+

WO2013046401A1 - たばこフィルタの検査システム及びその検査方法 - Google Patents

たばこフィルタの検査システム及びその検査方法 Download PDF

Info

Publication number
WO2013046401A1
WO2013046401A1 PCT/JP2011/072436 JP2011072436W WO2013046401A1 WO 2013046401 A1 WO2013046401 A1 WO 2013046401A1 JP 2011072436 W JP2011072436 W JP 2011072436W WO 2013046401 A1 WO2013046401 A1 WO 2013046401A1
Authority
WO
WIPO (PCT)
Prior art keywords
estimated
diameter
circle
peripheral edge
filter
Prior art date
Application number
PCT/JP2011/072436
Other languages
English (en)
French (fr)
Inventor
佐藤 潤
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2011/072436 priority Critical patent/WO2013046401A1/ja
Publication of WO2013046401A1 publication Critical patent/WO2013046401A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes
    • A24C5/3412Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes by means of light, radiation or electrostatic fields
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0295Process control means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/12Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores

Definitions

  • the present invention relates to an inspection system suitable for inspection for a cigarette filter, particularly a center hole filter, and an inspection method thereof.
  • a center hole filter (hereinafter referred to as CH filter) is known (for example, see Patent Document 1 below).
  • the CH filter is formed into a rod shape by thermoforming, and has a center hole penetrating the CH filter on its axis.
  • the CH filter is suitable for appropriately adjusting the ratio of cigarette smoke to the amount of air when cigarettes are smoked, that is, the filtration efficiency of cigarette smoke by the CH filter. .
  • the center hole is at the suction end of the filter cigarette, that is, the end face of the CH filter. Exposed outside.
  • the center position of the center hole and the size of the center hole with respect to the axis of the CH filter have a great influence on the quality of the filter cigarette. Therefore, the center position and size of the center hole guarantees the quality of the filter cigarette. Therefore, it becomes an important inspection object.
  • Inspection of the center position and size of the center hole is conventionally performed by an inspector periodically removing the CH filter from the production line and visually checking the extracted CH filter.
  • Such an off-line visual inspection of the inspector may cause a variation in inspection accuracy due to the inspection skill of the individual inspector, and a large amount of defective CH filters may be manufactured.
  • an object of the present invention is to provide an inspection system and an inspection method for the above-described CH filter.
  • an inspection system for a CH filter according to the present invention which is arranged in a transfer path for transferring a hollow tobacco filter having a center hole, and images the end face of the tobacco filter to image the end face.
  • a camera that generates an image
  • an image processing device that processes the image of the end face, and detects the outer and inner edges of the end face, and the center hole diameter and positional deviation are allowable based on the detected outer and inner edges.
  • a determination device for determining whether or not it is inside.
  • the image processing device detects the outer periphery and the inner periphery of the end face as edge point distribution rings, respectively, and the determination device, based on the edge points of the distribution ring, estimates an outer circle and an inner periphery, respectively.
  • An estimation section for calculating the estimated inner circle a calculation section for determining the diameter of the estimated inner circle or the estimated outer circle and the center distance of the estimated inner circle, and whether or not the determined diameter or distance between the centers is within the allowable range. And a decision section to decide.
  • the image processing apparatus assumes large and small search circles each having a diameter larger than the large and small prescribed diameters for the outer peripheral edge and the inner peripheral edge, and the corresponding distribution based on scanning within the range of these search circles. Detect ring edge points. Also, the estimation section described above can use a least squares method to estimate the estimated outer circle and the estimated inner circle. The present invention also provides an inspection method implemented by the above-described inspection system. Furthermore, further objects and advantages of the present invention will become apparent from the following description.
  • the quality related to the diameter or displacement of the center hole is automatically inspected in the process of transporting the tobacco filter, so when a defective tobacco filter is detected, It is possible to eliminate defective tobacco filters from the transport path. Therefore, a defective cigarette filter is not used in the manufacture of filter cigarettes. In addition, if the defect of the cigarette filter is fed back to the cigarette filter manufacturing machine, it greatly helps to further improve the reliability of the manufacturing machine.
  • the CH filter F as an inspection object of the present invention has a rod shape and has a center hole CH on its axis.
  • this type of CH filter is obtained by thermoforming a web-like filter fiber material having thermoplasticity into a rod shape.
  • FIG. 2 schematically shows a CH filter F manufacturing machine.
  • the manufacturing machine includes a thermoforming device 10, which includes a mandrel and a mold that surrounds the mandrel.
  • the mandrel and the mold are not shown, but both the mandrel and the mold can be heated.
  • the filter fiber material is supplied to the thermoforming apparatus 10 and is formed into a hollow continuous rod R as it passes between the mandrel and the mold.
