+

WO2012165670A1 - Method for fabricating solar cell including nanostructure - Google Patents

Method for fabricating solar cell including nanostructure Download PDF

Info

Publication number
WO2012165670A1
WO2012165670A1 PCT/KR2011/003960 KR2011003960W WO2012165670A1 WO 2012165670 A1 WO2012165670 A1 WO 2012165670A1 KR 2011003960 W KR2011003960 W KR 2011003960W WO 2012165670 A1 WO2012165670 A1 WO 2012165670A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electron donor
solar cell
donor material
electrode
Prior art date
Application number
PCT/KR2011/003960
Other languages
French (fr)
Korean (ko)
Inventor
김태환
양희연
손동익
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to PCT/KR2011/003960 priority Critical patent/WO2012165670A1/en
Publication of WO2012165670A1 publication Critical patent/WO2012165670A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell manufacturing method, and more particularly to a solar cell manufacturing method comprising a nanostructure in the photoactive layer.
  • a solar cell is a semiconductor device that converts light energy directly into electrical energy using a photovoltaic effect. Recently, many studies have been conducted as part of clean alternative energy technologies in the face of environmental problems and high oil price problems.
  • the organic solar cell has a high absorption coefficient of the organic molecules used as the photoactive layer can be manufactured in a thin device, can be manufactured with a simple manufacturing method and a low equipment cost, due to the characteristics of the organic material has good flexibility and processability, etc.
  • the conventional organic solar cell has a low photovoltaic efficiency due to its low charge trap density, low charge lifetime, low mobility, short diffusion length, and low photoelectric conversion efficiency.
  • excitons generated in the photoactive layer by absorption of light must be separated into electrons and holes at a junction interface between an electron donor material and an electron acceptor material.
  • the distance that excitons can move is very small compared to the thickness of the light absorbing layer, which is about 10 nm, which is a fundamental factor limiting the efficiency of the solar cell.
  • nanostructures such as nanorods or nanowires into the photoactive layer
  • the conventional electrochemical method using the porous alumina template has a problem of device contamination by impurities contained in the electrolyte, and the chemical vapor growth method and the vapor phase epitaxy growth method require expensive equipment and high vacuum, resulting in high manufacturing costs. Has a problem.
  • the technical problem to be solved by the present invention is to provide a solar cell manufacturing method that can improve the photoelectric conversion efficiency, and can reduce the manufacturing cost.
  • an aspect of the present invention provides a method of manufacturing a solar cell including a nanostructure in a photoactive layer.
  • the method includes preparing a substrate on which a first electrode is formed, forming a mixed thin film layer on which the electron donor material and a sacrificial polymer that is incompatible with the electron donor material are mixed, and the sacrificial polymer in the mixed thin film layer.
  • the sacrificial polymer may be polyalkylene glycol, preferably polyethylene glycol or polypropylene glycol.
  • the electron donor material is pentacene, coumarin 6, ZnPC, CuPC, TiOPC, Spiro-MeOTAD, F16CuPC, SubPc, N3, P3HT, P3KT, PT, P3OT, PCPDTBT, PCDTBT, PFDTBT, MEH-PPV, MDMO-PPV, PFO And PFO-DMP.
  • the electron acceptor material layer may be an n-type organic semiconductor layer or an n-type metal oxide layer.
  • the n-type organic semiconductor layer is C 60 , PC 61 BM, PC 71 BM, PC 81 BM, PDCDT, PenPTC, PTCBI, ADIDI, PTCDA, PTCDI, NTDA, MePTC, HepPTC, Liq, TPBi, PBD, BCP , Bphen, BAlq, Bpy-OXD, BP-OXD-Bpy, TAZ, NTAZ, NBphen, Bpy-FOXD, OXD-7, 3TPYMB, 2-NPIP, HNBphen, POPy2, BP4mPy, TmPyPB and BTB
  • the n-type metal oxide layer may be a layer including any one selected from ZnO, TiO 2, and SnO 2 .
  • the nanostructure of the electron donor material may be a thin film electron donor material layer having a plurality of holes or a protrusion type electron donor material layer composed of a plurality of protrusions.
  • Forming the mixed thin film layer may be performed by a spin coating method.
  • the method may further include forming a hole transport layer on the first electrode.
  • Another aspect of the present invention to achieve the above technical problem is to prepare a substrate on which a first electrode is formed, forming a mixed thin film layer in which an electron donor material and polyethylene glycol is mixed on the first electrode, polyethylene in the mixed thin film layer Removing glycol by heat treatment to form a nanostructure of an electron donor material, forming an electron acceptor material layer on the nanostructure of the electron donor material, and forming a second electrode on the electron acceptor material layer It provides a solar cell manufacturing method comprising a.
  • the present invention as described above, by introducing a nanostructure in the photoactive layer, it is possible to increase the light absorption efficiency, the separation efficiency of the electrons and holes and the transfer efficiency to improve the photoelectric conversion efficiency of the solar cell.
  • the nanostructure can be manufactured through a simple solution process and heat treatment, the manufacturing cost of the solar cell can be lowered, and a large area device can be manufactured.
  • the crystallinity of the electron donor material may be improved through the heat treatment, charge transfer efficiency may be further improved.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.
  • FIGS. 2A to 2F are perspective views illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.
  • FIG. 3a and 3b are SEM images (Fig. 3b is a cross-sectional SEM image) of the nanostructures prepared according to Experimental Example 1.
  • FIG. 4 is an SEM image of a nanostructure prepared according to Experimental Example 2.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.
  • FIGS. 2A to 2F are perspective views illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.
  • a substrate 100 on which a first electrode 110 is formed is prepared.
  • the substrate 100 is used to support a solar cell, a transparent inorganic substrate selected from glass, quartz, Al 2 O 3 and SiC, or polyethylene terephthlate (PET), polyethersulfone (PES), polystyrene (PS), and PC ( It may be a light-transmissive plastic substrate selected from polycarbonate, polyvinyl chloride (PVC), polyvinyl pyrrolidone (PVP), polyimide (PI), polyethylene (PE), polyethylene naphthalate (PEN), and polyarylate (PAR).
  • PVC polyvinyl chloride
  • PVP polyvinyl pyrrolidone
  • PI polyimide
  • PE polyethylene
  • PEN polyethylene naphthalate
  • PAR polyarylate
  • the first electrode 110 is positioned on the substrate 100, and is preferably a light transmissive material so that light passing through the substrate 100 reaches the photoactive layer.
  • the first electrode 110 is a conductive material having a low resistance, and may serve as an anode that receives holes generated in the photoactive layer disposed thereon and transfers the holes to the external circuit.
  • the first electrode 110 may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), fluorine-doped tin oxide (FTO), zinc oxide (ZnO), Al-doped ZnO (AZO), Ga Doped ZnO (GZO), In / Ga-doped ZnO (IGZO), Mg-doped ZnO (MZO), Mo-doped ZnO, Al-doped MgO, Ga-doped MgO and CuAlO 2 It can be one act.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • FTO fluorine-doped tin oxide
  • ZnO zinc oxide
  • Al-doped ZnO AZO
  • Ga Doped ZnO Ga Doped ZnO
  • IGZO In / Ga-doped ZnO
  • MZO Mg-doped ZnO
  • Mo-doped ZnO Al-doped M
  • the first electrode 110 may be an organic electrode of any one of graphene, carbon nanotubes, C 60 (fullerenes, fllerene), conductive polymers, and composites thereof.
  • the first electrode 110 is formed of an organic material electrode, a solar cell can be easily formed on a flexible plastic substrate.
  • the first electrode 110 may be appropriately selected from a thermal evaporation method, an e-beam evaporation method, a sputtering method, a chemical vapor deposition method, or a similar method.
  • a hole transport layer 115 is formed on the first electrode 110.
  • the hole transport layer 115 may easily transfer holes generated in the photoactive layer to the first electrode 110, and may act as a buffer layer to reduce the surface roughness of the first electrode 110.
  • the hole transport layer 115 is NPB, ⁇ -NPB, TPD, Spiro-TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, DPFL-NPB, ⁇ -NPD, Spiro-TAD, BPAPF, NPAPF , NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP, Spiro-BPA, TAPC, Spiro-TTB, ⁇ -TNB, HMTPD, ⁇ , ⁇ -TNB, ⁇ -TNB, ⁇ -NPP, PEDOT: It may be formed of any one selected from PSS and PVK. However, the present invention is not limited thereto, and other materials having an energy level between the HOMO level of the electron donor material and the work function (or HOMO level) of the first electrode may be used.
  • the process of forming the hole transport layer 115 may be omitted.
  • an incompatible sacrifice with an electron donor material and an electron donor material is performed on the hole transport layer 115 (if the hole transport layer is omitted, the first electrode 110).
  • the mixed thin film layer 120 is formed of the polymer.
  • the sacrificial polymer is a material that is removed after the mixed thin film layer 120 is formed, and a material that becomes a means for converting the mixed thin film layer 120 into a nanostructure of an electron donor material as described below by removing the mixed thin film layer 120. to be.
  • the sacrificial polymer may be a polyether based compound, for example, polyalkylene glycol, preferably polyethylene glycol or polypropylene glycol, and more Preferably it may be polyethylene glycol (polyethylene glycol).
  • the present invention is not limited thereto.
  • polyalkylene glycol refers to the oligomer (oligomer) or polymer (alkyl) of the alkylene oxide (alkylene oxide), polyalkylene oxide (polyalkylene oxide) and polyoxy It is to be understood as encompassing polyoxyalkylenes.
  • the electron donor material absorbs sunlight incident from the outside to form electron-hole pairs (exitons, excitons), and moves holes separated from the pn junction interface between the electron donor material and the electron acceptor material in an anode direction.
  • the electron donor material may be a low molecular or high molecular organic material that can be used as a p-type semiconductor, for example, pentacene, coumarin 6 (coumarin 6, 3- (2-benzothiazolyl) -7- (diethylamino) coumarin), zinc phthalocyanine (ZnPC), copper phthalocyanine (CuPC), titanium oxide phthalocyanine (TiOPC), Spiro-MeOTAD (2,2 ', 7,7'-tetrakis (N, Np-dimethoxyphenylamino) -9,9'- spirobifluorene), F16CuPC (copper (II) 1,2,3,4,8,9,10,11,15,16,17
  • the mixed thin film layer 120 is a casting method, a spin coating method, an ink-jet printing method, a screen printing (casting method) of the mixed solution containing the electron donor material and the sacrificial polymer It may be formed by coating by a screen printing method, a doctor blade method, or the like, and preferably by a spin coating method.
  • the solvent of the mixed solution is not particularly limited as long as it is a solvent capable of dissolving both the electron donor material and the sacrificial polymer.
  • the solvent of the mixed solution is not particularly limited as long as it is a solvent capable of dissolving both the electron donor material and the sacrificial polymer.
  • P3HT is used as the electron donor material and polyethylene glycol is used as the sacrificial polymer
  • Organic solvents such as chlorobenzene or dichlorobenzene may be used.
  • the sacrificial polymer in the mixed thin film layer 120 is removed by heat treatment to form the nanostructure 130 of the electron donor material.
  • the nanostructure 130 of the electron donor material may be formed through phase separation between the electron donor material and the sacrificial polymer and removal of the sacrificial polymer by heat treatment in the process of forming the mixed thin film layer 120.
  • the nanostructure 130 of the electron donor material may be, for example, a thin film electron donor material layer having a plurality of holes or a protrusion type electron donor material layer composed of a plurality of protrusions (nano shown in FIG. 2D).
  • the structure 130 is an exaggerated representation of the projection electron donor material layer).
  • the width and height of the hole and the protrusion may be adjusted in the range of several to several hundred nanometers (nm) by adjusting the concentration and spin coating speed of the mixed solution containing the electron donor material and the sacrificial polymer.
  • the heat treatment temperature may be selected in an appropriate range depending on the type of sacrificial polymer used, for example, when using polyethylene glycol may be selected in a temperature range of about 160 °C to 300 °C depending on its molecular weight. .
  • the crystallinity of the electron donor material may be improved, thereby increasing the transfer efficiency of the charge generated in the photoactive layer.
  • an electron acceptor material layer 140 is formed on the nanostructure 130 of the electron donor material.
  • the electron acceptor material layer 140 forms a photoactive layer 150 together with the nanostructure 130 of the electron donor material, and moves the separated electrons at the pn junction interface 135 in the direction of the cathode. Means.
  • the electron acceptor material layer 140 may be an n-type organic semiconductor layer or an n-type metal oxide layer.
  • the n-type organic semiconductor layer is, for example, C 60 (fullerene), PC 61 BM ([6,6] -phenyl-C 61 -butyric acid methyl ester), PC 71 BM ([6,6] -phenyl-C 71 -butyric acid methyl ester), PC 81 BM (([6,6] -phenyl-C 81 -butyric acid methyl ester), PDCDT (N, N'-bis (2,5-di-tert -butylphenyl) -3,4,9,10-perylene-tetracarboxylic acid diimide), PenPTC (perylene-3,4,9,10-tetracarboxylic acid N, N'-dipenthylimide), PTCBI (perylene-3,4,9) , 10-tetracarboxylic bis-benzimidazde), ADIDI (antra [2 ", 1", 9 ";4,5,6,6", 5 ", 10";
  • the n-type metal oxide layer may be, for example, a layer including any one selected from ZnO, TiO 2, and SnO 2 .
  • the electron acceptor material layer 140 may cast, spin coat, inkjet print, or screen a solution containing the n-type organic semiconductor or the n-type metal oxide (specifically, a metal oxide in the form of nanoparticles). It can apply
  • the present invention is not limited thereto.
  • the photoactive layer 150 may form a structure in which the electron acceptor material layer 140 meshes with the nanostructure 130 of the electron donor material in nanoscale, resulting in an increase in the pn junction interface 135. Therefore, it is possible to improve the electron-hole resolution of excitons generated by light absorption.
  • a second electrode 160 is formed on the electron acceptor material layer 140.
  • the second electrode 160 is a conductive material having a low resistance, and may serve as a cathode that receives electrons generated by the photoactive layer 150 disposed below and transfers the electrons to an external circuit.
  • the second electrode 160 may be a metal electrode made of any one selected from Al, Au, Cu, Pt, Ag, W, Ni, Zn, Ti, Zr, Hf, Cd, Pd, and alloys thereof.
  • the second electrode 160 may be an organic electrode including any one selected from graphene, carbon nanotubes, fullerenes, conductive polymers, and composites thereof, and the second electrode 160 may be formed of a transparent organic electrode. In this case, light reception at the top of the battery is possible.
  • the second electrode 160 may be formed by applying a thermal image deposition method, an electron beam deposition method, a sputtering method, a chemical vapor deposition method or an electrode forming paste containing a metal and then heat treatment.
  • the electron donor material and the electron acceptor material have a continuous phase structure in which the electron donor material and the electron acceptor material are respectively connected to the anode and the cathode. Can be moved to improve the transfer efficiency of the charge.
  • a texturing effect of suppressing total reflection of light incident on the solar cell may be obtained, light absorption efficiency may be improved.
  • the nanostructure formation in the present invention can be formed by a simple method of applying a mixture of the electron donor material and the sacrificial polymer through a solution process such as spin coating, and then heat treatment to lower the manufacturing cost of the solar cell There is this.
  • a solution process such as spin coating
  • P3HT poly (3-hexylthiophene-2,5-diyl)
  • PEG polyethylene glycol
  • the mixed solution was spin coated on the substrate at 2000 rpm for 5 seconds to form a mixed thin film containing a mixture of P3HT and PEG.
  • the substrate was then placed on a hot plate and heat treated at 180 ° C. for 10 minutes to remove PEG (and chlorobenzene).
  • FIG. 3a and 3b are SEM images (Fig. 3b is a cross-sectional SEM image) of the nanostructure prepared according to Experimental Example 1.
  • a thin film P3HT layer having a plurality of holes can be formed by removing PEG from the mixed thin film containing P3HT and PEG by heat treatment.
  • P3HT poly (3-hexylthiophene-2,5-diyl)
  • PEG polyethylene glycol
  • the mixed solution was spin coated on the substrate at 5000 rpm for 40 seconds to form a mixed thin film containing a mixture of P3HT and PEG.
  • the substrate was then placed on a hot plate and heat treated at 180 ° C. for 10 minutes to remove PEG (and chlorobenzene).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a method for fabricating a solar cell including a nanostructure, which includes the steps of: preparing a substrate formed with a first electrode; forming a mixture thin film layer, in which an electron donor material and a sacrificial polymer which is immiscible with the electron donor material are mixed, on the first electrode; forming the nanostructure of the electron donor material by removing the sacrificial polymer in the mixture thin film layer by heat treatment; forming an electron acceptor material layer on the nanostructure of the electron donor material; and forming a second electrode on the electron acceptor material layer. According to the present invention, a nanostructure may be introduced to the inside of a photoactive layer via a simple method, so that the manufacturing costs of a solar cell may decrease. In addition, optical absorption efficiency, electron-hole separation efficiency and movement efficiency may increase, thereby improving the photovoltaic efficiency of a solar cell.

