+

WO2013042437A1 - 電力変換装置、電動機駆動装置および空調機 - Google Patents

電力変換装置、電動機駆動装置および空調機 Download PDF

Info

Publication number
WO2013042437A1
WO2013042437A1 PCT/JP2012/067611 JP2012067611W WO2013042437A1 WO 2013042437 A1 WO2013042437 A1 WO 2013042437A1 JP 2012067611 W JP2012067611 W JP 2012067611W WO 2013042437 A1 WO2013042437 A1 WO 2013042437A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
phase
stop
power conversion
current
Prior art date
Application number
PCT/JP2012/067611
Other languages
English (en)
French (fr)
Inventor
渉 初瀬
能登原 保夫
田村 建司
奥山 敦
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to CN201280036040.0A priority Critical patent/CN103703669B/zh
Priority to JP2013534627A priority patent/JP5718474B2/ja
Priority to KR1020137034744A priority patent/KR20140018407A/ko
Publication of WO2013042437A1 publication Critical patent/WO2013042437A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation

Definitions

  • the present invention relates to a control technology for a power converter using a PWM (Pulse Width Modulation) control method.
  • PWM Pulse Width Modulation
  • the energization angle at the time of 120 degrees energization is expanded to 150 degrees energization by a torque command, so that the current flowing through the motor is sinusoidal.
  • a 120-degree / 150-degree energization switching technique that reduces pulsation of torque close to a wave is disclosed. It is described that, by using this method, the motor can be driven with high performance at the time of starting the motor and from a heavy load to a light load with a rotational force with less noise and vibration (see Patent Document 2). .
  • the 120-degree energization method and the 150-degree energization method described in Patent Document 1 and Patent Document 2 have a narrower switching operation region in one cycle than the 180-degree energization method, and thus reduce the switching loss of the power conversion device. It is possible.
  • an induced voltage detection circuit is provided to acquire phase information of the induced voltage during the stop period of the switching operation. It is necessary to switch the phase for performing the switching operation based on the phase information.
  • the magnet position sensorless 120-degree energization method and 150-degree energization method must always provide a period for stopping the switching operation near the zero cross of the induced voltage of the motor. Therefore, it is difficult to extend the switching operation period to an electrical angle of 150 degrees or more. Further, the switching operation stop period must be performed in synchronization with the induced voltage phase. However, there is a difference between the induced voltage phase and the current phase of the electric motor depending on the load condition and driving condition. Therefore, even if the 150-degree energization method is used, the effect of reducing torque pulsation is not always obtained. Further, if it is attempted to prevent a deviation between the phase of the induced voltage and the current phase of the electric motor, the operation of energization at 150 degrees may be impossible.
  • the 120-degree energization method and the 150-degree energization method determine the energization section and the open phase section (section in which both the upper and lower arm switching elements of the inverter are stopped) based on the phase of the induced voltage.
  • the open phase section section in which both the upper and lower arm switching elements of the inverter are stopped
  • the zero cross point of the induced voltage may not be included in the open phase section.
  • position detection may not be performed accurately when vector control is performed based on the phase of the induced voltage without a magnet position sensor.
  • the switching loss can be reduced by stopping the switching operation in a predetermined section, vector control based on accurate position detection cannot be performed.
  • the current flowing through the motor can be controlled in a sine wave without using an induced voltage detection circuit or the like, but the switching operation is always performed during one cycle of voltage and current. Therefore, switching loss increases and the efficiency of the power conversion circuit decreases.
  • Patent Document 3 when performing vector control using a three-phase power converter that performs PWM control, only the phase whose current value is close to zero is paused to perform two-phase modulation. Is going. However, since there is no current rest period, the copper loss of the motor occurs. That is, even if the two-phase modulation method described in Patent Document 3 is used, the switching loss of PWM control cannot be reduced and the efficiency of the power converter cannot be improved.
  • This invention is made
  • a power converter is a power converter that performs power conversion by PWM control using a vector control method, and outputs a pulse signal for performing the PWM control.
  • a control unit a power conversion circuit that converts DC power into AC power using a pulse signal output from the pulse control unit, a current detection unit that detects a current of the power conversion circuit, and the current detection unit
  • a vector control unit that performs vector control based on the detected current and generates a command voltage to the pulse control unit, and the pulse signal in a section determined based on a current phase of the power conversion circuit is defined.
  • a pulse stop control unit for generating a pulse stop control signal for stopping over a certain section and outputting the pulse stop control signal to the pulse control unit. That.
  • a switching loss during PWM control can be reduced, and a high-efficiency power conversion device can be provided.
  • it is a wave form chart showing the relation of the alternating voltage which flows into an electric motor, an alternating current, and a pulse signal, (a) expresses a PWM carrier signal and an applied voltage command, (b) expresses a U phase alternating current, (C) represents a pulse signal.
  • the power conversion device includes a power conversion circuit (inverter) that converts DC power into AC power using a PWM control pulse signal, detects a current flowing through the power conversion circuit, and vectorizes the power conversion circuit. And a vector control unit for controlling. Further, an open phase section is provided in which the pulse signal in the section determined with reference to the zero cross point of the current phase flowing through the power conversion circuit is stopped, and the switch elements of the upper and lower arms of the same phase are stopped. As a result, the number of switching operations during PWM control can be reduced to reduce switching loss, and accurate position information of the magnet position of the motor can be obtained from the zero cross point of the current phase by providing an open phase section. Can do. As a result, it is possible to perform stable vector control and improve the efficiency of the power conversion circuit (inverter) and the electric motor.
  • FIG. 1 shows a circuit configuration of a PWM control power converter 1a according to the first embodiment.
  • the AC motor 3 that is a permanent magnet synchronous motor is driven by vector control by the power conversion circuit 4 that is constituted by a three-phase inverter driven by PWM control.
  • the control method when a phase pulse stop section (that is, an open phase section) is provided in the pulse signal of the power conversion circuit 4 will be described.
  • the power conversion device 1 a includes a power conversion circuit 4 including a three-phase inverter that converts DC power into AC power, and a motor current that flows through an AC motor (motor) 3 connected to the power conversion circuit 4. And a control device 5a that performs vector control using a pulse signal that performs PWM control based on phase current information (current) 6A detected by the phase current detection unit 6. Is done.
  • the power conversion circuit 4 includes a power conversion main circuit 41 including three-phase semiconductor switching elements Sup, Sun, Svp, Svn, Swp, and Swn in which IGBTs (Insulated Gate Bipolar Transistors) and diodes are antiparallel.
  • a gate driver 42 that generates a gate signal supplied to the IGBT of the power conversion main circuit 41 based on the pulse signal 7A from the pulse control unit 7.
  • the control device 5a also includes a pulse control unit 7 that supplies a pulse signal 7A controlled based on an applied voltage command (command voltage) V * to the gate driver 42, and a phase current detected by the phase current detection unit 6.
  • a vector control unit 8 that performs vector control using the information 6A and calculates the applied voltage command V * , and a phase pulse stop section near the current zero cross based on the current phase information (current phase) 8A calculated by the vector control (Open phase section) It is constituted by a pulse stop control unit 9 that outputs a phase pulse stop control signal (pulse stop control signal) 9A for stopping the pulse signal 7A of ⁇ to the pulse control unit 7.
  • the vector control unit 8 is, for example, Non-Patent Document 1 (Sakamoto et al., “Simple Vector Control of a Position Sensorless Permanent Magnet Synchronous Motor for Home Appliances”, D. Vol. 124, No. 11 (2004) pp. 1133-1140) and Non-Patent Document 2 (Tohari et al., "Study of New Vector Control Method for Permanent Magnet Synchronous Motor for High Speed", Electron Theory D, Vol. 129, No. 1 (2009), pp. 36-45) Inverter output current is detected, three-phase to two-phase conversion (dq conversion; direct-quadrature conversion) is performed and fed back to the control system, and then the inverter is driven by two-phase to three-phase conversion again. This can be realized by using general vector control, and the control method is not specified. Therefore, since the operation of the vector control unit 8 is a well-known technique, a detailed description thereof is omitted.
  • FIG. 2 is a waveform diagram showing the relationship between an AC voltage, an AC current, and a pulse signal flowing through the AC motor 3 in a comparative example, where the horizontal axis indicates the voltage phase, and the vertical axis indicates the levels of the voltage, current, and pulse signal.
  • FIG. 6 shows a circuit configuration of a power conversion device 1b of the PWM control method of the comparative example.
  • elements having the same reference numerals as those in FIG. 1 have the same functions.
  • the vector control performed by the vector control unit 8 is the same control method as in FIG.
