+

WO2013041465A1 - Élément convertisseur de longueur d'onde et composant semi-conducteur émettant de la lumière doté d'un élément convertisseur de longueur d'onde - Google Patents

Élément convertisseur de longueur d'onde et composant semi-conducteur émettant de la lumière doté d'un élément convertisseur de longueur d'onde Download PDF

Info

Publication number
WO2013041465A1
WO2013041465A1 PCT/EP2012/068156 EP2012068156W WO2013041465A1 WO 2013041465 A1 WO2013041465 A1 WO 2013041465A1 EP 2012068156 W EP2012068156 W EP 2012068156W WO 2013041465 A1 WO2013041465 A1 WO 2013041465A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wavelength conversion
conversion element
ceramic material
transparent layer
Prior art date
Application number
PCT/EP2012/068156
Other languages
German (de)
English (en)
Inventor
Guido Weiss
Stefan GRÖTSCH
Berthold Hahn
Johannes Baur
Simone KIENER
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of WO2013041465A1 publication Critical patent/WO2013041465A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/855Optical field-shaping means, e.g. lenses

Definitions

  • the document WO 98/127 57 describes a light-emitting diode (LED) with a potting over a light-emitting diode chip, which converts a wavelength
  • At least one object of certain embodiments is to provide a wavelength conversion element. At least another object of certain embodiments is a light emitting semiconductor device having a
  • Wavelength conversion element is a layer of one Ceramic material on.
  • the ceramic material has a ceramic wavelength conversion substance.
  • a “layer of a ceramic material” is understood here and below to mean a layer which for the most part comprises a ceramic material. "For the most part” means that the ceramic material has a weight fraction of more than 50%, in particular more than 75% % and preferably more than 90% of the weight of the layer of the
  • Ceramic material occupies. Often, the layer of the ceramic material also consists of the ceramic material. Under a ceramic material is here in particular a
  • ceramic material Materials which have only a short-range order and no long-range order fall under the term "ceramic material” here as well as in the following: Accordingly, inorganic glasses of the formulation "ceramic material” are also to be understood
  • the ceramic wavelength conversion substance may comprise or be one or more phosphors which are suitable for light in a first wavelength range
  • the ceramic wavelength conversion material may, for example, comprise at least one of the following wavelength conversion materials or be formed from one of the following materials: metals
  • rare earth doped garnets rare earth doped alkaline earth sulfides, rare earth doped thiogallates, rare earth doped aluminates, rare earth doped silicates such as orthosilicates, rare earth metals doped chlorosilicates, rare earth doped alkaline earth silicon nitrides, rare earth doped oxynitrides and rare earth doped aluminum oxynitrides, rare earth doped silicon nitrides, sialons.
  • rare earth doped garnets rare earth doped alkaline earth sulfides, rare earth doped thiogallates, rare earth doped aluminates, rare earth doped silicates such as orthosilicates, rare earth metals doped chlorosilicates, rare earth doped alkaline earth silicon nitrides, rare earth doped oxynitrides and rare earth doped aluminum oxynitrides, rare earth doped silicon nitrides, sialons.
  • garnets such as yttrium aluminum oxide (YAG), lutetium aluminum oxide (LuAG) and terbium aluminum oxide (TAG) may be used as the ceramic wavelength conversion material in preferred embodiments.
  • YAG yttrium aluminum oxide
  • LuAG lutetium aluminum oxide
  • TAG terbium aluminum oxide
  • Wavelength conversion substance are doped in further preferred embodiments, for example, with one of the following activators: cerium, europium, neodymium, terbium, erbium, praseodymium, samarium, manganese.
  • activators cerium, europium, neodymium, terbium, erbium, praseodymium, samarium, manganese.
  • Ceramic wavelength conversion materials are cerium-doped yttrium aluminum garnets, cerium-doped ones
  • Wavelength conversion substance still further, in particular inorganic particles, preferably none
  • particles have wavelength-converting properties.
  • the ceramic material has in particular the ceramic
  • Wavelength conversion substance in the form of particles, the connected to each other and / or with other particles to the ceramic material.
  • Ceramic material may for example also consist of the ceramic wavelength conversion substance.
  • the ceramic wavelength conversion substance in the form of a