  • the mandrel and the forming die thermoform the inner peripheral surface and the outer peripheral surface of the continuous rod R, respectively.
  • the formed continuous rod R is sent from the thermoforming device 10 toward the cutting device 12, which cuts the continuous rod R into individual CH filters F, while passing these CH filters F along the delivery line DL. Transmit intermittently.
  • the delivered CH filter F is received by the transfer path TL, and then transferred to the subsequent boxing machine or filter cigarette manufacturing machine on the transfer path TL.
  • the transfer path TL includes a catcher drum 14 at the start thereof, and the catcher drum 14 is disposed downstream of the cutting device 12.
  • the catcher drum 14 has an axis parallel to the delivery line DL, and can rotate around this axis.
  • the catcher drum 14 includes a number of receiving seats 16, and these receiving seats 16 are arranged on the outer peripheral surface of the catcher drum 14 at equal intervals. While the catcher drum 14 is rotating, each receiving seat 16 sequentially passes through the delivery line DL described above. Specifically, each receiving seat 16 receives one CH filter F sent from the cutting device 12 when passing through the sending line DL, and holds the received CH filter F by suction in the circumferential direction of the catcher drum 14. Transport to. That is, the catcher drum 14 converts the transfer direction of the CH filter F into a direction orthogonal to the axial direction of the CH filter F.
  • the inspection camera 18 is arranged in the transfer path TL described above. Specifically, the inspection camera (CCD camera) 18 is positioned in the vicinity of the catcher drum 14 and sequentially photographs the end face of the CH filter F transferred along the outer peripheral surface of the catcher drum 14. Further, a ring light 20 as a light source is disposed between the inspection camera 18 and the catch drum 14, and the ring light 20 uniformly illuminates the end face of the CH filter F passing through the inspection camera 18.
  • a trigger sensor 22 is disposed upstream of the inspection camera 18 when viewed in the transfer direction of the CH filter F on the catcher drum 14.
  • the trigger sensor 22 optically detects passage of the CH filter F, and transmits a trigger signal to the inspection camera 18 at a timing when the detected CH filter F passes the inspection camera 18. Therefore, the inspection camera 18 can capture the end face of the CH filter F passing through the inspection camera 18 by performing an imaging operation at the timing when the trigger signal is received, and transmits the captured end face image as an electrical signal. To do.
  • the inspection camera 18 is electrically connected to the image processing device 24, and the image processing device 24 receives an electrical signal transmitted from the inspection camera 18, that is, an end face image, and outputs the end face image to the end face image.
  • Predetermined image processing is performed.
  • the image processing device 24 has software for performing edge detection processing on the end face image, and extracts the outer peripheral edge of the CH filter F and the inner peripheral edge of the center hole CH. The extraction here will be specifically described with reference to FIGS.
  • FIG. 3 shows an end face image P of the CH filter F arranged at the center of the display screen 26.
  • hatching is added to the end face image P, while distortions of the outer peripheral edge OE and the inner peripheral edge IE in the end face image P are exaggerated.
  • search circles C I and C O inside and outside are drawn on the display screen 26, and these search circles C I and C O both have a diameter centered on the reference position O at the center of the display 26.
  • the diameter of the inner search circle C I is sufficiently larger than the predetermined diameter of the inner peripheral edge IE, smaller than the specified diameter of the outer peripheral edge OE, contrast, the diameter of the outer search circle C O peripheral edge OE Is sufficiently larger than the prescribed outer diameter.
  • the positions of the inner peripheral edge IE and the outer peripheral edge OE existing on the line SL are detected.
  • the position detection here is performed based on the difference between the pixel density of the background on the display screen 26 and the pixel density of the end face image P.
  • the position detection of the inner peripheral edge IE and the outer peripheral edge OE described above is repeated over the entire circumference of the end face image P while the scanning line SL is shifted by a predetermined angle in the circumferential direction of the end face image P.
  • the inner peripheral edge IE or the outer peripheral edge OE is represented by a distribution ring of edge points EP as shown in FIG.
  • the search circles C I and C O described above minimize the scanning range of the inner peripheral edge IE and the outer peripheral edge OE, and greatly contribute to efficient detection of the edge point EP. .
  • the above-described image processing device 24 is electrically connected to the determination device 28, and transfers the inner and outer distribution rings representing the inner peripheral edge IE and the outer peripheral edge OE to the determination device 28.
  • the determination device 28 has software for determining the quality of the center hole CH based on the transferred distribution ring, and the determination procedure here becomes clear from the inspection routines shown in FIGS.
  • Steps S1 and S2 shown in FIG. 5 are included in the software of the image processing device 24 described above, and the software of the determination device 28 includes steps after step S3.
  • the center hole CH is shown based on the least square method from each edge point EP (see FIG. 4) representing the positions of the inner peripheral edge IE and the outer peripheral edge OE as viewed in XY coordinates centered on the reference position O.
