+

WO2012114718A1 - アクリル系樹脂フィルム - Google Patents

アクリル系樹脂フィルム Download PDF

Info

Publication number
WO2012114718A1
WO2012114718A1 PCT/JP2012/001120 JP2012001120W WO2012114718A1 WO 2012114718 A1 WO2012114718 A1 WO 2012114718A1 JP 2012001120 W JP2012001120 W JP 2012001120W WO 2012114718 A1 WO2012114718 A1 WO 2012114718A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
acrylic resin
film
alkyl ester
acid alkyl
Prior art date
Application number
PCT/JP2012/001120
Other languages
English (en)
French (fr)
Inventor
嶋本 幸展
富士雄 石丸
剛広 風呂
青山 泰三
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201280009165.4A priority Critical patent/CN103380175B/zh
Priority to EP12749188.4A priority patent/EP2690139B1/en
Priority to US13/985,781 priority patent/US9273208B2/en
Priority to KR1020137014810A priority patent/KR101883688B1/ko
Priority to JP2013500885A priority patent/JP5789292B2/ja
Publication of WO2012114718A1 publication Critical patent/WO2012114718A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides

Definitions

  • the present invention relates to an acrylic resin film having heat resistance, transparency, and flexibility.
  • Acrylic resins are widely used as films, sheets, or general molded articles because they have excellent transparency and are easy to process.
  • Patent Document 1 discloses an optical film made of glutarimide acrylic resin.
  • Patent Document 2 discloses a retardation plate made of glutarimide acrylic resin.
  • glutarimide acrylic resins generally have a problem that their mechanical strength is not always sufficient.
  • an impact resistance improver called a “core / shell” type, which is obtained by graft polymerization of a vinyl monomer on a rubbery polymer, is preferably used.
  • the rubbery polymer include butadiene rubber, acrylic rubber, and polyorganosiloxane rubber.
  • Patent Document 3 discloses improvement in impact resistance by adding a polyorganosiloxane rubber, but there is a problem that the transparency of the obtained resin is impaired.
  • Patent Document 4 describes that a resin composition excellent in heat resistance and mechanical strength (particularly bending resistance) is obtained by blending a glutarimide acrylic resin and an acrylic graft copolymer.
  • the glass transition temperature of the film does not exceed 120 ° C., and it is required to further improve the heat resistance. It was.
  • so-called fish eyes sometimes contain fine particles, which causes a problem in film quality.
  • the transparency of the film may not be sufficient, and an improvement in this respect was also demanded.
  • the present invention has an object to provide an acrylic resin film having excellent heat resistance and mechanical strength, with reduced fish eyes and high transparency.
  • the present invention relates to an acrylic resin film obtained by molding a resin composition containing the following components (G) and (F).
  • a glutarimide acrylic resin (G) having a unit represented by the following general formula (1) and a unit represented by the following general formula (2) and having a glass transition temperature of 120 ° C. or higher.
  • R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 3 is hydrogen, an alkyl group having 1 to 18 carbon atoms, or an alkyl group having 3 to 12 carbon atoms
  • R 3 is hydrogen, an alkyl group having 1 to 18 carbon atoms, or an alkyl group having 3 to 12 carbon atoms
  • R 4 and R 5 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms; R 6 is an alkyl group having 1 to 18 carbon atoms or cycloalkyl having 3 to 12 carbon atoms) Or a substituent having 5 to 15 carbon atoms including an aromatic ring.
  • the glutarimide acrylic resin (G) does not contain a unit represented by the following general formula (3).
  • R 7 is hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 8 is an aryl group having 6 to 10 carbon atoms.
  • the resin composition preferably contains 40 to 90% by weight of glutarimide acrylic resin (G) and 60 to 10% by weight of (meth) acrylic resin (F) in 100% by weight of the resin composition.
  • the (meth) acrylic resin (F) 100 parts by weight of a monomer mixture containing 50 to 100% by weight of an acrylic acid alkyl ester and 50 to 0% by weight of a methacrylic acid alkyl ester, and a polyfunctional monomer having two or more non-conjugated double bonds per molecule
  • alkyl acrylate ester-based crosslinked elastic particles (B) having an average particle size of less than 80 nm obtained by copolymerizing 0.5 to 5 parts by weight of the product, It is preferably obtained by polymerizing a monomer mixture (E) containing 60 to 100% by weight of methacrylic acid alkyl ester and 0 to 40% by weight of acrylic acid alkyl ester.
  • the (meth) acrylic resin (F) 100 parts by weight of a monomer mixture containing 50 to 100% by weight of an acrylic acid alkyl ester and 50 to 0% by weight of a methacrylic acid alkyl ester, and a polyfunctional monomer having two or more non-conjugated double bonds per molecule
  • alkyl acrylate ester-based crosslinked elastic particles (B) having an average particle size of less than 80 nm obtained by copolymerizing 0.5 to 5 parts by weight of the product
  • Monomer mixture (E) containing 10% by weight to 35% by weight or less of unsaturated carboxylic acid, 50% by weight or more and less than 90% by weight of methacrylic acid alkyl ester, and 0% by weight or more and less than 40% by weight of acrylic acid alkyl ester Obtained by polymerizing
  • the content of the acrylic acid alkyl ester-based crosslinked elastic particles (B) in the (meth) acrylic resin (F) is preferably more than 30% by weight and 60% by weight
  • the acrylic resin film preferably has a glass transition temperature of 115 ° C. or higher, a haze value of 1.0% or less, and a thickness of 300 ⁇ m or less.
  • the present invention also relates to an optical film made of an acrylic resin film.
  • the acrylic resin film of the present invention has excellent heat resistance, transparency, and flexibility, and has good appearance with reduced fish eye contamination. In addition, it also has good stretchability and vacuum formability.
  • the glutarimide acrylic resin (G) has a glass transition temperature of 120 ° C. or higher, and includes a unit represented by the following general formula (1) and a unit represented by the following general formula (2).
  • R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 3 is hydrogen, an alkyl group having 1 to 18 carbon atoms, A cycloalkyl group having 3 to 12 carbon atoms, or a substituent having 5 to 15 carbon atoms including an aromatic ring.
  • the unit represented by the general formula (1) is also referred to as “glutarimide unit”.
  • R 1 and R 2 are each independently hydrogen or a methyl group, and R 3 is hydrogen, a methyl group, a butyl group, or a cyclohexyl group, and more preferably, R 1 is a methyl group, R 2 is hydrogen, and R 3 is a methyl group.
  • the glutarimide acrylic resin (G) may contain only a single type as a glutarimide unit, or any or all of R 1 , R 2 , and R 3 in the general formula (1) A plurality of different types may be included.
  • the glutarimide unit can be formed by imidizing a (meth) acrylic acid ester unit represented by the following general formula (2). Further, an acid anhydride such as maleic anhydride, a half ester of the acid anhydride and a linear or branched alcohol having 1 to 20 carbon atoms, or an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid (for example, acrylic acid)
  • an acid anhydride such as maleic anhydride, a half ester of the acid anhydride and a linear or branched alcohol having 1 to 20 carbon atoms, or an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid (for example, acrylic acid)
  • the glutarimide unit can also be formed by imidizing methacrylic acid, maleic acid, itaconic acid, crotonic acid, fumaric acid, citraconic acid).
  • the content of glutarimide units is not particularly limited, for example, can be appropriately determined in consideration of the structure of R 3 or the like.
  • the content of the glutarimide unit is preferably 1.0% by weight or more, more preferably 3.0% by weight to 90% by weight, and more preferably 5.0% by weight to 60% by weight based on the total amount of the glutarimide acrylic resin (G). More preferred is weight percent.
  • the content of the glutarimide unit is less than the above range, the resulting glutarimide acrylic resin (G) tends to have insufficient heat resistance or its transparency may be impaired.
  • it exceeds the above range the heat resistance and melt viscosity will be unnecessarily high, the molding processability will be poor, the mechanical strength during film processing will be extremely low, and the transparency will be impaired. Tend.
  • the content of glutarimide unit is calculated by the following method.
  • 1 H-NMR BRUKER Avance III 400 MHz
  • 1 H-NMR measurement of the resin was performed to determine the content (mol%) of each monomer unit such as glutarimide unit or ester unit in the resin.
  • the amount (mol%) was converted to content (% by weight) using the molecular weight of each monomer unit.
  • a resin comprising a glutarimide unit in which R 3 is a methyl group in the above general formula (1) and a methyl methacrylate unit
  • R 3 is a methyl group in the above general formula (1)
  • a methyl methacrylate unit it is derived from the O—CH 3 proton of methyl methacrylate appearing in the vicinity of 3.5 to 3.8 ppm.
  • the content (% by weight) of the glutarimide unit should be obtained by the following formula. Can do.
  • content (weight%) of a glutarimide unit can be calculated
  • the content of glutarimide units is preferably 20% by weight or less, more preferably 15% by weight or less, and more preferably 10% by weight because it is easy to suppress birefringence. The following is more preferable.
  • the content of glutarimide units is preferably 50% by weight or more, more preferably 70% by weight or more because retardation is easily expressed.
  • R 4 and R 5 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 6 is an alkyl group having 1 to 18 carbon atoms or 3 to 3 carbon atoms. 12 cycloalkyl groups or substituents having 5 to 15 carbon atoms including an aromatic ring.
  • the unit represented by the general formula (2) is also referred to as “(meth) acrylic acid ester unit”.
  • R 4 and R 5 are each independently hydrogen or a methyl group
  • R 6 is hydrogen or a methyl group
  • 5 is a methyl group
  • R 6 is a methyl group
  • the glutarimide acrylic resin (G) may contain only a single type as a (meth) acrylic acid ester unit, or any one of R 4 , R 5 and R 6 in the general formula (2). Alternatively, a plurality of different types may be included.
  • the glutarimide acrylic resin (G) may further contain a unit represented by the following general formula (3) (hereinafter also referred to as “aromatic vinyl unit”) as necessary.
  • R 7 is hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 8 is an aryl group having 6 to 10 carbon atoms.
  • the aromatic vinyl unit represented by the general formula (3) is not particularly limited, and examples thereof include a styrene unit and an ⁇ -methylstyrene unit, and a styrene unit is preferable.
  • the glutarimide acrylic resin (G) may contain only a single type as an aromatic vinyl unit, or may contain a plurality of units in which either or both of R 7 and R 8 are different. .
  • the content of the aromatic vinyl unit is not particularly limited, but is preferably 0 to 50% by weight, more preferably 0 to 20% by weight based on the total amount of the glutarimide acrylic resin (G). 0 to 15% by weight is particularly preferable. When the content of the aromatic vinyl unit is larger than the above range, sufficient heat resistance of the glutarimide acrylic resin (G) cannot be obtained.
  • the glutarimide acrylic resin (G) may not contain an aromatic vinyl unit from the viewpoints of improving bending resistance and transparency, reducing fisheye, and further improving solvent resistance or weather resistance. preferable.
  • the glutarimide acrylic resin (G) may further contain other units other than the glutarimide unit, the (meth) acrylic acid ester unit, and the aromatic vinyl unit, if necessary.
  • Examples of other units include amide units such as acrylamide and methacrylamide, glutar anhydride units, nitrile units such as acrylonitrile and methacrylonitrile, maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide. And maleimide-based units.
  • These other units may be contained in the glutarimide acrylic resin (G) by random copolymerization or by graft copolymerization.
  • These other units are obtained by copolymerizing the monomer constituting the unit with glutarimide acrylic resin (G) and / or resin that is a raw material for producing resin (G). It may be introduced. Moreover, when performing the said imidation reaction, what was byproduced by these other units and contained in resin (G) may be used.
  • the weight average molecular weight of the glutarimide acrylic resin (G) is not particularly limited, but is preferably in the range of 1 ⁇ 10 4 to 5 ⁇ 10 5 . If it is in the said range, moldability will not fall or the mechanical strength at the time of film processing will not be insufficient. On the other hand, when the weight average molecular weight is smaller than the above range, the mechanical strength when formed into a film tends to be insufficient. Moreover, when larger than the said range, the viscosity at the time of melt-extrusion is high, there exists a tendency for the moldability to fall and for the productivity of a molded article to fall.
  • the glass transition temperature of glutarimide acrylic resin (G) is 120 ° C. or higher so that the film exhibits good heat resistance. Preferably it is 125 degreeC or more. If the glass transition temperature is lower than the above range, the film cannot exhibit sufficient heat resistance.
  • (meth) acrylic acid ester polymer is produced by polymerizing (meth) acrylic acid ester.
  • glutarimide acrylic resin (G) contains an aromatic vinyl unit
  • (meth) acrylic acid ester and aromatic vinyl are copolymerized to produce a (meth) acrylic acid ester-aromatic vinyl copolymer.
  • examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and (meth) acrylic acid t.
  • -Butyl, benzyl (meth) acrylate, and cyclohexyl (meth) acrylate are preferably used, and methyl methacrylate is more preferably used.
  • (Meth) acrylic acid ester may be used alone or in combination of two or more. By using multiple types of (meth) acrylic acid esters, it is possible to include multiple types of (meth) acrylic acid ester units in the finally obtained glutarimide acrylic resin (G).
  • the structure of the above (meth) acrylic acid ester polymer or the above (meth) acrylic acid ester-aromatic vinyl copolymer is not particularly limited as long as the subsequent imidization reaction is possible. Specific examples include linear polymers, block polymers, core-shell polymers, branched polymers, ladder polymers, and crosslinked polymers.
  • a block polymer it may be any of AB type, ABC type, ABA type, and other types of block polymers.
  • the core-shell polymer it may be composed of only one core and one shell, or one or both of the core and shell may be composed of multiple layers.
  • an imidization reaction is performed by reacting the (meth) acrylic acid ester polymer or the (meth) acrylic acid ester-aromatic vinyl copolymer with an imidizing agent.
  • an imidizing agent for reacting the (meth) acrylic acid ester polymer or the (meth) acrylic acid ester-aromatic vinyl copolymer with an imidizing agent.
  • the imidizing agent is not particularly limited as long as it can generate the glutarimide unit represented by the general formula (1).
  • ammonia or a primary amine can be used.
  • the primary amine include aliphatic hydrocarbon group-containing primary amines such as methylamine, ethylamine, n-propylamine, i-propylamine, n-butylamine, i-butylamine, tert-butylamine, and n-hexylamine;
  • Examples include aromatic hydrocarbon group-containing primary amines such as aniline, benzylamine, toluidine, and trichloroaniline, and alicyclic hydrocarbon group-containing primary amines such as cyclohexylamine.
  • urea compounds such as urea, 1,3-dimethylurea, 1,3-diethylurea, 1,3-dipropylurea and the like that generate ammonia or primary amine by heating can also be used.
  • imidizing agents ammonia, methylamine, and cyclohexylamine are preferably used, and methylamine is particularly preferably used from the viewpoint of cost and physical properties.
  • a ring closure accelerator may be added as necessary.
  • the content of glutarimide units in the resulting glutarimide acrylic resin (G) can be adjusted by adjusting the ratio of the imidizing agent added.
  • the method for carrying out the imidation reaction is not particularly limited, and a conventionally known method can be used.
  • the imidization reaction can be advanced by using an extruder or a batch type reaction vessel (pressure vessel).
  • the extruder is not particularly limited, and various types of extruders can be used. For example, a single-screw extruder, a twin-screw extruder, a multi-screw extruder, or the like can be used.
  • twin screw extruder mixing of the raw material polymer and the imidizing agent (in the case of using a ring closure accelerator, an imidizing agent and a ring closure accelerator) can be promoted.
  • twin-screw extruder examples include a non-meshing type same-direction rotating type, a meshing type same-direction rotating type, a non-meshing type different direction rotating type, and a meshing type different direction rotating type.
  • the meshing type co-rotating type is preferable. Since the meshing type co-rotating twin-screw extruder can rotate at a high speed, the mixing of the raw material polymer with the imidizing agent (in the case of using a ring closure accelerator, an imidizing agent and a ring closure accelerator) It can be further promoted.
  • the above-exemplified extruders may be used alone, or a plurality of the extruders may be connected in series.
  • an esterification step of treating with an esterifying agent can be included in producing the glutarimide acrylic resin (G) in addition to the imidization step.
  • the carboxyl group contained in the resin which is by-produced in the imidization step, can be converted into an ester group.
  • the acid value of glutarimide acrylic resin (G) can be adjusted in a desired range.
  • the acid value of the glutarimide acrylic resin (G) is not particularly limited, but is preferably 0.50 mmol / g or less, and more preferably 0.45 mmol / g or less. Although a minimum in particular is not restrict
  • the acid value can be calculated by, for example, a titration method described in JP-A-2005-23272.
  • the esterifying agent is not particularly limited.
  • the amount of the esterifying agent used is not particularly limited, but is 0 to 12 parts by weight with respect to 100 parts by weight of the (meth) acrylic acid ester polymer or the (meth) acrylic acid ester-aromatic vinyl copolymer. It is preferably 0 to 8 parts by weight. If the usage-amount of an esterifying agent is in the said range, the acid value of glutarimide acrylic resin (G) can be adjusted to a suitable range. On the other hand, outside the above range, unreacted esterifying agent may remain in the resin, which may cause foaming or odor generation when molding is performed using the resin.
  • a catalyst can be used in combination.
  • the type of the catalyst is not particularly limited, and examples thereof include aliphatic tertiary amines such as trimethylamine, triethylamine, and tributylamine. Among these, triethylamine is preferable from the viewpoint of cost and reactivity.
  • the esterification step can be advanced by using, for example, an extruder or a batch type reaction vessel, as in the imidization step.
  • This esterification step can be carried out only by heat treatment without using an esterifying agent.
  • the heat treatment can be achieved by kneading and dispersing the molten resin in the extruder.
  • dehydration reaction between the carboxyl groups in the resin by-produced in the imidization step and / or dealcoholization reaction between the carboxyl group in the resin and the alkyl ester group in the resin For example, part or all of the carboxyl group can be converted to an acid anhydride group.
  • a ring closure accelerator catalyst
  • G glutarimide acrylic resin
  • a horizontal biaxial reactor such as Violac manufactured by Sumitomo Heavy Industries, Ltd. or a vertical biaxial agitation tank such as Super Blend
  • a reaction apparatus corresponding to high viscosity can also be used suitably.
  • the structure of the batch type reaction vessel is not particularly limited. Specifically, it has a structure in which the raw material polymer can be melted by heating and stirred, and an imidizing agent (in the case of using a ring closure accelerator, an imidizing agent and a ring closure accelerator) can be added. However, it is preferable to have a structure with good stirring efficiency. According to such a batch-type reaction vessel, it is possible to prevent the polymer viscosity from increasing due to the progress of the reaction and insufficient stirring.
  • a stirred tank max blend manufactured by Sumitomo Heavy Industries, Ltd. may be mentioned.
  • the glutarimide acrylic resin (G) in which the content of the glutarimide unit is controlled to a specific value can be easily produced.
  • the (meth) acrylic resin (F) has a multilayer structure, and an average particle diameter obtained by copolymerizing an acrylic acid alkyl ester and another vinyl monomer copolymerizable therewith is less than 80 nm. It is obtained by polymerizing the monomer mixture (E) in the presence of the acrylic acid alkyl ester-based crosslinked elastic particles (B).
  • acrylic acid alkyl ester-based crosslinked elastic particles (B) examples include 100 parts by weight of a monomer mixture (b) containing 50 to 100% by weight of an acrylic acid alkyl ester and 0 to 50% by weight of a methacrylic acid alkyl ester; Those obtained by copolymerizing 0.5 to 5 parts by weight of a polyfunctional monomer having two or more non-conjugated double bonds per molecule are preferred.
  • the copolymerization may be performed in one stage or in multiple stages. In the latter case, the composition of the monomer mixture added at each stage or the reaction conditions at each stage can be appropriately changed.
  • More preferable monomer mixture (b) contains 60 to 100% by weight of acrylic acid alkyl ester and 0 to 40% by weight of methacrylic acid alkyl ester in 100% by weight of monomer mixture (b).
  • the compounding ratio of the methacrylic acid alkyl ester exceeds 50% by weight in the monomer mixture (b)
  • the bending resistance of the resulting film tends to be lowered.
  • the acrylic acid alkyl ester and methacrylic acid alkyl ester contained in the monomer mixture (b) are not particularly limited, but those having an alkyl group having 1 to 12 carbon atoms in view of polymerization reactivity and cost. preferable. Specific examples thereof include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, methyl acrylate, n-butyl acrylate and the like. These monomers may be used alone or in combination of two or more.
  • the monomer mixture (b) may contain other ethylenically unsaturated monomers copolymerizable with an acrylic acid alkyl ester and a methacrylic acid ester, if necessary.
  • examples of other copolymerizable ethylenically unsaturated monomers include vinyl halides such as vinyl chloride and vinyl bromide, vinyl cyanides such as acrylonitrile and methacrylonitrile, vinyl toluene, vinyl naphthalene, styrene, ⁇ -Aromatic vinyl such as methyl styrene, vinyl esters such as vinyl formate, vinyl acetate, vinyl propionate, vinylidene halides such as vinylidene chloride, vinylidene fluoride, acrylic acid such as acrylic acid, sodium acrylate, calcium acrylate, or Its salts, acrylic acid alkyl ester derivatives such as ⁇ -hydroxyethyl acrylate, dimethylaminoethyl acrylate,
  • Methacrylic acid or a salt thereof methacrylamide, ⁇ -hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, methacrylic acid alkyl ester derivatives such as glycidyl methacrylate, and the like. These monomers may be used alone or in combination of two or more.
  • the acrylic acid alkyl ester-based crosslinked elastic particles (B) in the present invention are composed of a monomer mixture (b) and a polyfunctional monomer having two or more polymerizable nonconjugated double bonds per molecule ( Hereinafter, it is also referred to as “polyfunctional monomer”), and thus exhibits cross-linking elasticity.
  • polyfunctional monomer having two or more polymerizable nonconjugated double bonds per molecule
  • the polyfunctional monomer used in the present invention is not particularly limited.
  • These polyfunctional monomers may be used alone or in combination of two or more.
  • the amount of the polyfunctional monomer used is preferably 0.5 to 5 parts by weight, more preferably 1.0 to 4 parts by weight with respect to 100 parts by weight of the monomer mixture (b). Within these ranges, the film has good folding resistance and resin fluidity, which is preferable.
  • the average particle diameter of the acrylic acid alkyl ester-based crosslinked elastic particles (B) is less than 80 nm.
  • the average particle diameter is not particularly limited, but when it becomes smaller, it becomes difficult to produce the particles (B). Therefore, it is preferably 40 nm or more, more preferably 50 nm or more, and further preferably 60 nm or more.
  • the average particle size of the particles (B) is measured by a light scattering method using a particle size analyzer (MICROTRAC UPA150 manufactured by LEED & NORTHRUP INSTRUMENTS).