  • Granules or powder blended for example, with a binder and / or a solvent, provided to the layer of the ceramic material or to a composite of a plurality of layers of the
  • Ceramic material is sintered. If a composite made of the ceramic material, it is usually formed plate-shaped, wherein individual layers of the ceramic material by sawing, breaking or the like
  • Wavelength conversion element provided to be arranged on a semiconductor chip. This points to that
  • Wavelength conversion element and in particular the layer of ceramic material on a plate or plate-shaped configuration, the dimensions of which correspond substantially to the dimensions of a light output surface of the semiconductor chip.
  • the layer of the ceramic material may therefore preferably have a main extension plane, ie a length and a width that are greater than a thickness of the layer of the ceramic material perpendicular to the length and the width. Parallel to the main plane of extension, the layer of the ceramic material has a first main surface and a this oppositely disposed second main surface.
  • the wavelength conversion element according to at least one embodiment, a transparent layer having a lower refractive index than the layer of the ceramic material.
  • the transparent layer is applied in particular on at least one first main surface of the layer of the ceramic material. This may mean, in particular, that the transparent layer is applied directly and in direct contact with the first main surface of the layer of the ceramic material. Alternatively, it is also possible that the transparent layer by means of a further layer arranged therebetween on the first main surface of the layer of the
  • the transparent layer has no wavelength conversion substance and no diffuser material and is optically transparent.
  • the ceramic material of the layer of the ceramic material may typically have a refractive index of greater than or equal to 1.8.
  • Wavelength conversion materials in a range of about 1.8 to about 2.1.
  • the wavelength conversion element is arranged, for example, on a semiconductor chip, the light in the
  • Wavelength conversion element and, for example, by the wavelength conversion element can radiate, it may due to the high refractive index of the
  • Wavelength conversion element in particular in the case that the semiconductor chip is surrounded by the wavelength conversion element of air or other, low-refractive material, for the total reflection of a large part of the
  • Wavelength conversion element emerging light on the surface of the wavelength conversion element come.
  • Wavelength conversion element of the outgoing light can be increased because the total reflection at the interface between the layer of the ceramic material and the transparent layer and also between the transparent layer and the
  • the transparent layer is made of a dielectric.
  • the transparent layer has a refractive index of less than 1.8.
  • the transparent layer may comprise an oxide, a nitride or an oxynitride having a corresponding refractive index.
  • the transparent layer can do this by means of vapor deposition, sputtering, chemical
  • the transparent layer comprises or is made of silicon dioxide.
  • the transparent layer with or made of silicon dioxide may in particular have a thickness of about 225 nm. Such a transparent layer has proven to be special
  • the transparent layer comprises a plastic material.
  • the transparent layer of the plastic material for example, to
  • the adhesive layer can comprise or be a silicone adhesive.
  • the transparent layer can be applied with the plastic material, for example by dripping or molding on the first main surface of the layer of the ceramic material.
  • transparent layer is a silicone or is made of it.
  • the transparent layer may be provided as a silicone foil or silicon wafers which is attached to the ceramic material layer by means of an adhesive, for example a silicone adhesive.
  • the transparent layer has a surface facing away from the ceramic material, which is of lens-shaped design.
  • Material of the transparent layer on the layer of the ceramic material may be the transparent layer
  • Ceramic material facing away from the surface is formed in the form of a convex lens.
  • the wavelength conversion element at the same time a
  • the further transparent layer may in this case have one or more features that are described in advance in connection with the transparent layer on the first main surface.
  • the wavelength conversion element as an additional transparent layer, an oxide, nitride or oxynitride, in particular
  • Wavelength conversion element the layer of the
  • Wavelength conversion element is arranged.
  • the transparent layer is arranged on a side of the ceramic material layer opposite the light-emitting semiconductor chip.