  • An estimated inner circle and an estimated outer circle indicating the outer periphery of the CH filter F are calculated.
  • step S4 the radius and center of each of the estimated inner circle and the estimated outer circle, and the center distance between the center of the estimated inner circle and the center of the estimated outer circle are calculated (step S4).
  • the estimated inner circle and the estimated outer circle are denoted by reference symbols IC and OC, respectively, and the radius and center of the estimated inner circle and the estimated outer edge are denoted by R I and R O and the centers O I and O O.
  • reference symbol ⁇ D indicates the center-to-center distance.
  • step S5 whether or not the diameter of the estimated outer circle OC obtained from the radius R O is within an allowable range (step S5), and the diameter of the estimated inner circle IC calculated from the radius R I is allowed. It is sequentially determined whether or not it is within the range (step S6) and whether or not the center-to-center distance ⁇ D is within the allowable range (step S7).
  • step S8 shown in FIG. 6 is performed, and in this step S8, a failure indicating that the CH filter F to be inspected is defective.
  • a signal is output, and the failure signal here includes the degree of failure and the location of the failure.
  • the failure signal can be used to adjust the outer diameter of the CH filter F to be manufactured and the diameter of the center hole CH with respect to the manufacture of the CH filter F by the thermoforming apparatus 10 described above, while the transfer path TL. Therefore, it can be used to eliminate defective CH filter F.
  • the inspection regarding the outer diameter and inner diameter of the CH filter F and the positional deviation of the center hole CH is performed online, and the defective CH filter F can be excluded from the transfer path TL. Therefore, the defective CH filter F is not supplied to the aforementioned boxing machine or filter cigarette manufacturing machine. As a result, the manufacture of a filter cigarette including a defective CH filter F is reliably avoided.
  • step S9 the model wheel of the center hole CH, that is, the reference model line is read.
  • the reference model line is a reference circle. Based on this reference circle, the smoothness of the inner peripheral surface of the center hole CH is detected (step S10).
  • FIG. 8 a region SA in which the reference circle BC and the distribution ring DR are separated from each other is shown as a line, and this region SA indicates a recess in the inner peripheral surface of the center hole CH.
  • the difference between the reference circle BC and the edge point EP on this line segment A distance ⁇ L is calculated.
  • Such a difference distance ⁇ L is calculated for all edge points EP.
  • a difference distance ⁇ L O outside the allowable range is extracted from the obtained difference distance ⁇ L, and this difference distance ⁇ L O indicates the degree of defects related to smoothness. Therefore, the maximum value of the difference distance ⁇ L O indicates, for example, the maximum defect level of the area SA.
  • the area SA shown in FIG. 8 is a bump-like defect protruding from the inner peripheral surface of the center hole CH, but is recessed from the inner peripheral surface of the center hole CH as shown in FIG. 9A.
  • step S12 the maximum diameter and the minimum diameter of the distribution ring DR of the edge point EP are calculated (step S12). Specifically, with respect to a plurality of pairs of edge points EP spaced apart in the diameter direction of the search circle C 1 across the center of the search circle C 1 , that is, the reference position O, the separation distance between the paired edge points EP. Are respectively calculated. As shown in FIG. 10, the maximum and minimum separation distances among the separation distances are determined as the maximum diameter LD and the minimum diameter SD.
  • the situation in which the determination result in step S14 is false indicates that the distribution ring DR, that is, the center hole CH is not a circle but an ellipse.
  • the above-described step S8 is performed from step S14, and a failure signal is output.
  • step S14 when the determination result of step S14 is true, the steps after step S1 are repeatedly performed to check the next CH filter F.
  • steps after Step S9 described above an appearance defect of the center hole CH is inspected for non-smoothness and non-roundness of the inner peripheral surface of the center hole CH, and the CH filter F having the appearance defect is also removed from the transfer path TL. Since it can be eliminated, the production of defective filter cigarettes due to appearance defects is also reliably avoided.
  • the inspection routine is performed. After outputting the failure signal in step S8, the inspection of the CH filter F that is the inspection object is terminated, so that the inspection routine is not performed wastefully.
  • the failure signal can indicate a failure location of the CH filter F, it is useful for manufacturing management of the CH filter F.
  • the inspection system and the inspection method of the present invention may inspect whether the diameter or the positional deviation of the center hole is within an allowable range.
  • thermoforming apparatus 12 cutting device 14 catcher drum 18 camera 20 ring light 24 image processing apparatus 28 determines device F CH filter O reference position O I, O O center R I, R O radius P end face image BC reference circle C I, C o Search circle CH Center hole DL Transmission line DR Distribution ring EP Edge point IC Estimated inner circle IE Inner edge OC Estimated outer circle OE Outer edge SL Scan line TL Transfer path ⁇ D Center distance ⁇ L Difference distance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 本発明のたばこフィルタのための検査システム及び検査方法は、センタホール(CH)を有した中空のたばこフィルタ(F)を検査対象とし、たばこフィルタ(F)の移送過程にて、カメラ(18)によりたばこフィルタ(F)の端面を撮像して端面画像(P)を生成し、この端面画像(P)の画像処理より、端面の外周縁(OC)及び内周縁(IC)を検出し、そして、検出された外周縁(OC)及び内周縁(IC)に基づき、センタホール(CH)の直径又は位置ずれが許容範囲内にあるか否かを判定する。