  • the control device 5b shown in FIG. 6 generates a PWM pulse signal by comparing the PWM carrier signal and the applied voltage command V * as shown in FIG. Further, the command value of the applied voltage command V * is obtained by performing calculation by the vector control unit 8 based on the phase current information 6A detected by the phase current detection unit 6.
  • the acquisition of the phase current information 6A by the phase current detection unit 6 is performed by directly detecting the AC output current by CT (Current Transformer) as disclosed in FIG. 1 of JP-A-2004-48886, for example.
  • CT Current Transformer
  • the current information of the DC bus may be acquired by a shunt resistor, and the phase current may be reproduced based on this current information.
  • FIG. 2A shows the PWM carrier signal and the applied voltage command V *, and the U-phase applied voltage command Vu * is representatively shown.
  • ⁇ v represents a voltage phase based on the U phase.
  • the pulse control unit 7 performs the pulse shown in FIG. 2C based on the U-phase applied voltage command Vu * and the triangular wave carrier signal (PWM carrier signal).
  • PWM carrier signal the triangular wave carrier signal
  • the U-phase AC current Iu as shown in FIG. 2B flows in the AC motor 3 by the PWM conversion control performed by the power conversion main circuit 41 using this pulse signal (GPU + / GPU ⁇ pulse signal).
  • represents the phase difference between voltage and current.
  • the vector control unit 8 controls the amplitude of the voltage and the phase difference ⁇ between the voltage and the current by performing vector control based on the phase current information 6A including the U-phase alternating current Iu.
  • the switching operation is always performed during one period of the voltage / current, and the current is supplied by 180 degrees. More switching times than current energization. Therefore, with 180 degree energization, the switching loss resulting from this increases.
  • FIG. 3 is a waveform diagram showing the relationship between the AC voltage, AC current and pulse signal flowing through the AC motor 3 and the phase pulse stop control signal in the first embodiment, with the horizontal axis representing the voltage phase and the vertical axis representing the voltage. , Current, pulse signal, and open phase control signal (phase pulse stop control signal) levels. That is, FIG. 3 is a waveform diagram of this embodiment shown in contrast to the waveform diagram of FIG.
  • the pulse stop control unit 9 uses the zero cross point ⁇ of the current phase controlled by the vector control as a reference, and the phase ⁇ and the phase ⁇ + ⁇ are as shown in the following formula (1).
  • the pulse signals GPU + and GPU ⁇ both output a phase pulse stop control signal (open phase control signal) 9A for stopping switching to the pulse controller 7.
  • the phase pulse stop control signal 9A outputs “0” when switching is stopped for both the pulse signals GPU + and GPU ⁇ , and “1” when switching in the PWM control method of the comparative example is performed without stopping switching.
  • Equation (1) when ⁇ is the phase difference between voltage and current and ⁇ is the phase pulse stop period (open phase period), the voltage phase ⁇ v with respect to the U phase is ⁇ / When 2 ⁇ v ⁇ + ⁇ / 2 and ⁇ + ⁇ / 2 ⁇ v ⁇ + ⁇ + ⁇ / 2, switching by the pulse signals GPU + and GPU ⁇ is stopped. In other cases, switching is performed using pulse signals GPU + and GPU ⁇ .
  • both the pulse signals GPU + and GPU ⁇ are turned off in the phase pulse stop section ⁇ of the phase pulse stop control signal 9A. Therefore, as shown in FIG. 3C, the pulse controller 7 outputs a signal train of pulse signals paused in the phase pulse stop period ⁇ .
  • the phase pulse stop section (open phase section) ⁇ is set twice during one period of voltage and current.
  • the sinusoidal PWM control method not only the sinusoidal PWM control method but also the two-phase modulation type PWM control method and the third harmonic addition type PWM control method are the target PWM control modulation methods. It is possible to provide a pulse stop interval ⁇ .
  • the pulse signals GPU + and GPU ⁇ provided with the period for stopping the switching operation by the pulse stop control unit 9 according to the first embodiment are applied to the applied voltage phase and the AC motor 3 in the switching stop period and the switching operation period.
  • the shape is not provided based on the induced voltage phase. That is, the switching stop period and the switching operation period of the pulse signals GPU + and GPU ⁇ are set with reference to the zero cross point of the current phase.
  • the pulse signal sequence since the pulse signal is based on the voltage phase of the induced voltage, as shown in FIG. 2 (c), the pulse signal sequence has symmetrical ON / OFF duty before and after the zero cross point of the voltage. It becomes the shape to become.
  • the phase pulse stop section ⁇ is provided based on the current phase (that is, not a pulse signal based on the voltage phase), as shown in FIG.
  • the ON / OFF duty of the pulse signal train is not symmetrical before and after the voltage zero-cross point. That is, in the first embodiment, the ON / OFF duty of the pulse signal train is asymmetric before and after the current zero-cross point.
  • the phase pulse stop section ⁇ is provided in the section including the zero cross point of the current, as shown in FIG. 3C, before and after the phase pulse stop section ⁇ as the center.
  • the pulse signal trains A and B have an asymmetric shape. From this, when the phase pulse stop section ⁇ is provided in the section including the zero cross point of the current as in the first embodiment, it is observed whether the pulse signals before and after the phase pulse stop section ⁇ are asymmetric. Thus, it can be easily determined whether or not the first embodiment is applied.
  • FIG. 4 is a waveform diagram showing the relationship between the U-phase voltage, the U-phase current, and the pulse signal when the real machine including the power conversion device 1a according to the first embodiment is driven.
  • Fig. 4 shows voltage, current, and pulse signal levels. That is, FIG. 4 is a method in which a phase pulse stop period is provided in the vicinity including the zero cross point of the current according to the first embodiment, and the actual machine is driven by setting the phase pulse stop period in the two-phase modulation type PWM control method. Shows the voltage, current and pulse signal.
  • FIG. 4A shows the U-phase terminal voltage Vun of the power conversion main circuit 41
  • FIG. 4B shows the U-phase current Iu flowing through the AC motor 3
  • FIG. 4C shows the pulse signals GPU + and GPU ⁇ . .
  • the switching signals of the pulse signals GPU + and GPU ⁇ are both turned off in the section (indicated by ⁇ ) sandwiched by the alternate long and short dash line, and the phase pulse stop section ⁇ is set. I can confirm that. Further, since the phase pulse stop section ⁇ is set, it can be confirmed that the U-phase current Iu becomes zero in the section sandwiched by the alternate long and short dash line.
  • FIG. 5 is a characteristic diagram showing a relationship between the power conversion circuit loss, the motor loss, and the total loss obtained by adding them to the phase pulse stop period (open phase period) ⁇ by the power conversion device 1a of the first embodiment.
  • the horizontal axis represents the phase pulse stop interval (open phase interval) ⁇
  • the vertical axis represents the loss. That is, FIG. 5 shows the characteristics of the total pulse loss including the phase pulse stop interval ⁇ set by the pulse stop control unit 9 and the loss of the power conversion circuit 4, the loss of the AC motor 3, and these two losses.
  • the loss (power conversion circuit loss) of the power conversion circuit 4 of the first embodiment is caused by the fact that the number of switching times decreases as the phase pulse stop interval ⁇ increases. To reduce. Further, the loss of the AC motor 3 (motor loss) increases due to the increase in the harmonic component of the current by providing the phase pulse stop section ⁇ . Furthermore, since the increase of the harmonic component of the current becomes significant due to the increase of the phase pulse stop section ⁇ , the increase in loss (motor loss) of the AC motor 3 due to this increases. For this reason, as shown in FIG. 5, there is a phase pulse stop section ⁇ opt in which the total loss obtained by adding these two losses (power conversion circuit loss and motor loss) is minimum, and the phase pulse stop section ⁇ is represented by this phase pulse. By setting the stop section ⁇ opt, it is possible to reduce the loss of the entire power conversion device 1a.
  • the pulse stop control unit 9 it is possible to reduce the number of switching of the pulse signal for performing the PWM control with the configuration of the power conversion circuit 4 similar to the PWM control method of the comparative example. Become. In other words, when the pulse stop control unit 9 that is controlled by the microcomputer is configured by software, the configuration of the power conversion circuit 4 of the comparative example is not changed, and the power converter 1a is not added without adding new hardware. High efficiency can be achieved. Moreover, since the switching operation is stopped near the zero cross of the current of the AC motor 3, an increase in torque pulsation can be suppressed compared to the 150-degree energization method.
  • FIG. 7 is a waveform diagram showing a relationship between an AC voltage, an AC current and a pulse signal flowing through the motor, and a phase pulse stop control signal in the power conversion device according to the modified example of the first embodiment, and the horizontal axis indicates the voltage.
  • the phase ⁇ v, and the vertical axis represents the levels of voltage, current, pulse signal, and open phase control signal.
  • control device 5a shown in FIG. 1 is realized by an integrated circuit such as a microcomputer, it is preferable to reduce the calculation load of the microcomputer. Therefore, as shown in FIG. 7D, if the pulse stop control unit 9 sets the phase pulse stop section ⁇ only once per current cycle, it is possible to reduce the calculation load of the microcomputer.
  • the pulse stop control unit 9 performed by the control of the microcomputer uses the zero cross point ⁇ of the current phase controlled by the vector control as a reference at the phase ⁇ + ⁇ (see FIG. 7D), As shown in the equation (2), the phase pulse stop control signal 9A for stopping both the switching signals of the pulse signals GPU + and GPU ⁇ during the phase pulse stop period ⁇ is output to the pulse controller 7.