  • the (meth) acrylic resin (F) is a monomer mixture (E) mainly composed of a vinyl group-containing compound, particularly a methacrylic acid alkyl ester, in the presence of the acrylic acid alkyl ester-based crosslinked elastic particles (B). ) Is preferred.
  • the monomer mixture (E) preferably contains 60 to 100% by weight of methacrylic acid alkyl ester and 0 to 40% by weight of acrylic acid alkyl ester.
  • the polymerization may be performed in one stage or in multiple stages. In the latter case, the composition of the monomer mixture added at each stage or the reaction conditions at each stage can be appropriately changed.
  • the monomer mixture (E) preferably contains 70 to 100% by weight of methacrylic acid alkyl ester and 0 to 30% by weight of acrylic acid alkyl ester in 100% by weight of the monomer mixture (E). When the blending ratio of the methacrylic acid alkyl ester is less than 60% by weight in the monomer mixture (E), the heat resistance of the resulting film tends to be lowered.
  • the acrylic acid alkyl ester and methacrylic acid alkyl ester contained in the monomer mixture (E) are not particularly limited, but those having an alkyl group having 1 to 12 carbon atoms in view of polymerization reactivity and cost. preferable. Specific examples thereof include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, methyl acrylate, n-butyl acrylate and the like. These monomers may be used alone or in combination of two or more.
  • the monomer mixture (E) is more than 10% by weight of unsaturated carboxylic acid and 35% by weight or less, methacrylic acid alkyl ester 50% by weight to less than 90% by weight, and acrylic acid alkyl ester 0% by weight or more and 40% by weight. Those containing less than% are preferred.
  • the total amount of unsaturated carboxylic acid, methacrylic acid alkyl ester, and acrylic acid alkyl ester shall satisfy 100% by weight.
  • the monomer mixture (E) contains a specific amount of the unsaturated carboxylic acid
  • heat resistance can be imparted while having excellent transparency and flexibility.
  • the amount of the unsaturated carboxylic acid used is 10% by weight or less, the heat resistance of the film tends to decrease.
  • the adhesion between the film and the metal when the metal is deposited on the film surface of the present invention can be enhanced.
  • a film having a metal deposited on the surface can be used as a plating substitute material for automobiles, for example.
  • Unsaturated carboxylic acid is copolymerizable with methacrylic acid alkyl ester, and for example, acrylic acid and methacrylic acid can be used.
  • methacrylic acid alkyl ester and acrylic acid alkyl ester in the monomer mixture (E) those described above can be used.
  • the monomer mixture (E) may contain other ethylenically unsaturated monomers copolymerizable with alkyl acrylates and methacrylates as necessary.
  • examples of other copolymerizable ethylenically unsaturated monomers include vinyl halides such as vinyl chloride and vinyl bromide, vinyl cyanides such as acrylonitrile and methacrylonitrile, vinyl toluene, vinyl naphthalene, styrene, ⁇ -Aromatic vinyl such as methyl styrene, vinyl esters such as vinyl formate, vinyl acetate, vinyl propionate, vinylidene halides such as vinylidene chloride, vinylidene fluoride, acrylic acid such as acrylic acid, sodium acrylate, calcium acrylate, or Its salts, acrylic acid alkyl ester derivatives such as ⁇ -hydroxyethyl acrylate, dimethylaminoethyl acrylate, glycidyl acrylate,
  • Methacrylic acid or a salt thereof methacrylamide, ⁇ -hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, methacrylic acid alkyl ester derivatives such as glycidyl methacrylate, and the like. These monomers may be used alone or in combination of two or more.
  • the content of the acrylic acid alkyl ester-based crosslinked elastic particles (B) in the (meth) acrylic resin (F) is 30% by weight when the entire (meth) acrylic resin (F) is 100% by weight. It is preferably more than 60% by weight and more preferably 35% by weight to 55% by weight. If the content of the acrylic acid alkyl ester-based crosslinked elastic particles (B) is within the above range, the latex at the time of emulsion polymerization of the monomer mixture (E) containing an unsaturated carboxylic acid is preferable.
  • the content of the acrylic acid alkyl ester-based crosslinked elastic particles is preferably 5 to 40% by weight, more preferably 5 to 35% by weight based on 100% by weight of the resin composition. If it is less than 5% by weight, the bending resistance and vacuum formability of the film tend to be lowered, and if it exceeds 40% by weight, the heat resistance tends to be lowered.
  • the ratio of glutarimide acrylic resin (G) is 40% to 90% by weight, and the ratio of (meth) acrylic resin (F) is 60% to 10% by weight.
  • the ratio of glutarimide acrylic resin (G) is preferably 40% by weight to 85% by weight, and the ratio of (meth) acrylic resin (F) is more preferably 60% by weight to 15% by weight.
  • the ratio of the resin (G) is 40% by weight or more, the heat resistance and transparency of the film are improved.
  • flexibility of a film improves because the ratio of resin (G) is 90 weight% or less.
  • the resin composition constituting the acrylic resin film of the present invention includes, for example, lactone cyclized methacrylic resin, (meth) acrylic resin, styrene resin, methyl methacrylate-styrene copolymer, polyethylene terephthalate resin, polybutylene. You may contain other resin, such as a terephthalate resin.
  • the resin composition constituting the acrylic resin film of the present invention includes a light stabilizer, an ultraviolet absorber, a heat stabilizer, a matting agent, a light diffusing agent, a colorant, a dye, a pigment, and an antistatic agent as necessary. Further, known additives such as a heat ray reflective material, a lubricant, a plasticizer, an ultraviolet absorber, a stabilizer, and a filler may be contained.
  • the acrylic resin film of the present invention can be used for various applications by utilizing properties such as heat resistance, transparency and flexibility.
  • Vehicle field glasses Contact lenses, endoscope lenses, medical devices such as medical supplies that require sterilization, road signs, bathroom equipment, flooring, road translucent plates, pair glass lenses, daylighting windows, carports, lighting lenses It can be used in the field of construction and building materials such as lighting covers and sizing for building materials, microwave oven cooking containers (tableware), home appliance housings, toys, sunglasses, and stationery. Moreover, it can be used as an alternative application of a molded product using a transfer foil sheet.
  • the molded product produced by molding the acrylic resin film of the present invention can also be used for various applications.
  • the acrylic resin film of the present invention can be stretched, thereby improving strength and improving film thickness accuracy.
  • a stretched film it may be a uniaxially stretched film that has been uniaxially stretched, or may be a biaxially stretched film that is obtained by combining stretching processes.
  • a melt extrusion method that does not use a solvent is preferable from the viewpoint of transparency of the resulting film, manufacturing cost, and avoidance of solvent use.
  • the acrylic resin film of the present invention may be surface-treated if necessary.
  • surface treatment such as coating, or another film is laminated on the surface of the acrylic resin film of the present invention
  • the acrylic resin of the present invention is used. It is preferable to subject the film to a surface treatment. By performing such surface treatment, the adhesion between the acrylic resin film of the present invention and the coating material or another film to be laminated can be improved.
  • the purpose of the surface treatment for the acrylic resin film of the present invention is not limited to the above.
  • the acrylic resin film of the present invention may be subjected to a surface treatment regardless of its use.
  • Such surface treatment is not particularly limited, and examples thereof include corona treatment, plasma treatment, ultraviolet irradiation, and alkali treatment. Of these, corona treatment is preferred.
  • the thickness of the acrylic resin film of the present invention is not particularly limited, but is preferably 300 ⁇ m or less, more preferably 10 ⁇ m to 300 ⁇ m, further preferably 15 ⁇ m to 200 ⁇ m, and more preferably 20 ⁇ m to 200 ⁇ m. Particularly preferred. If the thickness of the film is within the above range, there is an advantage that it is difficult to be deformed when vacuum forming is performed using the film, and it is difficult to cause breakage at the deep drawing portion, and the optical characteristics are uniform, A film with good transparency can be produced. On the other hand, when the thickness of the film exceeds the above range, cooling of the film after molding becomes nonuniform, and the optical characteristics tend to be nonuniform. Moreover, when the thickness of a film is less than the said range, handling of a film may become difficult.
  • the acrylic resin film of the present invention preferably has a haze value of 1.0% or less, particularly preferably 0.8% or less.
  • the transparency of the film can be made sufficiently high.
  • the product of the present invention can be suitably used in optical applications, decoration applications, interior applications, or vacuum forming applications that require transparency.
  • the acrylic resin film of the present invention preferably has a glass transition temperature of 115 ° C. or higher, more preferably 120 ° C. or higher, and still more preferably 124 ° C. or higher. If the glass transition temperature is within the above range, an acrylic resin film having sufficiently excellent heat resistance can be obtained.
  • the acrylic resin film of the present invention preferably has a tensile elongation at break of 10% or more.
  • the acrylic resin film of the present invention showing a tensile elongation at break within the above range is less susceptible to cracking when the film is cut out with a Thomson blade or a cutter blade, and when the film is wound on a roll, or It is preferable because it is difficult to break when post-processing such as coating, vapor deposition, sputtering, and bonding of a protective film to the surface of the film. .
  • the acrylic resin film of the present invention preferably has a total light transmittance of 85% or more, and more preferably 88% or more. If the total light transmittance is within the above range, the transparency of the film can be made sufficiently high. Thereby, the product of the present invention can be suitably used in optical applications, decoration applications, interior applications, or vacuum forming applications that require transparency.
  • the acrylic resin film of the present invention can be used as an optical film as described above.
  • the optical anisotropy is small.
  • both the in-plane retardation and the absolute value of the thickness direction retardation are small.
  • the in-plane retardation is preferably 10 nm or less, more preferably 6 nm or less, and further preferably 5 nm or less.
  • the absolute value of the thickness direction retardation is preferably 50 nm or less, more preferably 20 nm or less, and further preferably 10 nm or less.
  • the acrylic resin film having such a phase difference can be suitably used as a polarizer protective film included in a polarizing plate of a liquid crystal display device.
  • the acrylic resin film of the present invention is used as a polarizer protective film provided in the polarizing plate of the liquid crystal display device. When used, problems such as a decrease in contrast may occur in the liquid crystal display device.
  • the phase difference is an index value calculated based on birefringence, and the birefringence exhibited by the optical film is mainly due to the orientation birefringence in the main chain orientation and the photoelastic birefringence due to stress. There is.
  • the signs of orientation birefringence and photoelastic birefringence are derived from the chemical structure of the polymer and are unique to each polymer.
  • Oriented birefringence is birefringence that is generally manifested by the orientation of the main chain of a chain polymer (polymer chain), and this orientation of the main chain is, for example, an extrusion process or stretching process during the production of a polymer film, or This occurs in a process involving material flow, such as an injection molding process frequently used in manufacturing optical members of various shapes, and remains fixed to the optical member.
  • photoelastic birefringence is birefringence caused by elastic deformation (strain) of a polymer.
  • elastic deformation strain
  • strain remains in the material due to volume shrinkage that occurs when the polymer is cooled to a temperature lower than or equal to the glass transition temperature of the polymer.
  • the material is elastically deformed by an external force received in a state where the optical member is fixed to a device used at a normal temperature (below the glass transition temperature), which causes photoelastic birefringence.
  • the photoelastic constant is defined as a coefficient ⁇ of ⁇ when the birefringence difference ⁇ n is caused by the stress difference ⁇ as shown in the following equation.
  • a resin having a sufficiently small photoelastic constant based on these orientation birefringence and photoelastic birefringence can be said to be a material suitable for optical applications.
  • the in-plane retardation (Re) and the thickness direction retardation (Rth) can be calculated by the following equations, respectively. In an ideal film that is completely optically isotropic in the three-dimensional direction, both the in-plane retardation Re and the thickness direction retardation Rth are zero.
  • nx, ny, and nz are respectively the direction in which the in-plane refractive index is maximum as the X axis, the direction perpendicular to the X axis as the Y axis, and the thickness direction of the film as the Z axis.
  • D represents the thickness of the film
  • nx-ny represents orientation birefringence.
  • the average particle size of the acrylic acid alkyl ester-based crosslinked elastic particles (B) was measured by a light scattering method using a particle size analyzer (MICROTRAC UPA150 manufactured by LEED & NORTHRUP INSTRUMENTS).
  • the imidation ratio was calculated as follows using IR.
  • the product pellets were dissolved in methylene chloride, and the IR spectrum of the solution was measured at room temperature using a TravelIR manufactured by SensIR Technologies. From the obtained IR spectrum, and the absorption intensity attributable to the ester carbonyl group of 1720cm -1 (Absester), the imidization ratio from the ratio of the absorption intensity attributable to the imide carbonyl group of 1660cm -1 (Absimide) (Im% ( IR)).
  • the “imidation rate” refers to the ratio of the imide carbonyl group in the total carbonyl group.
  • the refractive index of each composition was measured using an Atago Precision Abbe Refractometer after processing each composition into a sheet.
  • Glass-transition temperature The glass transition temperature of each composition was determined by a midpoint method using a differential scanning calorimeter DSC-50 model, Shimadzu Corporation, measured in a nitrogen atmosphere at a heating rate of 20 ° C./min.
  • the bending resistance of the film should be observed at 23 ° C. in an atmosphere of 23 ° C., when the film is cut into 2 cm ⁇ 2 cm and bent at 180 ° in 1 second perpendicular to the MD direction at the center. It was evaluated with. ⁇ : not cracked, ⁇ : cracked, ⁇ : cracked (MIT strength)
  • the in-plane retardation Re of this test piece was measured using an automatic birefringence meter (KOBRA-WR manufactured by Oji Scientific Co., Ltd.) at a temperature of 23 ⁇ 2 ° C. and a humidity of 50 ⁇ 5% at a wavelength of 590 nm and an incident angle of 0 °. It was measured.
  • KOBRA-WR automatic birefringence meter
  • Orientation birefringence A test piece was cut out from the film and measured using an automatic birefringence meter (KOBRA-WR manufactured by Oji Scientific Co., Ltd.) at a temperature of 23 ⁇ 2 ° C. and a humidity of 50 ⁇ 5% at a wavelength of 590 nm.
  • a tandem type reaction extruder in which two extrusion reactors were arranged in series was used.
  • the meshing type co-directional twin-screw extruder having a diameter of 75 mm for both the first and second extruders and L / D (ratio of the length L to the diameter D of the extruder) of 74.
  • the raw material resin was supplied to the raw material supply port of the first extruder using a constant weight feeder (manufactured by Kubota Corporation).
  • the degree of vacuum of each vent in the first extruder and the second extruder was ⁇ 0.095 MPa.
  • the pressure control mechanism in the part connects the first extruder and the second extruder with a pipe having a diameter of 38 mm and a length of 2 m, and connects the resin discharge port of the first extruder and the raw material supply port of the second extruder. Used a constant flow pressure valve.
  • the resin (strand) discharged from the second extruder was cooled by a cooling conveyor and then cut by a pelletizer to form pellets.
  • the discharge port of the first extruder, the first extruder and the first extruder Resin pressure gauges were provided at the center of the connecting parts between the two extruders and at the discharge port of the second extruder.
  • a polymethyl methacrylate resin (Mw: 105,000) was used as a raw material resin, and monomethylamine was used as an imidizing agent to produce an imide resin intermediate 1.
  • the temperature of the highest temperature part of the extruder was 280 ° C.
  • the screw rotation speed was 55 rpm
  • the raw material resin supply amount was 150 kg / hour
  • the addition amount of monomethylamine was 2.0 parts with respect to 100 parts of the raw material resin.
  • the constant flow pressure valve was installed immediately before the raw material supply port of the second extruder, and the monomethylamine press-fitting portion pressure of the first extruder was adjusted to 8 MPa.
  • the imidizing agent and by-products remaining in the rear vent and vacuum vent were devolatilized, and then dimethyl carbonate was added as an esterifying agent to produce an imide resin intermediate 2.
  • each barrel temperature of the extruder was 260 ° C.
  • the screw rotation speed was 55 rpm
  • the addition amount of dimethyl carbonate was 3.2 parts with respect to 100 parts of the raw resin.
  • it was extruded from a strand die, cooled in a water tank, and then pelletized with a pelletizer to obtain a glutarimide acrylic resin (G1).
  • the obtained glutarimide acrylic resin (G1) is a glutarimide acrylic copolymerized with a glutamylimide unit represented by the general formula (1) and a (meth) acrylic acid ester unit represented by the general formula (2).
  • Resin (G) is a glutarimide acrylic copolymerized with a glutamylimide unit represented by the general formula (1) and a (meth) acrylic acid ester unit represented by the general formula (2).
  • the imidization rate, the content of glutarimide units, the acid value, the glass transition temperature, and the refractive index were measured according to the above-described methods.
  • the imidation ratio was 13%
  • the content of glutarimide units was 7% by weight
  • the acid value was 0.4 mmol / g
  • the glass transition temperature was 130 ° C.
  • the refractive index was 1.50.
  • the used extruder is a meshing type co-rotating twin screw extruder having a diameter of 15 mm.
  • the set temperature of each temperature control zone of the extruder was 230 ° C., and the screw rotation speed was 150 rpm.
  • a methyl methacrylate-styrene copolymer was supplied at 2 kg / hr, and the resin was melted and filled with a kneading block, and then 25 parts of monomethylamine (manufactured by Mitsubishi Gas Chemical Co., Ltd.) from the nozzle to 100 parts of the resin. Injected. A reverse flight was placed at the end of the reaction zone to fill the resin.
  • each temperature control zone of the meshing type co-rotating twin screw extruder having a diameter of 15 mm was set to 230 ° C., and the screw rotation speed was set to 150 rpm.
  • the glutarimide acrylic resin (G2 ′) obtained from the hopper was supplied to the extruder at 1 kg / hr, and the resin was melted and filled with a kneading block, and then 0.8 parts per 100 parts of resin from the nozzle.
  • a mixture of dimethyl carbonate and 0.2 part of triethylamine was injected to reduce carboxyl groups in the resin.
  • a reverse flight was placed at the end of the reaction zone to fill the resin.
  • the by-product after reaction and excess dimethyl carbonate were removed by reducing the pressure at the vent port to -0.092 MPa.
  • the resin that emerged as a strand from a die provided at the exit of the extruder was cooled in a water tank and then pelletized with a pelletizer to obtain a glutarimide acrylic resin (G2) having a reduced acid value.
  • the imidization ratio of the glutarimide acrylic resin (G2) is 70%, the content of glutarimide units is 70% by weight, the acid value is 0.2 mmol / g, the glass transition temperature is 140 ° C., and the refractive index is 1.53. there were.
  • (Production Example 4) Production of (meth) acrylic resin F1-2 According to the composition of alkyl ester acrylate cross-linked elastic particles (B) and monomer mixture (E) shown in Table 1, as in Production Example 3. Polymerization was carried out, followed by coagulation, washing with water and drying to obtain a resin powder F1-2 of (meth) acrylic resin (F). However, the average particle diameter of the acrylic acid alkyl ester-based crosslinked elastic particles (B) was adjusted to 40 nm.
  • Production of (meth) acrylic resin F1-4 As in Production Example 3, the composition of the acrylic acid alkyl ester-based crosslinked elastic particles (B) and monomer mixture (E) shown in Table 1 was used. Polymerization was carried out, coagulation, water washing and drying were carried out to obtain a resin powder F1-4 of (meth) acrylic resin (F). The average particle diameter of the acrylic acid alkyl ester-based crosslinked elastic particles (B) was adjusted to 75 nm as in Production Example 3.
  • Example 13 The film obtained in Example 1 was stretched 1.8 times in length and 1.8 times in width at a temperature 5 degrees higher than its glass transition temperature, and various physical properties were measured.
  • Example 14 The film obtained in Example 2 was stretched in the same manner as in Example 13, and various physical properties were measured.
  • Example 15 The film obtained in Example 3 was stretched in the same manner as in Example 13, and various physical properties were measured.
  • Example 16 The film obtained in Example 4 was stretched in the same manner as in Example 13, and various physical properties were measured.
  • Example 17 The film obtained in Example 8 was stretched in the same manner as in Example 13, and various physical properties were measured.
  • Example 18 The film obtained in Example 9 was stretched in the same manner as in Example 13, and various physical properties were measured.
  • Example 19 The film obtained in Example 10 was stretched in the same manner as in Example 13, and various physical properties were measured.
  • Example 20 Glutarimide acrylic resin (G1) shown in Table 5 using a mesh type co-rotating twin screw extruder with a diameter of 30 mm, setting temperature of the temperature adjustment zone of the extruder to 240 ° C., screw rotation speed to 250 rpm, A mixture of (meth) acrylic resin (F) was supplied at a rate of 10 kg / hr. The resin that came out as a strand from a die provided at the exit of the extruder was cooled in a water tank and pelletized with a pelletizer.
  • Comparative Example 11 The film obtained in Comparative Example 1 was stretched in the same manner as in Example 13, and various physical properties were measured.
  • Comparative Example 12 The film obtained in Comparative Example 2 was stretched in the same manner as in Example 13, and various physical properties were measured.
  • Comparative Example 13 The film obtained in Comparative Example 3 was stretched in the same manner as in Example 13, and various physical properties were measured.
  • Comparative Example 14 The film obtained in Comparative Example 8 was stretched in the same manner as in Example 13, and various physical properties were measured.
  • Comparative Example 15 The film obtained in Comparative Example 9 was stretched in the same manner as in Example 13, and various physical properties were measured.
  • Tables 2 to 5 below show the blending ratio of each component and the evaluation results of various physical properties in each Example and Comparative Example.
  • the glass transition temperature is 120 ° C. or higher, the heat resistance is high, and the haze value is low, so the transparency is high, and the flexibility is as shown by good folding resistance.
  • the acrylic resin film was also excellent in terms of properties, had few fish eyes, could be stretched, and was excellent in vacuum moldability.
  • the films of Examples subjected to the stretching treatment have extremely small optical anisotropy in the in-plane direction and the thickness direction.
  • Example 20 has high heat resistance, can be stretched, and is excellent in vacuum formability. Moreover, since the haze value is low, the transparency is high, and the flexibility is excellent as shown by the good bending resistance. Moreover, the film with few fish eyes was obtained, without containing unsaturated carboxylic acid in a monomer mixture (E) by making acrylic acid alkylester type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Polarising Elements (AREA)