Description

나노구조체를 포함하는 태양전지 제조방법Solar cell manufacturing method including nanostructure

본 발명은 태양전지 제조방법에 관한 것으로, 보다 상세하게는 광활성층 내에 나노구조체를 포함하는 태양전지 제조방법에 관한 것이다.The present invention relates to a solar cell manufacturing method, and more particularly to a solar cell manufacturing method comprising a nanostructure in the photoactive layer.

태양전지란 광기전력 효과(Photovoltaic effect)를 이용하여 빛 에너지를 직접 전기 에너지로 변환시키는 반도체 소자로서, 최근 환경 문제와 고유가 문제에 직면하여 청정 대체에너지 기술의 일환으로 많은 연구가 이루어지고 있다.A solar cell is a semiconductor device that converts light energy directly into electrical energy using a photovoltaic effect. Recently, many studies have been conducted as part of clean alternative energy technologies in the face of environmental problems and high oil price problems.

이 중, 유기 태양전지는 광활성층으로 사용되는 유기 분자의 흡광계수가 높아 얇은 소자로 제작이 가능하고, 간편한 제법과 낮은 설비 비용으로 제조할 수 있으며, 유기물의 특성상 굽힘성 및 가공성 등이 좋아 다양한 분야에 응용할 수 있는 여러 장점이 있다. 그러나, 종래의 유기 태양전지는 전하 트랩 밀도가 커서 전하의 수명과 이동도가 낮고 확산길이도 짧기 때문에 광수집 효율이 좋지 않아 광전변환 효율이 낮은 점이 한계로 지적되고 있다.Among them, the organic solar cell has a high absorption coefficient of the organic molecules used as the photoactive layer can be manufactured in a thin device, can be manufactured with a simple manufacturing method and a low equipment cost, due to the characteristics of the organic material has good flexibility and processability, etc. There are several advantages that can be applied in the field. However, it is pointed out that the conventional organic solar cell has a low photovoltaic efficiency due to its low charge trap density, low charge lifetime, low mobility, short diffusion length, and low photoelectric conversion efficiency.

