WO2013048188A2 - 상향링크 전송 파워 제어 방법 및 이를 이용한 무선기기 - Google Patents
상향링크 전송 파워 제어 방법 및 이를 이용한 무선기기 Download PDFInfo
- Publication number
- WO2013048188A2 WO2013048188A2 PCT/KR2012/007930 KR2012007930W WO2013048188A2 WO 2013048188 A2 WO2013048188 A2 WO 2013048188A2 KR 2012007930 W KR2012007930 W KR 2012007930W WO 2013048188 A2 WO2013048188 A2 WO 2013048188A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission power
- uplink
- transmission
- subframe
- group
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 191
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000004891 communication Methods 0.000 claims description 9
- 230000004044 response Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 5
- 238000013468 resource allocation Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 102100024342 Contactin-2 Human genes 0.000 description 2
- 101000690440 Solanum lycopersicum Floral homeotic protein AGAMOUS Proteins 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000001774 stimulated Raman spectroscopy Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/318—Received signal strength
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0037—Inter-user or inter-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/06—TPC algorithms
- H04W52/16—Deriving transmission power values from another channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/30—Transmission power control [TPC] using constraints in the total amount of available transmission power
- H04W52/32—TPC of broadcast or control channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/30—Transmission power control [TPC] using constraints in the total amount of available transmission power
- H04W52/32—TPC of broadcast or control channels
- H04W52/325—Power control of control or pilot channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/30—Transmission power control [TPC] using constraints in the total amount of available transmission power
- H04W52/36—Transmission power control [TPC] using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/367—Power values between minimum and maximum limits, e.g. dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/0005—Synchronisation arrangements synchronizing of arrival of multiple uplinks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/004—Synchronisation arrangements compensating for timing error of reception due to propagation delay
- H04W56/0045—Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
Definitions
- the present invention relates to wireless communication, and more particularly, to a method for controlling uplink transmission power in a wireless communication system and a wireless device using the same.
- 3GPP LTE long term evolution
- UMTS Universal Mobile Telecommunications System
- 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier-frequency division multiple access
- MIMO multiple input multiple output
- LTE-A 3GPP LTE-Advanced
- a physical channel is a downlink channel. It may be divided into a Physical Downlink Shared Channel (PDSCH), a Physical Downlink Control Channel (PDCCH), a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) which are uplink channels.
- PDSCH Physical Downlink Shared Channel
- PDCCH Physical Downlink Control Channel
- PUSCH Physical Uplink Shared Channel
- PUCCH Physical Uplink Control Channel
- the terminal may be located in any region within the cell, and the arrival time until the uplink signal transmitted by the terminal reaches the base station may vary depending on the position of each terminal.
- the arrival time of the terminal located at the cell edge is longer than the arrival time of the terminal located at the cell center. In contrast, the arrival time of the terminal located at the cell center is shorter than the arrival time of the terminal located at the cell edge.
- the base station In order to reduce interference between terminals, the base station needs to schedule the uplink signals transmitted by the terminals in the cell to be received within a boundary (hourly) every time.
- the base station must adjust the transmission timing of each terminal according to the situation of each terminal, this adjustment is called uplink time alignment (uplink time alignment).
- the random access process is one of processes for maintaining uplink time synchronization.
- the UE acquires a time alignment value (or TA) through a random access procedure and maintains uplink time synchronization by applying a time synchronization value.
- the transmission power of the terminal needs to be adjusted. If the transmission power of the terminal is too low, it is difficult for the base station to receive uplink data. If the transmission power of the terminal is too high, uplink transmission may cause too much interference in the transmission of other terminals.
- the present invention provides a method for controlling uplink transmission power between a plurality of tim advance groups and a wireless device using the same.
- a method for controlling uplink transmission power in a wireless communication system determines a first transmission power of a first uplink channel transmitted through a first radio resource in a first serving cell, and determines a first transmission power of a second uplink channel transmitted through a second radio resource in a second serving cell. And determining a second transmission power, wherein the first serving cell belongs to a first TA group and the second serving cell belongs to a second TA group different from the first TA group. All or part of the first radio resource and the second radio resource overlap, and the sum of the first and second transmission powers in the overlapped portion is determined not to exceed the maximum transmission power.
- the first and second radio resources may include at least one subframe including a plurality of orthogonal frequency division multiplexing (OFDM) symbols.
- OFDM orthogonal frequency division multiplexing
- At least one of the first and second transmission powers may be adjusted based on a subframe boundary.
- a wireless device for controlling uplink transmission power in a wireless communication system includes a radio frequency (RF) unit for transmitting and receiving a radio signal, and a processor connected to the RF unit, wherein the processor is configured to provide a first serving. Determine a first transmit power of a first uplink channel transmitted through a first radio resource in a cell, and determine a second transmit power of a second uplink channel transmitted through a second radio resource in a second serving cell;
- the first serving cell belongs to a first TA group
- the second serving cell belongs to a second TA group different from the first TA group, and the first radio resource and the second radio resource. Is partially or partially overlapped, and the sum of the first and second transmit powers in the overlapped portion is determined not to exceed the maximum transmit power.
- TA timing advance
- 1 shows a structure of a downlink radio frame in 3GPP LTE.
- FIG. 2 is a flowchart illustrating a random access procedure in 3GPP LTE.
- 5 shows a UL propagation difference between a plurality of cells.
- FIG. 6 illustrates an example in which TAs are changed between a plurality of cells.
- FIG. 7 shows a transmission power control method according to an embodiment of the present invention.
- FIG. 8 shows a transmission power control method according to another embodiment of the present invention.
- FIG. 10 shows a transmission power control method according to another embodiment of the present invention.
- 11 shows an example of TA adjustment for a TA group.
- FIG. 14 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
- the wireless device may be fixed or mobile and may be called by other terms such as a user equipment (UE), a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a mobile terminal (MT).
- a base station generally refers to a fixed station for communicating with a wireless device, and may be referred to in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
- eNB evolved-NodeB
- BTS base transceiver system
- access point and the like.
- LTE includes LTE and / or LTE-A.
- E-UTRA Evolved Universal Terrestrial Radio Access
- R-UTRA Physical Channels and Modulation
- One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
- OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), multiple access scheme or name There is no limit on.
- OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
- SC-FDMA single carrier-frequency division multiple access
- a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
- the DL (downlink) subframe is divided into a control region and a data region in the time domain.
- the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
- a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a PDSCH is allocated to the data region.
- PDCH physical downlink control channel
- a physical channel is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical channel (PCFICH). It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
- PDSCH physical downlink shared channel
- PUSCH physical downlink shared channel
- PDCCH physical downlink control channel
- PCFICH physical channel
- the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
- CFI control format indicator
- the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH.
- the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
- the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for an uplink hybrid automatic repeat request (HARQ).
- ACK positive-acknowledgement
- NACK negative-acknowledgement
- HARQ uplink hybrid automatic repeat request
- the ACK / NACK signal for uplink (UL) data on the PUSCH transmitted by the UE is transmitted on the PHICH.
- the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
- the PBCH carries system information necessary for the terminal to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
- MIB master information block
- SIB system information block
- DCI downlink control information
- PDSCH also called DL grant
- PUSCH resource allocation also called UL grant
- VoIP Voice over Internet Protocol
- blind decoding is used to detect the PDCCH.
- Blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a candidate PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
- the base station determines the PDCCH format according to the DCI to be sent to the terminal, attaches a cyclic redundancy check (CRC) to the DCI, and unique identifier according to the owner or purpose of the PDCCH (this is called a Radio Network Temporary Identifier) Mask to the CRC.
- CRC cyclic redundancy check
- the control region in the subframe includes a plurality of control channel elements (CCEs).
- the CCE is a logical allocation unit used to provide a coding rate according to the state of a radio channel to a PDCCH and corresponds to a plurality of resource element groups (REGs).
- the REG includes a plurality of resource elements.
- the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
- One REG includes four REs and one CCE includes nine REGs.
- ⁇ 1, 2, 4, 8 ⁇ CCEs may be used to configure one PDCCH, and each element of ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level.
- the number of CCEs used for transmission of the PDDCH is determined by the base station according to the channel state. For example, one CCE may be used for PDCCH transmission for a UE having a good downlink channel state. Eight CCEs may be used for PDCCH transmission for a UE having a poor downlink channel state.
- a control channel composed of one or more CCEs performs interleaving in units of REGs and is mapped to physical resources after a cyclic shift based on a cell ID.
- the uplink channel includes a PUSCH, a PUCCH, a Sounding Reference Signal (SRS), and a Physical Random Access Channl (PRACH).
- PUSCH PUSCH
- PUCCH Physical Random Access Channl
- SRS Sounding Reference Signal
- PRACH Physical Random Access Channl
- PUCCH supports multiple formats.
- a PUCCH having a different number of bits per subframe may be used according to a modulation scheme dependent on the PUCCH format.
- PUCCH format 1 is used for transmission of SR (Scheduling Request)
- PUCCH format 1a / 1b is used for transmission of ACK / NACK signal for HARQ
- PUCCH format 2 is used for transmission of CQI
- PUCCH format 2a / 2b is used for CQI and Used for simultaneous transmission of ACK / NACK signals.
- PUCCH format 1a / 1b is used when transmitting only the ACK / NACK signal in the subframe
- PUCCH format 1 is used when the SR is transmitted alone.
- PUCCH format 1 is used, and an ACK / NACK signal is modulated and transmitted on a resource allocated to the SR.
- the terminal may be located in any area within the cell, and the arrival time until the UL signal transmitted by the terminal reaches the base station may vary depending on the location of each terminal.
- the arrival time of the terminal located at the cell edge is longer than the arrival time of the terminal located at the cell center. In contrast, the arrival time of the terminal located at the cell center is shorter than the arrival time of the terminal located at the cell edge.
- the base station In order to reduce the interference between the terminals, the base station needs to schedule the UL signals transmitted by the terminals in the cell to be received within the boundary (hourly) every time.
- the base station must adjust the transmission timing of each terminal according to the situation of each terminal, and this adjustment is called time synchronization maintenance.
- the terminal transmits a random access preamble to the base station.
- the base station calculates a time alignment value for speeding up or slowing the transmission timing of the terminal based on the received random access preamble.
- the base station transmits a random access response including the calculated time synchronization value to the terminal.
- the terminal updates the transmission timing by using the time synchronization value.
- the base station receives a sounding reference signal from the terminal periodically or arbitrarily, calculates a time synchronization value of the terminal through the sounding reference signal, and provides a MAC CE (control) to the terminal. element).
- the time synchronization value may be referred to as information that the base station sends to the terminal to maintain uplink time synchronization, and a timing alignment command indicates this information.
- the transmission timing of the terminal is changed according to the speed and position of the terminal. Therefore, it is preferable that the time synchronization value received by the terminal be valid for a specific time.
- the purpose of this is the Time Alignment Timer.
- the time synchronization timer When the terminal updates the time synchronization after receiving the time synchronization value from the base station, the time synchronization timer starts or restarts.
- the UE can transmit uplink only when the time synchronization timer is in operation.
- the value of the time synchronization timer may be notified by the base station to the terminal through an RRC message such as system information or a radio bearer reconfiguration message.
- the UE When the time synchronization timer expires or the time synchronization timer does not operate, the UE assumes that the time synchronization is not synchronized with the base station, and does not transmit any uplink signal except the random access preamble.
- the random access procedure is used for the terminal to obtain UL synchronization with the base station or to be allocated UL radio resources.
- the terminal receives a root index and a physical random access channel (PRACH) configuration index from the base station.
- Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
- ZC Zadoff-Chu
- the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
- the base station receiving the random access preamble sends a random access response (RAR) to the terminal (S120).
- RAR random access response
- the random access response is detected in two steps. First, the UE detects a PDCCH masked with a random access-RNTI (RA-RNTI). The terminal receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
- MAC medium access control
- the random access response may include a TAC, a UL grant, and a temporary C-RNTI.
- the TAC is information indicating a time synchronization value sent by the base station to the terminal to maintain UL time alignment.
- the terminal updates the UL transmission timing by using the time synchronization value.
- the time alignment timer (Time Alignment Timer) is started or restarted.
- the UL grant includes UL resource allocation and transmit power command (TPC) used for transmission of a scheduling message described later.
- TPC is used to determine the transmit power for the scheduled PUSCH.
- the random access preamble is also referred to as an M1 message, a random access response as an M2 message, and a scheduled message as an M3 message.
- the transmission power P PUSCH (i) for PUSCH transmission in subframe i is defined as follows.
- P CMAX is the set terminal transmission power
- M PUSCH (i) is the bandwidth of the PUSCH resource allocation in RB unit.
- ⁇ (j) is a parameter given to the upper layer.
- PL is a downlink path loss estimate calculated by the terminal.
- ⁇ TF (i) is a terminal specific parameter.
- f (i) is a terminal specific value obtained from the TPC.
- the transmission power P PUCCH (i) for PUCCH transmission in subframe i is defined as follows.
- P CMAX and PL are the same as Equation 1
- P O_PUCCH (j) is a parameter configured by the sum of the cell-specific element P O_NOMINAL_PUCCH (j) and the terminal-specific element P O_UE_PUCCH (j) given in the upper layer.
- h (n CQI , n HARQ ) is a value dependent on the PUCCH format.
- ⁇ F_PUCCH (F) is a parameter given by an upper layer.
- g (i) is a terminal specific value obtained from the TPC.
- the transmission power P SRS (i) for SRS (Sounding Reference Signal) transmission in subframe i is defined as follows.
- P CMAX, P O_PUSCH (j ), ⁇ (j), PL and f (i) is the same as equation 1, and, P SRS_OFFSET is the UE-specific parameters, M SRS is given in the upper layer shows the bandwidth for SRS transmission .
- PH power headroom
- the PH report is used to provide the base station with information about the difference between the terminal maximum transmit power and the estimated power for UL transmission.
- PH (i) in subframe i may be defined as follows.
- Spectrum aggregation supports a plurality of CCs. For example, if five CCs are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
- the number of DL CCs and UL CCs is not limited.
- PDCCH and PDSCH are independently transmitted in each DL CC, and PUCCH and PUSCH are independently transmitted in each UL CC. Since three DL CC-UL CC pairs are defined, the UE may be provided with services from three serving cells.
- the UE may monitor the PDCCH in the plurality of DL CCs and receive DL transport blocks simultaneously through the plurality of DL CCs.
- the terminal may transmit a plurality of UL transport blocks simultaneously through the plurality of UL CCs.
- Each serving cell may be identified through a cell index (CI).
- the CI may be unique within the cell or may be terminal-specific.
- CI 0, 1, 2 is assigned to the first to third serving cells is shown.
- the serving cell may be divided into a primary cell (pcell) and a secondary cell (scell).
- the primary cell is a cell that operates at the primary frequency and performs an initial connection establishment process, which is a terminal, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
- the primary cell is also called a reference cell.
