+

WO2012165599A1 - Level shift circuit - Google Patents

Level shift circuit Download PDF

Info

Publication number
WO2012165599A1
WO2012165599A1 PCT/JP2012/064226 JP2012064226W WO2012165599A1 WO 2012165599 A1 WO2012165599 A1 WO 2012165599A1 JP 2012064226 W JP2012064226 W JP 2012064226W WO 2012165599 A1 WO2012165599 A1 WO 2012165599A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
buffer
terminal
nmos transistor
reference potential
Prior art date
Application number
PCT/JP2012/064226
Other languages
French (fr)
Japanese (ja)
Inventor
智裕 根塚
Original Assignee
ザインエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザインエレクトロニクス株式会社 filed Critical ザインエレクトロニクス株式会社
Publication of WO2012165599A1 publication Critical patent/WO2012165599A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356182Bistable circuits using complementary field-effect transistors with additional means for controlling the main nodes

Definitions

  • the present invention relates to a level shift circuit.
  • the level shift circuit plays a role of bypassing a system that processes signals with a low voltage and a system that processes signals with a high voltage.
  • This level shift circuit is used in a signal processing system of a semiconductor integrated circuit and contributes to power saving.
  • the level shift circuit receives a first input signal and a second input signal which are complementary to each other and are output from a circuit which operates by being supplied with the first reference potential Vddl and the third reference potential Vss.
  • the other when one of the first input signal and the second input signal is at a high level, the other is at a low level. Similarly, when one of the first output signal and the second output signal is at a high level, the other is at a low level.
  • the change of the high level / low level of the first output signal and the second output signal is the same as the change of the high level / low level of the first input signal and the second input signal.
  • the level shift circuit outputs the high level of the signal output from the CPU core. Is converted from 1.8 V to 3.3 V, and the level-converted signal is output to the peripheral circuit.
  • a circuit disclosed in Patent Document 1 is known as such a level shift circuit.
  • the level shift circuit disclosed in this document includes a first PMOS transistor, a second PMOS transistor, a first NMOS transistor, and a second NMOS transistor as a basic configuration.
  • the first PMOS transistor and the first NMOS transistor are sequentially connected in series between the second reference potential Vddh and the third reference potential Vss, and the drain terminal of the first PMOS transistor and the drain terminal of the first NMOS transistor are connected to each other.
  • the connection point is connected to each other as a second output terminal, and a second output signal is output from the second output terminal.
  • the second PMOS transistor and the second NMOS transistor are provided in series and sequentially connected between the second reference potential Vddh and the third reference potential Vss.
  • the drain terminal of the second PMOS transistor and the drain terminal of the second NMOS transistor Are connected to each other as a first output terminal, and a first output signal is output from the first output terminal.
  • the level shift circuit disclosed in Patent Document 1 includes a third NMOS transistor and a fourth NMOS transistor in addition to the above basic configuration.
  • the third NMOS transistor is provided between the first reference potential Vddl and the second output terminal, and the fourth NMOS transistor is provided between the first reference potential Vddl and the first output terminal.
  • the level shift circuit disclosed in Patent Document 1 includes the third NMOS transistor and the fourth NMOS transistor, thereby reducing power consumption and speed.
  • a level shift circuit including the third NMOS transistor and the fourth NMOS transistor as described above in addition to the basic configuration does not necessarily reduce power consumption and increase speed as expected. It was.
  • the present invention was made to solve the above problems based on the knowledge of the present inventor, and an object thereof is to provide a level shift circuit capable of further reducing power consumption and improving speed. To do.
  • the level shift circuit receives a first input signal and a second input signal which are complementary to each other and are output from a circuit which is supplied with the first reference potential Vddl and the third reference potential Vss and operates.
  • the first output signal and the second output signal are generated by generating complementary first output signals and second output signals having high level voltage values greater than the high level voltage values of the input signal and the second input signal.
  • a level shift circuit that outputs either or both of them to a circuit that operates by being supplied with the second reference potential Vddh and the third reference potential Vss.
  • the level shift circuit of the present invention includes (1) a first input terminal to which a first input signal is input, (2) a second input terminal to which a second input signal is input, and (3) a first output signal.
  • a first node that appears (4) a second node where a second output signal appears, (5) a source terminal to which a second reference potential Vddh is input, a drain terminal connected to the second node, and a first node
  • a first PMOS transistor having a gate terminal connected to the gate
  • (6) a source terminal to which the second reference potential Vddh is input, a drain terminal connected to the first node, and a gate terminal connected to the second node
  • a first PMOS having (7) a source terminal to which the third reference potential Vss is input, a drain terminal connected to the second node, and a gate terminal connected to the first input terminal.
  • Transistor (8) third reference potential Vss A second NMOS transistor having an input source terminal, a drain terminal connected to the first node, and a gate terminal connected to the second input terminal; and (9) a drain terminal to which the second reference potential Vddh is input.
  • a third NMOS transistor having a source terminal connected to the second node and a gate terminal connected to the second input terminal, (10) a drain terminal to which the second reference potential Vddh is input, and a first node
  • a fourth NMOS transistor having a source terminal connected to the first input terminal and a gate terminal connected to the first input terminal.
  • the level shift circuit of the present invention may further include a first buffer circuit that outputs a signal obtained by logically inverting the first output signal appearing at the first node from the output terminal.
  • the first buffer circuit includes a buffer PMOS transistor and a buffer NMOS transistor connected in series between the second reference potential Vddh and the third reference potential Vss, and each of the buffer PMOS transistor and the buffer NMOS transistor
  • the drain terminal is connected to the output terminal
  • the first node is connected to the gate terminal of the buffer PMOS transistor
  • the first input signal is input to the gate terminal of the buffer NMOS transistor.
  • the first buffer circuit includes a first PMOS transistor for buffer, a second PMOS transistor for buffer, and an NMOS transistor for buffer connected in series between the second reference potential Vddh and the third reference potential Vss,
  • the drain terminal of each of the second PMOS transistor for buffer and the NMOS transistor for buffer is connected to the output terminal, the first node is connected to one of the gate terminals of the first PMOS transistor for buffer and the second PMOS transistor for buffer, and the other
  • the first input signal is input to the gate terminal and the first input signal is input to the gate terminal of the buffer NMOS transistor.
  • the level shift circuit of the present invention further includes a first delay circuit that delays the first input signal input to the first buffer circuit with respect to the first input signal input to the gate terminal of the first NMOS transistor. It is also suitable to provide.
  • the level shift circuit of the present invention may further include a second buffer circuit that outputs a signal obtained by logically inverting the second output signal appearing at the second node from the output terminal.
  • the second buffer circuit includes a buffer PMOS transistor and a buffer NMOS transistor sequentially connected in series between the second reference potential Vddh and the third reference potential Vss, and each of the buffer PMOS transistor and the buffer NMOS transistor The drain terminal is connected to the output terminal, the second node is connected to the gate terminal of the buffer PMOS transistor, and the second input signal is preferably input to the gate terminal of the buffer NMOS transistor.
  • the second buffer circuit includes a buffer first PMOS transistor, a buffer second PMOS transistor, and a buffer NMOS transistor connected in series between the second reference potential Vddh and the third reference potential Vss in order.
  • the drain terminal of each of the second PMOS transistor for buffer and the NMOS transistor for buffer is connected to the output terminal, the second node is connected to one of the gate terminal of the first PMOS transistor for buffer and the second PMOS transistor for buffer, and the other
  • the second input signal is input to the gate terminal and the second input signal is input to the gate terminal of the buffer NMOS transistor.
  • the level shift circuit of the present invention further includes a second delay circuit that delays the second input signal input to the second buffer circuit with respect to the second input signal input to the gate terminal of the second NMOS transistor. It is also suitable to provide.
  • the level shift circuit of the present invention can reduce power consumption and increase speed.
  • FIG. 1 is a diagram showing a configuration of a level shift circuit 1A of the first comparative example.
  • a first input circuit 3 and a second input circuit 4 which are operated by being supplied with the first reference potential Vddl and the third reference potential Vss are also shown.
  • the level shift circuit 1A includes a first input terminal 11, a second input terminal 12, a first output terminal 21, a second output terminal 22, a first PMOS transistor 31, a second PMOS transistor 32, a first NMOS transistor 41, and a second NMOS transistor 42. Prepare.
  • the level shift circuit 1A receives the complementary first input signal Sip and second input signal Sin output from the circuits 3 and 4 that operate by being supplied with the first reference potential Vddl and the third reference potential Vss. , 12 are input.
  • the level shift circuit 1A generates a first output signal Sop and a second output signal Son which are complementary to each other and have a high level voltage value larger than the high level voltage value of the first input signal Sip and the second input signal Sin. To do.
  • the level shift circuit 1A outputs either or both of the first output signal Sop and the second output signal Son to a circuit that operates by being supplied with the second reference potential Vddh and the third reference potential Vss. , 22.
  • the low level voltage values of the first output signal Sop and the second output signal Son are equal to the low level voltage values of the first input signal Sip and the second input signal Sin.
  • the first input terminal 11 receives the first input signal Sip output from the first input circuit 3.
  • the second input terminal 12 receives the second input signal Sin output from the second input circuit 4.
  • the first input signal Sip and the second input signal Sin are complementary to each other, and when one is at a high level, the other is at a low level.
  • the first output terminal 21 outputs the first output signal Sop.
  • the second output terminal 22 receives the second output signal Son.
  • the first output signal Sop and the second output signal Son are complementary to each other, and when one is at a high level, the other is at a low level.
  • the 1PMOS transistor 31 has a source terminal second reference potential Vddh is input, a drain terminal connected to the second node N 2, and a gate terminal connected to the first node N 1.
  • the 2PMOS transistor 32 has a source terminal second reference potential Vddh is input, a drain terminal connected to the first node N 1, and a gate terminal connected to the second node N 2.
  • the 1NMOS transistor 41 has a source terminal third reference potential Vss is input, a drain terminal connected to the second node N 2, and a gate terminal connected to the first input terminal 11.
  • the 2NMOS transistor 42 has a source terminal third reference potential Vss is input, a drain terminal connected to the first node N 1, and a gate terminal connected to the second input terminal 12.
  • the first node N 1 appears first output signal Sop
  • first output terminal 21 to the first node N 1 is connected.
  • the second node N 2 appears second output signal Son, the second output terminal 22 to the second node N 2 is connected. That is, the first output terminal 21 can output the first output signal Sop, and the second output terminal 22 can output the second output signal Son.
  • the first input signal Sip input to the first input terminal 11 is at a high level (Vddl) and is input to the second input terminal 12.
  • the second input signal Sin is at a low level (Vss)
  • the first NMOS transistor 41 is on and the second NMOS transistor 42 is off.
  • the first PMOS transistor 31 is in an off state and the second PMOS transistor 32 is in an on state. Therefore, at this time, the first output signal Sop output from the first output terminal 21 is at a high level (Vddh), and the second output signal Son output from the second output terminal 22 is at a low level (Vss). .
  • the high level / low level change timings of the first output signal Sop and the second output signal Son are delayed from the high level / low level change timings of the first input signal Sip and the second input signal Sin. Further, the change from the low level to the high level of each of the first output signal Sop and the second output signal Son is slower than the change from the high level to the low level.
