値のものを用いて、予め定められた階調値(補正後の階調値)を求めるようになっている。 That is, in the gradation voltage instruction unit 26, the calculation unit 26a is farther from the source driver 20-, 20-2, 20-7, 20-8 closer to the light-emitting diode 4 than the source driver 20- 3. A predetermined gradation value (corrected gradation value) is obtained using a value larger than the value of the gamma curve used for 3, 20-4, 20-5, and 20-6. Yes.
 言い換えれば、階調電圧指示部26では、発光ダイオード(光源)4からの熱が伝わり難く周囲温度が比較的低いため、階調電圧の充電不足が生じ易く、画素P毎の液晶層の充電率が低くなり易い、遠い方の表示エリアA3、A4、A5、A6に割り当てられたソースドライバ20-3、20-4、20-5、20-6に対しては、発光ダイオード(光源)4からの熱が伝わり易く周囲温度が比較的高いため、階調電圧の充電不足が生じ難く、画素P毎の液晶層の充電率が低くなり難い、近い方のソースドライバ20-1、20-2、20-7、20-8に用いるガンマカーブの値よりも小さい値のものを用いて、予め定められた階調値(補正後の階調値)を求めるようになっている。 In other words, in the gradation voltage instruction unit 26, since the heat from the light emitting diode (light source) 4 is difficult to be transmitted and the ambient temperature is relatively low, the gradation voltage is likely to be insufficiently charged, and the charging rate of the liquid crystal layer for each pixel P For the source drivers 20-3, 20-4, 20-5 and 20-6 assigned to the distant display areas A3, A4, A5 and A6, the light emitting diode (light source) 4 Since the ambient temperature is relatively high, it is difficult for the grayscale voltage to be insufficiently charged, the charge rate of the liquid crystal layer for each pixel P is unlikely to decrease, and the closer source drivers 20-1, 20-2, By using a value smaller than the value of the gamma curve used for 20-7 and 20-8, a predetermined gradation value (corrected gradation value) is obtained.
 詳細にいえば、液晶パネル2において、そのガンマカーブの値が、所望の値として、例えば“2.2”の値に設定されている場合、演算部26aでは、発光ダイオード4に近い方のソースドライバ20-1、20-2、20-7、20-8に対して、例えば“2.3”の値のガンマカーブを用いるようになっている。具体的には、図6(a)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線70及び曲線71は、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線70及び曲線71ではそれぞれ“2.2”及び“2.3”である。そして、本実施形態では、演算部26aが、ソースドライバ20-1、20-2、20-7、20-8に対して、曲線71に示したガンマカーブを用いることにより、発光ダイオード4からの熱による悪影響(つまり、上記充電率の低下)が生じ難い表示エリアA1、A2、A7、A8において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。 More specifically, in the liquid crystal panel 2, when the value of the gamma curve is set as a desired value, for example, a value of “2.2”, the calculation unit 26 a has a source closer to the light emitting diode 4. For the drivers 20-1, 20-2, 20-7, and 20-8, for example, a gamma curve having a value of “2.3” is used. Specifically, in FIG. 6A, when the horizontal axis and the vertical axis are the x axis and the y axis, respectively, and the gradation value is, for example, 8 bits = 256 gradations, the curve 70 and the curve 71 Are both expressed by the equation y = , and the value of the gamma curve, that is, the value of γ is “2.2” and “2.3” in the curve 70 and the curve 71, respectively. In the present embodiment, the calculation unit 26a uses the gamma curve shown in the curve 71 for the source drivers 20-1, 20-2, 20-7, and 20-8, so that the light emitting diode 4 In the display areas A1, A2, A7, and A8 where adverse effects due to heat (that is, the reduction in the charging rate) are unlikely to occur, the value of the gamma curve can be set to the desired value of “2.2”.
 一方、演算部26aでは、発光ダイオード4から遠い方のソースドライバ20-3、20-4、20-5、20-6に対して、例えば“2.1”の値のガンマカーブを用いるようになっている。具体的には、図6(b)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線70及び曲線72は、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線70及び曲線72ではそれぞれ“2.2”及び“2.1”である。そして、本実施形態では、演算部26aが、ソースドライバ20-3、20-4、20-5、20-6に対して、曲線72に示したガンマカーブを用いることにより、発光ダイオード4からの熱による悪影響(つまり、上記充電率の低下)が生じ易い表示エリアA3、A4、A5、A6において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。 On the other hand, in the arithmetic unit 26a, for example, a gamma curve having a value of “2.1” is used for the source drivers 20-3, 20-4, 20-5, and 20-6 farther from the light emitting diode 4. It has become. Specifically, in FIG. 6B, when the horizontal axis and the vertical axis are the x axis and the y axis, respectively, and the gradation value is, for example, 8 bits = 256 gradations, the curve 70 and the curve 72 Are both expressed by the equation y = , and the value of the gamma curve, that is, the value of γ is “2.2” and “2.1” in the curve 70 and the curve 72, respectively. In this embodiment, the calculation unit 26a uses the gamma curve shown by the curve 72 for the source drivers 20-3, 20-4, 20-5, and 20-6, so that the light emitting diode 4 In the display areas A3, A4, A5, and A6 that are likely to be adversely affected by heat (that is, the reduction in the charging rate), the value of the gamma curve can be set to the desired value of “2.2”.
 また、本実施形態の階調電圧指示部26では、実製品を用いた検証試験またはシミュレーションを行うことにより、外部からの映像信号に含まれた複数の各画素Pに対する階調値(入力階調のデータ)に対して、当該画素Pから外部に向かって出力される出力光の輝度が所望の値となる補正後の階調値(出力階調のデータ)を予め求めておく。また、求めた入力階調のデータと出力階調のデータとの関係から、これらの入力階調のデータから出力階調のデータを算出するための演算処理に必要な数式やパラメータなどのデータを定めて、メモリ26bに予め保持する。そして、階調電圧指示部26では、演算部26aが外部からの映像信号に含まれた階調値と、メモリ26bに記憶されているデータを用いて、予め定められた階調値を演算によって求めた後、階調電圧指示部26は、演算部26aが求めた補正後の階調値を用いて、画像処理部25が生成したソースドライバ20への指示信号(階調信号)を補正して、当該ソースドライバ20に出力する。これにより、本実施形態では、上述のように、表示エリアA1~A8に応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値が決定される。 Further, the gradation voltage instruction unit 26 according to the present embodiment performs a verification test or simulation using an actual product to perform gradation values (input gradations) for a plurality of pixels P included in an external video signal. In other words, a corrected gradation value (output gradation data) is obtained in advance so that the luminance of the output light output from the pixel P toward the outside becomes a desired value. Also, based on the relationship between the obtained input gradation data and output gradation data, data such as mathematical formulas and parameters necessary for calculation processing for calculating output gradation data from these input gradation data are obtained. It is determined and stored in the memory 26b in advance. In the gradation voltage instruction unit 26, the calculation unit 26a calculates a predetermined gradation value by using the gradation value included in the video signal from the outside and the data stored in the memory 26b. After the determination, the gradation voltage instruction unit 26 corrects the instruction signal (gradation signal) to the source driver 20 generated by the image processing unit 25 using the corrected gradation value calculated by the calculation unit 26a. To the source driver 20. Thereby, in the present embodiment, as described above, the corrected gradation value is determined using predetermined different gamma curves in accordance with the display areas A1 to A8.
 尚、上記の説明以外に、例えばメモリ26bに記憶されている上記データを演算部26aが演算処理を行う際に適宜計算して求めたり、外部から動的に上記データを受け取ったりする構成でもよい。このように、構成した場合では、メモリ26bの設置を省略することできる。 In addition to the above description, for example, the data stored in the memory 26b may be appropriately calculated when the arithmetic unit 26a performs arithmetic processing, or the data may be dynamically received from the outside. . Thus, in the case of the configuration, the installation of the memory 26b can be omitted.