- the secondary cell operates at the secondary frequency, can be established after the RRC connection is established, and can be used to provide additional radio resources. At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, RRC message).
- the CI of the primary cell can be fixed.
- the lowest CI may be designated as the CI of the primary cell.
- the CI of the primary cell is 0, and the CI of the secondary cell is sequentially assigned from 1.
- the UE may monitor the PDCCH through a plurality of serving cells. However, even if there are N serving cells, the base station can be configured to monitor the PDCCH for M (M ⁇ N) serving cells. In addition, the base station may be configured to preferentially monitor the PDCCH for L (L ⁇ M ⁇ N) serving cells.
- TA Timing Alignment
- a plurality of serving cells may be spaced apart in the frequency domain so that propagation characteristics may vary.
- a remote radio header (RRH) and devices may be present in the area of the base station to expand coverage or to remove a coverage hole.
- 5 shows a UL propagation difference between a plurality of cells.
- the terminal is provided with services by the primary cell and the secondary cell.
- the primary cell is serviced by a base station
- the secondary cell is serviced by an RRH connected to the base station.
- the propagation delay characteristic of the primary cell and the propagation delay characteristic of the secondary cell may be different due to the distance between the base station and the RRH, the processing time of the RRH, and the like.
- FIG. 6 illustrates an example in which TAs are changed between a plurality of cells.
- the actual TA of the primary cell is 'TA 1'
- the actual TA of the secondary cell is 'TA 2'. Therefore, it is necessary to apply an independent TA for each serving cell.
- a TA group includes one or more cells to which the same TA applies.
- TA is applied to each TA group, and the time synchronization timer also operates for each TA group.
- the first serving cell belongs to the first TA group
- the second serving cell belongs to the second TA group.
- the number of serving cells and TA groups is only an example.
- the first serving cell may be a primary cell or a secondary cell
- the second serving cell may be a primary cell or a secondary cell.
- the TA group may include at least one serving cell. Information on the configuration of the TA group may be informed by the base station to the terminal.
- the limit of UL maximum transmit power of the terminal may be configured for each TA group. Therefore, according to an embodiment of the present invention, the set maximum transmit power P CMAX may be defined for each TA group.
- This P CMAX, T is the maximum transmit power set in the TA group T, according to a cell belonging to a TA group T may obtain the transmission power and the PH of the formula 1 to 4, P CMAX instead may be a P CMAX, T is used.
- the value of P CMAX, T may be determined according to the power class of the terminal and the structure of the power amplifier, or the base station may be given to the terminal for each TA group through an RRC message.
- the base station may transmit a parameter used by the terminal to determine P CMAX, T to the terminal through an RRC message, a MAC message, and the like.
- the UE may transmit information on the maximum transmit power P CMAX, c of the cell c belonging to each TA group for each TA group to the base station through a MAC message, an RRC message, and a PUSCH.
- the information may be transmitted in the corresponding cell c.
- the UE may perform power headroom (PH) reporting for each TA group. Based on P CMAX, T , PH can be obtained by applying to Equation 4 described above.
- the UE may transmit information on the difference between the current transmit power of all cells belonging to the TA group and P CMAX, T to the base station through a MAC message, an RRC message, and the like.
- the PH may transmit a value for one TA group on one PUSCH or a value for all TA groups on one PUSCH. When a value for one TA group is transmitted in one PUSCH, the corresponding PUSCH may be transmitted in a cell belonging to the TA group.
- the UE may report PH considering transmission in subframe n of each TA group. For example, when transmission in subframe n of the first TA group overlaps with transmission in subframe n + 1 or subframe n-1 of the second TA group, only transmission in subframe n of all TA groups is considered. PH can be calculated and reported.
- the first serving cell belongs to the first TA group, and the second serving cell belongs to the second TA group.
- C1, n are UL signals transmitted in subframe n of the first serving cell
- C1, n + 1 are UL signals transmitted in subframe n + 1 of the first serving cell
- C2, m are subframes of the second serving cell.
- the UL signal transmitted in the frame m, C2, m + 1 represents the UL signal transmitted in the subframe m + 1 of the second serving cell.
- Subframe numbers n and m may have the same value or different values.
- the UL signal may include at least one of PRACH, PUCH, PUSCH, and SRS.
- P1 denotes a transmission power to be applied to the transmission of C2 m
- P100 denotes a transmission power to be applied to the transmission of C1, n + 1.
- a power limitation rule for lowering the total transmission power to Pmax or less is proposed.
- the power limitation rule may be applied according to priority for each UL channel. For example, priority may be given in the order of PUSCH and PUSCH having PUCCH and UCI to reduce power from a channel having a lower priority. Alternatively, between the same UL channels (between PUSCHs or between SRSs) can reduce power at the same rate. It may drop or give up transmission of a specific UL channel.
- FIG. 7 shows a transmission power control method according to an embodiment of the present invention.
- the UE When the UE transmits UL signals transmitted in the first and second serving cells without applying the limit of the power total Pmax, they may be represented as shown in FIG. At the subframe boundary of each cell, the change in transmit power is large.
- power transmission rules of each UL signal are adjusted by applying a power limitation rule so as not to exceed Pmax in each subframe boundary unit.
- the power limiting rule is applied to C1, n and C2, m to the transmission power P2, and in the section overlapping with C1, n + 1 Apply power limiting rules to, n + 1 and C2, m to adjust the transmit power P3.
- FIG. 8 shows a transmission power control method according to another embodiment of the present invention.
- the terminal adjusts transmission power by applying a power limitation rule to UL signals overlapping at the beginning of the UL signal and maintains the transmission power as it is.
- the UL signal (s) overlapping only at the rear of the corresponding UL signal may adjust power within the remaining power power by subtracting the transmit power of the corresponding UL signal from Pmax.
- the transmission channel of the corresponding UL signal of the first serving cell receives another UL signal. It can be decided by considering.
- the transmission power of C2, m is determined to be P2 by applying a power limit rule with C1, n overlapping at the front of C2, m.
- C1, n + 1 has a transmission power determined within Pmax minus the transmission power P2 of C2, m.
- C2, m + 1 has a transmission power within the remaining power after subtracting the determined transmission power P101 of C1, n + 1.
- the power subtracted from Pmax may not be exceeded in consideration of the transmission power of a redundant UL signal transmitted in a previous subframe of another cell.
- the maximum transmission power that can be allocated to C1, n + 1 is Pmax.
- the power obtained by subtracting the transmit power of the signal following the previous subframe that is, the power obtained by subtracting the transmit power P2 of C2, m from Pmax.
- FIG. 9 shows a transmission power control method according to another embodiment of the present invention.
- the transmission power of the first UL signal transmitted is adjusted by applying a power limitation rule based on the overlapped interval. This scheme can be applied recursively for successive subframes.
- C2, m overlaps with C1, n and C2, n + 2 in successive time intervals.
- the transmission power is adjusted to P2 when the power is adjusted together with C1 and n, and the transmission power is adjusted to P3 when the power is adjusted together with C1, n + 1.
- P3 the transmission power of C2, m is P3.
- This process can be repeated for C1, n + 1. That is, C1, n + 1 is transmitted at the transmit power of P103, which is the smaller of the transmit power adjusted with C2, m and the transmit power adjusted with C2, m + 1.
- the transmission power of C1, n + 1 adjusted with C2, m + 1 may be determined based on the transmission power previously adjusted with C2, n or based on the original transmission power before being adjusted with C2, n.
- FIG. 10 shows a transmission power control method according to another embodiment of the present invention.
- n n is the same subframe number, and subframes of the same number are first adjusted for transmission power and then readjusted for another overlapping subframe.
- Provisional transmission power is determined by applying power limitation rules to overlapping portions in subframes having the same number for UL signals transmitted to different cells. For overlapping portions of adjacent subframes, a power limit rule is applied to determine the final transmit power.
- the transmission power of C1, n + 1 is determined as P101 by applying a power limitation rule to C2, m + 1 and C1, n + 1.
- a PUCCH or PRACH carrying ACK / NACK maintains the transmission power set at the initial transmission of one transmission unit, and then the transmission power of UL signals of another cell overlapping with the corresponding signal is appropriately adjusted or one transmission unit It can also allow for variations in transmit power.
- a higher order modulation scheme eg, 16-QAM, 64-QAM, etc.
- a PUSCH transmission to which a higher order modulation scheme is applied overlaps with a PUSCH transmission modulated with a lower order modulation scheme (eg, BPSK or QPSK) in a portion of a subframe, a lower order modulation in the overlapped portion or the entire subframe thereof is applied.
- the transmission power of the PUSCH to which the scheme is applied may be adjusted.
- the PUSCH may adjust transmission power in consideration of all sections overlapping with the corresponding PUSCH by applying the embodiments of FIGS. 7, 9, and 10.
- the priority used for allocation of transmission power may be set for each TA group. For example, a TA group in a primary cell may have a higher priority than other TA groups. For cells belonging to a TA group having a low priority, the transmission power may be reduced first or the transmission may be abandoned. In addition, when assigning TA group indexes to a plurality of TA groups, priority is given to transmission power allocation in the order of low TA group index (or high TA group index), and is assigned to high TA group index (or low TA group index). The transmission power in the cell to which the cell belongs can be reduced first. The lowest TA group index (eg, 0) may be allocated to the TA group to which the primary cell belongs.
- the lowest TA group index eg, 0
- the first and second UL signals When transmitting a plurality of UL signals simultaneously in a plurality of TA groups, if the total transmission power exceeds the maximum transmission power, some of the UL signals may not be transmitted through rate matching / puncturing.
- the first UL signal transmitted in the first TA group overlaps with the second UL signal transmitted in the second TA group, if the total transmission power in the overlapped portion exceeds the maximum transmission power, the first and second UL signals One of the two may not be transmitted through rate matching / perforation in the overlapped portion.
- which UL signal is to be rate matched / perforated can be determined as follows. Some OFDM symbols of the PUSCH or PUCCH overlapping the SRS may be rate matched / perforated. Some OFDM symbols of the PUSCH overlapping with the PUCCH may be rate matched / perforated. Some OFDM symbols of the PUSCH overlapping with the PUSCH may be rate matched / perforated.
- the The transmission power of the first UL signal may be determined using the transmission power of the second UL signal (s).
- the above embodiments can be applied to determine the transmission power of the SRS when there is a subframe boundary of another cell in the OFDM symbol in which the SRS is transmitted in one cell.
- a method of adjusting transmission power is performed when TAs between a plurality of TA groups are shifted by more than a specific threshold.
- the threshold may be predetermined or informed by the base station to the terminal by an RRC message.
- Different methods may be applied when the degree of subframe timing between a plurality of TA groups (or a section in which transmissions between a plurality of TA groups overlap) is greater than or equal to a threshold value. For example, if the subframe timing difference is greater than or equal to the threshold, a part of UL signals may be abandoned / punctured / rate matched, and if less than or equal to the threshold, transmission power of some signals may be reduced. On the contrary, when the subframe timing difference is less than or equal to the threshold value, a part of UL signals may be abandoned / punctured / rate matched, and if it is greater than or equal to the threshold value, transmission power of some signals may be reduced.
- the transmission power of the duplicated OFDM symbol is reduced in the above case, and in the duplicated OFDM symbol for the PUSCH modulated by the QAM method such as 16QAM and 64QAM, etc.
- the transmission may be abandoned by rate matching / puncturing. This is because the QAM demodulation performance for the OFDM symbol may not be guaranteed if the transmission power for the specific OFDM symbol is reduced.
- 11 shows an example of TA adjustment for a TA group.
- subframe timing for UL transmission in cells in each TA group is the same, but independent subframe timing may be applied for each TA group.
- the UL transmission signal overlaps between successive subframes due to transmission timing adjustment, a portion overlapped with the UL signal in the preceding subframe among the UL signals (PUCCH, PUSCH, etc.) in the following subframe. May not transmit it. This is because the earliest part of the signal transmitted through the subframe includes a cyclic prefix (CP) of an OFDM symbol (or OFDM symbol), and even if CP is lost, the degree of data loss may be smaller than that of other parts.
- CP cyclic prefix
- the transmission timing is adjusted due to the application of the TA command, and as a result, when the subframe n and the subframe n + 1 overlap, the portion overlapping with the subframe n in the subframe n + 1 ( It is proposed not to transmit the entire OFDM symbol or part of the OFMD symbol).
- the subframe n and the subframe n + 1 may belong to the same cell or may belong to different cells belonging to the same TA group.
- the terminal transmits a radio signal by the same RF module (power amplifier, etc.), and transmitting the radio signal at different timings in the same RF module can greatly increase the complexity of the terminal Because.
- adjustment of the UL transmission timing may be applied from the start of subframe n.
- the UE may subframe n ⁇ . The transmission in 1 may be completed, and the duplicated portion of subframe n may not be transmitted.
- the UE may transmit the cells belonging to different TA groups as they are even if the transmission is duplicated by adjusting the transmission timing according to the TA command. This is because the transmission for different TA groups is independently performed by different RF modules, and thus, even if signals are transmitted at different timings, they do not significantly affect the complexity of the UE.
- the rear part of the UL channel transmitted in subframe n of cell 1 belonging to the first TA group TAG1 and the front part of the UL channel transmitted in subframe n + 1 of cell 2 belonging to the first TA group TAG1 are TA Overlapping due to timing adjustment by the command.
- the terminal does not transmit the overlapped portion of the UL channel transmitted in the cell 2.
- the UL channel transmitted in subframe n + 1 of cell 3 or cell 4 belonging to the second TA group TAG2 is transmitted regardless of timing adjustment of the first TA group.
- the base station may inform the terminal whether the transmission is performed in the overlapped portion.
- FIG. 14 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
- the base station 50 includes a processor 51, a memory 52, and an RF unit 53.
- the memory 52 is connected to the processor 51 and stores various information for driving the processor 51.
- the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
- the processor 51 implements the proposed functions, processes and / or methods. In the above embodiment, the serving cell and / or TA group may be controlled / managed by the base station, and the operation of one or more cells may be implemented by the processor 51.
- the wireless device 60 includes a processor 61, a memory 62, and an RF unit 63.
- the memory 62 is connected to the processor 61 and stores various information for driving the processor 61.
- the RF unit 63 is connected to the processor 61 and transmits and / or receives a radio signal.
- the processor 61 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the terminal may be implemented by the processor 61.
- the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
- the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
- the RF unit may include a baseband circuit for processing a radio signal.
- the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
- the module may be stored in memory and executed by a processor.
- the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
상향링크 전송 파워 제어 방법 및 무선기기가 제공된다. 무선기기는 제1 서빙셀에서 제1 무선 자원을 통해 전송되는 제1 상향링크 채널의 제1 전송 파워를 결정하고, 제2 서빙셀에서 제2 무선 자원을 통해 전송되는 제2 상향링크 채널의 제2 전송 파워를 결정한다. 상기 제1 서빙셀은 제1 TA(Timing Advance) 그룹에 속하고, 제2 서빙셀은 상기 제1 TA 그룹과 다른 제2 TA 그룹에 속한다. 상기 제1 무선 자원과 상기 제2 무선 자원은 전부 또는 일부가 중복되고, 상기 중복된 부분에서 상기 제1 및 제2 전송 파워의 합은 최대 전송 파워를 초과하지 않도록 결정된다.