  • the NMOS transistors 41 and 42 are directly driven by the input signals Sip and Son to cause an on / off state change, whereas the PMOS transistors 31 and 32 change the potential of the drain terminals of the NMOS transistors 41 and 42. In response, an on / off state change occurs. Therefore, there is a period in which both the first PMOS transistor 31 and the first NMOS transistor 41 are simultaneously turned on when the first input signal Sip changes from the low level to the high level. During this period, a through current flows through the first PMOS transistor 31 and the first NMOS transistor 41 connected in series. This through current causes an increase in power consumption.
  • the level shift circuit 1A of the first comparative example has a problem that power consumption is large and it is difficult to improve the speed.
  • a configuration for solving such a problem a configuration of a level shift circuit 1B of a second comparative example described below can be considered.
  • FIG. 2 is a diagram showing a configuration of the level shift circuit 1B of the second comparative example.
  • the level shift circuit 1B of the second comparative example shown in FIG. 2 further includes a third NMOS transistor 43 and a fourth NMOS transistor 44. It is different in point.
  • the 3NMOS transistor 43 has a drain terminal that first reference potential Vddl is input, a source terminal connected to the second node N 2, and a gate terminal connected to the second input terminal 12.
  • the 4NMOS transistor 44 has a drain terminal first reference potential Vddl is input, a source terminal connected to the first node N 1, and a gate terminal connected to the first input terminal 11.
  • Level shifting circuit 1B of the thus constituted second comparative example when the first input signal Sip is changed from the low level to the high level, the 4NMOS transistor 44 is turned on, the first node N 1 i.e. the The first output signal Sop appearing at the 1 output terminal 21 becomes high level.
  • the first NMOS transistor 41 is turned on, the potential of the drain terminal of the first PMOS transistor 31 is lowered, and the fourth NMOS transistor 44 is also turned on, and the potential of the gate terminal of the first PMOS transistor 31 is turned on. because increases, the 1PMOS transistor 31 is turned off, the first output signal Son appearing at second node N 2, that is, the second output terminal 22 becomes a low level.
  • the fourth NMOS transistor 44 is turned off because the potential between the gate terminal and the source terminal becomes lower than the threshold voltage as the potential of the source terminal increases. The same applies when the second input signal Sin changes from low level to high level.
  • the level shift circuit 1B of the second comparative example includes the NMOS transistors 43 and 44 that are directly driven by the input signals Sip and Son, so that the first PMOS transistor 31 and the first NMOS transistor connected in series are connected.
  • the period during which both 41 are turned on simultaneously is shortened, and the period during which both the second PMOS transistor 32 and the second NMOS transistor 42 connected in series are simultaneously turned on is shortened. Therefore, compared with the level shift circuit 1A of the first comparative example, the level shift circuit 1B of the second comparative example can improve the speed and reduce the power consumption.
  • level shift circuit 1B of the second comparative example power consumption reduction and speed improvement are not sufficient.
  • the level shift circuits 2A to 2E of the embodiments described below can further reduce power consumption and speed.
  • FIG. 3 is a diagram illustrating a configuration of the level shift circuit 2A according to the first embodiment.
  • the level shift circuit 2A of the first embodiment shown in FIG. 3 is connected to the drain terminals of the third NMOS transistor 43 and the fourth NMOS transistor 44, respectively. It differs in terms of the input potential.
  • the potential input to the drain terminals of the NMOS transistors 43 and 44 is supplied to the first circuits 3 and 4 connected to the input terminals 11 and 12, respectively.
  • the potential was Vddl.
  • the potential input to the drain terminals of the NMOS transistors 43, 44 is supplied to the second stage circuit connected to the output terminals 21, 22.
  • the potential is Vddh.
  • the level shift circuit 2A of the first embodiment can operate in substantially the same manner as the level shift circuit 1B of the second comparative example. However, in the level shift circuit 2A of the first embodiment, since the second reference potential Vddh higher than the first reference potential Vddl is input to the drain terminals of the NMOS transistors 43 and 44, the NMOS transistors 43 and 44 are turned on. Large amount of current. Since the NMOS transistors 43 and 44 can drive the output voltage directly to the high level and the gates of the PMOS transistors 31 and 32 can be driven to the second reference potential Vddh, the through current can be reduced. Therefore, as compared with the level shift circuit 1B of the second comparative example, the level shift circuit 2A of the first embodiment can further reduce power consumption and increase the speed.
  • FIG. 4 is a diagram showing a configuration of the level shift circuit 2B of the second embodiment. Compared with the level shift circuit 2A of the first embodiment shown in FIG. 3, the level shift circuit 2B of the second embodiment shown in FIG. 4 further includes a first buffer circuit 50B and a second buffer circuit 60B. It is different in point.
  • the first buffer circuit 50B outputs a logical inversion signal Sop # the first output signal Sop appearing at first node N 1 from the first output terminal 21.
  • the first buffer circuit 50B includes a PMOS transistor 51 and an NMOS transistor 53 that are sequentially connected in series between the second reference potential Vddh and the third reference potential Vss.
  • the drain terminals of the PMOS transistor 51 and the NMOS transistor 53 are connected to the first output terminal 21.
  • the first node N 1 is connected to the gate terminal of the PMOS transistor 51.
  • the first input signal Sip is input to the gate terminal of the NMOS transistor 53.
  • the second buffer circuit 60B outputs a logical inversion signal Son # a second output signal Son appearing at second node N 2 from the second output terminal 22.
  • the second buffer circuit 60B includes a PMOS transistor 61 and an NMOS transistor 63 that are sequentially connected in series between the second reference potential Vddh and the third reference potential Vss.
  • the drain terminals of the PMOS transistor 61 and the NMOS transistor 63 are connected to the second output terminal 22.
  • the second node N 2 is connected to the gate terminal of the PMOS transistor 61.
  • the second input signal Sin is input to the gate terminal of the NMOS transistor 63.
  • the first buffer circuit 50B substantially has the function of an inverter circuit. However, while the first output signal Sop of the first node N 1 is inputted to the gate terminal of the PMOS transistor 51, the first input signal Sip is directly input to the gate terminal of the NMOS transistor 53. Thereby, the output of the first buffer circuit 50B can be changed at high speed. The same applies to the second buffer circuit 60B.
  • the first node N is compared with the case where the gate terminals of the PMOS transistor 51 and the NMOS transistor 53 are connected to the first node N 1 (that is, in the case of the configuration of a normal inverter circuit). Since the number of transistors connected to one decreases, it is possible to change the first node first output signal Sop of N 1 at high speed. The same applies to the second buffer circuit 60B.
  • FIG. 5 is a diagram showing the configuration of the level shift circuit 2C of the third embodiment. Compared with the level shift circuit 2B of the second embodiment shown in FIG. 4, the level shift circuit 2C of the third embodiment shown in FIG. 5 replaces the first buffer circuit 50B with the first buffer circuit 50C. The difference is that the second buffer circuit 60C is provided instead of the second buffer circuit 60B.
  • the first buffer circuit 50C outputs a logical inversion signal Sop # the first output signal Sop appearing at first node N 1 from the first output terminal 21.
  • the first buffer circuit 50C includes a PMOS transistor 51, a PMOS transistor 52, and an NMOS transistor 53 that are sequentially connected in series between the second reference potential Vddh and the third reference potential Vss.
  • the drain terminals of the PMOS transistor 52 and the NMOS transistor 53 are connected to the first output terminal 21.
  • the first node N 1 is connected to the gate terminal of the PMOS transistor 51.
  • the first input signal Sip is input to the gate terminal of the PMOS transistor 52.
  • the first input signal Sip is input to the gate terminal of the NMOS transistor 53.
  • the second buffer circuit 60C outputs a logical inversion signal Son # a second output signal Son appearing at second node N 2 from the second output terminal 22.
  • the second buffer circuit 60C includes a PMOS transistor 61, a PMOS transistor 62, and an NMOS transistor 63 that are sequentially connected in series between the second reference potential Vddh and the third reference potential Vss.
  • the drain terminals of the PMOS transistor 62 and the NMOS transistor 63 are connected to the second output terminal 22.
  • the second node N 2 is connected to the gate terminal of the PMOS transistor 61.
  • the second input signal Sin is input to the gate terminal of the PMOS transistor 62.
  • the second input signal Sin is input to the gate terminal of the NMOS transistor 63.
  • the first buffer circuit 50C also has a function of an inverter circuit in this embodiment.
  • the first buffer circuit 50C in the present embodiment includes a PMOS transistor 52 between the PMOS transistor 51 and the first output terminal 21, and the PMOS transistor 52
  • the first input signal Sip is directly input to the gate terminals of the NMOS transistor 53 and the NMOS transistor 53.
  • the second buffer circuit 60C also has a function of an inverter circuit in this embodiment.
  • the second buffer circuit 60C in the present embodiment includes a PMOS transistor 62 provided between the PMOS transistor 61 and the second output terminal 22, and the PMOS transistor 62
  • the second input signal Sin is directly input to the gate terminals of the NMOS transistor 63 and the NMOS transistor 63.
  • the second buffer circuit 60C slow state transition of the PMOS transistor 51 when the level transition of the first output signal Sop of the first node N 1 is slow, because the state transition while the NMOS transistor 53 is fast, the first buffer circuit A through current is generated at 50B.
  • the PMOS transistor 52 into which the first input signal Sip is directly input to the gate terminal is inserted, so that the through current of the first buffer circuit 50C can be suppressed.
  • the output value of the first buffer circuit 50C can be changed at high speed. The same applies to the second buffer circuit 60C.
  • FIG. 6 is a diagram showing the configuration of the level shift circuit 2D of the fourth embodiment. Compared with the level shift circuit 2C of the third embodiment shown in FIG. 5, the level shift circuit 2D of the fourth embodiment shown in FIG. 6 replaces the first buffer circuit 50C with the first buffer circuit 50D. It is different in that the second buffer circuit 60C is provided instead of the second buffer circuit 60C.
  • the first buffer circuit 50D in the present embodiment is different in that the arrangement of the PMOS transistor 51 and the PMOS transistor 52 is reversed.
  • the second buffer circuit 60D in the present embodiment is different in that the arrangement of the PMOS transistor 61 and the PMOS transistor 62 is reversed.
  • the level shift circuit 2D of the present embodiment operates in the same manner as in the third embodiment.
  • the first buffer circuit 50D the gate potential of the PMOS transistor 52 in the second reference potential Vddh side is confirmed quickly among the PMOS transistor 51 and the PMOS transistor 52 is connected to the first node N 1 Since the PMOS transistor 51 is close to the first output terminal 21, the output value of the first buffer circuit 50D can be changed at high speed.
  • the second buffer circuit 60D the same applies to the second buffer circuit 60D.
  • FIG. 7 is a diagram showing the configuration of the level shift circuit 2E of the fifth embodiment.
  • the level shift circuit 2E of the fifth embodiment shown in FIG. 7 further includes a first delay circuit 70 and a second delay circuit 80. It is different in point.
  • the first buffer circuit 50E in the present embodiment has the same configuration as the first buffer circuit 50D in the fourth embodiment.
  • the second buffer circuit 60E in the present embodiment has the same configuration as the second buffer circuit 60D in the fourth embodiment.
  • the first delay circuit 70 delays the first input signal Sip input to the first buffer circuit 50E with respect to the first input signal Sip input to the gate terminal of the first NMOS transistor 41.
  • the second delay circuit 80 delays the second input signal Sin input to the second buffer circuit 60E with respect to the second input signal Sin input to the gate terminal of the second NMOS transistor 42.
  • the level transition of the input signals Sip and Sin input to the buffer circuits 50D and 60D may be too early.
  • the delay circuits 70 and 80 are provided, so that the buffer The timing of the level transition of the input signals Sip and Sin input to the circuits 50E and 60E is optimized.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • both the first buffer circuit and the second buffer circuit are provided in the second to fifth embodiments, depending on the configuration of the circuit connected to the subsequent stage of the level shift circuit, the first buffer circuit and the second buffer circuit are provided. Only one of the buffer circuits may be provided. Further, the delay circuits 70 and 80 provided in the fifth embodiment may be provided also in the second to fourth embodiments.
  • 1A, 1B, 2A to 2E ... level shift circuit, 3 ... first input circuit, 4 ... second input circuit, 11 ... first input terminal, 12 ... second input terminal, 21 ... first output terminal, 22 ... first 2 output terminals 31 ... first PMOS transistor 32 ... second PMOS transistor 41 ... first NMOS transistor 42 ... second NMOS transistor 43 ... third NMOS transistor 44 ... fourth NMOS transistor 50B-50E ... first buffer circuit 60B 60E, second buffer circuit, 70, first delay circuit, 80, second delay circuit, N 1, first node, N 2, second node.