  • an adhesive particularly preferably a silicone adhesive, on or is it.
  • Wavelength conversion element with the layer of the
  • Ceramic material and the transparent layer provided prefabricated and then applied to the semiconductor chip.
  • the light-emitting semiconductor chip may be as desired
  • a semiconductor layer sequence based on different semiconductor material systems For a long-wave, infrared to red radiation, for example, a semiconductor layer sequence based on In x Ga y Alix x y As, for red to yellow radiation, for example, a semiconductor layer sequence based on
  • In x Ga y Al x - y P and short wavelength visible, ie in particular in the range of green to blue light and / or UV radiation for example, a semiconductor layer sequence Based on In x Ga y Al x - y N suitable, and are each 0 -S -S y 1 and 0 ⁇ y ⁇ 1.
  • the light-emitting semiconductor chip may comprise a semiconductor layer sequence, particularly preferably one
  • epitaxially grown semiconductor layer sequence comprise or be.
  • the semiconductor layer sequence by means of an epitaxial process, for example
  • MOVPE metal-organic gas phase epitaxy
  • MBE Molecular Beam Epitaxy
  • a plurality of light-emitting semiconductor chips can be provided.
  • Such semiconductor chips as a substrate
  • Carrier substrate instead of the growth substrate may also be referred to as so-called thin-film semiconductor chips
  • a thin-film semiconductor chip is characterized in particular by the following characteristic features:
  • Epitaxial layer sequence is applied or formed a reflective layer that at least a portion of the generated in the epitaxial layer sequence
  • the epitaxial layer sequence reflects electromagnetic radiation back into them; the epitaxial layer sequence has a thickness in the range of 20 microns or less, in particular in the range between 4 and 10 ym; and
  • the epitaxial layer sequence contains at least one
  • a thin-film semiconductor chip is in good approximation
  • Lambert's surface radiator The basic principle of a thin-film light-emitting diode chip is described, for example, in the publication I. Schnitzer et al. , Appl. Phys. Lett. 63 (16), 18 October 1993, 2174 - 2176.
  • Semiconductor chips may be on different sides of the
  • the light-emitting semiconductor chip can make electrical contact in the form of a solderable or adhesive contact surface on one of the
  • Substrate have. On a side of the semiconductor layer sequence opposite the substrate, a further contact surface, for example in the form of a so-called bond pad for contacting by means of a
  • Wavelength conversion element can for contacting the bonding pad a corresponding recess or opening
  • the semiconductor chip the electrical contact surfaces on the same side, for example as have solderable or adhesive contact surfaces, and be designed as a so-called flip-chip, with the
  • an electrically conductive support such as a board, a guide plate or a light-emitting diode housing
  • a semiconductor chip and two trained as bond pads can be mounted on an electrically conductive support, such as a board, a guide plate or a light-emitting diode housing.
  • a semiconductor chip and two trained as bond pads can be mounted on an electrically conductive support, such as a board, a guide plate or a light-emitting diode housing.
  • the light is
  • the carrier can be used, for example, as a ceramic carrier,
  • Plastic carrier printed circuit board, metal core board,
  • the carrier can have, for example, conductor tracks, contact surfaces and electrical connection regions, by means of which the semiconductor chip on the carrier and the light-emitting semiconductor component to an external power supply
  • Semiconductor device can be achieved. Compared to known semiconductor devices, in which a
  • Silicon Verguss is arranged, occurs in the wavelength conversion element described here and in the light-emitting semiconductor device described here, the reduction observed when increasing the coupling by the Silikonverguss the luminance is not on, because the light is not in the
  • Current spreading layer can migrate next to the semiconductor chip.
  • Figure 1 is a schematic representation of a light
  • Wavelength conversion element according to a
  • Figure 2 is a schematic representation of a light
  • Wavelength conversion element according to another
  • FIG. 3 shows a light-emitting semiconductor component with a wavelength conversion element according to a further exemplary embodiment
  • FIG. 4 shows a light-emitting semiconductor component with a wavelength conversion element according to yet another exemplary embodiment.