Description
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 상향링크 전송 파워를 제어하는 방법 및 이를 이용한 무선기기에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"에 개시된 바와 같이, 3GPP LTE/LTE-A에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
단말들간의 상향링크 전송으로 인한 간섭을 줄이기 위해, 기지국이 단말의 상향링크 시간 동기(uplink time alignment)를 유지하는 것은 중요하다. 단말은 셀 내의 임의의 영역에 위치할 수 있고, 단말이 전송하는 상향링크 신호가 기지국에 도달하는 데까지 걸리는 도달 시간은 각 단말의 위치에 따라 다를 수 있다. 셀 가장자리(cell edge)에 위치하는 단말의 도달 시간은 셀 중앙에 위치하는 단말의 도달 시간보다 길다. 반대로, 셀 중앙에 위치하는 단말의 도달 시간은 셀 가장자리에 위치하는 단말의 도달 시간보다 짧다.
단말들간 간섭을 줄이기 위해, 기지국은 셀 내의 단말들이 전송한 상향링크 신호들이 매 시간 바운더리(boundary) 내에서 수신될 수 있도록 스케줄링하는 것이 필요하다. 기지국은 각 단말의 상황에 따라 각 단말의 전송 타이밍을 적절히 조절해야 하고, 이러한 조절을 상향링크 시간 동기(uplink time alignment)라고 한다. 랜덤 액세스 과정은 상향링크 시간 동기를 유지하기 위한 과정 중 하나이다. 단말은 랜덤 액세스 과정을 통해 시간 동기 값(time alignment value)(또는 이를 TA(timing advance)라고 함)을 획득하고, 시간 동기 값을 적용하여 상향링크 시간 동기를 유지한다.
또한, 상향링크 전송으로 인한 간섭을 완화하기 위해, 단말의 전송 파워가 조절될 필요가 있다. 단말의 전송 파워가 너무 낮으면, 기지국이 상향링크 데이터를 수신하기 어렵다. 단말의 전송 파워가 너무 높으면, 상향링크 전송이 다른 단말의 전송에 너무 많은 간섭을 야기할 수 있다.
최근에는 보다 높은 데이터 레이트를 제공하기 위해 복수의 서빙 셀이 도입되고 있다. 하지만, 서빙 셀들간 주파수가 인접하거나, 서빙 셀들간 전파(propagation) 특성이 유사하다는 가정하에, 동일한 시간 동기 값(time alignment value)을 모든 서빙셀에 적용하여 왔다.
서로 다른 시간 동기 값이 적용되는 복수의 서빙셀을 설정될 때, 복수의 서빙셀간 상향링크 전송 파워를 조절할 수 있는 방법이 필요하다.
본 발명은 복수의 TA(timig advance) 그룹 간 상향링크 전송 파워를 제어하는 방법 및 이를 이용한 무선기기를 제공한다.
일 양태에서, 무선 통신 시스템에서 상향링크 전송 파워 제어 방법이 제공된다. 상기 방법은 제1 서빙셀에서 제1 무선 자원을 통해 전송되는 제1 상향링크 채널의 제1 전송 파워를 결정하고, 제2 서빙셀에서 제2 무선 자원을 통해 전송되는 제2 상향링크 채널의 제2 전송 파워를 결정하는 것을 포함하되, 상기 제1 서빙셀은 제1 TA(Timing Advance) 그룹에 속하고, 제2 서빙셀은 상기 제1 TA 그룹과 다른 제2 TA 그룹에 속하고, 상기 제1 무선 자원과 상기 제2 무선 자원은 전부 또는 일부가 중복되고, 상기 중복된 부분에서 상기 제1 및 제2 전송 파워의 합은 최대 전송 파워를 초과하지 않도록 결정된다.
제 1 항에서, 상기 제1 및 제2 무선 자원은 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하는 적어도 하나의 서브프레임을 포함할 수 있다.
상기 제1 및 제2 전송 파워 중 적어도 어느 하나는 서브프레임 경계를 기준으로 조절될 수 있다.
상기 제1 및 제2 상향링크 채널은 PUSCH(Physical Uplink Shared Channel), PUCCH(Physical Uplink Control Channel), PRACH(Physical Random Access Channel) 및 SRS(sounding reference signal) 중 적어도 어느 하나를 포함할 수 있다.
다른 양태에서, 무선 통신 시스템에서 상향링크 전송 파워를 제어하는 무선기기는 무선 신호를 송신 및 수신하는 RF(radio frequency)부, 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 제1 서빙셀에서 제1 무선 자원을 통해 전송되는 제1 상향링크 채널의 제1 전송 파워를 결정하고, 제2 서빙셀에서 제2 무선 자원을 통해 전송되는 제2 상향링크 채널의 제2 전송 파워를 결정하되, 상기 제1 서빙셀은 제1 TA(Timing Advance) 그룹에 속하고, 제2 서빙셀은 상기 제1 TA 그룹과 다른 제2 TA 그룹에 속하고, 상기 제1 무선 자원과 상기 제2 무선 자원은 전부 또는 일부가 중복되고, 상기 중복된 부분에서 상기 제1 및 제2 전송 파워의 합은 최대 전송 파워를 초과하지 않도록 결정된다.
복수의 TA(timing advance) 그룹이 설정될 때, 서로 다른 TA 그룹에 속하는 셀 간 상향링크 전송 파워를 조절할 수 있다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다.
도 2는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
도 3은 랜덤 액세스 응답의 일 예를 나타낸다.
도 4는 다중 반송파의 일 예를 나타낸다.
도 5는 복수의 셀들간에 UL 전파 차이를 나타낸다.
도 6은 복수의 셀 간 TA가 달라지는 예이다.
도 7은 본 발명의 일 실시예에 따른 전송 파워 제어 방법을 나타낸다.
도 8은 본 발명의 다른 실시예에 따른 전송 파워 제어 방법을 나타낸다.
도 9는 본 발명의 또 다른 실시예에 따른 전송 파워 제어 방법을 나타낸다.
도 10은 본 발명의 또 다른 실시예에 따른 전송 파워 제어 방법을 나타낸다.
도 11은 TA 그룹에 대한 TA 조정의 일 예를 나타낸다.
도 12는 전송 타이밍의 조정으로 인한 중복을 나타낸다.
도 13은 본 발명의 일 실시예에 따른 상향링크 전송을 나타낸다.
도 14는 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
무선기기는 고정되거나 이동성을 가질 수 있으며, 단말(User Equipment, UE), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다. 기지국은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다. 이는 3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 6절을 참조할 수 있다.
무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V8.7.0에 의하면, 정규 CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(Physical Downlink Control Channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP TS 36.211 V8.7.0에 개시된 바와 같이, 3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 단말에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 단말이 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidate) PDCCH라 함)의 CRC에 원하는 식별자를 디마스킹하고, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC(Cyclic Redundancy Check)를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다.
서브프레임내의 제어영역은 복수의 CCE(control channel element)를 포함한다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위로, 복수의 REG(resource element group)에 대응된다. REG는 복수의 자원요소(resource element)를 포함한다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
하나의 REG는 4개의 RE를 포함하고, 하나의 CCE는 9개의 REG를 포함한다. 하나의 PDCCH를 구성하기 위해 {1, 2, 4, 8}개의 CCE를 사용할 수 있으며, {1, 2, 4, 8} 각각의 요소를 CCE 집합 레벨(aggregation level)이라 한다.
PDDCH의 전송에 사용되는 CCE의 개수는 기지국이 채널 상태에 따라 결정한다. 예를 들어, 좋은 하향링크 채널 상태를 갖는 단말에게는 하나의 CCE를 PDCCH 전송에 사용할 수 있다. 나쁜(poor) 하향링크 채널 상태를 갖는 단말에게는 8개의 CCE를 PDCCH 전송에 사용할 수 있다.
하나 또는 그 이상의 CCE로 구성된 제어채널은 REG 단위의 인터리빙을 수행하고, 셀 ID(identifier)에 기반한 순환 쉬프트(cyclic shift)가 수행된 후에 물리적 자원에 매핑된다.
3GPP TS 36.211 V8.7.0에 의하면, 상향링크 채널은 PUSCH, PUCCH, SRS(Sounding Reference Signal), PRACH(Physical Random Access Channl)을 포함한다.
PUCCH는 다중 포맷을 지원한다. PUCCH 포맷에 종속된 변조 방식(modulation scheme)에 따라 서브프레임당 서로 다른 비트 수를 갖는 PUCCH를 사용할 수 있다. PUCCH 포맷 1은 SR(Scheduling Request)의 전송에 사용되고, PUCCH 포맷 1a/1b는 HARQ를 위한 ACK/NACK 신호의 전송에 사용되고, PUCCH 포맷 2는 CQI의 전송에 사용되고, PUCCH 포맷 2a/2b는 CQI 및 ACK/NACK 신호의 동시(simultaneous) 전송에 사용된다. 서브프레임에서 ACK/NACK 신호만을 전송할 때 PUCCH 포맷 1a/1b이 사용되고, SR이 단독으로 전송될 때, PUCCH 포맷 1이 사용된다. SR과 ACK/NACK을 동시에 전송할 때에는 PUCCH 포맷 1이 사용되고, SR에 할당된 자원에 ACK/NACK 신호를 변조하여 전송한다.
이제 3GPP LTE에서의 UL 시간 동기(uplink time alignment)의 유지에 대해 기술한다.
단말들간의 UL 전송으로 인한 간섭을 줄이기 위해, 기지국이 단말의 상향링크 시간 동기를 유지하는 것은 중요하다. 단말은 셀 내의 임의의 영역에 위치할 수 있고, 단말이 전송하는 UL 신호가 기지국에 도달하는 데까지 걸리는 도달 시간은 각 단말의 위치에 따라 다를 수 있다. 셀 가장자리(cell edge)에 위치하는 단말의 도달 시간은 셀 중앙에 위치하는 단말의 도달 시간보다 길다. 반대로, 셀 중앙에 위치하는 단말의 도달 시간은 셀 가장자리에 위치하는 단말의 도달 시간보다 짧다.
단말들간 간섭을 줄이기 위해, 기지국은 셀 내의 단말들이 전송한 UL 신호들이 매 시간 바운더리(boundary) 내에서 수신될 수 있도록 스케줄링하는 것이 필요하다. 기지국은 각 단말의 상황에 따라 각 단말의 전송 타이밍을 적절히 조절해야 하고, 이러한 조절을 시간 동기 유지라고 한다.
시간 동기를 관리하는 한가지 방법으로 랜덤 액세스 과정이 있다. 단말은 기지국으로 랜덤 액세스 프리앰블을 전송한다. 기지국은 수신한 랜덤 액세스 프리앰블을 기반으로 단말의 전송 타이밍을 빠르게 혹은 느리게 하기 위한 시간 동기 값(time alignment value)을 계산한다. 그리고, 기지국은 단말에게 계산된 시간 동기 값을 포함하는 랜덤 액세스 응답을 전송한다. 단말은 상기 시간 동기 값을 이용하여, 전송 타이밍을 갱신한다.
또 다른 방법으로는, 기지국은 단말로부터 주기적 혹은 임의적으로 사운딩 기준 신호(Sounding Reference Signal)를 수신하고, 상기 사운딩 기준 신호를 통해 상기 단말의 시간 동기 값을 계산하고, 단말에게 MAC CE(control element)를 통해 알려준다.
시간 동기값은 기지국이 단말에게 상향링크 시간 동기를 유지하기 위해 보내는 정보라 할 수 있으며, 시간 동기 명령(Timing Alignment Command)은 이 정보를 지시한다.
일반적으로 단말은 이동성을 가지므로, 단말이 이동하는 속도와 위치 등에 따라 단말의 전송 타이밍은 바뀌게 된다. 따라서, 단말이 수신한 시간 동기 값은 특정 시간 동안 유효하다고 하는 것이 바람직하다. 이를 위해 사용하는 것이 시간 동기 타이머(Time Alignment Timer)이다.
단말은 기지국으로부터 시간 동기 값을 수신한 후 시간 동기를 갱신하면, 시간 동기 타이머를 개시 또는 재시작한다. 시간 동기 타이머가 동작 중일 때만 단말은 상향링크 전송이 가능하다. 시간 동기 타이머의 값은 시스템 정보 또는 무선 베어러 재구성(Radio Bearer Reconfiguration) 메시지와 같은 RRC 메시지를 통해 기지국이 단말에게 알려줄 수 있다.
시간 동기 타이머가 만료되거나, 시간 동기 타이머가 동작하지 않는 때에는 단말은 기지국과 시간 동기가 맞지 않다고 가정하고, 랜덤 액세스 프리앰블을 제외한 어떠한 상향링크 신호도 전송하지 않는다.
도 2는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다. 랜덤 액세스 과정은 단말이 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
단말은 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 기지국으로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
아래 표는 3GPP TS 36.211 V8.7.0 (2009-05)의 5.7절에 게시된 랜덤 액세스 설정의 일 예이다.
표 1
PRACH 설정 인덱스 | 프리앰블 포맷 | 시스템 프레임 번호 | 서브프레임 번호 |
0 | 0 | Even | 1 |
1 | 0 | Even | 4 |
2 | 0 | Even | 7 |
3 | 0 | Any | 1 |
4 | 0 | Any | 4 |
5 | 0 | Any | 7 |
6 | 0 | Any | 1, 6 |
단말은 임의로 선택된 랜덤 액세스 프리앰블을 기지국으로 전송한다(S110). 단말은 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. 단말은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 기지국은 랜덤 액세스 응답(random access response, RAR)을 단말로 보낸다(S120). 랜덤 액세스 응답은 2단계로 검출된다. 먼저 단말은 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. 단말은 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 3은 랜덤 액세스 응답의 일 예를 나타낸다.
랜덤 액세스 응답은 TAC, UL 그랜트, 임시 C-RNTI를 포함할 수 있다.
TAC는 기지국이 단말에게 UL 시간 동기(time alignment)를 유지하기 위해 보내는 시간 동기 값을 지시하는 정보이다. 단말은 상기 시간 동기 값을 이용하여, UL 전송 타이밍을 갱신한다. 단말이 시간 동기를 갱신하면, 시간 동기 타이머(Time Alignment Timer)를 개시 또는 재시작한다.
UL 그랜트는 후술하는 스케줄링 메시지의 전송에 사용되는 UL 자원 할당 및 TPC(transmit power command)를 포함한다. TPC는 스케줄링된 PUSCH를 위한 전송 파워의 결정에 사용된다.
다시 도 2를 참조하면, 단말은 랜덤 액세스 응답 내의 UL 그랜트에 따라 스케줄링된 메시지를 기지국으로 전송한다(S130).