태양전지에서 광전류를 생성하기 위해서는 빛의 흡수에 의해 광활성층에서 생성된 엑시톤(exciton)이 전자 주개(donor) 물질과 전자 받개(acceptor) 물질의 접합 계면에서 전자와 정공으로 분리되어야 한다. 그러나, 일반적으로 엑시톤이 이동 가능한 거리는 약 10nm 정도로 필요한 광흡수층의 두께에 비해 매우 작기 때문에 태양전지의 효율을 제한하는 근본적인 요인이 되고 있다. 이에 광활성층 내에 나노막대 또는 나노세선 등의 나노구조체를 도입하여 도너-억셉터 계면 면적 등을 향상시키기 위한 연구가 진행되고 있다. 그러나, 종래의 다공성 알루미나 템플레이트를 이용한 전기 화학적 방법은 전해액 속에 포함된 불순물에 의한 소자 오염의 문제가 있으며, 화학 기상 성장법과 기상 에피택시 성장법은 고가의 장비 및 고진공을 요하기 때문에 제조 비용이 높아진다는 문제가 있다.In order to generate a photocurrent in a solar cell, excitons generated in the photoactive layer by absorption of light must be separated into electrons and holes at a junction interface between an electron donor material and an electron acceptor material. However, in general, the distance that excitons can move is very small compared to the thickness of the light absorbing layer, which is about 10 nm, which is a fundamental factor limiting the efficiency of the solar cell. In order to improve the donor-acceptor interface area by introducing nanostructures such as nanorods or nanowires into the photoactive layer, research is being conducted. However, the conventional electrochemical method using the porous alumina template has a problem of device contamination by impurities contained in the electrolyte, and the chemical vapor growth method and the vapor phase epitaxy growth method require expensive equipment and high vacuum, resulting in high manufacturing costs. Has a problem.

본 발명이 해결하고자 하는 기술적 과제는 광전변환효율을 향상시키는 한편, 제조 비용을 저감할 수 있는 태양전지 제조방법을 제공함에 있다.The technical problem to be solved by the present invention is to provide a solar cell manufacturing method that can improve the photoelectric conversion efficiency, and can reduce the manufacturing cost.

상기 기술적 과제를 이루기 위하여 본 발명의 일 측면은 광활성층 내에 나노구조체를 포함하는 태양전지 제조방법을 제공한다.In order to achieve the above technical problem, an aspect of the present invention provides a method of manufacturing a solar cell including a nanostructure in a photoactive layer.

상기 방법은 제1 전극이 형성된 기판을 준비하는 단계, 상기 제1 전극 상에 전자 주개 물질과, 상기 전자 주개 물질과 비상용성인 희생 중합체가 혼합된 혼합 박막층을 형성하는 단계, 상기 혼합 박막층 내의 희생 중합체를 열처리에 의해 제거하여 전자 주개 물질의 나노구조체를 형성하는 단계, 상기 전자 주개 물질의 나노구조체 상에 전자 받개 물질층을 형성하는 단계 및 상기 전자 받개 물질층 상에 제2 전극을 형성하는 단계를 포함한다.The method includes preparing a substrate on which a first electrode is formed, forming a mixed thin film layer on which the electron donor material and a sacrificial polymer that is incompatible with the electron donor material are mixed, and the sacrificial polymer in the mixed thin film layer. Heat treatment to form a nanostructure of the electron donor material, forming an electron acceptor material layer on the nanostructure of the electron donor material, and forming a second electrode on the electron acceptor material layer. Include.

상기 희생 중합체는 폴리알킬렌글리콜일 수 있으며, 바람직하게는 폴리에틸렌글리콜 또는 폴리프로필렌글리콜일 수 있다.The sacrificial polymer may be polyalkylene glycol, preferably polyethylene glycol or polypropylene glycol.

상기 전자 주개 물질은 펜타센, 쿠마린 6, ZnPC, CuPC, TiOPC, Spiro-MeOTAD, F16CuPC, SubPc, N3, P3HT, P3KT, PT, P3OT, PCPDTBT, PCDTBT, PFDTBT, MEH-PPV, MDMO-PPV, PFO 및 PFO-DMP 중에서 선택되는 어느 하나일 수 있다.The electron donor material is pentacene, coumarin 6, ZnPC, CuPC, TiOPC, Spiro-MeOTAD, F16CuPC, SubPc, N3, P3HT, P3KT, PT, P3OT, PCPDTBT, PCDTBT, PFDTBT, MEH-PPV, MDMO-PPV, PFO And PFO-DMP.

상기 전자 받개 물질층은 n형 유기 반도체층 또는 n형 금속 산화물층일 수 있다.The electron acceptor material layer may be an n-type organic semiconductor layer or an n-type metal oxide layer.

이 경우, 상기 n형 유기 반도체층은 C60, PC61BM, PC71BM, PC81BM, PDCDT, PenPTC, PTCBI, ADIDI, PTCDA, PTCDI, NTDA, MePTC, HepPTC, Liq, TPBi, PBD, BCP, Bphen, BAlq, Bpy-OXD, BP-OXD-Bpy, TAZ, NTAZ, NBphen, Bpy-FOXD, OXD-7, 3TPYMB, 2-NPIP, HNBphen, POPy2, BP4mPy, TmPyPB 및 BTB 중에서 선택되는 어느 하나를 포함하는 층일 수 있으며, 상기 n형 금속 산화물층은 ZnO, TiO2 및 SnO2 중에서 선택되는 어느 하나를 포함하는 층일 수 있다.In this case, the n-type organic semiconductor layer is C 60 , PC 61 BM, PC 71 BM, PC 81 BM, PDCDT, PenPTC, PTCBI, ADIDI, PTCDA, PTCDI, NTDA, MePTC, HepPTC, Liq, TPBi, PBD, BCP , Bphen, BAlq, Bpy-OXD, BP-OXD-Bpy, TAZ, NTAZ, NBphen, Bpy-FOXD, OXD-7, 3TPYMB, 2-NPIP, HNBphen, POPy2, BP4mPy, TmPyPB and BTB The n-type metal oxide layer may be a layer including any one selected from ZnO, TiO 2, and SnO 2 .

상기 전자 주개 물질의 나노구조체는 다수의 홀을 갖는 박막형 전자 주개 물질층 또는 다수의 돌기로 이루어진 돌기형 전자 주개 물질층일 수 있다.The nanostructure of the electron donor material may be a thin film electron donor material layer having a plurality of holes or a protrusion type electron donor material layer composed of a plurality of protrusions.

상기 혼합 박막층을 형성하는 단계는 스핀 코팅법에 의해 수행할 수 있다.Forming the mixed thin film layer may be performed by a spin coating method.

또한, 상기 혼합 박막층을 형성하기 전에, 제1 전극 상에 정공수송층을 형성하는 단계를 더 포함할 수 있다.Further, before forming the mixed thin film layer, the method may further include forming a hole transport layer on the first electrode.

상기 기술적 과제를 이루기 위하여 본 발명의 다른 측면은 제1 전극이 형성된 기판을 준비하는 단계, 상기 제1 전극 상에 전자 주개 물질과 폴리에틸렌글리콜이 혼합된 혼합 박막층을 형성하는 단계, 상기 혼합 박막층 내의 폴리에틸렌글리콜을 열처리에 의해 제거하여 전자 주개 물질의 나노구조체를 형성하는 단계, 상기 전자 주개 물질의 나노구조체 상에 전자 받개 물질층을 형성하는 단계 및 상기 전자 받개 물질층 상에 제2 전극을 형성하는 단계를 포함하는 태양전지 제조방법을 제공한다.Another aspect of the present invention to achieve the above technical problem is to prepare a substrate on which a first electrode is formed, forming a mixed thin film layer in which an electron donor material and polyethylene glycol is mixed on the first electrode, polyethylene in the mixed thin film layer Removing glycol by heat treatment to form a nanostructure of an electron donor material, forming an electron acceptor material layer on the nanostructure of the electron donor material, and forming a second electrode on the electron acceptor material layer It provides a solar cell manufacturing method comprising a.

상술한 바와 같이 본 발명에 따르면, 광활성층 내에 나노구조체를 도입함으로써, 광흡수효율, 전자와 정공의 분리효율 및 이동효율을 높일 수 있어 태양전지의 광전변환효율을 향상시킬 수 있다.According to the present invention as described above, by introducing a nanostructure in the photoactive layer, it is possible to increase the light absorption efficiency, the separation efficiency of the electrons and holes and the transfer efficiency to improve the photoelectric conversion efficiency of the solar cell.

또한, 간단한 용액 공정 및 열처리를 통하여 나노구조체를 제조할 수 있으므로 태양전지의 제조 비용을 낮출 수 있으며, 대면적의 소자 제작이 가능하다. 또한, 상기 열처리 과정을 통해 전자 주개 물질의 결정성을 향상시킬 수 있으므로, 전하의 이동 효율을 더욱 향상시킬 수 있다.In addition, since the nanostructure can be manufactured through a simple solution process and heat treatment, the manufacturing cost of the solar cell can be lowered, and a large area device can be manufactured. In addition, since the crystallinity of the electron donor material may be improved through the heat treatment, charge transfer efficiency may be further improved.