  • identical, identical or identically acting elements can each be provided with the same reference numerals.
  • the illustrated elements and their proportions with each other are not to be regarded as true to scale, but can individually elements, such as layers, components, components and areas may be exaggerated in size for ease of illustration and / or understanding.
  • FIG. 1 shows a light-emitting semiconductor component 101 which has a wavelength conversion element 11 according to a first exemplary embodiment.
  • the wavelength conversion element 11 has a layer 1 of a ceramic material which is a ceramic
  • Wavelength conversion substance may in particular be one of the above-mentioned in the general part ceramic
  • the layer 1 of the ceramic material further ceramic material together with the ceramic
  • the layer 1 of the ceramic material is formed as a plate and has a first main surface 10, on which a transparent layer is arranged.
  • transparent layer 2 has a lower refractive index than the layer 1 of the ceramic material.
  • the transparent layer 2 is shown in FIG.
  • Embodiment of silicon dioxide with a thickness of about 225 nm Embodiment of silicon dioxide with a thickness of about 225 nm.
  • the transparent layer 2 another oxide, nitride or
  • the layer of the ceramic material may have a refractive index of greater than or equal to 1.8 while the transparent layer 2 has a refractive index of less than 1.8.
  • the wavelength conversion element 11 is connected by means of the connection layer 5 on one
  • Wavelength conversion element 11 in this case has a size or dimensions which essentially correspond to the dimensions of the light outcoupling surface 30 of the semiconductor chip 3.
  • Wavelength conversion element as a platelet on the
  • Wavelength conversion element 11 may also be designed in the form of a cap, which may also cover side surfaces of the semiconductor chip 3 in addition to the light outcoupling surface.
  • the wavelength conversion element 11 is by means of a
  • Connection layer 5 is arranged on a semiconductor chip 3.
  • the connecting layer 5 is in the illustrated embodiment of a silicone adhesive.
  • the light-emitting semiconductor chip 3 is made of a
  • Compound semiconductor material and has an active region which is suitable to emit light during operation.
  • the semiconductor chip 3 may be designed to emit blue light during operation, while the ceramic wavelength conversion substance of the
  • Wavelength conversion element 11 is adapted to convert at least a portion of the blue light into yellow and / or green and / or red light, so that the light In operation, emitting semiconductor device 101 may emit mixed-color light and particularly preferably white light during operation.
  • the semiconductor chip 3 is mounted on a support 4 together with the wavelength conversion element 11
  • Semiconductor chip 3 is formed.
  • the carrier may be formed according to another embodiment described above in the general part.
  • Wavelength conversion element with the transparent layer 2 on the layer 1 of the ceramic material an increase of the light extraction by up to 10% can be achieved, whereby a reduction of the component heating is achieved.
  • Embodiment has a wavelength conversion element 12 on the light output surface 30 of the semiconductor chip 3, which in addition to that in conjunction with the
  • a further transparent Layer 6 has.
  • the further transparent layer 6 is designed in the embodiment shown as the transparent layer 2 and consists of silicon dioxide with a thickness of about 225 nm.
  • the further transparent layer is formed differently to the transparent layer 2 and, for example, another Thickness or another material.
  • FIG. 3 shows a further exemplary embodiment of a light-emitting component 103, which in comparison to the two previous exemplary embodiments
  • Shaft conversion element 13 having a transparent layer 2 made of a plastic material, in particular a silicone.
  • the transparent layer 2 of the silicone is provided prefabricated and is by means of an adhesive layer 7, preferably of a silicone adhesive, on the first
  • FIG. 4 shows a further exemplary embodiment of a light-emitting semiconductor component 104 having a
  • Layer 1 of the ceramic material has a transparent layer 2, which has a layer 1 facing away from the ceramic material surface 20, the lens-shaped
  • Wavelength conversion element 14 an additional
  • the wavelength conversion elements 11, 12, 13, 14 shown here can each before being applied to the
  • Semiconductor chip 3 be prefabricated and applied as a whole on the semiconductor chip 3.
  • the transparent layer 2 only after arranging the layer 1 of the ceramic material on the