이하에서는 랜덤 액세스 프리앰블을 M1 메시지, 랜덤 액세스 응답을 M2 메시지, 스케줄링된 메시지를 M3 메시지 라고도 한다.
이제 3GPP TS 36.213 V8.7.0 (2009-05)의 5절을 참조하여, 3GPP LTE에서 상향링크 전송 파워에 대해 기술한다.
서브프레임 i에서 PUSCH 전송을 위한 전송 파워 PPUSCH(i)는 다음과 같이 정의된다.
여기서, PCMAX는 설정된 단말 전송 파워, MPUSCH(i)는 RB 단위의 PUSCH 자원 할당의 대역폭이다. PO_PUSCH(j)는 j=0 과 1일 때 상위계층에서 주어지는 셀 특정 요소 PO_NOMINAL_PUSCH(j)와 단말 특정 요소 PO_UE_PUSCH(j)의 합으로 구성되는 파라미터이다. α(j)는 상위계층에 주어지는 파라미터이다. PL은 단말에 의해 계산되는 하향링크 경로 손실 추정이다. ΔTF(i)는 단말 특정 파라미터이다. f(i)는 TPC로부터 획득되는 단말 특정 값이다. min{A,B}는 A와 B 중 더 적은 값을 출력하는 함수이다.
서브프레임 i에서 PUCCH 전송을 위한 전송 파워 PPUCCH(i)는 다음과 같이 정의된다.
여기서, PCMAX와 PL은 식 1과 동일하고, PO_PUCCH(j)는 상위계층에서 주어지는 셀 특정 요소 PO_NOMINAL_PUCCH(j)와 단말 특정 요소 PO_UE_PUCCH(j)의 합으로 구성되는 파라미터이다. h(nCQI, nHARQ)는 PUCCH 포맷에 종속하는 값이다. ΔF_PUCCH(F)는 상위계층에 의해 주어지는 파라미터이다. g(i)는 TPC로부터 획득되는 단말 특정 값이다.
서브프레임 i에서 SRS(Sounding Reference Signal) 전송을 위한 전송 파워 PSRS(i)는 다음과 같이 정의된다.
여기서, PCMAX, PO_PUSCH(j), α(j), PL 및 f(i)은 식 1과 동일하고, PSRS_OFFSET는 상위계층에서 주어지는 단말 특정 파라미터, MSRS는 SRS 전송을 위한 대역폭을 나타낸다.
UL 전송을 위한 단말의 전송 파워를 조절하기 위해, PH(power headroom) 보고가 사용된다. PH 보고는 기지국에게 단말 최대 전송 파워와 UL 전송을 위한 추정된 파워간의 차이에 관한 정보를 제공하기 위해 사용된다.
서브프레임 i에서 PH(i)는 다음과 같이 정의될 수 있다.
이제 다중 반송파(multiple carrier) 시스템에 대해 기술한다.
3GPP LTE 시스템은 하향링크 대역폭과 상향링크 대역폭이 다르게 설정되는 경우를 지원하나, 이는 하나의 요소 반송파(component carrier, CC)를 전제한다. 3GPP LTE 시스템은 최대 20MHz을 지원하고, 상향링크 대역폭과 하향링크 대역폭을 다를 수 있지만, 상향링크와 하향링크 각각에 하나의 CC만을 지원한다.
스펙트럼 집성(spectrum aggregation)(또는, 대역폭 집성(bandwidth aggregation), 반송파 집성(carrier aggregation)이라고도 함)은 복수의 CC를 지원하는 것이다. 예를 들어, 20MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 CC가 할당된다면, 최대 100Mhz의 대역폭을 지원할 수 있는 것이다.
하나의 DL CC 또는 UL CC와 DL CC의 쌍(pair)는 하나의 셀에 대응될 수 있다. 따라서, 복수의 DL CC를 통해 기지국과 통신하는 단말은 복수의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
도 4는 다중 반송파의 일 예를 나타낸다.
DL CC와 UL CC가 각각 3개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 각 DL CC에서 PDCCH와 PDSCH가 독립적으로 전송되고, 각 UL CC에서 PUCCH와 PUSCH가 독립적으로 전송된다. DL CC-UL CC 쌍이 3개가 정의되므로, 단말은 3개의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
단말은 복수의 DL CC에서 PDCCH를 모니터링하고, 복수의 DL CC를 통해 동시에 DL 전송 블록을 수신할 수 있다. 단말은 복수의 UL CC를 통해 동시에 복수의 UL 전송 블록을 전송할 수 있다.
DL CC #1과 UL CC #1의 쌍이 제1 서빙 셀이 되고, DL CC #2과 UL CC #2의 쌍이 제2 서빙 셀이 되고, DL CC #3이 제3 서빙 셀이 된다고 하자. 각 서빙 셀은 셀 인덱스(Cell index, CI)를 통해 식별될 수 있다. CI는 셀 내에서 고유할 수 있고, 또는 단말-특정적일 수 있다. 여기서는, 제1 내지 제3 서빙셀에 CI=0, 1, 2가 부여된 예를 보여준다.
서빙 셀은 1차 셀(primary cell, pcell)과 2차 셀(secondary cell, scell)로 구분될 수 있다. 1차 셀은 1차 주파수에서 동작하고, 단말인 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 1차셀로 지정된 셀이다. 1차 셀은 기준 셀(reference cell)이라고도 한다. 2차 셀은 2차 주파수에서 동작하고, RRC 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 1차 셀이 설정되고, 2차 셀은 상위 계층 시그널링(예, RRC 메시지)에 의해 추가/수정/해제될 수 있다.
1차 셀의 CI는 고정될 수 있다. 예를 들어, 가장 낮은 CI가 1차 셀의 CI로 지정될 수 있다. 이하에서는 1차 셀의 CI는 0이고, 2차 셀의 CI는 1부터 순차적으로 할당된다고 한다.
단말은 복수의 서빙셀을 통해 PDCCH를 모니터링할 수 있다. 하지만, N개의 서빙 셀이 있더라도, 기지국으로 M (M≤N)개의 서빙 셀에 대해 PDCCH를 모니터링하도록 설정할 수 있다. 또한, 기지국은 L (L≤M≤N)개의 서빙 셀에 대해 우선적으로 PDCCH를 모니터링하도록 설정할 수 있다
기존 3GPP LTE에서는 단말이 복수의 서빙셀을 지원하더라도, 하나의 TA(Timing Alignment) 값을 복수의 서빙셀에 공통으로 적용하고 있다. 하지만, 복수의 서빙셀이 주파수 영역에서 많이 이격되어 전파(propagation) 특성이 달라질 수 있다. 예를 들어, 커버리지를 확대하거나 커버리지 홀(Coverage hole)을 제거하기 위해 RRH(Remote Radio Header)와 장치들이 기지국의 영역에 존재할 수 있다.
도 5는 복수의 셀들간에 UL 전파 차이를 나타낸다.
단말은 1차셀과 2차셀에 의해 서비스를 제공받고 있다. 1차셀은 기지국에 의해, 2차셀은 기지국과 연결된 RRH에 의해 서비스를 제공한다. 1차셀의 전파 지연(propagation delay) 특성과 2차셀의 전파 지연 특성은 기지국과 RRH 간의 거리, RRH의 처리 시간(processing time) 등의 이유로 상이할 수 있다.
이 경우 1차셀과 2차셀에 동일한 TA 값을 적용하면, UL 신호의 동기화에 심각한 영향을 미칠 수 있다.
도 6은 복수의 셀 간 TA가 달라지는 예이다.
1차셀의 실제 TA는 'TA 1'이고, 2차셀의 실제 TA는 'TA 2'이다. 따라서, 각 서빙셀 별로 독립적인 TA를 적용할 필요가 있다.
독립적인 TA를 적용하기 위해, TA 그룹이 정의된다. TA 그룹은 동일한 TA가 적용되는 하나 또는 그 이상의 셀을 포함한다. 각 TA 그룹 별로 TA가 적용되고, 시간 동기 타이머도 각 TA 그룹별로 작동한다.
이하에서, 제1 서빙셀과 제2 서빙셀, 2개의 서빙셀을 고려하고, 제1 서빙셀은 제1 TA 그룹에 속하고, 제2 서빙셀은 제2 TA 그룹에 속한다고 한다. 서빙셀 및 TA 그룹의 개수는 예시에 불과하다. 제1 서빙셀은 1차셀 또는 2차셀일 수 있고, 제2 서빙셀은 차셀 또는 2차셀일 수 있다.
TA 그룹은 적어도 하나의 서빙셀을 포함할 수 있다. TA 그룹의 설정에 관한 정보는 기지국이 단말에게 알려줄 수 있다.
TA 그룹별로 독립적인 파워 앰프를 운용한다고 가정하면, 단말의 UL 최대 전송 파워의 제한은 TA 그룹별로 이루어질 수 있다. 따라서, 본 발명의 일 실시예에 의하면, 설정된 최대 전송 파워 PCMAX가 TA 그룹별로 정의될 수 있다. 이를 PCMAX,T는 TA 그룹 T에 설정된 최대 전송 파워이고, TA 그룹 T에 속한 셀들은 식 1 내지 4의 전송파워 및 PH를 구하는 데 있어서, PCMAX 대신 PCMAX,T가 사용될 수 있다.
PCMAX,T의 값은 단말의 파워 클래스(power class)와 파워 앰프의 구조에 따라서 결정되거나, 기지국이 단말에게 RRC 메시지 등을 통해 TA 그룹 별로 주어질 수 있다. 기지국은 단말이 PCMAX,T을 결정하는데 사용되는 파라미터를 RRC 메시지, MAC 메시지 등을 통해 단말에게 전송할 수 있다.
단말은 TA 그룹 별로 각 TA 그룹에 속한 셀 c의 최대 전송 파워 PCMAX,c에 대한 정보를 MAC 메시지, RRC 메시지, PUSCH 등을 통해 기지국으로 전송할 수 있다. 상기 정보는 해당되는 셀 c에서 전송될 수 있다.
단말은 TA 그룹별로 PH(power headroom) 보고를 수행할 수 있다. PCMAX,T을 기반으로 전술한 식 4에 적용하여 PH를 구할 수 있다. 단말은 TA 그룹에 속한 전체 셀의 현재 전송 파워와 PCMAX,T 사이의 차이에 관한 정보를 MAC 메시지, RRC 메시지 등을 통해 기지국에게 전송할 수 있다. PH는 하나의 PUSCH 상으로 하나의 TA 그룹에 대한 값이 전송되거나, 하나의 PUSCH 상으로 모든 TA 그룹에 대한 값이 전송될 수 있다. 하나의 PUSCH에서 하나의 TA 그룹에 대한 값이 전송될 경우, 해당 PUSCH는 해당 TA 그룹에 속한 셀에서 전송될 수 있다.
단말이 전체 TA 그룹을 고려한 PH를 보고하고, 복수의 TA 그룹의 서브프레임 타이밍이 서로 어긋나 있는 경우를 고려하자. 단말은 서브프레임 n에서는 각 TA 그룹의 서브프레임 n에서의 전송을 고려한 PH을 보고할 수 있다. 예를 들어서, 제1 TA 그룹의 서브프레임 n에서 전송이 제2 TA 그룹의 서브프레임 n+1 또는 서브프레임 n-1에서 전송과 중복될 때, 모든 TA 그룹의 서브프레임 n에서 전송만을 고려하여 PH을 계산하여 보고할 수 있다.
TA 그룹의 서브프레임 n에서 UL 전송이 다른 TA 그룹의 UL 전송과 중복될 경우, 중복된 부분에서 다른 TA 그룹의 UL 전송를 고려하여 PH를 구하고, 가장 큰 PH 또는 가장 작은 PH 또는 중복된 부분에서의 PH를 기지국으로 보고할 수 있다.
이제 TA 그룹별로 UL 전송 파워를 제어하는 방법에 대해 기술한다.
이하에서는, 전송 파워의 총 합이 Pmax로 정의되는 2개의 TA 그룹이 있고, 각 그룹 당 하나의 셀이 포함되는 것을 가정하나, 이는 예시에 불과하다. 제1 서빙셀은 제1 TA 그룹에 속하고, 제2 서빙셀은 제2 TA 그룹에 속한다고 한다.
C1,n은 제1 서빙셀의 서브프레임 n에서 전송되는 UL 신호, C1,n+1은 제1 서빙셀의 서브프레임 n+1에서 전송되는 UL 신호, C2,m은 제2 서빙셀의 서브프레임 m에서 전송되는 UL 신호, C2,m+1은 제2 서빙셀의 서브프레임 m+1에서 전송되는 UL 신호를 나타낸다. 서브프레임 번호 n과 m은 동일한 값을 가지거나 서로 다른 값을 가질 수 있다. UL 신호는 PRACH, PUCH, PUSCH 및 SRS 중 적어도 어느 하나를 포함할 수 있다. 이하에서, P1은 C2,m의 전송에 적용될 전송 파워, P100은 C1,n+1의 전송에 적용될 전송 파워를 나타낸다.
TA 그룹별로 독립적인 TA가 적용되므로, 서로 다른 TA 그룹에 속하는 셀들의 전송 시간 단위(예를 들어서, 서브프레임)의 경계(boundary)가 불일치할 경우에 단말의 전송 파워 제어에 문제가 생길 수 있다.
이하에서는 단말의 전체 전송 파워(total transmit power)가 Pmax를 초과하지 않도록 하기 위한 전송 파워 제어 방법을 제안한다.
단말이 서로 다른 TA 그룹에서 복수의 UL 신호(또는 UL 채널)을 동시에 전송할 때, 전체 전송 파워가 Pmax를 초과할 경우, 전체 전송 파워를 Pmax 이하로 낮추기 위한 파워 제한 규칙을 제안한다. 상기 파워 제한 규칙은 UL 채널별로 우선순위에 따라 적용될 수 있다. 예를 들어, PUCCH, UCI를 갖는 PUSCH, PUSCH의 순서로 우선 순위를 두어 우선 순위가 낮은 채널부터 전력을 감소시킬 수 있다. 또는, 동일한 UL 채널들사이(PUSCH들사이 또는 SRS들사이)은 동일한 비율로 전력을 감소시킬 수 있다. 특정 UL 채널의 전송을 드롭하거나 포기할 수 있다.
도 7은 본 발명의 일 실시예에 따른 전송 파워 제어 방법을 나타낸다.
단말이 제1 및 제2 서빙셀에서 전송되는 UL 신호들을 전력 총합 Pmax의 제한을 적용하지 않고 전송할 경우, 도 7의 (A)와 같이 나타낼 수 있다. 각 셀의 서브프레임 경계에서, 전송 파워의 변화가 크게 나타나게 된다.
도 7의 (B)에 의하면, 각 서브프레임 경계 단위로 Pmax를 넘지 않도록 전력 제한 규칙을 적용하여 각 UL 신호의 전송 파워를 조정하는 것을 보여준다.