Description

たばこフィルタの検査システム及びその検査方法
 本発明は、たばこフィルタ、特に、センタホールフィルタのための検査に好適した検査システム及びその検査方法に関する。
 シガレットのためのフィルタとして、センタホールフィルタ(以下、CHフィルタと称する)が知られている(例えば、以下の特許文献1参照)。CHフィルタは熱成形によってロッド形状に形成され、その軸線上にCHフィルタを貫通したセンタホールを有する。このようなCHフィルタがシガレットに適用された場合、CHフィルタはシガレットの喫煙時、空気量に対するたばこの煙量の比、即ち、CHフィルタによるたばこ煙の濾過効率を適切に調整するうえで好適する。
特公昭60-20986号公報(JP1985-20986 B2)
 上述したCHフィルタは特許文献1の図1又は図2に示された形態でシガレットに接続されて、フィルタシガレットを形成するとき、センタホールはフィルタシガレットの吸口端、即ち、CHフィルタの端面にて外部に露出する。
 この場合、CHフィルタの軸線に対するセンタホールの中心位置やセンタホールの大きさはフィルタシガレットの品質に大きな影響を及ぼすことから、センタホールの中心位置及び大きさは、フィルタシガレットの品質を保証する上で、重要な検査対象となる。
 センタホールの中心位置及び大きさの検査は、従来、検査員が製造ラインからCHフィルタを周期的に抜き取り、抜き取ったCHフィルタを目視することによって実施されている。このようなオフラインでの検査員の目視検査は、個々の検査員の検査技量に起因して検査精度にばらつきを発生させ、不良のCHフィルタが多量に製造されてしまう虞がある。
 このような事情から、オンラインにて、CHフィルタにおけるセンタホールの位置や大きさを検査可能にした検査システム及び検査方法の開発が望まれている。
 それ故、本発明の目的は上述のCHフィルタのための検査システム及び検査方法を提供することにある。
 上述の目的は本発明におけるCHフィルタのための検査システムによって達成され、この検査システムは、センタホールを有した中空のたばこフィルタを移送する移送経路に配置され、たばこフィルタの端面を撮像して端面画像を生成するカメラと、端面の画像を処理し、端面の外周縁及び内周縁を検出する画像処理装置と、検出された外周縁及び内周縁に基づき、センタホールの直径及び位置ずれが許容範囲内にあるか否かを判定する判定装置とを備える。
 詳しくは、画像処理装置は、端面の外周縁及び内周縁をエッジポイントの分布リングとしてそれぞれ検出し、判定装置は、分布リングのエッジポイントに基づき、外周縁及び内周縁をそれぞれ表す推定外円及び推定内円を求める推定セクションと、推定内円の直径又は推定外円及び推定内円の中心間距離を求める演算セクションと、求められた直径又は中心間距離が許容範囲内にあるか否かを決定する決定セクションとを含む。
 詳しくは、画像処理装置は、外周縁及び内周縁のための大小の規定直径よりもそれぞれ大径である大小のサーチ円を仮定し、これらサーチ円の範囲内での走査に基づき、対応する分布リングのエッジポイントを検出する。
 また、上述の推定セクションは、推定外円及び前記推定内円を推定するために、最小二乗法を使用することができる。
 また、本発明は、上述の検査システムによって実施される検査方法をも提供する。
 更に、本発明の更なる目的及び利点は後述の説明から明らかとなる。
 上述の本発明の検査システム及び検査方法によれば、たばこフィルタの移送過程にて、センタホールの直径又は位置ずれに関する品質が自動的に検査されるので、不良のたばこフィルタが検出されたときには、移送経路からの不良のたばこフィルタの排除が可能となる。それ故、不良のたばこフィルタがフィルタシガレットの製造に使用されることもない。
 また、たばこフィルタの不良がたばこフィルタの製造機にフィードバックされれば、製造機の信頼性をより向上させるうえでも大きく役立つ。
検査対象のCHフィルタを示す斜視図である。 一実施例の検査システムを示す概略図である。 端面画像の画像処理を説明するための図である。 画像処理の結果を示す図である。 一実施例の検査ルーチンの一部を示すフローチャートである。 検査ルーチンの残部を示すフローチャートである。 端面の推定外円及び推定内円を示す図である。 センタホールの1つの欠陥を示す図である。 センタホールの他の欠陥を示す図である。 楕円のセンタホールを示す図である。
 図1を参照すると、本発明の検査対象としてのCHフィルタFはロッド形状をなし、その軸線上にセンタホールCHを有する。詳しくは、この種のCHフィルタは熱可塑性を有したウエブ状のフィルタ繊維材料をロッド形状に熱成形することによって得られる。
 図2は、CHフィルタFの製造機を概略的に示す。
 製造機は熱成形装置10を備え、この熱成形装置10はマンドレル及びこのマンドレルを囲む成形型を含む。図2中、マンドレル及び成形型は示されていないが、これらマンドレル及び成形型は何れも加熱可能である。フィルタ繊維材料は熱成形装置10に供給され、マンドレルと成形型との間を通過する際、中空の連続ロッドRに成形される。詳しくは、マンドレル及び成形型は連続ロッドRの内周面及び外周面をそれぞれ熱成形する。
 成形された連続ロッドRは熱成形装置10から切断装置12に向けて送出され、この切断装置12は連続ロッドRを個々のCHフィルタFに切断する一方、これらCHフィルタFを送出ラインDLに沿い間欠的に送出する。
 送出されたCHフィルタFは移送経路TLに受け取られ、この後、移送経路TL上を後段の箱詰め機又はフィルタシガレットの製造機に向けて移送される。具体的には、移送経路TLはその始端にキャッチャドラム14を含み、このキャッチャドラム14は切断装置12の下流に配置されている。キャッチャドラム14は送出ラインDLと平行な軸線を有し、この軸線回りに回転可能である。