 以上のように構成された本実施形態の液晶表示装置1では、制御部16が入力された映像信号を用いて、液晶パネル(表示部)2及びバックライト装置(バックライト部)3の駆動制御を行う。また、制御部16には、バックライト装置3の発光ダイオード(光源)4が点灯駆動されたときの温度分布を基に、複数の表示エリアA1~A8毎に、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定して、液晶パネル2の駆動制御を行う階調電圧指示部26が設けられている。これにより、本実施形態では、上記従来例と異なり、液晶パネル2の大画面化を図ったときでも、表示品位を向上させることができる液晶表示装置(表示装置)1を構成することができる。 In the liquid crystal display device 1 of the present embodiment configured as described above, drive control of the liquid crystal panel (display unit) 2 and the backlight device (backlight unit) 3 using the video signal input by the control unit 16. I do. In addition, the control unit 16 includes each of the display areas A1 to A8 in the input video signal based on the temperature distribution when the light emitting diode (light source) 4 of the backlight device 3 is turned on. A gradation voltage instruction unit 26 that determines a correction value for the gradation value for each pixel and performs drive control of the liquid crystal panel 2 is provided. Thus, in the present embodiment, unlike the conventional example, a liquid crystal display device (display device) 1 that can improve display quality even when the screen of the liquid crystal panel 2 is enlarged can be configured.
 また、本実施形態では、階調電圧指示部26は、画素Pから外部に向かって出力される出力光の輝度が所望の値となるように、外部からの映像信号に含まれた対応する階調値を、予め定められた階調値に補正している。これにより、本実施形態では、上記出力光の輝度と階調値との特性を向上させることができ、液晶パネル2の大画面化を図ったときでも、表示品位を確実に向上させることができる。 In the present embodiment, the gradation voltage instruction unit 26 corresponds to a corresponding level included in the video signal from the outside so that the luminance of the output light output from the pixel P toward the outside has a desired value. The tone value is corrected to a predetermined tone value. Thereby, in this embodiment, the characteristic of the brightness | luminance and gradation value of the said output light can be improved, and even when the liquid crystal panel 2 enlarges a screen, display quality can be improved reliably. .
 また、本実施形態では、階調電圧指示部26には、外部からの映像信号に含まれた画素P毎の階調値を用いて、予め定められた階調値を演算によって求める演算部26aが用いられているので、演算部26aによって上記予め定められた階調値が適切に求められる。 In the present embodiment, the gradation voltage instruction unit 26 uses the gradation value for each pixel P included in the external video signal to calculate a predetermined gradation value by calculation. Is used, the above-described predetermined gradation value is appropriately obtained by the calculation unit 26a.
 また、本実施形態では、階調電圧指示部26は、複数の表示エリアA1~A8に応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定している。これにより、本実施形態では、液晶パネル2の大画面化を図ったときでも、表示エリアA1~A8に応じて、補正後の階調値を適切に決定することができ、表示品位を確実に向上させることができる。 In the present embodiment, the gradation voltage instruction unit 26 determines a corrected gradation value using predetermined different gamma curves according to the plurality of display areas A1 to A8. ing. Thereby, in this embodiment, even when the screen of the liquid crystal panel 2 is enlarged, the corrected gradation value can be appropriately determined according to the display areas A1 to A8, and the display quality is ensured. Can be improved.
 また、本実施形態では、液晶パネル(表示パネル)2の大画面化を図ったときでも、表示品位を向上させることができる階調電圧指示部26が用いられているので、表示品位に優れた液晶表示装置1を容易に構成することができる。 Further, in the present embodiment, even when the liquid crystal panel (display panel) 2 has a large screen, the gradation voltage instruction unit 26 that can improve the display quality is used, so that the display quality is excellent. The liquid crystal display device 1 can be easily configured.
 また、本実施形態では、表示パネルとして、液晶パネル2が用いられるとともに、液晶パネル2では、ゲートドライバ21と、ゲートドライバ21から互いに異なる位置に設けられた複数のソースドライバ20-1~20-8とが設けられている。また、複数のソースドライバ20-1~20-8では、複数の表示エリアA1~A8に応じて、互いに異なるガンマカーブを使用した階調電圧が、階調電圧指示部26から入力されている。これにより、本実施形態では、表示品位に優れた液晶表示装置1を容易に構成することができる。 In this embodiment, the liquid crystal panel 2 is used as the display panel. In the liquid crystal panel 2, the gate driver 21 and a plurality of source drivers 20-1 to 20- provided at different positions from the gate driver 21 are used. 8 are provided. In the plurality of source drivers 20-1 to 20-8, gradation voltages using different gamma curves are input from the gradation voltage instruction unit 26 in accordance with the plurality of display areas A1 to A8. Thereby, in this embodiment, the liquid crystal display device 1 excellent in display quality can be configured easily.
 尚、上記の説明では、階調電圧指示部26において、発光ダイオード4に近い方のソースドライバ20-1、20-2、20-7、20-8と遠い方のソースドライバ20-3、20-4、20-5、20-6に分けて、互いに異なる値のガンマカーブを用いた場合について説明したが、本実施形態はこれに限定されるものではなく、例えば8つの各ソースドライバ20-1~20-8に対して、互いに互いに異なる値のガンマカーブを用いてもよい。また、液晶表示装置1の使用状態、つまり液晶パネル2が立設されたとき(例えば、図5に示すソースドライバ20側が鉛直方向の上側に配置されたとき)、複数の各表示エリアA1~A8を、例えば上下2つの表示エリアに分けて、これら上下2つの表示エリアにおいて、発光ダイオード4からの熱の影響が異なるとして、互いに異なる値のガンマカーブを用いてもよい。 In the above description, in the gradation voltage instruction unit 26, the source drivers 20-1, 20-2, 20-7, and 20-8 closer to the light emitting diode 4 and the farther source drivers 20-3, 20-8. -4, 20-5, and 20-6 have been described using gamma curves having different values. However, the present embodiment is not limited to this, and for example, each of the eight source drivers 20- For 1 to 20-8, gamma curves having mutually different values may be used. Further, when the liquid crystal display device 1 is in use, that is, when the liquid crystal panel 2 is erected (for example, when the source driver 20 side shown in FIG. 5 is arranged on the upper side in the vertical direction), a plurality of display areas A1 to A8. Is divided into two upper and lower display areas, and in these two upper and lower display areas, gamma curves having different values may be used on the assumption that the influence of heat from the light emitting diode 4 is different.
 [第2の実施形態]
 図7は、本発明の第2の実施形態にかかる液晶表示装置を説明する図である。図8は、図7に示したバックライト装置の要部構成を説明する図である。図9は、図7に示した液晶パネルの要部構成を説明する図である。図10は、図9に示したパネル制御部の構成例を示すブロック図である。
[Second Embodiment]
FIG. 7 is a diagram for explaining a liquid crystal display device according to a second embodiment of the present invention. FIG. 8 is a diagram for explaining a main configuration of the backlight device shown in FIG. FIG. 9 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG. FIG. 10 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 9.
 図において、本実施形態と上記第1の実施形態との主な相違点は、演算部に代えて、LUT(Look Up Table)を用いるとともに、温度センサをバックライト部に設け、階調電圧指示部は、温度センサの検出結果を用いて、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定する点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。 In the figure, the main difference between the present embodiment and the first embodiment is that a LUT (Look Up Table) is used in place of the calculation unit, a temperature sensor is provided in the backlight unit, and a gradation voltage instruction is provided. The unit is to determine a correction value for the gradation value for each pixel included in the input video signal using the detection result of the temperature sensor. In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 つまり、図7に示すように、本実施形態の液晶表示装置1では、バックライト部として直下型のバックライト装置3が用いられている。このバックライト装置3は、液晶パネル2側が開口されるとともに、発光ダイオード4を収容する筐体31と、この筐体31の開口部を覆うように設けられた拡散板30を備えている。 That is, as shown in FIG. 7, in the liquid crystal display device 1 of the present embodiment, a direct type backlight device 3 is used as a backlight unit. The backlight device 3 has an opening on the liquid crystal panel 2 side, a housing 31 that houses the light emitting diode 4, and a diffusion plate 30 that is provided so as to cover the opening of the housing 31.