Landscapes

  • Logic Circuits (AREA)

Abstract

A level shift circuit (2A) comprises: a first PMOS transistor (31); a second PMOS transistor (32); a first NMOS transistor (41); a second NMOS transistor (42); a third NMOS transistor (43); and a fourth NMOS transistor (44). The respective source terminals of the first PMOS transistor (31) and the second PMOS transistor (32) are connected to a second reference potential (Vddh) which is higher than a first reference potential (Vddl). The respective drain terminals of the third NMOS transistor (43) and the fourth NMOS transistor (44) are also connected to the second reference potential (Vddh). It is possible to provide a level shift circuit with which greater power consumption reduction and improved speed are possible.

Description

レベルシフト回路Level shift circuit
 本発明は、レベルシフト回路に関するものである。 The present invention relates to a level shift circuit.
 レベルシフト回路は、低い電圧で信号処理する系と、高い電圧で信号処理する系と、のバイパス的役割を果たす。このレベルシフト回路は半導体集積回路の信号処理系で用いられその省電力化に寄与している。レベルシフト回路は、一般に、第1基準電位Vddlおよび第3基準電位Vssが供給されて動作する回路から出力された互いに相補的な第1入力信号および第2入力信号を入力し、これら第1入力信号および第2入力信号のハイレベルの電圧値より大きいハイレベルの電圧値を有する互いに相補的な第1出力信号および第2出力信号を生成して、これら第1出力信号および第2出力信号の双方または何れか一方を、第2基準電位Vddhおよび第3基準電位Vssが供給されて動作する回路へ出力するものである。ただし、Vddh>Vddl>Vss である。 The level shift circuit plays a role of bypassing a system that processes signals with a low voltage and a system that processes signals with a high voltage. This level shift circuit is used in a signal processing system of a semiconductor integrated circuit and contributes to power saving. In general, the level shift circuit receives a first input signal and a second input signal which are complementary to each other and are output from a circuit which operates by being supplied with the first reference potential Vddl and the third reference potential Vss. Generating a first output signal and a second output signal complementary to each other having a high level voltage value greater than a high level voltage value of the signal and the second input signal, and the first output signal and the second output signal Both or one of them is output to a circuit that operates by being supplied with the second reference potential Vddh and the third reference potential Vss. However, Vddh> Vddl> Vss.
 ここで、第1入力信号および第2入力信号のうち一方がハイレベルであるとき、他方はローレベルである。同様に、第1出力信号および第2出力信号のうち一方がハイレベルであるとき、他方はローレベルである。第1出力信号および第2出力信号のハイレベル/ローレベルの変化は、第1入力信号および第2入力信号のハイレベル/ローレベルの変化と同様のものとなる。 Here, when one of the first input signal and the second input signal is at a high level, the other is at a low level. Similarly, when one of the first output signal and the second output signal is at a high level, the other is at a low level. The change of the high level / low level of the first output signal and the second output signal is the same as the change of the high level / low level of the first input signal and the second input signal.
 例えば、CPUのコアが1.8Vの電源電圧で駆動され、このCPUに対する周辺回路が3.3Vの電源電圧で駆動される場合に、レベルシフト回路は、CPUコアから出力される信号のハイレベルの電圧値を1.8Vから3.3Vへ変換して、そのレベル変換後の信号を周辺回路へ出力する。 For example, when the CPU core is driven with a power supply voltage of 1.8 V and the peripheral circuit for the CPU is driven with a power supply voltage of 3.3 V, the level shift circuit outputs the high level of the signal output from the CPU core. Is converted from 1.8 V to 3.3 V, and the level-converted signal is output to the peripheral circuit.
 このようなレベルシフト回路として特許文献1に開示されたものが知られている。この文献に開示されたレベルシフト回路は、基本的な構成として、第1PMOSトランジスタ,第2PMOSトランジスタ,第1NMOSトランジスタおよび第2NMOSトランジスタを備えている。第1PMOSトランジスタおよび第1NMOSトランジスタは第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されて設けられており、第1PMOSトランジスタのドレイン端子と第1NMOSトランジスタのドレイン端子とが互いに接続されて当該接続点が第2出力端子とされ、この第2出力端子から第2出力信号が出力される。また、第2PMOSトランジスタおよび第2NMOSトランジスタは第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されて設けられており、第2PMOSトランジスタのドレイン端子と第2NMOSトランジスタのドレイン端子とが互いに接続されて当該接続点が第1出力端子とされ、この第1出力端子から第1出力信号が出力される。 A circuit disclosed in Patent Document 1 is known as such a level shift circuit. The level shift circuit disclosed in this document includes a first PMOS transistor, a second PMOS transistor, a first NMOS transistor, and a second NMOS transistor as a basic configuration. The first PMOS transistor and the first NMOS transistor are sequentially connected in series between the second reference potential Vddh and the third reference potential Vss, and the drain terminal of the first PMOS transistor and the drain terminal of the first NMOS transistor are connected to each other. The connection point is connected to each other as a second output terminal, and a second output signal is output from the second output terminal. The second PMOS transistor and the second NMOS transistor are provided in series and sequentially connected between the second reference potential Vddh and the third reference potential Vss. The drain terminal of the second PMOS transistor and the drain terminal of the second NMOS transistor Are connected to each other as a first output terminal, and a first output signal is output from the first output terminal.
 また、特許文献1に開示されたレベルシフト回路は、上記の基本的な構成に加えて第3NMOSトランジスタおよび第4NMOSトランジスタを備えている。第3NMOSトランジスタは第1基準電位Vddlと第2出力端子との間に設けられ、また、第4NMOSトランジスタは第1基準電位Vddlと第1出力端子との間に設けられている。特許文献1に開示されたレベルシフト回路は、これら第3NMOSトランジスタおよび第4NMOSトランジスタを備えることにより、消費電力低減および速度向上を図るものである。 The level shift circuit disclosed in Patent Document 1 includes a third NMOS transistor and a fourth NMOS transistor in addition to the above basic configuration. The third NMOS transistor is provided between the first reference potential Vddl and the second output terminal, and the fourth NMOS transistor is provided between the first reference potential Vddl and the first output terminal. The level shift circuit disclosed in Patent Document 1 includes the third NMOS transistor and the fourth NMOS transistor, thereby reducing power consumption and speed.
特開平11-136120号公報JP 11-136120 A
 しかしながら、基本的な構成に加えて上記のような第3NMOSトランジスタおよび第4NMOSトランジスタを備えるレベルシフト回路は、必ずしも期待したような消費電力低減および速度向上が可能ではないことを、本発明者は見出した。 However, the present inventor has found that a level shift circuit including the third NMOS transistor and the fourth NMOS transistor as described above in addition to the basic configuration does not necessarily reduce power consumption and increase speed as expected. It was.
 本発明は、このような本発明者の知見に基づいて上記問題点を解消する為になされたものであり、更なる消費電力低減および速度向上が可能なレベルシフト回路を提供することを目的とする。 The present invention was made to solve the above problems based on the knowledge of the present inventor, and an object thereof is to provide a level shift circuit capable of further reducing power consumption and improving speed. To do.
 本発明のレベルシフト回路は、第1基準電位Vddlおよび第3基準電位Vssが供給されて動作する回路から出力された互いに相補的な第1入力信号および第2入力信号を入力し、これら第1入力信号および第2入力信号のハイレベルの電圧値より大きいハイレベルの電圧値を有する互いに相補的な第1出力信号および第2出力信号を生成して、これら第1出力信号および第2出力信号の双方または何れか一方を、第2基準電位Vddhおよび第3基準電位Vssが供給されて動作する回路へ出力するレベルシフト回路である。ただし、Vddh>Vddl>Vss である。 The level shift circuit according to the present invention receives a first input signal and a second input signal which are complementary to each other and are output from a circuit which is supplied with the first reference potential Vddl and the third reference potential Vss and operates. The first output signal and the second output signal are generated by generating complementary first output signals and second output signals having high level voltage values greater than the high level voltage values of the input signal and the second input signal. Is a level shift circuit that outputs either or both of them to a circuit that operates by being supplied with the second reference potential Vddh and the third reference potential Vss. However, Vddh> Vddl> Vss.
 本発明のレベルシフト回路は、(1) 第1入力信号が入力される第1入力端子と、(2) 第2入力信号が入力される第2入力端子と、(3) 第1出力信号が現れる第1ノードと、(4) 第2出力信号が現れる第2ノードと、(5) 第2基準電位Vddhが入力されるソース端子と、第2ノードに接続されたドレイン端子と、第1ノードに接続されたゲート端子とを有する第1PMOSトランジスタと、(6) 第2基準電位Vddhが入力されるソース端子と、第1ノードに接続されたドレイン端子と、第2ノードに接続されたゲート端子とを有する第2PMOSトランジスタと、(7) 第3基準電位Vssが入力されるソース端子と、第2ノードに接続されたドレイン端子と、第1入力端子に接続されたゲート端子とを有する第1NMOSトランジスタと、(8) 第3基準電位Vssが入力されるソース端子と、第1ノードに接続されたドレイン端子と、第2入力端子に接続されたゲート端子とを有する第2NMOSトランジスタと、(9) 第2基準電位Vddhが入力されるドレイン端子と、第2ノードに接続されたソース端子と、第2入力端子に接続されたゲート端子とを有する第3NMOSトランジスタと、(10) 第2基準電位Vddhが入力されるドレイン端子と、第1ノードに接続されたソース端子と、第1入力端子に接続されたゲート端子とを有する第4NMOSトランジスタと、を備えることを特徴とする。 The level shift circuit of the present invention includes (1) a first input terminal to which a first input signal is input, (2) a second input terminal to which a second input signal is input, and (3) a first output signal. A first node that appears, (4) a second node where a second output signal appears, (5) a source terminal to which a second reference potential Vddh is input, a drain terminal connected to the second node, and a first node A first PMOS transistor having a gate terminal connected to the gate, (6) a source terminal to which the second reference potential Vddh is input, a drain terminal connected to the first node, and a gate terminal connected to the second node A first PMOS having (7) a source terminal to which the third reference potential Vss is input, a drain terminal connected to the second node, and a gate terminal connected to the first input terminal. Transistor, (8) third reference potential Vss A second NMOS transistor having an input source terminal, a drain terminal connected to the first node, and a gate terminal connected to the second input terminal; and (9) a drain terminal to which the second reference potential Vddh is input. A third NMOS transistor having a source terminal connected to the second node and a gate terminal connected to the second input terminal, (10) a drain terminal to which the second reference potential Vddh is input, and a first node And a fourth NMOS transistor having a source terminal connected to the first input terminal and a gate terminal connected to the first input terminal.