 詳しくは、キャッチャドラム14は多数の受取座16を含み、これら受取座16はキャッチャドラム14のその外周面に等間隔を存して配置されている。キャッチャドラム14の回転中、各受取座16は前述した送出ラインDLを順次通過する。
 詳しくは、各受取座16は送出ラインDLを通過するとき、切断装置12から送出された1つのCHフィルタFを受取り、受け取ったCHフィルタFをサクションにより保持した状態で、キャッチャドラム14の周方向に移送する。つまり、キャッチャドラム14は、CHフィルタFの移送方向をCHフィルタFの軸線方向と直交する方向に変換する。
 上述した移送経路TLには、CHフィルタFのための検査システムの一部、即ち、検査カメラ18が配置されている。具体的には、検査カメラ(CCDカメラ)18はキャッチャドラム14の近傍に位置付けられ、キャッチャドラム14の外周面に沿って移送されるCHフィルタFの端面を順次撮影する。
 更に、検査カメラ18とキャッチドラム14との間には光源としてのリングライト20が配置され、このリングライト20は検査カメラ18を通過するCHフィルタFの端面を均一に照らす。
 また、キャッチャドラム14上でのCHフィルタFの移送方向でみて、検査カメラ18の上流にはトリガセンサ22が配置されている。このトリガセンサ22はCHフィルタFの通過を光学的に検出し、検出したCHフィルタFが検査カメラ18を通過するタイミングで、検査カメラ18にトリガ信号を送信する。それ故、検査カメラ18はトリガ信号を受け取ったタイミングで撮像動作を実行することで、検査カメラ18を通過するCHフィルタFの端面を撮像可能であり、そして、撮像した端面画像を電気信号として送信する。
 一方、検査カメラ18は画像処理装置24に電気的に接続されており、この画像処理装置24は、検査カメラ18から送信された電気信号、即ち、端面画像を受取り、この端面画像に対しての所定の画像処理を実施する。
 詳しくは、画像処理装置24は、端面画像に対してエッジ検出処理を実施するソフトウエア有し、CHフィルタFの外周縁及びセンタホールCHの内周縁を抽出する。ここでの抽出に関して、図3及び図4を参照しながら具体的に説明する。
 画像処理装置24が表示画面26を備えていると仮定したとき、図3は、表示画面26の中央に配置されたCHフィルタFの端面画像Pを示す。ここで、端面画像Pを明瞭に示すため、端面画像Pにはハッチングが加えられている一方、端面画像Pにおける外周縁OE及び内周縁IEの歪は誇張して示されている。
 図3から明らかなように、表示画面26には内外のサーチ円C,Cが描かれ、これらサーチ円C,Cは共にディスプレイ26の中央の基準位置Oを中心とした直径を有する。詳しくは、内側のサーチ円Cの直径は内周縁IEの規定径よりも十分に大きいものの、外周縁OEの規定径よりも小さく、これに対し、外側サーチ円Cの直径は外周縁OEの規定外径よりも十分に大きい。
 次に、表示画面26は、基準位置Oを中心とした1つの走査ラインSLに沿い、内周縁IEの規定径よりも内側位置からサーチ円Cを経てサーチ円Cまで走査され、この走査ラインSL上に存在する内周縁IE及び外周縁OEの位置がそれぞれ検出される。ここでの位置検出は表示画面26における背景の画素濃度と端面画像Pの画素濃度との間の差に基づいて実施される。
 この後、上述した内周縁IE及び外周縁OEの位置検出は走査ラインSLが端面画像Pの周方向に所定の角度ずつシフトされながら、端面画像Pの全周に亘って繰り返される。
 上述の位置検出の結果、図4に示されるように内周縁IE又は外周縁OEは、エッジポイントEPの分布リングで表される。
 上述したサーチ円C,Cは、内周縁IE及び外周縁OEのエッジポイントEPを検出するに際し、それらの走査範囲内を必要最小限にし、エッジポイントEPを効率的な検出に大きく寄与する。
 図2に示されているように、前述した画像処理装置24は判定装置28に電気的に接続され、この判定装置28に内周縁IE及び外周縁OEを表す内外の分布リングを転送する。
 判定装置28は、転送された分布リングに基づき、センタホールCHの品質を判定するソフトウエアを有し、ここでの判定手順は図5及び図6に示された検査ルーチンから明らかとなる。
 検査ルーチンについて以下に詳述する。
 図5に示されたステップS1,S2は前述した画像処理装置24のソフトウエアに含まれ、判定装置28のソフトウエアはステップS3以降のステップを含む。
 先ず、ステップS3では、基準位置Oを中心としたXY座標でみて、内周縁IE及び外周縁OEの位置を表す各エッジポイントEP(図4参照)から最小二乗法に基づき、センタホールCHを示す推定内円及びCHフィルタFの外周を示す推定外円がそれぞれ演算される。
 次に、これら推定内円及び推定外円それぞれの半径及び中心、そして、推定内円の中心と推定外円の中心との間の中心間距離が演算される(ステップS4)。
 図7を参照すると、推定内円及び推定外円は参照符号IC,OCでそれぞれ示され、これら推定内円及び推定外縁の半径及び中心はR,R及び中心O,OOで示されている。また、図7中、参照符号ΔDは中心間距離を示す。
 次に、本実施例の場合には、半径RO から求められる推定外円OCの直径が許容範囲にあるか否か(ステップS5)、半径RI から求められる推定内円ICの直径が許容範囲にあるか否か(ステップS6)、そして、中心間距離ΔDは許容範囲にあるか否か(ステップS7)が順次判別される。
 ステップS5~S7の何れかの判別結果が偽(No)の場合、図6に示されたステップS8が実施され、このステップS8にて、検査対象のCHフィルタFが不良であることを示す不良信号が出力され、ここでの不良信号は不良の程度及び不良箇所を含む。
 具体的には、ステップS5の判別結果が偽の場合にはCHフィルタFの直径が規格から外れていることを表し、ステップS6の判別結果が偽の場合にはセンタホールCHの直径が規格から外れていることを表す。そして、ステップS7の判別結果が偽の場合にはセンタホールCHの中心がCHフィルタFの軸線から大きく外れていることを表す。
