+

WO2013051682A1 - Novel glucose dehydrogenase - Google Patents

Novel glucose dehydrogenase Download PDF

Info

Publication number
WO2013051682A1
WO2013051682A1 PCT/JP2012/075903 JP2012075903W WO2013051682A1 WO 2013051682 A1 WO2013051682 A1 WO 2013051682A1 JP 2012075903 W JP2012075903 W JP 2012075903W WO 2013051682 A1 WO2013051682 A1 WO 2013051682A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucose
fgdh
flavin
glucose dehydrogenase
present
Prior art date
Application number
PCT/JP2012/075903
Other languages
French (fr)
Japanese (ja)
Inventor
裕 川南
洋志 相場
理恵 平尾
悠 歌島
洋輔 角田
岸本 高英
柳谷 周作
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2013051682A1 publication Critical patent/WO2013051682A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03004Glucose oxidase (1.1.3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/05Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
    • C12Y101/05002Quinoprotein glucose dehydrogenase (1.1.5.2)

Definitions

  • the present invention relates to glucose dehydrogenase and its use. Specifically, the present invention relates to a glucose dehydrogenase using flavin as a coenzyme, a bacterium producing the enzyme, a method for producing the enzyme, a glucose measuring method using the enzyme, and the like.
  • SMBG Self-monitoring of blood glucose
  • the SMBG biosensor has an electrode and an enzyme reaction layer formed on an insulating substrate.
  • GDH glucose dehydrogenase
  • GO glucose oxidase
  • PQQ-GDH Pyrroquinoline quinone-dependent glucose dehydrogenase
  • Patent Documents 1 to 6 and Non-patent Documents 1 to 6 describe flavin adenine dinucleotide-dependent glucose dehydrogenase (hereinafter also referred to as “FADGDH”) derived from Aspergillus tereus or Aspergillus oryzae, or modified them. Although it is said that the reactivity with xylose is comparatively high (patent document 1), when measuring the blood glucose of a person who is undergoing a xylose tolerance test, the accuracy of the measured value is impaired.
  • FADGDH flavin adenine dinucleotide-dependent glucose dehydrogenase
  • the present invention is to provide a new glucose dehydrogenase having further excellent characteristics (for example, low reactivity to D-xylose), a sensor using the same, and the like.
  • the present inventors have made a measurement by using an enzyme having a higher affinity for glucose (that is, an enzyme having a smaller Km value).
  • the present inventors have found a problem that the blood glucose level can be accurately measured by shortening the time and using a small amount of enzyme.
  • the present invention aims to solve such problems.
  • the present inventors have conducted extensive research and succeeded in purifying GDH excellent in substrate specificity and affinity with a substrate from a strain belonging to Mucor guilliermondii. Based on such knowledge, the present inventors have made further studies and improvements, and have completed the present invention.
  • Item 1 A flavin-binding glucose dehydrogenase having the following characteristics (1) and (2): (1) Molecular weight: The molecular weight of the polypeptide portion of the enzyme measured by SDS-polyacrylamide electrophoresis is about 88 kDa. (2) Substrate specificity: The reactivity to D-xylose is 1.3% or less when the reactivity to D-glucose is 100%. Item 2. The flavin-binding glucose dehydrogenase according to Item 1, further comprising the following property (3): (3) Km value: Km value for D-glucose is 15 mM or less. Item 3. Item 3.
  • Item 7. (1) culturing a microorganism classified into the genus Mucor, and (2) isolating a protein having glucose dehydrogenase activity from the culture obtained in (1), Item 7.
  • Item 7. A glucose assay kit comprising the flavin-binding glucose dehydrogenase according to any one of Items 1 to 6.
  • a glucose sensor comprising the flavin-binding glucose dehydrogenase according to any one of Items
  • the flavin-binding glucose dehydrogenase (hereinafter also referred to as “FGDH”) of the present invention is excellent in substrate specificity. That is, since the FGDH of the present invention has significantly low reactivity with D-xylose, D-galactose and maltose, even if D-glucose and one or more of the saccharides coexist in the sample. Enables accurate measurement of glucose amount or concentration. Further, since the FGDH of the present invention has a high affinity for D-glucose (that is, the Km value for D-glucose is significantly low), the D-glucose concentration in the sample can be reduced in a shorter time with a smaller amount of enzyme. Makes it possible to measure. Therefore, the FGDH of the present invention is suitable for measuring glucose concentration in samples containing D-glucose (for example, blood and food (condiments, beverages, etc.)).
  • D-glucose for example, blood and food (condiments, beverages, etc
  • the results of subjecting FGDH isolated from Mucor guilliermondii NBRC 9403 to SDS-PAGE are shown.
  • the result of subjecting FGDH isolated from Mucor guilliermondii NBRC9403 to sugar chain digestion and subjecting it to SDS-PAGE is shown.
  • the result of having measured the optimum pH of FGDH of this invention is shown.
  • the result of having measured the optimal temperature of FGDH of this invention is shown.
  • the result of having measured pH stability of FGDH of this invention is shown.
  • the result of having measured the thermal stability of FGDH of this invention is shown.
  • Glucose dehydrogenase activity Flavin-binding glucose dehydrogenase is an enzyme having a physicochemical property that catalyzes a reaction in which glucose hydroxyl group is oxidized to produce glucono- ⁇ -lactone in the presence of an electron acceptor.
  • this enzyme activity is referred to as glucose dehydrogenase activity, and unless otherwise specified, “enzyme activity” or “activity” means the enzyme activity.
  • the electron acceptor is not particularly limited as long as it is capable of transferring electrons in a reaction catalyzed by FGDH.
  • DCPIP 2,6-dichlorophenolindophenol
  • PMS phenazine methosulfate
  • ferricyan compound 2-methoxy-5-methylphenadium methyl sulfate
  • ferricyan compound 2-methoxy-5-methylphenadium methyl sulfate
  • Glucose dehydrogenase activity can be measured by a known method. For example, using DCPIP as an electron acceptor, the activity can be measured using the change in absorbance of the sample at a wavelength of 600 nm before and after the reaction as an index. More specifically, the activity can be measured using the following reagents and measurement conditions.
  • ⁇ Measurement conditions Prewarm 3 mL of reaction reagent at 37 ° C. for 5 minutes. After adding 0.1 mL of FGDH solution and mixing gently, the absorbance change at 600 nm was recorded for 5 minutes using a spectrophotometer controlled at 37 ° C. with water as a control, and from the linear part (ie, the reaction rate became constant). Measure the change in absorbance per minute ( ⁇ OD TEST ). In the blind test, a solvent that dissolves FGDH is added to the reagent mixture instead of the FGDH solution, and the change in absorbance per minute ( ⁇ OD BLANK ) is similarly measured. From these values, FGDH activity is determined according to the following equation.
  • 1 unit (U) in FGDH activity is the amount of enzyme that reduces 1 micromole of DCPIP per minute in the presence of 200 mM D-glucose.
  • Activity (U / mL) ⁇ ( ⁇ OD TEST ⁇ OD BLANK ) ⁇ 3.1 ⁇ dilution ratio ⁇ / ⁇ 16.3 ⁇ 0.1 ⁇ 1.0 ⁇
  • “3.1” is the amount of the reaction reagent + enzyme solution (mL)
  • “16.3” is the millimolar molecular extinction coefficient (cm 2 / micromol) under the conditions for this activity measurement, “0.1”.
  • "" Indicates the volume of the enzyme solution (mL), and "1.0" indicates the optical path length (cm) of the cell.
  • enzyme activity is measured according to the above measurement method.
  • FGDH of the present invention is a flavin-binding GDH that requires flavin as a prosthetic group.
  • the FGDH of the present invention is preferably isolated FGHD or purified FGDH. Further, the FGDH of the present invention may be present in a state dissolved in a solution suitable for storage or lyophilized. “Isolated” when used in relation to the enzyme (FGDH) of the present invention substantially includes components other than the enzyme (for example, contaminating proteins derived from host cells, other components, culture fluid, etc.). It means no state. Specifically, for example, in the isolated enzyme of the present invention, the content of contaminating protein is less than about 20%, preferably less than about 10%, more preferably less than about 5%, even more preferably in terms of weight. Is less than about 1%. On the other hand, the FGDH of the present invention may be present in a solution (eg, buffer) suitable for storage or measurement of enzyme activity.
  • a solution eg, buffer
  • the molecular weight of the polypeptide moiety constituting the FGDH of the present invention is about 88 kDa as measured by SDS-PAGE.
  • the term “about 88 kDa” means that a range in which a person skilled in the art normally determines that there is a band at a position of 88 kDa when molecular weight is measured by SDS-PAGE is included.
  • Polypeptide moiety means FGDH in a state where sugar chains are not substantially bound. When the FGDH of the invention produced by a microorganism is a sugar chain-binding type, the sugar chain is removed (ie, “polypeptide portion”) by treating it with heat treatment or a sugar hydrolase. Can do.
  • the means for removing the sugar chain from the sugar chain-bound FGDH is not particularly limited.
  • the sugar chain-bound FGDH was denatured by heating at 100 ° C. for 10 minutes. Thereafter, it can be carried out by treatment with N-glycosidase F (Roche Diagnostics) at 37 ° C. for 6 hours.
  • the molecular weight measurement by SDS-PAGE can be performed using a commercially available molecular weight marker using a general method and apparatus.
  • the FGDH of the present invention is excellent in substrate specificity.
  • the FGDH of the present invention has a significantly low reactivity to at least D-xylose, D-galactose and maltose, based on the reactivity to D-glucose.
  • the FGDH of the present invention preferably has a reactivity to D-xylose of 1.2% or less, more preferably 1 when the reactivity to the same concentration of D-glucose is 100%. 0.1% or less, more preferably 1.0% or less, still more preferably 0.9% or less, and particularly preferably 0.8% or less.
  • the reactivity of FGDH of the present invention to D-galactose is usually 5% or less, preferably 3% or less, more preferably 2.5% or less, assuming that the reactivity to D-glucose at the same concentration is 100%. More preferably, it is 2% or less, still more preferably 1.5% or less, and particularly preferably 1.2% or less.
  • the reactivity of FGDH of the present invention to maltose is usually 5% or less, preferably 4% or less, more preferably 3% or less, assuming that the reactivity to D-glucose at the same concentration is 100%. Preferably it is 2.9% or less.
  • the lower limit of the reactivity to D-xylose, D-galactose and maltose based on the reactivity of FGDH of the present invention to D-glucose is not particularly limited, but the lower limit is close to 0% or 0%. Can be a value.
  • the reactivity of FGDH to each saccharide is as described in 1-1.
  • the determination can be performed by replacing D-glucose with another sugar (for example, D-xylose, D-galactose, or maltose) and comparing the activity in the case of D-glucose. it can.
  • the concentration of each saccharide in the case of comparison is 50 mM.
  • the FGDH of the present invention having excellent substrate specificity as described above is preferable as an enzyme for accurately measuring the amount of glucose in a sample. That is, according to the FGDH of the present invention, even when impurities such as maltose, D-galactose, and D-xylose are present in the sample, it is possible to accurately measure the amount of target D-glucose. . Therefore, it can be said that this enzyme is suitable for applications in which the presence of such contaminants is expected or concerned (typically, measurement of the amount of glucose in blood). Applicable to applications and highly versatile.
  • the FGDH of the present invention preferably has a high affinity for D-glucose, which is the original substrate. Due to the high affinity, even when the concentration of D-glucose in the sample is low, the above-described catalytic reaction can proceed, and more accurate measurement of D-glucose concentration, measurement in a shorter time, This is because it contributes to measurement with a smaller amount of enzyme.
  • the affinity of FGDH for D-glucose is indicated by the Km value.
  • the Km value is a value obtained from the so-called Michaelis-Menten equation. Specifically, the above 1-1.
  • the D-glucose concentration is varied to measure the activity at each concentration, and a line weaver bark plot is created.
  • the Km value for D-glucose of FGDH of the present invention is preferably 15 mM or less, more preferably 14 mM or less, still more preferably 13 mM or less, and still more preferably 12.2 mM or less.
  • Optimum active pH The optimum active pH of the FGDH of the present invention is preferably about pH 6 as shown in the examples described later.
  • the optimum activity pH of 6 means that the optimum activity pH is typically around 6 and has a certain acceptable width.
  • the optimum activity pH is determined by measuring the enzyme activity using a PIPES-NaOH buffer at an enzyme concentration of 100 U / mL as shown in the Examples described later.
  • the optimum activity temperature of the FGDH of the present invention is preferably 45 ° C.
  • the optimum activation temperature of 45 ° C. means that the optimum activation temperature is typically around 45 ° C. and further has a certain acceptable width.
  • the FGDH of the present invention preferably has a higher enzyme activity measured at 45 ° C than the enzyme activity measured at 40 ° C.
  • the FGDH of the present invention preferably has an enzyme activity at 50 ° C. of 60% or more, based on the enzyme activity at 45 ° C. (100%), and the enzyme activity in the range of 30 ° C. to 50 ° C. Is more preferably 60% or more.
  • the optimum activity temperature is determined by measuring the enzyme activity in a PIPES-NaOH buffer (pH 6.5) at an enzyme concentration of 0.1 U / mL, as shown in the Examples described later.
  • the FGDH of the present invention is preferably stable in the range of pH 4.5 to 8.0. More preferably, the FGDH of the present invention has a residual enzyme activity of 90% or more when subjected to the treatment in the range of pH 6.0 to 8.0.
  • the FGDH of the present invention is preferably stable at 0 ° C to 45 ° C. From another viewpoint, the FGDH of the present invention preferably has a residual enzyme activity of 90% or more, more preferably 91, compared to the enzyme activity before heat treatment after heat treatment at 45 ° C. for 15 minutes. % Or more, still more preferably 92% or more, and particularly preferably 93% or more.
  • Origin The origin of the FGDH of the present invention is not particularly limited as long as it has the above-mentioned characteristics.
  • microorganisms classified into the family Aceraceae more specifically, the genus Mucor, Absidia, and Actinomucor
  • the thing derived from the microorganisms classified can be illustrated. More specifically, those derived from microorganisms belonging to Mucor guilliermondii, Mucor prainii, Mucor javanicus, and Mucor circinelloides can be exemplified. More specifically, those derived from Mucor guilliermondii NBRC9403 can be exemplified.
  • microorganisms belonging to the genus Mucor including Mucor guilliermondii NBRC9403, are strains stored in NBRC (NITE Biological Resource Center) (Biotechnology Division, Biotechnology Headquarters, National Institute of Technology and Evaluation). After that, you can get the sale.
  • NBRC NITE Biological Resource Center
  • microorganisms present in water systems such as soil, rivers and lakes or in the ocean, microorganisms existing on the surface or inside various animals and plants, and the like can be isolated.
  • Microorganisms that grow in a low temperature environment, a high temperature environment such as a volcano, an oxygen-free, high-pressure, no-light environment such as the deep sea, and a special environment such as an oil field may be used as the isolation source.
  • the production method of FGDH of the present invention is not particularly limited as long as the FGDH of the present invention can be obtained.
  • a microorganism producing the FGDH of the present invention is cultured, and its culture supernatant or fungus It can be produced by performing various purifications from the body.
  • a representative example of FGDH of the present invention was isolated from a microorganism classified into the genus Mucor, as shown in Examples described later.