Landscapes

  • Led Device Packages (AREA)

Abstract

L'invention concerne un élément convertisseur de longueur d'onde (11, 12, 13, 14) comprenant une couche (1) d'un matériau céramique et présentant une substance céramique de conversion de longueur d'onde et une couche transparente (2), déposée sur un au moins une première surface principale (10) de la couche de matériau céramique (1), dont l'indice de réfraction est inférieur à celui de la couche de matériau céramique (1). L'invention concerne en outre un composant semi-conducteur émettant de la lumière doté de l'élément convertisseur de longueur d'onde.
PCT/EP2012/068156 2011-09-19 2012-09-14 Élément convertisseur de longueur d'onde et composant semi-conducteur émettant de la lumière doté d'un élément convertisseur de longueur d'onde WO2013041465A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011113777.0 2011-09-19
DE102011113777A DE102011113777A1 (de) 2011-09-19 2011-09-19 Wellenlängenkonversionselement und Licht emittierendes Halbleiterbauelement mit Wellenlängenkonversionselement

Publications (1)

Publication Number Publication Date
WO2013041465A1 true WO2013041465A1 (fr) 2013-03-28

Family

ID=47046532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/068156 WO2013041465A1 (fr) 2011-09-19 2012-09-14 Élément convertisseur de longueur d'onde et composant semi-conducteur émettant de la lumière doté d'un élément convertisseur de longueur d'onde

Country Status (2)

Country Link
DE (1) DE102011113777A1 (fr)
WO (1) WO2013041465A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013218451A1 (de) 2013-09-14 2015-03-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Konversionselement für ein optisches oder optoelektronisches Bauelement und Verfahren zu seiner Herstellung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012107797A1 (de) * 2012-08-23 2014-02-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Licht emittierenden Halbleiterbauelements und Licht emittierendes Halbleiterbauelement
DE102014222920A1 (de) * 2014-11-11 2016-05-12 Osram Oled Gmbh Licht emittierendes Bauelement und Verfahren zur Herstellung eines Licht emittierenden Bauelements

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012757A1 (fr) 1996-09-20 1998-03-26 Siemens Aktiengesellschaft Masse de scellement a effet convertisseur de longueur d'onde, utilisation et procede de production
WO2007107917A2 (fr) * 2006-03-21 2007-09-27 Philips Intellectual Property & Standards Gmbh Dispositif électroluminescent
US20080116467A1 (en) * 2006-11-20 2008-05-22 Philips Lumileds Lighting Company, Llc Light Emitting Device Including Luminescent Ceramic and Light-Scattering Material
WO2009105581A1 (fr) * 2008-02-21 2009-08-27 Nitto Denko Corporation Dispositif émetteur de lumière équipé d’une plaque en céramique translucide
DE102008021436A1 (de) * 2008-04-29 2010-05-20 Schott Ag Optik-Konverter-System für (W)LEDs
WO2011085889A1 (fr) * 2009-12-21 2011-07-21 Osram Opto Semiconductors Gmbh Composant semi-conducteur émettant un rayonnement
WO2011097137A1 (fr) * 2010-02-04 2011-08-11 Nitto Denko Corporation Stratifié céramique photoémissif et son procédé de fabrication