Abstract

 優れた耐熱性と機械的強度を有しながら、フィッシュアイが低減され、透明性の高いアクリル系樹脂フィルムを提供する。グルタルイミドアクリル系樹脂(G)と、平均粒子径が80nm未満のアクリル酸アルキルエステル系架橋弾性体粒子の存在下にビニル基含有化合物を重合させて得られる(メタ)アクリル系樹脂(F)と、を含有する樹脂組成物を成形して得られるアクリル系樹脂フィルム。

Description

アクリル系樹脂フィルム
 本発明は、耐熱性、透明性、および柔軟性を有するアクリル系樹脂フィルムに関する。
 アクリル樹脂は、優れた透明性を有することに加え、加工性も容易であることから、フィルム、シート、または一般成形品として広く用いられている。
 なかでも、無水グルタル酸構造またはグルタルイミド構造単位を有するアクリル樹脂は、透明性および耐熱性に優れるとともに、光弾性定数が小さいことから、光学材料としての利用が検討されている。例えば、特許文献1には、グルタルイミドアクリル樹脂からなる光学フィルムが開示されている。また、特許文献2には、グルタルイミドアクリル樹脂からなる位相差板が開示されている。ところが、グルタルイミドアクリル樹脂は、一般に機械的強度が必ずしも十分ではないという問題があった。
 グルタルイミドアクリル樹脂の機械的強度の改善に関しては種々検討がなされている。特に耐衝撃性の改善には、「コア/シェル」型と呼ばれる、ゴム状重合体にビニル系単量体をグラフト重合させて得られる耐衝撃性改良剤が好適に用いられる。ゴム状重合体の具体例としては、ブタジエン系ゴム、アクリル系ゴム、ポリオルガノシロキサン系ゴムなどが挙げられる。しかし、ブタジエン系ゴムを配合すると、樹脂の耐候性が著しく損なわれる問題がある。特許文献3には、ポリオルガノシロキサン系ゴムの添加による耐衝撃性の改善が開示されているが、得られた樹脂の透明性が損なわれるという問題があった。
 特許文献4では、グルタルイミドアクリル樹脂とアクリル系グラフト共重合体を配合することで、耐熱性と機械的強度(特に耐折り曲げ性)に優れた樹脂組成物を得ることが記載されている。
特開平6-256537号公報 特開平6-11615号公報 特開平1-75553号広報 特開2009-203348号公報
 特許文献4記載の方法によると、耐熱性および透明性に優れたフィルムを得ることができるものの、そのフィルムのガラス転移温度は120℃を超えるものではなく、耐熱性をさらに改善することが求められた。また、特許文献4記載の方法により得られる透明なフィルムには、いわゆるフィッシュアイと呼ばれる微細な粒子が混入することがあり、フィルムの品質上問題があった。あわせて、フィルムの透明性が十分でない場合があり、この点での改善も求められた。
 本発明は、上記現状に鑑み、優れた耐熱性と機械的強度を有しながら、フィッシュアイが低減され、透明性の高いアクリル系樹脂フィルムを提供することを目的とする。
 上記課題を解決するため、本発明者らは鋭意検討を行った。その結果、高耐熱性を有するグルタルイミドアクリル系樹脂に対し、平均粒子径が80nm未満のアクリル酸アルキルエステル系架橋弾性粒子を含む(メタ)アクリル系樹脂を配合することで、耐熱性、透明性、および柔軟性が改善され、さらにフィッシュアイの混入が低減されたアクリル系樹脂フィルムが得られることを見出し、本発明に至った。
 すなわち本発明は、以下の成分(G)、及び(F)を含有する樹脂組成物を成形して得られるアクリル系樹脂フィルムに関する。
 下記一般式(1)で表される単位と、下記一般式(2)で表される単位とを有し、ガラス転移温度が120℃以上であるグルタルイミドアクリル系樹脂(G)。
Figure JPOXMLDOC01-appb-C000001
(式中、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、水素、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または、芳香環を含む炭素数5~15の置換基である。)
Figure JPOXMLDOC01-appb-C000002
(式中、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または、芳香環を含む炭素数5~15の置換基である。)
 アクリル酸アルキルエステル、及びこれと共重合可能な他のビニル単量体を共重合させて得られる平均粒子径が80nm未満のアクリル酸アルキルエステル系架橋弾性体粒子の存在下に、ビニル基含有化合物を重合させて得られる(メタ)アクリル系樹脂(F)。
 本発明では、グルタルイミドアクリル系樹脂(G)が下記一般式(3)で表される単位を含まないことが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、水素または炭素数1~8のアルキル基であり、Rは、炭素数6~10のアリール基である。)
 本発明では、前記樹脂組成物100重量%において、前記アクリル酸アルキルエステル系架橋弾性体粒子が5~40重量%含まれることが好ましい。
 本発明では、前記樹脂組成物100重量%において、グルタルイミドアクリル系樹脂(G)40~90重量%と(メタ)アクリル系樹脂(F)60~10重量%を含有することが好ましい。
 本発明では、(メタ)アクリル系樹脂(F)が、
 アクリル酸アルキルエステル50~100重量%、およびメタクリル酸アルキルエステル50~0重量%を含む単量体混合物100重量部と、1分子あたり2個以上の非共役二重結合を有する多官能性単量体0.5~5重量部とを共重合して得られる平均粒子径が80nm未満のアクリル酸アルキルエステル系架橋弾性体粒子(B)の存在下、
 メタクリル酸アルキルエステル60~100重量%、およびアクリル酸アルキルエステル0~40重量を含む単量体混合物(E)を重合することにより得られることが好ましい。
 本発明では、(メタ)アクリル系樹脂(F)が、
 アクリル酸アルキルエステル50~100重量%、およびメタクリル酸アルキルエステル50~0重量%を含む単量体混合物100重量部と、1分子あたり2個以上の非共役二重結合を有する多官能性単量体0.5~5重量部とを共重合して得られる平均粒子径が80nm未満のアクリル酸アルキルエステル系架橋弾性体粒子(B)の存在下、
 不飽和カルボン酸10重量%を超えて35重量%以下、メタクリル酸アルキルエステル50重量%以上90重量%未満、およびアクリル酸アルキルエステル0重量%以上40重量%未満を含む単量体混合物(E)を重合することにより得られ、
 (メタ)アクリル系樹脂(F)中のアクリル酸アルキルエステル系架橋弾性体粒子(B)の含有率が30重量%を超えて60重量%以下であることが好ましい。
 本発明では、前記アクリル系樹脂フィルムは、ガラス転移温度が115℃以上、ヘーズ値が1.0%以下、厚みが300μm以下であることが好ましい。
 また本発明は、アクリル系樹脂フィルムからなる光学フィルムにも関する。
 本発明のアクリル系樹脂フィルムは、優れた耐熱性、透明性、および柔軟性を有しながら、フィッシュアイの混入が低減され外観上良好なものである。しかも、良好な延伸性および真空成形性も兼ね備えている。
 以下、本発明の実施形態を詳細に説明するが、本発明はこれら実施形態に限定されない。
 (グルタルイミドアクリル系樹脂(G))
 グルタルイミドアクリル系樹脂(G)は、ガラス転移温度が120℃以上であり、下記一般式(1)で表される単位と、下記一般式(2)で表される単位とを含むものである。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(1)中、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、水素、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または、芳香環を含む炭素数5~15の置換基である。上記一般式(1)で表される単位を、以下、「グルタルイミド単位」ともいう。
 上記一般式(1)において、好ましくは、RおよびRはそれぞれ独立して水素またはメチル基であり、Rは、水素、メチル基、ブチル基、シクロヘキシル基であり、より好ましくは、Rはメチル基であり、Rは水素であり、Rはメチル基である。
 グルタルイミドアクリル系樹脂(G)は、グルタルイミド単位として、単一の種類のみを含んでいてもよいし、上記一般式(1)におけるR、R、およびRのいずれか又は全てが異なる複数の種類を含んでいてもよい。
 グルタルイミド単位は、下記一般式(2)で表される(メタ)アクリル酸エステル単位をイミド化することにより形成することができる。また、無水マレイン酸等の酸無水物、当該酸無水物と炭素数1~20の直鎖または分岐のアルコールとのハーフエステル、または、α,β-エチレン性不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、クロトン酸、フマル酸、シトラコン酸)をイミド化することによっても、上記グルタルイミド単位を形成することができる。
 グルタルイミドアクリル系樹脂(G)において、グルタルイミド単位の含有量は特に限定されず、例えば、Rの構造等を考慮して適宜決定することができる。しかしながら、グルタルイミド単位の含有量は、グルタルイミドアクリル系樹脂(G)全量のうち1.0重量%以上が好ましく、3.0重量%~90重量%がより好ましく、5.0重量%~60重量%がさらに好ましい。グルタルイミド単位の含有量が上記範囲より少ないと、得られるグルタルイミドアクリル系樹脂(G)の耐熱性が不足したり、透明性が損なわれたりする傾向がある。逆に上記範囲よりも多いと、不必要に耐熱性および溶融粘度が高くなり、成形加工性が悪くなったり、フィルム加工時の機械的強度が極端に低くなったり、透明性が損なわれたりする傾向がある。
 グルタルイミド単位の含有量は以下の方法により算出される。
 H-NMR BRUKER AvanceIII(400MHz)を用いて、樹脂のH-NMR測定を行い、樹脂中のグルタルイミド単位またはエステル単位などの各モノマー単位それぞれの含有量(mol%)を求め、当該含有量(mol%)を、各モノマー単位の分子量を使用して含有量(重量%)に換算した。
 例えば、上記一般式(1)においてRがメチル基であるグルタルイミド単位とメチルメタクリレート単位からなる樹脂の場合、3.5から3.8ppm付近に現れるメタクリル酸メチルのO-CHプロトン由来のピークの面積aと、3.0から3.3ppm付近に現れるグルタルイミドのN-CHプロトン由来のピークの面積bから、以下の計算式によりグルタルイミド単位の含有量(重量%)を求めることができる。
[メチルメタクリレート単位の含有量A(mol%)]=100×a/(a+b)
[グルタルイミド単位の含有量B(mol%)]=100×b/(a+b)
[グルタルイミド単位の含有量(重量%)]=100×(b×(グルタルイミド単位の分子量))/(a×(メチルメタクリレート単位の分子量)+b×(グルタルイミド単位の分子量))
 なお、モノマー単位として上記以外の単位を含む場合においても、樹脂中の各モノマー単位の含有量(mol%)と分子量から、同様にグルタルイミド単位の含有量(重量%)を求めることができる。
 本発明のアクリル系樹脂フィルムを例えば偏光子保護フィルムとして用いる場合、グルタルイミド単位の含有量は、複屈折を抑制しやすいため20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下がさらに好ましい。
 本発明のアクリル系樹脂フィルムを例えば位相差フィルムとして用いる場合、グルタルイミド単位の含有量は、位相差が発現しやすいので50重量%以上が好ましく、70重量%以上がより好ましい。
Figure JPOXMLDOC01-appb-C000005

 上記一般式(2)中、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または芳香環を含む炭素数5~15の置換基である。上記一般式(2)で表される単位を、以下、「(メタ)アクリル酸エステル単位」ともいう。
 上記一般式(2)において、好ましくは、RおよびRはそれぞれ独立して水素またはメチル基であり、Rは水素またはメチル基であり、より好ましくは、Rは水素であり、Rはメチル基であり、Rはメチル基である。
 グルタルイミドアクリル系樹脂(G)は、(メタ)アクリル酸エステル単位として、単一の種類のみを含んでいてもよいし、上記一般式(2)におけるR、RおよびRのいずれか又は全てが異なる複数の種類を含んでいてもよい。
 グルタルイミドアクリル系樹脂(G)は、必要に応じて、下記一般式(3)で表される単位(以下、「芳香族ビニル単位」ともいう)をさらに含んでいてもよい。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(3)中、Rは、水素または炭素数1~8のアルキル基であり、Rは、炭素数6~10のアリール基である。
 上記一般式(3)で表される芳香族ビニル単位としては特に限定されないが、スチレン単位、α-メチルスチレン単位が挙げられ、スチレン単位が好ましい。
 グルタルイミドアクリル系樹脂(G)は、芳香族ビニル単位として、単一の種類のみを含んでいてもよいし、RおよびRのいずれか又は双方が異なる複数の単位を含んでいてもよい。
 グルタルイミドアクリル系樹脂(G)において、芳香族ビニル単位の含有量は特に限定されないが、グルタルイミドアクリル系樹脂(G)全量のうち0~50重量%が好ましく、0~20重量%がより好ましく、0~15重量%が特に好ましい。芳香族ビニル単位の含有量が上記範囲より多いと、グルタルイミドアクリル系樹脂(G)の十分な耐熱性を得ることができない。
 しかし本発明では、耐折り曲げ性および透明性の向上、フィッシュアイの低減、さらに耐溶剤性または耐候性の向上といった観点から、グルタルイミドアクリル系樹脂(G)は芳香族ビニル単位を含まないことが好ましい。
 グルタルイミドアクリル系樹脂(G)には、必要に応じ、グルタルイミド単位、(メタ)アクリル酸エステル単位、および芳香族ビニル単位以外のその他の単位がさらに含まれていてもよい。
 その他の単位としては、例えば、アクリルアミド、メタクリルアミド等のアミド系単位、グルタル無水物単位、アクリロニトリル、メタクリロニトリル等のニトリル系単位、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド系単位等が挙げられる。
 これらのその他の単位は、グルタルイミドアクリル系樹脂(G)中に、ランダム共重合により含まれていてもよいし、グラフト共重合により含まれていてもよい。
 これらのその他の単位は、その単位を構成する単量体を、グルタルイミドアクリル系樹脂(G)、及び/又は、樹脂(G)を製造する際の原料となる樹脂に対し共重合することで導入したものでもよい。また、前記のイミド化反応を行う際に、これらその他の単位が副生して樹脂(G)に含まれることとなったものでもよい。
 グルタルイミドアクリル系樹脂(G)の重量平均分子量は特に限定されないが、1×10~5×10の範囲にあることが好ましい。上記範囲内であれば、成形加工性が低下したり、フィルム加工時の機械的強度が不足したりすることがない。一方、重量平均分子量が上記範囲よりも小さいと、フィルムにした場合の機械的強度が不足する傾向がある。また、上記範囲よりも大きいと、溶融押出時の粘度が高く、成形加工性が低下し、成形品の生産性が低下する傾向がある。
 グルタルイミドアクリル系樹脂(G)のガラス転移温度は、フィルムが良好な耐熱性を発揮するよう、120℃以上である。好ましくは125℃以上である。ガラス転移温度が上記範囲よりも低いと、フィルムが十分な耐熱性を発揮することができない。
 次に、グルタルイミドアクリル系樹脂(G)の製造方法の一例を説明する。
 まず、(メタ)アクリル酸エステルを重合することにより、(メタ)アクリル酸エステル重合体を製造する。グルタルイミドアクリル系樹脂(G)が芳香族ビニル単位を含む場合には、(メタ)アクリル酸エステルと芳香族ビニルとを共重合させ、(メタ)アクリル酸エステル-芳香族ビニル共重合体を製造する。
 この工程において、上記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸シクロヘキシルを用いることが好ましく、メタクリル酸メチルを用いることがより好ましい。
 (メタ)アクリル酸エステルは、単独で用いてもよいし、複数種を組み合わせて用いてもよい。複数種の(メタ)アクリル酸エステルを用いることにより、最終的に得られるグルタルイミドアクリル系樹脂(G)に複数種の(メタ)アクリル酸エステル単位を含ませることができる。
 上記(メタ)アクリル酸エステル重合体または上記(メタ)アクリル酸エステル-芳香族ビニル共重合体の構造は、続くイミド化反応が可能なものであれば、特に限定されない。具体的には、線状ポリマー、ブロックポリマー、コアシェルポリマー、分岐ポリマー、ラダーポリマー、架橋ポリマー等が挙げられる。
 ブロックポリマーの場合、A-B型、A-B-C型、A-B-A型、およびこれら以外のタイプのブロックポリマーのいずれであってもよい。コアシェルポリマーの場合、一層のコアおよび一層のシェルのみからなるものであってもよいし、コアとシェルのいずれか一方又は双方が多層からなるものであってもよい。
 次に、上記(メタ)アクリル酸エステル重合体または上記(メタ)アクリル酸エステル-芳香族ビニル共重合体に、イミド化剤を反応させることで、イミド化反応を行う。これにより、グルタルイミドアクリル系樹脂(G)を製造することができる。
 上記イミド化剤は特に限定されず、上記一般式(1)で表されるグルタルイミド単位を生成できるものであればよい。具体的には、アンモニア又は一級アミンを用いることができる。上記一級アミンとしては、例えば、メチルアミン、エチルアミン、n-プロピルアミン、i-プロピルアミン、n-ブチルアミン、i-ブチルアミン、tert-ブチルアミン、n-ヘキシルアミン等の脂肪族炭化水素基含有一級アミン、アニリン、ベンジルアミン、トルイジン、トリクロロアニリン等の芳香族炭化水素基含有一級アミン、シクロヘキシルアミン等の脂環式炭化水素基含有一級アミンが挙げられる。
 上記イミド化剤としては、尿素、1,3-ジメチル尿素、1,3-ジエチル尿素、1,3-ジプロピル尿素等の、加熱によりアンモニア又は一級アミンを発生する尿素系化合物を用いることもできる。
 上記イミド化剤のうち、コスト、物性の面から、アンモニア、メチルアミン、シクロヘキシルアミンを用いることが好ましく、メチルアミンを用いることが特に好ましい。
 このイミド化の工程においては、上記イミド化剤に加えて、必要に応じて、閉環促進剤を添加してもよい。
 このイミド化の工程では、上記イミド化剤の添加割合を調整することにより、得られるグルタルイミドアクリル系樹脂(G)におけるグルタルイミド単位の含有量を調整することができる。
 上記イミド化反応を実施するための方法は特に限定されず、従来公知の方法を用いることができる。例えば、押出機、又は、バッチ式反応槽(圧力容器)を用いることでイミド化反応を進行させることができる。
 上記押出機としては特に限定されず、各種押出機を使用できるが、例えば、単軸押出機、二軸押出機または多軸押出機等を用いることができる。
 中でも、二軸押出機を用いることが好ましい。二軸押出機によれば、原料ポリマーとイミド化剤(閉環促進剤を用いる場合は、イミド化剤および閉環促進剤)との混合を促進することができる。
 二軸押出機としては、例えば、非噛合い型同方向回転式、噛合い型同方向回転式、非噛合い型異方向回転式、および噛合い型異方向回転式等が挙げられる。中でも、噛合い型同方向回転式が好ましい。噛合い型同方向回転式の二軸押出機は、高速回転可能であるため、原料ポリマーとイミド化剤(閉環促進剤を用いる場合は、イミド化剤および閉環促進剤)との混合を、より一層促進することができる。
 上記例示した押出機は単独で用いてもよいし、複数を直列に連結して用いてもよい。