 また、図8に例示するように、バックライト装置3には、合計32個の発光ダイオード4が筐体31内に設置されている。また、バックライト装置3では、図8に一点鎖線にて示すように、各々4個の発光ダイオード4が上記表示エリアA1~A8に割り当てられている。さらに、バックライト装置3では、同図8に示すように、隣接する2つの表示エリアの境界部分において、合計35個の温度センサ32が設置されている。 Further, as illustrated in FIG. 8, the backlight device 3 includes a total of 32 light-emitting diodes 4 installed in the housing 31. Further, in the backlight device 3, as shown by a one-dot chain line in FIG. 8, four light emitting diodes 4 are assigned to the display areas A1 to A8. Furthermore, in the backlight device 3, as shown in FIG. 8, a total of 35 temperature sensors 32 are installed at the boundary between two adjacent display areas.
 また、図9に示すように、本実施形態では、制御部16には、温度センサ32の検出結果が入力されるようになっており、この制御部16に設けられたパネル制御部33が温度センサ32の検出結果を用いて、液晶パネル2の駆動制御を行うよう構成されている。 As shown in FIG. 9, in the present embodiment, the detection result of the temperature sensor 32 is input to the control unit 16, and the panel control unit 33 provided in the control unit 16 is operated at the temperature. Using the detection result of the sensor 32, the drive control of the liquid crystal panel 2 is performed.
 つまり、図10に示すように、本実施形態のパネル制御部33には、上記画像処理部25と、温度センサの検出結果を用いて、入力された映像信号に含まれた画素P毎の階調値に対する補正値(補正後の階調値)を決定する階調電圧指示部34が設けられている。また、この階調電圧指示部34には、LUT34aが用いられている。このLUT34aは、所定の温度単位毎に補正処理前後の階調値が互いに関連付けられて保持されている。つまり、LUT34aでは、外部からの映像信号に含まれた複数の各画素Pに対する階調値(入力階調のデータ)と、当該画素Pから外部に向かって出力される出力光の輝度が所望の値となる補正後の階調値(出力階調のデータ)とが所定の温度単位毎に互いに関連付けられている。そして、階調電圧指示部34は、外部からの映像信号に含まれた画素Pに対する入力階調のデータが入力されると、画素Pに対応する位置の温度センサ32の検出結果も用いて、LUT34aから対応する出力階調のデータを求めて、補正後の階調値とする。そして、階調電圧指示部34は、補正後の階調値を用いて、画像処理部25が生成したソースドライバ20への指示信号(階調信号)を補正して、当該ソースドライバ20に出力する。これにより、本実施形態では、表示エリアA1~A8と温度センサ32の検出結果に応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値が決定される。 That is, as shown in FIG. 10, the panel control unit 33 of the present embodiment uses the image processing unit 25 and the detection result of the temperature sensor to generate a floor for each pixel P included in the input video signal. A gradation voltage instruction unit 34 for determining a correction value (corrected gradation value) for the tone value is provided. The gradation voltage instruction unit 34 uses an LUT 34a. In this LUT 34a, gradation values before and after the correction processing are stored in association with each other for each predetermined temperature unit. That is, in the LUT 34a, the gradation value (input gradation data) for each of the plurality of pixels P included in the external video signal and the luminance of the output light output from the pixel P to the outside are desired. The corrected gradation value (output gradation data) as a value is associated with each other for each predetermined temperature unit. Then, when the input gradation data for the pixel P included in the video signal from the outside is input, the gradation voltage instruction unit 34 also uses the detection result of the temperature sensor 32 at the position corresponding to the pixel P. The corresponding output gradation data is obtained from the LUT 34a, and is used as the corrected gradation value. Then, the gradation voltage instruction unit 34 corrects the instruction signal (gradation signal) to the source driver 20 generated by the image processing unit 25 using the corrected gradation value, and outputs it to the source driver 20. To do. Thus, in the present embodiment, the corrected gradation value is determined using predetermined different gamma curves in accordance with the detection results of the display areas A1 to A8 and the temperature sensor 32.
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、階調電圧指示部34は、温度センサ32の検出結果を用いて、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定している。これにより、本実施形態では、温度センサ32によってバックライト装置(バックライト部)の発光ダイオード(光源)4が点灯駆動されたときの温度分布をより正確に把握することができ、画素P毎の階調値に対する補正値をより適切に決定することが可能となる。この結果、本実施形態では、液晶パネル(表示部)2の大画面化を図ったときでも、表示品位をより確実に向上させることができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the first embodiment. In the present embodiment, the gradation voltage instruction unit 34 uses the detection result of the temperature sensor 32 to determine a correction value for the gradation value for each pixel included in the input video signal. Thereby, in this embodiment, the temperature distribution when the light emitting diode (light source) 4 of the backlight device (backlight unit) is driven to be turned on by the temperature sensor 32 can be grasped more accurately. It becomes possible to determine a correction value for the gradation value more appropriately. As a result, in this embodiment, even when the liquid crystal panel (display unit) 2 has a large screen, the display quality can be improved more reliably.
 また、本実施形態では、階調電圧指示部34において、外部からの映像信号に含まれた画素P毎の階調値と、予め定められた階調値とを関連付けたLUT34aが用いられているので、LUT34aによって上記予め定められた階調値が適切に求められる。 In the present embodiment, the gradation voltage instruction unit 34 uses the LUT 34a in which the gradation value for each pixel P included in the external video signal is associated with a predetermined gradation value. Therefore, the predetermined gradation value is appropriately obtained by the LUT 34a.
 [第3の実施形態]
 図11は、本発明の第3の実施形態にかかる液晶表示装置を説明する図である。図12は、図11に示したバックライト装置の要部構成を説明する図である。図13は、図11に示したバックライト装置に設けられた複数の発光エリアと、これらの発光エリアから光が照射される複数の表示エリアの具体例を説明する図である。図14は、図11に示した液晶パネルの要部構成を説明する図である。図15は、図13に示したパネル制御部の構成例を示すブロック図である。図16は、図13に示したバックライト制御部の構成例を示すブロック図である。
[Third Embodiment]
FIG. 11 is a diagram illustrating a liquid crystal display device according to the third embodiment of the present invention. FIG. 12 is a diagram for explaining a main configuration of the backlight device shown in FIG. FIG. 13 is a diagram illustrating a specific example of a plurality of light emitting areas provided in the backlight device illustrated in FIG. 11 and a plurality of display areas irradiated with light from these light emitting areas. FIG. 14 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG. FIG. 15 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 13. FIG. 16 is a block diagram illustrating a configuration example of the backlight control unit illustrated in FIG. 13.
 図において、本実施形態と上記第2の実施形態との主な相違点は、複数の表示エリアに対し、光源の光をそれぞれ入射させる複数の発光エリアをバックライト部に設け、制御部は、入力された映像信号を用いて、表示部及びバックライト部の駆動制御を行うよう構成され、階調電圧指示部は、複数の発光エリアに対応する光源の点灯状態を用いて、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定する点である。なお、上記第2の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。 In the figure, the main difference between the present embodiment and the second embodiment is that the backlight unit is provided with a plurality of light emitting areas that allow the light of the light source to enter the plurality of display areas. The input video signal is used to control the driving of the display unit and the backlight unit, and the gradation voltage instruction unit uses the lighting state of the light source corresponding to the plurality of light emitting areas to input the video. This is a point for determining a correction value for the gradation value for each pixel included in the signal. In addition, about the element which is common in the said 2nd Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 つまり、図11に示すように、本実施形態の液晶表示装置1では、第2の実施形態のものと同様に、バックライト部として直下型のバックライト装置3が用いられている。このバックライト装置3は、液晶パネル2側が開口されるとともに、発光ダイオード4を収容する筐体31と、この筐体31の開口部を覆うように設けられた拡散板30を備えている。 That is, as shown in FIG. 11, in the liquid crystal display device 1 of the present embodiment, a direct type backlight device 3 is used as a backlight unit, as in the second embodiment. The backlight device 3 has an opening on the liquid crystal panel 2 side, a housing 31 that houses the light emitting diode 4, and a diffusion plate 30 that is provided so as to cover the opening of the housing 31.