  • phase pulse stop section ⁇ may be set only once per current cycle in the phase difference ⁇ between the voltage and current.
  • phase pulse stop section ⁇ By setting the phase pulse stop section ⁇ to be set once per current cycle, it is possible to halve the calculation load of the pulse stop control unit 9 by the microcomputer. Further, by measuring the phase difference ⁇ between the voltage and the current under the load condition to be driven in advance, and setting the phase difference ⁇ between the voltage and the current in the phase pulse stop control signal 9A of the pulse stop control unit 9 as a fixed value. This further reduces the computational load on the microcomputer.
  • the power conversion circuit 4 of the first embodiment performs PWM control by the switching operation using the pulse signal 7A output from the pulse control unit 7 and outputs AC power to the AC motor 3.
  • the vector control unit 8 outputs the phase information 8A of the current calculated based on the phase current information 6A from the phase current detection unit 6 to the pulse stop control unit 9.
  • the pulse stop control unit 9 outputs a phase pulse stop control signal 9A generated based on the current phase information 8A to the pulse control unit 7. Therefore, the pulse control unit 7 stops the pulse signal 7A in a predetermined section with reference to the zero cross of the current phase of a predetermined phase (for example, U phase) of the power conversion circuit 4. Therefore, the power conversion circuit 4 stops switching near the current zero crossing, so that the switching loss is reduced.
  • the efficiency of the power conversion device 1a can be improved and distortion of the output current can be reduced.
  • Second Embodiment switching between the PWM control method in which the phase pulse stop interval ⁇ is provided as in the first embodiment and the normal PWM control method in which the phase pulse stop interval ⁇ is not provided will be described. That is, in 2nd Embodiment, the power converter device which can switch phase pulse stop area (delta) with driving
  • running conditions for example, rotation speed of AC motor
  • FIG. 8 shows a circuit configuration of the PWM control type power converter 11 according to the second embodiment.
  • the power converter 11 instead of the phase current detection unit 6 of the power converting apparatus 1a of the first embodiment shown in FIG. 1, the DC bus current detector for detecting a DC bus current I DC ( A current detection unit) 10. That is, the power converter 11 of the second embodiment is configured such that the DC bus current detection unit 10 outputs DC bus current information (current) 10 ⁇ / b> A to the vector control unit 8.
  • the vector control unit 8 is configured to output current phase information 8 ⁇ / b> A calculated by vector control and rotation speed information 8 ⁇ / b> B that is the rotation speed of the AC motor 3 to the pulse stop control unit 91. .
  • the pulse stop control part 91 of 2nd Embodiment can switch the phase pulse stop area (delta) with an operating condition (namely, rotational speed of AC motor 3).
  • the other configuration contents are the same as those of the power conversion device 1a of the first embodiment shown in FIG.
  • FIG. 9 is a characteristic diagram showing a setting example of a phase pulse stop section (open phase section) in the power converter 11 of the second embodiment, where the horizontal axis represents the rotation speed and the vertical axis represents the open phase section ⁇ . . That is, in the power conversion device 11 of the second embodiment, the pulse stop control unit 91 determines the magnitude of the current rotation speed N of the AC motor 3 and a preset rotation speed N1 as shown in FIG. When the current rotational speed N is less than the rotational speed N1, the phase pulse stop control signal 91A in which the phase pulse stop section ⁇ is set is output to the pulse controller 7. When the current rotational speed N is equal to or higher than the rotational speed N1, the phase pulse stop section ⁇ is set to 0, and a phase pulse stop control signal 91A that does not set the phase pulse stop section ⁇ is output to the pulse controller 7.
  • the pulse control unit 7 when the current rotational speed N of the AC motor 3 is less than the rotational speed N1, the pulse control unit 7 outputs a pulse signal having a phase pulse stop section ⁇ , and when the rotational speed is equal to or higher than the rotational speed N1, the pulse control unit. 7 outputs a pulse signal without a phase pulse stop section ⁇ .
  • the phase pulse stop section ⁇ is set to the rotational speed as shown in FIG.
  • a method of changing from N2 to the rotational speed N3 at a constant change rate may be used.
  • the phase pulse is stopped at a non-linear change rate along a predetermined curve.
  • a method of changing the section ⁇ may be used.
  • phase A configuration may be employed in which the pulse stop interval ⁇ is switched.
  • the horizontal axis in the characteristic diagrams of FIGS. 9A, 9 ⁇ / b> B, and 9 ⁇ / b> C is read as the DC bus current average value I DCave instead of the rotational speed N.
  • phase pulse stop section ⁇ may be switched based on the torque ⁇ output from the AC motor 3 instead of switching the phase pulse stop section ⁇ based on the rotational speed of the AC motor 3.
  • the horizontal axis in the characteristic diagrams of FIGS. 9A, 9 ⁇ / b> B, and 9 ⁇ / b> C is read as output torque ⁇ instead of the rotational speed N.
  • the AC motor 3 When in the low-speed rotation range, setting the phase pulse stop interval ⁇ enables the power converter to be driven more efficiently than the PWM control method of the comparative example. Further, when the AC motor 3 is in the high speed rotation range, the phase pulse stop section ⁇ is set to 0, and it is possible to smoothly shift to 180-degree energization without setting the phase pulse stop section.
  • phase pulse stop area (delta) when changing to the direction which narrows phase pulse stop area (delta) according to the driving
  • the phase pulse stop section ⁇ when changing the phase pulse stop section ⁇ in the direction of widening according to the operating conditions of the AC motor 3, the phase is stopped immediately from the stop section zero state to the predetermined stop section. It can be performed by either changing at a change rate or changing at a non-linear change rate from a stop zone zero state to a predetermined stop zone.
  • FIG. 10 illustrates an overall configuration diagram of an air conditioner 100 according to the third embodiment.
  • the air conditioner 100 includes an outdoor unit 101 that exchanges heat with the outside air, an indoor unit 102 that exchanges heat with the indoor atmosphere, and the outdoor unit 101 and the indoor unit 102. And a pipe 103 to be connected.
  • the outdoor unit 101 includes a compressor 104 that compresses refrigerant, a compressor drive motor 105 that drives the compressor 104, an electric motor drive device 106 that drives and controls the compressor drive motor 105, and outside air and heat using the compressed refrigerant. It is comprised with the heat exchanger 107 which performs exchange.
  • the electric power drive device 106 uses the power conversion device 1a of the first embodiment or the power conversion device 11 of the second embodiment.
  • the indoor unit 102 includes a heat exchanger 108 that exchanges heat with the room and a blower 109 that blows air into the room.
  • FIG. 11 is a characteristic diagram showing the relationship of efficiency with respect to the rotational speed of the compressor drive motor 105 in the air conditioner 100 shown in FIG. 10, the horizontal axis shows the rotational speed of the compressor drive motor 105, and the vertical axis shows the compressor. The efficiency of the drive motor 105 is shown.
  • the power conversion device 1a of the first embodiment is applied to the air conditioner 100, and the pulse signal 7A in which the phase pulse stop section ⁇ is provided from the pulse control unit 7 to the pulse stop control unit 9 is provided. Is output to control the power conversion circuit 4.
  • the number of times of switching of the power conversion circuit 4 can be reduced by providing the phase pulse stop section ⁇ , the loss of the motor driving device 106 can be reduced as a result.
  • the pulse stop controller 9 in FIG. 1 outputs a pulse signal with the phase pulse stop interval ⁇ set to 0, and switches to the 180-degree energization PWM control method to weaken it. It is possible to drive the field control region.
  • the number of switching operations of the power conversion circuit 4 can be reduced with the configuration of the power conversion circuit 4 similar to that of the PWM control method of the comparative example.
  • the control unit 9 is configured by software, it is possible to realize high efficiency of the air conditioner 100 without adding hardware.
  • the power converters 1a, 11 according to the present invention, the motor drive device 106 using the power converters 1a, 11 and the air conditioner 100 using the motor drive device 106 have been specifically described. Needless to say, the present invention is not limited to the contents of the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
  • the present invention is not limited to the contents of the first to third embodiments, and various modifications are possible.
  • the above-described embodiments are illustrated in detail in order to easily understand the contents of the present invention, and are not necessarily limited to those having all the configurations described above.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by having a processor interpret and execute a program that realizes each function.
  • Information such as programs, tables, and files that realize each function is stored in a recording device such as a memory, hard disk, SSD (Solid State Drive), or IC (integrated circuit) card, SD card, DVD (Digital Versatile Disc). Etc. can be placed on a recording medium.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • a power conversion device that drives an electric motor used in an air conditioner but also an electric power conversion device that drives an electric motor used in household appliances such as a refrigerator, a washing machine, and a vacuum cleaner, etc. are effectively used. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 電力変換回路(4)は、パルス制御部(7)から出力されたパルス信号(7A)によるスイッチング動作によってPWM制御を行い、交流電動機(3)へ交流電力を出力している。このとき、ベクトル制御部(8)が、相電流検出部(6)からの相電流情報(6A)に基づいて算出した電流の位相情報(8A)をパルス停止制御部(9)ヘ出力する。パルス停止制御部(9)は、電流の位相情報(8A)に基づいて生成した相パルス停止制御信号(9A)をパルス制御部(7)へ出力する。これにより、パルス制御部(7)は、電力変換回路(4)の所定の相の電流位相のゼロクロスを基準として所定の区間のパルス信号(7A)を停止する。