 グルタルイミドアクリル系樹脂(G)を製造するにあたっては、上記イミド化工程に加えて、エステル化剤で処理するエステル化工程を含むことができる。このエステル化工程によって、イミド化工程にて副生した、樹脂中に含まれるカルボキシル基を、エステル基に変換することができる。これにより、グルタルイミドアクリル系樹脂(G)の酸価を所望の範囲内に調整することができる。
 グルタルイミドアクリル系樹脂(G)の酸価は特に限定されないが、0.50mmol/g以下であることが好ましく、0.45mmol/g以下であることがより好ましい。下限は特に制限されないが、0mmol/g以上が好ましく、0.05mmol/g以上が好ましく、0.10mmol/g以上が特に好ましい。酸価が上記範囲内であれば、耐熱性、機械物性、および成形加工性のバランスに優れたグルタルイミドアクリル系樹脂(G)を得ることができる。一方、酸価が上記範囲より大きいと、フィルム成形のための溶融押出時に樹脂の発泡が起こりやすくなり、成形加工性が低下し、成形品の生産性が低下する傾向がある。なお、酸価は、例えば特開2005-23272号公報に記載の滴定法などにより算出することが可能である。
 上記エステル化剤としては特に限定されず、例えば、ジメチルカーボネート、2,2-ジメトキシプロパン、ジメチルスルホキシド、トリエチルオルトホルメート、トリメチルオルトアセテート、トリメチルオルトホルメート、ジフェニルカーボネート、ジメチルサルフェート、メチルトルエンスルホネート、メチルトリフルオロメチルスルホネート、メチルアセテート、メタノール、エタノール、メチルイソシアネート、p-クロロフェニルイソシアネート、ジメチルカルボジイミド、ジメチル-t-ブチルシリルクロライド、イソプロペニルアセテート、ジメチルウレア、テトラメチルアンモニウムハイドロオキサイド、ジメチルジエトキシシラン、テトラ-N-ブトキシシラン、ジメチル(トリメチルシラン)フォスファイト、トリメチルフォスファイト、トリメチルフォスフェート、トリクレジルフォスフェート、ジアゾメタン、エチレンオキサイド、プロピレンオキサイド、シクロヘキセンオキサイド、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、ベンジルグリシジルエーテルなどが挙げられる。これらの中でも、コスト、反応性などの観点から、ジメチルカーボネート、およびトリメチルオルトアセテートが好ましく、コストの観点から、ジメチルカーボネートが特に好ましい。
 上記エステル化剤の使用量は特に限定されないが、上記(メタ)アクリル酸エステル重合体または上記(メタ)アクリル酸エステル-芳香族ビニル共重合体100重量部に対して0~12重量部であることが好ましく、0~8重量部であることがより好ましい。エステル化剤の使用量が上記範囲内であれば、グルタルイミドアクリル系樹脂(G)の酸価を適切な範囲に調整できる。一方、上記範囲を外れると、未反応のエステル化剤が樹脂中に残存する可能性があり、当該樹脂を使って成形を行った際に、発泡または臭気発生の原因となることがある。
 上記エステル化剤に加え、触媒を併用することもできる。触媒の種類は特に限定されないが、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン等の脂肪族3級アミンが挙げられる。これらの中でもコスト、反応性などの観点からトリエチルアミンが好ましい。
 エステル化工程は、上記イミド化工程と同様、例えば、押出機、又は、バッチ式反応槽を用いることで進行させることができる。
 このエステル化工程は、エステル化剤を使用せずに、加熱処理のみによって実施することもできる。当該加熱処理は、押出機内で溶融樹脂を混練および分散することで達成できすることができる。エステル化工程として加熱処理のみを行なう場合、イミド化工程にて副生した樹脂中のカルボキシル基同士の脱水反応、および/または、樹脂中のカルボキシル基と樹脂中のアルキルエステル基との脱アルコール反応等により、前記カルボキシル基の一部または全部を酸無水物基とすることができる。この時、閉環促進剤(触媒)を使用することも可能である。
 エステル化剤を用いたエステル化工程においても、並行して、加熱処理による酸無水物基化を進行させることが可能である。 イミド化工程およびエステル化工程ともに、使用する押出機には、大気圧以下に減圧可能なベント口を装着することが好ましい。このような機械によれば、未反応のイミド化剤、エステル化剤、メタノール等の副生物、または、モノマー類を除去することができる。
 グルタルイミドアクリル系樹脂(G)の製造には、押出機に代えて、例えば住友重機械(株)製のバイボラックのような横型二軸反応装置や、スーパーブレンドのような竪型二軸攪拌槽などの、高粘度対応の反応装置も好適に用いることができる。
 グルタルイミドアクリル系樹脂(G)をバッチ式反応槽(圧力容器)を用いて製造する場合、そのバッチ式反応槽(圧力容器)の構造は特に限定されない。具体的には、原料ポリマーを加熱により溶融させ、攪拌することができ、イミド化剤(閉環促進剤を用いる場合は、イミド化剤および閉環促進剤)を添加することができる構造を有していればよいが、攪拌効率が良好な構造を有するものであることが好ましい。このようなバッチ式反応槽によれば、反応の進行によりポリマー粘度が上昇し、撹拌が不十分となることを防止することができる。このような構造を有するバッチ式反応槽としては、例えば、住友重機械(株)製の攪拌槽マックスブレンド等が挙げられる。
 以上により、グルタルイミド単位の含有量が特定の数値に制御されたグルタルイミドアクリル系樹脂(G)を容易に製造することができる。
((メタ)アクリル系樹脂(F))
 (メタ)アクリル系樹脂(F)は、複層構造を持つもので、アクリル酸アルキルエステル、及びこれと共重合可能な他のビニル単量体を共重合させて得られる平均粒子径が80nm未満のアクリル酸アルキルエステル系架橋弾性体粒子(B)の存在下に、単量体混合物(E)を重合させて得られる。
 アクリル酸アルキルエステル系架橋弾性体粒子(B)としては、アクリル酸アルキルエステル50~100重量%、およびメタクリル酸アルキルエステル0~50重量%を含む単量体混合物(b)100重量部と、1分子あたり2個以上の非共役二重結合を有する多官能性単量体0.5~5重量部とを共重合して得られるものが好ましい。前記共重合は、1段階で行なってもよいし、多段階で行なうこともできる。後者の場合、各段階で添加する単量体混合物の組成、または、各段階の反応条件を適宜変更することも可能である。より好ましい単量体混合物(b)は、単量体混合物(b)100重量%において、アクリル酸アルキルエステルを60~100重量%、およびメタクリル酸アルキルエステルを0~40重量%含む。単量体混合物(b)においてメタクリル酸アルキルエステルの配合比が50重量%を超えると、得られるフィルムの耐折曲げ性が低下する傾向がある。
 単量体混合物(b)に含有されるアクリル酸アルキルエステル、およびメタクリル酸アルキルエステルとしては特に限定されないが、重合反応性やコストの点から、アルキル基の炭素数が1~12であるものが好ましい。その具体例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、アクリル酸メチル、アクリル酸n-ブチル等が挙げられる。これらの単量体は単独で使用してもよく、2種以上を組合せて使用してもよい。
 単量体混合物(b)は、必要に応じて、アクリル酸アルキルエステル、メタアクリル酸エステルと共重合可能な他のエチレン系不飽和単量体を含んでもよい。共重合可能な他のエチレン系不飽和単量体としては、例えば、塩化ビニル、臭化ビニル等のハロゲン化ビニル、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、ビニルトルエン、ビニルナフタレン、スチレン、α-メチルスチレン等の芳香族ビニル、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、塩化ビニリデン、弗化ビニリデン等のハロゲン化ビニリデン、アクリル酸、アクリル酸ナトリウム、アクリル酸カルシウム等のアクリル酸またはその塩、アクリル酸β-ヒドロキシエチル、アクリル酸ジメチルアミノエチル、アクリル酸グリシジル、アクリルアミド、N-メチロ-ルアクリルアミド等のアクリル酸アルキルエステル誘導体、メタクリル酸、メアクリル酸ナトリウム、メタアクリル酸カルシウム等のメタクリル酸またはその塩、メタクリルアミド、メタクリル酸β-ヒドロキシエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸グリシジル等のメタクリル酸アルキルエステル誘導体等が挙げられる。これらの単量体は単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 本発明におけるアクリル酸アルキルエステル系架橋弾性体粒子(B)は、単量体混合物(b)と、1分子あたり2個以上の重合性の非共役二重結合を有する多官能性単量体(以下、「多官能性単量体」ともいう。)とが共重合されたものであるため、架橋弾性を示すものである。また、アクリル酸アルキルエステル系架橋弾性体粒子(B)の存在下における単量体混合物(E)の重合時に、粒子(B)の製造時に反応せずに残った多官能性単量体の一方の二重結合がグラフト交叉点となって、単量体混合物(E)の一部が、アクリル酸アルキルエステル系架橋弾性体粒子(B)にグラフトされ得る。
 本発明において用いられる多官能性単量体としては特に限定されないが、例えば、アリルメタクリレート、アリルアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレエート、ジビニルアジペート、ジビニルベンゼンエチレングリコールジメタクリレート、ジビニルベンゼンエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、トリエチレングリコールジアクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラメタクリレート、テトラメチロールメタンテトラアクリレート、ジプロピレングリコールジメタクリレート、ジプロピレングリコールジアクリレート等が挙げられる。これらの多官能性単量体は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 多官能性単量体の使用量は、単量体混合物(b)100重量部に対して、0.5~5重量部が好ましく、1.0~4重量部がより好ましい。これら範囲では、フィルムの耐折り曲げ性、および、樹脂の流動性が良好であるため好ましい。
 本発明において、アクリル酸アルキルエステル系架橋弾性体粒子(B)の平均粒子径は80nm未満である。80nm以上であると、透明なフィルムにフィッシュアイと呼ばれる微細な粒子が混入して、フィルムの欠陥となり得る。平均粒子径を80nm未満とすることでこれらの問題を解決することができる。さらに、耐折り曲げ性、耐折り曲げ白化性の観点からも好ましい。平均粒子径の下限は特に限定されないが、小さくなると粒子(B)の製造が困難となるので、40nm以上が好ましく、50nm以上がより好ましく、60nm以上がさらに好ましい。粒子(B)の平均粒子径は、粒子径分析装置(LEED&NORTHRUP INSTRUMENTS社のMICROTRAC UPA150)を用いて、光散乱法により測定される。
 (メタ)アクリル系樹脂(F)は、上記アクリル酸アルキルエステル系架橋弾性体粒子(B)の存在下に、ビニル基含有化合物、特にメタクリル酸アルキルエステルを主成分とする単量体混合物(E)を重合させて得られるものが好ましい。
 単量体混合物(E)としては、メタクリル酸アルキルエステル60~100重量%、およびアクリル酸アルキルエステル0~40重量%を含むものが好ましい。重合は、1段階で行なってもよいし、多段階で行なうこともできる。後者の場合、各段階で添加する単量体混合物の組成、または、各段階の反応条件を適宜変更することも可能である。単量体混合物(E)は、単量体混合物(E)100重量%において、メタクリル酸アルキルエステルを70~100重量%、およびアクリル酸アルキルエステルを0~30重量%含むものがより好ましい。単量体混合物(E)においてメタクリル酸アルキルエステルの配合比が60重量%未満になると、得られるフィルムの耐熱性が低下する傾向がある。
 単量体混合物(E)に含有されるアクリル酸アルキルエステル、およびメタクリル酸アルキルエステルとしては特に限定されないが、重合反応性やコストの点から、アルキル基の炭素数が1~12であるものが好ましい。その具体例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、アクリル酸メチル、アクリル酸n-ブチル等が挙げられる。これらの単量体は単独で使用してもよく、2種以上を組合せて使用してもよい。
 また、単量体混合物(E)は、不飽和カルボン酸10重量%を超えて35重量%以下、メタクリル酸アルキルエステル50重量%以上90重量%未満、およびアクリル酸アルキルエステル0重量%以上40重量%未満を含むものが好ましい。ここで、不飽和カルボン酸、メタクリル酸アルキルエステル、およびアクリル酸アルキルエステルの合計量が100重量%を満たすものとする。
 本発明では、単量体混合物(E)が不飽和カルボン酸を特定量含有することで、優れた透明性、柔軟性を有しながら、耐熱性を付与することができる。不飽和カルボン酸の使用量が10重量%以下であると、フィルムの耐熱性が低下する傾向となる。さらに、不飽和カルボン酸を10重量%を超えて使用することで、本発明のフィルム表面に金属を蒸着させた場合のフィルムと金属の密着性を高めることもできる。表面に金属が蒸着されたフィルムは、例えば自動車等のメッキ代替材として使用することができる。
 不飽和カルボン酸は、メタクリル酸アルキルエステルと共重合可能なものであり、例えば、アクリル酸、メタクリル酸を使用することができる。
 単量体混合物(E)中のメタクリル酸アルキルエステル、およびアクリル酸アルキルエステルとしては上述のものを用いることができる。