전송 파워 P1으로 전송될 신호 C2,m이, C1,n과 중복된 구간에서는 C1,n과 C2,m에 파워 제한 규칙을 적용하여 전송 파워 P2로, C1,n+1과 중복되는 구간에서는 C1,n+1과 C2,m에 파워 제한 규칙을 적용하여 전송 파워 P3로 조절한다.
만약 제1 서빙셀의 UL 신호의 전송이 제2 서빙셀의 UL 신호의 전송과 일부 또는 전부가 중복되면, 상기 중복된 영역에서 전체 전송 파워가 Pmax를 초과하지 않도록 조절할 수 있다.
도 8은 본 발명의 다른 실시예에 따른 전송 파워 제어 방법을 나타낸다.
단말은 UL 신호의 시작 부분에서 중복되는 UL 신호들에 대하여 파워 제한 규칙을 적용하여 전송 파워를 조절한 뒤 해당 전송 파워를 그대로 유지한다. 해당 UL 신호의 뒷 부분에서만 중복되는 UL 신호(들)은 Pmax에서 해당 UL 신호의 전송 파워를 뺀 나머지 전력 파워 내에서 파워를 조절 할 수 있다.
제1 서빙셀에서 UL 신호의 전송을 시작할 때, 전송 시작 부분이 제2 서빙셀에서 이전에 전송을 시작한 UL 신호와 중복되지 않는다면, 제1 서빙셀의 해당 UL 신호의 전송 퍄워는 다른 UL 신호를 고려하여 결정할 수 있다.
도 8의 (A)는 전송 파워가 조절되기 전을 보여준다.
도 8의 (B)에서, C2,m의 전송 파워는 C2,m의 앞부분에서 겹치는 C1,n과 함께 파워 제한 규칙을 적용하여 P2로 결정된다.
이하의 그림에서 블랭크 박스는 각 신호가 파워 제한을 고려하지 않을 때에 전송되어야 할 전력, 해칭된 박스는 줄어든 전송 파워를 의미한다.
도 8의 (C)에서, C1,n+1은 Pmax에서 C2,m의 전송 파워 P2를 뺀 나머지 파워 내에서 전송 파워가 결정된다.
도 8의 (D)에서, C2,m+1은 결정된 C1,n+1의 전송 파워 P101을 뺀 나머지 파워 내에서 전송 파워가 결정된다.
특정 서브프레임에서 특정 셀의 전송 파워를 결정할 때, 다른 셀의 이전 서브프레임에서 전송되어 중복된 UL 신호의 전송 파워를 고려하여 Pmax에서 뺀 파워를 초과하지 않도록 할 수도 있다. 도 8의 (B)에서와 같이, C1,n와 C2,m의 전송 파워기 결정된 후에 C1,n+1의 전송 파워를 결정할 때, C1,n+1에 할당될 수 있는 최대 전송 파워는 Pmax에서 이전 서브프레임에서 이어지는 신호의 전송 파워를 뺀 전력, 즉, Pmax에서 C2,m의 전송 파워 P2를 뺀 파워가 된다. C2,m+1과 C1,n+1에 대한 파워 제한 규칙 적용 결과로 C1,n+1의 전송 파워가 최대 전송 파워 보다 클 경우 이, 최대 전송 파워를 넘지 않도록 다시 조정될 수 있다.
도 9는 본 발명의 또 다른 실시예에 따른 전송 파워 제어 방법을 나타낸다.
이는 두 셀의 UL 신호가 겹치는 구간 순서로 전송 파워를 조정하는 것을 제안한다.
두 셀에서의 전송되는 UL 신호들이 중복될 경우 먼저 전송되는 UL 신호의 전송 파워를 중복된 구간을 기준으로 파워 제한 규칙을 적용하여 조절한다. 이 방식이 연속되는 서브프레임에 대하여 반복적으로(recursive) 적용될 수 있다.
도 9의 (A)는 전송 파워가 조절되기 전을 보여준다. C1,n과 C2,m이 중복되고 C1,n이 먼저 전송되므로 C1,n과 C2,n에 파워 제한 규칙을 적용하여 C1,n의 전송 파워를 결정한다.
도 9의 (B)에서, C2,m의 전송 파워가 P1에서 P2로 조절된다.
도 9의 (C)와 (D)에서, C2,m의 뒷부분과 C1,n+1의 앞부분이 중복되므로, 이 둘에 파워 제한 규칙을 적용하여 C2,m의 전송 파워는 P3로 조절되고, C1,n+1의 전송 파워는 P102로 조절된다.
도 9의 (E)에서, P102 로 조정된 C1,n+1의 전송 파워는 C2,m+1과 중복되는 부분을 고려하여 다시 P103으로 최종 결정된다.
상기 방식의 변형으로, 제1 서빙셀에서 전송되는 UL 신호가 제2 서빙셀에서 전송되는 2개의 신호가 중복될 때, 중복된 구간에서 상기 제1 UL 신호 및 2개의 제2 UL 신호에 각각 파워 제한 규칙을 적용하여 나온 전송 파워 중 작은 전송 파워를 선택할 수 있다.
예를 들어, 도 9의 (A)에서, C2,m은 C1,n과 C2,n+2과 연속된 시간 구간에서 중복된다. 이 때에, 도 9의 (B)와 같이, C1,n과 함께 파워를 조절할 때에는 P2로 전송 파워가 조절되고, C1,n+1과 함께 조절할 때에는 P3로 전송 파워가 조절된다. 만약 P3<P2라면, C2,m의 전송 파워는 P3가 된다. 이 과정은 C1,n+1에 대해서도 반복될 수 있다. 즉, C1,n+1은 C2,m과 함께 조정된 전송 파워와 C2,m+1과 함께 조정된 전송 파워 중 작은 전송 파워인 P103의 전송 파워로 전송된다. 이 때에 C2,m+1과 조정되는 C1,n+1의 전송 파워는 C2,n과 이미 한번 조정된 전송 파워를 기반으로 하거나 C2,n과 조정되기 전의 본래 전송 파워를 기반으로 결정될 수도 있다.
두 셀의 전력 파워를 조절하기 위한 출발점은 동일 서브프레임 번호간, 즉, m=n, 일 수 있다.
도 10은 본 발명의 또 다른 실시예에 따른 전송 파워 제어 방법을 나타낸다.
이는 m=n이 동일한 서브프레임 번호로 하고, 동일한 번호의 서브프레임끼리 우선 전송 파워를 조정한 뒤에 중복되는 다른 서브프레임에 대하여 재조정하는 것을 제안한다.
서로 다른 셀로 전송되는 UL 신호에 대해 동일한 번호의 서브프레임에서 중복되는 부분에 대하여 파워 제한 규칙을 각각 적용하여 잠정적인 전송 파워를 결정한다. 인접한 서브프레임에서 중복되는 부분에 대하여는 파워 제한 규칙을 적용하여 최종 전송 파워를 결정한다.
도 10의 (A)는 전송 파워가 조절되기 전을 보여준다.
도 10의 (B)에서, C2,m과 C1,n에 파워 제한 규칙을 적용하여 C2,m의 전송 파워는 일단 P2로 결정된다.
도 10의 (C)에서, C2,m+1과 C1,n+1에 파워 제한 규칙을 적용하여 C1,n+1의 전송 파워는 P101로 결정된다.
도 10의 (D)에서, C2,m과 C1,n+1이 연속한 서브프레임에서 중복되므로, 파워 제한 규칙을 적용하여, C2,m의 전송 파워는 최종적으로 P3로 결정된다. C1,n+1은 P101로 전송되는 것을 가정하여 규칙을 적용한 것이다.
도 10의 (E)는 최종적으로 결정된 전송 파워를 보여준다.
일정 시간 동안 특정 포맷의 UL 신호에만 일정한 전송 파워를 보장하는 것이 요구될 수 있다. 예를 들어서, ACK/NACK을 나르는 PUCCH 또는 PRACH는 한 전송 단위의 최초 전송 시에 설정된 전송 파워를 유지하고, 이후에 해당 신호와 겹치는 다른 셀의 UL 신호들의 전송 파워는 적절히 조절되거나, 한 전송 단위 안에서도 전송 파워의 변화를 허용할 수 있다. 또한, UL 채널이 높은 차수의 변조 방식(예, 16-QAM, 64-QAM 등)로 변조될 때, 상기와 같은 일정한 전송 파워를 보장하도록 할 수 있다. 고차수의 변조 방식이 적용된 PUSCH 전송이 서브프레임의 일부에서 낮은 차수의 변조 방식(예, BPSK 또는 QPSK)으로 변조된 PUSCH 전송과 중복될 때, 중복된 부분 또는 해당 서브프레임 전체에서 낮은 차수의 변조 방식이 적용된 PUSCH의 전송 파워를 조절할 수 있다.
전술한 도 7 내지 10의 실시예들은, 조합될 수 있다. 예를 들어서, PUCCH 또는 PRACH는 상대적으로 다른 UL 신호에 비하여 중요한 신호이므로, 도 8의 실시예를 적용하여, 하나의 중복된 구간에 대해서만 전송 파워를 결정하고, 이를 유지한다. PUSCH는 도 7, 도 9, 도 10의 실시예들을 적용하여, 해당 PUSCH와 중복되는 모든 구간을 고려하여 전송 파워를 조절할 수 있다.
TA 그룹 별로 전송 파워의 할당에 사용되는 우선순위가 설정될 수 있다. 예를 들어서, 1차셀이 TA 그룹은 다른 TA 그룹에 비하여 높은 우선순위를 둘 수 있다. 낮은 우선순위를 갖는 TA 그룹에 속하는 셀에 대해서는 전송 파워를 우선적으로 줄이거나 전송을 포기할 수 있다. 또한, 복수의 TA 그룹에 대하여 TA 그룹 인덱스를 부여할 때에, 낮은 TA 그룹 인덱스 (혹은 높은 TA 그룹 인덱스) 순서로 전송 파워 할당의 우선순위를 두고, 높은 TA 그룹 인덱스(혹은 낮은 TA 그룹 인덱스)에 속하는 셀에서의 전송 파워를 우선적으로 줄일 수 있다. 1차셀이 속하는 TA 그룹에게 가장 낮은 TA 그룹 인덱스(예를 들어, 0)가 할당될 수 있다.
복수의 TA 그룹에서 복수의 UL 신호를 동시에 전송할 때, 전체 전송 파워가 최대 전송 파워를 초과하면, UL 신호 중 일부를 레이트 매칭(rate matching)/천공(puncturing)을 통해 전송하지 않을 수 있다. 제1 TA 그룹에서 전송되는 제1 UL 신호가 제2 TA 그룹에서 전송되는 제2 UL 신호와 중복될 때, 중복된 부분에서 전체 전송 파워가 최대 전송 파워를 초과하면, 제1 및 제2 UL 신호 중 하나를 중복된 부분에서 레이트 매칭/천공을 통해 전송하지 않을 수 있다.
이 때에 어느 UL 신호를 레이트 매칭/천공할지는 다음과 같이 정해질 수 있다. SRS와 중복되는 PUSCH 또는 PUCCH의 일부 OFDM 심벌을 레이트 매칭/천공할 수 있다. PUCCH와 중복되는 PUSCH의 일부 OFDM 심볼을 레이트 매칭/천공할 수 있다. PUSCH와 중복되는 PUSCH의 일부 OFDM 심볼을 레이트 매칭/천공할 수 있다.
제1 서빙셀의 제1 서브프레임에서 전송되는 제1 UL 신호가 제2 서빙셀에서 상기 제1 서브프레임에 중복되는 두개의 서브프레임에서 전송되는 제2 UL 신호(들)와 중복될 때, 상기 제1 UL 신호의 전송 파워는 상기 제2 UL 신호(들)의 전송 파워를 이용하여 결정된다고 할 수 있다.
상기 실시예들은 한 셀에서 SRS가 전송되는 OFDM 심볼 내에 다른 셀의 서브프레임 경계가 있을 경우에 SRS의 전송 파워를 결정하는 데에 적용할 수 있다.
상기 제안된 실시예에 기술된 바와 같이, 복수의 TA 그룹이 설정되고, TA 그룹간 서브프레임 타이밍이 맞지 않아 전송 파워를 조절하는 방법은 복수의 TA 그룹 간 TA가 특정 임계값 이상으로 어긋나 있을 경우에 적용되도록 할 수 있다. 상기 임계값은 미리 정해지거나 RRC 메시지 등으로 기지국이 단말에게 알려줄 수 있다.
복수의 TA 그룹간 서브프레임 타이밍이 어긋나는 정도(또는, 복수의 TA 그룹 간 전송이 중복되는 구간)가 임계값 이상인 경우와 이하인 경우에 서로 다른 방식들이 적용될 수 있다. 예를 들어서, 서브프레임 타이밍 차이가 임계값 이상이면, UL 신호 일부를 포기/천공/레이트 매칭하고, 임계값 이하이면 일부 신호의 전송 파워를 줄일 수 있다. 반대로 서브프레임 타이밍 차이가 임계값 이하이면 UL 신호 일부를 포기/천공/레이트 매칭하고, 임계값 이상이면 일부 신호의 전송 파워를 줄일 수 있다.
중복되는 구간이 특정 길이 이하(예를 들어서, 한 OFDM 심볼)일 경우에는 일부 채널, 혹은 모든 채널의 전송 파워를 해당 OFDM 심볼, 혹은 해당 중복되는 구간에서만 줄일 수 있디. 그 외의 경우에는 일부 채널, 혹은 모든 채널의 전송 파워를 전체 전송 구간에서 줄일 수 있다.
BPSK/QPSK와 같이 위상 변조(phase modulation) 방식으로 변조된 PUSCH에 대해서는 상기와 같은 경우에 중복된 OFDM 심벌의 전송 파워를 줄이고, 16QAM, 64QAM 등 QAM 방식으로 변조된 PUSCH에 대해서는 중복된 OFDM 심벌에 대해 레이트 매칭/천공 등으로 전송을 포기할 수 있다. 특정 OFDM 심벌에 대한 전송 파워를 줄일 경우 해당 OFDM 심벌에 대한 QAM 복조 성능이 보장되지 않을 수 있기 때문이다.
도 11은 TA 그룹에 대한 TA 조정의 일 예를 나타낸다.
복수의 TA 그룹이 설정될 때, 각 TA 그룹 내의 셀들에서의 UL 전송을 위한 서브프레임 타이밍은 동일하게 하지만, TA 그룹 별로는 독립적인 서브프레임 타이밍이 적용될 수 있다.
하나의 셀에서의 서브프레임 시작 타이밍(이하, 전송 타이밍)은 랜덤 액세스 응답 내의 TA 명령 등을 통해 조정될 수 있다.
도 12는 전송 타이밍의 조정으로 인한 중복을 나타낸다.