Description

電力変換装置、電動機駆動装置および空調機
 本発明は、PWM(Pulse Width Modulation)制御方式を用いた電力変換装置の制御技術に関する。
 空調機等に使用される電動機駆動装置は、部品点数の削減による小型化や高効率・高出力化への要求が強く、これらの要求を実現させるための技術が種々開発されている。このような電動機駆動装置に使用される電力変換装置、およびその負荷となる電動機を高効率に駆動させる手法の一つとして、電力変換装置から電動機へ流れる電流を正弦波状にPWM制御する180度通電方式と、誘起電圧の位相を基準として120度ごとにPWM制御してスイッチング動作を行う120度通電方式とを、電動機の負荷条件や駆動条件によって切り替える180度/120度通電切替方式の技術が開示されている。この方式を用いることにより、電動機の負荷条件や駆動条件に応じて高効率な駆動が可能になると共に、広範囲な回転速度において電動機の駆動を安定化できることが記載されている(特許文献1参照)。
 また、PWM制御を行う電力変換装置の120度通電時における電動機の損失を低減させる手法として、120度通電時の通電角をトルク指令によって150度通電へ拡張させることにより、電動機に流れる電流を正弦波に近づけてトルクの脈動を低減させる120度/150度通電切替方式の技術が開示されている。この方式を用いることにより、電動機の起動時、および重負荷から軽負荷に至るまで、騒音や振動の少ない回転力で高性能に電動機の駆動を行えることが記載されている(特許文献2参照)。
 また、PWM制御を行う三相の電力変換装置を用いて電動機を運転するときに、電力変換装置をベクトル制御する場合において、電流値がゼロに近くなった相のみスイッチングを行わないで2アーム変調(2相変調)を行う2相変調方式の技術も開示されている。この技術によれば、位置センサレスでベクトル制御を行う場合において、一定の電気角ごとのタイミングで2相変調を行うことにより、電動機の固定子電流がゼロクランプするゼロクランプ現象を回避することができる。その結果、全負荷範囲におけるベクトル制御において制御系の安定性を向上させることができる(特許文献3参照)。
特開2008-172948号公報 特開2003-169491号公報 特開平11-164597号公報
 前記の特許文献1および特許文献2に記載された120度通電方式および150度通電方式は、180度通電方式に比べて1周期におけるスイッチング動作領域が狭いため、電力変換装置のスイッチング損失を低減させることが可能である。しかし、磁石位置センサを用いないで電動機の磁石位置を検出(つまり、位置検出)するためには、誘起電圧検出回路を設けて、スイッチング動作の停止期間に誘起電圧の位相情報を取得し、これらの位相情報に基づいてスイッチング動作を行う相を切り替える必要がある。
 言い換えると、磁石位置センサレス方式の120度通電方式および150度通電方式は、必ず、電動機の誘起電圧のゼロクロス付近でスイッチング動作を停止する期間を設ける必要がある。よって、スイッチング動作期間を電気角150度以上に広げることは困難である。また、スイッチング動作の停止期間は誘起電圧位相に必ず同期して行う必要がある。ところが、負荷条件や駆動条件によっては誘起電圧位相と電動機の電流位相にズレが発生するため、150度通電方式を用いても、必ずしもトルク脈動の低減効果が得られるとは限らない。さらに、上記誘起電圧の位相と電動機の電流位相とのズレを防止しようとすると、150度通電の動作自体が不可能になることもあり得る。
 すなわち、120度通電方式や150度通電方式は、誘起電圧の位相を基準にして通電区間と開放相区間(インバータの同相の上下アームのスイッチ素子を両方とも停止させる区間)を決めているので、磁石位置センサレス方式において位置信号を取得するためには、開放相区間に誘起電圧のゼロクロス点を含ませる必要がある。ところが、負荷条件や駆動条件によっては誘起電圧の位相と電動機の電流位相にズレが発生するため、開放相区間に誘起電圧のゼロクロス点が含まれないこともある。その結果、磁石位置センサレスで誘起電圧の位相に基づいてベクトル制御を行う場合の位置検出が正確に行われないことがある。言い換えると、所定区間のスイッチング動作の停止によってスイッチング損失を低減させることはできても、正確な位置検出によるベクトル制御を行うことができない。
 このように、特許文献1および特許文献2の方式では、120度通電方式および150度通電方式の駆動時にスイッチングを停止させる区間を設けることで電力変換回路のスイッチング回数を低減させることは可能である。しかし、誘起電圧検出回路等を用いて誘起電圧の位相情報を取得し、この誘起電圧の位相情報に基づいてスイッチングを行う相の切替えを行っているので、電圧と電流の位相が異なる場合は正確な位置検出を行うことができない。その結果、電流歪が大きくなって電動機のトルク脈動が増加する虞がある。また、特許文献1による180度通電方式の駆動においては、誘起電圧検出回路等を用いないで電動機に流れる電流を正弦波状に制御することはできるが、電圧・電流一周期の間に常にスイッチング動作を行わなければならないので、スイッチング損失が増加して電力変換回路の効率が低下してしまう。
 なお、特許文献3に開示された技術は、PWM制御を行う三相の電力変換装置を用いてベクトル制御する場合に、電流値がゼロに近くなった相のみスイッチングを休止して2相変調を行っている。しかし、電流の休止期間が生じないために電動機の銅損が発生する。つまり、特許文献3に記載の2相変調方式を用いても、PWM制御のスイッチング損失を低減させて電力変換装置の効率を向上させることはできない。
 本発明は、このような事情に鑑みてなされたものであり、PWM制御時のスイッチング損失を低減させ、高効率な電力変換装置を提供することを課題とする。
 前記課題を解決するために、本発明の電力変換装置は、ベクトル制御方式を用いて、PWM制御によって電力変換を行う電力変換装置であって、前記PWM制御を行うためのパルス信号を出力するパルス制御部と、前記パルス制御部から出力されたパルス信号を用いて、直流電力を交流電力に変換する電力変換回路と、前記電力変換回路の電流を検出する電流検出部と、前記電流検出部で検出された電流に基づいてベクトル制御を行い、前記パルス制御部への指令電圧を生成するベクトル制御部と、前記電力変換回路の電流位相を基準として定められた区間の前記パルス信号を前記定められた区間に亘って停止させるための、パルス停止制御信号を生成し、このパルス停止制御信号を前記パルス制御部へ出力するパルス停止制御部とを具備する。
 本発明によれば、PWM制御時のスイッチング損失を低減させ、高効率電力変換装置を提供することができる。
第1実施形態に係るPWM制御方式の電力変換装置の回路構成を示すブロック図である。 比較例における、電動機に流れる交流電圧、交流電流およびパルス信号の関係を示す波形図であり、(a)はPWMキャリア信号と印加電圧指令とを表し、(b)はU相交流電流を表し、(c)はパルス信号を表す。 第1実施形態における、電動機に流れる交流電圧、交流電流およびパルス信号と、相パルス停止制御信号との関係を示す波形図であり、(a)はPWMキャリア信号と印加電圧指令とを表し、(b)はU相交流電流を表し、(c)はパルス信号を表し、(d)は開放相制御信号を表す。 第1実施形態の電力変換装置を備える実機を駆動した場合の、U相電圧、U相電流およびパルス信号の関係を示す波形図であり、(a)はU相端子電圧を表し、(b)はU相電流を表し、(c)はパルス信号を表す。 第1実施形態の電力変換装置による、相パルス停止区間(開放相区間)に対する電力変換回路損失、電動機損失およびそれらを足し合わせた総合損失の関係を示す特性図である。 比較例のPWM制御方式の電力変換装置の回路構成を示すブロック図である。 第1実施形態に係る電力変換装置の変形例における、電動機に流れる交流電圧、交流電流およびパルス信号と、相パルス停止制御信号との関係を示す波形図であり、(a)はPWMキャリア信号と印加電圧指令とを表し、(b)はU相交流電流を表し、(c)はパルス信号を表し、(d)は開放相制御信号を表す。 第2実施形態に係るPWM制御方式の電力変換装置の回路構成を示すブロック図である。 第2実施形態の電力変換装置における相パルス停止区間(開放相区間)の設定例を示す特性図であり、(a)は理想的に回転速度N1に設定された場合を表し、(b)は回転速度N2から回転速度N3まで一定の変化率で変化させた場合を表し、(c)は回転速度N2から回転速度N3まで所定の曲線で変化させた場合を表す。 第3実施形態に係る、電力変換装置を用いた空調機の全体構成図である。 図10に示す空調機における圧縮機駆動電動機の回転速度に対する効率の関係を示す特性図である。
 次に、発明を実施するための形態(以降、「実施形態」と称す。)について、適宜図面を参照しながら詳細に説明する。
《概要》
 本実施形態に係る電力変換装置は、PWM制御のパルス信号を用いて直流電力を交流電力に変換する電力変換回路(インバータ)と、電力変換回路に流れる電流を検出してその電力変換回路をベクトル制御するベクトル制御部とを備えている。さらに、電力変換回路に流れる電流位相のゼロクロス点を基準として定められた区間のパルス信号を停止させて、同相の上下アームのスイッチ素子を停止させる開放相区間を設けている。これにより、PWM制御時のスイッチング回数を低減させてスイッチング損失を低下させることができると共に、開放相区間を設けることで電流位相のゼロクロス点によって、電動機の磁石位置の正確な位置情報を取得することができる。その結果、安定したベクトル制御を行って、電力変換回路(インバータ)および電動機の効率を向上させることが可能となる。
 以下、本発明に係る電力変換装置の実施形態について図面を参照しながら詳細に説明する。なお、各実施形態を説明するための全図において、同一の構成要素は原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下に述べる実施形態においては、理解を容易にするために、従来方式を用いた比較例と対比しながら本実施形態の内容について説明する。
《第1実施形態》
 図1は、第1実施形態に係るPWM制御方式の電力変換装置1aの回路構成を示している。第1実施形態の電力変換装置1aでは、図1に示すように、PWM制御で駆動する三相インバータからなる電力変換回路4によって、永久磁石同期電動機である交流電動機3をベクトル制御で駆動する場合において、電力変換回路4のパルス信号に相パルス停止区間(すなわち、開放相区間)を設けたときの制御方法について説明する。
〈電力変換装置の回路構成〉
 図1に示すように、電力変換装置1aは、直流電力を交流電力に変換する3相インバータからなる電力変換回路4と、電力変換回路4に接続された交流電動機(電動機)3に流れる電動機電流を検出する相電流検出部6と、相電流検出部6で検出された相電流情報(電流)6Aに基づいてPWM制御を行うパルス信号を用いてベクトル制御を行う制御装置5aとを備えて構成される。また、電力変換回路4は、IGBT(Insulated Gate Bipolar Transistor)とダイオードとが逆並列された三相構成の半導体スイッチング素子Sup、Sun、Svp、Svn、Swp、Swnから構成された電力変換主回路41と、パルス制御部7からのパルス信号7Aに基づいて電力変換主回路41のIGBTへ供給されるゲート信号を発生するゲート・ドライバ42とを備えて構成される。
 また、制御装置5aは、印加電圧指令(指令電圧)Vに基づいて制御されたパルス信号7Aをゲート・ドライバ42へ供給するパルス制御部7と、相電流検出部6で検出された相電流情報6Aを用いてベクトル制御を行い、印加電圧指令Vを算出するベクトル制御部8と、ベクトル制御により算出された電流の位相情報(電流位相)8Aに基づいて電流ゼロクロス付近で相パルス停止区間(開放相区間)δのパルス信号7Aを停止させる相パルス停止制御信号(パルス停止制御信号)9Aをパルス制御部7へ出力するパルス停止制御部9と、によって構成される。