 本発明のレベルシフト回路は、第1ノードに現れる第1出力信号を論理反転した信号を出力端子から出力する第1バッファ回路を更に備えていてもよい。第1バッファ回路は、第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されたバッファ用PMOSトランジスタおよびバッファ用NMOSトランジスタを含み、バッファ用PMOSトランジスタおよびバッファ用NMOSトランジスタそれぞれのドレイン端子が出力端子に接続され、バッファ用PMOSトランジスタのゲート端子に第1ノードが接続され、バッファ用NMOSトランジスタのゲート端子に第1入力信号が入力されるのが好適である。或いは、第1バッファ回路は、第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されたバッファ用第1PMOSトランジスタ,バッファ用第2PMOSトランジスタおよびバッファ用NMOSトランジスタを含み、バッファ用第2PMOSトランジスタおよびバッファ用NMOSトランジスタそれぞれのドレイン端子が出力端子に接続され、バッファ用第1PMOSトランジスタおよびバッファ用第2PMOSトランジスタのうち何れか一方のゲート端子に第1ノードが接続されるとともに他方のゲート端子に第1入力信号が入力され、バッファ用NMOSトランジスタのゲート端子に第1入力信号が入力されるのも好適である。この場合、本発明のレベルシフト回路は、第1NMOSトランジスタのゲート端子に入力される第1入力信号に対し、第1バッファ回路に入力される第1入力信号に遅延を与える第1遅延回路を更に備えるのも好適である。 The level shift circuit of the present invention may further include a first buffer circuit that outputs a signal obtained by logically inverting the first output signal appearing at the first node from the output terminal. The first buffer circuit includes a buffer PMOS transistor and a buffer NMOS transistor connected in series between the second reference potential Vddh and the third reference potential Vss, and each of the buffer PMOS transistor and the buffer NMOS transistor Preferably, the drain terminal is connected to the output terminal, the first node is connected to the gate terminal of the buffer PMOS transistor, and the first input signal is input to the gate terminal of the buffer NMOS transistor. Alternatively, the first buffer circuit includes a first PMOS transistor for buffer, a second PMOS transistor for buffer, and an NMOS transistor for buffer connected in series between the second reference potential Vddh and the third reference potential Vss, The drain terminal of each of the second PMOS transistor for buffer and the NMOS transistor for buffer is connected to the output terminal, the first node is connected to one of the gate terminals of the first PMOS transistor for buffer and the second PMOS transistor for buffer, and the other It is also preferable that the first input signal is input to the gate terminal and the first input signal is input to the gate terminal of the buffer NMOS transistor. In this case, the level shift circuit of the present invention further includes a first delay circuit that delays the first input signal input to the first buffer circuit with respect to the first input signal input to the gate terminal of the first NMOS transistor. It is also suitable to provide.
 本発明のレベルシフト回路は、第2ノードに現れる第2出力信号を論理反転した信号を出力端子から出力する第2バッファ回路を更に備えていてもよい。第2バッファ回路は、第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されたバッファ用PMOSトランジスタおよびバッファ用NMOSトランジスタを含み、バッファ用PMOSトランジスタおよびバッファ用NMOSトランジスタそれぞれのドレイン端子が出力端子に接続され、バッファ用PMOSトランジスタのゲート端子に第2ノードが接続され、バッファ用NMOSトランジスタのゲート端子に第2入力信号が入力されるのが好適である。或いは、第2バッファ回路は、第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されたバッファ用第1PMOSトランジスタ,バッファ用第2PMOSトランジスタおよびバッファ用NMOSトランジスタを含み、バッファ用第2PMOSトランジスタおよびバッファ用NMOSトランジスタそれぞれのドレイン端子が出力端子に接続され、バッファ用第1PMOSトランジスタおよびバッファ用第2PMOSトランジスタのうち何れか一方のゲート端子に第2ノードが接続されるとともに他方のゲート端子に第2入力信号が入力され、バッファ用NMOSトランジスタのゲート端子に第2入力信号が入力されるのも好適である。この場合、本発明のレベルシフト回路は、第2NMOSトランジスタのゲート端子に入力される第2入力信号に対し、第2バッファ回路に入力される第2入力信号に遅延を与える第2遅延回路を更に備えるのも好適である。 The level shift circuit of the present invention may further include a second buffer circuit that outputs a signal obtained by logically inverting the second output signal appearing at the second node from the output terminal. The second buffer circuit includes a buffer PMOS transistor and a buffer NMOS transistor sequentially connected in series between the second reference potential Vddh and the third reference potential Vss, and each of the buffer PMOS transistor and the buffer NMOS transistor The drain terminal is connected to the output terminal, the second node is connected to the gate terminal of the buffer PMOS transistor, and the second input signal is preferably input to the gate terminal of the buffer NMOS transistor. Alternatively, the second buffer circuit includes a buffer first PMOS transistor, a buffer second PMOS transistor, and a buffer NMOS transistor connected in series between the second reference potential Vddh and the third reference potential Vss in order. The drain terminal of each of the second PMOS transistor for buffer and the NMOS transistor for buffer is connected to the output terminal, the second node is connected to one of the gate terminal of the first PMOS transistor for buffer and the second PMOS transistor for buffer, and the other It is also preferable that the second input signal is input to the gate terminal and the second input signal is input to the gate terminal of the buffer NMOS transistor. In this case, the level shift circuit of the present invention further includes a second delay circuit that delays the second input signal input to the second buffer circuit with respect to the second input signal input to the gate terminal of the second NMOS transistor. It is also suitable to provide.
 本発明のレベルシフト回路は消費電力低減および速度向上が可能となる。 The level shift circuit of the present invention can reduce power consumption and increase speed.
第1比較例のレベルシフト回路1Aの構成を示す図である。It is a figure which shows the structure of the level shift circuit 1A of a 1st comparative example. 第2比較例のレベルシフト回路1Bの構成を示す図である。It is a figure which shows the structure of the level shift circuit 1B of the 2nd comparative example. 第1実施形態のレベルシフト回路2Aの構成を示す図である。It is a figure which shows the structure of the level shift circuit 2A of 1st Embodiment. 第2実施形態のレベルシフト回路2Bの構成を示す図である。It is a figure which shows the structure of the level shift circuit 2B of 2nd Embodiment. 第3実施形態のレベルシフト回路2Cの構成を示す図である。It is a figure which shows the structure of the level shift circuit 2C of 3rd Embodiment. 第4実施形態のレベルシフト回路2Dの構成を示す図である。It is a figure which shows the structure of the level shift circuit 2D of 4th Embodiment. 第5実施形態のレベルシフト回路2Eの構成を示す図である。It is a figure which shows the structure of the level shift circuit 2E of 5th Embodiment.
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、初めに比較例のレベルシフト回路について説明した後に、実施形態のレベルシフト回路について説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Also, after first describing the level shift circuit of the comparative example, the level shift circuit of the embodiment will be described.
 (第1比較例) (First comparative example)
 図1は、第1比較例のレベルシフト回路1Aの構成を示す図である。この図には、レベルシフト回路1Aの他に、第1基準電位Vddlおよび第3基準電位Vssが供給されて動作する第1入力回路3および第2入力回路4も示されている。レベルシフト回路1Aは、第1入力端子11、第2入力端子12、第1出力端子21、第2出力端子22、第1PMOSトランジスタ31、第2PMOSトランジスタ32、第1NMOSトランジスタ41および第2NMOSトランジスタ42を備える。 FIG. 1 is a diagram showing a configuration of a level shift circuit 1A of the first comparative example. In this figure, in addition to the level shift circuit 1A, a first input circuit 3 and a second input circuit 4 which are operated by being supplied with the first reference potential Vddl and the third reference potential Vss are also shown. The level shift circuit 1A includes a first input terminal 11, a second input terminal 12, a first output terminal 21, a second output terminal 22, a first PMOS transistor 31, a second PMOS transistor 32, a first NMOS transistor 41, and a second NMOS transistor 42. Prepare.
 レベルシフト回路1Aは、第1基準電位Vddlおよび第3基準電位Vssが供給されて動作する回路3,4から出力された互いに相補的な第1入力信号Sipおよび第2入力信号Sinを入力端子11,12に入力する。レベルシフト回路1Aは、これら第1入力信号Sipおよび第2入力信号Sinのハイレベルの電圧値より大きいハイレベルの電圧値を有する互いに相補的な第1出力信号Sopおよび第2出力信号Sonを生成する。 The level shift circuit 1A receives the complementary first input signal Sip and second input signal Sin output from the circuits 3 and 4 that operate by being supplied with the first reference potential Vddl and the third reference potential Vss. , 12 are input. The level shift circuit 1A generates a first output signal Sop and a second output signal Son which are complementary to each other and have a high level voltage value larger than the high level voltage value of the first input signal Sip and the second input signal Sin. To do.
 そして、レベルシフト回路1Aは、これら第1出力信号Sopおよび第2出力信号Sonの双方または何れか一方を、第2基準電位Vddhおよび第3基準電位Vssが供給されて動作する回路へ出力端子21,22から出力する。第1出力信号Sopおよび第2出力信号Sonのローレベルの電圧値は、第1入力信号Sipおよび第2入力信号Sinのローレベルの電圧値と等しい。ただし、Vddh>Vddl>Vss である。 Then, the level shift circuit 1A outputs either or both of the first output signal Sop and the second output signal Son to a circuit that operates by being supplied with the second reference potential Vddh and the third reference potential Vss. , 22. The low level voltage values of the first output signal Sop and the second output signal Son are equal to the low level voltage values of the first input signal Sip and the second input signal Sin. However, Vddh> Vddl> Vss.
 第1入力端子11は、第1入力回路3から出力された第1入力信号Sipを入力する。第2入力端子12は、第2入力回路4から出力された第2入力信号Sinを入力する。第1入力信号Sipおよび第2入力信号Sinは、互いに相補的な関係にあり、一方がハイレベルであるとき、他方がローレベルである。 The first input terminal 11 receives the first input signal Sip output from the first input circuit 3. The second input terminal 12 receives the second input signal Sin output from the second input circuit 4. The first input signal Sip and the second input signal Sin are complementary to each other, and when one is at a high level, the other is at a low level.