 また、図12に例示するように、バックライト装置3には、合計32個の発光ダイオード4が筐体31内に設置されている。 Further, as illustrated in FIG. 12, the backlight device 3 includes a total of 32 light-emitting diodes 4 installed in the housing 31.
 また、本実施形態のバックライト装置3には、図13に示すように、液晶パネル(表示部)2に設定された複数の表示エリアA-1~A-32に対し、発光ダイオード(光源)4の光をそれぞれ入射させる複数の発光エリア(1)~(32)が設けられている。つまり、各発光エリア(1)~(32)には、1個の発光ダイオード4が割り当てられており、対応する表示エリアA-1~A-32に対し、照明光を照射するようになっている。また、複数の表示エリアA-1~A-32では、図13の縦方向に並べられた各々4つの表示エリアが1つのソースドライバ20に接続されたソース配線Sを含んでいる。 Further, as shown in FIG. 13, the backlight device 3 of the present embodiment has a light emitting diode (light source) for a plurality of display areas A-1 to A-32 set in the liquid crystal panel (display unit) 2. A plurality of light emitting areas (1) to (32) through which the four lights are respectively incident are provided. That is, one light emitting diode 4 is assigned to each light emitting area (1) to (32), and illumination light is irradiated to the corresponding display areas A-1 to A-32. Yes. Further, in the plurality of display areas A-1 to A-32, each of the four display areas arranged in the vertical direction in FIG. 13 includes the source line S connected to one source driver 20.
 すなわち、表示エリアA-1、A-9、A-17、A-25に対しては、ソースドライバ20-1が割り当てられ、表示エリアA-2、A-10、A-18、A-26に対しては、ソースドライバ20-2が割り当てられている。また、表示エリアA-3、A-11、A-19、A-27に対しては、ソースドライバ20-3が割り当てられ、表示エリアA-4、A-12、A-20、A-28に対しては、ソースドライバ20-4が割り当てられている。また、表示エリアA-5、A-13、A-21、A-29に対しては、ソースドライバ20-5が割り当てられ、表示エリアA-6、A-14、A-22、A-30に対しては、ソースドライバ20-6が割り当てられている。また、表示エリアA-7、A-15、A-23、A-31に対しては、ソースドライバ20-7が割り当てられ、表示エリアA-8、A-16、A-24、A-32に対しては、ソースドライバ20-8が割り当てられている。 That is, the source driver 20-1 is assigned to the display areas A-1, A-9, A-17, and A-25, and the display areas A-2, A-10, A-18, and A-26 are assigned. Is assigned a source driver 20-2. Further, the source driver 20-3 is assigned to the display areas A-3, A-11, A-19, and A-27, and the display areas A-4, A-12, A-20, and A-28 are allocated. Is assigned the source driver 20-4. The source driver 20-5 is assigned to the display areas A-5, A-13, A-21, and A-29, and the display areas A-6, A-14, A-22, and A-30 are assigned. Is assigned the source driver 20-6. The source driver 20-7 is assigned to the display areas A-7, A-15, A-23, and A-31, and the display areas A-8, A-16, A-24, and A-32 are assigned. Is assigned a source driver 20-8.
 また、本実施形態の液晶表示装置1では、マトリクス状の発光エリア(1)~(32)とマトリクス状の表示エリアA-1~A-32とが1対1の関係で設定されており、1つの表示エリアに対し、1つの発光エリアからの照明光が表示すべき情報に応じて適宜照射されるエリアアクティブ(ローカルディミング)バックライトが構成されている。 Further, in the liquid crystal display device 1 of the present embodiment, the matrix light emitting areas (1) to (32) and the matrix display areas A-1 to A-32 are set in a one-to-one relationship. For one display area, an area active (local dimming) backlight that is appropriately irradiated according to information to be displayed by illumination light from one light emitting area is configured.
 具体的にいえば、図14に示すように、本実施形態の制御部16には、パネル制御部35と、バックライト制御部36が設けられている。これらのパネル制御部35及びバックライト制御部36は、制御部16に入力された映像信号を用いて、それぞれ液晶パネル(表示部)2及びバックライト装置(バックライト部)3の駆動制御を行うよう構成されている。 Specifically, as shown in FIG. 14, the control unit 16 of the present embodiment is provided with a panel control unit 35 and a backlight control unit 36. The panel control unit 35 and the backlight control unit 36 perform drive control of the liquid crystal panel (display unit) 2 and the backlight device (backlight unit) 3 using the video signal input to the control unit 16, respectively. It is configured as follows.
 また、図15に示すように、本実施形態のパネル制御部35には、上記画像処理部25と、複数の発光エリア(1)~(32)に対応する発光ダイオード(光源)4の点灯状態を用いて、入力された映像信号に含まれた画素P毎の階調値に対する補正値を決定する階調電圧指示部37が設けられている。 As shown in FIG. 15, the panel control unit 35 of the present embodiment includes the image processing unit 25 and the lighting state of the light emitting diodes (light sources) 4 corresponding to the plurality of light emitting areas (1) to (32). Is used to determine a correction value for the gradation value for each pixel P included in the input video signal.
 さらに、パネル制御部35では、バックライト制御部36に設けられた後述の領域輝度演算部から上記各発光エリアの輝度値が通知されるようになっており、ソースドライバ20への指示信号は通知された各発光エリアの輝度値を反映した信号に補正された後、パネル制御部35からソースドライバ20に出力されるようになっている(詳細は後述。)。 Further, in the panel control unit 35, the luminance value of each light emitting area is notified from an area luminance calculation unit described later provided in the backlight control unit 36, and an instruction signal to the source driver 20 is notified. After being corrected to a signal reflecting the luminance value of each light emitting area, the signal is output from the panel control unit 35 to the source driver 20 (details will be described later).
 また、上記階調電圧指示部37には、LUT37aが用いられている。また、この階調電圧指示部37には、上記領域輝度演算部から各発光エリアの輝度値が入力される。これらの各発光エリアの輝度値は、周囲の発光エリアの輝度値を用いて補正された後の輝度値であり、周囲の発光エリアからの光のクロストークの影響が考慮された値である。 The gradation voltage instruction unit 37 uses an LUT 37a. The gradation voltage instruction unit 37 receives the luminance value of each light emitting area from the area luminance calculation unit. The luminance value of each light emitting area is a luminance value after being corrected using the luminance value of the surrounding light emitting area, and is a value that takes into account the influence of light crosstalk from the surrounding light emitting area.
 上記LUT37aは、発光エリアの輝度値毎に補正処理前後の階調値が互いに関連付けられて保持されている。つまり、LUT37aでは、外部からの映像信号に含まれた複数の各画素Pに対する階調値(入力階調のデータ)と、当該画素Pから外部に向かって出力される出力光の輝度が所望の値となる補正後の階調値(出力階調のデータ)とが発光エリアの輝度値毎に互いに関連付けられている。そして、階調電圧指示部37は、外部からの映像信号に含まれた画素Pに対する入力階調のデータが入力されると、画素Pに対応する位置の発光エリアの輝度値も用いて、LUT37aから対応する出力階調のデータを求めて、補正後の階調値とする。そして、階調電圧指示部37は、補正後の階調値を用いて、画像処理部25が生成したソースドライバ20への指示信号(階調信号)を補正して、当該ソースドライバ20に出力する。これにより、本実施形態では、表示エリアA-1~A-32と発光エリア(1)~(32)に対応する発光ダイオード4の点灯状態に応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値が決定される。 The LUT 37a holds the gradation values before and after the correction processing in association with each other for each luminance value of the light emitting area. In other words, in the LUT 37a, the gradation value (input gradation data) for each of the plurality of pixels P included in the external video signal and the luminance of the output light output from the pixel P to the outside are desired. The corrected gradation value (output gradation data) as a value is associated with each other for each luminance value of the light emitting area. Then, when input gradation data for the pixel P included in the video signal from the outside is input, the gradation voltage instruction unit 37 also uses the luminance value of the light emitting area at the position corresponding to the pixel P to use the LUT 37a. The corresponding output gradation data is obtained from the above and used as the corrected gradation value. Then, the gradation voltage instruction unit 37 corrects the instruction signal (gradation signal) to the source driver 20 generated by the image processing unit 25 using the corrected gradation value, and outputs it to the source driver 20. To do. Thereby, in the present embodiment, predetermined different gamma curves different from each other in accordance with the lighting states of the light emitting diodes 4 corresponding to the display areas A-1 to A-32 and the light emitting areas (1) to (32). Is used to determine the corrected gradation value.