 ここで、ベクトル制御部8は、例えば、非特許文献1(坂本他、「家電機器向け位置センサレス永久磁石同期モータの簡易ベクトル制御」電学論D、Vol.124巻11号(2004年)pp.1133-1140)や非特許文献2(戸張他、「高速用永久磁石同期モータの新ベクトル制御方式の検討」電学論D、Vol.129巻1号(2009年)pp.36-45)に記載されているように、インバータ出力電流を検出して3相-2相変換(dq変換;direct-quadrature変換)して制御系にフィードバックし、再び2相-3相変換してインバータを駆動する一般的なベクトル制御を用いることで実現可能であり、制御方式については特定するものではない。したがって、ベクトル制御部8の動作は周知の技術であるので詳細な説明は省略する。
〈比較例〉
 ここで、第1実施形態の電力変換装置1aにおけるPWM制御時のスイッチング動作を明確化するため、従来方式を用いた比較例の電力変換装置1b(図6参照)におけるPWM制御について、図2および図6を用いて説明する。図2は、比較例における、交流電動機3に流れる交流電圧、交流電流およびパルス信号の関係を示す波形図であり、横軸に電圧位相、縦軸に電圧、電流およびパルス信号の各レベルを示している。また、図6は、比較例のPWM制御方式の電力変換装置1bの回路構成を示している。なお、図6において、図1と同じ符号の要素は同じ機能を有している。また、ベクトル制御部8が行うベクトル制御は図1の場合と同様の制御方法である。
 図6に示す制御装置5bは、パルス制御部7において、図2(a)に示すように、PWMキャリア信号と印加電圧指令Vとを比較してPWMパルス信号を生成する。また、この印加電圧指令Vの指令値は、相電流検出部6で検出された相電流情報6Aを基にベクトル制御部8で演算を行って得られたものである。ここで、相電流検出部6による相電流情報6Aの取得は、例えば、特開2004-48886号公報の図1に開示されているように、CT(Current Transformer)によって交流出力電流を直接検出しても良いし、同
公報の図12に開示されているように、シャント抵抗によって直流母線の電流情報を取得し、この電流情報に基づいて相電流を再現させる方式でも良い。
 次に、図2を用いて、電力変換装置1b(図6参照)から交流電動機3へ供給される交流電圧および交流電流とパルス信号との関係について詳細に説明する。図2(a)はPWMキャリア信号と印加電圧指令Vとを示しており、代表としてU相印加電圧指令Vuを示している。ここで、θvはU相を基準とする電圧位相を示している。
 PWM制御方式では、パルス制御部7は、図2(a)に示す通り、U相印加電圧指令Vuと三角波キャリア信号(PWMキャリア信号)とを基にして、図2(c)に示すパルス信号「GPU+:U相上側素子(Sup)のパルス信号」、「GPU-:U相下側素子(Sun)のパルス信号」を生成し、このパルス信号を、電力変換主回路41を駆動するためにゲート・ドライバ42へ出力する。すなわち、GPU+のパルス信号とGPU-のパルス信号は正負(1,0)が逆の信号となっている。
 このパルス信号(GPU+/GPU-のパルス信号)によって電力変換主回路41がPWM制御を行うことにより、交流電動機3には図2(b)に示すようなU相交流電流Iuが流れる。ここで、φは電圧と電流の位相差を示している。
 また、ベクトル制御部8では、U相交流電流Iuを含む相電流情報6Aを基に、ベクトル制御を行うことで、電圧の振幅および電圧と電流の位相差φの制御を行っている。
 図2に示す通り、比較例によるPWM制御では、電圧・電流の一周期の間は常にスイッチング動作を行って180度通電しており、スイッチング動作が停止する期間が存在する120度通電方式や150度通電方式よりスイッチング回数が多い。したがって、180度通電では、これに起因するスイッチング損失が多くなる。
〈第1実施形態におけるパルス停止制御部の動作〉
 以下の説明においては、PWM制御を行うパルス信号のスイッチング動作を一時停止させるパルス停止制御部9(図1参照)の動作について、図1と図3を用いて説明する。したがって、比較例で述べたPWM制御の基本的な動作については、重複を避けるために説明を省略する。
 図3は、第1実施形態における、交流電動機3に流れる交流電圧、交流電流およびパルス信号と、相パルス停止制御信号との関係を示す波形図であり、横軸に電圧位相、縦軸に電圧、電流、パルス信号および開放相制御信号(相パルス停止制御信号)の各レベルを示している。すなわち、図3は、図2の波形図と対比して示した本実施形態の波形図である。
 パルス停止制御部9は、図3(d)に示すように、ベクトル制御により制御された電流位相のゼロクロス点φを基準として、位相φと位相φ+πにおいて、下記の式(1)に示すように、相パルス停止区間(開放相区間)δの間、パルス信号GPU+、GPU-共にスイッチングを停止する相パルス停止制御信号(開放相制御信号)9Aをパルス制御部7へ出力する。この相パルス停止制御信号9Aは、パルス信号GPU+、GPU-共にスイッチングを停止する場合は“0”、スイッチングを停止せず比較例のPWM制御方式のスイッチングを行う場合は“1”を出力する。
Figure JPOXMLDOC01-appb-M000001
 すなわち、式(1)からわかるように、φを電圧と電流の位相差、δを相パルス停止区間(開放相区間)としたとき、U相を基準とする電圧位相θvが、φ-δ/2<θv<φ+δ/2のときおよびφ+π-δ/2<θv<φ+π+δ/2のときは、パルス信号GPU+およびGPU-によるスイッチングを停止する。そして、それ以外のときはパルス信号GPU+およびGPU-によるスイッチングを行う。
 このため、パルス制御部7からの出力状態は、相パルス停止制御信号9Aの相パルス停止区間δでは、パルス信号GPU+、GPU-が共にオフとなる。したがって、パルス制御部7からは、図3(c)に示すように、相パルス停止区間δで休止したパルス信号の信号列が出力される。言い換えると、電圧および電流の一周期の間に2回に亘って相パルス停止区間(開放相区間)δを設定することとなる。なお、第1実施形態の構成の場合、対象となるPWM制御の変調方式は正弦波PWM制御方式のみではなく、二相変調型PWM制御方式や三次調波加算型PWM制御方式でも、同様の相パルス停止区間δを設けることが可能となる。
 このように、第1実施形態のパルス停止制御部9によりスイッチング動作を停止する期間が設けられたパルス信号GPU+、GPU-は、スイッチング停止区間とスイッチング動作区間では、印加電圧位相および交流電動機3の誘起電圧位相を基準として設けられていない形状となる。すなわち、パルス信号GPU+、GPU-のスイッチング停止区間とスイッチング動作区間は、電流位相のゼロクロス点を基準として設定される。
 言い換えると、比較例では、誘起電圧の電圧位相を基準にしたパルス信号であるため、図2(c)に示すように、パルス信号列は、電圧のゼロクロス点の前後においてON/OFFデューティが対称となる形状になっている。ところが、第1実施形態では、電流位相を基準として相パルス停止区間δが設けられているため(つまり、電圧位相を基準にしたパルス信号ではないため)、図3(c)に示すように、電圧のゼロクロス点の前後において、パルス信号列のON/OFFデューティは対称にはならない。すなわち、第1実施形態では、電流のゼロクロス点の前後において、パルス信号列のON/OFFデューティは非対称となっている。
 このように、第1実施形態では、電流のゼロクロス点を含んだ区間に相パルス停止区間δを設けているので、図3(c)に示すように、相パルス停止区間δを中心とした前後のパルス信号列AおよびBが非対称な形状となる。このことから、第1実施形態のように電流のゼロクロス点を含んだ区間に相パルス停止区間δを設けた場合は、相パルス停止区間δの前後のパルス信号が非対称であるか否かを観測するにより、第1実施形態が適用されたか否かを容易に判別することができる。
〈実機による駆動時の波形〉
 図4は、第1実施形態の電力変換装置1aを備える実機を駆動した場合の、U相電圧、U相電流、およびパルス信号の関係を示す波形図であり、横軸に電圧位相、縦軸に電圧、電流、およびパルス信号の各レベルを示している。すなわち、図4は、第1実施形態による電流のゼロクロス点を含んだ近傍に相パルス停止区間を設けた手法で、二相変調型PWM制御方式において相パルス停止区間を設定して実機を駆動した場合の電圧、電流およびパルス信号を示している。
 図4(a)は電力変換主回路41のU相端子電圧Vun、同図(b)は交流電動機3に流れるU相電流Iu、同図(c)にパルス信号GPU+、GPU-を示している。
 図4(c)に示すように、一点鎖線で挟まれた区間(δで表示)においてパルス信号GPU+、GPU-のスイッチング信号が共にオフとなっており、相パルス停止区間δが設定されていることが確認できる。また、相パルス停止区間δが設定されているため、一点鎖線で挟まれた区間ではU相電流Iuがゼロとなることも併せて確認することができる。
〈第1実施形態の効果〉
 図5は、第1実施形態の電力変換装置1aによる、相パルス停止区間(開放相区間)δに対する電力変換回路損失、電動機損失およびそれらを足し合わせた総合損失の関係を示す特性図であり、横軸に相パルス停止区間(開放相区間)δ、縦軸に損失を表わしている。すなわち、図5は、パルス停止制御部9で設定する相パルス停止区間δと電力変換回路4の損失、交流電動機3の損失およびこれらの二つの損失を合わせた総合損失の特性を示している。
 図5に示すように、第1実施形態の電力変換回路4の損失(電力変換回路損失)は、相パルス停止区間δを大きくしていくにしたがってスイッチング回数が低減するため、これに起因して低減する。また、交流電動機3の損失(電動機損失)は、相パルス停止区間δを設けることで電流の高調波成分が増加するため、これに起因して大きくなる。さらに、相パルス停止区間δが大きくなることにより、電流の高調波成分の増加が顕著となるため、これに起因する交流電動機3の損失(電動機損失)の増加も顕著となる。このため、図5に示すように、これら二つの損失(電力変換回路損失と電動機損失)を加算した総合損失が最少となる相パルス停止区間δoptが存在し、相パルス停止区間δをこの相パルス停止区間δoptに設定することで、電力変換装置1a全体の損失を低減させることが可能となる。
 以上、説明したように、パルス停止制御部9を用いることで、比較例のPWM制御方式と同様の電力変換回路4の構成で、PWM制御を行うパルス信号のスイッチング回数を低減させることが可能となる。言い換えると、マイコンの制御で行われるパルス停止制御部9をソフトウェアで構成した場合は、比較例の電力変換回路4の構成は変えずに、新規のハードウェアを追加することなく電力変換装置1aの高効率化を達成することが可能となる。また、交流電動機3の電流のゼロクロス付近でスイッチング動作を停止させるため、150度通電方式に対してトルク脈動の増加を抑制することができる。
〈第1実施形態の変形例〉
 ここで、第1実施形態の変形例として、相パルス停止区間δを1サイクル区間の片方のみとする場合と、相パルス停止区間の位相を固定の状態にする場合とについて説明する。図7は、第1実施形態の変形例に係る電力変換装置における、電動機に流れる交流電圧、交流電流およびパルス信号と、相パルス停止制御信号との関係を示す波形図であり、横軸に電圧位相θv、縦軸に電圧、電流、パルス信号および開放相制御信号の各レベルを表している。
 この変形例では、図1に示すパルス停止制御部9の相パルス停止区間δを電流一周期(1サイクル)に対して1回のみ設定する方式について述べる。なお、上述した第1実施形態の電力変換装置1aと共通する内容については説明を省略する。
 図1に示す制御装置5aをマイコン等の集積回路で実現させる場合は、そのマイコンの演算負荷を低減させることが好適である。そこで、図7(d)に示すように、パルス停止制御部9が、相パルス停止区間δを電流一周期につき1回のみ設定するようすれば、マイコンの演算負荷を低減させることができる。
 すなわち、この変形例では、マイコンの制御で行われるパルス停止制御部9が、ベクトル制御により制御された電流位相のゼロクロス点φを基準として、位相φ+πにおいて(図7(d)参照)、下記の式(2)に示すように、相パルス停止区間δの間パルス信号GPU+とGPU-のスイッチング信号を共に停止させる相パルス停止制御信号9Aをパルス制御部7へ出力する。
Figure JPOXMLDOC01-appb-M000002
 すなわち、式(2)からわかるように、φを電圧と電流との位相差、δを相パルス停止区間(開放相区間)としたとき、U相を基準とする電圧位相θvが、φ+π-δ/2<θv<φ+π+δ/2のときのみ、1回だけパルス信号GPU+およびGPU-によるスイッチングを停止する。そして、それ以外のときはパルス信号GPU+およびGPU-によるスイッチングを行う。なお、電圧と電流との位相差φにおいて電流一周期につき1回のみ相パルス停止区間δを設定する構成としても良い。