 第1出力端子21は第1出力信号Sopを出力する。第2出力端子22は第2出力信号Sonを入力する。第1出力信号Sopおよび第2出力信号Sonは、互いに相補的な関係にあり、一方がハイレベルであるとき、他方がローレベルである。 The first output terminal 21 outputs the first output signal Sop. The second output terminal 22 receives the second output signal Son. The first output signal Sop and the second output signal Son are complementary to each other, and when one is at a high level, the other is at a low level.
 第1PMOSトランジスタ31は、第2基準電位Vddhが入力されるソース端子と、第2ノードNに接続されたドレイン端子と、第1ノードNに接続されたゲート端子とを有する。第2PMOSトランジスタ32は、第2基準電位Vddhが入力されるソース端子と、第1ノードNに接続されたドレイン端子と、第2ノードNに接続されたゲート端子とを有する。 The 1PMOS transistor 31 has a source terminal second reference potential Vddh is input, a drain terminal connected to the second node N 2, and a gate terminal connected to the first node N 1. The 2PMOS transistor 32 has a source terminal second reference potential Vddh is input, a drain terminal connected to the first node N 1, and a gate terminal connected to the second node N 2.
 第1NMOSトランジスタ41は、第3基準電位Vssが入力されるソース端子と、第2ノードNに接続されたドレイン端子と、第1入力端子11に接続されたゲート端子とを有する。第2NMOSトランジスタ42は、第3基準電位Vssが入力されるソース端子と、第1ノードNに接続されたドレイン端子と、第2入力端子12に接続されたゲート端子とを有する。 The 1NMOS transistor 41 has a source terminal third reference potential Vss is input, a drain terminal connected to the second node N 2, and a gate terminal connected to the first input terminal 11. The 2NMOS transistor 42 has a source terminal third reference potential Vss is input, a drain terminal connected to the first node N 1, and a gate terminal connected to the second input terminal 12.
 第1ノードNには第1出力信号Sopが現れ、この第1ノードNに第1出力端子21が接続されている。第2ノードNには第2出力信号Sonが現れ、この第2ノードNに第2出力端子22が接続されている。すなわち、第1出力端子21は第1出力信号Sopを出力することができ、第2出力端子22は第2出力信号Sonを出力することができる。 The first node N 1 appears first output signal Sop, first output terminal 21 to the first node N 1 is connected. The second node N 2 appears second output signal Son, the second output terminal 22 to the second node N 2 is connected. That is, the first output terminal 21 can output the first output signal Sop, and the second output terminal 22 can output the second output signal Son.
 このように構成される第1比較例のレベルシフト回路1Aでは、第1入力端子11に入力される第1入力信号Sipがハイレベル(Vddl)であって、第2入力端子12に入力される第2入力信号Sinがローレベル(Vss)であるとき、第1NMOSトランジスタ41はオン状態であり、第2NMOSトランジスタ42はオフ状態である。さらに、このとき、第1PMOSトランジスタ31はオフ状態であり、第2PMOSトランジスタ32はオン状態である。したがって、このとき、第1出力端子21から出力される第1出力信号Sopはハイレベル(Vddh)であり、第2出力端子22から出力される第2出力信号Sonはローレベル(Vss)である。 In the level shift circuit 1A of the first comparative example configured as described above, the first input signal Sip input to the first input terminal 11 is at a high level (Vddl) and is input to the second input terminal 12. When the second input signal Sin is at a low level (Vss), the first NMOS transistor 41 is on and the second NMOS transistor 42 is off. Further, at this time, the first PMOS transistor 31 is in an off state and the second PMOS transistor 32 is in an on state. Therefore, at this time, the first output signal Sop output from the first output terminal 21 is at a high level (Vddh), and the second output signal Son output from the second output terminal 22 is at a low level (Vss). .
 逆に、第1入力端子11に入力される第1入力信号Sipがローレベル(Vss)であって、第2入力端子12に入力される第2入力信号Sinがハイレベル(Vddl)であるとき、第1NMOSトランジスタ41はオフ状態であり、第2NMOSトランジスタ42はオン状態である。さらに、このとき、第1PMOSトランジスタ31はオン状態であり、第2PMOSトランジスタ32はオフ状態である。したがって、このとき、第1出力端子21から出力される第1出力信号Sopはローレベル(Vss)であり、第2出力端子22から出力される第2出力信号Sonはハイレベル(Vddh)である。 Conversely, when the first input signal Sip input to the first input terminal 11 is at a low level (Vss) and the second input signal Sin input to the second input terminal 12 is at a high level (Vddl). The first NMOS transistor 41 is in an off state, and the second NMOS transistor 42 is in an on state. Further, at this time, the first PMOS transistor 31 is in an on state and the second PMOS transistor 32 is in an off state. Accordingly, at this time, the first output signal Sop output from the first output terminal 21 is at a low level (Vss), and the second output signal Son output from the second output terminal 22 is at a high level (Vddh). .
 ただし、第1出力信号Sopおよび第2出力信号Sonのハイレベル/ローレベルの変化のタイミングは、第1入力信号Sipおよび第2入力信号Sinのハイレベル/ローレベルの変化のタイミングより遅れる。また、第1出力信号Sopおよび第2出力信号Sonそれぞれのローレベルからハイレベルへの変化は、ハイレベルからローレベルへの変化と比べて遅い。この現象の原因は以下のとおりである。 However, the high level / low level change timings of the first output signal Sop and the second output signal Son are delayed from the high level / low level change timings of the first input signal Sip and the second input signal Sin. Further, the change from the low level to the high level of each of the first output signal Sop and the second output signal Son is slower than the change from the high level to the low level. The cause of this phenomenon is as follows.
 NMOSトランジスタ41,42は入力信号Sip,Sonにより直接に駆動されてオン状態/オフ状態の変化を生じるのに対して、PMOSトランジスタ31,32はNMOSトランジスタ41,42のドレイン端子の電位の変化を受けてオン状態/オフ状態の変化を生じる。このことから、第1入力信号Sipのローレベルからハイレベルへの変化の際に、第1PMOSトランジスタ31および第1NMOSトランジスタ41の双方が同時にオン状態となる期間が存在する。この期間では、直列的に接続された第1PMOSトランジスタ31および第1NMOSトランジスタ41に貫通電流が流れる。この貫通電流は消費電力増大の要因となる。第1PMOSトランジスタ31のドレイン端子と第1NMOSトランジスタ41のドレイン端子との接続点(第2ノードN)に寄生容量が存在することから、貫通電流が流れることにより寄生容量が充電され、これが速度向上を妨げる要因となる。第2入力信号Sinのローレベルからハイレベルへの変化の際にも、第2PMOSトランジスタ32および第2NMOSトランジスタ42の双方が同時にオン状態となる期間が存在するので、上記と同様の現象が生じる。 The NMOS transistors 41 and 42 are directly driven by the input signals Sip and Son to cause an on / off state change, whereas the PMOS transistors 31 and 32 change the potential of the drain terminals of the NMOS transistors 41 and 42. In response, an on / off state change occurs. Therefore, there is a period in which both the first PMOS transistor 31 and the first NMOS transistor 41 are simultaneously turned on when the first input signal Sip changes from the low level to the high level. During this period, a through current flows through the first PMOS transistor 31 and the first NMOS transistor 41 connected in series. This through current causes an increase in power consumption. Since there is a parasitic capacitance at the connection point (second node N 2 ) between the drain terminal of the first PMOS transistor 31 and the drain terminal of the first NMOS transistor 41, the parasitic capacitance is charged by passing through current, which increases the speed. It becomes a factor to prevent. Even when the second input signal Sin changes from the low level to the high level, there is a period in which both the second PMOS transistor 32 and the second NMOS transistor 42 are turned on at the same time. Therefore, the same phenomenon as described above occurs.
 このように、第1比較例のレベルシフト回路1Aは、消費電力が大きく速度の向上が困難であるという問題点を有している。このような問題点の解消を図る為の構成として、次に説明する第2比較例のレベルシフト回路1Bの構成が考えられる。 Thus, the level shift circuit 1A of the first comparative example has a problem that power consumption is large and it is difficult to improve the speed. As a configuration for solving such a problem, a configuration of a level shift circuit 1B of a second comparative example described below can be considered.
 (第2比較例) (Second comparative example)
 図2は、第2比較例のレベルシフト回路1Bの構成を示す図である。図1に示された第1比較例のレベルシフト回路1Aの構成と比較すると、この図2に示される第2比較例のレベルシフト回路1Bは、第3NMOSトランジスタ43および第4NMOSトランジスタ44を更に備える点で相違する。 FIG. 2 is a diagram showing a configuration of the level shift circuit 1B of the second comparative example. Compared with the configuration of the level shift circuit 1A of the first comparative example shown in FIG. 1, the level shift circuit 1B of the second comparative example shown in FIG. 2 further includes a third NMOS transistor 43 and a fourth NMOS transistor 44. It is different in point.
 第3NMOSトランジスタ43は、第1基準電位Vddlが入力されるドレイン端子と、第2ノードNに接続されたソース端子と、第2入力端子12に接続されたゲート端子とを有する。第4NMOSトランジスタ44は、第1基準電位Vddlが入力されるドレイン端子と、第1ノードNに接続されたソース端子と、第1入力端子11に接続されたゲート端子とを有する。 The 3NMOS transistor 43 has a drain terminal that first reference potential Vddl is input, a source terminal connected to the second node N 2, and a gate terminal connected to the second input terminal 12. The 4NMOS transistor 44 has a drain terminal first reference potential Vddl is input, a source terminal connected to the first node N 1, and a gate terminal connected to the first input terminal 11.
 このように構成される第2比較例のレベルシフト回路1Bでは、第1入力信号Sipがローレベルからハイレベルへ変化すると、第4NMOSトランジスタ44がオン状態となって、第1ノードNすなわち第1出力端子21に現れる第1出力信号Sopがハイレベルとなる。また、このとき、第1NMOSトランジスタ41がオン状態となって、第1PMOSトランジスタ31のドレイン端子の電位が低くなるとともに、第4NMOSトランジスタ44もオン状態となって、第1PMOSトランジスタ31のゲート端子の電位が高くなるので、第1PMOSトランジスタ31がオフ状態となり、第2ノードNすなわち第2出力端子22に現れる第1出力信号Sonがローレベルとなる。なお、第4NMOSトランジスタ44は、ソース端子の電位が高くなるに従って、ゲート端子とソース端子との間の電位が閾値電圧より低くなるので、やがてオフ状態になる。第2入力信号Sinがローレベルからハイレベルへ変化する際も同様である。 Level shifting circuit 1B of the thus constituted second comparative example, when the first input signal Sip is changed from the low level to the high level, the 4NMOS transistor 44 is turned on, the first node N 1 i.e. the The first output signal Sop appearing at the 1 output terminal 21 becomes high level. At this time, the first NMOS transistor 41 is turned on, the potential of the drain terminal of the first PMOS transistor 31 is lowered, and the fourth NMOS transistor 44 is also turned on, and the potential of the gate terminal of the first PMOS transistor 31 is turned on. because increases, the 1PMOS transistor 31 is turned off, the first output signal Son appearing at second node N 2, that is, the second output terminal 22 becomes a low level. Note that the fourth NMOS transistor 44 is turned off because the potential between the gate terminal and the source terminal becomes lower than the threshold voltage as the potential of the source terminal increases. The same applies when the second input signal Sin changes from low level to high level.