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491867B2 (ja) * 2006-12-05 2014-05-14 コーニンクレッカ フィリップス エヌ ヴェ 照明デバイス、とりわけ発光セラミックを有する照明デバイス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012757A1 (fr) 1996-09-20 1998-03-26 Siemens Aktiengesellschaft Masse de scellement a effet convertisseur de longueur d'onde, utilisation et procede de production
WO2007107917A2 (fr) * 2006-03-21 2007-09-27 Philips Intellectual Property & Standards Gmbh Dispositif électroluminescent
US20080116467A1 (en) * 2006-11-20 2008-05-22 Philips Lumileds Lighting Company, Llc Light Emitting Device Including Luminescent Ceramic and Light-Scattering Material
WO2009105581A1 (fr) * 2008-02-21 2009-08-27 Nitto Denko Corporation Dispositif émetteur de lumière équipé d’une plaque en céramique translucide
DE102008021436A1 (de) * 2008-04-29 2010-05-20 Schott Ag Optik-Konverter-System für (W)LEDs
WO2011085889A1 (fr) * 2009-12-21 2011-07-21 Osram Opto Semiconductors Gmbh Composant semi-conducteur émettant un rayonnement
WO2011097137A1 (fr) * 2010-02-04 2011-08-11 Nitto Denko Corporation Stratifié céramique photoémissif et son procédé de fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DRUCKSCHRIFT I; SCHNITZER ET AL., APPL. PHYS. LETT., vol. 63, no. 16, 18 October 1993 (1993-10-18), pages 2174 - 2176

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013218451A1 (de) 2013-09-14 2015-03-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Konversionselement für ein optisches oder optoelektronisches Bauelement und Verfahren zu seiner Herstellung

Also Published As

Publication number Publication date
DE102011113777A1 (de) 2013-03-21

Similar Documents

Publication Publication Date Title
DE102017205819B4 (de) Lichtemittierendes Bauelement
DE102012200327B4 (de) Optoelektronisches Bauelement
DE102010027253B4 (de) Optoelektronisches Halbleiterbauteil
DE102010053362B4 (de) Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips, strahlungsemittierender Halbleiterchip und strahlungsemittierendes Bauelement
DE102011114641B4 (de) Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
EP1925035A1 (fr) Composant optoelectronique
EP2901479B1 (fr) Composant optoélectronique
DE102013100711B4 (de) Verfahren zur Herstellung einer Vielzahl optoelektronischer Bauelemente
DE112014004933T5 (de) Wellenlängenumwandlungselement, Verfahren zur Herstellung und Licht emittierender Halbleiterbauteil, welcher dasselbe aufweist
WO2012084451A1 (fr) Composant semi-conducteur optoélectronique
DE102013207308B4 (de) Verfahren zum Herstellen einer optoelektronischen Baugruppe und optoelektronische Baugruppe
WO2014095923A1 (fr) Procédé de fabrication d'un composant semi-conducteur optoélectronique, et composant semi-conducteur optoélectronique
DE112011104415T5 (de) Hochleistungs-LEDs mit Linsen aus nichtpolymerem Material und Verfahren zur Herstellung derselben
EP2238503A1 (fr) Dispositif d'éclairage destiné à éclairer un affichage par l'arrière et affichage doté d'un tel dispositif d'éclairage
DE102018205464A1 (de) Beleuchtungsvorrichtung und verwendung einer beleuchtungsvorrichtung
WO2013060570A1 (fr) Composant semi-conducteur optoélectronique et milieu de diffusion
WO2009095007A1 (fr) Dispositif émettant un rayonnement
DE102012107797A1 (de) Verfahren zur Herstellung eines Licht emittierenden Halbleiterbauelements und Licht emittierendes Halbleiterbauelement
DE102010046257A1 (de) Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
DE102018106655A1 (de) Licht-emittierende Vorrichtung und Verfahren zu ihrer Herstellung
DE102012101892B4 (de) Wellenlängenkonversionselement, Licht emittierendes Halbleiterbauelement und Anzeigevorrichtung damit sowie Verfahren zur Herstellung eines Wellenlängenkonversionselements
WO2014048905A1 (fr) Composant optoélectronique à semi-conducteurs
DE102023133332A1 (de) Lichtemittierende vorrichtung
DE102013106575B4 (de) Verfahren zur Herstellung eines optoelektronischen Bauelements umfassend ein Konversionselement
DE112017007578T5 (de) Lichtemittierende vorrichtung und verfahren zum produzie-ren einerlichtemittierenden vorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12775159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12775159

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载