 このように、相パルス停止区間δを電流一周期につき1回だけ設定する構成とすることで、マイコンによるパルス停止制御部9の演算負荷を半減することが可能となる。また、あらかじめ駆動する負荷条件における電圧と電流との位相差φを測定しておき、パルス停止制御部9の相パルス停止制御信号9Aにおける電圧と電流との位相差φを固定値とすることで、マイコンの演算負荷のさらなる低減が可能となる。
 以上説明したように、第1実施形態の電力変換回路4は、パルス制御部7から出力されたパルス信号7Aによるスイッチング動作によってPWM制御を行い、交流電動機3へ交流電力を出力している。このとき、ベクトル制御部8が、相電流検出部6からの相電流情報6Aに基づいて算出した電流の位相情報8Aをパルス停止制御部9ヘ出力している。これによって、パルス停止制御部9は、電流の位相情報8Aに基づいて生成した相パルス停止制御信号9Aをパルス制御部7へ出力する。したがって、パルス制御部7は、電力変換回路4の所定の相(例えば、U相)の電流位相のゼロクロスを基準として所定の区間のパルス信号7Aを停止する。よって、電力変換回路4は、電流のゼロクロス付近でスイッチングを停止するのでスイッチング損失が低減される。その結果、電力変換装置1aの効率を向上させることができると共に、出力電流の歪を低減させることができる。
《第2実施形態》
 第2実施形態では、第1実施形態のように相パルス停止区間δを設けたPWM制御方式と、相パルス停止区間δを設けない通常のPWM制御方式との切替えについて説明する。すなわち、第2実施形態では、運転条件(例えば、交流電動機の回転速度)によって相パルス停止区間δを切り替えることができる電力変換装置について説明する。
 図8は、第2実施形態に係るPWM制御方式の電力変換装置11の回路構成を表す。図8に示すように、電力変換装置11は、図1に示す第1実施形態の電力変換装置1aの相電流検出部6の代わりに、直流母線電流IDCを検出する直流母線電流検出部(電流検出部)10を備えている。すなわち、第2実施形態の電力変換装置11は、直流母線電流検出部10がベクトル制御部8へ直流母線電流情報(電流)10Aを出力するように構成される。
 図8において、ベクトル制御部8は、ベクトル制御によって算出された電流の位相情報8Aと、交流電動機3の回転速度である回転速度情報8Bとをパルス停止制御部91へ出力するように構成される。これによって、第2実施形態のパルス停止制御部91は、相パルス停止区間δを運転条件(つまり、交流電動機3の回転速度)によって切り替えることができる。その他の構成内容は、図1で示した第1実施形態の電力変換装置1aと同じであるため、説明は省略する。
 図9は、第2実施形態の電力変換装置11における相パルス停止区間(開放相区間)の設定例を示す特性図であり、横軸に回転速度、縦軸に開放相区間δを表わしている。すなわち、第2実施形態の電力変換装置11においては、パルス停止制御部91は、図9(a)に示すように、交流電動機3の現在の回転速度Nとあらかじめ設定した回転速度N1との大小関係を判定し、現在の回転速度Nが回転速度N1未満の場合は、相パルス停止区間δを設定した相パルス停止制御信号91Aをパルス制御部7へ出力する。また、現在の回転速度Nが回転速度N1以上の場合は、相パルス停止区間δを0とし、相パルス停止区間δを設定しない相パルス停止制御信号91Aをパルス制御部7へ出力する。
 言い換えると、交流電動機3の現在の回転速度Nが回転速度N1未満の場合は、パルス制御部7は相パルス停止区間δのあるパルス信号を出力し、回転速度N1以上の場合は、パルス制御部7は相パルス停止区間δのないパルス信号を出力する。
 なお、運転条件によって相パルス停止区間δを切り替えるときの交流電動機3の回転速度・トルクの過度的な変動を抑制するため、図9(b)に示すように、相パルス停止区間δを回転速度N2から回転速度N3まで一定の変化率で変化させる方式としても良い。また、相パルス停止区間δの切り替えをさらにスムーズにするため、図9(c)に示すように、回転速度N2から回転速度N3までは、所定の曲線に沿って非線形な変化率で相パルス停止区間δを変えるような方式としても良い。
 また、交流電動機3の回転速度に基づいて相パルス停止区間δを切り替えるのではなく、図8の直流母線電流検出部10で検出される直流母線電流IDCの平均値IDCaveに基づいて、相パルス停止区間δを切り替える構成としても良い。この場合は、図9(a)、(b)、(c)の特性図における横軸は、回転速度Nではなく、直流母線電流平均値IDCaveに読み替える。
 また、交流電動機3の回転速度に基づいて相パルス停止区間δを切り替えるのではなく、交流電動機3が出力するトルクτに基づいて相パルス停止区間δを切り替える構成としても良い。この場合は、図9(a)、(b)、(c)の特性図における横軸は、回転速度Nではなく、出力トルクτに読み替える。
 以上、説明したように、相パルス停止区間δを交流電動機3の運転条件(交流電動機3の回転速度N、出力トルクτまたは直流母線電流平均値IDCave等)によって切り替えることにより、交流電動機3が低速回転域にある場合は、相パルス停止区間δを設定することで、比較例のPWM制御方式よりも電力変換装置を高効率に駆動することが可能となる。また、交流電動機3が高速回転域の場合は、相パルス停止区間δを0とし、相パルス停止区間を設定しない180度通電にスムーズに移行することが可能となる。
 なお、交流電動機3の運転条件によって相パルス停止区間δを狭める方向へ変更させる場合は、所定の停止区間から停止区間ゼロの状態へ直ちに切り替える、所定の停止区間から停止区間ゼロの状態へ一定の変化率で変化させる、または、所定の停止区間から停止区間ゼロの状態へ非線形な変化率で変化させる、のいずれかによって行うことができる。
 また、交流電動機3の運転条件によって相パルス停止区間δを広げる方向へ変更させる場合は、停止区間ゼロの状態から所定の停止区間へ直ちに切り替える、停止区間ゼロの状態から所定の停止区間へ一定の変化率で変化させる、停止区間ゼロの状態から所定の停止区間へ非線形な変化率で変化させる、のいずれかによって行うことができる。
《第3実施形態》
 第3実施形態では、第1実施形態の電力変換装置1aまたは第2実施形態の電力変換装置11を空調機の圧縮機駆動に適用した場合について、説明する。
 図10は、第3実施形態に係る空調機100の全体構成図を表している。
 図10に示すように、第3実施形態の空調機100は、外気と熱交換を行う室外機101と、室内の雰囲気と熱交換を行う室内機102と、室外機101と室内機102とをつなぐ配管103とによって構成される。
 室外機101は、冷媒を圧縮する圧縮機104と、圧縮機104を駆動する圧縮機駆動電動機105と、圧縮機駆動電動機105を駆動制御する電動機駆動装置106と、圧縮冷媒を用いて外気と熱交換を行う熱交換機107とによって構成される。ここで、電動機駆動装置106には、第1実施形態の電力変換装置1aまたは第2実施形態の電力変換装置11が用いられる。また、室内機102は、室内と熱交換を行う熱交換機108と、室内に送風する送風機109とによって構成される。
 ここで、圧縮機駆動電動機105の効率について、図11を用いて説明する。図11は、図10に示す空調機100における圧縮機駆動電動機105の回転速度に対する効率の関係を示す特性図であり、横軸は圧縮機駆動電動機105の回転速度を示し、縦軸は圧縮機駆動電動機105の効率を表している。
 電動機駆動装置106にPWM制御を適用するとき、圧縮機駆動電動機105の回転速度がN4以上の場合は、電力変換回路4の正弦波変調方式で出力可能な電圧を上回る電圧飽和領域では、弱め界磁制御により無効電流を流すことによって界磁コイルの電流を減らすことで、圧縮機駆動電動機105の高速回転域における安定駆動を実現することができる。ところが、このような弱め界磁制御を行うため、図11の実線に示すように、圧縮機駆動電動機105の高速回転域(回転速度N4以上)においては効率の低下が発生する。
 そこで、第3実施形態では、例えば、第1実施形態の電力変換装置1aを空調機100に適用し、パルス制御部7からパルス停止制御部9により相パルス停止区間δが設けられたパルス信号7Aを出力することにより電力変換回路4を制御する。言い換えると、相パルス停止区間δを設けたことによって、電力変換回路4のスイッチング回数を低減させることができるので、結果的に電動機駆動装置106の損失を低減させることができる。
 このようにして、電力変換回路4のスイッチング損失を低減させることで、図11の一点鎖線の特性に示すように、圧縮機駆動電動機105を駆動させる電動機駆動装置106の効率がピークとなる回転速度N4より低速回転の領域において、効率の向上を図ることが可能となる。また、回転速度N4以上の電圧飽和領域においては、図1のパルス停止制御部9により相パルス停止区間δを0としたパルス信号を出力して、180度通電のPWM制御方式へ切り替えて、弱め界磁制御領域の駆動を行うことが可能である。
 以上説明したように、第3実施形態により、比較例のPWM制御方式と同様の電力変換回路4の構成で電力変換回路4のスイッチング回数を減らすことができるため、マイコンの制御で行われるパルス停止制御部9をソフトウェアにより構成した場合は、ハードウェアの追加を行うことなく、空調機100の高効率化を実現することが可能となる。
 なお、本発明に係る電力変換装置1a,11およびこの電力変換装置1a,11を用いた電動機駆動装置106、並びにこの電動機駆動装置106を用いた空調機100の実施形態について具体的に説明したが、本発明は前記した各実施形態の内容に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更が可能であることは言うまでもない。
 すなわち、本発明は、第1実施形態ないし第3実施形態の内容に限定されるものではなく、様々な変形が可能である。言い換えると、前記した各実施形態は、本発明の内容を分かりやすく説明するために詳細に例示したものであり、必ずしも前記で説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることも可能であり、さらに、ある実施形態の構成に他の実施形態の構成を加えることも可能である。
 また、各実施形態の構成の一部について、他の実施形態の構成を追加、削除、置換をすることも可能である。さらに、前記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現しても良い。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより、ソフトウェアで実現しても良い。なお、各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記録装置、または、IC(integrated circuit)カード、SDカード、DVD(Digital Versatile Disc)等の記録媒体に置くことができる。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えても良い。
 本発明によれば、空調機に用いられる電動機を駆動する電力変換装置に限らず、冷蔵庫、洗濯機、電気掃除機等の家電機器に用いられる電動機を駆動する電力変換装置等にも有効に利用することができる。
 1a、11 電力変換装置
 2 直流電源
 3 交流電動機(電動機)
 4 電力変換回路
 41 電力変換主回路
 42 ゲート・ドライバ
 5a 制御装置
 6 相電流検出部(電流検出部)
 7 パルス制御部
 8 ベクトル制御部
 9、91 パルス停止制御部
 10 直流母線電流検出部(電流検出部)
 6A 相電流情報(電流)
 7A パルス信号
 8A 位相情報(電流位相)
 8B 回転速度情報
 9A、91A 相パルス停止制御信号(パルス停止制御信号)
 10A 直流母線電流情報(電流)
 V 印加電圧指令(指令電圧)
 δ 相パルス停止区間
 100 空調機
 101 室外機
 102 室内機
 103 配管
 104 圧縮機
 105 圧縮機駆動電動機
 106 電動機駆動装置
 107、108 熱交換器
 109 送風機