만일 동일한 셀에 대해서, 전송 타이밍 조정으로 인해 연속된 서브프레임 간에 UL 전송 신호가 겹치게 되면, 후행하는 서브프레임에서의 UL 신호(PUCCH, PUSCH 등) 중 선행하는 서브프레임에서의 UL 신호와 중복된 부분을 전송하지 않을 수 있는다. 이는 서브프레임을 통해 전송되는 신호의 가장 앞 부분은 OFDM 심볼(혹은 OFDM 심볼)의 CP(cyclic prefix)를 포함하고, CP가 손실되더라도 다른 부분에 비해 데이터의 손실 정도가 적을 수 있기 때문이다.
동일한 TA 그룹에 속하는 셀에서 TA 명령의 적용으로 인해 전송 타이밍의 조정되고, 그 결과 서브프레임 n과 서브프레임 n+1이 중복될 경우, 서브프레임 n+1에서 상기 서브프레임 n과 중복되는 부분(OFDM 심벌 전체 또는 OFMD 심벌의 일부)를 전송하지 않는 것이 제안된다.
상기 서브프레임 n과 상기 서브프레임 n+1는 동일한 셀에 속할 수도 있고, 동일한 TA 그룹에 속하는 서로 다른 셀에 속할 수 있다.
동일 TA 그룹에 속하는 셀들에 대해, 단말은 동일한 RF 모듈(파워 앰프 등)에 의해 무선 신호를 전송하고, 동일한 RF 모듈에서 서로 다른 타이밍으로 무선 신호를 전송하는 것은 단말의 복잡도를 크게 증가시킬 수 있기 때문이다.
예를 들어, 서브프레임 n-6에서 TA 명령이 수신되면, UL 전송 타이밍의 조정은 서브프레임 n의 시작부터 적용될 수 있다. 동일한 TA 그룹에 속하는 서빙셀들에 대해, 전송 타이밍의 조정으로 인해 서브프레임 n-1 및 서브프레임 n에서 단말의 UL 신호(PUCCH/PUSCH/SRS 등) 전송이 중복되면, 단말은 서브프레임 n-1에서의 전송을 완료하고, 서브프레임 n의 중복된 부분을 전송하지 않을 수 있다.
단말은 서로 다른 TA 그룹에 속하는 셀들에 대해서는, TA 명령에 따른 전송 타이밍 조정으로 전송이 중복되더라도 그대로 전송할 수 있다. 이는 서로 다른 TA 그룹에 대한 전송은 서로 다른 RF 모듈에 의해 독립적으로 수행되어, 서로 다른 타이밍으로 신호를 전송하더라도 단말의 복잡도에 큰 영향을 미치지 않기 때문이다.
도 13은 본 발명의 일 실시예에 따른 상향링크 전송을 나타낸다.
제1 TA 그룹(TAG1)에 속한 셀 1의 서브프레임 n에서 전송되는 UL 채널의 뒷부분과 상기 제1 TA 그룹(TAG1)에 속한 셀 2의 서브프레임 n+1에서 전송되는 UL 채널의 앞부분이 TA 명령에 의한 타이밍 조정으로 중복된다. 단말은 셀 2에서 전송되는 UL 채널 중 중복된 부분을 전송하지 않는다.
제2 TA 그룹(TAG2)에 속한 셀 3 나 셀 4의 서브프레임 n+1에서 전송되는 UL 채널은 제1 TA 그룹의 타이밍 조정과 상관없이 전송된다.
상기 연속한 서브프레임에서 중복된 부분에서의 전송 여부를 기지국이 단말기에게 단말에게 알려줄 수 있다.
도 14는 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 RF부(RF(radio frequency) unit, 53)을 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)를 구동하기 위한 다양한 정보를 저장한다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 서빙셀 및/또는 TA 그룹은 기지국에 의해 제어/관리될 수 있으며, 하나 또는 그 이상의 셀의 동작은 프로세서(51)에 의해 구현될 수 있다.
무선기기(60)는 프로세서(61), 메모리(62) 및 RF부(63)을 포함한다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)를 구동하기 위한 다양한 정보를 저장한다. RF부(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 단말의 동작은 프로세서(61)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
Claims (14)
- 무선 통신 시스템에서 상향링크 전송 파워 제어 방법에 있어서,제1 서빙셀에서 제1 무선 자원을 통해 전송되는 제1 상향링크 채널의 제1 전송 파워를 결정하고;제2 서빙셀에서 제2 무선 자원을 통해 전송되는 제2 상향링크 채널의 제2 전송 파워를 결정하는 것을 포함하되,상기 제1 서빙셀은 제1 TA(Timing Advance) 그룹에 속하고, 제2 서빙셀은 상기 제1 TA 그룹과 다른 제2 TA 그룹에 속하고,상기 제1 무선 자원과 상기 제2 무선 자원은 전부 또는 일부가 중복되고,상기 중복된 부분에서 상기 제1 및 제2 전송 파워의 합은 최대 전송 파워를 초과하지 않도록 결정되는 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
- 제 1 항에서, 상기 제1 및 제2 무선 자원은 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하는 적어도 하나의 서브프레임인 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
- 제 2 항에서, 상기 제1 및 제2 전송 파워 중 적어도 어느 하나는 서브프레임 경계를 기준으로 조절되는 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
- 제 3 항에서, 상기 서브프레임 경계에서 조절된 전송 파워는 해당 서브프레임 내에서 동일하게 유지되는 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
- 제 2 항에서 있어서, 상기 중복된 부분은 적어도 하나의 OFDM 심벌을 포함하는 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
- 제 2 항에 있어서, 상기 제1 상향링크 채널과 상기 제2 상향링크 채널의 우선 순위에 따라 상기 제1 및 제2 전송 파워 중 적어도 어느 하나가 조절되는 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
- 제 1 항에 있어서, 상기 제1 및 제2 상향링크 채널은 PUSCH(Physical Uplink Shared Channel), PUCCH(Physical Uplink Control Channel), PRACH(Physical Random Access Channel) 및 SRS(sounding reference signal) 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
- 무선 통신 시스템에서 상향링크 전송 파워를 제어하는 무선기기에 있어서,무선 신호를 송신 및 수신하는 RF(radio frequency)부; 및상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는제1 서빙셀에서 제1 무선 자원을 통해 전송되는 제1 상향링크 채널의 제1 전송 파워를 결정하고;제2 서빙셀에서 제2 무선 자원을 통해 전송되는 제2 상향링크 채널의 제2 전송 파워를 결정하되,상기 제1 서빙셀은 제1 TA(Timing Advance) 그룹에 속하고, 제2 서빙셀은 상기 제1 TA 그룹과 다른 제2 TA 그룹에 속하고,상기 제1 무선 자원과 상기 제2 무선 자원은 전부 또는 일부가 중복되고,상기 중복된 부분에서 상기 제1 및 제2 전송 파워의 합은 최대 전송 파워를 초과하지 않도록 결정되는 것을 특징으로 하는 무선기기.
- 제 8 항에서, 상기 제1 및 제2 무선 자원은 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하는 적어도 하나의 서브프레임인 것을 특징으로 하는 무선기기.
- 제 9 항에서, 상기 제1 및 제2 전송 파워 중 적어도 어느 하나는 서브프레임 경계를 기준으로 조절되는 것을 특징으로 하는 무선기기.
- 제 10 항에서, 상기 서브프레임 경계에서 조절된 전송 파워는 해당 서브프레임 내에서 동일하게 유지되는 것을 특징으로 하는 무선기기.
- 제 9 항에서 있어서, 상기 중복된 부분은 적어도 하나의 OFDM 심벌을 포함하는 것을 특징으로 하는 무선기기.
- 제 9 항에 있어서, 상기 제1 상향링크 채널과 상기 제2 상향링크 채널의 우선 순위에 따라 상기 제1 및 제2 전송 파워 중 적어도 어느 하나가 조절되는 것을 특징으로 하는 무선기기.
- 제 8 항에 있어서, 상기 제1 및 제2 상향링크 채널은 PUSCH(Physical Uplink Shared Channel), PUCCH(Physical Uplink Control Channel), PRACH(Physical Random Access Channel) 및 SRS(sounding reference signal) 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 무선기기.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/112,482 US9337980B2 (en) | 2011-09-29 | 2012-09-28 | Method for controlling uplink transmission power and wireless device using same |
US15/094,573 US9716575B2 (en) | 2011-09-29 | 2016-04-08 | Method for controlling uplink transmission power and wireless device using same |
US15/634,663 US10250368B2 (en) | 2011-09-29 | 2017-06-27 | Method for controlling uplink transmission power and wireless device using same |
Applications Claiming Priority (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161541044P | 2011-09-29 | 2011-09-29 | |
US61/541,044 | 2011-09-29 | ||
US201161554493P | 2011-11-01 | 2011-11-01 | |
US61/554,493 | 2011-11-01 | ||
US201261591279P | 2012-01-27 | 2012-01-27 | |
US61/591,279 | 2012-01-27 | ||
US201261611590P | 2012-03-16 | 2012-03-16 | |
US61/611,590 | 2012-03-16 | ||
US201261613467P | 2012-03-20 | 2012-03-20 | |
US61/613,467 | 2012-03-20 | ||
US201261644439P | 2012-05-09 | 2012-05-09 | |
US61/644,439 | 2012-05-09 | ||
US201261645566P | 2012-05-10 | 2012-05-10 | |
US61/645,566 | 2012-05-10 | ||
US201261667935P | 2012-07-03 | 2012-07-03 | |
US61/667,935 | 2012-07-03 | ||
US201261678120P | 2012-08-01 | 2012-08-01 | |
US61/678,120 | 2012-08-01 | ||
US201261681636P | 2012-08-10 | 2012-08-10 | |
US61/681,636 | 2012-08-10 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/112,482 A-371-Of-International US9337980B2 (en) | 2011-09-29 | 2012-09-28 | Method for controlling uplink transmission power and wireless device using same |
US15/094,573 Continuation US9716575B2 (en) | 2011-09-29 | 2016-04-08 | Method for controlling uplink transmission power and wireless device using same |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2013048188A2 true WO2013048188A2 (ko) | 2013-04-04 |
WO2013048188A3 WO2013048188A3 (ko) | 2013-07-04 |
Family
ID=47996648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/007930 WO2013048188A2 (ko) | 2011-09-29 | 2012-09-28 | 상향링크 전송 파워 제어 방법 및 이를 이용한 무선기기 |
Country Status (3)
Country | Link |
---|---|
US (13) | US8948119B2 (ko) |
KR (2) | KR101306377B1 (ko) |
WO (1) | WO2013048188A2 (ko) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160009918A (ko) * | 2014-07-17 | 2016-01-27 | 삼성전자주식회사 | 무선통신 시스템의 상향링크 동기화 장치 및 방법 |
KR20160037722A (ko) * | 2014-09-26 | 2016-04-06 | 주식회사 케이티 | 상향링크 채널 및 신호의 전송전력 제어방법 및 그 장치 |
US9585102B2 (en) | 2014-09-26 | 2017-02-28 | Kt Corporation | Method of controlling the transmission power of uplink channels and signals and apparatuses thereof |
US9713094B2 (en) | 2013-11-08 | 2017-07-18 | Kt Corporation | Method for controlling uplink transmission power and apparatus thereof |
WO2019017614A1 (ko) * | 2017-07-19 | 2019-01-24 | 삼성전자 주식회사 | 무선 셀룰라 통신 시스템에서 상향 채널 전송 방법 및 장치 |
CN110637495A (zh) * | 2017-05-04 | 2019-12-31 | Lg 电子株式会社 | 无线通信系统中通过波束发送和接收信号的方法及用于该方法的装置 |
CN110677905A (zh) * | 2013-11-08 | 2020-01-10 | 株式会社Kt | 用于控制上行链路传输功率的方法及其装置 |
US20220210825A1 (en) * | 2020-12-28 | 2022-06-30 | Samsung Electronics Co., Ltd. | Method and apparatus of uplink timing adjustment |
US11903018B2 (en) | 2017-07-19 | 2024-02-13 | Samsung Electronics Co., Ltd | Method and apparatus for performing uplink channel transmission in wireless cellular communication system |
Families Citing this family (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012153961A2 (ko) * | 2011-05-06 | 2012-11-15 | 엘지전자 주식회사 | 캐리어 병합을 지원하는 무선접속시스템에서 전송 타이밍을 조정하는 방법 및 장치 |
US8395985B2 (en) | 2011-07-25 | 2013-03-12 | Ofinno Technologies, Llc | Time alignment in multicarrier OFDM network |
KR101306377B1 (ko) * | 2011-09-29 | 2013-09-09 | 엘지전자 주식회사 | 상향링크 전송 방법 및 장치 |
US8971250B2 (en) | 2011-10-29 | 2015-03-03 | Ofinno Technologies, Llc | Special subframe allocation |
US11696300B2 (en) | 2011-10-29 | 2023-07-04 | Comcast Cable Communications, Llc | Configuration of reduced transmission power time intervals based on traffic load |
US8937918B2 (en) | 2011-10-29 | 2015-01-20 | Ofinno Technologies, Llc | Efficient special subframe allocation |
JP2013102398A (ja) * | 2011-11-09 | 2013-05-23 | Ntt Docomo Inc | 無線通信システム、ユーザ端末及び無線通信方法 |
US8873467B2 (en) * | 2011-12-05 | 2014-10-28 | Ofinno Technologies, Llc | Control channel detection |
US8971275B2 (en) | 2011-12-31 | 2015-03-03 | Ofinno Technologies, Llc | Almost blank subframe indication in wireless networks |
CN103200662B (zh) * | 2012-01-09 | 2016-03-09 | 华为技术有限公司 | 上行发送功率确定方法及用户设备 |
US8964780B2 (en) | 2012-01-25 | 2015-02-24 | Ofinno Technologies, Llc | Sounding in multicarrier wireless communications |
EP3937551A3 (en) | 2012-01-25 | 2022-02-09 | Comcast Cable Communications, LLC | Random access channel in multicarrier wireless communications with timing advance groups |
US9237537B2 (en) | 2012-01-25 | 2016-01-12 | Ofinno Technologies, Llc | Random access process in a multicarrier base station and wireless device |
KR20130087965A (ko) * | 2012-01-30 | 2013-08-07 | 주식회사 팬택 | 다중 ta 환경에서 상향 링크 전력을 할당하는 방법 및 장치 |
US10206181B2 (en) * | 2012-01-30 | 2019-02-12 | Texas Instruments Incorporated | Simultaneous transmission in multiple timing advance groups |
CN104254989B (zh) * | 2012-02-29 | 2017-11-10 | 三星电子株式会社 | 用于在移动通信系统中收发与支持半双工传输的终端相关的信道的方法和装置 |
US9215678B2 (en) * | 2012-04-01 | 2015-12-15 | Ofinno Technologies, Llc | Timing advance timer configuration in a wireless device and a base station |
US20130259008A1 (en) | 2012-04-01 | 2013-10-03 | Esmael Hejazi Dinan | Random Access Response Process in a Wireless Communications |
US11943813B2 (en) | 2012-04-01 | 2024-03-26 | Comcast Cable Communications, Llc | Cell grouping for wireless communications |
US8989128B2 (en) | 2012-04-20 | 2015-03-24 | Ofinno Technologies, Llc | Cell timing in a wireless device and base station |
US8964593B2 (en) * | 2012-04-16 | 2015-02-24 | Ofinno Technologies, Llc | Wireless device transmission power |
EP3337079B1 (en) | 2012-04-16 | 2024-06-05 | Comcast Cable Communications, LLC | Cell group configuration for uplink transmission in a multicarrier wireless device and base station with timing advance groups |