  • the FGDH of the present invention is, for example, a microorganism classified into the family Aceraceae, more specifically a microorganism belonging to the genus Mucor, Absidia, Actinomucor, etc., and more specifically Mucor guilliermondii, Mucor prainii, Mucor. It can be produced by isolation from microorganisms belonging to javanicus, Mucor circinelloides, and more specifically from Mucor guilliermondii NBRC9403.
  • the culture of the microorganism producing the FGDH of the present invention is not particularly limited as long as the FGDH of the present invention is produced inside or outside the fungus body.
  • it can be cultured in a nutrient medium suitable for its growth.
  • the culture conditions for microorganisms classified into the family Aceraceae may be selected in consideration of the nutritional physiological properties of the microorganisms. In many cases, it is advantageous to use liquid culture and industrially perform aeration and agitation culture. However, when productivity is considered, it may be advantageous to carry out by solid culture.
  • a nutrient source of a medium those commonly used for culturing microorganisms can be widely used. Any carbon compound that can be assimilated may be used as the carbon source. For example, glucose, sucrose, lactose, maltose, lactose, molasses, pyruvic acid and the like are used.
  • the nitrogen source may be any available nitrogen compound. For example, peptone, meat extract, yeast extract, casein hydrolyzate, soybean cake alkaline extract, and the like are used.
  • phosphates, carbonates, sulfates, magnesium, calcium, potassium, iron, manganese, zinc and other salts, specific amino acids, specific vitamins and the like are used as necessary.
  • the culture temperature can be appropriately changed within the range in which the bacteria grow and produce FGDH, but is preferably about 20 to 30 ° C.
  • the culture time varies slightly depending on the conditions such as the volume, the culture may be completed at an appropriate time in consideration of the time when FGDH reaches the maximum yield, and is usually about 24 to 72 hours.
  • the pH of the medium can be appropriately changed within the range where the bacteria grow and produce FGDH, but is preferably in the range of about pH 5.0 to 7.0.
  • FGDH of the present invention from microorganisms can be carried out according to a conventional method with reference to the examples described later.
  • a culture solution containing microbial cells producing FGDH in the culture can be collected as it is and used as FGDH.
  • filtration and centrifugation are performed according to a conventional method. It is used after separating the FGDH-containing solution and the microbial cells by separation or the like.
  • the microbial cells are collected from the obtained culture by means of filtration or centrifugation, and then the microbial cells are destroyed by a mechanical method or an enzymatic method such as lysozyme.
  • a chelating agent such as EDTA and a surfactant can be added to solubilize FGDH, and it can be separated and collected as an aqueous solution.
  • the FGDH-containing solution obtained as described above is precipitated by, for example, vacuum concentration, membrane concentration, salting-out treatment with ammonium sulfate, sodium sulfate or the like, or fractional precipitation with a hydrophilic organic solvent such as methanol, ethanol, acetone or the like. You just have to let them know. Heat treatment and isoelectric point treatment are also effective purification means. Thereafter, purified FGDH can be obtained by performing gel filtration with an adsorbent or a gel filter, adsorption chromatography, ion exchange chromatography, and affinity chromatography.
  • the purified enzyme preparation is preferably purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
  • FGDH enzyme activity In collecting (extracting, purifying, etc.) a protein having FGDH enzyme activity from the culture solution, FGDH enzyme activity, maltose reactivity, thermal stability, etc.
  • the characteristics shown in (1) can be implemented as indicators.
  • the amount or concentration of glucose in various samples can be measured using the FGDH of the present invention.
  • the mode is not particularly limited.
  • the glucose concentration can be measured by adding the FGDH of the present invention to a sample, or by adding and mixing.
  • the measurement of glucose concentration can be performed as follows, for example. Put buffer in constant temperature cell and maintain at constant temperature.
  • As the mediator potassium ferricyanide, phenazine methosulfate, or the like can be used.
  • An electrode on which the FGDH of the present invention is immobilized is used as a working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used.
  • a counter electrode for example, a platinum electrode
  • a reference electrode for example, an Ag / AgCl electrode
  • the FGDH of the present invention can be made into various forms of products for measuring the concentration or amount of glucose, such as a glucose assay kit and a glucose sensor.
  • the glucose assay kit of the present invention contains the FGDH of the present invention in an amount sufficient for at least one assay.
  • the kit includes the FGDH of the present invention, plus buffers necessary for the assay, mediators, glucose standard solution for creating a calibration curve, and directions for use.
  • the FGDH of the present invention can be provided in various forms, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
  • the glucose sensor of the present invention is a glucose sensor in which the FGDH of the present invention is fixed to an electrode.
  • an electrode a carbon electrode, a gold electrode, a platinum electrode or the like is used, and the enzyme of the present invention is immobilized on this electrode.
  • immobilization methods include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a photocrosslinkable polymer, a conductive polymer, a redox polymer, etc., or ferrocene or a derivative thereof. It may be fixed in a polymer or adsorbed and fixed on an electrode together with a representative electron mediator, or a combination thereof may be used.
  • FGDH of the present invention is immobilized on a carbon electrode using glutaraldehyde, and then treated with a reagent having an amine group to block glutaraldehyde.
  • the “product” is a product constituting a part or all of one set used by the user for the purpose of carrying out the use, and the flavin-dependent glucose dehydrogenase of the present invention is used. It means to include.
  • Example 1 Reconstruction of strain Since the strain of the genus Mucor stored in the National Institute of Technology and Evaluation Technology was an L-dried sample, the ampoule was opened and 100 ⁇ L of reconstituted water was injected. After suspending the dried cells, the suspension was dropped into the reconstitution medium, and the strain was reconstituted by static culture at 25 ° C. for 3 to 7 days.
  • reconstitution water sterilized water (distilled water treated at 120 ° C. for 20 minutes in an autoclave) was used, and as reconstitution medium, DP medium (dextrin 2.0%, polypeptone 1.0%, KH2PO4 1.0%, agarose) 1.5%) was used.
  • Example 2 Acquisition of Crude Enzyme Solution
  • a wheat germ medium prepared by sterilizing a medium containing 2 g of wheat germ and 2 mL of water in an autoclave at 120 ° C. for 20 minutes and adjusting the water content to 100% was prepared.
  • This solid medium was inoculated with one platinum ear of the strain of the genus Mucor reconstituted in Example 1 and statically cultured at 25 ° C. for about 3 to 7 days. After the culture, 4 ml of 50 mM potassium phosphate buffer (pH 6.0) containing 2 mM EDTA was added to the medium on which the cells had grown, and the suspension was sufficiently suspended by vortexing.
  • the suspension After adding a small amount of glass beads to the suspension, the suspension was crushed under a condition of 3,000 rpm for 3 minutes twice with a bead shocker (manufactured by Yasui Kikai Co., Ltd.). The disrupted solution was centrifuged at 4 ° C., 2,000 ⁇ g for 5 minutes, separated into a supernatant and a residue, and the recovered supernatant was used as a crude enzyme solution.
  • a bead shocker manufactured by Yasui Kikai Co., Ltd.
  • Example 3 Confirmation of GDH activity
  • the GDH activity in the crude enzyme solution recovered in Example 2 was investigated using the GDH measurement method described above.
  • Table 1 shows the results of investigating the presence or absence of GDH activity for crude enzymes of the genus Mucor. The presence or absence of activity is determined according to 1-1. It carried out according to the method shown in.
  • Example 4 Purification of FGDH derived from Mucor guilliermondii NBRC9403 50 mL of DP liquid medium was placed in a 500 mL Sakaguchi flask and sterilized by autoclaving to obtain a medium for preculture. One platinum ear of the Mucor guilliermondii NBRC9403 restored in Example 1 was inoculated there, and cultured with shaking at 25 ° C. and 180 rpm for 3 days to obtain a seed culture solution. Next, 6.0 L of production medium (yeast extract 2.0%, glucose 1%, pH 6.0) was placed in a 10 L jar fermenter and sterilized by autoclaving to prepare a main culture medium.
  • production medium yeast extract 2.0%, glucose 1%, pH 6.0
  • the seed culture solution 50 mL of the seed culture solution was inoculated there, and cultured for 3 days under the conditions of a culture temperature of 25 ° C., a stirring speed of 600 rpm, an aeration rate of 2.0 L / min, and a tube pressure of 0.2 MPa. Thereafter, the culture solution was filtered with a filter cloth, and the cells were collected. The obtained bacterial cells were suspended in 50 mM potassium phosphate buffer (pH 6.0).
  • the suspension was fed to a French press (manufactured by Niro Soavi) at a flow rate of 160 mL / min and crushed at 1000 to 1300 bar. Subsequently, ammonium sulfate (manufactured by Sumitomo Chemical Co., Ltd.) was gradually added to the crushed liquid so as to become 0.4 saturation, and stirred at room temperature for 30 minutes, and then a filter aid (Showa Chemical Industry Co., Ltd.) was added. Was used to remove suspended material and a clear filtrate was obtained. Next, the mixture was concentrated using a UF membrane (Millipore Co., Ltd.) having a molecular weight cut-off of 10,000, and the concentrated solution was desalted using a Sephadex G-25 gel.
  • ammonium sulfate was gradually added to the desalted solution to 0.5 saturation, and 400 mL of SP Sepharose FastFlow previously equilibrated with 50 mM potassium phosphate buffer (pH 6.0) containing 0.5 saturated ammonium sulfate. It was applied to a column (manufactured by GE Healthcare) and eluted with a linear gradient of 50 mM phosphate buffer (pH 6.0). The eluted GDH fraction was concentrated using a hollow fiber membrane (manufactured by Spectrum Laboratories) having a molecular weight cut-off of 10,000, and the concentrated solution was desalted using a Sephadex G-25 gel. Then, it applied to DEAE Sepharose Fast Flow (made by GE Healthcare) column, and purified enzyme was obtained.
  • DEAE Sepharose Fast Flow made by GE Healthcare
  • the protein concentration was measured from the absorbance at 280 nm of the purified enzyme solution, and the specific activity of the purified enzyme was calculated.
  • the spectrophotometer used was U-3210 (Hitachi High-Tech). As a result, the specific activity of the purified enzyme was 173 U / A 280 .
  • Example 5 Molecular Weight of Glycoprotein
  • the FGDH enzyme purified in Example 4 was subjected to SDS-polyacrylamide gel electrophoresis (Past Gel 10-15%, manufactured by Pastsystem GE Healthcare), and its molecular weight was measured.
  • Protein molecular weight markers include phosphorylase b (97,400 daltons), bovine serum albumin (66,267 daltons), aldolase (42,400 daltons), carbonic anhydrase (30,000 daltons), trypsin inhibitor (20 , 100 Dalton).
  • the molecular weight determined from the mobility of these markers was about 119,000 daltons to about 195,000 daltons. The results are shown in FIG.
  • Example 6 Molecular Weight of Peptide Part of Enzyme
  • the FGDH enzyme purified in Example 4 was denatured by heating at 100 ° C for 10 minutes, and then 5 U of N-glycosidase F (Roche Diagnostics) was used. The treatment was carried out at 37 ° C. for 6 hours to decompose the sugar chain added to the protein. Thereafter, the measurement was performed by SDS-polyacrylamide gel electrophoresis in the same manner as in Example 5. The molecular weight was about 88,000 daltons based on the mobility of the protein molecular weight marker. The results are shown in FIG.
  • Example 7 Substrate specificity Regarding the FGDH enzyme purified in Example 4, the above 1-1. Substrate specificity was investigated by comparing the activity when D-glucose was used as the substrate with the apparent activity when the comparative sugar was used according to the GDH activity measurement method shown in FIG. Maltose, D-galactose, and D-xylose were used as sugars for comparison. Measurement was performed under the conditions of a substrate concentration of 50 mM, pH 6.5, and 37 ° C. The results are shown in Table 2.
  • the substrate specificity of FGDH of the present invention is that the apparent activity against maltose, D-galactose and D-xylose is 3% or less when the activity value against D-glucose is 100%. Indicated.
  • Example 8 Optimum active pH Using the purified enzyme solution (100 U / mL) obtained in Example 4, the optimum pH was examined.
  • the buffer solution was 50 mM PIPES-NaOH buffer (pH 6.0-pH 7.5), and the apparent activity was determined at 37 ° C. The results are shown in FIG.
  • FGDH of the present invention showed the highest apparent activity value at pH 6.0 in the PIPES-NaOH buffer prepared at pH 0.5 increments in the range of pH 6.0 to 7.5.
  • the appropriate pH was shown to be pH 6.0.
  • Example 9 Optimal activity temperature Using the purified enzyme solution (0.1 U / mL) obtained in Example 4, the optimal temperature was examined. The apparent activity at 25 ° C., 30 ° C., 37 ° C., 45 ° C., and 50 ° C. was determined using 42 mM PIPES-NaOH buffer (pH 6.5) as the buffer solution. The results are shown in FIG.
  • the FGDH of the present invention showed the highest apparent activity value at 45 ° C. among the comparative studies at 25 ° C., 30 ° C., 35 ° C., 40 ° C., 45 ° C., and 50 ° C.
  • the temperature was shown to be 45 ° C.
  • Example 10 pH stability Using the FGDH enzyme solution (10 U / mL) obtained in Example 4, pH stability was examined. 100 mM acetate-sodium buffer (pH 3.0-pH 5.5: plotted with black squares in the figure), 100 mM phosphate-potassium buffer (pH 5.5-pH 7.5: plotted with white squares in the figure), 100 mM Using Tris-HCl buffer (pH 7.5-pH 9.0, plotted with triangular white mark), 100 mM PIPES-NaOH buffer (pH 6.5-pH 7.5: plotted with triangular black mark), 25 ° C. The residual rate of apparent activity after 16 hours of treatment was measured. The results are shown in FIG.
  • Example 11 Thermal stability Using the purified enzyme solution (100 U / mL) obtained in Example 4, the thermal stability was examined. After treating the FGDH enzyme solution with each of the temperatures (4 ° C, 30 ° C, 40 ° C, 45 ° C, 50 ° C, 60 ° C) for 15 minutes using 100 mM potassium acetate buffer (pH 5.0), the apparent activity The residual rate was measured. The results are shown in FIG.
  • the FGDH of the present invention showed a residual rate of 93% at 45 ° C. From this, it was shown that it is stable at 45 ° C. or lower.
  • Example 13 Confirmation of flavin-binding enzyme
  • the enzyme purified in Example 4 was dialyzed against 10 mM acetate buffer (pH 5.0), and the absorption spectrum at 250-800 nm was measured with a spectrophotometer U-3210 (Hitachi). Measured by High Technologies). As a result, two peaks having local maximums were confirmed in the vicinity of a wavelength of 340 to 350 nm and a wavelength of 420 to 430 nm. Such a shape of the absorption spectrum strongly suggested that the GDH of the present invention is a flavin-binding protein.
  • the FGDH of the present invention is excellent in substrate specificity, and enables the glucose amount to be measured more accurately. Therefore, it can be said that the FGDH of the present invention is suitable for blood glucose level measurement and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The goal is to provide a novel glucose dehydrogenase having excellent properties such as substrate specificity, a method for producing the same, and a use thereof. The present invention provides a flavin binding-type glucose dehydrogenase having the following properties (1) and (2). (1) Molecular weight: The molecular weight of the polypeptide portion of the glucose dehydrogenase as determined by SDS-polyacrylamide electrophoresis is approximately 88 kDa. (2) Substrate specificity: Assuming that reactivity with D-glucose is 100%, reactivity with D-xylose is no higher than 1.3%.