 例えば、不良信号は、前述した熱成形装置10によるCHフィルタFの製造に関して、製造されるべきCHフィルタFの外径やセンタホールCHの直径を調整するために使用可能である一方、移送経路TLから不良のCHフィルタFの排除にも使用可能である。
 それ故、前述したようにオンラインにて、CHフィルタFの外径及び内径、そして、センタホールCHの位置ずれに関する検査が実施され、そして、不良のCHフィルタFが移送経路TLから排除可能であるので、不良のCHフィルタFが前述した箱詰め機又はフィルタシガレットの製造機に供給されることはない。この結果、不良のCHフィルタFを含むフィルタシガレットの製造は確実に回避される。
 一方、ステップS5~S7の全ての判別結果が真(Yes)の場合、図6に示されているステップS9以降のステップが実施される。
 ステップS9では、センタホールCHのモデル輪廓、即ち、基準モデル線が読み込まれる。本実施例の場合、センタホールCHは円であることから、基準モデル線は基準円となる。そして、この基準円に基づき、センタホールCHの内周面の平滑さが検出される(ステップ
S10)。
 詳しくは、基準円BCの中心とセンタホールCHを示すエッジポイントEPの分布リングDRの中心とを互いに合致させた状態で、図8に示されるように1点鎖線の基準円BC及び実線の分布リングDRが重ね合わされる。また、図8には、基準円BCと分布リングDRとが大きく離れた領域SAが一列として示されており、この領域SAがセンタホールCHの内周面の凹みを示す。
 そして、基準円BCの中心と分布リングDR上の1つのエッジポイントEPを通過して基準円BCと交差する線分に関し、この線分上での基準円BCとエッジポイントEPとの間の差分距離ΔLが演算される。このような差分距離ΔLは全てのエッジポイントEPに関して演算される。
 得られた差分距離ΔLの中から許容範囲外の差分距離ΔLが抽出され、この差分距離ΔLは、平滑さに関しての欠陥の度合いを示す。それ故、差分距離ΔLの最大値は例えば、領域SAの最大欠陥レベルを示す。
 この後、差分距離ΔLを有したエッジポイントEPの数Nが計数され、ここでのNは例えば領域SAの幅を示す。次に、差分距離ΔLの総和Tに数Nを乗算した非平滑量DA(=T×N)が求められる(ステップS10)。
 この後、次のステップS11にて、非平滑量DAが許容範囲内にあるか否かが判別され、ここでの判別結果が偽の場合、前述したステップS8が実施される。
 ここで、図8に示された領域SAはセンタホールCHの内周面から突出した瘤状の欠陥であるが、図9(a)に示されるようにセンタホールCHの内周面から凹んだ領域SAの欠陥や、図9(b)に示されるようにセンタホールCHの内周面からCHフィルタFを形成するフィルタ繊維が毛羽立っているような領域SAの欠陥もまた、非平滑量DAに含まれることは言うまでもない。
 一方、ステップS11の判別結果が真の場合、エッジポイントEPの分布リングDRの最大径及び最小径が演算される(ステップS12)。具体的には、前述したサーチ円Cの中心、即ち、基準位置Oを挟んでサーチ円Cの直径方向に離間した複数対のエッジポイントEPに関し、対をなすエッジポイントEP間の離間距離がそれぞれ演算される。そして、図10に示されるように離間距離のうちの最大及び最小の離間距離が最大径LD及び最小径SDとして決定される。
 次に、最大径LDと最小径SDとの間の径差ΔE(=LD-SD)が演算され(ステップS13)、そして、この径差ΔEが許容範囲内にあるか否かが判別される(ステップS14)。
 ステップS14での判別結果が偽にある状況とは、分布リングDR、即ち、センタホールCHが円ではなく、楕円であることを示す。この場合、ステップS14から前述のステップS8が実施され、不良信号が出力される。
 一方、ステップS14の判別結果が真の場合には、次のCHフィルタFを検査すべくステップS1以降のステップが繰り返して実施される。
 上述したステップS9以降のステップでは、センタホールCHの内周面の非平滑さや非真円度に関して、センタホールCHの外観欠陥が検査され、この外観欠陥を有するCHフィルタFもまた移送経路TLから排除可能であるので、外観欠陥に起因した不良のフィルタシガレットの製造もまた確実に回避される。
 更に、図5,6の検査ルーチンから明らかなように、ステップS5,S6,S7,S11,S14での判別が順次実施され、何れかのステップにて判別結果が偽になったとき、検査ルーチンはステップS8にて不良信号を出力した後、今、検査対象であるCHフィルタFの検査を終了するので、検査ルーチンが無駄に実施されることもない。また、不良信号はCHフィルタFの不良箇所を示すことができるので、CHフィルタFの製造管理にも役立つ。
 本発明は上述した一実施例の検査システム及び検査方法に制約されるものではなく、本発明の技術思想を逸脱しない範囲内で、種々の変形が可能である。例えば、本発明の検査システム及び検査方法は、センタホールの直径又は位置ずれが許容範囲内にあるか否かを検査するものであってもよい。
 10        熱成形装置
 12        切断装置
 14        キャッチャドラム
 18        カメラ
 20        リングライト
 24        画像処理装置
 28        判定装置
 F         CHフィルタ
 O         基準位置
 O,OO      中心
 R,R      半径
 P         端面画像
 BC        基準円
 C,C      サーチ円
 CH        センタホール
 DL        送出ライン
 DR        分布リング
 EP        エッジポイント
 IC         推定内円
 IE         内周縁
 OC        推定外円
 OE        外周縁
 SL        走査ライン
 TL        移送経路
 ΔD       中心間距離
 ΔL       差分距離