 また、図16に示すように、バックライト制御部36には、領域輝度演算部38と、LED駆動制御部39とが設けられている。領域輝度演算部38は、上記発光エリア毎に、対応する表示エリアに含まれた画素Pの輝度情報を、入力された映像信号から取得する。また、領域輝度演算部38は、取得した画素Pの輝度情報を用いて、各発光エリアでの赤色、緑色、及び青色の各色の輝度値を演算して求める輝度演算処理を行うようになっている(詳細は後述)。 In addition, as shown in FIG. 16, the backlight control unit 36 is provided with a region luminance calculation unit 38 and an LED drive control unit 39. The area luminance calculation unit 38 acquires the luminance information of the pixels P included in the corresponding display area from the input video signal for each light emitting area. In addition, the area luminance calculation unit 38 performs luminance calculation processing that is obtained by calculating the luminance values of red, green, and blue colors in each light emitting area using the acquired luminance information of the pixel P. (Details will be described later).
 さらに、領域輝度演算部38は、輝度演算処理を行うことによって求めた各色の輝度値に対して、後述の領域クロストーク補正処理を施すことにより、周囲の発光エリアからの光のクロストークの影響を考慮した、補正後の各色の輝度値を求めるようになっている。そして、領域輝度演算部38は、求めた各発光エリアの補正後の各色の輝度値を階調電圧指示部37及びLED駆動制御部39に出力するようになっている。 Further, the area luminance calculation unit 38 performs an area crosstalk correction process described later on the luminance value of each color obtained by performing the luminance calculation process, thereby affecting the influence of crosstalk of light from the surrounding light emitting areas. Thus, the corrected luminance value of each color is obtained. Then, the area luminance calculation unit 38 outputs the calculated luminance value of each color after correction of each light emitting area to the gradation voltage instruction unit 37 and the LED drive control unit 39.
 ここで、領域輝度演算部38での輝度演算処理及び領域クロストーク補正処理について説明する。尚、以下の説明では、9個の発光エリア(1)、(2)、(3)、(9)、(10)、(11)、(17)、(18)、(19)のうち、その中心部に位置する発光エリア(10)の輝度値を求める場合を例示して、説明する。 Here, the luminance calculation processing and the region crosstalk correction processing in the region luminance calculation unit 38 will be described. In the following description, among the nine light emitting areas (1), (2), (3), (9), (10), (11), (17), (18), (19), A case where the luminance value of the light emitting area (10) located at the center is obtained will be described as an example.
 領域輝度演算部38では、上記発光エリア(1)、(2)、(3)、(9)、(10)、(11)、(17)、(18)、(19)にそれぞれ対応した9個の表示エリアA-1、A-2、A-3、A-9、A-10、A-11、A-17、A-18、A-19の映像信号に関して、輝度演算処理を各々行うことにより、対応する発光エリア(1)、(2)、(3)、(9)、(10)、(11)、(17)、(18)、(19)での赤色、青色、及び緑色の各色の輝度値が求められる。 In the area luminance calculation unit 38, 9 corresponding to the light emitting areas (1), (2), (3), (9), (10), (11), (17), (18), and (19), respectively. Luminance calculation processing is performed on the video signals in the display areas A-1, A-2, A-3, A-9, A-10, A-11, A-17, A-18, and A-19, respectively. Accordingly, red, blue, and green in the corresponding light emitting areas (1), (2), (3), (9), (10), (11), (17), (18), and (19) The luminance value of each color is obtained.
 具体的には、領域輝度演算部38は、フレームメモリ19から表示エリアA-1に含まれた複数の画素P(例えば、640×360個の画素P)の輝度情報を取得する。そして、領域輝度演算部38は、取得した輝度情報に対して輝度演算処理を行うことにより、赤色、青色、及び緑色の色毎に、例えば最大輝度値のデータが抽出されて、表示エリアA-1に対応した発光エリア(1)での各色の輝度値とされる。つまり、領域輝度演算部38が、輝度演算処理を実行することにより、表示エリアA-1に含まれた複数の画素Pにおいて、最も高い輝度で、赤色に表示すべき画素Pの輝度値が発光エリア(1)での赤色の輝度値として選定される。 Specifically, the area luminance calculation unit 38 acquires luminance information of a plurality of pixels P (for example, 640 × 360 pixels P) included in the display area A-1 from the frame memory 19. Then, the area luminance calculation unit 38 performs luminance calculation processing on the acquired luminance information, thereby extracting, for example, data of the maximum luminance value for each color of red, blue, and green, and displaying the display area A−. The luminance value of each color in the light emitting area (1) corresponding to 1. That is, when the area luminance calculation unit 38 executes the luminance calculation process, the luminance value of the pixel P to be displayed in red at the highest luminance among the plurality of pixels P included in the display area A-1 is emitted. It is selected as the red luminance value in area (1).
 また、この輝度演算処理では、ノイズ除去を行うためのフィルタリング処理が実施されており、ノイズの悪影響を確実に排除できるようになっている。つまり、領域輝度演算部38では、ノイズの混入により、周りの画素Pに比べて異常に輝度値の高い画素Pがある場合などにおいて、その輝度値が最大輝度値として抽出されるのを防止できるように構成されている。 Also, in this luminance calculation process, a filtering process for removing noise is performed, so that adverse effects of noise can be surely eliminated. In other words, the area luminance calculation unit 38 can prevent the luminance value from being extracted as the maximum luminance value when there is a pixel P having an abnormally high luminance value compared to the surrounding pixels P due to noise mixing. It is configured as follows.
 同様に、表示エリアA-1に含まれた複数の画素Pにおいて、最も高い輝度で、緑色に表示すべき画素Pの輝度値が発光エリア(1)での緑色の輝度値として選定される。同様に、表示エリアA-1に含まれた複数の画素Pにおいて、最も高い輝度で、青色に表示すべき画素Pの輝度値が発光エリア(1)での青色の輝度値として選定される。そして、領域輝度演算部38は、選定した赤色、青色、及び緑色の各色の輝度値を発光エリア(1)の輝度値として定める。 Similarly, in a plurality of pixels P included in the display area A-1, the luminance value of the pixel P to be displayed in green with the highest luminance is selected as the green luminance value in the light emitting area (1). Similarly, in the plurality of pixels P included in the display area A-1, the luminance value of the pixel P to be displayed in blue with the highest luminance is selected as the blue luminance value in the light emitting area (1). Then, the area luminance calculation unit 38 determines the luminance values of the selected red, blue, and green colors as the luminance values of the light emitting area (1).
 また、領域輝度演算部38は、同様に、発光エリア(2)、(3)、(9)、(10)、(11)、(17)、(18)、(19)での赤色、青色、及び緑色の各色の輝度値を求める。そして、領域輝度演算部38では、発光エリア(10)の輝度値について、赤色、青色、及び緑色の色毎に、その周囲の発光エリア(1)、(2)、(3)、(9)、(11)、(17)、(18)、(19)の輝度値を用いた領域クロストーク補正処理が行われる。 Similarly, the area luminance calculation unit 38 is configured to display red and blue in the light emitting areas (2), (3), (9), (10), (11), (17), (18), and (19). The luminance value of each color of green and green is obtained. Then, in the area luminance calculation unit 38, the luminance values of the light emitting area (10), for each of red, blue, and green colors, the surrounding light emitting areas (1), (2), (3), (9) , (11), (17), (18), and (19) region crosstalk correction processing using the luminance values is performed.
 この領域クロストーク補正処理では、領域輝度演算部38が、図示を省略したメモリ内に格納された補正係数を用いて、求めた輝度値を補正することにより、赤色、青色、及び緑色の色毎に、各発光エリアの補正後の輝度値を算出するようになっている。 In this area crosstalk correction process, the area luminance calculation unit 38 corrects the obtained luminance value by using a correction coefficient stored in a memory (not shown), thereby red, blue, and green colors. In addition, the luminance value after correction of each light emitting area is calculated.