Description

新規なグルコース脱水素酵素Novel glucose dehydrogenase
 本発明はグルコース脱水素酵素及びその用途に関する。詳しくは、本発明はフラビンを補酵素とするグルコース脱水素酵素、及び当該酵素の生産菌、当該酵素の製造法、当該酵素を使用したグルコース測定法等に関する。 The present invention relates to glucose dehydrogenase and its use. Specifically, the present invention relates to a glucose dehydrogenase using flavin as a coenzyme, a bacterium producing the enzyme, a method for producing the enzyme, a glucose measuring method using the enzyme, and the like.
血糖自己測定(SMBG:Self-Monitoring of Blood Glucose)は糖尿病患者が自己の血糖値を管理し、その治療に活用するために重要な手段である。近年、SMBGのために、電気化学的バイオセンサを用いた簡易型の自己血糖測定器が広く用いられている。SMBG用のバイオセンサは、絶縁性の基板上に電極と酵素反応層を形成したものである。 Self-monitoring of blood glucose (SMBG: Self-Monitoring of Blood Glucose) is an important means for diabetics to manage their blood glucose level and use it for their treatment. In recent years, a simple self-blood glucose meter using an electrochemical biosensor has been widely used for SMBG. The SMBG biosensor has an electrode and an enzyme reaction layer formed on an insulating substrate.
 SMBG用バイオセンサには、グルコース脱水素酵素(GDH)やグルコースオキシダーゼ(GO)等の酵素が使用されている。GO(EC 1.1.3.4)を用いた方法は、測定サンプル中の溶存酸素の影響を受けやすく、溶存酸素が測定結果に影響を及ぼすといった問題点が指摘されている。ピロロキノリンキノン依存型グルコース脱水素酵素(PQQ-GDH)(EC1.1.5.2(旧EC1.1.99.17))は、溶存酸素の影響を受けないが、マルトースやラクトースといったグルコース以外の糖類にも作用するため正確な血糖値の測定には適していない。 An enzyme such as glucose dehydrogenase (GDH) or glucose oxidase (GO) is used in the SMBG biosensor. It has been pointed out that the method using GO (EC 1.1.3.4) is easily affected by dissolved oxygen in the measurement sample, and the dissolved oxygen affects the measurement result. Pyrroquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) (EC 1.1.5.2 (formerly EC1.1.99.17)) is not affected by dissolved oxygen, but other than glucose such as maltose and lactose It is not suitable for accurate blood glucose measurement because it also acts on saccharides.
 特許文献1~6や非特許文献1~6には、アスペルギルス・テレウスやアスペルギルス・オリゼ由来のフラビンアデニンジヌクレオチド依存性グルコース脱水素酵素(以下、「FADGDH」とも表す。)、あるいは、それらを改変したもの等が知られているが、キシロースに対する反応性が比較的高いとされ(特許文献1)、キシロース負荷試験を受けている者の血糖を測定する場合、測定値の正確性を損ねる。 Patent Documents 1 to 6 and Non-patent Documents 1 to 6 describe flavin adenine dinucleotide-dependent glucose dehydrogenase (hereinafter also referred to as “FADGDH”) derived from Aspergillus tereus or Aspergillus oryzae, or modified them. Although it is said that the reactivity with xylose is comparatively high (patent document 1), when measuring the blood glucose of a person who is undergoing a xylose tolerance test, the accuracy of the measured value is impaired.
 上記のほか、近年GOとGDHの長所を併せ持つ改変型GDH(特許文献7)等も開発されている。 In addition to the above, recently modified GDH (patent document 7) having the advantages of GO and GDH has been developed.
WO2004/058958WO2004 / 058958 WO2006/101239WO2006 / 101239 特開2007-289148JP2007-289148 特開2008-237210JP2008-237210A WO2008/059777WO2008 / 059777 WO2010/140431WO2010 / 140431 WO2011/068050WO2011 / 0668050
上記のような現状の下、本発明は、さらに優れた特性(例えば、D-キシロースに対する反応性が低い)を備えた新たなグルコース脱水素酵素及びそれを利用したセンサ等を提供することを課題とする。また、本発明者等は、より実用的なSMBG用グルコースセンサの提供について日夜検討を重ねた結果、よりグルコースに対する親和性の高い酵素(即ち、Km値の小さい酵素)を利用することにより、測定時間を短縮し、且つ、少量の酵素の使用で正確な血糖値測定が可能になるという課題を見出した。本発明はこのような課題を解決することを目的とする。 Under the present circumstances as described above, the present invention is to provide a new glucose dehydrogenase having further excellent characteristics (for example, low reactivity to D-xylose), a sensor using the same, and the like. And In addition, as a result of repeated studies day and night on the provision of a more practical glucose sensor for SMBG, the present inventors have made a measurement by using an enzyme having a higher affinity for glucose (that is, an enzyme having a smaller Km value). The present inventors have found a problem that the blood glucose level can be accurately measured by shortening the time and using a small amount of enzyme. The present invention aims to solve such problems.
 このような課題を解決すべく本発明者等は鋭意研究を重ね、Mucor guilliermondiiに属する菌株から基質特異性及び基質との親和性に優れたGDHを精製することに成功した。係る知見に基づき、本発明者等は更なる検討と改良を積み重ね、本発明を完成するに至った。 In order to solve such problems, the present inventors have conducted extensive research and succeeded in purifying GDH excellent in substrate specificity and affinity with a substrate from a strain belonging to Mucor guilliermondii. Based on such knowledge, the present inventors have made further studies and improvements, and have completed the present invention.
 以下に代表的な本発明を示す。
項1.下記の特性(1)及び(2)を備えるフラビン結合型グルコース脱水素酵素。
(1)分子量: SDS-ポリアクリルアミド電気泳動で測定した該酵素のポリペプチド部分の分子量が約88kDaである。
(2)基質特異性: D-グルコースに対する反応性を100%としたときのD-キシロースに対する反応性が1.3%以下である。
項2.更に下記の特性(3)を備える、項1に記載のフラビン結合型グルコース脱水素酵素。
(3)Km値: D-グルコースに対するKm値が15mM以下。
項3.更に下記の特性(4)を備える、項1又は2に記載のフラビン結合型グルコース脱水素酵素。
(4)至適活性pH:pH6
項4.更に下記の特性(5)を備える、項1~3のいずれかに記載のフラビンジヌクレオチド依存性グルコース脱水素酵素。
(5)至適活性温度:45℃
項5.更に下記の特性(6)を備える、項1~4のいずれかに記載のフラビンジヌクレオチド依存性グルコース脱水素酵素。
(6)pH安定性: pH4.5~8.0の範囲で安定
項6.更に下記の特性(7)を備える、項1~5のいずれかに記載のフラビンジヌクレオチド依存性グルコース脱水素酵素。
(7)温度安定性: 45℃の温度で15分間維持した後の残存酵素活性率が90%以上。
項7.
(1)ムコール属に分類される微生物を培養すること、及び
(2)(1)で得られた培養物からグルコース脱水素酵素活性を有するタンパク質を単離すること、
を含む、項1~6のいずれかに記載のフラビン結合型グルコース脱水素酵素の製造方法。
項8.項1~6のいずれかに記載のフラビン結合型グルコース脱水素酵素を用いるグルコース濃度の測定方法。
項9.項1~6のいずれかに記載のフラビン結合型グルコース脱水素酵素を含むグルコースアッセイキット。
項10.項1~6のいずれかに記載のフラビン結合型グルコース脱水素酵素を含むグルコースセンサー。
The typical present invention is shown below.
Item 1. A flavin-binding glucose dehydrogenase having the following characteristics (1) and (2):
(1) Molecular weight: The molecular weight of the polypeptide portion of the enzyme measured by SDS-polyacrylamide electrophoresis is about 88 kDa.
(2) Substrate specificity: The reactivity to D-xylose is 1.3% or less when the reactivity to D-glucose is 100%.
Item 2. The flavin-binding glucose dehydrogenase according to Item 1, further comprising the following property (3):
(3) Km value: Km value for D-glucose is 15 mM or less.
Item 3. Item 3. The flavin-binding glucose dehydrogenase according to Item 1 or 2, further comprising the following property (4):
(4) Optimum active pH: pH 6
Item 4. Item 4. The flavin dinucleotide-dependent glucose dehydrogenase according to any one of Items 1 to 3, further comprising the following property (5):
(5) Optimal activity temperature: 45 ° C
Item 5. Item 5. The flavin dinucleotide-dependent glucose dehydrogenase according to any one of Items 1 to 4, further comprising the following property (6):
(6) pH stability: A stable term in the range of pH 4.5 to 8.0. Item 6. The flavin dinucleotide-dependent glucose dehydrogenase according to any one of Items 1 to 5, further comprising the following property (7):
(7) Temperature stability: The residual enzyme activity rate after maintaining at a temperature of 45 ° C. for 15 minutes is 90% or more.
Item 7.
(1) culturing a microorganism classified into the genus Mucor, and (2) isolating a protein having glucose dehydrogenase activity from the culture obtained in (1),
Item 7. The method for producing a flavin-binding glucose dehydrogenase according to any one of Items 1 to 6,
Item 8. Item 7. A method for measuring glucose concentration using the flavin-binding glucose dehydrogenase according to any one of Items 1 to 6.
Item 9. Item 7. A glucose assay kit comprising the flavin-binding glucose dehydrogenase according to any one of Items 1 to 6.
Item 10. Item 7. A glucose sensor comprising the flavin-binding glucose dehydrogenase according to any one of Items 1 to 6.
 本発明のフラビン結合型グルコース脱水素酵素(以下、「FGDH」とも称する。)は基質特異性に優れる。即ち、本発明のFGDHは、D-キシロース、D-ガラクトース及びマルトースに対する反応性が有意に低いため、試料中にD-グルコースと前記糖類の1種又は2種以上が共存する場合であってもグルコース量又は濃度を正確に測定することを可能にする。また、本発明のFGDHは、D-グルコースとの親和性が高い(即ち、D-グルコースに対するKm値が有意に低い)ため、より少ない酵素量で試料中のD-グルコース濃度をより短時間で測定することを可能にする。従って本発明のFGDHはD-グルコースを含む試料(例えば、血液や食品(調味料や飲料等))におけるグルコース濃度の測定等に好適である。 The flavin-binding glucose dehydrogenase (hereinafter also referred to as “FGDH”) of the present invention is excellent in substrate specificity. That is, since the FGDH of the present invention has significantly low reactivity with D-xylose, D-galactose and maltose, even if D-glucose and one or more of the saccharides coexist in the sample. Enables accurate measurement of glucose amount or concentration. Further, since the FGDH of the present invention has a high affinity for D-glucose (that is, the Km value for D-glucose is significantly low), the D-glucose concentration in the sample can be reduced in a shorter time with a smaller amount of enzyme. Makes it possible to measure. Therefore, the FGDH of the present invention is suitable for measuring glucose concentration in samples containing D-glucose (for example, blood and food (condiments, beverages, etc.)).
Mucor guilliermondii NBRC9403から単離したFGDHをSDS-PAGEに供した結果を示す。The results of subjecting FGDH isolated from Mucor guilliermondii NBRC 9403 to SDS-PAGE are shown. Mucor guilliermondii NBRC9403から単離したFGDHを糖鎖消化してSDS-PAGEに供した結果を示す。The result of subjecting FGDH isolated from Mucor guilliermondii NBRC9403 to sugar chain digestion and subjecting it to SDS-PAGE is shown. 本発明のFGDHの至適pHを測定した結果を示す。The result of having measured the optimum pH of FGDH of this invention is shown. 本発明のFGDHの至適温度を測定した結果を示す。The result of having measured the optimal temperature of FGDH of this invention is shown. 本発明のFGDHのpH安定性を測定した結果を示す。The result of having measured pH stability of FGDH of this invention is shown. 本発明のFGDHの熱安定性を測定した結果を示す。The result of having measured the thermal stability of FGDH of this invention is shown.
以下、本発明を詳細に説明する。
1.フラビン結合型グルコースデヒドロゲナーゼ
Hereinafter, the present invention will be described in detail.
1. Flavin-binding glucose dehydrogenase
1-1.グルコースデヒドロゲナーゼ活性
 フラビン結合型グルコースデヒドロゲナーゼとは、電子受容体存在下でグルコースの水酸基を酸化してグルコノ-δ-ラクトンを生成する反応を触媒する理化学的性質を有する酵素である。本書においては、この酵素活性をグルコースデヒドロゲナーゼ活性といい、特に断りが無い限り、「酵素活性」又は「活性」とは、当該酵素活性を意味する。前記電子受容体は、FGDHが触媒する反応において、電子の授受を担うことが可能である限り特に制限されないが、例えば、2,6-ジクロロフェノールインドフェノール(DCPIP)、フェナジンメトサルフェート(PMS)、1-メトキシ-5-メチルフェナジウムメチルサルフェート、及びフェリシアン化合物等を使用することができる。
1-1. Glucose dehydrogenase activity Flavin-binding glucose dehydrogenase is an enzyme having a physicochemical property that catalyzes a reaction in which glucose hydroxyl group is oxidized to produce glucono-δ-lactone in the presence of an electron acceptor. In this document, this enzyme activity is referred to as glucose dehydrogenase activity, and unless otherwise specified, “enzyme activity” or “activity” means the enzyme activity. The electron acceptor is not particularly limited as long as it is capable of transferring electrons in a reaction catalyzed by FGDH. For example, 2,6-dichlorophenolindophenol (DCPIP), phenazine methosulfate (PMS), 1-methoxy-5-methylphenadium methyl sulfate, ferricyan compound, and the like can be used.
 グルコースデヒドロゲナーゼ活性は、公知の方法で測定することができる。例えば、DCPIPを電子受容体として用い、反応前後における600nmの波長における試料の吸光度の変化を指標に活性を測定することができる。より具体的には、下記の試薬及び測定条件を用いて活性を測定することができる。 Glucose dehydrogenase activity can be measured by a known method. For example, using DCPIP as an electron acceptor, the activity can be measured using the change in absorbance of the sample at a wavelength of 600 nm before and after the reaction as an index. More specifically, the activity can be measured using the following reagents and measurement conditions.
 グルコースデヒドロゲナーゼ活性の測定方法
<試薬>
50mM PIPES緩衝液pH6.5(0.1% TritonX-100を含む)
24mM PMS溶液
2.0mM 2,6-ジクロロフェノールインドフェノール(DCPIP)溶液
1M D-グルコース溶液
上記PIPES緩衝液20.5mL、DCPIP溶液1.0mL、PMS溶液2.0mL、D―グルコース溶液5.9mLを混合して反応試薬とする。
Method for measuring glucose dehydrogenase activity <Reagent>
50 mM PIPES buffer pH 6.5 (including 0.1% Triton X-100)
24 mM PMS solution 2.0 mM 2,6-dichlorophenolindophenol (DCPIP) solution 1M D-glucose solution 20.5 mL of the above PIPES buffer, 1.0 mL of DCPIP solution, 2.0 mL of PMS solution, 5.9 mL of D-glucose solution To make a reaction reagent.
 <測定条件>
 反応試薬3mLを37℃で5分間予備加温する。FGDH溶液0.1mLを添加しゆるやかに混和後、水を対照に37℃に制御された分光光度計で、600nmの吸光度変化を5分記録し、直線部分から(即ち、反応速度が一定になってから)1分間あたりの吸光度変化(ΔODTEST)を測定する。盲検はFGDH溶液の代わりにFGDHを溶解する溶媒を試薬混液に加えて同様に1分間あたりの吸光度変化(ΔODBLANK)を測定する。これらの値から次の式に従ってFGDH活性を求める。ここでFGDH活性における1単位(U)とは、濃度200mMのD-グルコース存在下で1分間に1マイクロモルのDCPIPを還元する酵素量である。
活性(U/mL)=
    {-(ΔODTEST-ΔODBLANK)×3.1×希釈倍率}/{16.3×0.1×1.0}
 なお、式中の「3.1」は反応試薬+酵素溶液の液量(mL)、「16.3」は本活性測定条件におけるミリモル分子吸光係数(cm/マイクロモル)、「0.1」は酵素溶液の液量(mL)、「1.0」はセルの光路長(cm)を示す。
<Measurement conditions>
Prewarm 3 mL of reaction reagent at 37 ° C. for 5 minutes. After adding 0.1 mL of FGDH solution and mixing gently, the absorbance change at 600 nm was recorded for 5 minutes using a spectrophotometer controlled at 37 ° C. with water as a control, and from the linear part (ie, the reaction rate became constant). Measure the change in absorbance per minute (ΔOD TEST ). In the blind test, a solvent that dissolves FGDH is added to the reagent mixture instead of the FGDH solution, and the change in absorbance per minute (ΔOD BLANK ) is similarly measured. From these values, FGDH activity is determined according to the following equation. Here, 1 unit (U) in FGDH activity is the amount of enzyme that reduces 1 micromole of DCPIP per minute in the presence of 200 mM D-glucose.
Activity (U / mL) =
{− (ΔOD TEST −ΔOD BLANK ) × 3.1 × dilution ratio} / {16.3 × 0.1 × 1.0}
In the formula, “3.1” is the amount of the reaction reagent + enzyme solution (mL), “16.3” is the millimolar molecular extinction coefficient (cm 2 / micromol) under the conditions for this activity measurement, “0.1”. "" Indicates the volume of the enzyme solution (mL), and "1.0" indicates the optical path length (cm) of the cell.
 本書においては、別段の表示をしない限り、酵素活性は上記の測定方法に従って、測定される。 In this document, unless otherwise indicated, enzyme activity is measured according to the above measurement method.
 本発明のFGDHは、フラビンを補欠分子族として要求するフラビン結合型のGDHである。 FGDH of the present invention is a flavin-binding GDH that requires flavin as a prosthetic group.