 単量体混合物(E)は、必要に応じて、アクリル酸アルキルエステル、メタアクリル酸エステルと共重合可能な他のエチレン系不飽和単量体を含んでもよい。共重合可能な他のエチレン系不飽和単量体としては、例えば、塩化ビニル、臭化ビニル等のハロゲン化ビニル、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、ビニルトルエン、ビニルナフタレン、スチレン、α-メチルスチレン等の芳香族ビニル、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、塩化ビニリデン、弗化ビニリデン等のハロゲン化ビニリデン、アクリル酸、アクリル酸ナトリウム、アクリル酸カルシウム等のアクリル酸またはその塩、アクリル酸β-ヒドロキシエチル、アクリル酸ジメチルアミノエチル、アクリル酸グリシジル、アクリルアミド、N-メチロ-ルアクリルアミド等のアクリル酸アルキルエステル誘導体、メタクリル酸、メアクリル酸ナトリウム、メタアクリル酸カルシウム等のメタクリル酸またはその塩、メタクリルアミド、メタクリル酸β-ヒドロキシエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸グリシジル等のメタクリル酸アルキルエステル誘導体等が挙げられる。これらの単量体は単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 (メタ)アクリル系樹脂(F)中のアクリル酸アルキルエステル系架橋弾性体粒子(B)の含有量は、(メタ)アクリル系樹脂(F)全体を100重量%とした場合、30重量%を超えて60重量%以下であることが好ましく、35重量%~55重量%がより好ましい。アクリル酸アルキルエステル系架橋弾性体粒子(B)の含有量が上記範囲内にあれば、不飽和カルボン酸を含む単量体混合物(E)を乳化重合する時のラテックスが安定となり好ましい。
 本発明において、アクリル酸アルキルエステル系架橋弾性体粒子の含有量は、樹脂組成物100重量%において5~40重量%が好ましく、5~35重量%がより好ましい。5重量%未満では、フィルムの耐折曲げ性、真空成形性が低下する傾向があり、40重量%を超えると耐熱性が低下する傾向がある。
 本発明における樹脂組成物100重量%において、グルタルイミドアクリル系樹脂(G)の割合は40重量%~90重量%、(メタ)アクリル系樹脂(F)の割合は60重量%~10重量%を満たすことが好ましく、グルタルイミドアクリル系樹脂(G)の割合は40重量%~85重量%、(メタ)アクリル系樹脂(F)の割合は60重量%~15重量%を満たすことがより好ましい。樹脂(G)の割合が40重量%以上であることで、フィルムの耐熱性と透明性が向上する。また、樹脂(G)の割合が90重量%以下であることで、フィルムの柔軟性が向上する。
 本発明のアクリル系樹脂フィルムを構成する樹脂組成物は、例えば、ラクトン環化メタクリル系樹脂、(メタ)アクリル系樹脂、スチレン系樹脂、メタクリル酸メチル-スチレン共重合体、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等の、その他の樹脂を含有してもよい。
 本発明のアクリル系樹脂フィルムを構成する樹脂組成物は、必要に応じて、光安定剤、紫外線吸収剤、熱安定剤、艶消し剤、光拡散剤、着色剤、染料、顔料、帯電防止剤、熱線反射材、滑剤、可塑剤、紫外線吸収剤、安定剤、フィラー等の公知の添加剤を含有しても良い。
 本発明のアクリル系樹脂フィルムは、その耐熱性、透明性、柔軟性等の性質を利用して、各種用途に使用することができる。具体的には、自動車内外装、パソコン内外装、携帯内外装、太陽電池内外装、太陽電池バックシート;カメラ、VTR、プロジェクター用の撮影レンズ、ファインダー、フィルター、プリズム、フレネルレンズなどの映像分野、CDプレイヤー、DVDプレイヤー、MDプレイヤーなどにおける光ディスク用ピックアップレンズなどのレンズ分野、CD、DVD、MDなどの光ディスク用の光記録分野、液晶用導光板、拡散板、バックシート、反射シート、偏光子保護フィルム、位相差フィルムなどの液晶ディスプレイ用フィルム、表面保護フィルムなどの情報機器分野、光ファイバ、光スイッチ、光コネクターなどの光通信分野、自動車ヘッドライト、テールランプレンズ、インナーレンズ、計器カバー、サンルーフなどの車両分野、眼鏡、コンタクトレンズ、内視鏡用レンズ、滅菌処理の必要な医療用品などの医療機器分野、道路標識、浴室設備、床材、道路透光板、ペアガラス用レンズ、採光窓、カーポート、照明用レンズ、照明カバー、建材用サイジングなどの建築・建材分野、電子レンジ調理容器(食器)、家電製品のハウジング、玩具、サングラス、文房具などに使用することができる。また、転写箔シートを使用した成形品の代替用途としても使用できる。
 本発明のアクリル系樹脂フィルムを成形することで製造される成形品についても各種用途に使用することができる。具体的には、自動車内外装、パソコン内外装、携帯内外装、太陽電池内外装、太陽電池バックシート;カメラ、VTR、プロジェクター用の撮影レンズ、ファインダー、フィルター、プリズム、フレネルレンズなどの映像分野、CDプレイヤーやDVDプレイヤー、MDプレイヤーなどにおける光ディスク用ピックアップレンズなどのレンズ分野、CD、DVD、MDなどの光ディスク用の光記録分野、タッチパネル、フレキシブル画像表示装置、電子表示ペーパー、液晶用導光板、拡散板、バックシート、反射シート、偏光子保護フィルム、位相差フィルムなどの液晶ディスプレイ用フィルム、表面保護フィルムなどの情報機器分野、光ファイバ、光スイッチ、光コネクターなどの光通信分野、自動車ヘッドライト、テールランプレンズ、インナーレンズ、計器カバー、サンルーフなどの車両分野、眼鏡、コンタクトレンズ、内視鏡用レンズ、滅菌処理の必要な医療用品などの医療機器分野、道路標識、浴室設備、床材、道路透光板、ペアガラス用レンズ、採光窓、カーポート、照明用レンズ、照明カバー、建材用サイジングなどの建築・建材分野、電子レンジ調理容器(食器)、家電製品のハウジング、玩具、サングラス、文房具などに使用することができる。
 本発明のアクリル系樹脂フィルムは、延伸することが可能であり、これにより、強度の向上、膜厚精度の向上を図ることができる。なお、延伸フィルムの場合、一軸延伸した一軸延伸フィルムであってもよいし、さらに延伸工程を組み合わせて行って得られる二軸延伸フィルムであってもよい。
 本発明のアクリル系樹脂フィルムを成形する方法としては、溶剤を使用しない溶融押出法が、得られるフィルムの透明性、製造コスト、および、溶剤使用回避の観点から好ましい。
 本発明のアクリル系樹脂フィルムは、必要に応じて、表面処理が施されたものであってもよい。例えば、本発明のアクリル系樹脂フィルムの表面にコーティング加工等の表面加工を施したり、本発明のアクリル系樹脂フィルムの表面に別のフィルムをラミネートしたりして用いる場合、本発明のアクリル系樹脂フィルムに表面処理を施すことが好ましい。このような表面処理を施すことにより、本発明のアクリル系樹脂フィルムと、コーティング材またはラミネートされる別のフィルムとの間の密着性を向上させることができる。
 なお、本発明のアクリル系樹脂フィルムに対する表面処理の目的は上記に限定されない。本発明のアクリル系樹脂フィルムは、その用途に関係なく、表面処理が施されていてもよい。このような表面処理は特に限定されないが、例えば、コロナ処理、プラズマ処理、紫外線照射、アルカリ処理等を挙げることができる。中でも、コロナ処理が好ましい。
 本発明のアクリル系樹脂フィルムの厚みは特に限定されないが、300μm以下であることが好ましく、10μm~300μmであることがより好ましく、15μm~200μmであることがさらに好ましく、20μm~200μmであることが特に好ましい。フィルムの厚みが上記範囲内であれば、当該フィルムを用いて真空成形を実施する際に変形しにくく、深絞り部での破断が発生しにくいという利点があり、さらに、光学特性が均一で、透明性が良好なフィルムを製造することができる。一方、フィルムの厚みが上記範囲を越えると、成形後のフィルムの冷却が不均一になり、光学的特性が不均一になる傾向がある。また、フィルムの厚みが上記範囲を下回ると、フィルムの取扱が困難になることがある。
 本発明のアクリル系樹脂フィルムは、ヘーズ値が1.0%以下であることが好ましく、0.8%以下が特に好ましい。本発明のアクリル系樹脂フィルムのヘーズ値が上記範囲内であれば、フィルムの透明性を十分に高いものとすることができる。これにより、本発明品は、透明性が要求される光学用途、加飾用途、インテリアー用途、または、真空成形用途で好適に用いることができる。
 本発明のアクリル系樹脂フィルムは、ガラス転移温度が115℃以上であることが好ましく、120℃以上であることがより好ましく、124℃以上であることが更に好ましい。ガラス転移温度が上記範囲内であれば、十分に耐熱性が優れたアクリル系樹脂フィルムを得ることができる。
 本発明のアクリル系樹脂フィルムは、引張破断点伸度が10%以上であることが好ましい。上記範囲内の引張破断点伸度を示す本発明のアクリル系樹脂フィルムは、当該フィルムをトムソン刃またはカッター刃で切り抜く時にクラックが発生しにくいこと、および、当該フィルムをロールに巻き取る時、または、当該フィルムの表面に対しコーティング、蒸着、スパッタリング、保護フィルムの貼り合わせ等の後加工をする時に、破断しにくいことから好ましい。。
 本発明のアクリル系樹脂フィルムは、全光線透過率が85%以上であることが好ましく、88%以上であることがより好ましい。全光線透過率が上記範囲内であれば、フィルムの透明性を十分に高いものとすることができる。これにより、本発明品は、透明性が要求される光学用途、加飾用途、インテリアー用途、または、真空成形用途で好適に用いることができる。
 本発明のアクリル系樹脂フィルムは上述のとおり光学フィルムとして使用することができる。この場合、特に偏光子保護フィルムとして使用する場合、光学異方性が小さいことが好ましい。特に、フィルムの面内方向(長さ方向、幅方向)の光学異方性だけでなく、厚み方向の光学異方性についても小さいことが好ましい。換言すれば、面内位相差、および、厚み方向位相差の絶対値がともに小さいことが好ましい。より具体的には、面内位相差は10nm以下であることが好ましく、6nm以下であることがより好ましく、5nm以下であることがさらに好ましい。また、厚み方向位相差の絶対値は50nm以下であることが好ましく、20nm以下であることがより好ましく、10nm以下であることがさらに好ましい。このような位相差を有するアクリル系樹脂フィルムは、液晶表示装置の偏光板が備える偏光子保護フィルムとして好適に使用することができる。一方、フィルムの面内位相差が10nmを超えたり、厚み方向位相差の絶対値が50nmを超えたりすると、本発明のアクリル系樹脂フィルムを、液晶表示装置の偏光板が備える偏光子保護フィルムとして用いる場合、液晶表示装置においてコントラストが低下するなどの問題が発生する場合がある。
 位相差は複屈折をベースに算出される指標値であり、光学フィルムが示す複屈折には、その主因が主鎖の配向にある「配向複屈折」と、応力に起因する「光弾性複屈折」がある。配向複屈折及び光弾性複屈折の符号は、ポリマーの化学構造に由来し、それぞれのポリマーに固有の性質である。
 配向複屈折は、一般に鎖状のポリマー(ポリマー鎖)の主鎖が配向することにより発現する複屈折であり、この主鎖の配向は、例えばポリマーフィルム製造時の押出成形や延伸のプロセス、あるいは、各種形状の光学部材の製造時に多用されている射出成形のプロセスなど、材料の流動を伴うプロセスで生じ、それが光学部材に固定されて残る。
 一方、光弾性複屈折は、ポリマーの弾性的な変形(歪み)に伴って引き起こされる複屈折である。ポリマーを用いた光学部材においては、例えばそのポリマーのガラス転移温度付近からそれ以下の温度に冷却された際に生じる体積収縮により、弾性的な変形(歪み)が材料中に生じて残存し、それが光弾性複屈折の原因となる。また、例えば光学部材が通常温度(ガラス転移温度以下)で使用される機器に固定した状態で受ける外力によっても、材料は弾性的に変形し、それが光弾性複屈折を引き起こす。光弾性定数は、以下式のとおり応力差Δσによって複屈折差Δnが生じた場合のΔσの係数γとして定義される。
 Δn=γΔσ
 これら配向複屈折、および光弾性複屈折に基づく光弾性定数が十分に小さい樹脂が、光学用途として適した材料といえる。
 面内位相差(Re)および厚み方向位相差(Rth)は、それぞれ、以下の式により算出することができる。3次元方向について完全光学等方である理想的なフィルムでは、面内位相差Re、厚み方向位相差Rthがともに0となる。
 Re=(nx-ny)×d
 Rth=((nx+ny)/2-nz)×d
 上記式中において、nx、ny、およびnzは、それぞれ、面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸とし、それぞれの軸方向の屈折率を表す。また、dはフィルムの厚さを表し、nx-nyは配向複屈折を表す。
 以下、本発明を実施例にて具体的に説明するが、本発明はこれら実施例に限定されるものではない。以下で「部」および「%」は、特記ない限り、「重量部」および「重量%」を意味する。
 (平均粒子径)
 アクリル酸アルキルエステル系架橋弾性体粒子(B)の平均粒子径は、粒子径分析装置(LEED&NORTHRUP INSTRUMENTS社のMICROTRAC UPA150)を用いて、光散乱法により体積平均粒子径を測定した。
 (イミド化率)
 イミド化率の算出は、IRを用いて下記の通り行った。生成物のペレットを塩化メチレンに溶解し、その溶液について、SensIR Tecnologies社製TravelIRを用いて、室温にてIRスペクトルを測定した。得られたIRスペクトルより、1720cm-1のエステルカルボニル基に帰属する吸収強度(Absester)と、1660cm-1のイミドカルボニル基に帰属する吸収強度(Absimide)との比からイミド化率(Im%(IR))を求めた。ここで、「イミド化率」とは、全カルボニル基中のイミドカルボニル基の占める割合をいう。
 (グルタルイミド単位の含有量)
 H-NMR BRUKER AvanceIII(400MHz)を用いて、樹脂のH-NMR測定を行い、樹脂中のグルタルイミド単位またはエステル単位などの各モノマー単位それぞれの含有量(mol%)を求め、当該含有量(mol%)を、各モノマー単位の分子量を使用して含有量(重量%)に換算した。
 (酸価)
 特開2005-23272号公報に記載の滴定法により算出した。
 (屈折率)
 各組成物の屈折率は、それぞれの組成物をシート状に加工し、(株)アタゴ  精密アッベ屈折計を用いて測定した。
 (ガラス転移温度)
 各組成物のガラス転移温度は、(株)島津製作所  示差走査熱量計DSC-50型を用い、窒素雰囲気下、昇温速度20℃/minで測定し、中点法により決定した。
 (ヘーズ値)
 フィルムのヘーズ値は、(株)日本電色工業  NDH-300Aを用い、JIS  K7105に記載の方法にて測定した。
 (耐折り曲げ性)
 フィルムの耐折り曲げ性は、23℃の雰囲気下で、フィルムを2cm×2cmに切って、中央部で、MD方向に垂直に1秒で180度に折り曲げた時のフィルムの破壊状態を観察することで評価した。
○:割れない、△:亀裂有り、×:割れる
 (MIT強度)
 下記条件にて二軸延伸フィルムを作成し、延伸可能なサンプルに関して、(株)東洋精機製作所 MIT耐折疲労試験機を用い、JIS C5016の方法に従ってMIT強度を測定した。測定条件は、R=0.38、荷重100gとした。
 (延伸性)
 フィルムの延伸性は、(株)井元製作所 二軸延伸装置 11A7を用い、評価サンプルのガラス転移温度から5℃高い温度雰囲気下で縦1.8倍、横1.8倍にてフィルムの延伸を試みることで評価した。
○:延伸可能、×:延伸不可能
 (膜厚)