다만, 본 발명의 효과들은 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.

도 1은 본 발명의 일 실시예에 따른 태양전지 제조방법을 나타낸 흐름도이다.1 is a flowchart illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.

도 2a 내지 도 2f는 본 발명의 일 실시예에 따른 태양전지의 제조방법을 나타낸 사시도이다.2A to 2F are perspective views illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.

도 3a 및 3b는 실험예 1에 따라 제조된 나노구조쳬의 SEM 이미지(도 3b는 단면 SEM 이미지)이다.3a and 3b are SEM images (Fig. 3b is a cross-sectional SEM image) of the nanostructures prepared according to Experimental Example 1.

도 4는 실험예 2에 따라 제조된 나노구조체의 SEM 이미지이다.4 is an SEM image of a nanostructure prepared according to Experimental Example 2. FIG.

이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 그러나, 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면들에 있어서, 층 및 영역들의 두께는 명확성을 기하기 위하여 과장된 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and to fully convey the spirit of the present invention to those skilled in the art. In the drawings, the thicknesses of layers and regions are exaggerated for clarity. Like numbers refer to like elements throughout. In addition, in the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.

도 1은 본 발명의 일 실시예에 따른 태양전지 제조방법을 나타낸 흐름도이다.1 is a flowchart illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.

도 2a 내지 도 2f는 본 발명의 일 실시예에 따른 태양전지의 제조방법을 나타낸 사시도이다.2A to 2F are perspective views illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.

도 1(S10) 및 도 2a를 참조하면, 제1 전극(110)이 형성된 기판(100)을 준비한다.Referring to FIGS. 1S10 and 2A, a substrate 100 on which a first electrode 110 is formed is prepared.

상기 기판(100)은 태양전지를 지지하기 위해 사용되는 것으로 유리, 석영, Al2O3 및 SiC 등에서 선택된 광투과성 무기물 기판 또는 PET(polyethylene terephthlate), PES(polyethersulfone), PS(polystyrene), PC(polycarbonate), PVC(polyvinyl chloride), PVP(polyvinyl pyrrolidone), PI(polyimide), PE(polyethylene), PEN(polyethylene naphthalate) 및 PAR(polyarylate) 등에서 선택된 광투과성 플라스틱 기판일 수 있다.The substrate 100 is used to support a solar cell, a transparent inorganic substrate selected from glass, quartz, Al 2 O 3 and SiC, or polyethylene terephthlate (PET), polyethersulfone (PES), polystyrene (PS), and PC ( It may be a light-transmissive plastic substrate selected from polycarbonate, polyvinyl chloride (PVC), polyvinyl pyrrolidone (PVP), polyimide (PI), polyethylene (PE), polyethylene naphthalate (PEN), and polyarylate (PAR).

상기 제1 전극(110)은 상기 기판(100) 상에 위치하며, 기판(100)을 통과한 빛이 광활성층에 도달하도록 광투과성 물질인 것이 바람직하다. 상기 제1 전극(110)은 낮은 저항을 갖는 전도성 물질로서, 그 상부에 위치한 광활성층에서 생성된 정공을 받아 외부 회로로 전달하는 양극의 역할을 수행할 수 있다.The first electrode 110 is positioned on the substrate 100, and is preferably a light transmissive material so that light passing through the substrate 100 reaches the photoactive layer. The first electrode 110 is a conductive material having a low resistance, and may serve as an anode that receives holes generated in the photoactive layer disposed thereon and transfers the holes to the external circuit.

이 경우, 상기 제1 전극(110)은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), FTO(Fluorine-doped Tin Oxide), ZnO(zinc oxide), Al-도핑된 ZnO(AZO), Ga-도핑된 ZnO(GZO), In/Ga-도핑된 ZnO(IGZO), Mg-도핑된 ZnO(MZO), Mo-도핑된 ZnO, Al-도핑된 MgO, Ga-도핑된 MgO 및 CuAlO2 중 어느 하나의 막일 수 있다.In this case, the first electrode 110 may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), fluorine-doped tin oxide (FTO), zinc oxide (ZnO), Al-doped ZnO (AZO), Ga Doped ZnO (GZO), In / Ga-doped ZnO (IGZO), Mg-doped ZnO (MZO), Mo-doped ZnO, Al-doped MgO, Ga-doped MgO and CuAlO 2 It can be one act.

또한, 상기 제1 전극(110)은 그래핀(graphene), 탄소나노튜브(carbon nanotube), C60(풀러렌, fllerene), 전도성 고분자 및 이들의 복합체 중 어느 하나의 유기물 전극일 수 있다. 제1 전극(110)을 유기물 전극으로 형성한 경우 가요성 플라스틱 기판 상에 용이하게 태양전지를 형성할 수 있다.In addition, the first electrode 110 may be an organic electrode of any one of graphene, carbon nanotubes, C 60 (fullerenes, fllerene), conductive polymers, and composites thereof. When the first electrode 110 is formed of an organic material electrode, a solar cell can be easily formed on a flexible plastic substrate.

상기 제1 전극(110)은 열기상증착(thermal evaporation)법, 전자빔증착(e-beam evaporation)법, 스퍼터링(sputtering)법, 화학적 증착법 또는 유사한 방법 등에서 적절하게 선택하여 형성할 수 있다.The first electrode 110 may be appropriately selected from a thermal evaporation method, an e-beam evaporation method, a sputtering method, a chemical vapor deposition method, or a similar method.

도 1(S11) 및 도 2b를 참조하면, 상기 제1 전극(110) 상에 정공수송층(115)을 형성한다. Referring to FIGS. 1S11 and 2B, a hole transport layer 115 is formed on the first electrode 110.

상기 정공수송층(115)은 광활성층에서 생성된 정공이 제1 전극(110)으로 용이하게 전달되도록 하며, 제1 전극(110)의 표면 거칠기를 완화시키는 완충층의 역할을 수행할 수 있다.The hole transport layer 115 may easily transfer holes generated in the photoactive layer to the first electrode 110, and may act as a buffer layer to reduce the surface roughness of the first electrode 110.

상기 정공수송층(115)은 NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, DPFL-NPB, α-NPD, Spiro-TAD, BPAPF, NPAPF, NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP, Spiro-BPA, TAPC, Spiro-TTB, β-TNB, HMTPD, α,β-TNB, α-TNB, β-NPP, PEDOT: PSS 및 PVK 중에서 선택되는 어느 하나로 형성될 수 있다. 그러나 이에 한정되는 것은 아니며, 전자 주개 물질의 HOMO 준위와 제1 전극의 일함수(또는 HOMO 준위) 사이의 에너지 준위를 갖는 다른 물질도 사용 가능하다.The hole transport layer 115 is NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, DPFL-NPB, α-NPD, Spiro-TAD, BPAPF, NPAPF , NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP, Spiro-BPA, TAPC, Spiro-TTB, β-TNB, HMTPD, α, β-TNB, α-TNB, β-NPP, PEDOT: It may be formed of any one selected from PSS and PVK. However, the present invention is not limited thereto, and other materials having an energy level between the HOMO level of the electron donor material and the work function (or HOMO level) of the first electrode may be used.

다만, 상기 정공수송층(115)의 형성 과정은 생략될 수도 있다.However, the process of forming the hole transport layer 115 may be omitted.

도 1(S12) 및 도 2c를 참조하면, 상기 정공수송층(115)(정공수송층이 생략된 경우, 제1 전극(110)) 상에 전자 주개 물질과, 전자 주개 물질과 비상용성인(incompatible) 희생 중합체가 혼합된 혼합 박막층(120)을 형성한다.1 (S12) and FIG. 2C, an incompatible sacrifice with an electron donor material and an electron donor material is performed on the hole transport layer 115 (if the hole transport layer is omitted, the first electrode 110). The mixed thin film layer 120 is formed of the polymer.

상기 희생 중합체는 상기 혼합 박막층(120)을 형성한 후 제거되는 물질로서, 그 제거에 의해 후술하는 바와 같이 상기 혼합 박막층(120)을 전자 주개 물질의 나노구조체로 변환할 수 있도록 하는 수단이 되는 물질이다. 상기 희생 중합체는 폴리에테르(polyether)계 화합물, 예를 들어, 폴리알킬렌글리콜(polyalkylene glycol)일 수 있으며, 바람직하게는 폴리에틸렌글리콜(polyethylene glycol) 또는 폴리프로필렌글리콜(polypropylene glycol)일 수 있으며, 더욱 바람직하게는 폴리에틸렌글리콜(polyethylene glycol)일 수 있다. 다만, 이에 한정되는 것은 아니다.The sacrificial polymer is a material that is removed after the mixed thin film layer 120 is formed, and a material that becomes a means for converting the mixed thin film layer 120 into a nanostructure of an electron donor material as described below by removing the mixed thin film layer 120. to be. The sacrificial polymer may be a polyether based compound, for example, polyalkylene glycol, preferably polyethylene glycol or polypropylene glycol, and more Preferably it may be polyethylene glycol (polyethylene glycol). However, the present invention is not limited thereto.