Claims (12)

  1.  センタホールを有した中空のたばこフィルタを移送する移送経路に配置され、前記たばこフィルタの端面を撮像して端面画像を生成するカメラと、
     前記端面の画像を処理し、前記端面の外周縁及び内周縁を検出する画像処理装置と、
     検出された外周縁及び内周縁に基づき、前記センタホールの直径又は位置ずれが許容範囲内にあるか否かを判定する判定装置と
    を備えたことを特徴とするたばこフィルタのための検査システム。
  2.  前記画像処理装置は、前記端面の外周縁及び内周縁をエッジポイントの分布リングとしてそれぞれ検出し、
     前記判定装置は、
     前記分布リングのエッジポイントに基づき、前記外周縁及び内周縁をそれぞれ表す推定外円及び推定内円を求める推定セクションと、
     前記推定内円の直径又は前記推定外円及び前記推定内円の中心間距離を求める演算セクションと、
     求められた前記直径又は前記中心間距離が許容範囲内にあるか否かを決定する決定セクションと
    を含む、
    ことを特徴とする請求項1に記載のたばこフィルタのための検査システム。
  3.  前記画像処理装置は、前記外周縁及び前記内周縁のための大小の規定直径よりもそれぞれ大径である大小のサーチ円を仮定し、これらサーチ円の範囲内での走査に基づき、対応する分布リングのエッジポイントを検出することを特徴とする請求項2に記載のたばこフィルタのための検査システム。
  4.  前記推定セクションは、前記推定外円及び前記推定内円を推定するために、最小二乗法を使用することを特徴とする請求項2に記載のたばこフィルタのための検査システム。
  5.  前記決定セクションは、得られた前記直径又は前記中心間距離が許容範囲から外れたとき、不良信号を出力することを特徴とする請求項2に記載のたばこフィルタのための検査システム。
  6.  前記移送経路は、前記たばこフィルタの製造装置から延びる送出ラインに接続されていることを特徴とする請求項2に記載のたばこフィルタのための検査システム。
  7.  前記移送経路は、その始端に前記製造ラインから前記たばこフィルタを受け取り、受け取った前記たばこフィルタを移送するキャッチャドラムを含み、
     前記カメラは前記キャッチドラムの近傍に配置されていることを特徴とする請求項6に記載のたばこフィルタのための検査システム。
  8.  移送経路に沿ってセンタホールを有した中空のたばこフィルタを移送する過程にて、前記たばこフィルタの端面をカメラによって撮像して端面画像を生成し、
     前記端面画像を画像処理して前記端面の外周縁及び内周縁を検出し、
     検出された外周縁及び内周縁に基づき、前記センタホールの直径又は位置ずれが許容範囲内にあるか否かを判定する
    ことを特徴とするたばこフィルタのための検査方法。
  9.  前記画像処理は、前記端面の外周縁及び内周縁をエッジポイントの分布リングとしてそれぞれ検出し、
     前記直径又は位置ずれの判定は、
     前記分布リングのエッジポイントに基づき、前記外周縁及び内周縁をそれぞれ表す推定外円及び推定内円を求める推定プロセスと、
     前記推定内円の直径又は前記推定外円及び前記推定内円の中心間距離を求める演算プロセスと、
     得られた前記直径又は前記中心間距離が許容範囲内にあるか否かを決定する決定プロセスと
    を含む、
    ことを特徴とする請求項8に記載のたばこフィルタのための検査方法。
  10.  前記画像処理は、前記外周縁及び前記内周縁のための大小の規定直径よりもそれぞれ大径である大小のサーチ円を仮定し、これらサーチ円の範囲内での走査に基づき、対応する分布リングのエッジポイントを検出することを特徴とする請求項9に記載のたばこフィルタのための検査方法。
  11.  前記推定プロセスは、前記推定外円及び前記推定内円を推定するために、最小二乗法を使用することを特徴とする請求項9に記載のたばこフィルタのための検査方法。
  12.  前記決定プロセスは、前記直径及び前記中心間距離の何れかが許容範囲から外れたとき、不良信号を出力することを特徴とする請求項9に記載のたばこフィルタのための検査方法。
     
PCT/JP2011/072436 2011-09-29 2011-09-29 たばこフィルタの検査システム及びその検査方法 WO2013046401A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072436 WO2013046401A1 (ja) 2011-09-29 2011-09-29 たばこフィルタの検査システム及びその検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072436 WO2013046401A1 (ja) 2011-09-29 2011-09-29 たばこフィルタの検査システム及びその検査方法

Publications (1)

Publication Number Publication Date
WO2013046401A1 true WO2013046401A1 (ja) 2013-04-04

Family

ID=47994508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072436 WO2013046401A1 (ja) 2011-09-29 2011-09-29 たばこフィルタの検査システム及びその検査方法

Country Status (1)