 本発明のFGDHは、単離されたFGHD又は精製されたFGDHであることが好ましい。また、本発明のFGDHは、保存に適した溶液中に溶解した状態又は凍結乾燥された状態で存在してもよい。本発明の酵素(FGDH)に関して使用する場合の「単離された」とは、当該酵素以外の成分(例えば、宿主細胞に由来する夾雑タンパク質、他の成分、培養液等)を実質的に含まない状態をいう。具体的には例えば、本発明の単離された酵素では、夾雑タンパク質の含有量は重量換算で全体の約20%未満、好ましくは約10%未満、更に好ましくは約5%未満、より一層好ましくは約1%未満である。一方で、本発明のFGDHは、保存又は酵素活性の測定に適した溶液(例えば、バッファー)中に存在してもよい。 The FGDH of the present invention is preferably isolated FGHD or purified FGDH. Further, the FGDH of the present invention may be present in a state dissolved in a solution suitable for storage or lyophilized. “Isolated” when used in relation to the enzyme (FGDH) of the present invention substantially includes components other than the enzyme (for example, contaminating proteins derived from host cells, other components, culture fluid, etc.). It means no state. Specifically, for example, in the isolated enzyme of the present invention, the content of contaminating protein is less than about 20%, preferably less than about 10%, more preferably less than about 5%, even more preferably in terms of weight. Is less than about 1%. On the other hand, the FGDH of the present invention may be present in a solution (eg, buffer) suitable for storage or measurement of enzyme activity.
1-2.分子量
 本発明のFGDHを構成するポリペプチド部分の分子量は、SDS-PAGEで測定した場合に約88kDaである。「約88kDa」とは、SDS-PAGEで分子量を測定した際に、当業者が、通常88kDaの位置にバンドがあると判断する範囲を含むことを意味する。「ポリペプチド部分」とは、実質的に糖鎖が結合していない状態のFGDHを意味する。微生物によって生産された発明のFGDHが糖鎖結合型である場合は、それを熱処理や糖加水分解酵素によって処理することにより、糖鎖を除去した状態(即ち、「ポリペプチド部分」)にすることができる。実質的に糖鎖が結合していない状態とは、熱処理や糖加水分解酵素によって処理された糖鎖結合型FGDHに不可避的に残存する糖鎖の存在を許容する。よって、FGDHが本来的に糖鎖結合型でない場合は、それ自体が「ポリペプチド部分」に相当する。
1-2. Molecular Weight The molecular weight of the polypeptide moiety constituting the FGDH of the present invention is about 88 kDa as measured by SDS-PAGE. The term “about 88 kDa” means that a range in which a person skilled in the art normally determines that there is a band at a position of 88 kDa when molecular weight is measured by SDS-PAGE is included. “Polypeptide moiety” means FGDH in a state where sugar chains are not substantially bound. When the FGDH of the invention produced by a microorganism is a sugar chain-binding type, the sugar chain is removed (ie, “polypeptide portion”) by treating it with heat treatment or a sugar hydrolase. Can do. The state in which sugar chains are not substantially bound allows the presence of sugar chains inevitably remaining in sugar chain-bound FGDH treated by heat treatment or sugar hydrolase. Therefore, when FGDH is not inherently a sugar chain-binding type, it itself corresponds to a “polypeptide moiety”.
 糖鎖結合型FGDHから糖鎖を除去する手段は、特に制限されないが、例えば、後述する実施例に示すように、糖鎖結合型のFGDHを100℃で10分間加熱処理をして変性させた後、N-グリコシダーゼF(ロシュ・ダイアグノスティクス社製)を用いて37℃で6時間処理することにより実施することができる。 The means for removing the sugar chain from the sugar chain-bound FGDH is not particularly limited. For example, as shown in the examples described later, the sugar chain-bound FGDH was denatured by heating at 100 ° C. for 10 minutes. Thereafter, it can be carried out by treatment with N-glycosidase F (Roche Diagnostics) at 37 ° C. for 6 hours.
 SDS-PAGEでの分子量の測定は、一般的な手法及び装置を用い、市販される分子量マーカーを用いて行うことができる。 The molecular weight measurement by SDS-PAGE can be performed using a commercially available molecular weight marker using a general method and apparatus.
1-3.基質特異性
 本発明のFGDHは、基質特異性に優れている。特に、本発明のFGDHは、D-グルコースに対する反応性を基準とした場合に、少なくともD-キシロース、D-ガラクトース及びマルトースに対する反応性が有意に低い。より具体的に、本発明のFGDHは、同一濃度のD-グルコースに対する反応性を100%とした場合に、D-キシロースに対する反応性が1.2%以下であることが好ましく、より好ましくは1.1%以下であり、更に好ましくは1.0%以下であり、より更に好ましくは0.9%以下であり、特に好ましくは0.8%以下である。
1-3. Substrate specificity The FGDH of the present invention is excellent in substrate specificity. In particular, the FGDH of the present invention has a significantly low reactivity to at least D-xylose, D-galactose and maltose, based on the reactivity to D-glucose. More specifically, the FGDH of the present invention preferably has a reactivity to D-xylose of 1.2% or less, more preferably 1 when the reactivity to the same concentration of D-glucose is 100%. 0.1% or less, more preferably 1.0% or less, still more preferably 0.9% or less, and particularly preferably 0.8% or less.
 本発明のFGDHのD-ガラクトースに対する反応性は、同一濃度のD-グルコースに対する反応性を100%として、通常5%以下であり、好ましくは3%以下であり、より好ましくは2.5%以下、更に好ましくは2%以下、より更に好ましくは1.5%以下、特に好ましくは1.2%以下である。本発明のFGDHのマルトースに対する反応性は、同一濃度のD-グルコースに対する反応性を100%として、通常5%以下であり、好ましくは4%以下であり、より好ましくは3%以下であり、更に好ましくは2.9%以下である。 The reactivity of FGDH of the present invention to D-galactose is usually 5% or less, preferably 3% or less, more preferably 2.5% or less, assuming that the reactivity to D-glucose at the same concentration is 100%. More preferably, it is 2% or less, still more preferably 1.5% or less, and particularly preferably 1.2% or less. The reactivity of FGDH of the present invention to maltose is usually 5% or less, preferably 4% or less, more preferably 3% or less, assuming that the reactivity to D-glucose at the same concentration is 100%. Preferably it is 2.9% or less.
 上記本発明のFGDHのD-グルコースに対する反応性を基準としたD-キシロース、D-ガラクトース及びマルトースに対する反応性の下限値は、特に制限されないが、0%又は0%に限りなく近い値を下限値とすることができる。 The lower limit of the reactivity to D-xylose, D-galactose and maltose based on the reactivity of FGDH of the present invention to D-glucose is not particularly limited, but the lower limit is close to 0% or 0%. Can be a value.
 FGDHの各糖類に対する反応性は、上記1-1.に示すグルコースデヒドロゲナーゼ活性の測定方法において、D-グルコースを他の糖(例えば、D-キシロース、D-ガラクトース、又はマルトース)に置き換えて、D-グルコースの場合の活性を比較することにより求めることができる。但し、比較する場合の各糖類の濃度は50mMである。 The reactivity of FGDH to each saccharide is as described in 1-1. In the method for measuring glucose dehydrogenase activity shown in FIG. 4, the determination can be performed by replacing D-glucose with another sugar (for example, D-xylose, D-galactose, or maltose) and comparing the activity in the case of D-glucose. it can. However, the concentration of each saccharide in the case of comparison is 50 mM.
 以上のような優れた基質特異性を有する本発明のFGDHは、試料中のグルコース量を正確に測定するための酵素として好ましい。即ち、本発明のFGDHによれば試料中にマルトース、D-ガラクトース、D-キシロース等の夾雑物が存在する場合であっても目的のD-グルコースの量を正確に測定することが可能である。従って本酵素は、試料中にこのような夾雑物の存在が予想又は懸念される用途(典型的には血液中のグルコース量の測定)に適したものであるといえ、当該用途も含め様々な用途に適用可能であり、汎用性が高い。 The FGDH of the present invention having excellent substrate specificity as described above is preferable as an enzyme for accurately measuring the amount of glucose in a sample. That is, according to the FGDH of the present invention, even when impurities such as maltose, D-galactose, and D-xylose are present in the sample, it is possible to accurately measure the amount of target D-glucose. . Therefore, it can be said that this enzyme is suitable for applications in which the presence of such contaminants is expected or concerned (typically, measurement of the amount of glucose in blood). Applicable to applications and highly versatile.
1-4.D-グルコースに対する親和性
 本発明のFGDHは、本来の基質であるD-グルコースに対する親和性が高いことが好ましい。親和性が高いことにより、試料中のD-グルコースの濃度が低い場合であっても、上述する触媒反応を進めることができ、より正確なD-グルコース濃度の測定、より短時間での測定、及びより少ない酵素量での測定に資するからである。FGDHのD-グルコースに対する親和性は、Km値によって示される。Km値は、いわゆるミカエリス・メンテン式から求められる値であり、具体的には、上記1-1.に示す活性測定方法においてD-グルコースの濃度を変化させて各濃度における活性を測定し、ラインウィーバー・バーク・プロットを作成することによって求めることができる。
1-4. Affinity for D-glucose The FGDH of the present invention preferably has a high affinity for D-glucose, which is the original substrate. Due to the high affinity, even when the concentration of D-glucose in the sample is low, the above-described catalytic reaction can proceed, and more accurate measurement of D-glucose concentration, measurement in a shorter time, This is because it contributes to measurement with a smaller amount of enzyme. The affinity of FGDH for D-glucose is indicated by the Km value. The Km value is a value obtained from the so-called Michaelis-Menten equation. Specifically, the above 1-1. In the activity measurement method shown in FIG. 4, the D-glucose concentration is varied to measure the activity at each concentration, and a line weaver bark plot is created.
 酵素の反応速度論から判断して、Km値が低いほど、酵素は基質に対する親和性が高く、基質濃度が低い場合でも基質との複合体を形成することができ、より早い速度で触媒反応を進めることができる。本発明のFGDHのD-グルコースに対するKm値は、15mM以下であることが好ましく、より好ましくは14mM以下、更に好ましくは13mM以下、より更に好ましくは12.2mM以下である。 Judging from the reaction kinetics of the enzyme, the lower the Km value, the higher the affinity of the enzyme for the substrate, and even when the substrate concentration is low, the enzyme can form a complex with the substrate. Can proceed. The Km value for D-glucose of FGDH of the present invention is preferably 15 mM or less, more preferably 14 mM or less, still more preferably 13 mM or less, and still more preferably 12.2 mM or less.
1-5.至適活性pH
 本発明のFGDHの至適活性pHは、後述する実施例に示す通り、pH約6であることが好ましい。ここで至適活性pHが6であるとは、典型的に至適活性pHが6付近であり、ある程度の許容可能な幅を有することを意味する。本明細書において、至適活性pHは、後述の実施例に示すように、酵素濃度100U/mLでPIPES-NaOHバッファー中を用いて酵素活性を測定することで求められる。
1-5. Optimum active pH
The optimum active pH of the FGDH of the present invention is preferably about pH 6 as shown in the examples described later. Here, the optimum activity pH of 6 means that the optimum activity pH is typically around 6 and has a certain acceptable width. In the present specification, the optimum activity pH is determined by measuring the enzyme activity using a PIPES-NaOH buffer at an enzyme concentration of 100 U / mL as shown in the Examples described later.
1-6.至適活性温度
 本発明のFGDHの至適活性温度は、45℃であることが好ましい。ここで至適活性温度が45℃とは、典型的に至適活性温度が45℃付近であり、更にある程度の許容可能な幅を有することを意味する。他の観点から、本発明FGDHは、40℃で測定される酵素活性よりも45℃で測定される酵素活性の方が高いことが好ましい。更に別の観点から、本発明のFGDHは、45℃における酵素活性を基準(100%)として、50℃における酵素活性が60%以上であることが好ましく、30℃~50℃の範囲における酵素活性が60%以上であることがより好ましい。本明細書において、至適活性温度は、後述する実施例に示す通り、酵素濃度0.1U/mLでPIPES-NaOHバッファー(pH6.5)中における酵素活性を測定することにより求められる。
1-6. Optimum activity temperature The optimum activity temperature of the FGDH of the present invention is preferably 45 ° C. Here, the optimum activation temperature of 45 ° C. means that the optimum activation temperature is typically around 45 ° C. and further has a certain acceptable width. From another point of view, the FGDH of the present invention preferably has a higher enzyme activity measured at 45 ° C than the enzyme activity measured at 40 ° C. From another viewpoint, the FGDH of the present invention preferably has an enzyme activity at 50 ° C. of 60% or more, based on the enzyme activity at 45 ° C. (100%), and the enzyme activity in the range of 30 ° C. to 50 ° C. Is more preferably 60% or more. In the present specification, the optimum activity temperature is determined by measuring the enzyme activity in a PIPES-NaOH buffer (pH 6.5) at an enzyme concentration of 0.1 U / mL, as shown in the Examples described later.
1-7.pH安定性
 本明細書において、特定のpH条件の下、10U/mLの酵素を25℃で16時間処理した後の残存酵素活性が、処理前の酵素活性と比較して80%以上である場合に、当該酵素は、当該pH条件において安定であると判断する。本発明のFGDHは、pH4.5~8.0の範囲で安定であることが好ましい。本発明のFGDHは、pH6.0~8.0の範囲で前記処理をした場合に、残存酵素活性が90%以上であることがより好ましい。
1-7. pH stability In this specification, when the residual enzyme activity after treating a 10 U / mL enzyme at 25 ° C. for 16 hours under a specific pH condition is 80% or more compared to the enzyme activity before the treatment. In addition, the enzyme is judged to be stable at the pH condition. The FGDH of the present invention is preferably stable in the range of pH 4.5 to 8.0. More preferably, the FGDH of the present invention has a residual enzyme activity of 90% or more when subjected to the treatment in the range of pH 6.0 to 8.0.
1-8.温度安定性
 本明細書において、特定の温度条件の下、適当な緩衝液中(例えば、酢酸カリウムバッファー(pH5.0))で100U/mLの酵素を15分間処理した後の残存酵素活性が、処理前の酵素活性と比較して実質的な低下が認められない(つまり約90%以上を維持する)とき、当該酵素は当該温度条件において安定であると判断する。本発明のFGDHは、0℃~45℃において安定であることが好ましい。また、別の観点から、本発明のFGDHは、45℃で15分間熱処理した後の残存酵素活性が、熱処理前の酵素活性と比較して、90%以上であることが好ましく、更に好ましくは91%以上であり、より更に好ましくは92%以上であり、特に好ましくは93%以上である。
1-8. Temperature stability As used herein, the residual enzyme activity after treating 100 U / mL of enzyme in an appropriate buffer solution (for example, potassium acetate buffer (pH 5.0)) for 15 minutes under a specific temperature condition, When no substantial decrease is observed in comparison with the enzyme activity before the treatment (that is, about 90% or more is maintained), it is determined that the enzyme is stable at the temperature condition. The FGDH of the present invention is preferably stable at 0 ° C to 45 ° C. From another viewpoint, the FGDH of the present invention preferably has a residual enzyme activity of 90% or more, more preferably 91, compared to the enzyme activity before heat treatment after heat treatment at 45 ° C. for 15 minutes. % Or more, still more preferably 92% or more, and particularly preferably 93% or more.
1-9.由来
 本発明のFGDHは、上述する特性を備える限り、その由来は特に制限されないが、例えば、ケカビ科に分類される微生物、より具体的にはムコール(Mucor)属、Absidia属、及びActinomucor属に分類される微生物に由来するものを例示することができる。更に具体的には、Mucor guilliermondii、Mucor prainii、Mucor javanicus、及びMucor circinelloidesに帰属する微生物に由来するものを例示することができる。より更に具体的には、Mucor guilliermondii NBRC9403に由来するものを例示することができる。Mucor guilliermondii NBRC9403を含む多くのMucor属に属する微生物は、NBRC(NITE Biological Resource Center)(独立行政法人製品評価技術基盤機構 バイオテクノロジー本部 生物遺伝資源部門)に保管された菌株であり、所定の手続を経ることによってその分譲を受けることができる。また、土壌や河川・湖沼等の水系又は海洋に存在する微生物や各種動植物の表面または内部に常在する微生物等を単離源することができる。低温環境、火山等の高温環境、深海等の無酸素・高圧・無光環境、油田等特殊な環境に生育する微生物を単離源としてもよい。
1-9. Origin The origin of the FGDH of the present invention is not particularly limited as long as it has the above-mentioned characteristics. For example, microorganisms classified into the family Aceraceae, more specifically, the genus Mucor, Absidia, and Actinomucor The thing derived from the microorganisms classified can be illustrated. More specifically, those derived from microorganisms belonging to Mucor guilliermondii, Mucor prainii, Mucor javanicus, and Mucor circinelloides can be exemplified. More specifically, those derived from Mucor guilliermondii NBRC9403 can be exemplified. Many of the microorganisms belonging to the genus Mucor, including Mucor guilliermondii NBRC9403, are strains stored in NBRC (NITE Biological Resource Center) (Biotechnology Division, Biotechnology Headquarters, National Institute of Technology and Evaluation). After that, you can get the sale. In addition, microorganisms present in water systems such as soil, rivers and lakes or in the ocean, microorganisms existing on the surface or inside various animals and plants, and the like can be isolated. Microorganisms that grow in a low temperature environment, a high temperature environment such as a volcano, an oxygen-free, high-pressure, no-light environment such as the deep sea, and a special environment such as an oil field may be used as the isolation source.