Claims (13)

  1.  ベクトル制御方式を用いて、PWM制御によって電力変換を行う電力変換装置であって、
     前記PWM制御を行うためのパルス信号を出力するパルス制御部と、
     前記パルス制御部から出力されたパルス信号を用いて、直流電力を交流電力に変換する電力変換回路と、
     前記電力変換回路の電流を検出する電流検出部と、
     前記電流検出部で検出された電流に基づいてベクトル制御を行い、前記パルス制御部への指令電圧を生成するベクトル制御部と、
     前記電力変換回路の電流位相を基準として定められた区間の前記パルス信号を前記定められた区間に亘って停止させるための、パルス停止制御信号を生成し、このパルス停止制御信号を前記パルス制御部へ出力するパルス停止制御部と
    を具備することを特徴とする電力変換装置。
  2.  前記パルス停止制御部は、
     所定の相ごとに、前記定められた区間の前記パルス信号を前記定められた区間に亘って停止させるための、パルス停止制御信号を生成し、このパルス停止制御信号を前記パルス制御部へ出力する
    ことを特徴とする請求の範囲第1項に記載の電力変換装置。
  3.  前記定められた区間の前記パルス信号は、前記電力変換回路に流れる電流のゼロクロス点を含む区間にあるパルス信号であることを特徴とする請求の範囲第2項に記載の電力変換装置。
  4.  前記パルス停止制御部は、
     前記電力変換回路に流れる電流の1サイクル区間に1回または2回、前記パルス停止制御信号を生成することを特徴とするは請求の範囲第2項に記載の電力変換装置。
  5.  前記パルス停止制御部は、
     前記電力変換回路における、直流母線電流情報、交流出力電流情報、または交流出力周波数情報、の少なくとも1つの情報に基づいて、前記パルス信号の停止区間を所定の変化率で変化させることができる前記パルス停止制御信号を生成することを特徴とする請求の範囲第2項に記載の電力変換装置。
  6.  前記パルス停止制御部は、
     前記電力変換回路における、直流母線電流情報、交流出力電流情報、または交流出力周波数情報、の少なくとも1つの情報に基づいて、前記パルス信号の停止区間をゼロと所定の区間との間で切り替えることができる前記パルス停止制御信号を生成することを特徴とする請求の範囲第2項に記載の電力変換装置。
  7.  ベクトル制御方式を用いてPWM制御により電力変換を行う電力変換装置によって駆動する電動機駆動装置であって、
     前記電力変換装置は、
     前記PWM制御を行うためのパルス信号を出力するパルス制御部と、
     前記パルス制御部から出力されたパルス信号を用いて、直流電力を交流電力に変換する電力変換回路と、
     前記電力変換回路の電流を検出する電流検出部と、
     前記電流検出部で検出された電流に基づいてベクトル制御を行い、前記パルス制御部への指令電圧を生成するベクトル制御部と、
     前記電力変換回路の電流位相を基準として定められた区間の前記パルス信号を前記定められた区間に亘って停止させるための、パルス停止制御信号を生成し、このパルス停止制御信号を前記パルス制御部へ出力するパルス停止制御部と
    を具備し、
     前記電力変換回路から出力された交流電力によって電動機を駆動させることを特徴とする電動機駆動装置。
  8.  前記パルス停止制御部は、
     前記電動機の運転条件に応じて、所定の相ごとに、前記電力変換回路に流れる電流のゼロクロス点を含む区間にある前記パルス信号の停止区間を変更するための前記パルス停止制御信号を生成することを特徴とする請求の範囲第7項に記載の電動機駆動装置。
  9.  前記電動機の運転条件は、該電動機の回転速度、該電動機の出力トルク、前記電力変換回路の直流母線電流、交流出力電流、または交流出力周波数、の少なくとも1つの動作状態であることを特徴とする請求の範囲第8項に記載の電動機駆動装置。
  10.  前記パルス停止制御部は、
     前記パルス信号の停止区間の変更を、
     所定の停止区間から停止区間ゼロの状態へ直ちに切り替える、
     所定の停止区間から停止区間ゼロの状態へ一定の変化率で変化させる、
     所定の停止区間から停止区間ゼロの状態へ非線形な変化率で変化させる、
    のいずれかによって行うことを特徴とする請求の範囲第8項に記載の電動機駆動装置。
  11.  前記パルス停止制御部は、
     前記パルス信号の停止区間の変更を、
     停止区間ゼロの状態から所定の停止区間へ直ちに切り替える、
     停止区間ゼロの状態から所定の停止区間へ一定の変化率で変化させる、
     停止区間ゼロの状態から所定の停止区間へ非線形な変化率で変化させる、
    のいずれかによって行うことを特徴とする請求の範囲第8項に記載の電動機駆動装置。
  12.  前記パルス信号の停止区間の前後においては、該パルス信号のパルス列は、ON/OFFデューティ波形が非対称であることを特徴とする請求の範囲第8項に記載の電動機駆動装置。
  13.  請求の範囲第7項ないし請求の範囲第12項のいずれか一項に記載の電動機駆動装置によって、外気と熱交換を行うための冷媒を圧縮する圧縮機を駆動する圧縮機駆動電動機を駆動制御することを特徴とする空調機。
PCT/JP2012/067611 2011-09-21 2012-07-10 電力変換装置、電動機駆動装置および空調機 WO2013042437A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280036040.0A CN103703669B (zh) 2011-09-21 2012-07-10 电力变换装置、电动机驱动装置以及空调机
JP2013534627A JP5718474B2 (ja) 2011-09-21 2012-07-10 電力変換装置、電動機駆動装置および空調機
KR1020137034744A KR20140018407A (ko) 2011-09-21 2012-07-10 전력 변환 장치, 전동기 구동 장치 및 공조기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011205421 2011-09-21
JP2011-205421 2011-09-21