 このように、第2比較例のレベルシフト回路1Bは、入力信号Sip,Sonにより直接に駆動されるNMOSトランジスタ43,44を備えることにより、直列的に接続された第1PMOSトランジスタ31および第1NMOSトランジスタ41の双方が同時にオン状態となる期間が短縮され、また、直列的に接続された第2PMOSトランジスタ32および第2NMOSトランジスタ42の双方が同時にオン状態となる期間が短縮される。したがって、第1比較例のレベルシフト回路1Aと比較すると、第2比較例のレベルシフト回路1Bは、速度の向上が可能であり、また、消費電力の低減が可能である。 As described above, the level shift circuit 1B of the second comparative example includes the NMOS transistors 43 and 44 that are directly driven by the input signals Sip and Son, so that the first PMOS transistor 31 and the first NMOS transistor connected in series are connected. The period during which both 41 are turned on simultaneously is shortened, and the period during which both the second PMOS transistor 32 and the second NMOS transistor 42 connected in series are simultaneously turned on is shortened. Therefore, compared with the level shift circuit 1A of the first comparative example, the level shift circuit 1B of the second comparative example can improve the speed and reduce the power consumption.
 しかしながら、第2比較例のレベルシフト回路1Bの構成であっても消費電力低減および速度向上は充分ではない。以下に説明する実施形態のレベルシフト回路2A~2Eは更なる消費電力低減および速度向上が可能なものである。 However, even with the configuration of the level shift circuit 1B of the second comparative example, power consumption reduction and speed improvement are not sufficient. The level shift circuits 2A to 2E of the embodiments described below can further reduce power consumption and speed.
 (第1実施形態) (First embodiment)
 図3は、第1実施形態のレベルシフト回路2Aの構成を示す図である。図2に示された第2比較例のレベルシフト回路1Bと比較すると、この図3に示される第1実施形態のレベルシフト回路2Aは、第3NMOSトランジスタ43および第4NMOSトランジスタ44それぞれのドレイン端子に入力される電位の点で相違する。 FIG. 3 is a diagram illustrating a configuration of the level shift circuit 2A according to the first embodiment. Compared with the level shift circuit 1B of the second comparative example shown in FIG. 2, the level shift circuit 2A of the first embodiment shown in FIG. 3 is connected to the drain terminals of the third NMOS transistor 43 and the fourth NMOS transistor 44, respectively. It differs in terms of the input potential.
 すなわち、第2比較例のレベルシフト回路1Bでは、NMOSトランジスタ43,44のドレイン端子に入力される電位は、入力端子11,12に接続される前段の回路3,4に供給される第1基準電位Vddlであった。これに対して、第1実施形態のレベルシフト回路2Aでは、NMOSトランジスタ43,44のドレイン端子に入力される電位は、出力端子21,22に接続される後段の回路に供給される第2基準電位Vddhである。 That is, in the level shift circuit 1B of the second comparative example, the potential input to the drain terminals of the NMOS transistors 43 and 44 is supplied to the first circuits 3 and 4 connected to the input terminals 11 and 12, respectively. The potential was Vddl. On the other hand, in the level shift circuit 2A of the first embodiment, the potential input to the drain terminals of the NMOS transistors 43, 44 is supplied to the second stage circuit connected to the output terminals 21, 22. The potential is Vddh.
 第1実施形態のレベルシフト回路2Aは、第2比較例のレベルシフト回路1Bと略同様に動作をすることができる。ただし、第1実施形態のレベルシフト回路2Aは、第1基準電位Vddlより高い第2基準電位VddhがNMOSトランジスタ43,44のドレイン端子に入力されるので、NMOSトランジスタ43,44のオン状態時の電流量が多い。NMOSトランジスタ43,44によって出力電圧を直接ハイレベルへドライブできると共に、PMOSトランジスタ31, 32のゲートを第2基準電位Vddhへドライブできるため、貫通電流を小さくすることができる。したがって、第2比較例のレベルシフト回路1Bと比べて、第1実施形態のレベルシフト回路2Aは、更なる消費電力低減および速度向上が可能である。 The level shift circuit 2A of the first embodiment can operate in substantially the same manner as the level shift circuit 1B of the second comparative example. However, in the level shift circuit 2A of the first embodiment, since the second reference potential Vddh higher than the first reference potential Vddl is input to the drain terminals of the NMOS transistors 43 and 44, the NMOS transistors 43 and 44 are turned on. Large amount of current. Since the NMOS transistors 43 and 44 can drive the output voltage directly to the high level and the gates of the PMOS transistors 31 and 32 can be driven to the second reference potential Vddh, the through current can be reduced. Therefore, as compared with the level shift circuit 1B of the second comparative example, the level shift circuit 2A of the first embodiment can further reduce power consumption and increase the speed.
 (第2実施形態) (Second embodiment)
 図4は、第2実施形態のレベルシフト回路2Bの構成を示す図である。図3に示された第1実施形態のレベルシフト回路2Aと比較すると、この図4に示される第2実施形態のレベルシフト回路2Bは、第1バッファ回路50Bおよび第2バッファ回路60Bを更に備える点で相違する。 FIG. 4 is a diagram showing a configuration of the level shift circuit 2B of the second embodiment. Compared with the level shift circuit 2A of the first embodiment shown in FIG. 3, the level shift circuit 2B of the second embodiment shown in FIG. 4 further includes a first buffer circuit 50B and a second buffer circuit 60B. It is different in point.
 第1バッファ回路50Bは、第1ノードNに現れる第1出力信号Sopを論理反転した信号Sop#を第1出力端子21から出力する。第1バッファ回路50Bは、第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されたPMOSトランジスタ51およびNMOSトランジスタ53を含む。PMOSトランジスタ51およびNMOSトランジスタ53それぞれのドレイン端子は第1出力端子21に接続されている。PMOSトランジスタ51のゲート端子に第1ノードNが接続されている。また、NMOSトランジスタ53のゲート端子に第1入力信号Sipが入力される。 The first buffer circuit 50B outputs a logical inversion signal Sop # the first output signal Sop appearing at first node N 1 from the first output terminal 21. The first buffer circuit 50B includes a PMOS transistor 51 and an NMOS transistor 53 that are sequentially connected in series between the second reference potential Vddh and the third reference potential Vss. The drain terminals of the PMOS transistor 51 and the NMOS transistor 53 are connected to the first output terminal 21. The first node N 1 is connected to the gate terminal of the PMOS transistor 51. The first input signal Sip is input to the gate terminal of the NMOS transistor 53.
 第2バッファ回路60Bは、第2ノードNに現れる第2出力信号Sonを論理反転した信号Son#を第2出力端子22から出力する。第2バッファ回路60Bは、第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されたPMOSトランジスタ61およびNMOSトランジスタ63を含む。PMOSトランジスタ61およびNMOSトランジスタ63それぞれのドレイン端子は第2出力端子22に接続されている。PMOSトランジスタ61のゲート端子に第2ノードNが接続されている。また、NMOSトランジスタ63のゲート端子に第2入力信号Sinが入力される。 The second buffer circuit 60B outputs a logical inversion signal Son # a second output signal Son appearing at second node N 2 from the second output terminal 22. The second buffer circuit 60B includes a PMOS transistor 61 and an NMOS transistor 63 that are sequentially connected in series between the second reference potential Vddh and the third reference potential Vss. The drain terminals of the PMOS transistor 61 and the NMOS transistor 63 are connected to the second output terminal 22. The second node N 2 is connected to the gate terminal of the PMOS transistor 61. The second input signal Sin is input to the gate terminal of the NMOS transistor 63.
 本実施形態では、第1バッファ回路50Bは実質的にインバータ回路の機能を有する。ただし、PMOSトランジスタ51のゲート端子に第1ノードNの第1出力信号Sopが入力されるのに対して、NMOSトランジスタ53のゲート端子に第1入力信号Sipが直接に入力される。これにより、第1バッファ回路50Bの出力を高速に変化させることができる。第2バッファ回路60Bについても同様である。 In the present embodiment, the first buffer circuit 50B substantially has the function of an inverter circuit. However, while the first output signal Sop of the first node N 1 is inputted to the gate terminal of the PMOS transistor 51, the first input signal Sip is directly input to the gate terminal of the NMOS transistor 53. Thereby, the output of the first buffer circuit 50B can be changed at high speed. The same applies to the second buffer circuit 60B.
 また、PMOSトランジスタ51およびNMOSトランジスタ53それぞれのゲート端子が第1ノードNに接続される場合(すなわち、通常のインバータ回路の構成の場合)と比較して、本実施形態では、第1ノードNに接続されるトランジスタの個数が少なくなるので、第1ノードNの第1出力信号Sopを高速に変化させることができる。第2バッファ回路60Bについても同様である。 Further, in the present embodiment, the first node N is compared with the case where the gate terminals of the PMOS transistor 51 and the NMOS transistor 53 are connected to the first node N 1 (that is, in the case of the configuration of a normal inverter circuit). since the number of transistors connected to one decreases, it is possible to change the first node first output signal Sop of N 1 at high speed. The same applies to the second buffer circuit 60B.
 (第3実施形態) (Third embodiment)
 図5は、第3実施形態のレベルシフト回路2Cの構成を示す図である。図4に示された第2実施形態のレベルシフト回路2Bと比較すると、この図5に示される第3実施形態のレベルシフト回路2Cは、第1バッファ回路50Bに替えて第1バッファ回路50Cを備える点で相違し、また、第2バッファ回路60Bに替えて第2バッファ回路60Cを備える点で相違する。 FIG. 5 is a diagram showing the configuration of the level shift circuit 2C of the third embodiment. Compared with the level shift circuit 2B of the second embodiment shown in FIG. 4, the level shift circuit 2C of the third embodiment shown in FIG. 5 replaces the first buffer circuit 50B with the first buffer circuit 50C. The difference is that the second buffer circuit 60C is provided instead of the second buffer circuit 60B.