 つまり、例えば発光エリア(10)では、その周囲の発光エリア(1)、(2)、(3)、(9)、(11)、(17)、(18)、(19)からの光によって、赤色、青色、及び緑色の色毎に、各色光の輝度が上昇する。そこで、実製品を用いた試験またはシミュレーションの結果などを行うことにより、赤色、青色、及び緑色の各色での輝度上昇分を相殺するような補正係数を予め求めて、上記メモリに保持させる。そして、領域輝度演算部38は、輝度演算処理で求めた発光エリア(10)の各色の輝度値と、メモリに保持されている補正係数とを用いることにより、発光エリア(10)の各色の補正後の輝度値が算出される。そして、領域輝度演算部38は、求めた各発光エリアの補正後の各色の輝度値を階調電圧指示部37及びLED駆動制御部39に出力する。 That is, for example, in the light emitting area (10), by the light from the surrounding light emitting areas (1), (2), (3), (9), (11), (17), (18), (19) For each of red, blue, and green colors, the brightness of each color light increases. Therefore, by performing a test or simulation result using an actual product, a correction coefficient that cancels out the luminance increase in each of the red, blue, and green colors is obtained in advance and stored in the memory. Then, the area luminance calculation unit 38 corrects each color of the light emitting area (10) by using the luminance value of each color of the light emitting area (10) obtained by the luminance calculation processing and the correction coefficient held in the memory. Later luminance values are calculated. Then, the area luminance calculation unit 38 outputs the calculated luminance value of each color after correction of each light emitting area to the gradation voltage instruction unit 37 and the LED drive control unit 39.
 また、上述の補正係数は、実製品を用いた試験またはシミュレーションの結果などから定められているので、液晶パネル2の内部構造や、拡散板や光学シートの有無などによる輝度変化を考慮したものであり、液晶表示装置1でのクロストークの影響をより確実に排除して、表示品位の向上をより容易に行えるようになっている。 Further, since the above-described correction coefficient is determined based on the result of a test or simulation using an actual product, the change in luminance due to the internal structure of the liquid crystal panel 2 and the presence / absence of a diffusion plate or an optical sheet is taken into consideration. In addition, the influence of crosstalk in the liquid crystal display device 1 can be more reliably eliminated, and the display quality can be improved more easily.
 図16に戻って、LED駆動制御部39は、光源を点灯駆動する駆動制御部を構成しており、領域輝度演算部38からの複数の各発光エリアの補正後の輝度値に基づき、対応する発光ダイオード4の点灯期間を決定するとともに、決定した点灯期間に応じて、当該発光ダイオード4をPWM調光にて点灯駆動するようになっている。つまり、LED駆動制御部39では、領域輝度演算部38にて定められた輝度値に応じて、PWM調光でのオン/オフデューティが決定され、その決定されたオン/オフデューティを指示する信号が指示信号として、図示を省略した点灯駆動回路に出力される。そして、点灯駆動回路は、指示信号に基づき、各発光ダイオード4に電力供給を行うことにより、これらの各発光ダイオード4を点灯駆動する。 Returning to FIG. 16, the LED drive control unit 39 constitutes a drive control unit that drives and turns on the light source, and responds based on the corrected luminance values of the plurality of light emitting areas from the region luminance calculation unit 38. The lighting period of the light emitting diode 4 is determined, and the light emitting diode 4 is driven to be lit by PWM dimming according to the determined lighting period. That is, the LED drive control unit 39 determines the on / off duty in the PWM dimming according to the luminance value determined by the region luminance calculation unit 38, and a signal that indicates the determined on / off duty. Is output to the lighting drive circuit (not shown) as an instruction signal. Then, the lighting drive circuit supplies the power to each light emitting diode 4 based on the instruction signal, thereby driving each of the light emitting diodes 4 to light.
 一方、階調電圧指示部37では、領域輝度演算部38から各発光エリア(1)~(32)での赤色、緑色、及び青色の各色の輝度値が伝えられると、階調電圧指示部37は、これらの輝度値を用いて、LUT37aから補正後の階調値を取得する。そして、この取得した補正後の階調値を用いて、階調電圧指示部37は、画像処理部25から入力されたソースドライバ20への指示信号を補正して、新たな指示信号としてソースドライバ20に出力する。 On the other hand, when the luminance value of each color of red, green, and blue in each light emitting area (1) to (32) is transmitted from the area luminance calculation unit 38 to the gradation voltage instruction unit 37, the gradation voltage instruction unit 37. Acquires the corrected gradation value from the LUT 37a using these luminance values. Then, using the acquired corrected gradation value, the gradation voltage instruction unit 37 corrects the instruction signal to the source driver 20 input from the image processing unit 25, and the source driver as a new instruction signal. 20 is output.
 以下、上記のように構成された本実施形態の液晶表示装置1の動作について説明する。尚、以下の説明では、図17も参照して、本実施形態の階調電圧指示部37の動作について主に説明する。 Hereinafter, the operation of the liquid crystal display device 1 of the present embodiment configured as described above will be described. In the following description, the operation of the gradation voltage instruction unit 37 of this embodiment will be mainly described with reference to FIG.
 図17(a)及び図17(b)は、異なる表示エリアに対して図14に示した階調電圧指示部にて決定される補正値の具体例をそれぞれ説明するグラフである。 FIGS. 17A and 17B are graphs for explaining specific examples of correction values determined by the gradation voltage instruction unit shown in FIG. 14 for different display areas.
 本実施形態の階調電圧指示部37は、複数の表示エリアA-1~A-32毎に、対応する発光エリア(1)~(32)の輝度値(つまり、その発光エリアでの発光ダイオード4の点灯状態)を用いて、LUT37aから補正後の階調値を求める。 The gradation voltage instruction unit 37 according to the present embodiment has a luminance value (that is, a light emitting diode in the light emitting area) of the corresponding light emitting areas (1) to (32) for each of the plurality of display areas A-1 to A-32. 4), the corrected gradation value is obtained from the LUT 37a.
 詳細にいえば、液晶パネル2において、そのガンマカーブの値が、所望の値として、例えば“2.2”の値に設定されている場合、階調電圧指示部37では、発光エリアの輝度値が所定値以上の場合(つまり、その発光エリアでの発光ダイオード4が所定の明るさ以上で点灯動作されている場合)、その発光エリアに対応するソースドライバに対して、例えば“2.3”の値のガンマカーブを用いるようになっている。具体的には、図17(a)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線80及び曲線81は、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線80及び曲線81ではそれぞれ“2.2”及び“2.3”である。そして、本実施形態では、階調電圧指示部37が、所定の明るさ以上で点灯動作されている発光エリアに応じた表示エリアに割り当てられたソースドライバ20に対して、曲線81に示したガンマカーブを用いることにより、発光ダイオード4からの熱による悪影響(つまり、上記充電率の低下)が生じ難い当該表示エリアにおいて、ガンマカーブの値を上記“2.2”の所望の値とすることができる。 Specifically, in the liquid crystal panel 2, when the value of the gamma curve is set as a desired value, for example, a value of “2.2”, the gradation voltage instruction unit 37 determines the luminance value of the light emitting area. Is equal to or greater than a predetermined value (that is, when the light-emitting diode 4 in the light emitting area is turned on with a predetermined brightness or higher), for example, “2.3” for the source driver corresponding to the light emitting area. The gamma curve of the value of is used. Specifically, in FIG. 17A, when the horizontal axis and the vertical axis are the x axis and the y axis, respectively, and the gradation value is, for example, 8 bits = 256 gradations, the curve 80 and the curve 81 Are both expressed by the equation y = , and the value of the gamma curve, that is, the value of γ is “2.2” and “2.3” in the curve 80 and the curve 81, respectively. In the present embodiment, the gradation voltage instruction unit 37 applies the gamma indicated by the curve 81 to the source driver 20 assigned to the display area corresponding to the light emitting area that is turned on at a predetermined brightness or higher. By using the curve, the value of the gamma curve can be set to the desired value of “2.2” in the display area where the adverse effect due to heat from the light emitting diode 4 (that is, the reduction in the charging rate) is unlikely to occur. it can.