 延伸フィルムの膜厚は、デジマティックインジケーター(株式会社ミツトヨ製)を用いて測定した。
 (面内位相差Reおよび厚み方向位相差Rth〕
 フィルムから、40mm×40mmの試験片を切り出した。この試験片の面内位相差Reを、自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて、温度23±2℃、湿度50±5%において、波長590nm、入射角0゜で測定した。
 デジマティックインジケーター(株式会社ミツトヨ製)を用いて測定した試験片の厚みd、アッベ屈折計(株式会社アタゴ製 3T)で測定した屈折率n、自動複屈折計で測定した波長590nmでの面内位相差Reおよび40°傾斜方向の位相差値から3次元屈折率nx、ny、nzを求め、厚み方向位相差 Rth=((nx+ny)/2-nz)×d を計算した。
 (真空成形性)
 フィルム表面温度が150℃になった時点で、長さ10cm、幅10cm、高さ5cmの金型でフィルムの真空成形を実施した。同じ操作を5回繰り返し、得られた各成形品において割れ発生の有無を確認した。
○:5回全て割れ無し、△:1回割れ有り、×:5回全て割れ有り
 (フィッシュアイ)
 A4サイズのフィルムサンプルの表面において、大蔵省発行のぎょう雑物検査表を使用し、0.5平方ミリメートル以上の異物(フィッシュアイ)をカウントした。
○:5個以下、△:6個~10個、×:11個以上
 (配向複屈折)
 フィルムから試験片を切り出し、自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて、温度23±2℃、湿度50±5%において、波長590nmにて測定した。
 (光弾性定数)
 フィルムからTD方向に15mm×70mmの短冊状に試験片を切断した。自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて、温度23±2℃、湿度50±5%において、波長590nmにて測定した。測定は、フィルムの一端を固定し、他端は無荷重から4kgfまで0.5kgfずつ荷重をかけた状態で複屈折率を測定し、得られた結果から、横軸に応力、縦軸に複屈折をプロットし、最小自乗法により求め得られた直線の傾きを光弾性定数とした。
 (製造例1)グルタルイミドアクリル系樹脂(G1)の合成
 原料樹脂としてポリメタクリル酸メチル、イミド化剤としてモノメチルアミンを用いて、グルタルイミドアクリル系樹脂(G)を製造した。
 この製造においては、押出反応機を2台直列に並べたタンデム型反応押出機を用いた。タンデム型反応押出機に関しては、第1押出機、第2押出機共に直径が75mm、L/D(押出機の長さLと直径Dの比)が74の噛合い型同方向二軸押出機を使用し、定重量フィーダー(クボタ(株)製)を用いて、第1押出機の原料供給口に原料樹脂を供給した。第1押出機、第2押出機における各ベントの減圧度は-0.095MPaとした。更に、直径38mm、長さ2mの配管で第1押出機と第2押出機を接続し、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品内圧力制御機構には定流圧力弁を用いた。第2押出機から吐出された樹脂(ストランド)は、冷却コンベアで冷却した後、ペレタイザでカッティングしペレットとした。ここで、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品内圧力調整、又は押出変動を見極めるために、第1押出機の吐出口、第1押出機と第2押出機間の接続部品の中央部、および、第2押出機の吐出口に樹脂圧力計を設けた。
 第1押出機において、原料樹脂としてポリメタクリル酸メチル樹脂(Mw:10.5万)を使用し、イミド化剤として、モノメチルアミンを用いてイミド樹脂中間体1を製造した。この際、押出機の最高温部の温度は280℃、スクリュー回転数は55rpm、原料樹脂供給量は150kg/時間、モノメチルアミンの添加量は原料樹脂100部に対して2.0部とした。定流圧力弁は第2押出機の原料供給口直前に設置し、第1押出機のモノメチルアミン圧入部圧力を8MPaになるように調整した。
 第2押出機において、リアベント及び真空ベントで残存しているイミド化剤及び副生成物を脱揮したのち、エステル化剤として炭酸ジメチルを添加しイミド樹脂中間体2を製造した。この際、押出機の各バレル温度は260℃、スクリュー回転数は55rpm、炭酸ジメチルの添加量は原料樹脂100部に対して3.2部とした。更に、ベントでエステル化剤を除去した後、ストランドダイから押し出し、水槽で冷却した後、ペレタイザでペレット化することで、グルタルイミドアクリル系樹脂(G1)を得た。
 得られたグルタルイミドアクリル系樹脂(G1)は、一般式(1)で表されるグルタミルイミド単位と、一般式(2)で表される(メタ)アクリル酸エステル単位が共重合したグルタルイミドアクリル系樹脂(G)である。
 グルタルイミドアクリル系樹脂(G1)について、上記の方法に従って、イミド化率、グルタルイミド単位の含有量、酸価、ガラス転移温度、および、屈折率を測定した。その結果、イミド化率は13%、グルタルイミド単位の含有量は7重量%、酸価は0.4mmol/g、ガラス転移温度は130℃、屈折率は1.50であった。
 (製造例2)グルタルイミドアクリル系樹脂(G2)の合成
 原料樹脂としてメタクリル酸メチル-スチレン共重合体(スチレン量11モル%)、イミド化剤としてモノメチルアミンを用いて、グルタルイミドアクリル系樹脂(G)を製造した。
 使用した押出機は口径15mmの噛合い型同方向回転式二軸押出機である。押出機の各温調ゾーンの設定温度は230℃、スクリュー回転数は150rpmとした。メタクリル酸メチル-スチレン共重合体を2kg/hrで供給し、ニーディングブロックによって樹脂を溶融、充満させた後、ノズルから樹脂100部に対して25部のモノメチルアミン(三菱ガス化学株式会社製)を注入した。反応ゾーンの末端にはリバースフライトを入れて樹脂を充満させた。反応後の副生成物および過剰のモノメチルアミンをベント口の圧力を-0.092MPaに減圧して除去した。押出機の出口に設けられたダイスからストランドとして出てきた樹脂を、水槽で冷却した後、ペレタイザでペレット化することにより、グルタルイミドアクリル系樹脂(G2′)を得た。
 次いで、口径15mmの噛合い型同方向回転式二軸押出機の各温調ゾーンの設定温度を230℃とし、スクリュー回転数を150rpmとした。ホッパーから得られたグルタルイミドアクリル系樹脂(G2′)を当該押出機に1kg/hrで供給し、ニーディングブロックによって樹脂を溶融、充満させた後、ノズルから樹脂100部に対して0.8部の炭酸ジメチルと0.2部のトリエチルアミンの混合液を注入し、樹脂中のカルボキシル基の低減を行った。反応ゾーンの末端にはリバースフライトを入れて樹脂を充満させた。反応後の副生成物および過剰の炭酸ジメチルを、ベント口の圧力を-0.092MPaに減圧することで除去した。押出機の出口に設けられたダイスからストランドとして出てきた樹脂を、水槽で冷却した後、ペレタイザでペレット化し、酸価が低減されたグルタルイミドアクリル系樹脂(G2)を得た。
 グルタルイミドアクリル系樹脂(G2)のイミド化率は70%、グルタルイミド単位の含有量は70重量%、酸価は0.2mmol/g、ガラス転移温度は140℃、屈折率は1.53であった。
 (製造例3)(メタ)アクリル系樹脂F1-1の製造
 攪拌機付き8L重合装置に、以下の物質を仕込んだ。
脱イオン水                   200部
ジオクチルスルフォコハク酸ナトリウム     0.25部
ソジウムホルムアルデヒドスルフォキシレート  0.15部
エチレンジアミン四酢酸-2-ナトリウム   0.005部
硫酸第一鉄                0.0015部
 重合機内を窒素ガスで充分に置換し実質的に酸素のない状態とした後、内温を60℃にし、表1に示したアクリル酸アルキルエステル系架橋弾性体粒子(B)の単量体混合物45部(アクリル酸ブチル90%、メタクリル酸メチル10重量%)とメタクリル酸アリル3.1部とキュメンハイドロパーオキサイド0.2部とを、10部/時間の割合で連続的に添加した。添加終了後、さらに0.5時間重合を継続し、アクリル酸アルキルエステル系架橋弾性体粒子(B)を得た。重合転化率は99.5%であり、粒子(B)の平均粒子径は75nmであった。
 その後、ジオクチルスルフォコハク酸ナトリウム0.3部を仕込んだ後、内温を60℃にし、表1に示した単量体混合物(E)55部とt-ドデシルメルカプタン0.2部とキュメンハイドロパーオキサイド0.2部とを、10部/時間の割合で連続的に添加した。さらに1時間重合を継続し、ラテックスを得た。重合転化率は99.0%であった。得られたラテックスを硫酸マグネシウム水溶液で塩析、凝固し、水洗、乾燥して(メタ)アクリル系樹脂(F)の樹脂粉末F1-1を得た。
 (製造例4)(メタ)アクリル系樹脂F1-2の製造
 表1に示したアクリル酸アルキルエステル系架橋弾性体粒子(B)および単量体混合物(E)の組成により製造例3と同様に重合を行い、凝固、水洗、乾燥をして(メタ)アクリル系樹脂(F)の樹脂粉末F1-2を得た。ただし、アクリル酸アルキルエステル系架橋弾性体粒子(B)の平均粒子径は40nmに調整した。
 (製造例5)(メタ)アクリル系樹脂F1-4の製造
 表1に示したアクリル酸アルキルエステル系架橋弾性体粒子(B)および単量体混合物(E)の組成により製造例3と同様に重合を行い、凝固、水洗、乾燥をして(メタ)アクリル系樹脂(F)の樹脂粉末F1-4を得た。アクリル酸アルキルエステル系架橋弾性体粒子(B)の平均粒子径は製造例3と同様に75nmに調整した。
 (比較製造例1)(メタ)アクリル系樹脂F1-3の製造
 表1に示したアクリル酸アルキルエステル系架橋弾性体粒子(B)および単量体混合物(E)の組成により製造例3と同様に重合を行い、凝固、水洗、乾燥をして(メタ)アクリル系樹脂(F)の樹脂粉末F1-3を得た。ただし、アクリル酸アルキルエステル系架橋弾性体粒子(B)の平均粒子径は120nmに調整した。
 (比較製造例2)(メタ)アクリル系樹脂F1-5の製造
 表1に示したアクリル酸アルキルエステル系架橋弾性体粒子(B)および単量体混合物(E)の組成により製造例3と同様に重合を行い、凝固、水洗、乾燥をして(メタ)アクリル系樹脂(F)の樹脂粉末F1-5を得た。ただし、アクリル酸アルキルエステル系架橋弾性体粒子(B)の平均粒子径は120nmに調整した。
Figure JPOXMLDOC01-appb-T000001
 (実施例1~12)
 口径30mmの噛合い型同方向回転式二軸押出機を用い、押出機の温度調整ゾーンの設定温度を240℃、スクリュー回転数を250rpmとし、表2に示すグルタルイミドアクリル系樹脂(G1)または(G2)、および(メタ)アクリル系樹脂(F)の混合物を、10kg/hrの割合で供給した。押出機出口に設けられたダイスからストランドとして出てきた樹脂を水槽で冷却し、ペレタイザでペレット化した。
 得られたペレットを、出口にTダイを接続した溶融押出機を用い、押出機の温度調整ゾーンの設定温度を280℃、スクリュー回転数を100rpmとし、ペレットを10kg/hrの割合で供給し、溶融押出することにより、表2に示す膜厚のフィルムを得た。これらフィルムについて各種物性を評価した。
 (比較例1~10)
 表3に示すグルタルイミドアクリル系樹脂(G1)もしくは(G2)またはアクリル系樹脂(住友化学工業社製、ポリメチルメタクリレート、商品名:スミペックスLG)、および、(メタ)アクリル系樹脂(F)の混合物から、実施例1~12と同様の手順で、表3に示す膜厚のフィルムを得た。これらフィルムについて各種物性を評価した。
 (実施例13)
 実施例1で得られたフィルムをそのガラス転移温度から5度高い温度で、縦1.8倍、横1.8倍に延伸し、各種物性を測定した。
 (実施例14)
 実施例2で得られたフィルムを実施例13と同様に延伸し、各種物性を測定した。
 (実施例15)
 実施例3で得られたフィルムを実施例13と同様に延伸し、各種物性を測定した。
 (実施例16)
 実施例4で得られたフィルムを実施例13と同様に延伸し、各種物性を測定した。
 (実施例17)
 実施例8で得られたフィルムを実施例13と同様に延伸し、各種物性を測定した。
 (実施例18)
 実施例9で得られたフィルムを実施例13と同様に延伸し、各種物性を測定した。
 (実施例19)
 実施例10で得られたフィルムを実施例13と同様に延伸し、各種物性を測定した。
 (実施例20)
 口径30mmの噛合い型同方向回転式二軸押出機を用い、押出機の温度調整ゾーンの設定温度を240℃、スクリュー回転数を250rpmとし、表5に示すグルタルイミドアクリル系樹脂(G1)および(メタ)アクリル系樹脂(F)の混合物を、10kg/hrの割合で供給した。押出機出口に設けられたダイスからストランドとして出てきた樹脂を水槽で冷却し、ペレタイザでペレット化した。
 得られたペレットを、出口にTダイを接続した溶融押出機を用い、押出機の温度調整ゾーンの設定温度を280℃、スクリュー回転数を100rpmとし、ペレットを10kg/hrの割合で供給し、溶融押出することにより、表5に示す膜厚のフィルムを得た。これらフィルムについて各種物性を評価した。
 (比較例11)
 比較例1で得られたフィルムを実施例13と同様に延伸し、各種物性を測定した。
 (比較例12)
 比較例2で得られたフィルムを実施例13と同様に延伸し、各種物性を測定した。
 (比較例13)
 比較例3で得られたフィルムを実施例13と同様に延伸し、各種物性を測定した。
 (比較例14)
 比較例8で得られたフィルムを実施例13と同様に延伸し、各種物性を測定した。
 (比較例15)
 比較例9で得られたフィルムを実施例13と同様に延伸し、各種物性を測定した。
 (比較例16~20)
 表5に示すグルタルイミドアクリル系樹脂(G1)またはアクリル系樹脂(住友化学工業社製、ポリメチルメタクリレート、商品名:スミペックスEX)、および、(メタ)アクリル系樹脂(F)の混合物から、実施例1~12と同様の手順で、表5に示す膜厚のフィルムを得た。これらフィルムについて各種物性を評価した。
 各実施例および比較例における各成分の配合比および各種物性の評価結果を以下の表2~5に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2~4で示すように、各実施例では、ガラス転移温度が120℃以上と耐熱性が高く、しかもヘーズ値が低いことから透明性が高く、良好な耐折り曲げ性で示されるように柔軟性の点でも優れており、フィッシュアイが少なく、延伸が可能で、真空成形性にも優れたアクリル系樹脂フィルムが得られた。以上に加えて、表4から、延伸処理が施された実施例のフィルムは、面内方向および厚み方向で光学異方性が極めて小さいことが分かる。
Figure JPOXMLDOC01-appb-T000005
 表5で示すように、実施例20は、耐熱性が高く、延伸が可能で、真空成形性にも優れている。しかもヘーズ値が低いことから透明性が高く、良好な耐折り曲げ性で示されるように柔軟性の点でも優れている。また、アクリル酸アルキルエステル系架橋弾性体粒子(B)を80nm未満にすることにより、単量体混合物(E)に不飽和カルボン酸を含有することなくフィッシュアイの少ないフィルムが得られた。さらに以上に加えて、配向複屈折が極めて小さいフィルムが得られ光学用途に適することが分かる。