 第1バッファ回路50Cは、第1ノードNに現れる第1出力信号Sopを論理反転した信号Sop#を第1出力端子21から出力する。第1バッファ回路50Cは、第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されたPMOSトランジスタ51,PMOSトランジスタ52およびNMOSトランジスタ53を含む。PMOSトランジスタ52およびNMOSトランジスタ53それぞれのドレイン端子は第1出力端子21に接続されている。PMOSトランジスタ51のゲート端子に第1ノードNが接続されている。PMOSトランジスタ52のゲート端子に第1入力信号Sipが入力される。また、NMOSトランジスタ53のゲート端子に第1入力信号Sipが入力される。 The first buffer circuit 50C outputs a logical inversion signal Sop # the first output signal Sop appearing at first node N 1 from the first output terminal 21. The first buffer circuit 50C includes a PMOS transistor 51, a PMOS transistor 52, and an NMOS transistor 53 that are sequentially connected in series between the second reference potential Vddh and the third reference potential Vss. The drain terminals of the PMOS transistor 52 and the NMOS transistor 53 are connected to the first output terminal 21. The first node N 1 is connected to the gate terminal of the PMOS transistor 51. The first input signal Sip is input to the gate terminal of the PMOS transistor 52. The first input signal Sip is input to the gate terminal of the NMOS transistor 53.
 第2バッファ回路60Cは、第2ノードNに現れる第2出力信号Sonを論理反転した信号Son#を第2出力端子22から出力する。第2バッファ回路60Cは、第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されたPMOSトランジスタ61,PMOSトランジスタ62およびNMOSトランジスタ63を含む。PMOSトランジスタ62およびNMOSトランジスタ63それぞれのドレイン端子は第2出力端子22に接続されている。PMOSトランジスタ61のゲート端子に第2ノードNが接続されている。PMOSトランジスタ62のゲート端子に第2入力信号Sinが入力される。また、NMOSトランジスタ63のゲート端子に第2入力信号Sinが入力される。 The second buffer circuit 60C outputs a logical inversion signal Son # a second output signal Son appearing at second node N 2 from the second output terminal 22. The second buffer circuit 60C includes a PMOS transistor 61, a PMOS transistor 62, and an NMOS transistor 63 that are sequentially connected in series between the second reference potential Vddh and the third reference potential Vss. The drain terminals of the PMOS transistor 62 and the NMOS transistor 63 are connected to the second output terminal 22. The second node N 2 is connected to the gate terminal of the PMOS transistor 61. The second input signal Sin is input to the gate terminal of the PMOS transistor 62. The second input signal Sin is input to the gate terminal of the NMOS transistor 63.
 第2実施形態における第1バッファ回路50Bと同様に、本実施形態でも第1バッファ回路50Cは実質的にインバータ回路の機能を有する。ただし、第2実施形態における第1バッファ回路50Bと比較すると、本実施形態における第1バッファ回路50Cは、PMOSトランジスタ51と第1出力端子21との間にPMOSトランジスタ52が設けられ、PMOSトランジスタ52およびNMOSトランジスタ53それぞれのゲート端子に第1入力信号Sipが直接に入力される。 As in the first buffer circuit 50B in the second embodiment, the first buffer circuit 50C also has a function of an inverter circuit in this embodiment. However, compared with the first buffer circuit 50B in the second embodiment, the first buffer circuit 50C in the present embodiment includes a PMOS transistor 52 between the PMOS transistor 51 and the first output terminal 21, and the PMOS transistor 52 The first input signal Sip is directly input to the gate terminals of the NMOS transistor 53 and the NMOS transistor 53.
 第2実施形態における第2バッファ回路60Bと同様に、本実施形態でも第2バッファ回路60Cは実質的にインバータ回路の機能を有する。ただし、第2実施形態における第2バッファ回路60Bと比較すると、本実施形態における第2バッファ回路60Cは、PMOSトランジスタ61と第2出力端子22との間にPMOSトランジスタ62が設けられ、PMOSトランジスタ62およびNMOSトランジスタ63それぞれのゲート端子に第2入力信号Sinが直接に入力される。 As in the second buffer circuit 60B in the second embodiment, the second buffer circuit 60C also has a function of an inverter circuit in this embodiment. However, compared with the second buffer circuit 60B in the second embodiment, the second buffer circuit 60C in the present embodiment includes a PMOS transistor 62 provided between the PMOS transistor 61 and the second output terminal 22, and the PMOS transistor 62 The second input signal Sin is directly input to the gate terminals of the NMOS transistor 63 and the NMOS transistor 63.
 第2実施形態では、第1ノードNの第1出力信号Sopのレベル遷移が遅い場合にPMOSトランジスタ51の状態遷移が遅く、その一方でNMOSトランジスタ53の状態遷移が早いので、第1バッファ回路50Bに貫通電流が発生する。これに対して、本実施形態では、第1入力信号Sipが直接にゲート端子に入力されるPMOSトランジスタ52が挿入されていることにより、第1バッファ回路50Cの貫通電流を抑制することができ、第1バッファ回路50Cの出力値を高速に変化させることができる。第2バッファ回路60Cについても同様である。 In the second embodiment, slow state transition of the PMOS transistor 51 when the level transition of the first output signal Sop of the first node N 1 is slow, because the state transition while the NMOS transistor 53 is fast, the first buffer circuit A through current is generated at 50B. On the other hand, in this embodiment, the PMOS transistor 52 into which the first input signal Sip is directly input to the gate terminal is inserted, so that the through current of the first buffer circuit 50C can be suppressed. The output value of the first buffer circuit 50C can be changed at high speed. The same applies to the second buffer circuit 60C.
 (第4実施形態) (Fourth embodiment)
 図6は、第4実施形態のレベルシフト回路2Dの構成を示す図である。図5に示された第3実施形態のレベルシフト回路2Cと比較すると、この図6に示される第4実施形態のレベルシフト回路2Dは、第1バッファ回路50Cに替えて第1バッファ回路50Dを備える点で相違し、また、第2バッファ回路60Cに替えて第2バッファ回路60Dを備える点で相違する。 FIG. 6 is a diagram showing the configuration of the level shift circuit 2D of the fourth embodiment. Compared with the level shift circuit 2C of the third embodiment shown in FIG. 5, the level shift circuit 2D of the fourth embodiment shown in FIG. 6 replaces the first buffer circuit 50C with the first buffer circuit 50D. It is different in that the second buffer circuit 60C is provided instead of the second buffer circuit 60C.
 第3実施形態における第1バッファ回路50Cと比較すると、本実施形態における第1バッファ回路50Dは、PMOSトランジスタ51およびPMOSトランジスタ52の配置が逆になっている点で相違する。第3実施形態における第2バッファ回路60Cと比較すると、本実施形態における第2バッファ回路60Dは、PMOSトランジスタ61およびPMOSトランジスタ62の配置が逆になっている点で相違する。 Compared with the first buffer circuit 50C in the third embodiment, the first buffer circuit 50D in the present embodiment is different in that the arrangement of the PMOS transistor 51 and the PMOS transistor 52 is reversed. Compared with the second buffer circuit 60C in the third embodiment, the second buffer circuit 60D in the present embodiment is different in that the arrangement of the PMOS transistor 61 and the PMOS transistor 62 is reversed.
 本実施形態のレベルシフト回路2Dは、第3実施形態の場合と同様に動作する。ただし、本実施形態では、第1バッファ回路50Dにおいて、PMOSトランジスタ51およびPMOSトランジスタ52のうち第2基準電位Vddh側にあるPMOSトランジスタ52のゲート電位が早く確定し、第1ノードNに接続されるPMOSトランジスタ51は第1出力端子21に近いので、第1バッファ回路50Dの出力値を高速に変化させることができる。第2バッファ回路60Dについても同様である。 The level shift circuit 2D of the present embodiment operates in the same manner as in the third embodiment. However, in the present embodiment, the first buffer circuit 50D, the gate potential of the PMOS transistor 52 in the second reference potential Vddh side is confirmed quickly among the PMOS transistor 51 and the PMOS transistor 52 is connected to the first node N 1 Since the PMOS transistor 51 is close to the first output terminal 21, the output value of the first buffer circuit 50D can be changed at high speed. The same applies to the second buffer circuit 60D.
 (第5実施形態) (Fifth embodiment)
 図7は、第5実施形態のレベルシフト回路2Eの構成を示す図である。図6に示された第4実施形態のレベルシフト回路2Dと比較すると、この図7に示される第5実施形態のレベルシフト回路2Eは、第1遅延回路70および第2遅延回路80を更に備える点で相違する。本実施形態における第1バッファ回路50Eは、第4実施形態における第1バッファ回路50Dと同じ構成を有する。本実施形態における第2バッファ回路60Eは、第4実施形態における第2バッファ回路60Dと同じ構成を有する。 FIG. 7 is a diagram showing the configuration of the level shift circuit 2E of the fifth embodiment. Compared with the level shift circuit 2D of the fourth embodiment shown in FIG. 6, the level shift circuit 2E of the fifth embodiment shown in FIG. 7 further includes a first delay circuit 70 and a second delay circuit 80. It is different in point. The first buffer circuit 50E in the present embodiment has the same configuration as the first buffer circuit 50D in the fourth embodiment. The second buffer circuit 60E in the present embodiment has the same configuration as the second buffer circuit 60D in the fourth embodiment.
 第1遅延回路70は、第1NMOSトランジスタ41のゲート端子に入力される第1入力信号Sipに対し、第1バッファ回路50Eに入力される第1入力信号Sipに遅延を与える。第2遅延回路80は、第2NMOSトランジスタ42のゲート端子に入力される第2入力信号Sinに対し、第2バッファ回路60Eに入力される第2入力信号Sinに遅延を与える。 The first delay circuit 70 delays the first input signal Sip input to the first buffer circuit 50E with respect to the first input signal Sip input to the gate terminal of the first NMOS transistor 41. The second delay circuit 80 delays the second input signal Sin input to the second buffer circuit 60E with respect to the second input signal Sin input to the gate terminal of the second NMOS transistor 42.
 第4実施形態では、バッファ回路50D,60Dに入力される入力信号Sip,Sinのレベル遷移が早すぎる場合があるが、本実施形態では、遅延回路70,80が設けられていることにより、バッファ回路50E,60Eに入力される入力信号Sip,Sinのレベル遷移のタイミングが最適化される。 In the fourth embodiment, the level transition of the input signals Sip and Sin input to the buffer circuits 50D and 60D may be too early. In this embodiment, the delay circuits 70 and 80 are provided, so that the buffer The timing of the level transition of the input signals Sip and Sin input to the circuits 50E and 60E is optimized.
 (変形例) (Modification)
 本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、第2~第5の実施形態において第1バッファ回路および第2バッファ回路の双方が設けられたが、レベルシフト回路の後段に接続される回路の構成によっては、第1バッファ回路および第2バッファ回路のうち何れか一方のみが設けられてもよい。また、第5実施形態において設けられた遅延回路70,80は、第2~第4の実施形態においても設けられてもよい。 The present invention is not limited to the above embodiment, and various modifications are possible. For example, although both the first buffer circuit and the second buffer circuit are provided in the second to fifth embodiments, depending on the configuration of the circuit connected to the subsequent stage of the level shift circuit, the first buffer circuit and the second buffer circuit are provided. Only one of the buffer circuits may be provided. Further, the delay circuits 70 and 80 provided in the fifth embodiment may be provided also in the second to fourth embodiments.
 1A,1B,2A~2E…レベルシフト回路、3…第1入力回路、4…第2入力回路、11…第1入力端子、12…第2入力端子、21…第1出力端子、22…第2出力端子、31…第1PMOSトランジスタ、32…第2PMOSトランジスタ、41…第1NMOSトランジスタ、42…第2NMOSトランジスタ、43…第3NMOSトランジスタ、44…第4NMOSトランジスタ、50B~50E…第1バッファ回路、60B~60E…第2バッファ回路、70…第1遅延回路、80…第2遅延回路、N…第1ノード、N…第2ノード。
 