Publications (1)

Publication Number Publication Date
WO2013042437A1 true WO2013042437A1 (ja) 2013-03-28

Family

ID=47914218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067611 WO2013042437A1 (ja) 2011-09-21 2012-07-10 電力変換装置、電動機駆動装置および空調機

Country Status (4)

Country Link
JP (1) JP5718474B2 (ja)
KR (1) KR20140018407A (ja)
CN (1) CN103703669B (ja)
WO (1) WO2013042437A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166044A (ja) * 2013-02-26 2014-09-08 Hitachi Appliances Inc 冷蔵庫
CN105099285A (zh) * 2014-05-08 2015-11-25 株式会社大亨 电动机驱动装置及电动机驱动装置的控制方法
WO2016002745A1 (ja) * 2014-06-30 2016-01-07 マイクロスペース株式会社 モータ駆動制御装置
JP2016019448A (ja) * 2014-07-11 2016-02-01 株式会社東芝 モータ駆動装置及びモータ駆動方法
JP6364573B1 (ja) * 2017-10-17 2018-07-25 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP2019004616A (ja) * 2017-06-15 2019-01-10 三菱重工サーマルシステムズ株式会社 インバータ装置、空気調和機、インバータ装置の制御方法及びプログラム
JP2019004617A (ja) * 2017-06-15 2019-01-10 三菱重工サーマルシステムズ株式会社 インバータ装置、空気調和機、インバータ装置の制御方法及びプログラム
JPWO2018047274A1 (ja) * 2016-09-08 2019-03-14 三菱電機株式会社 モータ駆動装置、電動送風機、および電気掃除機
US10432115B2 (en) 2014-06-30 2019-10-01 Microspace Corporation Motor driving control apparatus
US10608570B2 (en) 2017-10-18 2020-03-31 Hitachi-Johnson Controls Air Conditioning, Inc. Power converter and refrigeration air conditioner
CN111756285A (zh) * 2019-03-28 2020-10-09 南京德朔实业有限公司 电动工具

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656370A (zh) * 2016-03-09 2016-06-08 广东美的制冷设备有限公司 空调器及其压缩机的停机控制方法和装置
CN106067744A (zh) * 2016-05-18 2016-11-02 陕西科技大学 一种新型的智能电机控制器
WO2019186759A1 (ja) * 2018-03-28 2019-10-03 新電元工業株式会社 駆動装置、電動車両および駆動装置の制御方法
JP7358059B2 (ja) * 2019-03-22 2023-10-10 ミネベアミツミ株式会社 モータ駆動制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746855A (ja) * 1993-08-02 1995-02-14 Toyota Motor Corp インバータの二相pwm制御装置
JP2000188876A (ja) * 1998-12-22 2000-07-04 Matsushita Electric Ind Co Ltd コンバータ
JP2001327172A (ja) * 2000-05-15 2001-11-22 Matsushita Electric Ind Co Ltd インバータ制御装置およびこのインバータ制御装置を用いた空気調和機
JP2003092888A (ja) * 2001-09-20 2003-03-28 Denso Corp 電力変換装置及び多相負荷の駆動制御方法
JP2011067023A (ja) * 2009-09-17 2011-03-31 Hitachi Appliances Inc 電流検出方法と、それを利用したインバータ装置やコンバータ装置、並びに、かかる装置を備えたモータ駆動装置及び冷凍空調機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11164597A (ja) * 1997-11-28 1999-06-18 Meidensha Corp 誘導電動機のベクトル制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746855A (ja) * 1993-08-02 1995-02-14 Toyota Motor Corp インバータの二相pwm制御装置
JP2000188876A (ja) * 1998-12-22 2000-07-04 Matsushita Electric Ind Co Ltd コンバータ
JP2001327172A (ja) * 2000-05-15 2001-11-22 Matsushita Electric Ind Co Ltd インバータ制御装置およびこのインバータ制御装置を用いた空気調和機
JP2003092888A (ja) * 2001-09-20 2003-03-28 Denso Corp 電力変換装置及び多相負荷の駆動制御方法
JP2011067023A (ja) * 2009-09-17 2011-03-31 Hitachi Appliances Inc 電流検出方法と、それを利用したインバータ装置やコンバータ装置、並びに、かかる装置を備えたモータ駆動装置及び冷凍空調機器

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166044A (ja) * 2013-02-26 2014-09-08 Hitachi Appliances Inc 冷蔵庫
CN105099285A (zh) * 2014-05-08 2015-11-25 株式会社大亨 电动机驱动装置及电动机驱动装置的控制方法
CN105099285B (zh) * 2014-05-08 2019-03-01 株式会社大亨 电动机驱动装置及电动机驱动装置的控制方法
US10432115B2 (en) 2014-06-30 2019-10-01 Microspace Corporation Motor driving control apparatus
WO2016002745A1 (ja) * 2014-06-30 2016-01-07 マイクロスペース株式会社 モータ駆動制御装置
JP2016019448A (ja) * 2014-07-11 2016-02-01 株式会社東芝 モータ駆動装置及びモータ駆動方法
JPWO2018047274A1 (ja) * 2016-09-08 2019-03-14 三菱電機株式会社 モータ駆動装置、電動送風機、および電気掃除機
JP2019004616A (ja) * 2017-06-15 2019-01-10 三菱重工サーマルシステムズ株式会社 インバータ装置、空気調和機、インバータ装置の制御方法及びプログラム
JP2019004617A (ja) * 2017-06-15 2019-01-10 三菱重工サーマルシステムズ株式会社 インバータ装置、空気調和機、インバータ装置の制御方法及びプログラム
JP6364573B1 (ja) * 2017-10-17 2018-07-25 日立ジョンソンコントロールズ空調株式会社 空気調和機
WO2019077689A1 (ja) * 2017-10-17 2019-04-25 日立ジョンソンコントロールズ空調株式会社 空気調和機
US10608570B2 (en) 2017-10-18 2020-03-31 Hitachi-Johnson Controls Air Conditioning, Inc. Power converter and refrigeration air conditioner
EP3703248A4 (en) * 2017-10-18 2021-07-21 Hitachi-Johnson Controls Air Conditioning, Inc. CURRENT CONVERSION DEVICE AND REFRIGERATION AIR CONDITIONER
CN111756285A (zh) * 2019-03-28 2020-10-09 南京德朔实业有限公司 电动工具
CN111756307A (zh) * 2019-03-28 2020-10-09 南京德朔实业有限公司 电动工具
CN111835249A (zh) * 2019-03-28 2020-10-27 南京德朔实业有限公司 电动工具
CN111835248A (zh) * 2019-03-28 2020-10-27 南京德朔实业有限公司 电动工具
CN111835249B (zh) * 2019-03-28 2023-08-04 南京泉峰科技有限公司 电动工具

Also Published As

Publication number Publication date
CN103703669B (zh) 2017-08-08
JP5718474B2 (ja) 2015-05-13
CN103703669A (zh) 2014-04-02
JPWO2013042437A1 (ja) 2015-03-26
KR20140018407A (ko) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5718474B2 (ja) 電力変換装置、電動機駆動装置および空調機
JP5675567B2 (ja) 電力変換装置、電動機駆動装置及び空気調和機
US9998049B2 (en) Inverter control device and air conditioner
TWI664802B (zh) 電力轉換裝置及冷凍空調機器
JP5047582B2 (ja) インバータ装置
JP6046446B2 (ja) ベクトル制御装置、およびそれを用いたモータ制御装置、空調機
JP6847774B2 (ja) インバータ装置、空気調和機、インバータ装置の制御方法及びプログラム
CN103780186B (zh) 马达控制装置以及使用该马达控制装置的空调机
JP6847775B2 (ja) インバータ装置、空気調和機、インバータ装置の制御方法及びプログラム
JP6087167B2 (ja) 冷蔵庫
JP6591081B2 (ja) インバータ装置、圧縮機駆動装置及び空気調和機
WO2014155622A1 (ja) ヒートポンプ装置、空気調和機及び冷凍機
JP6364573B1 (ja) 空気調和機
JPWO2020213045A1 (ja) インバータ装置、圧縮機駆動装置および空気調和機
CN104009692A (zh) 马达控制装置以及使用了该马达控制装置的空调机
WO2025017870A1 (ja) 電力変換装置及び空気調和装置
JP2024047610A (ja) モータ駆動用インバータの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534627

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137034744

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833013

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载