한편, 본 명세서 전체에 걸쳐, 상기 폴리알킬렌글리콜(polyalkylene glycol)은 알킬렌 옥사이드(alkylene oxide)의 올리고머(oligomer) 또는 폴리머(polymer)를 의미하며, 폴리알킬렌옥사이드(polyalkylene oxide) 및 폴리옥시알킬렌(polyoxyalkylene)을 포괄하는 의미로 이해되어야 한다.On the other hand, throughout the present specification, the polyalkylene glycol (polyalkylene glycol) refers to the oligomer (oligomer) or polymer (alkyl) of the alkylene oxide (alkylene oxide), polyalkylene oxide (polyalkylene oxide) and polyoxy It is to be understood as encompassing polyoxyalkylenes.

상기 전자 주개 물질은 외부에서 입사된 태양광을 흡수하여 전자-정공쌍(엑시톤, exciton)을 형성하는 한편, 전자 주개 물질과 전자 받개 물질의 p-n 접합 계면에서 분리된 정공을 양극 방향으로 이동시키는 역할을 하는 물질을 의미한다. 즉, 상기 전자 주개 물질은 p형 반도체로 사용 가능한 저분자 또는 고분자 유기물일 수 있으며, 예를 들어, 펜타센(pentacene), 쿠마린 6(coumarin 6, 3-(2-benzothiazolyl)-7-(diethylamino)coumarin), ZnPC(zinc phthalocyanine), CuPC(copper phthalocyanine), TiOPC(titanium oxide phthalocyanine), Spiro-MeOTAD(2,2',7,7'-tetrakis(N,N-p-dimethoxyphenylamino)-9,9'-spirobifluorene), F16CuPC(copper(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine), SubPc(boron subphthalocyanine chloride) 및 N3(cis-di(thiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid)-ruthenium(II)) 중에서 선택되는 어느 하나, 또는 P3HT(poly(3-hexylthiophene-2,5-diyl)), P3KT(poly[3-(potassium-6-hexanoate)thiophene-2,5-diyl]), PT(poly(thiophene-2,5-diyl)), P3OT(poly(3-octylthiophene-2,5-diyl)), PCPDTBT(poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]), PCDTBT(poly[N-9"-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]), PFDTBT(poly(2,7-(9-(2'- ethylhexyl)-9-hexyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole))), MEH-PPV(poly[1-methoxy-4-(2-ethylhexyloxy-2,5-phenylenevinylene)]), MDMO-PPV(poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene]), PFO(poly(9,9-dioctylfluorenyl-2,7-diyl)) 및 PFO-DMP(poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with dimethylphenyl) 중에서 선택되는 어느 하나일 수 있다. 다만, 이에 한정되는 것은 아니다.The electron donor material absorbs sunlight incident from the outside to form electron-hole pairs (exitons, excitons), and moves holes separated from the pn junction interface between the electron donor material and the electron acceptor material in an anode direction. It means a substance that makes. That is, the electron donor material may be a low molecular or high molecular organic material that can be used as a p-type semiconductor, for example, pentacene, coumarin 6 (coumarin 6, 3- (2-benzothiazolyl) -7- (diethylamino) coumarin), zinc phthalocyanine (ZnPC), copper phthalocyanine (CuPC), titanium oxide phthalocyanine (TiOPC), Spiro-MeOTAD (2,2 ', 7,7'-tetrakis (N, Np-dimethoxyphenylamino) -9,9'- spirobifluorene), F16CuPC (copper (II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H, 31H-phthalocyanine), SubPc (boron subphthalocyanine chloride) and N3 (cis-di (thiocyanato) -bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) -ruthenium (II)), or P3HT (poly ( 3-hexylthiophene-2,5-diyl)), P3KT (poly [3- (potassium-6-hexanoate) thiophene-2,5-diyl]), PT (poly (thiophene-2,5-diyl)), P3OT (poly (3-octylthiophene-2,5-diyl)), PCPDTBT (poly [2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4- b '] dithiophene) -alt-4,7- (2,1,3-benzothiadiazole)]), PCDTBT (poly [N-9 "-hepta-decanyl-2,7- carbazole-alt-5,5- (4 ', 7'-di-2-thienyl-2', 1 ', 3'-benzothiadiazole)]), PFDTBT (poly (2,7- (9- (2'- ethylhexyl) -9-hexyl-fluorene) -alt-5,5- (4 ', 7'-di-2-thienyl-2', 1 ', 3'-benzothiadiazole))), MEH-PPV (poly [1 -methoxy-4- (2-ethylhexyloxy-2,5-phenylenevinylene)]), MDMO-PPV (poly [2-methoxy-5- (3,7-dimethyloctyloxy) -1,4-phenylenevinylene]), PFO (poly (9,9-dioctylfluorenyl-2,7-diyl)) and PFO-DMP (poly (9,9-dioctylfluorenyl-2,7-diyl) end capped with dimethylphenyl). However, the present invention is not limited thereto.

한편, 상기 혼합 박막층(120)은 상기 전자 주개 물질과 상기 희생 중합체를 함유하는 혼합 용액을 캐스팅(casting)법, 스핀 코팅(spin coating)법, 잉크젯 프린팅(ink-jet printing)법, 스크린 프린팅(screen printing)법 또는 닥터블레이드(doctor blade)법 등에 의해 도포하여 형성할 수 있으며, 바람직하게는 스핀 코팅법에 의해 수행할 수 있다.On the other hand, the mixed thin film layer 120 is a casting method, a spin coating method, an ink-jet printing method, a screen printing (casting method) of the mixed solution containing the electron donor material and the sacrificial polymer It may be formed by coating by a screen printing method, a doctor blade method, or the like, and preferably by a spin coating method.

이 경우, 상기 혼합 용액의 용매는 상기 전자 주개 물질과 상기 희생 중합체를 모두 녹일 수 있는 용매라면 특별히 제한되지 않으며, 예를 들어, 전자 주개 물질로 P3HT를, 희생 중합체로 폴리에틸렌글리콜을 사용하는 경우, 클로로벤젠(chlorobenzene) 또는 다이클로로벤젠(dichlorobenzene) 등과 같은 유기 용매를 사용할 수 있다.In this case, the solvent of the mixed solution is not particularly limited as long as it is a solvent capable of dissolving both the electron donor material and the sacrificial polymer. For example, when P3HT is used as the electron donor material and polyethylene glycol is used as the sacrificial polymer, Organic solvents such as chlorobenzene or dichlorobenzene may be used.

도 1(S14) 및 도 2d를 참조하면, 상기 혼합 박막층(120) 내의 희생 중합체를 열처리에 의해 제거하여 전자 주개 물질의 나노구조체(130)를 형성한다.Referring to FIGS. 1S14 and 2D, the sacrificial polymer in the mixed thin film layer 120 is removed by heat treatment to form the nanostructure 130 of the electron donor material.

상기 전자 주개 물질의 나노구조체(130)는 상기 혼합 박막층(120)을 형성하는 과정에서 전자 주개 물질과 희생 중합체 간의 상분리 현상 및 열처리에 의한 희생 중합체의 제거 과정을 통해 형성될 수 있다.The nanostructure 130 of the electron donor material may be formed through phase separation between the electron donor material and the sacrificial polymer and removal of the sacrificial polymer by heat treatment in the process of forming the mixed thin film layer 120.

상기 전자 주개 물질의 나노구조체(130)는, 예를 들어, 다수의 홀(hole)을 갖는 박막형 전자 주개 물질층 또는 다수의 돌기로 이루어진 돌기형 전자 주개 물질층일 수 있다(도 2d에 도시된 나노구조체(130)는 돌기형 전자 주개 물질층을 과장하여 표현한 것임).The nanostructure 130 of the electron donor material may be, for example, a thin film electron donor material layer having a plurality of holes or a protrusion type electron donor material layer composed of a plurality of protrusions (nano shown in FIG. 2D). The structure 130 is an exaggerated representation of the projection electron donor material layer).

이 경우, 상기 홀 및 상기 돌기의 너비 내지 높이는 전자 주개 물질과 희생 중합체를 함유하는 혼합 용액의 농도 및 스핀 코팅 속도 등을 조절하여 수~수백 나노미터(nm)의 범위로 조절할 수 있다.In this case, the width and height of the hole and the protrusion may be adjusted in the range of several to several hundred nanometers (nm) by adjusting the concentration and spin coating speed of the mixed solution containing the electron donor material and the sacrificial polymer.

또한, 상기 열처리 온도는 사용되는 희생 중합체의 종류에 따라 적절한 범위에서 선택될 수 있으며, 예를 들어, 폴리에틸렌글리콜을 사용하는 경우 그 분자량에 따라 약 160℃ 내지 300℃의 온도 범위에서 선택될 수 있다.In addition, the heat treatment temperature may be selected in an appropriate range depending on the type of sacrificial polymer used, for example, when using polyethylene glycol may be selected in a temperature range of about 160 ℃ to 300 ℃ depending on its molecular weight. .

특히, 상기 열처리 과정을 통해 용매와 희생 중합체가 제거되는 동시에 전자 주개 물질의 결정성이 향상될 수 있으므로, 광활성층에서 생성된 전하의 이동 효율을 증가시킬 수 있다.In particular, since the solvent and the sacrificial polymer are removed through the heat treatment process, the crystallinity of the electron donor material may be improved, thereby increasing the transfer efficiency of the charge generated in the photoactive layer.

도 1(S16) 및 도 2e를 참조하면, 상기 전자 주개 물질의 나노구조체(130) 상에 전자 받개 물질층(140)을 형성한다.Referring to FIGS. 1S16 and 2E, an electron acceptor material layer 140 is formed on the nanostructure 130 of the electron donor material.