 一方、階調電圧指示部37では、発光エリアの輝度値が所定値未満の場合(つまり、その発光エリアでの発光ダイオード4が所定の明るさ未満で点灯動作されている場合(消灯されている場合も含む。))、その発光エリアに対応するソースドライバに対して、例えば“2.1”の値のガンマカーブを用いるようになっている。具体的には、図17(b)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線80及び曲線82は、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線80及び曲線82ではそれぞれ“2.2”及び“2.1”である。そして、本実施形態では、階調電圧指示部37が、所定の明るさ未満で点灯動作されている発光エリアに応じた表示エリアに割り当てられたソースドライバ20に対して、曲線82に示したガンマカーブを用いることにより、発光ダイオード4からの熱による悪影響(つまり、上記充電率の低下)が生じ易い表示エリアA3、A4、A5、A6において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。 On the other hand, in the gradation voltage instruction unit 37, when the luminance value of the light emitting area is less than the predetermined value (that is, when the light emitting diode 4 in the light emitting area is turned on with less than the predetermined brightness (turned off). In this case, for example, a gamma curve having a value of “2.1” is used for the source driver corresponding to the light emitting area. Specifically, in FIG. 17B, when the horizontal axis and the vertical axis are the x axis and the y axis, respectively, and the gradation value is, for example, 8 bits = 256 gradations, the curves 80 and 82 are obtained. Are both expressed by the equation y = , and the value of the gamma curve, that is, the value of γ is “2.2” and “2.1” in the curve 80 and the curve 82, respectively. In the present embodiment, the gradation voltage instruction unit 37 applies the gamma indicated by the curve 82 to the source driver 20 assigned to the display area corresponding to the light emitting area that is turned on with less than a predetermined brightness. By using the curve, in the display areas A3, A4, A5, and A6 where the adverse effect due to the heat from the light emitting diode 4 (that is, the reduction in the charging rate) is likely to occur, the value of the gamma curve is set to “2.2” Value.
 以上の構成により、本実施形態では、上記第2の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、バックライト装置(バックライト部)3には、複数の表示エリアA-1~A-32に対し、発光ダイオード(光源)4の光をそれぞれ入射させる複数の発光エリア(1)~(32)が設けられている。また、制御部16は、入力された映像信号を用いて、液晶パネル(表示部)2及びバックライト装置3の駆動制御を行うよう構成されている。また、階調電圧指示部37は、複数の発光エリア(1)~(32)に対応する発光ダイオード4の点灯状態を用いて、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定している。これにより、本実施形態では、複数の各発光エリア(1)~(32)での発光ダイオード4の点灯状態、つまり対応する発光エリア(1)~(32)での温度状態を判別しつつ、画素P毎の階調値に対する補正値をより適切に決定することができる。この結果、本実施形態では、液晶パネル2の大画面化を図ったときでも、表示品位をより確実に向上させることができる。 With the above configuration, the present embodiment can achieve the same operations and effects as those of the second embodiment. Further, in the present embodiment, the backlight device (backlight unit) 3 has a plurality of light emitting areas (light emitting diodes (light sources) 4) respectively incident on the plurality of display areas A-1 to A-32. 1) to (32) are provided. The control unit 16 is configured to perform drive control of the liquid crystal panel (display unit) 2 and the backlight device 3 using the input video signal. Further, the gradation voltage instruction unit 37 uses the lighting states of the light emitting diodes 4 corresponding to the plurality of light emitting areas (1) to (32) to perform the gradation value for each pixel included in the input video signal. The correction value is determined. Thereby, in this embodiment, while determining the lighting state of the light emitting diode 4 in each of the plurality of light emitting areas (1) to (32), that is, the temperature state in the corresponding light emitting areas (1) to (32), The correction value for the gradation value for each pixel P can be determined more appropriately. As a result, in the present embodiment, even when the liquid crystal panel 2 is enlarged, the display quality can be improved more reliably.
 尚、上記の実施形態はすべて例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更も本発明の技術的範囲に含まれる。 It should be noted that all of the above embodiments are illustrative and not restrictive. The technical scope of the present invention is defined by the claims, and all modifications within the scope equivalent to the configurations described therein are also included in the technical scope of the present invention.
 例えば、上記の説明では、本発明を透過型の液晶表示装置に適用した場合について説明したが、本発明の表示装置はこれに限定されるものではなく、半透過型の液晶表示装置、あるいは液晶パネルをライトバルブに用いた投写型表示装置などの各種表示装置に適用することができる。 For example, in the above description, the case where the present invention is applied to a transmissive liquid crystal display device has been described. However, the display device of the present invention is not limited to this, and a transflective liquid crystal display device or a liquid crystal display device is not limited thereto. The present invention can be applied to various display devices such as a projection display device using a panel as a light valve.
 また、上記の説明では、光源として発光ダイオードを用いた場合について説明したが、本発明の光源はこれに限定されるものではなく、例えば冷陰極蛍光管や熱陰極蛍光管などの放電管を用いることもできる。 In the above description, the light emitting diode is used as the light source. However, the light source of the present invention is not limited to this, and a discharge tube such as a cold cathode fluorescent tube or a hot cathode fluorescent tube is used. You can also.
 また、上記の説明以外に、階調電圧指示部が、バックライト部の光源が点灯駆動されたときの温度分布を基に、複数の表示エリアにおいて、赤色(R)、緑色(G)、及び青色(B)の画素毎に、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定して、表示部の駆動制御を行ってもよい。 In addition to the above description, the gradation voltage instruction unit is configured to display red (R), green (G), and green in a plurality of display areas based on the temperature distribution when the light source of the backlight unit is driven to turn on. For each blue (B) pixel, a correction value for the gradation value for each pixel included in the input video signal may be determined to control the display unit.
 また、上記の説明以外に、ノーマリホワイトモードの液晶パネルに対して、本発明の階調電圧指示部を適用してもよい。 In addition to the above description, the gradation voltage instruction unit of the present invention may be applied to a normally white mode liquid crystal panel.
 また、上記の説明では、階調電圧指示部が、複数の表示エリアに応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定する場合について説明したが、本発明の階調電圧指示部は、バックライト部の光源が点灯駆動されたときの温度分布を基に、複数の表示エリア毎に、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定して、表示部の駆動制御を行うものであればよく、所定のガンマカーブを使用しないものでもよい。 In the above description, the case where the gradation voltage instruction unit determines a corrected gradation value using predetermined different gamma curves according to a plurality of display areas has been described. However, the gradation voltage instruction unit according to the present invention is configured such that, based on the temperature distribution when the light source of the backlight unit is turned on, the level of each pixel included in the input video signal is displayed for each of the plurality of display areas. Any method may be used as long as a correction value for the tone value is determined and drive control of the display unit is performed, and a predetermined gamma curve may not be used.
 但し、上記の各実施形態のように、所定のガンマカーブを用いる場合の方が、表示部の大画面化を図ったときでも、表示エリアに応じて、補正後の階調値を適切に決定することができ、表示品位を確実に向上させることができる点で好ましい。 However, as in the above embodiments, when the predetermined gamma curve is used, the corrected gradation value is appropriately determined according to the display area even when the screen of the display unit is enlarged. This is preferable in that the display quality can be improved with certainty.
 また、上記の説明以外に、上記第1~第3の各実施形態を適宜組み合わせたものでよい。 Besides the above description, the first to third embodiments may be appropriately combined.
 本発明は、表示部の大画面化を図ったときでも、表示品位を向上させることができる表示装置に対して有用である。 The present invention is useful for a display device that can improve display quality even when the screen of the display unit is enlarged.