Country Link
WO (1) WO2013046401A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813150A1 (en) * 2013-06-10 2014-12-17 Philip Morris Products S.A. Filter quality control device
US9402416B2 (en) 2012-10-23 2016-08-02 Essentra Filter Products Development Co. Pte. Ltd. Detection system
CN107080285A (zh) * 2017-04-21 2017-08-22 广东省韶关烟草机械配件厂有限公司 烟支回收处理装置
JP2020508075A (ja) * 2017-02-27 2020-03-19 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム フィルター要素およびその製造方法
CN114087981A (zh) * 2021-10-25 2022-02-25 成都博发控制技术有限责任公司 基于激光打光方法的烟支滤嘴激光孔在线检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523158A (ja) * 1991-07-17 1993-02-02 Daicel Chem Ind Ltd シガレツトフイルター
JPH08210826A (ja) * 1994-09-30 1996-08-20 Philip Morris Prod Inc 実質的に円形の物体の外観を検査する方法および装置
JP2001292757A (ja) * 2000-04-12 2001-10-23 Japan Tobacco Inc シガレット検査装置
JP2005134294A (ja) * 2003-10-31 2005-05-26 Daido Steel Co Ltd 円筒状部品の形状検査方法および形状検査装置
WO2011117984A1 (ja) * 2010-03-24 2011-09-29 日本たばこ産業株式会社 フィルタ検査方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523158A (ja) * 1991-07-17 1993-02-02 Daicel Chem Ind Ltd シガレツトフイルター
JPH08210826A (ja) * 1994-09-30 1996-08-20 Philip Morris Prod Inc 実質的に円形の物体の外観を検査する方法および装置
JP2001292757A (ja) * 2000-04-12 2001-10-23 Japan Tobacco Inc シガレット検査装置
JP2005134294A (ja) * 2003-10-31 2005-05-26 Daido Steel Co Ltd 円筒状部品の形状検査方法および形状検査装置
WO2011117984A1 (ja) * 2010-03-24 2011-09-29 日本たばこ産業株式会社 フィルタ検査方法および装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9402416B2 (en) 2012-10-23 2016-08-02 Essentra Filter Products Development Co. Pte. Ltd. Detection system
US9867395B2 (en) 2012-10-23 2018-01-16 Essentra Filter Products Development Co. Pte. Ltd. Detection system
EP2813150A1 (en) * 2013-06-10 2014-12-17 Philip Morris Products S.A. Filter quality control device
JP2020508075A (ja) * 2017-02-27 2020-03-19 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム フィルター要素およびその製造方法
JP7281405B2 (ja) 2017-02-27 2023-05-25 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム フィルター要素およびその製造方法
JP7593677B2 (ja) 2017-02-27 2024-12-03 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム フィルター要素およびその製造方法
CN107080285A (zh) * 2017-04-21 2017-08-22 广东省韶关烟草机械配件厂有限公司 烟支回收处理装置
CN114087981A (zh) * 2021-10-25 2022-02-25 成都博发控制技术有限责任公司 基于激光打光方法的烟支滤嘴激光孔在线检测方法
CN114087981B (zh) * 2021-10-25 2024-05-17 成都博发控制技术有限责任公司 基于激光打光方法的烟支滤嘴激光孔在线检测方法

Similar Documents

Publication Publication Date Title
JP5388250B2 (ja) フィルタ検査方法および装置
WO2013046401A1 (ja) たばこフィルタの検査システム及びその検査方法
KR101832081B1 (ko) 표면 결함 검출 방법 및 표면 결함 검출 장치
JP6447637B2 (ja) 表面欠陥検出装置、表面欠陥検出方法、及び鋼材の製造方法
JP6394514B2 (ja) 表面欠陥検出方法、表面欠陥検出装置、及び鋼材の製造方法
WO2013046402A1 (ja) たばこフィルタの検査システム及びその検査方法
JP5974787B2 (ja) 鋼帯コイルのエッジ欠陥検出方法およびエッジ欠陥検出装置
EP3654275B1 (en) Method and system for the automatic measuring of physical and dimensional parameters of multi-segment articles
EP2934200B1 (en) Inspection system
JP2011196734A (ja) タイヤの形状測定方法および形状測定装置
EP3399302A1 (en) Egg surface inspection apparatus
JPWO2016208626A1 (ja) 表面欠陥検出方法、表面欠陥検出装置、及び鋼材の製造方法
CN113165040B (zh) 圆钢的标记检测装置和检测方法以及钢材的制造方法
US10076885B2 (en) Joining state determination method and molding device
CN111127455A (zh) 基于视频图像分析的管道测量方法
TW201937161A (zh) 用於檢測玻璃片的設備及方法
JP6387909B2 (ja) 表面欠陥検出方法、表面欠陥検出装置、及び鋼材の製造方法
JP6738649B2 (ja) 破断面検査方法及び検査装置
JP3765767B2 (ja) ガラス管端の偏心検査装置及びガラス管端の偏心検査方法
JP6432448B2 (ja) ガラス管の検査方法
JP6693250B2 (ja) 検査装置及び検査方法
EP2957860B1 (en) Shape measuring device
JP2014113061A (ja) シガレットフィルタの検査システム及びその検査方法
CN108291805A (zh) 用于细长元件的检查组
JP2005134294A (ja) 円筒状部品の形状検査方法および形状検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载