Claims (8)

  1.  以下の成分(G)、及び(F)を含有する樹脂組成物を成形して得られるアクリル系樹脂フィルム。
     下記一般式(1)で表される単位と、下記一般式(2)で表される単位とを有し、ガラス転移温度が120℃以上であるグルタルイミドアクリル系樹脂(G)。
    Figure JPOXMLDOC01-appb-C000007

    (式中、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、水素、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または、芳香環を含む炭素数5~15の置換基である。)
    Figure JPOXMLDOC01-appb-C000008

    (式中、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または、芳香環を含む炭素数5~15の置換基である。)
     アクリル酸アルキルエステル、及びこれと共重合可能な他のビニル単量体を共重合させて得られる平均粒子径が80nm未満のアクリル酸アルキルエステル系架橋弾性体粒子の存在下に、ビニル基含有化合物を重合させて得られる(メタ)アクリル系樹脂(F)。
  2.  グルタルイミドアクリル系樹脂(G)が下記一般式(3)で表される単位を含まない、請求項1記載のアクリル系樹脂フィルム。
    Figure JPOXMLDOC01-appb-C000009

    (式中、Rは、水素または炭素数1~8のアルキル基であり、Rは、炭素数6~10のアリール基である。)
  3. 前記樹脂組成物100重量%において、前記アクリル酸アルキルエステル系架橋弾性体粒子が5~40重量%含まれる、請求項1又は2に記載のアクリル系樹脂フィルム。
  4.  前記樹脂組成物100重量%において、グルタルイミドアクリル系樹脂(G)40~90重量%と(メタ)アクリル系樹脂(F)60~10重量%を含有する、請求項1~3のいずれかに記載のアクリル系樹脂フィルム。
  5.  (メタ)アクリル系樹脂(F)が、
     アクリル酸アルキルエステル50~100重量%、およびメタクリル酸アルキルエステル50~0重量%を含む単量体混合物100重量部と、1分子あたり2個以上の非共役二重結合を有する多官能性単量体0.5~5重量部とを共重合して得られる平均粒子径が80nm未満のアクリル酸アルキルエステル系架橋弾性体粒子(B)の存在下、
     メタクリル酸アルキルエステル60~100重量%、およびアクリル酸アルキルエステル0~40重量を含む単量体混合物(E)を重合することにより得られる、請求項1~4のいずれかに記載のアクリル系樹脂フィルム。
  6.  (メタ)アクリル系樹脂(F)が、
     アクリル酸アルキルエステル50~100重量%、およびメタクリル酸アルキルエステル50~0重量%を含む単量体混合物100重量部と、1分子あたり2個以上の非共役二重結合を有する多官能性単量体0.5~5重量部とを共重合して得られる平均粒子径が80nm未満のアクリル酸アルキルエステル系架橋弾性体粒子(B)の存在下、
     不飽和カルボン酸10重量%を超えて35重量%以下、メタクリル酸アルキルエステル50重量%以上90重量%未満、およびアクリル酸アルキルエステル0重量%以上40重量%未満を含む単量体混合物(E)を重合することにより得られ、
     (メタ)アクリル系樹脂(F)中のアクリル酸アルキルエステル系架橋弾性体粒子(B)の含有率が30重量%を超えて60重量%以下である、請求項1~4のいずれかに記載のアクリル系樹脂フィルム。
  7.  前記アクリル系樹脂フィルムは、ガラス転移温度が115℃以上、ヘーズ値が1.0%以下、厚みが300μm以下である、請求項1~6のいずれかに記載のアクリル系樹脂フィルム。
  8.  請求項1~7のいずれかに記載のアクリル系樹脂フィルムからなる光学フィルム。
PCT/JP2012/001120 2011-02-21 2012-02-20 アクリル系樹脂フィルム WO2012114718A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280009165.4A CN103380175B (zh) 2011-02-21 2012-02-20 丙烯酸类树脂膜
EP12749188.4A EP2690139B1 (en) 2011-02-21 2012-02-20 Acrylic resin film
US13/985,781 US9273208B2 (en) 2011-02-21 2012-02-20 Acrylic resin film
KR1020137014810A KR101883688B1 (ko) 2011-02-21 2012-02-20 아크릴계 수지 필름
JP2013500885A JP5789292B2 (ja) 2011-02-21 2012-02-20 アクリル系樹脂フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-034380 2011-02-21
JP2011034380 2011-02-21

Publications (1)

Publication Number Publication Date
WO2012114718A1 true WO2012114718A1 (ja) 2012-08-30

Family

ID=46720512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001120 WO2012114718A1 (ja) 2011-02-21 2012-02-20 アクリル系樹脂フィルム

Country Status (6)