 1 液晶表示装置
 2 液晶パネル(表示部)
 3 バックライト装置(バックライト部)
 4 発光ダイオード(光源)
 16 制御部
 20、20-1~20-8 ソースドライバ
 21 ゲートドライバ
 26、34、37 階調電圧指示部
 26a 演算部
 34a、37a LUT
 32 温度センサ
 A1~A8、A1~A32 表示エリア
 (1)~(32)発光エリア
1 Liquid crystal display device 2 Liquid crystal panel (display unit)
3 Backlight device (backlight part)
4 Light emitting diode (light source)
16 Control unit 20, 20-1 to 20-8 Source driver 21 Gate driver 26, 34, 37 Gradation voltage instruction unit 26a Arithmetic unit 34a, 37a LUT
32 Temperature sensors A1 to A8, A1 to A32 Display area (1) to (32) Light emission area

Claims (8)

  1. 光源を有するバックライト部と、複数の画素を備えるとともに、前記バックライト部からの照明光を用いて、情報を表示する表示部とを具備した表示装置であって、
     入力された映像信号を用いて、少なくとも前記表示部の駆動制御を行う制御部を備え、
     前記表示部には、複数の表示エリアが設けられ、
     前記制御部には、前記バックライト部の前記光源が点灯駆動されたときの温度分布を基に、前記複数の表示エリア毎に、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定して、前記表示部の駆動制御を行う階調電圧指示部が設けられている、
     ことを特徴とする表示装置。
    A display device including a backlight unit having a light source and a display unit that includes a plurality of pixels and displays information using illumination light from the backlight unit,
    A control unit that performs drive control of at least the display unit using the input video signal,
    The display unit is provided with a plurality of display areas,
    Based on the temperature distribution when the light source of the backlight unit is driven to turn on, the control unit applies a gradation value for each pixel included in the input video signal for each of the plurality of display areas. A gradation voltage instruction unit that determines a correction value and performs drive control of the display unit is provided.
    A display device characterized by that.
  2. 前記階調電圧指示部は、前記画素から外部に向かって出力される出力光の輝度が所望の値となるように、外部からの映像信号に含まれた対応する階調値を、予め定められた階調値に補正する請求項1に記載の表示装置。 The gradation voltage instruction unit determines a corresponding gradation value included in an external video signal so that the luminance of output light output from the pixel toward the outside becomes a desired value. The display device according to claim 1, wherein the display device corrects the gradation value.
  3. 前記階調電圧指示部には、外部からの映像信号に含まれた画素毎の階調値を用いて、予め定められた階調値を演算によって求める演算部が用いられている請求項1または2に記載の表示装置。 The calculation unit for calculating a predetermined gradation value by using the gradation value for each pixel included in the video signal from the outside is used for the gradation voltage instruction unit. 2. The display device according to 2.
  4. 前記階調電圧指示部には、外部からの映像信号に含まれた画素毎の階調値と、予め定められた階調値とを関連付けたルックアップテーブルが用いられている請求項1または2に記載の表示装置。 The lookup table that associates a gradation value for each pixel included in an external video signal with a predetermined gradation value is used for the gradation voltage instruction unit. The display device described in 1.
  5. 前記階調電圧指示部は、前記複数の表示エリアに応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定する請求項1~4のいずれか1項に記載の表示装置。 The gradation voltage instruction unit determines a corrected gradation value using predetermined gamma curves that are different from each other in advance according to the plurality of display areas. The display device according to item.
  6. 前記バックライト部には、温度センサが設けられ、
     前記階調電圧指示部は、前記温度センサの検出結果を用いて、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定する請求項1~5のいずれか1項に記載の表示装置。
    The backlight unit is provided with a temperature sensor,
    6. The gradation voltage instructing unit according to claim 1, wherein the gradation voltage instruction unit determines a correction value for a gradation value for each pixel included in the input video signal using a detection result of the temperature sensor. The display device described.
  7. 前記バックライト部には、前記複数の表示エリアに対し、前記光源の光をそれぞれ入射させる複数の発光エリアが設けられ、
     前記制御部は、入力された映像信号を用いて、前記表示部及び前記バックライト部の駆動制御を行うよう構成され、
     前記階調電圧指示部は、前記複数の発光エリアに対応する光源の点灯状態を用いて、入力された映像信号に含まれた画素毎の階調値に対する補正値を決定する請求項1~6のいずれか1項に記載の表示装置。
    The backlight unit is provided with a plurality of light emitting areas for allowing light from the light sources to enter the plurality of display areas,
    The control unit is configured to perform drive control of the display unit and the backlight unit using an input video signal,
    The gradation voltage instruction unit determines a correction value for a gradation value for each pixel included in an input video signal using lighting states of light sources corresponding to the plurality of light emitting areas. The display device according to any one of the above.
  8. 前記表示部として、液晶パネルが用いられるとともに、
     前記液晶パネルでは、ゲートドライバと、前記ゲートドライバから互いに異なる位置に設けられた複数のソースドライバとが設けられ、
     前記複数のソースドライバでは、前記複数の表示エリアに応じて、互いに異なるガンマカーブを使用した階調電圧が、前記階調電圧指示部から入力される請求項1~7のいずれか1項に記載の表示装置。
    As the display unit, a liquid crystal panel is used,
    In the liquid crystal panel, a gate driver and a plurality of source drivers provided at different positions from the gate driver are provided,
    The gradation voltage using different gamma curves is input from the gradation voltage instruction unit to the plurality of source drivers according to the plurality of display areas. Display device.
PCT/JP2012/076775 2011-10-18 2012-10-17 Display device WO2013058260A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011228887 2011-10-18
JP2011-228887 2011-10-18

Publications (1)

Publication Number Publication Date
WO2013058260A1 true WO2013058260A1 (en) 2013-04-25

Family

ID=48140906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076775 WO2013058260A1 (en) 2011-10-18 2012-10-17 Display device

Country Status (1)

Country Link
WO (1) WO2013058260A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295158A (en) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2005165048A (en) * 2003-12-03 2005-06-23 Sharp Corp Display device
JP2007178709A (en) * 2005-12-28 2007-07-12 Nec Display Solutions Ltd Image display apparatus
JP2007281612A (en) * 2006-04-03 2007-10-25 Sony Corp Video signal processing apparatus, video signal processing method, and image display apparatus
JP2010262240A (en) * 2009-05-11 2010-11-18 Sharp Corp Display device and display method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295158A (en) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2005165048A (en) * 2003-12-03 2005-06-23 Sharp Corp Display device
JP2007178709A (en) * 2005-12-28 2007-07-12 Nec Display Solutions Ltd Image display apparatus
JP2007281612A (en) * 2006-04-03 2007-10-25 Sony Corp Video signal processing apparatus, video signal processing method, and image display apparatus
JP2010262240A (en) * 2009-05-11 2010-11-18 Sharp Corp Display device and display method

Similar Documents

Publication Publication Date Title
US10297206B2 (en) Display device
EP3340227B1 (en) Display apparatus and method for driving the same
JP4537349B2 (en) Light emitting package, and backlight unit and liquid crystal display device including the same
KR102073065B1 (en) Liquid crystal display and method for driving the same
US8830158B2 (en) Method of local dimming a light source, light source apparatus for performing the method, and display apparatus having the light source apparatus
WO2013080985A1 (en) Control unit, display device including control unit, and control method
JP2008304907A (en) Liquid crystal display, and image display method used therefor
JPWO2009041574A1 (en) Display device
CN111210775A (en) Display device and driving method thereof
JPWO2008068920A1 (en) Gradation voltage correction system and display device using the same
US20130321495A1 (en) Display device
KR20110013925A (en) LCD and its driving method
KR101158868B1 (en) Liquid Crystal Display capable of adjusting each brightness level in plural divided areas and method for driving the same
JP2009042652A (en) Liquid crystal display device and image display method thereof
CN110277066A (en) display device
JP4278696B2 (en) Display control device and display device
KR20130052298A (en) Liquid crystal display device driving circuit and method thereof
WO2010147062A1 (en) Display device
WO2013073428A1 (en) Display device
KR20130001648A (en) Backlight control circuit and method, lcd applyed thereof
WO2013108646A1 (en) Display device
JP2009042650A (en) Liquid crystal display device and image display method thereof
JP7222835B2 (en) Display device
JP2009042651A (en) Liquid crystal display device and image display method thereof
KR101588340B1 (en) Display device and method for driving the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载