2.FGDHの製造方法
 本発明のFGDHの製造方法は、本発明のFGDHの取得が可能である限り特に制限されず、例えば、本発明のFGDHを産生する微生物を培養して、その培養上清又は菌体内から各種の精製を実施することにより製造することができる。本発明のFGDHの代表例は、後述する実施例に示す通り、ムコール(Mucor)属に分類される微生物から単離された。よって、本発明のFGDHは、例えば、ケカビ科に分類される微生物、より具体的には、Mucor属、Absidia属、Actinomucor属等)に属する微生物、更に具体的にはMucor guilliermondii、Mucor prainii、Mucor javanicus、Mucor circinelloides等に属する微生物、より更に具体的には、Mucor guilliermondii NBRC9403から単離することにより製造することができる。
2. Production method of FGDH The production method of FGDH of the present invention is not particularly limited as long as the FGDH of the present invention can be obtained. For example, a microorganism producing the FGDH of the present invention is cultured, and its culture supernatant or fungus It can be produced by performing various purifications from the body. A representative example of FGDH of the present invention was isolated from a microorganism classified into the genus Mucor, as shown in Examples described later. Therefore, the FGDH of the present invention is, for example, a microorganism classified into the family Aceraceae, more specifically a microorganism belonging to the genus Mucor, Absidia, Actinomucor, etc., and more specifically Mucor guilliermondii, Mucor prainii, Mucor. It can be produced by isolation from microorganisms belonging to javanicus, Mucor circinelloides, and more specifically from Mucor guilliermondii NBRC9403.
 本発明のFGDHを産生する微生物の培養は、本発明のFGDHが菌体内又は菌体外に産生される限り特に制限されないが、例えば、その生育に適した栄養培地にて培養することができる。ケカビ科に分類される微生物の培養は、微生物の栄養生理的性質を考慮して培養条件を選択すればよい。多くの場合は液体培養で行い、工業的には通気攪拌培養を行うのが有利である。ただし、生産性を考えた場合に、固体培養で行った方が有利な場合もある。 The culture of the microorganism producing the FGDH of the present invention is not particularly limited as long as the FGDH of the present invention is produced inside or outside the fungus body. For example, it can be cultured in a nutrient medium suitable for its growth. The culture conditions for microorganisms classified into the family Aceraceae may be selected in consideration of the nutritional physiological properties of the microorganisms. In many cases, it is advantageous to use liquid culture and industrially perform aeration and agitation culture. However, when productivity is considered, it may be advantageous to carry out by solid culture.
 培地の栄養源としては,微生物の培養に通常用いられるものが広く使用され得る。炭素源としては資化可能な炭素化合物であればよく、例えば、グルコース、シュークロース、ラクトース、マルトース、ラクトース、糖蜜、ピルビン酸等が使用される。また、窒素源としては利用可能な窒素化合物であればよく、例えば、ペプトン、肉エキス、酵母エキス、カゼイン加水分解物、大豆粕アルカリ抽出物等が使用される。その他、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カリウム、鉄、マンガン、亜鉛等の塩類、特定のアミノ酸、特定のビタミン等が必要に応じて使用される。 As a nutrient source of a medium, those commonly used for culturing microorganisms can be widely used. Any carbon compound that can be assimilated may be used as the carbon source. For example, glucose, sucrose, lactose, maltose, lactose, molasses, pyruvic acid and the like are used. The nitrogen source may be any available nitrogen compound. For example, peptone, meat extract, yeast extract, casein hydrolyzate, soybean cake alkaline extract, and the like are used. In addition, phosphates, carbonates, sulfates, magnesium, calcium, potassium, iron, manganese, zinc and other salts, specific amino acids, specific vitamins and the like are used as necessary.
 培養温度は菌が成育し、FGDHを生産する範囲で適宜変更し得るが、好ましくは20~30℃程度である。培養時間は容量等条件によって多少異なるが、FGDHが最高収量に達する時期を見計らって適当時期に培養を完了すればよく、通常は24~72時間程度である。培地のpHは菌が発育し、FGDHを生産する範囲で適宜変更し得るが、好ましくはpH5.0~7.0程度の範囲である。 The culture temperature can be appropriately changed within the range in which the bacteria grow and produce FGDH, but is preferably about 20 to 30 ° C. Although the culture time varies slightly depending on the conditions such as the volume, the culture may be completed at an appropriate time in consideration of the time when FGDH reaches the maximum yield, and is usually about 24 to 72 hours. The pH of the medium can be appropriately changed within the range where the bacteria grow and produce FGDH, but is preferably in the range of about pH 5.0 to 7.0.
 本発明のFGDHの微生物からの単離は、後述する実施例を参考に、常法に従って実施することができる。培養物中のFGDHを生産する菌体を含む培養液をそのまま採取し、それをFGDHとして利用することもできるが、一般には、常法に従って、FGDHが培養液中に存在する場合はろ過、遠心分離等により、FGDH含有溶液と微生物菌体とを分離した後に利用される。FGDHが菌体内に存在する場合には、得られた培養物からろ過または遠心分離等の手段により菌体を採取し、次いで、この菌体を機械的方法またはリゾチーム等の酵素的方法で破壊し、また、必要に応じて、EDTA等のキレート剤及び界面活性剤を添加してFGDHを可溶化し、水溶液として分離採取することができる。 The isolation of FGDH of the present invention from microorganisms can be carried out according to a conventional method with reference to the examples described later. A culture solution containing microbial cells producing FGDH in the culture can be collected as it is and used as FGDH. However, generally, when FGDH is present in the culture solution, filtration and centrifugation are performed according to a conventional method. It is used after separating the FGDH-containing solution and the microbial cells by separation or the like. When FGDH is present in the microbial cells, the microbial cells are collected from the obtained culture by means of filtration or centrifugation, and then the microbial cells are destroyed by a mechanical method or an enzymatic method such as lysozyme. Further, if necessary, a chelating agent such as EDTA and a surfactant can be added to solubilize FGDH, and it can be separated and collected as an aqueous solution.
 上記のようにして得られたFGDH含有溶液を、例えば減圧濃縮、膜濃縮、さらに硫酸アンモニウム、硫酸ナトリウム等の塩析処理、あるいは親水性有機溶媒、例えばメタノール、エタノール、アセトン等による分別沈殿法により沈殿せしめればよい。また、加熱処理や等電点処理も有効な精製手段である。その後、吸着剤あるいはゲルろ過剤等によるゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティクロマトグラフィーを行うことにより、精製されたFGDHを得ることができる。 The FGDH-containing solution obtained as described above is precipitated by, for example, vacuum concentration, membrane concentration, salting-out treatment with ammonium sulfate, sodium sulfate or the like, or fractional precipitation with a hydrophilic organic solvent such as methanol, ethanol, acetone or the like. You just have to let them know. Heat treatment and isoelectric point treatment are also effective purification means. Thereafter, purified FGDH can be obtained by performing gel filtration with an adsorbent or a gel filter, adsorption chromatography, ion exchange chromatography, and affinity chromatography.
 例えば、セファデックス(Sephadex)ゲル(GEヘルスケア バイオサイエンス社製)等によるゲルろ過、DEAEセファロースCL-6B (GEヘルスケア バイオサイエンス社製)、オクチルセファロースCL-6B (GEヘルスケア バイオサイエンス社製)等のカラムクロマトグラフィーにより分離、精製し、精製酵素標品を得ることができる。該精製酵素標品は、電気泳動(SDS-PAGE)的に単一のバンドを示す程度に純化されていることが好ましい。 For example, gel filtration using Sephadex gel (GE Healthcare Bioscience), DEAE Sepharose CL-6B (GE Healthcare Bioscience), Octyl Sepharose CL-6B (GE Healthcare Bioscience) And purified by column chromatography such as) to obtain a purified enzyme preparation. The purified enzyme preparation is preferably purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
 なお、培養液からのFGDH酵素活性を有するタンパク質の採取(抽出、精製等)にあたっては、FGDH酵素活性、マルトース反応性、熱安定性等上記1.に示した特性を指標に実施することができる。 In collecting (extracting, purifying, etc.) a protein having FGDH enzyme activity from the culture solution, FGDH enzyme activity, maltose reactivity, thermal stability, etc. The characteristics shown in (1) can be implemented as indicators.
3.グルコースの測定方法
 グルコースデヒドロゲナーゼを用いたグルコースの測定方法は既に当該技術分野において確立されている。よって、公知の方法に従い、本発明のFGDHを用いて、各種試料中のグルコースの量又は濃度を測定することができる。本発明のFGDHを用いてグルコースの濃度又は量を測定する限り、その態様は特に制限されないが、例えば、本発明のFGDHを試料中のグルコースに作用させ、グルコースの脱水素反応に伴う電子受容体(例えば、DCPIP)の構造変化を吸光度で測定することにより実施することができる。より具体的には、上記1-1.に示す方法に従って、実施することができる。本発明に従って、グルコース濃度の測定は、試料に本発明のFGDHを添加すること、又は添加して混合することにより実施することができる。
3. Method for Measuring Glucose A method for measuring glucose using glucose dehydrogenase has already been established in the art. Therefore, according to a known method, the amount or concentration of glucose in various samples can be measured using the FGDH of the present invention. As long as the concentration or amount of glucose is measured using the FGDH of the present invention, the mode is not particularly limited. For example, the electron acceptor accompanying the dehydrogenation reaction of glucose by causing the FGDH of the present invention to act on glucose in a sample. It can be carried out by measuring the structural change of (for example, DCPIP) by absorbance. More specifically, the above 1-1. According to the method shown in FIG. According to the present invention, the glucose concentration can be measured by adding the FGDH of the present invention to a sample, or by adding and mixing.
 グルコース濃度の測定は、例えば、以下のようにして実施することができる。恒温セルに緩衝液を入れ、一定温度に維持する。メディエーターとしては、フェリシアン化カリウム、フェナジンメトサルフェート等を用いることができる。作用電極として本発明のFGDHを固定化した電極を用い、対極(例えば白金電極)および参照電極(例えばAg/AgCl電極)を用いる。カーボン電極に一定の電圧を印加して、電流が定常になった後、グルコースを含む試料を加えて電流の増加を測定する。標準濃度のグルコース溶液により作製したキャリブレーションカーブに従い、試料中のグルコース濃度を計算することができる。 The measurement of glucose concentration can be performed as follows, for example. Put buffer in constant temperature cell and maintain at constant temperature. As the mediator, potassium ferricyanide, phenazine methosulfate, or the like can be used. An electrode on which the FGDH of the present invention is immobilized is used as a working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing glucose is added and the increase in current is measured. The glucose concentration in the sample can be calculated according to a calibration curve prepared with a standard concentration glucose solution.
4.グルコースを測定用プロダクト
 本発明のFGDHは、グルコースアッセイキットやグルコースセンサー等のグルコースの濃度又は量を測定するための種々の形態のプロダクトとすることができる。
4). Product for Measuring Glucose The FGDH of the present invention can be made into various forms of products for measuring the concentration or amount of glucose, such as a glucose assay kit and a glucose sensor.
 本発明のグルコースアッセイキットは、本発明のFGDHを少なくとも1回のアッセイに十分な量で含む。典型的には、キットは、本発明のFGDHに加えて、アッセイに必要な緩衝液、メディエーター、キャリブレーションカーブ作製のためのグルコース標準溶液、ならびに使用の指針を含む。本発明のFGDHは種々の形態で、例えば、凍結乾燥された試薬として、または適切な保存溶液中の溶液として提供することができる。 The glucose assay kit of the present invention contains the FGDH of the present invention in an amount sufficient for at least one assay. Typically, the kit includes the FGDH of the present invention, plus buffers necessary for the assay, mediators, glucose standard solution for creating a calibration curve, and directions for use. The FGDH of the present invention can be provided in various forms, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
 本発明のグルコースセンサーは、本発明のFGDHが電極に固定されたグルコースセンサーである。電極としては、カーボン電極、金電極、白金電極等を用い、この電極上に本発明の酵素を固定化する。固定化方法としては、架橋試薬を用いる方法、高分子マトリックス中に封入する方法、透析膜で被覆する方法、光架橋性ポリマー、導電性ポリマー、酸化還元ポリマー等があり、あるいはフェロセンあるいはその誘導体に代表される電子メディエーターとともにポリマー中に固定あるいは電極上に吸着固定してもよく、またこれらを組み合わせて用いてもよい。典型的には、グルタルアルデヒドを用いて本発明のFGDHをカーボン電極上に固定化した後、アミン基を有する試薬で処理してグルタルアルデヒドをブロッキングする。 The glucose sensor of the present invention is a glucose sensor in which the FGDH of the present invention is fixed to an electrode. As an electrode, a carbon electrode, a gold electrode, a platinum electrode or the like is used, and the enzyme of the present invention is immobilized on this electrode. Examples of immobilization methods include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a photocrosslinkable polymer, a conductive polymer, a redox polymer, etc., or ferrocene or a derivative thereof. It may be fixed in a polymer or adsorbed and fixed on an electrode together with a representative electron mediator, or a combination thereof may be used. Typically, FGDH of the present invention is immobilized on a carbon electrode using glutaraldehyde, and then treated with a reagent having an amine group to block glutaraldehyde.
 なお、本明細書において「プロダクト」とは、使用者が当該用途を実行する目的で用いる1セットのうち一部または全部を構成する製品であって、本発明のフラビン依存性グルコース脱水素酵素を含むものを意味する。 In the present specification, the “product” is a product constituting a part or all of one set used by the user for the purpose of carrying out the use, and the flavin-dependent glucose dehydrogenase of the present invention is used. It means to include.
 以下に、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be described in detail by way of examples.
 [実施例1]菌株の復元
 独立行政法人製品評価技術基盤機構に保存されているムコール(Mucor)属の菌株はL-乾燥標品であったため、アンプルを開封し、復元水100μLを注入し、乾燥菌体を懸濁した後、懸濁液を復元培地に滴下し、25℃で3日間から7日間、静置培養することで菌株を復元させて使用した。復元水としては、滅菌水(オートクレーブで120℃、20分間処理した蒸留水)を用い、復元培地としては、DP培地(デキストリン 2.0%、ポリペプトン 1.0%、KH2PO4 1.0%、アガロース 1.5%)を使用した。
[Example 1] Reconstruction of strain Since the strain of the genus Mucor stored in the National Institute of Technology and Evaluation Technology was an L-dried sample, the ampoule was opened and 100 μL of reconstituted water was injected. After suspending the dried cells, the suspension was dropped into the reconstitution medium, and the strain was reconstituted by static culture at 25 ° C. for 3 to 7 days. As reconstitution water, sterilized water (distilled water treated at 120 ° C. for 20 minutes in an autoclave) was used, and as reconstitution medium, DP medium (dextrin 2.0%, polypeptone 1.0%, KH2PO4 1.0%, agarose) 1.5%) was used.
 [実施例2]粗酵素液の取得
 小麦胚芽2g、水2mLを含む培地をオートクレーブで120℃、20分間、滅菌し、水分含量が100%となるように調整した小麦胚芽培地を調製した。この固体培地に実施例1で復元させたムコール(Mucor)属の菌株を一白金耳植菌し、25℃で3日間から7日間程度、静置培養した。培養後、2mMのEDTAを含む50mMリン酸カリウム緩衝液(pH6.0)を菌体が生育した培地に4ml添加し、ボルテックスで十分に懸濁した。懸濁液に少量のガラスビーズを加えた後、ビーズショッカー(安井器械(株)製)で3,000rpm、3分間、2回の条件で破砕した。破砕液は4℃、2,000×g、5分間の条件で遠心分離し、上清と残渣に分離し、回収した上清を粗酵素液とした。