Country Link
US (1) US9273208B2 (ja)
EP (1) EP2690139B1 (ja)
JP (1) JP5789292B2 (ja)
KR (1) KR101883688B1 (ja)
CN (1) CN103380175B (ja)
WO (1) WO2012114718A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002491A1 (ja) * 2012-06-26 2014-01-03 株式会社カネカ 非複屈折性樹脂材料、およびフィルム
JP2014070187A (ja) * 2012-09-28 2014-04-21 Kaneka Corp 異物の少ないアクリル系樹脂の製造方法
JP2014225015A (ja) * 2013-04-26 2014-12-04 富士フイルム株式会社 光学フィルム、偏光板、及び液晶表示装置
WO2015030207A1 (ja) * 2013-08-30 2015-03-05 株式会社クラレ 変性アクリル系ブロック共重合体ならびにそれの製造方法および用途
WO2015030118A1 (ja) * 2013-08-30 2015-03-05 株式会社日本触媒 (メタ)アクリル系樹脂
WO2015098980A1 (ja) * 2013-12-27 2015-07-02 株式会社カネカ 光学用熱可塑性樹脂、および成形体
JP2015123618A (ja) * 2013-12-25 2015-07-06 株式会社カネカ 光学フィルムの製造方法
JP2016071218A (ja) * 2014-09-30 2016-05-09 株式会社カネカ 光学フィルム
JP2016160362A (ja) * 2015-03-03 2016-09-05 株式会社クラレ 湿気硬化型樹脂組成物
JP2016222771A (ja) * 2015-05-28 2016-12-28 株式会社クラレ (メタ)アクリル系重合体の製造方法
JPWO2015098775A1 (ja) * 2013-12-25 2017-03-23 株式会社カネカ 光学用樹脂組成物、および成形体
JPWO2015098096A1 (ja) * 2013-12-25 2017-03-23 株式会社カネカ フィルムの製造方法、熱可塑性樹脂組成物、成形体およびフィルム
DE102017112730A1 (de) 2016-08-30 2018-03-01 Asahi Kasei Kabushiki Kaisha Methacrylharzzusammensetzung und optisches Bauteil
WO2020013203A1 (ja) 2018-07-13 2020-01-16 旭化成株式会社 メタクリル系樹脂、成形体、光学部品又は自動車部品
WO2020080267A1 (ja) 2018-10-16 2020-04-23 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂の製造方法、メタクリル系樹脂組成物、成形体、光学部品及び自動車部品
JP2020147653A (ja) * 2019-03-12 2020-09-17 株式会社カネカ フィルム用アクリル樹脂組成物、及びアクリル樹脂フィルム
WO2022196644A1 (ja) * 2021-03-16 2022-09-22 株式会社カネカ 光学部材およびその製造方法
WO2024128122A1 (ja) * 2022-12-13 2024-06-20 株式会社クラレ 延伸フィルムとその製造方法、光学フィルム、および加飾フィルム

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232134B2 (en) 2008-09-30 2012-07-31 Stion Corporation Rapid thermal method and device for thin film tandem cell
TWI644962B (zh) 2013-11-22 2018-12-21 鐘化股份有限公司 Resin material, and film thereof
EP3075786A4 (en) 2013-11-29 2017-07-12 Kaneka Corporation Optical resin composition and film
US9803078B2 (en) * 2013-11-29 2017-10-31 Kaneka Corporation Optical resin composition and film
JP6231874B2 (ja) * 2013-12-25 2017-11-15 株式会社カネカ 樹脂フィルムの製造方法
CN104155800B (zh) * 2014-07-11 2017-06-30 京东方科技集团股份有限公司 一种反射式液晶显示器
JP6488135B2 (ja) * 2015-01-27 2019-03-20 日東電工株式会社 偏光板及び偏光板の製造方法
JP6871154B2 (ja) 2015-03-02 2021-05-12 株式会社カネカ アクリル系樹脂組成物、その成形体及びフィルム
JP2016224182A (ja) * 2015-05-28 2016-12-28 日東電工株式会社 偏光板および液晶表示装置
JP2017026939A (ja) * 2015-07-27 2017-02-02 日東電工株式会社 偏光板および液晶表示装置
KR102323832B1 (ko) * 2015-11-05 2021-11-09 에스케이이노베이션 주식회사 이소소르비드를 포함하는 가교된 폴리글루타르이미드 및 이의 제조방법
US20200024410A1 (en) * 2016-09-29 2020-01-23 Kuraray Co. Ltd. Acrylic resin film and production method therefor
JP7182854B2 (ja) * 2017-03-15 2022-12-05 日東電工株式会社 偏光板および画像表示装置
JP7083339B2 (ja) * 2017-04-10 2022-06-10 日東電工株式会社 光学フィルム、偏光板、および画像表示装置
JP7341643B2 (ja) * 2018-08-28 2023-09-11 日東電工株式会社 表面保護フィルム用基材、該基材の製造方法、該基材を用いた表面保護フィルム、および表面保護フィルム付光学フィルム
JP7681573B2 (ja) * 2020-03-24 2025-05-22 株式会社クラレ メタクリル系共重合体、組成物、成形体、フィルム又はシートの製造方法および積層体
JP7596093B2 (ja) * 2020-08-11 2024-12-09 Zacros株式会社 (メタ)アクリル系樹脂組成物、及び(メタ)アクリル系樹脂フィルム
CN116120692B (zh) * 2022-12-27 2024-10-18 安徽合美材料科技有限公司 一种pmma补偿膜及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475553A (en) 1987-09-18 1989-03-22 Mitsubishi Rayon Co Thermoplastic resin composition
JPH0611615A (ja) 1992-02-26 1994-01-21 Kuraray Co Ltd 位相差板
JPH06256537A (ja) 1992-02-26 1994-09-13 Kuraray Co Ltd 延伸フィルムまたはシート
JP2002338702A (ja) * 2001-05-11 2002-11-27 Kanegafuchi Chem Ind Co Ltd 透明フィルム
JP2005023272A (ja) 2003-07-02 2005-01-27 Kaneka Corp イミドポリマーの製造方法
JP2006328332A (ja) * 2005-05-30 2006-12-07 Kaneka Corp イミド化メタクリル系樹脂組成物およびこれを用いる成形体
JP2007176965A (ja) * 2005-12-26 2007-07-12 Kaneka Corp イミド化メタクリル系樹脂組成物およびこれを用いる成形体、フィルム
JP2008242421A (ja) * 2007-02-28 2008-10-09 Nippon Shokubai Co Ltd 位相差フィルム
JP2009203348A (ja) 2008-02-28 2009-09-10 Kaneka Corp 樹脂組成物、フィルムおよび偏光板
JP2009235249A (ja) * 2008-03-27 2009-10-15 Toray Ind Inc 熱可塑性共重合体、熱可塑性樹脂組成物およびそれらからなる成形品
JP2011027777A (ja) * 2009-07-21 2011-02-10 Kaneka Corp 光拡散機能を付与した偏光子保護フィルム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161628C (zh) * 1999-11-12 2004-08-11 钟渊化学工业株式会社 透明薄膜及其制造方法和包含该透明薄膜的椭圆形偏振片
EP1334726A4 (en) * 2000-10-12 2005-12-14 Chugai Pharmaceutical Co Ltd ERYTHROMYCIN DERIVATIVE WITH NOVEL CRYSTAL STRUCTURES AND METHOD FOR THE PRODUCTION THEREOF
CN101482628B (zh) * 2003-12-02 2011-06-01 株式会社钟化 酰亚胺树脂、及其制造方法和利用
CN101180359A (zh) * 2005-05-30 2008-05-14 株式会社钟化 树脂组合物
US7999032B2 (en) * 2005-07-05 2011-08-16 Kaneka Corporation Methacrylic resin composition
WO2009096374A1 (ja) * 2008-01-28 2009-08-06 Kaneka Corporation 脂環式エポキシ樹脂組成物、その硬化物、及びその製造方法、並びにゴム状重合体含有樹脂組成物
JP5489663B2 (ja) * 2009-03-10 2014-05-14 株式会社カネカ アクリル系樹脂フィルム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475553A (en) 1987-09-18 1989-03-22 Mitsubishi Rayon Co Thermoplastic resin composition
JPH0611615A (ja) 1992-02-26 1994-01-21 Kuraray Co Ltd 位相差板
JPH06256537A (ja) 1992-02-26 1994-09-13 Kuraray Co Ltd 延伸フィルムまたはシート
JP2002338702A (ja) * 2001-05-11 2002-11-27 Kanegafuchi Chem Ind Co Ltd 透明フィルム
JP2005023272A (ja) 2003-07-02 2005-01-27 Kaneka Corp イミドポリマーの製造方法
JP2006328332A (ja) * 2005-05-30 2006-12-07 Kaneka Corp イミド化メタクリル系樹脂組成物およびこれを用いる成形体
JP2007176965A (ja) * 2005-12-26 2007-07-12 Kaneka Corp イミド化メタクリル系樹脂組成物およびこれを用いる成形体、フィルム
JP2008242421A (ja) * 2007-02-28 2008-10-09 Nippon Shokubai Co Ltd 位相差フィルム
JP2009203348A (ja) 2008-02-28 2009-09-10 Kaneka Corp 樹脂組成物、フィルムおよび偏光板
JP2009235249A (ja) * 2008-03-27 2009-10-15 Toray Ind Inc 熱可塑性共重合体、熱可塑性樹脂組成物およびそれらからなる成形品
JP2011027777A (ja) * 2009-07-21 2011-02-10 Kaneka Corp 光拡散機能を付与した偏光子保護フィルム

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002491A1 (ja) * 2012-06-26 2014-01-03 株式会社カネカ 非複屈折性樹脂材料、およびフィルム
US10035888B2 (en) 2012-06-26 2018-07-31 Kaneka Corporation Non-birefringent resin material and film
JPWO2014002491A1 (ja) * 2012-06-26 2016-05-30 株式会社カネカ 非複屈折性樹脂材料、およびフィルム
JP2014070187A (ja) * 2012-09-28 2014-04-21 Kaneka Corp 異物の少ないアクリル系樹脂の製造方法
JP2014225015A (ja) * 2013-04-26 2014-12-04 富士フイルム株式会社 光学フィルム、偏光板、及び液晶表示装置
WO2015030118A1 (ja) * 2013-08-30 2015-03-05 株式会社日本触媒 (メタ)アクリル系樹脂
KR102218123B1 (ko) * 2013-08-30 2021-02-19 주식회사 쿠라레 변성 아크릴계 블록 공중합체 그리고 그것의 제조 방법 및 용도
CN105492474A (zh) * 2013-08-30 2016-04-13 株式会社可乐丽 改性丙烯酸系嵌段共聚物、以及其制造方法和用途
CN105492473A (zh) * 2013-08-30 2016-04-13 株式会社日本触媒 (甲基)丙烯酸系树脂
KR102179714B1 (ko) * 2013-08-30 2021-03-25 가부시키가이샤 닛폰 쇼쿠바이 (메타)아크릴계 수지
KR20160049531A (ko) * 2013-08-30 2016-05-09 주식회사 쿠라레 변성 아크릴계 블록 공중합체 그리고 그것의 제조 방법 및 용도
KR20160049506A (ko) * 2013-08-30 2016-05-09 가부시키가이샤 닛폰 쇼쿠바이 (메타)아크릴계 수지
JPWO2015030207A1 (ja) * 2013-08-30 2017-03-02 株式会社クラレ 変性アクリル系ブロック共重合体ならびにそれの製造方法および用途
CN105492474B (zh) * 2013-08-30 2018-10-09 株式会社可乐丽 改性丙烯酸系嵌段共聚物、以及其制造方法和用途
WO2015030207A1 (ja) * 2013-08-30 2015-03-05 株式会社クラレ 変性アクリル系ブロック共重合体ならびにそれの製造方法および用途
US9796890B2 (en) 2013-08-30 2017-10-24 Kuraray Co., Ltd. Modified acrylic block copolymer, method for producing same, and intended use of same
JPWO2015030118A1 (ja) * 2013-08-30 2017-03-02 株式会社日本触媒 (メタ)アクリル系樹脂
US10391694B2 (en) 2013-12-25 2019-08-27 Kaneka Corporation Method of producing film
JP2015123618A (ja) * 2013-12-25 2015-07-06 株式会社カネカ 光学フィルムの製造方法
JPWO2015098096A1 (ja) * 2013-12-25 2017-03-23 株式会社カネカ フィルムの製造方法、熱可塑性樹脂組成物、成形体およびフィルム
JPWO2015098775A1 (ja) * 2013-12-25 2017-03-23 株式会社カネカ 光学用樹脂組成物、および成形体
JPWO2015098980A1 (ja) * 2013-12-27 2017-03-23 株式会社カネカ 光学用熱可塑性樹脂、および成形体
EP3088920A4 (en) * 2013-12-27 2018-05-16 Kaneka Corporation Optical thermoplastic resin and formed body
US20160326289A1 (en) * 2013-12-27 2016-11-10 Kaneka Corporation Optical thermoplastic resin and formed body
US10184019B2 (en) * 2013-12-27 2019-01-22 Kaneka Corporation Optical thermoplastic resin and formed body
WO2015098980A1 (ja) * 2013-12-27 2015-07-02 株式会社カネカ 光学用熱可塑性樹脂、および成形体
JP2016071218A (ja) * 2014-09-30 2016-05-09 株式会社カネカ 光学フィルム
JP2016160362A (ja) * 2015-03-03 2016-09-05 株式会社クラレ 湿気硬化型樹脂組成物
JP2016222771A (ja) * 2015-05-28 2016-12-28 株式会社クラレ (メタ)アクリル系重合体の製造方法
DE102017112730A1 (de) 2016-08-30 2018-03-01 Asahi Kasei Kabushiki Kaisha Methacrylharzzusammensetzung und optisches Bauteil
DE102017112730B4 (de) 2016-08-30 2022-06-30 Asahi Kasei Kabushiki Kaisha Methacrylharzzusammensetzung und optische Komponente
WO2020013203A1 (ja) 2018-07-13 2020-01-16 旭化成株式会社 メタクリル系樹脂、成形体、光学部品又は自動車部品
WO2020080267A1 (ja) 2018-10-16 2020-04-23 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂の製造方法、メタクリル系樹脂組成物、成形体、光学部品及び自動車部品
JP2020147653A (ja) * 2019-03-12 2020-09-17 株式会社カネカ フィルム用アクリル樹脂組成物、及びアクリル樹脂フィルム
JP7245082B2 (ja) 2019-03-12 2023-03-23 株式会社カネカ フィルム用アクリル樹脂組成物、及びアクリル樹脂フィルム
WO2022196644A1 (ja) * 2021-03-16 2022-09-22 株式会社カネカ 光学部材およびその製造方法
WO2024128122A1 (ja) * 2022-12-13 2024-06-20 株式会社クラレ 延伸フィルムとその製造方法、光学フィルム、および加飾フィルム

Also Published As

Publication number Publication date
KR101883688B1 (ko) 2018-08-01
US20140045995A1 (en) 2014-02-13
EP2690139B1 (en) 2019-04-03
CN103380175A (zh) 2013-10-30
JP5789292B2 (ja) 2015-10-07
EP2690139A4 (en) 2014-09-03
EP2690139A1 (en) 2014-01-29
KR20130140771A (ko) 2013-12-24
US9273208B2 (en) 2016-03-01
CN103380175B (zh) 2015-11-25
JPWO2012114718A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5789292B2 (ja) アクリル系樹脂フィルム
JP5408885B2 (ja) 樹脂組成物、フィルムおよび偏光板
JP6986510B2 (ja) 樹脂組成物、その成形体及びフィルム
US10035888B2 (en) Non-birefringent resin material and film
JP6871154B2 (ja) アクリル系樹脂組成物、その成形体及びフィルム
US10597525B2 (en) Resin composition and film thereof
US20080318072A1 (en) Imide Resin, Production Method of Imide Resin, and Usage of Imide Resin
JP6637313B2 (ja) 光学用樹脂組成物、およびフィルム
WO2015098775A1 (ja) 光学用樹脂組成物、および成形体
JP2006328334A (ja) 樹脂組成物、またはこれを使用した光学用フィルム、偏光子保護フィルム
JP6594207B2 (ja) 光学用樹脂組成物、およびフィルム
JP2010261025A (ja) 樹脂組成物及びその製造方法、成型体、フィルム、光学用フィルム、偏光子保護フィルム、偏光板
JP6523176B2 (ja) 樹脂材料、およびそのフィルム
WO2022114194A1 (ja) グルタルイミド樹脂
JP7672273B2 (ja) 透明導電フィルム、及び透明導電フィルムの製造方法
WO2022114193A1 (ja) グルタルイミド樹脂
JP2006328331A (ja) 樹脂組成物、成形体、フィルムとその製造方法
JP2011052198A (ja) 樹脂組成物、成型体、光学用フィルム、偏光子保護フィルム、偏光板
WO2022168936A1 (ja) イミド構造含有アクリル系樹脂の製造方法
JP2022030030A (ja) アンテナ用基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500885

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137014810

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13985781

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载