US11582704B2 (en) | 2012-04-16 | 2023-02-14 | Comcast Cable Communications, Llc | Signal transmission power adjustment in a wireless device |
US11825419B2 (en) | 2012-04-16 | 2023-11-21 | Comcast Cable Communications, Llc | Cell timing in a wireless device and base station |
US11252679B2 (en) | 2012-04-16 | 2022-02-15 | Comcast Cable Communications, Llc | Signal transmission power adjustment in a wireless device |
US9210664B2 (en) | 2012-04-17 | 2015-12-08 | Ofinno Technologies. LLC | Preamble transmission in a wireless device |
US9179425B2 (en) | 2012-04-17 | 2015-11-03 | Ofinno Technologies, Llc | Transmit power control in multicarrier communications |
PT2850902T (pt) | 2012-05-16 | 2017-03-02 | ERICSSON TELEFON AB L M (publ) | Método e configuração numa rede de comunicações |
US9084228B2 (en) | 2012-06-20 | 2015-07-14 | Ofinno Technologies, Llc | Automobile communication device |
US11622372B2 (en) | 2012-06-18 | 2023-04-04 | Comcast Cable Communications, Llc | Communication device |
US8971298B2 (en) | 2012-06-18 | 2015-03-03 | Ofinno Technologies, Llc | Wireless device connection to an application server |
US9113387B2 (en) | 2012-06-20 | 2015-08-18 | Ofinno Technologies, Llc | Handover signalling in wireless networks |
US9107206B2 (en) | 2012-06-18 | 2015-08-11 | Ofinne Technologies, LLC | Carrier grouping in multicarrier wireless networks |
US9179457B2 (en) | 2012-06-20 | 2015-11-03 | Ofinno Technologies, Llc | Carrier configuration in wireless networks |
US9210619B2 (en) | 2012-06-20 | 2015-12-08 | Ofinno Technologies, Llc | Signalling mechanisms for wireless device handover |
US11882560B2 (en) | 2012-06-18 | 2024-01-23 | Comcast Cable Communications, Llc | Carrier grouping in multicarrier wireless networks |
WO2014021612A2 (ko) * | 2012-08-01 | 2014-02-06 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 송신 전력을 설정하는 방법 및 장치 |
CN103634887B (zh) * | 2012-08-24 | 2018-03-09 | 华为技术有限公司 | 载波汇聚场景下用户设备的上行功率控制方法和装置 |
JP2014072778A (ja) * | 2012-09-28 | 2014-04-21 | Ntt Docomo Inc | 無線通信システム、基地局装置、ユーザ端末及び無線通信方法 |
CN103843421A (zh) | 2012-09-29 | 2014-06-04 | 华为技术有限公司 | 功率确定方法、用户设备和基站 |
KR101407094B1 (ko) | 2012-10-31 | 2014-06-16 | 엘지전자 주식회사 | 상향링크 신호 전송 방법 및 장치 |
JP2014093628A (ja) * | 2012-11-02 | 2014-05-19 | Ntt Docomo Inc | ユーザ端末、無線通信システム及び無線通信方法 |
KR102254896B1 (ko) * | 2013-01-03 | 2021-05-24 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치 |
TWI577197B (zh) * | 2013-01-28 | 2017-04-01 | 創新音速股份有限公司 | 在無線通訊系統中小細胞增強之方法和通訊設備 |
CN103997426B (zh) * | 2013-02-17 | 2018-11-16 | 中兴通讯股份有限公司 | 一种反向复用中子帧错序的检测方法及节点 |
CN104009802A (zh) * | 2013-02-22 | 2014-08-27 | 中兴通讯股份有限公司 | 一种延长无源光网络系统传输距离的方法和光线路终端 |
WO2014171802A1 (ko) * | 2013-04-19 | 2014-10-23 | 엘지전자 주식회사 | 무선 접속 시스템에서 전력 제어 방법 및 장치 |
US9386461B2 (en) * | 2013-06-21 | 2016-07-05 | Qualcomm Incorporated | Location aware self-locating access point |
US10237020B2 (en) | 2013-07-19 | 2019-03-19 | Sharp Kabushiki Kaisha | Systems and methods for carrier aggregation |
US9559817B2 (en) * | 2013-07-19 | 2017-01-31 | Sharp Kabushiki Kaisha | Systems and methods for carrier aggregation |
JP6229230B2 (ja) * | 2013-09-20 | 2017-11-15 | シャープ株式会社 | 通信システム及び移動局装置 |
KR102222880B1 (ko) * | 2013-10-11 | 2021-03-04 | 삼성전자 주식회사 | 셀룰러 이동 통신 시스템에서 srs 전송 방법 및 장치 |
KR102159391B1 (ko) * | 2013-10-18 | 2020-09-23 | 삼성전자주식회사 | 이동통신 시스템에서 상향링크 랜덤 접속 절차 제어 방법 및 장치 |
US10506585B2 (en) * | 2014-02-13 | 2019-12-10 | Lg Electronics Inc. | Method and apparatus for transmitting sounding reference signal in wireless access system supporting machine type communication |
WO2015139224A1 (en) * | 2014-03-19 | 2015-09-24 | Telefonaktiebolaget L M Ericsson(Publ) | Uplink power sharing in dual connectivity |
KR102298357B1 (ko) * | 2014-03-21 | 2021-09-07 | 삼성전자 주식회사 | 무선통신 시스템에서 다중 기지국과 랜덤 엑세스 수행 방법 및 장치 |
ES2897437T3 (es) * | 2014-03-21 | 2022-03-01 | Nokia Technologies Oy | Transmisión de preámbulo en paralelo en situaciones de potencia limitada |
US10091736B2 (en) * | 2014-04-18 | 2018-10-02 | Kt Corporation | Method of controlling uplink signal transmission power and apparatus thereof |
KR101674791B1 (ko) * | 2014-04-18 | 2016-11-11 | 주식회사 케이티 | 상향링크 신호 전송전력 제어 방법 및 그 장치 |
MX360822B (es) * | 2014-04-18 | 2018-11-16 | Huawei Tech Co Ltd | Método de configuración de potencia, equipo de usuario y estación base. |
EP3133875B1 (en) * | 2014-05-08 | 2020-04-22 | Huawei Technologies Co., Ltd. | Power distribution method and device |
US20170188393A1 (en) * | 2014-05-09 | 2017-06-29 | Ntt Docomo, Inc. | User apparatus and transmission control method |
US20160021618A1 (en) * | 2014-07-18 | 2016-01-21 | Sharp Laboratories Of America, Inc. | Systems and methods for uplink transmission power control |
CN110855412B (zh) * | 2014-08-06 | 2022-06-07 | Lg电子株式会社 | 发送和接收信道状态信息的方法以及用户设备和基站 |
WO2016021992A1 (ko) * | 2014-08-08 | 2016-02-11 | 엘지전자 주식회사 | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 |
WO2016039572A2 (en) * | 2014-09-11 | 2016-03-17 | Lg Electronics Inc. | Method and apparatus for splitting pusch/pucch with large number of aggregated carriers in wireless communication system |
EP3001739B1 (en) * | 2014-09-25 | 2019-04-10 | Motorola Solutions, Inc. | Method and apparatus for adaptation of the base station transmit power in order to reduce power consumption |
CN111343713B (zh) * | 2014-12-15 | 2023-04-07 | Lg电子株式会社 | 控制上行链路发送功率的方法和装置 |
KR101950456B1 (ko) * | 2015-01-19 | 2019-04-22 | 엘에스산전 주식회사 | 태양광발전 장치의 데이터 수집 장치 |
US9871572B2 (en) * | 2015-03-09 | 2018-01-16 | Ofinno Technologies, Llc | Uplink control channel in a wireless network |
CN114095996A (zh) * | 2015-05-15 | 2022-02-25 | 北京三星通信技术研究有限公司 | 一种上行功率的分配方法和用户设备 |
US10251132B2 (en) * | 2015-07-23 | 2019-04-02 | Acer Incorporated | Device and method of handling uplink power control for unlicensed serving cell |
US10652753B2 (en) * | 2015-07-24 | 2020-05-12 | Samsung Electronics Co., Ltd. | Method for transmitting control signal and channel in mobile communication system using unlicensed band |
CN107667490B (zh) * | 2015-07-27 | 2019-10-25 | Lg电子株式会社 | 用于发送和接收广播信号的设备和方法 |
US11700641B2 (en) * | 2015-08-19 | 2023-07-11 | Lg Electronics Inc. | Random access procedure performing method in wireless communication system, and apparatus therefor |
US10218474B2 (en) * | 2015-09-02 | 2019-02-26 | Htc Corporation | Device and method of handling scheduling request transmission |
US10187191B2 (en) * | 2016-01-27 | 2019-01-22 | Qualcomm Incorporated | SRS transmission in management in carrier aggregation |
WO2017161502A1 (zh) | 2016-03-22 | 2017-09-28 | 广东欧珀移动通信有限公司 | 用于发送上行控制信息的方法、终端和基站 |
US10069613B2 (en) | 2016-04-01 | 2018-09-04 | Motorola Mobility Llc | Method and apparatus for scheduling uplink transmissions with reduced latency |
US10542503B2 (en) | 2016-04-01 | 2020-01-21 | Motorola Mobility Llc | Method and apparatus for scheduling uplink transmissions with reduced latency |
US10412620B2 (en) | 2016-04-01 | 2019-09-10 | Motorola Mobility Llc | Method and apparatus for scheduling uplink transmissions with reduced latency |
US10117188B2 (en) * | 2016-04-01 | 2018-10-30 | Motorola Mobility Llc | Method and apparatus for scheduling uplink transmissions with reduced latency |
US10172156B2 (en) | 2016-09-12 | 2019-01-01 | Motorola Mobility Llc | Method and apparatus for scheduling uplink transmissions with reduced latency |
US10277367B2 (en) | 2016-04-01 | 2019-04-30 | Motorola Mobility Llc | Method and apparatus for scheduling uplink transmissions with reduced latency |
US20170325174A1 (en) * | 2016-05-09 | 2017-11-09 | Ofinno Technologies, Llc | Uplink transmission power control in a wireless device and wireless network |
CN109314982B (zh) * | 2016-06-10 | 2022-03-01 | Lg 电子株式会社 | 无线通信系统中减少时延的信号发送和接收方法及其装置 |
CN109565385B (zh) * | 2016-08-12 | 2021-02-12 | 华为技术有限公司 | 上行信道发送方法和装置 |
CN107809305A (zh) * | 2016-09-09 | 2018-03-16 | 北京三星通信技术研究有限公司 | 一种上行信息和探测参考信号的传输方法和设备 |
WO2018058634A1 (zh) * | 2016-09-30 | 2018-04-05 | 华为技术有限公司 | 一种数据处理方法、终端以及基站 |
JP2020017775A (ja) * | 2016-11-02 | 2020-01-30 | 株式会社Nttドコモ | ユーザ装置 |
US10652911B2 (en) * | 2016-11-02 | 2020-05-12 | Lg Electronics Inc. | Method for dropping communication based on priority by wireless device supporting WAN communication and V2X communication and, the wireless device performing the method |
EP3340697B1 (en) * | 2016-12-23 | 2019-12-04 | ASUSTek Computer Inc. | Method and apparatus for multiplexing transmissions for different services in a wireless communication system |
KR102149015B1 (ko) * | 2017-01-07 | 2020-08-28 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말의 상향링크 제어 채널 전송 방법 및 상기 방법을 이용하는 통신 장치 |
CN108347762B (zh) * | 2017-01-24 | 2022-07-29 | 北京三星通信技术研究有限公司 | 功率余量报告的上报方法和上报装置 |
US10873911B2 (en) | 2017-03-23 | 2020-12-22 | Ofinno, LCC | Uplink transmission power adjustment |
US10548096B2 (en) * | 2017-04-21 | 2020-01-28 | Samsung Electronics Co., Ltd. | Information type multiplexing and power control |
JP6750133B2 (ja) * | 2017-05-04 | 2020-09-02 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおいて上りリンク信号を送信する方法及びそのための装置 |
JP6864246B2 (ja) * | 2017-05-25 | 2021-04-28 | 富士通株式会社 | 基地局装置、端末装置、無線通信システム、及び無線リソース情報通知方法 |
CN109104761B (zh) * | 2017-06-21 | 2020-08-18 | 维沃移动通信有限公司 | 一种信息配置方法、功率调整方法、基站及移动终端 |
EP3657888B1 (en) * | 2017-07-21 | 2023-05-24 | LG Electronics Inc. | Signal transceiving method based on lte and nr in wireless communication system, and device for same |
US11863315B2 (en) * | 2017-12-04 | 2024-01-02 | Qualcomm Incorporated | Techniques and apparatuses for avoiding collisions on an uplink data channel and a cell-specific or UE-specific uplink control channel |
US10674518B2 (en) * | 2017-12-27 | 2020-06-02 | Comcast Cable Communications, Llc | Dynamic management of interference and coverage in wireless communications |
DK3866376T3 (da) | 2018-01-09 | 2022-10-17 | Beijing Xiaomi Mobile Software Co Ltd | Fremgangsmåder med fysisk lag og mac-lag i en trådløs indretning |
WO2019136713A1 (zh) * | 2018-01-12 | 2019-07-18 | Oppo广东移动通信有限公司 | 数据传输方法及装置 |
CN111066359A (zh) * | 2018-02-08 | 2020-04-24 | Oppo广东移动通信有限公司 | 传输信息的方法、接收信息的方法、终端设备和网络设备 |
KR102211695B1 (ko) | 2018-02-14 | 2021-02-03 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 전송을 수행하기 위한 방법 및 이를 위한 장치 |
US11229047B2 (en) * | 2018-04-06 | 2022-01-18 | Qualcomm Incorporated | Transport block repetition handling for downlink and uplink transmissions |
KR20190129674A (ko) | 2018-05-11 | 2019-11-20 | 삼성전자주식회사 | 무선 통신 시스템에서 이중 접속을 위한 단말의 상향 전송 전력 제어 방법 및 장치 |