Example 2 Acquisition of Crude Enzyme Solution A wheat germ medium prepared by sterilizing a medium containing 2 g of wheat germ and 2 mL of water in an autoclave at 120 ° C. for 20 minutes and adjusting the water content to 100% was prepared. This solid medium was inoculated with one platinum ear of the strain of the genus Mucor reconstituted in Example 1 and statically cultured at 25 ° C. for about 3 to 7 days. After the culture, 4 ml of 50 mM potassium phosphate buffer (pH 6.0) containing 2 mM EDTA was added to the medium on which the cells had grown, and the suspension was sufficiently suspended by vortexing. After adding a small amount of glass beads to the suspension, the suspension was crushed under a condition of 3,000 rpm for 3 minutes twice with a bead shocker (manufactured by Yasui Kikai Co., Ltd.). The disrupted solution was centrifuged at 4 ° C., 2,000 × g for 5 minutes, separated into a supernatant and a residue, and the recovered supernatant was used as a crude enzyme solution.
 [実施例3] GDH活性の確認
 実施例2で回収した粗酵素液中のGDH活性を、上述したGDH測定方法を用いて調査した。ムコール(Mucor)属の粗酵素について、GDH活性の有無を調査した結果を表1に示す。活性の有無は、上記1-1.に示す方法に従って実施した。
[Example 3] Confirmation of GDH activity The GDH activity in the crude enzyme solution recovered in Example 2 was investigated using the GDH measurement method described above. Table 1 shows the results of investigating the presence or absence of GDH activity for crude enzymes of the genus Mucor. The presence or absence of activity is determined according to 1-1. It carried out according to the method shown in.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 その結果、Mucor guilliermondii NBRC9403由来の粗酵素液についてGDH活性を検出した。 As a result, GDH activity was detected in the crude enzyme solution derived from Mucor guilliermondii NBRC9403.
 [実施例4] Mucor guilliermondii NBRC9403由来FGDHの精製
 50mLのDP液体培地を500mL容量の坂口フラスコに入れ、オートクレーブで滅菌し、前培養用の培地とした。そこに実施例1で復元したMucor guilliermondii NBRC9403を一白金耳植菌し、25℃、180rpmで3日間振とう培養し、種培養液を得た。次に、6.0Lの生産培地(イーストイクストラクト 2.0%、グルコース 1%、pH6.0)を10L容量のジャーファーメンターに入れ、オートクレーブで滅菌し、本培養培地を調整した。そこに50mLの種培養液を植菌し、培養温度25℃、攪拌速度600rpm、通気量2.0L/分、管内圧0.2MPaの条件で3日間培養した。その後、培養液をろ布でろ過し、菌体を回収した。得られた菌体を50mMリン酸カリウム緩衝液(pH6.0)に懸濁した。
[Example 4] Purification of FGDH derived from Mucor guilliermondii NBRC9403 50 mL of DP liquid medium was placed in a 500 mL Sakaguchi flask and sterilized by autoclaving to obtain a medium for preculture. One platinum ear of the Mucor guilliermondii NBRC9403 restored in Example 1 was inoculated there, and cultured with shaking at 25 ° C. and 180 rpm for 3 days to obtain a seed culture solution. Next, 6.0 L of production medium (yeast extract 2.0%, glucose 1%, pH 6.0) was placed in a 10 L jar fermenter and sterilized by autoclaving to prepare a main culture medium. 50 mL of the seed culture solution was inoculated there, and cultured for 3 days under the conditions of a culture temperature of 25 ° C., a stirring speed of 600 rpm, an aeration rate of 2.0 L / min, and a tube pressure of 0.2 MPa. Thereafter, the culture solution was filtered with a filter cloth, and the cells were collected. The obtained bacterial cells were suspended in 50 mM potassium phosphate buffer (pH 6.0).
 懸濁液をフレンチプレス(Niro Soavi製)に流速160mL/分で送液し、1000~1300barで破砕した。続いて、破砕液に硫酸アンモニウム(住友化学(株)製)を0.4飽和になるように徐々に添加して、室温で30分間攪拌した後、ろ過助剤(昭和化学工業(株))を用いて懸濁物質を除去し、清澄な濾液を得た。次に分画分子量10,000のUF膜(ミリポア(株)製)を用いて濃縮し、濃縮液をSephadex G-25 のゲルを用いて脱塩した。その後、脱塩液に0.5飽和になるように硫酸アンモニウムを徐々に添加し、予め0.5飽和の硫酸アンモニウムを含む50mMリン酸カリウム緩衝液(pH6.0)で平衡化した400mLのSPセファロースFastFlow(GEヘルスケア製)カラムにかけ、50mMリン酸緩衝液(pH6.0)のリニアグラジエントで溶出させた。そして、溶出されたGDH画分を分画分子量10,000の中空糸膜(スペクトラムラボラトリーズ製)で濃縮後、濃縮液をSephadex G-25 のゲルを用いて脱塩した。その後、DEAEセファロースFast Flow(GEヘルスケア製)カラムにかけ、精製酵素を得た。 The suspension was fed to a French press (manufactured by Niro Soavi) at a flow rate of 160 mL / min and crushed at 1000 to 1300 bar. Subsequently, ammonium sulfate (manufactured by Sumitomo Chemical Co., Ltd.) was gradually added to the crushed liquid so as to become 0.4 saturation, and stirred at room temperature for 30 minutes, and then a filter aid (Showa Chemical Industry Co., Ltd.) was added. Was used to remove suspended material and a clear filtrate was obtained. Next, the mixture was concentrated using a UF membrane (Millipore Co., Ltd.) having a molecular weight cut-off of 10,000, and the concentrated solution was desalted using a Sephadex G-25 gel. Thereafter, ammonium sulfate was gradually added to the desalted solution to 0.5 saturation, and 400 mL of SP Sepharose FastFlow previously equilibrated with 50 mM potassium phosphate buffer (pH 6.0) containing 0.5 saturated ammonium sulfate. It was applied to a column (manufactured by GE Healthcare) and eluted with a linear gradient of 50 mM phosphate buffer (pH 6.0). The eluted GDH fraction was concentrated using a hollow fiber membrane (manufactured by Spectrum Laboratories) having a molecular weight cut-off of 10,000, and the concentrated solution was desalted using a Sephadex G-25 gel. Then, it applied to DEAE Sepharose Fast Flow (made by GE Healthcare) column, and purified enzyme was obtained.
 精製酵素液の280nmの吸光度からタンパク質濃度を測定し精製酵素の比活性を算出した。分光光度計はU-3210(日立ハイテク性)を使用した。その結果、精製酵素の比活性は173U/A280であった。 The protein concentration was measured from the absorbance at 280 nm of the purified enzyme solution, and the specific activity of the purified enzyme was calculated. The spectrophotometer used was U-3210 (Hitachi High-Tech). As a result, the specific activity of the purified enzyme was 173 U / A 280 .
 [実施例5] 糖タンパク質の分子量
 実施例4で精製したFGDH酵素をSDS-ポリアクリルアミドゲル電気泳動法(Phast Gel 10-15% Phastsystem GEヘルスケア製)に供してその分子量を測定した。タンパク質分子量マーカーとしては、フォスフォリラーゼb(97,400ダルトン)、ウシ血清アルブミン(66,267ダルトン)、アルドラーゼ(42,400ダルトン)、カルボニックアンヒドラーゼ(30,000ダルトン)、トリプシンインヒビター(20,100ダルトン)を用いた。
[Example 5] Molecular Weight of Glycoprotein The FGDH enzyme purified in Example 4 was subjected to SDS-polyacrylamide gel electrophoresis (Past Gel 10-15%, manufactured by Pastsystem GE Healthcare), and its molecular weight was measured. Protein molecular weight markers include phosphorylase b (97,400 daltons), bovine serum albumin (66,267 daltons), aldolase (42,400 daltons), carbonic anhydrase (30,000 daltons), trypsin inhibitor (20 , 100 Dalton).
 これらのマーカーの移動度より求めた分子量は約119,000ダルトンから約195,000ダルトンであった。結果を図1に示す。 The molecular weight determined from the mobility of these markers was about 119,000 daltons to about 195,000 daltons. The results are shown in FIG.
 [実施例6]酵素のペプチド部分の分子量
 実施例4で精製したFGDH酵素を100℃、10分間、加熱処理して変性させた後、5UのN-グリコシダーゼF(ロシュ・ダイアグノスティクス製)で37℃、6時間処理し、タンパク質に付加している糖鎖を分解した。その後、実施例5と同様にSDS-ポリアクリルアミドゲル電気泳動法で測定を行った。タンパク質分子量マーカーの移動度より分子量は約88,000ダルトンであった。結果を図2に示す。
[Example 6] Molecular Weight of Peptide Part of Enzyme The FGDH enzyme purified in Example 4 was denatured by heating at 100 ° C for 10 minutes, and then 5 U of N-glycosidase F (Roche Diagnostics) was used. The treatment was carried out at 37 ° C. for 6 hours to decompose the sugar chain added to the protein. Thereafter, the measurement was performed by SDS-polyacrylamide gel electrophoresis in the same manner as in Example 5. The molecular weight was about 88,000 daltons based on the mobility of the protein molecular weight marker. The results are shown in FIG.
 [実施例7]基質特異性
 実施例4で精製したFGDH酵素について、上記1-1.に示すGDHの活性測定法に従い、基質としてD-グルコースを用いたときの活性と、比較対象の糖を用いたときの見かけの活性とを比較することにより、基質特異性を調査した。比較対象の糖としてはマルトース、D-ガラクトース、D-キシロースをそれぞれ使用した。基質濃度50mM、pH6.5、37℃の条件で測定した。結果を表2に示す。
[Example 7] Substrate specificity Regarding the FGDH enzyme purified in Example 4, the above 1-1. Substrate specificity was investigated by comparing the activity when D-glucose was used as the substrate with the apparent activity when the comparative sugar was used according to the GDH activity measurement method shown in FIG. Maltose, D-galactose, and D-xylose were used as sugars for comparison. Measurement was performed under the conditions of a substrate concentration of 50 mM, pH 6.5, and 37 ° C. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 その結果、本発明のFGDHの基質特異性は、D-グルコースに対する活性値を100%とした場合、マルトース、D-ガラクトース、D-キシロースに対する見かけの活性は、いずれも3%以下であることが示された。 As a result, the substrate specificity of FGDH of the present invention is that the apparent activity against maltose, D-galactose and D-xylose is 3% or less when the activity value against D-glucose is 100%. Indicated.
 [実施例8]至適活性pH
 実施例4で得られた精製酵素液(100U/mL)を用いて、至適pHを調べた。緩衝溶液には50mM PIPES-NaOH緩衝液(pH6.0-pH7.5)を用い、37℃でその見かけの活性を求めた。結果を図3に示す。
[Example 8] Optimum active pH
Using the purified enzyme solution (100 U / mL) obtained in Example 4, the optimum pH was examined. The buffer solution was 50 mM PIPES-NaOH buffer (pH 6.0-pH 7.5), and the apparent activity was determined at 37 ° C. The results are shown in FIG.
 その結果、本発明のFGDHは、pH6.0から7.5の範囲でpH0.5刻みで調製したPIPES-NaOHバッファー中において、pH6.0で最も高い見かけの活性値を示したことから、至適pHはpH6.0であることが示された。 As a result, FGDH of the present invention showed the highest apparent activity value at pH 6.0 in the PIPES-NaOH buffer prepared at pH 0.5 increments in the range of pH 6.0 to 7.5. The appropriate pH was shown to be pH 6.0.
 [実施例9]至適活性温度
 実施例4で得られた精製酵素液(0.1U/mL)を用いて、至適温度を調べた。緩衝溶液には42mM PIPES-NaOH緩衝液(pH6.5)を用い、25℃、30℃、37℃、45℃、50℃における見かけの活性を求めた。結果を図4に示す。
[Example 9] Optimal activity temperature Using the purified enzyme solution (0.1 U / mL) obtained in Example 4, the optimal temperature was examined. The apparent activity at 25 ° C., 30 ° C., 37 ° C., 45 ° C., and 50 ° C. was determined using 42 mM PIPES-NaOH buffer (pH 6.5) as the buffer solution. The results are shown in FIG.
 その結果、本発明のFGDHは、25℃、30℃、35℃、40℃、45℃、50℃で比較検討した中において、45℃で最も高い見かけの活性値を示したことから、至適温度は45℃であることが示された。 As a result, the FGDH of the present invention showed the highest apparent activity value at 45 ° C. among the comparative studies at 25 ° C., 30 ° C., 35 ° C., 40 ° C., 45 ° C., and 50 ° C. The temperature was shown to be 45 ° C.
 [実施例10]pH安定性
実施例4で得られたFGDH酵素液(10U/mL)を用いて、pH安定性を調べた。100mM 酢酸-ナトリウム緩衝液(pH3.0-pH5.5:図中四角黒色印でプロット)、100mM リン酸-カリウム緩衝液(pH5.5-pH7.5:図中四角白色印でプロット)、100mM トリス-HCl緩衝液(pH7.5-pH9.0図中三角白色印でプロット)、100mM PIPES-NaOH緩衝液(pH6.5-pH7.5:図中三角黒色印でプロット)を用い、25℃、16時間処理した後の見かけの活性の残存率を測定した。結果を図5に示す。
[Example 10] pH stability Using the FGDH enzyme solution (10 U / mL) obtained in Example 4, pH stability was examined. 100 mM acetate-sodium buffer (pH 3.0-pH 5.5: plotted with black squares in the figure), 100 mM phosphate-potassium buffer (pH 5.5-pH 7.5: plotted with white squares in the figure), 100 mM Using Tris-HCl buffer (pH 7.5-pH 9.0, plotted with triangular white mark), 100 mM PIPES-NaOH buffer (pH 6.5-pH 7.5: plotted with triangular black mark), 25 ° C. The residual rate of apparent activity after 16 hours of treatment was measured. The results are shown in FIG.
 その結果、見かけの活性が最大の残存率を示したpH6.5の残存率を100%とした場合、相対値で80%以上の残存率を示したpH範囲はpH4.5-pH8.0の範囲であった。このことから、安定pH域はpH4.5-pH8.0であることが示された。 As a result, when the residual ratio at pH 6.5 where the apparent activity showed the maximum residual ratio was taken as 100%, the pH range where the residual ratio was 80% or higher as a relative value was pH 4.5-pH 8.0. It was in range. From this, it was shown that the stable pH range is pH 4.5-pH 8.0.
 [実施例11]熱安定性
実施例4で得られた精製酵素液(100U/mL)を用いて、熱安定性を調べた。100mM酢酸カリウム緩衝液(pH5.0)を用いて、FGDH酵素液を各温度(4℃、30℃、40℃、45℃、50℃、60℃)で15分間処理した後、見かけの活性の残存率を測定した。結果を図6に示す。
[Example 11] Thermal stability Using the purified enzyme solution (100 U / mL) obtained in Example 4, the thermal stability was examined. After treating the FGDH enzyme solution with each of the temperatures (4 ° C, 30 ° C, 40 ° C, 45 ° C, 50 ° C, 60 ° C) for 15 minutes using 100 mM potassium acetate buffer (pH 5.0), the apparent activity The residual rate was measured. The results are shown in FIG.
 その結果、本発明のFGDHは45℃に93%の残存率を示していた。このことから、45℃以下で安定であることが示された。 As a result, the FGDH of the present invention showed a residual rate of 93% at 45 ° C. From this, it was shown that it is stable at 45 ° C. or lower.
 [実施例12]D―グルコースに対するミカエリス-メンテン(Michaelis-Menten,Km)定数の測定
 上述したGDHの活性測定法において、基質であるD-グルコースの濃度を変化させて見かけの活性測定を行い、Lineweaver-burk plotによりKm値を算出した。その結果、本発明のFGDHのD-グルコースに対するKm値は、12.2mMであることが判明した。
[Example 12] Measurement of Michaelis-Menten (Km) constant for D-glucose In the above-described GDH activity measurement method, the concentration of D-glucose as a substrate was changed, and the apparent activity was measured. The Km value was calculated by Lineweaver-burk plot. As a result, it was found that the Km value for D-glucose of FGDH of the present invention was 12.2 mM.
 [実施例13]フラビン結合型酵素であることの確認
 実施例4で精製した酵素を10mM 酢酸緩衝液(pH5.0)で透析し、250-800nmにおける吸収スペクトルを分光光度計U-3210(日立ハイテクノロジーズ社製)により測定した。その結果、波長340~350nm付近および波長420~430nm付近に極大を示す2つのピークが確認された。このような吸収スペクトルの形状から、本発明のGDHがフラビン結合型タンパク質であることが強く示唆された。
[Example 13] Confirmation of flavin-binding enzyme The enzyme purified in Example 4 was dialyzed against 10 mM acetate buffer (pH 5.0), and the absorption spectrum at 250-800 nm was measured with a spectrophotometer U-3210 (Hitachi). Measured by High Technologies). As a result, two peaks having local maximums were confirmed in the vicinity of a wavelength of 340 to 350 nm and a wavelength of 420 to 430 nm. Such a shape of the absorption spectrum strongly suggested that the GDH of the present invention is a flavin-binding protein.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。
特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
The present invention is not limited to the description of the embodiments and examples of the invention described above.
Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
 本明細書の中で明示した論文、公開特許公報、及び特許公報等の内容は、その全ての内容を援用によって本書に取り込まれる。 The contents of the papers, published patent gazettes, patent gazettes, etc. specified in the present specification are incorporated into this document by using all the contents.
 本発明のFGDHは基質特異性に優れ、グルコース量をより正確に測定することを可能にする。従って本発明のFGDHは血糖値の測定等に好適といえる。 FGDH of the present invention is excellent in substrate specificity, and enables the glucose amount to be measured more accurately. Therefore, it can be said that the FGDH of the present invention is suitable for blood glucose level measurement and the like.