상기 전자 받개 물질층(140)은 상기 전자 주개 물질의 나노구조체(130)와 함께 광활성층(150)을 형성하며, p-n 접합 계면(135)에서 분리된 전자를 음극 방향으로 이동시키는 역할을 하는 영역을 의미한다.The electron acceptor material layer 140 forms a photoactive layer 150 together with the nanostructure 130 of the electron donor material, and moves the separated electrons at the pn junction interface 135 in the direction of the cathode. Means.

상기 전자 받개 물질층(140)은 n형 유기 반도체층 또는 n형 금속 산화물층일 수 있다.The electron acceptor material layer 140 may be an n-type organic semiconductor layer or an n-type metal oxide layer.

상기 n형 유기 반도체층은, 예를 들어, C60(풀러렌, fullerene), PC61BM([6,6]-phenyl-C61-butyric acid methyl ester), PC71BM([6,6]-phenyl-C71-butyric acid methyl ester), PC81BM(([6,6]-phenyl-C81-butyric acid methyl ester), PDCDT(N,N'-bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylene-tetracarboxylic acid diimide), PenPTC(perylene-3,4,9,10-tetracarboxylic acid N,N'-dipenthylimide), PTCBI(perylene-3,4,9,10-tetracarboxylic bis-benzimidazde), ADIDI(antra[2",1",9";4,5,6,6",5",10";4',5',6']diisoquino[2,1-a;2',1'-a']diperimidine-12,25-dione), PTCDA(perylene-3,4,9,10-tetracarboxylic dianhydride), PTCDI(perylene-3,4,9,10-tetracarboxylic acid dimide), NTDA(1,4,5,8-naphthalenetetracarboxylic dianhydride), MePTC(perylene-3,4,9,10-tetracarboxylic acid N,N'-dimethylimide), HepPTC(perylene-3,4,9,10-tetracarboxylic acid N,N'-diheptylimide), Liq(8-hydroxyquinolinolato-lithium), TPBi(2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)), PBD(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen(4,7-diphenyl-1,10-phenanthroline), BAlq(bis(2-methyl-8-quinolinolate)-4-(phenylphenolato)aluminium), Bpy-OXD(1,3-bis[2-(2,2'-bipyridine-6-yl)-1,3,4-oxadiazo-5-yl]benzene), BP-OXD-Bpy(6,6'-bis[5-(biphenyl-4-yl)-1,3,4oxadiazo-2-yl]-2,2'-bipyridyl), TAZ(3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole), NTAZ(4-(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole), NBphen(2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline), Bpy-FOXD(2,7-bis[2-(2,2'-bipyridine-6-yl)-1,3,4-oxadiazo-5-yl]-9,9-dimethylfluorene), OXD-7(1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene), 3TPYMB(tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane), 2-NPIP(1-methyl-2-(4-(naphthalen-2-yl)phenyl)-1H-imidazo[4,5f][1,10]phenanthroline), HNBphen(2-(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline), POPy2(phenyl-dipyrenylphosphine oxide), BP4mPy(3,3',5,5'-tetra[(m-pyridyl)-phen-3-yl]biphenyl), TmPyPB(1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene) 및 BTB(4,4'-bis(4,6-diphenyl-1,3,5-triazin-2-yl)) 중에서 선택되는 어느 하나를 포함하는 층일 수 있다.The n-type organic semiconductor layer is, for example, C 60 (fullerene), PC 61 BM ([6,6] -phenyl-C 61 -butyric acid methyl ester), PC 71 BM ([6,6] -phenyl-C 71 -butyric acid methyl ester), PC 81 BM (([6,6] -phenyl-C 81 -butyric acid methyl ester), PDCDT (N, N'-bis (2,5-di-tert -butylphenyl) -3,4,9,10-perylene-tetracarboxylic acid diimide), PenPTC (perylene-3,4,9,10-tetracarboxylic acid N, N'-dipenthylimide), PTCBI (perylene-3,4,9) , 10-tetracarboxylic bis-benzimidazde), ADIDI (antra [2 ", 1", 9 ";4,5,6,6", 5 ", 10"; 4 ', 5', 6 '] diisoquino [2, 1-a; 2 ', 1'-a'] diperimidine-12,25-dione), perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), perylene-3,4,9,10- tetracarboxylic acid dimide), NTDA (1,4,5,8-naphthalenetetracarboxylic dianhydride), meptc (perylene-3,4,9,10-tetracarboxylic acid N, N'-dimethylimide), HepPTC (perylene-3,4,9) , 10-tetracarboxylic acid N, N'-diheptylimide), Liq (8-hydroxyquinolinolato-lithium), TPBi (2,2 ', 2 "-(1,3,5-benzinetriyl) -tris (1-phenyl-1- H-benzimidazole)), PBD (2,9-dimethyl-4,7-diphenyl-1,10- phenanthroline), BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen (4,7-diphenyl-1,10-phenanthroline), BAlq (bis (2-methyl-8-quinolinolate ) -4- (phenylphenolato) aluminium), Bpy-OXD (1,3-bis [2- (2,2'-bipyridine-6-yl) -1,3,4-oxadiazo-5-yl] benzene), BP-OXD-Bpy (6,6'-bis [5- (biphenyl-4-yl) -1,3,4oxadiazo-2-yl] -2,2'-bipyridyl), TAZ (3- (4-biphenyl ) -4-phenyl-5-tert-butylphenyl-1,2,4-triazole), NTAZ (4- (Naphthalen-1-yl) -3,5-diphenyl-4H-1,2,4-triazole), NBphen (2,9-bis (naphthalen-2-yl) -4,7-diphenyl-1,10-phenanthroline), Bpy-FOXD (2,7-bis [2- (2,2'-bipyridine-6- yl) -1,3,4-oxadiazo-5-yl] -9,9-dimethylfluorene), OXD-7 (1,3-bis [2- (4-tert-butylphenyl) -1,3,4-oxadiazo -5-yl] benzene), 3TPYMB (tris (2,4,6-trimethyl-3- (pyridin-3-yl) phenyl) borane), 2-NPIP (1-methyl-2- (4- (naphthalen- 2-yl) phenyl) -1H-imidazo [4,5f] [1,10] phenanthroline), HNBphen (2- (naphthalen-2-yl) -4,7-diphenyl-1,10-phenanthroline), POPy2 ( phenyl-dipyrenylphosphine oxide), BP4mPy (3,3 ', 5,5'-tetra [(m-pyridyl) -phen-3-yl] biphenyl), TmPyPB (1,3,5-tri [(3-pyridyl) -phe n-3-yl] benzene) and BTB (4,4'-bis (4,6-diphenyl-1,3,5-triazin-2-yl)).

상기 n 형 금속 산화물층은, 예를 들어, ZnO, TiO2 및 SnO2 중에서 선택되는 어느 하나를 포함하는 층일 수 있다.The n-type metal oxide layer may be, for example, a layer including any one selected from ZnO, TiO 2, and SnO 2 .

한편, 상기 전자 받개 물질층(140)은 상기 n형 유기 반도체 또는 상기 n형 금속 산화물(구체적으로, 나노 입자 형태의 금속 산화물)을 함유하는 용액을 캐스팅법, 스핀 코팅법, 잉크젯 프린팅법 또는 스크린 프린팅법 등에 의해 도포하여 형성할 수 있다. 다만, 이에 한정되는 것은 아니다.Meanwhile, the electron acceptor material layer 140 may cast, spin coat, inkjet print, or screen a solution containing the n-type organic semiconductor or the n-type metal oxide (specifically, a metal oxide in the form of nanoparticles). It can apply | coat and form by the printing method. However, the present invention is not limited thereto.

이러한 과정을 거쳐, 광활성층(150)은 전자 받개 물질층(140)이 전자 주개 물질의 나노구조체(130)와 나노스케일로 맞물린 구조를 형성할 수 있으며, 결과적으로 p-n 접합 계면(135)이 증가되므로 광흡수에 의해 생성된 엑시톤의 전자-정공 분리능을 향상시킬 수 있다.Through this process, the photoactive layer 150 may form a structure in which the electron acceptor material layer 140 meshes with the nanostructure 130 of the electron donor material in nanoscale, resulting in an increase in the pn junction interface 135. Therefore, it is possible to improve the electron-hole resolution of excitons generated by light absorption.

도 1(S18) 및 도 2f를 참조하면, 상기 전자 받개 물질층(140) 상에 제2 전극(160)을 형성한다.Referring to FIGS. 1S18 and 2F, a second electrode 160 is formed on the electron acceptor material layer 140.

상기 제2 전극(160)은 낮은 저항을 갖는 전도성 물질로서, 그 하부에 위치한 광활성층(150)에서 생성된 전자를 받아 외부 회로로 전달하는 음극의 역할을 수행할 수 있다.The second electrode 160 is a conductive material having a low resistance, and may serve as a cathode that receives electrons generated by the photoactive layer 150 disposed below and transfers the electrons to an external circuit.

상기 제2 전극(160)은 Al, Au, Cu, Pt, Ag, W, Ni, Zn, Ti, Zr, Hf, Cd, Pd 및 이들의 합금 중에서 선택되는 어느 하나로 이루어지는 금속 전극일 수 있다.The second electrode 160 may be a metal electrode made of any one selected from Al, Au, Cu, Pt, Ag, W, Ni, Zn, Ti, Zr, Hf, Cd, Pd, and alloys thereof.