CN115379544A (zh) | 2018-08-03 | 2022-11-22 | 中兴通讯股份有限公司 | 功率确定方法、网络设备和存储介质 |
KR102669740B1 (ko) | 2018-08-10 | 2024-05-28 | 텔레폰악티에볼라겟엘엠에릭슨(펍) | 위성 통신을 위한 랜덤 액세스 절차 |
US11979222B2 (en) | 2018-09-27 | 2024-05-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Systems and methods for timing adaptation for satellite communications |
US10757663B2 (en) * | 2018-10-19 | 2020-08-25 | Motorola Mobility Llc | Intermodulation limiting on multiple transmitter device |
CN116405174A (zh) * | 2018-11-30 | 2023-07-07 | 华为技术有限公司 | 一种上行信号发送方法及终端 |
KR20200086566A (ko) * | 2019-01-09 | 2020-07-17 | 삼성전자주식회사 | 무선 통신 시스템에서 송신 전력을 할당하기 위한 방법 및 장치 |
KR102784342B1 (ko) | 2019-04-24 | 2025-03-21 | 삼성전자 주식회사 | 2 스텝 및 4 스텝 랜덤 액세스(ra) 절차들 간의 전환 및 경쟁 해결을 위한 방법 및 장치 |
WO2021005803A1 (ja) * | 2019-07-11 | 2021-01-14 | 株式会社Nttドコモ | 端末及び無線通信方法 |
CN112996094B (zh) * | 2019-12-17 | 2022-04-22 | 大唐移动通信设备有限公司 | 基于ta的上行功率调整方法、装置、电子设备和存储介质 |
NL2027091B1 (en) * | 2020-12-10 | 2022-07-08 | Abn Amro Bank N V | Orchestrated quantum key distribution |
CN117561751A (zh) * | 2021-09-28 | 2024-02-13 | Oppo广东移动通信有限公司 | 一种接入网络的方法及装置、终端、网络设备 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1605605B1 (en) | 2004-06-09 | 2019-02-27 | Samsung Electronics Co., Ltd. | Method and apparatus for data transmission in a mobile telecommunication system supporting enhanced uplink service |
KR20050118063A (ko) * | 2004-06-09 | 2005-12-15 | 삼성전자주식회사 | 향상된 상향 링크 전용 채널을 위한 파워 설정 방법 및 장치 |
US20070064665A1 (en) * | 2005-08-23 | 2007-03-22 | Interdigital Technology Corporation | Method and apparatus for accessing an uplink random access channel in a single carrier frequency division multiple access system |
JP5022437B2 (ja) | 2006-05-01 | 2012-09-12 | ノキア コーポレイション | 専用アップリンク・リソース割り当てを用いることによってアップリンク同期をもたらす装置、方法およびコンピュータ・プログラム |
WO2008156293A2 (en) * | 2007-06-19 | 2008-12-24 | Lg Electronics Inc. | Method of transmitting sounding reference signal |
CN102202678A (zh) | 2008-11-04 | 2011-09-28 | 安科治疗公司 | Cxcr4受体化合物 |
EP3644526A1 (en) * | 2009-03-17 | 2020-04-29 | InterDigital Patent Holdings, Inc. | Method and apparatus for power control of sounding reference signal (srs) transmission |
EP2553986B1 (en) * | 2010-04-01 | 2016-09-07 | Sun Patent Trust | Transmit power control for physical random access channels |
JP2013509610A (ja) | 2009-10-29 | 2013-03-14 | エルジー・ケム・リミテッド | 低反射および高接触角を有する基板およびこの製造方法 |
CN102014477B (zh) * | 2009-10-30 | 2013-11-06 | 电信科学技术研究院 | 一种上行同步的方法、装置和系统 |
US8554259B2 (en) * | 2009-12-14 | 2013-10-08 | Apple Inc. | Method and apparatus to improve the robustness of a wireless communication link |
MY157471A (en) | 2010-01-06 | 2016-06-15 | Shinetsu Chemical Co | Rare earth magnet holding jig, cutting machine and cutting method |
KR101752502B1 (ko) * | 2010-01-07 | 2017-06-30 | 엘지전자 주식회사 | 무선 통신 시스템에서 요소 반송파 관리 방법 및 장치 |
WO2011085200A1 (en) * | 2010-01-08 | 2011-07-14 | Interdigital Patent Holdings, Inc. | Maintaining time alignment with multiple uplink carriers |
KR101652259B1 (ko) | 2010-01-08 | 2016-08-30 | 주식회사 엔씨소프트 | 온라인 게임의 액티비티 로그 가공 시스템 및 그 방법 |
KR101803015B1 (ko) | 2010-02-10 | 2017-12-01 | 주식회사 골드피크이노베이션즈 | 다수의 요소 반송파를 운영하는 무선 통신 시스템에서 업링크 동기를 설정하는 방법 및 장치 |
US9357509B2 (en) | 2010-02-25 | 2016-05-31 | Lg Electronics Inc. | Apparatus and method for transmitting power headroom information in a multi-carrier system |
EP3439220A1 (en) * | 2010-04-02 | 2019-02-06 | Interdigital Patent Holdings, Inc. | Uplink sounding reference signals configuration and transmission |
US9258092B2 (en) * | 2010-09-17 | 2016-02-09 | Blackberry Limited | Sounding reference signal transmission in carrier aggregation |
KR101776873B1 (ko) * | 2011-01-11 | 2017-09-11 | 삼성전자 주식회사 | 이동통신 시스템에서 역방향 전송 출력 결정 방법 및 장치 |
KR20120092014A (ko) * | 2011-02-09 | 2012-08-20 | 주식회사 팬택 | 다중 요소 반송파 시스템에서 상향링크 신호의 송신 장치 및 방법 |
WO2012108643A2 (en) | 2011-02-09 | 2012-08-16 | Pantech Co., Ltd. | Apparatus and method for transmitting uplink signal in multiple component carrier system |
SG192707A1 (en) | 2011-02-11 | 2013-09-30 | Univ Singapore | Treating cancer by inhibiting expression of olfm4, sp5, tobi, arjdia, fbni or hat1 |
KR102073027B1 (ko) * | 2011-04-05 | 2020-02-04 | 삼성전자 주식회사 | 반송파 집적 기술을 사용하는 무선통신시스템에서 복수 개의 타임 정렬 타이머 운용 방법 및 장치 |
TW201731266A (zh) * | 2011-05-10 | 2017-09-01 | 內數位專利控股公司 | 獲德次胞元上鏈定時校準方法及裝置 |
KR101810121B1 (ko) * | 2011-05-27 | 2017-12-18 | 애플 인크. | 무선 통신 시스템에서 랜덤 액세스의 수행장치 및 방법 |
US8395985B2 (en) * | 2011-07-25 | 2013-03-12 | Ofinno Technologies, Llc | Time alignment in multicarrier OFDM network |
KR101306377B1 (ko) * | 2011-09-29 | 2013-09-09 | 엘지전자 주식회사 | 상향링크 전송 방법 및 장치 |
CN109327893B (zh) * | 2011-11-04 | 2022-03-18 | 交互数字专利控股公司 | 用于在与多个定时提前关联的多个分量载波上无线传输的功率控制的方法和装置 |
US8989128B2 (en) * | 2012-04-20 | 2015-03-24 | Ofinno Technologies, Llc | Cell timing in a wireless device and base station |
-
2012
- 2012-09-27 KR KR1020120108364A patent/KR101306377B1/ko active Active
- 2012-09-27 KR KR1020120108365A patent/KR101306404B1/ko active Active
- 2012-09-28 WO PCT/KR2012/007930 patent/WO2013048188A2/ko active Application Filing
- 2012-09-28 US US14/112,209 patent/US8948119B2/en active Active
- 2012-09-28 US US14/112,482 patent/US9337980B2/en active Active
- 2012-09-28 US US14/112,213 patent/US9137762B2/en active Active
-
2014
- 2014-11-12 US US14/539,810 patent/US9344242B2/en active Active
-
2015
- 2015-08-25 US US14/835,036 patent/US9461797B2/en active Active
-
2016
- 2016-04-08 US US15/094,573 patent/US9716575B2/en active Active
- 2016-04-13 US US15/097,657 patent/US9742539B2/en active Active
- 2016-09-06 US US15/257,218 patent/US9667398B2/en active Active
-
2017
- 2017-04-25 US US15/496,667 patent/US10033499B2/en active Active
- 2017-06-27 US US15/634,663 patent/US10250368B2/en active Active
- 2017-07-21 US US15/656,405 patent/US9991999B2/en active Active
-
2018
- 2018-07-10 US US16/031,558 patent/US10574416B2/en active Active
-
2020
- 2020-01-17 US US16/745,841 patent/US10972242B2/en active Active
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10178626B2 (en) | 2013-11-08 | 2019-01-08 | Kt Corporation | Method for controlling uplink transmission power and apparatus thereof |
CN110677905A (zh) * | 2013-11-08 | 2020-01-10 | 株式会社Kt | 用于控制上行链路传输功率的方法及其装置 |
US9713094B2 (en) | 2013-11-08 | 2017-07-18 | Kt Corporation | Method for controlling uplink transmission power and apparatus thereof |
KR102238768B1 (ko) | 2014-07-17 | 2021-04-09 | 삼성전자주식회사 | 무선통신 시스템의 상향링크 동기화 장치 및 방법 |
KR20160009918A (ko) * | 2014-07-17 | 2016-01-27 | 삼성전자주식회사 | 무선통신 시스템의 상향링크 동기화 장치 및 방법 |
US9585102B2 (en) | 2014-09-26 | 2017-02-28 | Kt Corporation | Method of controlling the transmission power of uplink channels and signals and apparatuses thereof |
KR101672120B1 (ko) * | 2014-09-26 | 2016-11-04 | 주식회사 케이티 | 상향링크 채널 및 신호의 전송전력 제어방법 및 그 장치 |
KR20160037722A (ko) * | 2014-09-26 | 2016-04-06 | 주식회사 케이티 | 상향링크 채널 및 신호의 전송전력 제어방법 및 그 장치 |
CN110637495A (zh) * | 2017-05-04 | 2019-12-31 | Lg 电子株式会社 | 无线通信系统中通过波束发送和接收信号的方法及用于该方法的装置 |
CN110637495B (zh) * | 2017-05-04 | 2023-11-28 | Lg 电子株式会社 | 无线通信系统中通过波束发送和接收信号的方法及用于该方法的装置 |
WO2019017614A1 (ko) * | 2017-07-19 | 2019-01-24 | 삼성전자 주식회사 | 무선 셀룰라 통신 시스템에서 상향 채널 전송 방법 및 장치 |
US11903018B2 (en) | 2017-07-19 | 2024-02-13 | Samsung Electronics Co., Ltd | Method and apparatus for performing uplink channel transmission in wireless cellular communication system |
US20220210825A1 (en) * | 2020-12-28 | 2022-06-30 | Samsung Electronics Co., Ltd. | Method and apparatus of uplink timing adjustment |
Also Published As
Publication number | Publication date |
---|---|
US9461797B2 (en) | 2016-10-04 |
KR101306377B1 (ko) | 2013-09-09 |
US9716575B2 (en) | 2017-07-25 |
US10250368B2 (en) | 2019-04-02 |
US10972242B2 (en) | 2021-04-06 |
US8948119B2 (en) | 2015-02-03 |
KR20130035222A (ko) | 2013-04-08 |
US9344242B2 (en) | 2016-05-17 |
US9137762B2 (en) | 2015-09-15 |
KR20130035221A (ko) | 2013-04-08 |
US9667398B2 (en) | 2017-05-30 |
US20180323930A1 (en) | 2018-11-08 |
US20150365214A1 (en) | 2015-12-17 |
US20140050205A1 (en) | 2014-02-20 |
US20170324530A1 (en) | 2017-11-09 |
WO2013048188A3 (ko) | 2013-07-04 |
US20160233992A1 (en) | 2016-08-11 |
US20140126475A1 (en) | 2014-05-08 |
US10574416B2 (en) | 2020-02-25 |
US20160380736A1 (en) | 2016-12-29 |
US9337980B2 (en) | 2016-05-10 |
KR101306404B1 (ko) | 2013-09-09 |
US10033499B2 (en) | 2018-07-24 |
US20160249299A1 (en) | 2016-08-25 |
US20170295572A1 (en) | 2017-10-12 |
US20140056271A1 (en) | 2014-02-27 |
US9991999B2 (en) | 2018-06-05 |
US20170230158A1 (en) | 2017-08-10 |
US20200153584A1 (en) | 2020-05-14 |
US20150071222A1 (en) | 2015-03-12 |
US9742539B2 (en) | 2017-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013048188A2 (ko) | 상향링크 전송 파워 제어 방법 및 이를 이용한 무선기기 | |
WO2013112029A1 (ko) | 상향링크 전송 파워 제어 방법 및 이를 이용한 무선기기 | |
WO2013043027A1 (ko) | 상향링크 전송 전력 제어 방법 및 장치 | |
WO2019160364A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2013168938A1 (en) | A method and apparatus of controlling cell deactivation in a wireless communication system | |
WO2012057578A2 (ko) | 사운딩 참조 신호 전송 방법 및 장치 | |
WO2013069994A1 (ko) | 무선통신 시스템에서 상향링크 전송 전력을 설정하는 방법 및 이를 위한 장치 | |
WO2013055108A2 (ko) | 향상된 반송파 집적 기술을 사용하는 무선통신시스템에서 단말의 동작 방법 및 장치 | |
WO2014081241A1 (ko) | 제어 신호 송수신 방법 및 이를 위한 장치 | |
WO2016056843A1 (ko) | 무선 통신 시스템에서 단말 간 직접 통신을 위한 동기화 신호를 전송하는 방법 및 이를 위한 장치 | |
WO2019031864A1 (ko) | 랜덤 접속 과정을 수행하는 방법 및 이를 위한 장치 | |
WO2017196025A2 (ko) | 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치 | |
WO2015194849A1 (ko) | 상향링크 제어 정보의 전송 방법 및 이를 위한 장치 | |
WO2016036081A1 (ko) | 비면허 대역 상에서 데이터를 전송하기 위한 방법 및 그 기지국 | |
WO2015076501A1 (ko) | 랜덤 액세스 절차를 수행하는 방법 | |
WO2014007593A1 (ko) | 제어 신호 송수신 방법 및 이를 위한 장치 | |
WO2013073916A1 (ko) | 무선통신 시스템에서 상기 단말이 상향링크 제어 채널 전송 방법 | |
WO2014098384A1 (ko) | 변경된 시스템 정보 적용 방법 및 단말 | |
WO2013073787A1 (ko) | 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법 | |
WO2013095003A1 (ko) | 무선 통신 시스템에서 상향링크 동기 획득 방법 및 장치 | |
WO2014003339A1 (ko) | 소규모 셀에 대해 랜덤 액세스를 수행하는 방법 및 단말 | |
WO2011056001A2 (ko) | 멀티캐리어를 지원하는 통신 시스템에서 파워 헤드룸 리포트를 전송하는 단말 장치 및 그 방법 | |
WO2014021612A2 (ko) | 무선 통신 시스템에서 상향링크 송신 전력을 설정하는 방법 및 장치 | |
WO2013094967A1 (ko) | Tdd 기반 무선통신 시스템에서 통신 방법 및 무선기기 | |
WO2016018046A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14112482 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12835377 Country of ref document: EP Kind code of ref document: A2 |