Claims (10)

  1. 以下の特性(1)及び(2)を備えるフラビン結合型グルコース脱水素酵素。
    (1)分子量: SDS-ポリアクリルアミド電気泳動で測定した該酵素のポリペプチド部分の分子量が約88kDaである。
    (2)基質特異性: D-グルコースに対する反応性を100%としたときのD-キシロースに対する反応性が1.3%以下である。
    A flavin-binding glucose dehydrogenase having the following characteristics (1) and (2):
    (1) Molecular weight: The molecular weight of the polypeptide portion of the enzyme measured by SDS-polyacrylamide electrophoresis is about 88 kDa.
    (2) Substrate specificity: The reactivity to D-xylose is 1.3% or less when the reactivity to D-glucose is 100%.
  2. 更に以下の特性(3)を備える、請求項1に記載のフラビン結合型グルコース脱水素酵素。
    (3)Km値: D-グルコースに対するKm値が15mM以下。
    The flavin-binding glucose dehydrogenase according to claim 1, further comprising the following property (3):
    (3) Km value: Km value for D-glucose is 15 mM or less.
  3. 更に下記の特性(4)を備える、請求項1又は2に記載のフラビン結合型グルコース脱水素酵素。
    (4)至適活性pH:pH6
    Furthermore, the flavin binding glucose dehydrogenase of Claim 1 or 2 provided with the following characteristic (4).
    (4) Optimum active pH: pH 6
  4. 更に下記の特性(5)を備える、請求項1~3のいずれかに記載のフラビンジヌクレオチド依存性グルコース脱水素酵素。
    (5)至適活性温度:45℃
    The flavin dinucleotide-dependent glucose dehydrogenase according to any one of claims 1 to 3, further comprising the following property (5):
    (5) Optimal activity temperature: 45 ° C
  5. 更に下記の特性(6)を備える、請求項1~4のいずれかに記載のフラビンジヌクレオチド依存性グルコース脱水素酵素。
    (6)pH安定性: pH4.5~8.0の範囲で安定
    The flavin dinucleotide-dependent glucose dehydrogenase according to any one of claims 1 to 4, further comprising the following property (6):
    (6) pH stability: stable in the range of pH 4.5 to 8.0
  6. 更に下記の特性(7)を備える、請求項1~5のいずれかに記載のフラビンジヌクレオチド依存性グルコース脱水素酵素。
    (7)温度安定性: 45℃の温度で15分間維持した後の残存酵素活性率が90%以上。
    The flavin dinucleotide-dependent glucose dehydrogenase according to any one of claims 1 to 5, further comprising the following property (7):
    (7) Temperature stability: The residual enzyme activity rate after maintaining at a temperature of 45 ° C. for 15 minutes is 90% or more.
  7. (1)ムコール属に分類される微生物を培養すること、及び
    (2)(1)で得られた培養物からグルコース脱水素酵素活性を有するタンパク質を単離すること、
    を含む、請求項1~6のいずれかに記載のフラビン結合型グルコース脱水素酵素の製造方法。
    (1) culturing a microorganism classified into the genus Mucor, and (2) isolating a protein having glucose dehydrogenase activity from the culture obtained in (1),
    The method for producing a flavin-binding glucose dehydrogenase according to any one of claims 1 to 6, comprising
  8. 請求項1~6のいずれかに記載のフラビン結合型グルコース脱水素酵素を用いるグルコース濃度の測定方法。 A method for measuring a glucose concentration using the flavin-binding glucose dehydrogenase according to any one of claims 1 to 6.
  9. 請求項1~6のいずれかに記載のフラビン結合型グルコース脱水素酵素を含むグルコースアッセイキット。 A glucose assay kit comprising the flavin-binding glucose dehydrogenase according to any one of claims 1 to 6.
  10. 請求項1~6のいずれかに記載のフラビン結合型グルコース脱水素酵素を含むグルコースセンサー。
     