또한, 상기 제2 전극(160)은 그래핀, 탄소나노튜브, 풀러렌, 전도성 고분자 및 이들의 복합체 중에서 선택되는 어느 하나로 이루어지는 유기물 전극일 수 있으며, 제2 전극(160)을 투명한 유기물 전극으로 형성한 경우 전지 상부에서의 수광이 가능하다.In addition, the second electrode 160 may be an organic electrode including any one selected from graphene, carbon nanotubes, fullerenes, conductive polymers, and composites thereof, and the second electrode 160 may be formed of a transparent organic electrode. In this case, light reception at the top of the battery is possible.

상기 제2 전극(160)은 열기상증착법, 전자빔증착법, 스퍼터링법, 화학적 증착법 또는 금속을 포함하는 전극 형성용 페이스트를 도포한 후 열처리하여 형성할 수 있다.The second electrode 160 may be formed by applying a thermal image deposition method, an electron beam deposition method, a sputtering method, a chemical vapor deposition method or an electrode forming paste containing a metal and then heat treatment.

이처럼 본 발명에 따르면, 광활성층 내에 나노구조체를 도입함으로써, 광흡수 면적을 넓힐 수 있는 동시에, 증가된 p-n 접합 계면에 의해 생성된 엑시톤이 전자와 정공으로 분리될 수 있는 유효 분리 영역을 증가시킬 수 있으므로 엑시톤의 분리효율을 높일 수 있다. 또한, 종래의 벌크 이종접합(bulk heterojunction) 구조와는 달리 전자 주개 물질과 전자 받개 물질이 각각 양극과 음극에 연결된 연속상 구조를 가지므로, 분리된 전자와 정공이 자발적 전하 흐름 방향을 따라 적절한 전극으로 이동할 수 있어 전하의 이동효율을 향상시킬 수 있다. 또한, 태양전지에 입사된 빛의 전반사를 억제하는 텍스처링(texturing) 효과를 얻을 수 있으므로 광흡수효율을 높일 수 있다.As described above, according to the present invention, by introducing nanostructures into the photoactive layer, it is possible to increase the light absorption area and increase the effective separation region where the excitons generated by the increased pn junction interface can be separated into electrons and holes. Therefore, the separation efficiency of excitons can be improved. In addition, unlike the conventional bulk heterojunction structure, the electron donor material and the electron acceptor material have a continuous phase structure in which the electron donor material and the electron acceptor material are respectively connected to the anode and the cathode. Can be moved to improve the transfer efficiency of the charge. In addition, since a texturing effect of suppressing total reflection of light incident on the solar cell may be obtained, light absorption efficiency may be improved.

또한, 본 발명에서의 나노구조체 형성은 전자 주개 물질과 희생 중합체의 혼합물을 스핀 코팅 등의 용액 공정을 통하여 도포한 후, 열처리하는 간단한 방법으로 형성할 수 있으므로 태양전지의 제조 비용을 낮출 수 있는 장점이 있다. 이에 더하여, 상기 열처리 과정을 통해 전자 주개 물질의 결정성을 향상시킬 수 있으며, 이는 전하의 이동효율을 더욱 향상시켜 광전변환효율 향상에 기여할 수 있다.In addition, the nanostructure formation in the present invention can be formed by a simple method of applying a mixture of the electron donor material and the sacrificial polymer through a solution process such as spin coating, and then heat treatment to lower the manufacturing cost of the solar cell There is this. In addition, it is possible to improve the crystallinity of the electron donor material through the heat treatment process, which can further improve the transfer efficiency of the charge to contribute to the photoelectric conversion efficiency.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예(example)를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid the understanding of the present invention. However, the following experimental examples are only for helping understanding of the present invention, and the present invention is not limited to the following experimental examples.

<실험예 1: 나노구조체의 제조(1)>Experimental Example 1 Preparation of Nanostructure (1)

클로로벤젠(chlorobenzene) 1ml에 P3HT(poly(3-hexylthiophene-2,5-diyl))와 PEG(polyethylene glycol)을 각각 5:1(30mg:6mg)의 중량비로 용해시켜 혼합 용액을 제조하였다. 다음, 상기 혼합 용액을 기판 상에 2000rpm으로 5초 동안 스핀 코팅하여 P3HT와 PEG의 혼합물을 함유하는 혼합 박막을 형성하였다. 이어서, 기판을 핫플레이트(hot plate)에 올리고, 180 ℃에서 10분 동안 열처리하여 PEG(및 클로로벤젠)를 제거하였다.P3HT (poly (3-hexylthiophene-2,5-diyl)) and PEG (polyethylene glycol) were dissolved in 1 ml of chlorobenzene in a weight ratio of 5: 1 (30 mg: 6 mg), respectively, to prepare a mixed solution. Next, the mixed solution was spin coated on the substrate at 2000 rpm for 5 seconds to form a mixed thin film containing a mixture of P3HT and PEG. The substrate was then placed on a hot plate and heat treated at 180 ° C. for 10 minutes to remove PEG (and chlorobenzene).

도 3a 및 3b는 상기 실험예 1에 따라 제조된 나노구조체의 SEM 이미지(도 3b는 단면 SEM 이미지)이다.3a and 3b are SEM images (Fig. 3b is a cross-sectional SEM image) of the nanostructure prepared according to Experimental Example 1.

도 3a 및 3b를 참조하면, P3HT와 PEG를 함유하는 혼합 박막에서 열처리에 의한 PEG 제거를 통해, 다수의 홀을 갖는 박막형 P3HT층을 형성할 수 있음을 확인할 수 있다.Referring to FIGS. 3A and 3B, it can be seen that a thin film P3HT layer having a plurality of holes can be formed by removing PEG from the mixed thin film containing P3HT and PEG by heat treatment.

<실험예 2: 나노구조체의 제조(2)>Experimental Example 2: Fabrication of Nanostructures (2)

클로로벤젠(chlorobenzene) 3ml에 P3HT(poly(3-hexylthiophene-2,5-diyl))와 PEG(polyethylene glycol)을 각각 5:1(50mg:10mg)의 중량비로 용해시켜 혼합 용액을 제조하였다. 다음, 상기 혼합 용액을 기판 상에 5000rpm으로 40초 동안 스핀 코팅하여 P3HT와 PEG의 혼합물을 함유하는 혼합 박막을 형성하였다. 이어서, 기판을 핫플레이트(hot plate)에 올리고, 180 ℃에서 10분 동안 열처리하여 PEG(및 클로로벤젠)를 제거하였다.P3HT (poly (3-hexylthiophene-2,5-diyl)) and PEG (polyethylene glycol) were dissolved in 3 ml of chlorobenzene in a weight ratio of 5: 1 (50 mg: 10 mg), respectively, to prepare a mixed solution. Next, the mixed solution was spin coated on the substrate at 5000 rpm for 40 seconds to form a mixed thin film containing a mixture of P3HT and PEG. The substrate was then placed on a hot plate and heat treated at 180 ° C. for 10 minutes to remove PEG (and chlorobenzene).

도 4는 상기 실험예 2에 따라 제조된 나노구조체의 SEM 이미지이다.4 is an SEM image of a nanostructure prepared according to Experimental Example 2.

도 4를 참조하면, P3HT와 PEG를 함유하는 혼합 박막에서 열처리에 의한 PEG 제거를 통해, 다수의 돌기로 이루어진 돌기형 P3HT층을 형성할 수 있음을 확인할 수 있다.Referring to Figure 4, it can be seen that through the removal of PEG by heat treatment in the mixed thin film containing P3HT and PEG, it is possible to form a projection-like P3HT layer consisting of a plurality of projections.

이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.In the above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications and changes by those skilled in the art within the spirit and scope of the present invention. Changes are possible.

[부호의 설명][Description of the code]

100: 기판 110: 제1 전극100 substrate 110 first electrode

115: 정공수송층 120: 혼합 박막층115: hole transport layer 120: mixed thin film layer

130: 전자 주개 물질의 나노구조체 135: p-n 접합 계면130: nanostructure of the electron donor material 135: p-n junction interface

140: 전자 받개 물질층 150: 광활성층140: electron acceptor material layer 150: photoactive layer

160: 제2 전극160: second electrode

Claims (12)

제1 전극이 형성된 기판을 준비하는 단계;Preparing a substrate on which the first electrode is formed; 상기 제1 전극 상에 전자 주개 물질과, 상기 전자 주개 물질과 비상용성인 희생 중합체가 혼합된 혼합 박막층을 형성하는 단계;Forming a mixed thin film layer on which the electron donor material and the sacrificial polymer which are incompatible with the electron donor material are mixed on the first electrode; 상기 혼합 박막층 내의 희생 중합체를 열처리에 의해 제거하여 전자 주개 물질의 나노구조체를 형성하는 단계;Removing the sacrificial polymer in the mixed thin film layer by heat treatment to form a nanostructure of an electron donor material; 상기 전자 주개 물질의 나노구조체 상에 전자 받개 물질층을 형성하는 단계; 및Forming an electron acceptor material layer on the nanostructure of the electron donor material; And 상기 전자 받개 물질층 상에 제2 전극을 형성하는 단계를 포함하는 태양전지 제조방법.Forming a second electrode on the electron acceptor material layer. 제1항에 있어서,The method of claim 1, 상기 희생 중합체는 폴리알킬렌글리콜인 태양전지 제조방법. The sacrificial polymer is a polyalkylene glycol solar cell manufacturing method. 제2항에 있어서,The method of claim 2, 상기 폴리알킬렌글리콜은 폴리에틸렌글리콜 또는 폴리프로필렌글리콜인 태양전지 제조방법.The polyalkylene glycol is a polyethylene glycol or polypropylene glycol solar cell manufacturing method. 제1항에 있어서,The method of claim 1, 상기 전자 주개 물질은 펜타센, 쿠마린 6, ZnPC, CuPC, TiOPC, Spiro-MeOTAD, F16CuPC, SubPc, N3, P3HT, P3KT, PT, P3OT, PCPDTBT, PCDTBT, PFDTBT, MEH-PPV, MDMO-PPV, PFO 및 PFO-DMP 중에서 선택되는 어느 하나인 태양전지 제조방법.The electron donor material is pentacene, coumarin 6, ZnPC, CuPC, TiOPC, Spiro-MeOTAD, F16CuPC, SubPc, N3, P3HT, P3KT, PT, P3OT, PCPDTBT, PCDTBT, PFDTBT, MEH-PPV, MDMO-PPV, PFO And PFO-DMP any one selected from the solar cell manufacturing method. 제1항에 있어서,The method of claim 1, 상기 전자 받개 물질층은 n형 유기 반도체층 또는 n형 금속 산화물층인 태양전지 제조방법.The electron acceptor material layer is an n-type organic semiconductor layer or n-type metal oxide layer solar cell manufacturing method. 제5항에 있어서,The method of claim 5, 상기 n형 유기 반도체층은 C60, PC61BM, PC71BM, PC81BM, PDCDT, PenPTC, PTCBI, ADIDI, PTCDA, PTCDI, NTDA, MePTC, HepPTC, Liq, TPBi, PBD, BCP, Bphen, BAlq, Bpy-OXD, BP-OXD-Bpy, TAZ, NTAZ, NBphen, Bpy-FOXD, OXD-7, 3TPYMB, 2-NPIP, HNBphen, POPy2, BP4mPy, TmPyPB 및 BTB 중 에서 선택되는 어느 하나를 포함하는 층인 태양전지 제조방법.The n-type organic semiconductor layer is C 60 , PC 61 BM, PC 71 BM, PC 81 BM, PDCDT, PenPTC, PTCBI, ADIDI, PTCDA, PTCDI, NTDA, MePTC, HepPTC, Liq, TPBi, PBD, BCP, Bphen, Containing any one selected from BAlq, Bpy-OXD, BP-OXD-Bpy, TAZ, NTAZ, NBphen, Bpy-FOXD, OXD-7, 3TPYMB, 2-NPIP, HNBphen, POPy2, BP4mPy, TmPyPB and BTB Layer solar cell manufacturing method. 제5항에 있어서,The method of claim 5, 상기 n형 금속 산화물층은 ZnO, TiO2 및 SnO2 중에서 선택되는 어느 하나를 포함하는 층인 태양전지 제조방법.The n-type metal oxide layer is a solar cell manufacturing method of a layer containing any one selected from ZnO, TiO 2 and SnO 2 . 제1항에 있어서,The method of claim 1, 상기 전자 주개 물질의 나노구조체는 다수의 홀을 갖는 박막형 전자 주개 물질층인 태양전지 제조방법.The nanostructure of the electron donor material is a thin film type electron donor material layer having a plurality of holes solar cell manufacturing method. 제1항에 있어서,The method of claim 1, 상기 전자 주개 물질의 나노구조체는 다수의 돌기로 이루어진 돌기형 전자 주개 물질층인 태양전지 제조방법.The nanostructure of the electron donor material is a solar cell manufacturing method is a projection type electron donor material layer consisting of a plurality of projections. 제1항에 있어서,The method of claim 1, 상기 혼합 박막층을 형성하는 단계는 스핀 코팅법에 의해 수행하는 것인 태양전지 제조방법.Forming the mixed thin film layer is a solar cell manufacturing method that is performed by a spin coating method. 제1항에 있어서,The method of claim 1, 상기 혼합 박막층을 형성하기 전에, 제1 전극 상에 정공수송층을 형성하는 단계를 더 포함하는 태양전지 제조방법.Forming a hole transport layer on the first electrode before forming the mixed thin film layer further comprises a solar cell manufacturing method. 제1 전극이 형성된 기판을 준비하는 단계;Preparing a substrate on which the first electrode is formed; 상기 제1 전극 상에 전자 주개 물질과 폴리에틸렌글리콜이 혼합된 혼합 박막층을 형성하는 단계;Forming a mixed thin film layer on which the electron donor material and polyethylene glycol are mixed on the first electrode; 상기 혼합 박막층 내의 폴리에틸렌글리콜을 열처리에 의해 제거하여 전자 주개 물질의 나노구조체를 형성하는 단계;Removing the polyethylene glycol in the mixed thin film layer by heat treatment to form a nanostructure of an electron donor material; 상기 전자 주개 물질의 나노구조체 상에 전자 받개 물질층을 형성하는 단계; 및Forming an electron acceptor material layer on the nanostructure of the electron donor material; And 상기 전자 받개 물질층 상에 제2 전극을 형성하는 단계를 포함하는 태양전지 제조방법.Forming a second electrode on the electron acceptor material layer.
PCT/KR2011/003960 2011-05-30 2011-05-30 Method for fabricating solar cell including nanostructure WO2012165670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/003960 WO2012165670A1 (en) 2011-05-30 2011-05-30 Method for fabricating solar cell including nanostructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/003960 WO2012165670A1 (en) 2011-05-30 2011-05-30 Method for fabricating solar cell including nanostructure

Publications (1)

Publication Number Publication Date
WO2012165670A1 true WO2012165670A1 (en) 2012-12-06

Family

ID=47259508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003960 WO2012165670A1 (en) 2011-05-30 2011-05-30 Method for fabricating solar cell including nanostructure

Country Status (1)

Country Link
WO (1) WO2012165670A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107790A1 (en) * 2017-11-28 2019-06-06 주식회사 엘지화학 Photoactive layer and organic solar cell comprising same
US11502255B2 (en) 2017-11-28 2022-11-15 Lg Chem, Ltd. Photoactive layer and organic solar cell comprising same
JP7516590B2 (en) 2014-05-13 2024-07-16 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion film and photoelectric conversion element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988206B1 (en) * 2008-12-12 2010-10-18 한양대학교 산학협력단 Solar cell using carbon nanotube composite and its manufacturing method
KR101033028B1 (en) * 2009-06-25 2011-05-09 한양대학교 산학협력단 Solar cell and manufacturing method thereof
KR101036453B1 (en) * 2009-07-06 2011-05-24 한양대학교 산학협력단 Solar cell using p-i-n nanowire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988206B1 (en) * 2008-12-12 2010-10-18 한양대학교 산학협력단 Solar cell using carbon nanotube composite and its manufacturing method
KR101033028B1 (en) * 2009-06-25 2011-05-09 한양대학교 산학협력단 Solar cell and manufacturing method thereof
KR101036453B1 (en) * 2009-07-06 2011-05-24 한양대학교 산학협력단 Solar cell using p-i-n nanowire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7516590B2 (en) 2014-05-13 2024-07-16 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion film and photoelectric conversion element
WO2019107790A1 (en) * 2017-11-28 2019-06-06 주식회사 엘지화학 Photoactive layer and organic solar cell comprising same
US11502255B2 (en) 2017-11-28 2022-11-15 Lg Chem, Ltd. Photoactive layer and organic solar cell comprising same

Similar Documents

Publication Publication Date Title
US8227691B2 (en) Processing additives for fabricating organic photovoltaic cells
JP5516153B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
US20090194167A1 (en) Methods of Forming Photoactive Layer
JP5742705B2 (en) Organic photoelectric conversion element
KR101082910B1 (en) Organic Solar Cells with Fused Ring Compounds
WO2010134432A1 (en) Organic photoelectric conversion element
WO2010120082A2 (en) Multilayer organic solar cell using a polyelectrolyte layer, and method for manufacturing same
WO2011062457A2 (en) Organic-inorganic hybrid solar cell and manufacturing method thereof
WO2011040750A2 (en) Parallel-type tandem organic solar cell
WO2019039907A2 (en) Organic electronic device and manufacturing method thereof
WO2015167225A1 (en) Organic solar cell and manufacturing method therefor
JP5515598B2 (en) Method for producing organic photoelectric conversion element and organic photoelectric conversion element
WO2013012271A2 (en) Method for preparing light absorption layer for solar cell, solar cell including light absorption layer, and manufacturing method thereof
WO2015167230A1 (en) Solar cell and manufacturing method therefor
KR101055117B1 (en) Solar cell manufacturing method including nanostructure
JP5444743B2 (en) Organic photoelectric conversion element
WO2010005622A2 (en) Telescoping devices
WO2010107261A2 (en) Solar cell and a production method therefor
WO2012102066A1 (en) Material composition for organic photoelectric conversion layer, organic photoelectric conversion element, method for producing organic photoelectric conversion element, and solar cell
JP2014053383A (en) Tandem organic photoelectric conversion element and solar cell using the same
WO2010110590A2 (en) Solar cell, and method for producing same
WO2010090123A1 (en) Organic photoelectric conversion element, solar cell using same, and optical sensor array
WO2015163658A1 (en) Stacked organic solar cell
JP2010192863A (en) Organic photoelectric conversion element and method of manufacturing the same
WO2012165670A1 (en) Method for fabricating solar cell including nanostructure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866470

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载