    A glucose sensor comprising the flavin-binding glucose dehydrogenase according to any one of claims 1 to 6.
PCT/JP2012/075903 2011-10-06 2012-10-05 Novel glucose dehydrogenase WO2013051682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011222278A JP2013081399A (en) 2011-10-06 2011-10-06 New glucose dehydrogenase
JP2011-222278 2011-10-06

Publications (1)

Publication Number Publication Date
WO2013051682A1 true WO2013051682A1 (en) 2013-04-11

Family

ID=48043835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075903 WO2013051682A1 (en) 2011-10-06 2012-10-05 Novel glucose dehydrogenase

Country Status (2)

Country Link
JP (1) JP2013081399A (en)
WO (1) WO2013051682A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002973A1 (en) * 2012-06-29 2014-01-03 東洋紡株式会社 Novel glucose dehydrogenase
KR20190135508A (en) 2017-03-31 2019-12-06 기꼬만 가부시키가이샤 Continuous glucose monitoring method using FAD-dependent glucose dehydrogenase
US10913971B2 (en) 2015-04-09 2021-02-09 Toyobo Co., Ltd. Enzyme preparation for use in measurement of glucose
US11072809B2 (en) 2015-01-16 2021-07-27 Toyobo Co., Ltd. FAD-dependent glucose dehydrogenase

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060150A1 (en) * 2013-10-21 2015-04-30 東洋紡株式会社 Novel glucose dehydrogenase

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058958A1 (en) * 2002-12-24 2004-07-15 Ikeda Food Research Co., Ltd. Coenzyme-binding glucose dehydrogenase
WO2010053161A1 (en) * 2008-11-06 2010-05-14 ユニチカ株式会社 Modified flavin-adenine-dinucleotide-dependent glucose dehydrogenase
WO2010140431A1 (en) * 2009-06-04 2010-12-09 キッコーマン株式会社 Flavin-bound glucose dehydrogenase
WO2011004654A1 (en) * 2009-07-10 2011-01-13 天野エンザイム株式会社 Glucose dehydrogenase derived from mucor microorganism
WO2011034108A1 (en) * 2009-09-16 2011-03-24 東洋紡績株式会社 Modified flavine-adenine-dinucleotide-dependent glucose dehydrogenase
WO2011068050A1 (en) * 2009-12-05 2011-06-09 天野エンザイム株式会社 Mutant enzyme and application thereof
WO2012073986A1 (en) * 2010-12-02 2012-06-07 キッコーマン株式会社 Flavin-bound glucose dehyrogenase, production method for flavin-bound glucose dehyrogenase, and yeast transformant used in same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058958A1 (en) * 2002-12-24 2004-07-15 Ikeda Food Research Co., Ltd. Coenzyme-binding glucose dehydrogenase
WO2010053161A1 (en) * 2008-11-06 2010-05-14 ユニチカ株式会社 Modified flavin-adenine-dinucleotide-dependent glucose dehydrogenase
WO2010140431A1 (en) * 2009-06-04 2010-12-09 キッコーマン株式会社 Flavin-bound glucose dehydrogenase
WO2011004654A1 (en) * 2009-07-10 2011-01-13 天野エンザイム株式会社 Glucose dehydrogenase derived from mucor microorganism
WO2011034108A1 (en) * 2009-09-16 2011-03-24 東洋紡績株式会社 Modified flavine-adenine-dinucleotide-dependent glucose dehydrogenase
WO2011068050A1 (en) * 2009-12-05 2011-06-09 天野エンザイム株式会社 Mutant enzyme and application thereof
WO2012073986A1 (en) * 2010-12-02 2012-06-07 キッコーマン株式会社 Flavin-bound glucose dehyrogenase, production method for flavin-bound glucose dehyrogenase, and yeast transformant used in same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002973A1 (en) * 2012-06-29 2014-01-03 東洋紡株式会社 Novel glucose dehydrogenase
US9506042B2 (en) 2012-06-29 2016-11-29 Toyobo Co., Ltd. Glucose dehydrogenase
US11072809B2 (en) 2015-01-16 2021-07-27 Toyobo Co., Ltd. FAD-dependent glucose dehydrogenase
US10913971B2 (en) 2015-04-09 2021-02-09 Toyobo Co., Ltd. Enzyme preparation for use in measurement of glucose
KR20190135508A (en) 2017-03-31 2019-12-06 기꼬만 가부시키가이샤 Continuous glucose monitoring method using FAD-dependent glucose dehydrogenase
US11781167B2 (en) 2017-03-31 2023-10-10 Kikkoman Corporation Continuous glucose monitoring using an FAD-dependent glucose dehydrogenase

Also Published As

Publication number Publication date
JP2013081399A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP6460152B2 (en) Novel glucose dehydrogenase
JP6212852B2 (en) Novel glucose dehydrogenase
JP6079038B2 (en) Novel glucose dehydrogenase
WO2011004654A1 (en) Glucose dehydrogenase derived from mucor microorganism
JP5176045B2 (en) Method for improving the stability of a composition comprising soluble glucose dehydrogenase (GDH)
WO2012073986A1 (en) Flavin-bound glucose dehyrogenase, production method for flavin-bound glucose dehyrogenase, and yeast transformant used in same
WO2014002973A1 (en) Novel glucose dehydrogenase
JP2008035748A (en) New glucose dehydrogenase derived from bacterium of genus aspergillus
WO2013051682A1 (en) Novel glucose dehydrogenase
JP6465156B2 (en) Novel glucose dehydrogenase
US20070105174A1 (en) Novel glucose dehydrogenase
JP6264289B2 (en) Novel glucose dehydrogenase
JP6288332B2 (en) Novel glucose dehydrogenase
JP4381463B2 (en) Method for improving the thermal stability of a composition comprising soluble coenzyme linked glucose dehydrogenase (GDH)
JP4381369B2 (en) Method for improving the thermal stability of a composition comprising soluble coenzyme linked glucose dehydrogenase (GDH)
EP1783213A1 (en) Novel glucose dehydrogenase
JP2008035747A (en) New glucose dehydrogenase derived from genus penicillium
JP2007116936A (en) Method for improving thermal stability of soluble coenzyme-binding glucose dehydrogenase (gdh)
JP4770911B2 (en) Method for improving the thermal stability of a composition comprising soluble coenzyme linked glucose dehydrogenase (GDH)
TW202138557A (en) Oligosaccharide oxidase, preparing method thereof and method of conversion into chito-oligochitosan acid
JP2010142171A (en) Method for producing filamentous fungus-originated glucose dehydrogenase
Moonmangmee et al. Purification and characterization of membrane-bound glucose dehydrogenase from mutant Gluconobacter frateurii THD32n
JP2007129966A (en) Method for improvement of heat stability of glucose dehydrogenase
JP2007166953A (en) Method for increasing holo type rate or stability of enzyme
JP2009201513A (en) Method for improving thermal stability of composition containing soluble coenzyme-binding glucose dehydrogenase (gdh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838706

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载