1A, 1B, 2A to 2E ... level shift circuit, 3 ... first input circuit, 4 ... second input circuit, 11 ... first input terminal, 12 ... second input terminal, 21 ... first output terminal, 22 ... first 2 output terminals 31 ... first PMOS transistor 32 ... second PMOS transistor 41 ... first NMOS transistor 42 ... second NMOS transistor 43 ... third NMOS transistor 44 ... fourth NMOS transistor 50B-50E ... first buffer circuit 60B 60E, second buffer circuit, 70, first delay circuit, 80, second delay circuit, N 1, first node, N 2, second node.

Claims (7)

  1.  第1基準電位Vddlおよび第3基準電位Vssが供給されて動作する回路から出力された互いに相補的な第1入力信号および第2入力信号を入力し、これら第1入力信号および第2入力信号のハイレベルの電圧値より大きいハイレベルの電圧値を有する互いに相補的な第1出力信号および第2出力信号を生成して、これら第1出力信号および第2出力信号の双方または何れか一方を、第2基準電位Vddhおよび第3基準電位Vssが供給されて動作する回路へ出力するレベルシフト回路であって(ただし、Vddh>Vddl>Vss)、
     前記第1入力信号が入力される第1入力端子と、
     前記第2入力信号が入力される第2入力端子と、
     前記第1出力信号が現れる第1ノードと、
     前記第2出力信号が現れる第2ノードと、
     第2基準電位Vddhが入力されるソース端子と、前記第2ノードに接続されたドレイン端子と、前記第1ノードに接続されたゲート端子とを有する第1PMOSトランジスタと、
     第2基準電位Vddhが入力されるソース端子と、前記第1ノードに接続されたドレイン端子と、前記第2ノードに接続されたゲート端子とを有する第2PMOSトランジスタと、
     第3基準電位Vssが入力されるソース端子と、前記第2ノードに接続されたドレイン端子と、前記第1入力端子に接続されたゲート端子とを有する第1NMOSトランジスタと、
     第3基準電位Vssが入力されるソース端子と、前記第1ノードに接続されたドレイン端子と、前記第2入力端子に接続されたゲート端子とを有する第2NMOSトランジスタと、
     第2基準電位Vddhが入力されるドレイン端子と、前記第2ノードに接続されたソース端子と、前記第2入力端子に接続されたゲート端子とを有する第3NMOSトランジスタと、
     第2基準電位Vddhが入力されるドレイン端子と、前記第1ノードに接続されたソース端子と、前記第1入力端子に接続されたゲート端子とを有する第4NMOSトランジスタと、
     を備えることを特徴とするレベルシフト回路。
    The first input signal and the second input signal complementary to each other output from the circuit that operates by being supplied with the first reference potential Vddl and the third reference potential Vss are input, and the first input signal and the second input signal are input. Generating a first output signal and a second output signal complementary to each other having a high-level voltage value greater than the high-level voltage value, and the first output signal and / or the second output signal are A level shift circuit for supplying a second reference potential Vddh and a third reference potential Vss to an operating circuit (where Vddh>Vddl>Vss);
    A first input terminal to which the first input signal is input;
    A second input terminal to which the second input signal is input;
    A first node at which the first output signal appears;
    A second node at which the second output signal appears;
    A first PMOS transistor having a source terminal to which a second reference potential Vddh is input, a drain terminal connected to the second node, and a gate terminal connected to the first node;
    A second PMOS transistor having a source terminal to which a second reference potential Vddh is input, a drain terminal connected to the first node, and a gate terminal connected to the second node;
    A first NMOS transistor having a source terminal to which a third reference potential Vss is input, a drain terminal connected to the second node, and a gate terminal connected to the first input terminal;
    A second NMOS transistor having a source terminal to which a third reference potential Vss is input, a drain terminal connected to the first node, and a gate terminal connected to the second input terminal;
    A third NMOS transistor having a drain terminal to which a second reference potential Vddh is input, a source terminal connected to the second node, and a gate terminal connected to the second input terminal;
    A fourth NMOS transistor having a drain terminal to which a second reference potential Vddh is input, a source terminal connected to the first node, and a gate terminal connected to the first input terminal;
    A level shift circuit comprising:
  2.  前記第1ノードに現れる第1出力信号を論理反転した信号を出力端子から出力する第1バッファ回路を更に備え、
     前記第1バッファ回路が、第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されたバッファ用PMOSトランジスタおよびバッファ用NMOSトランジスタを含み、
     前記バッファ用PMOSトランジスタおよび前記バッファ用NMOSトランジスタそれぞれのドレイン端子が前記出力端子に接続され、
     前記バッファ用PMOSトランジスタのゲート端子に前記第1ノードが接続され、
     前記バッファ用NMOSトランジスタのゲート端子に前記第1入力信号が入力される、
     ことを特徴とする請求項1に記載のレベルシフト回路。
    A first buffer circuit that outputs a signal obtained by logically inverting the first output signal appearing at the first node from an output terminal;
    The first buffer circuit includes a buffer PMOS transistor and a buffer NMOS transistor sequentially connected in series between a second reference potential Vddh and a third reference potential Vss;
    The drain terminals of the buffer PMOS transistor and the buffer NMOS transistor are connected to the output terminal,
    The first node is connected to a gate terminal of the buffer PMOS transistor;
    The first input signal is input to a gate terminal of the buffer NMOS transistor;
    The level shift circuit according to claim 1.
  3.  前記第1ノードに現れる第1出力信号を論理反転した信号を出力端子から出力する第1バッファ回路を更に備え、
     前記第1バッファ回路が、第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されたバッファ用第1PMOSトランジスタ,バッファ用第2PMOSトランジスタおよびバッファ用NMOSトランジスタを含み、
     前記バッファ用第2PMOSトランジスタおよび前記バッファ用NMOSトランジスタそれぞれのドレイン端子が前記出力端子に接続され、
     前記バッファ用第1PMOSトランジスタおよび前記バッファ用第2PMOSトランジスタのうち何れか一方のゲート端子に前記第1ノードが接続されるとともに他方のゲート端子に前記第1入力信号が入力され、
     前記バッファ用NMOSトランジスタのゲート端子に前記第1入力信号が入力される、
     ことを特徴とする請求項1に記載のレベルシフト回路。
    A first buffer circuit that outputs a signal obtained by logically inverting the first output signal appearing at the first node from an output terminal;
    The first buffer circuit includes a first PMOS transistor for buffer, a second PMOS transistor for buffer, and an NMOS transistor for buffer connected in series between a second reference potential Vddh and a third reference potential Vss,
    The drain terminals of the buffer second PMOS transistor and the buffer NMOS transistor are connected to the output terminal,
    The first node is connected to a gate terminal of one of the first PMOS transistor for buffer and the second PMOS transistor for buffer, and the first input signal is input to the other gate terminal,
    The first input signal is input to a gate terminal of the buffer NMOS transistor;
    The level shift circuit according to claim 1.
  4.  前記第1NMOSトランジスタのゲート端子に入力される第1入力信号に対し、前記第1バッファ回路に入力される第1入力信号に遅延を与える第1遅延回路を更に備える、
     ことを特徴とする請求項2または3に記載のレベルシフト回路。
    A first delay circuit for delaying the first input signal input to the first buffer circuit with respect to the first input signal input to the gate terminal of the first NMOS transistor;
    The level shift circuit according to claim 2 or 3, wherein
  5.  前記第2ノードに現れる第2出力信号を論理反転した信号を出力端子から出力する第2バッファ回路を更に備え、
     前記第2バッファ回路が、第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されたバッファ用PMOSトランジスタおよびバッファ用NMOSトランジスタを含み、
     前記バッファ用PMOSトランジスタおよび前記バッファ用NMOSトランジスタそれぞれのドレイン端子が前記出力端子に接続され、
     前記バッファ用PMOSトランジスタのゲート端子に前記第2ノードが接続され、
     前記バッファ用NMOSトランジスタのゲート端子に前記第2入力信号が入力される、
     ことを特徴とする請求項1~4の何れか1項に記載のレベルシフト回路。
    A second buffer circuit for outputting a signal obtained by logically inverting the second output signal appearing at the second node from an output terminal;
    The second buffer circuit includes a buffer PMOS transistor and a buffer NMOS transistor sequentially connected in series between a second reference potential Vddh and a third reference potential Vss;
    The drain terminals of the buffer PMOS transistor and the buffer NMOS transistor are connected to the output terminal,
    The second node is connected to a gate terminal of the buffer PMOS transistor;
    The second input signal is input to a gate terminal of the buffer NMOS transistor;
    The level shift circuit according to any one of claims 1 to 4, wherein:
  6.  前記第2ノードに現れる第2出力信号を論理反転した信号を出力端子から出力する第2バッファ回路を更に備え、
     前記第2バッファ回路が、第2基準電位Vddhと第3基準電位Vssとの間に直列的に順に接続されたバッファ用第1PMOSトランジスタ,バッファ用第2PMOSトランジスタおよびバッファ用NMOSトランジスタを含み、
     前記バッファ用第2PMOSトランジスタおよび前記バッファ用NMOSトランジスタそれぞれのドレイン端子が前記出力端子に接続され、
     前記バッファ用第1PMOSトランジスタおよび前記バッファ用第2PMOSトランジスタのうち何れか一方のゲート端子に前記第2ノードが接続されるとともに他方のゲート端子に前記第2入力信号が入力され、
     前記バッファ用NMOSトランジスタのゲート端子に前記第2入力信号が入力される、
     ことを特徴とする請求項1~4の何れか1項に記載のレベルシフト回路。
    A second buffer circuit for outputting a signal obtained by logically inverting the second output signal appearing at the second node from an output terminal;
    The second buffer circuit includes a first PMOS transistor for buffer, a second PMOS transistor for buffer, and an NMOS transistor for buffer connected in series between a second reference potential Vddh and a third reference potential Vss,
    The drain terminals of the buffer second PMOS transistor and the buffer NMOS transistor are connected to the output terminal,
    The second node is connected to one gate terminal of the first PMOS transistor for buffer and the second PMOS transistor for buffer, and the second input signal is input to the other gate terminal,
    The second input signal is input to a gate terminal of the buffer NMOS transistor;
    The level shift circuit according to any one of claims 1 to 4, wherein:
  7.  前記第2NMOSトランジスタのゲート端子に入力される第2入力信号に対し、前記第2バッファ回路に入力される第2入力信号に遅延を与える第2遅延回路を更に備える、
     ことを特徴とする請求項5または6に記載のレベルシフト回路。
     
    A second delay circuit for delaying the second input signal input to the second buffer circuit with respect to the second input signal input to the gate terminal of the second NMOS transistor;
    The level shift circuit according to claim 5 or 6, wherein
PCT/JP2012/064226 2011-05-31 2012-05-31 Level shift circuit WO2012165599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011121909A JP2012249261A (en) 2011-05-31 2011-05-31 Level shift circuit
JP2011-121909 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012165599A1 true WO2012165599A1 (en) 2012-12-06

Family

ID=47259451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064226 WO2012165599A1 (en) 2011-05-31 2012-05-31 Level shift circuit

Country Status (3)

Country Link
JP (1) JP2012249261A (en)
TW (1) TW201315151A (en)
WO (1) WO2012165599A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944556A (en) * 2014-05-09 2014-07-23 格科微电子(上海)有限公司 Level transfer circuit
TWI828629B (en) * 2017-08-21 2024-01-11 英商Arm股份有限公司 Level shifter with bypass control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6282124B2 (en) * 2014-01-28 2018-02-21 ラピスセミコンダクタ株式会社 Level shift circuit and semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216327A (en) * 1983-05-24 1984-12-06 Seiko Epson Corp level shift circuit
JPS62216416A (en) * 1986-03-08 1987-09-24 Fujitsu Ltd Output circuit
JPH01176115A (en) * 1987-12-29 1989-07-12 Nec Corp Semiconductor integrated circuit
JPH05308274A (en) * 1992-04-30 1993-11-19 Matsushita Electric Ind Co Ltd Cmos level shift circuit
JPH07193488A (en) * 1993-12-27 1995-07-28 Matsushita Electric Ind Co Ltd Level shifter circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216327A (en) * 1983-05-24 1984-12-06 Seiko Epson Corp level shift circuit
JPS62216416A (en) * 1986-03-08 1987-09-24 Fujitsu Ltd Output circuit
JPH01176115A (en) * 1987-12-29 1989-07-12 Nec Corp Semiconductor integrated circuit
JPH05308274A (en) * 1992-04-30 1993-11-19 Matsushita Electric Ind Co Ltd Cmos level shift circuit
JPH07193488A (en) * 1993-12-27 1995-07-28 Matsushita Electric Ind Co Ltd Level shifter circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944556A (en) * 2014-05-09 2014-07-23 格科微电子(上海)有限公司 Level transfer circuit
TWI828629B (en) * 2017-08-21 2024-01-11 英商Arm股份有限公司 Level shifter with bypass control

Also Published As

Publication number Publication date
JP2012249261A (en) 2012-12-13
TW201315151A (en) 2013-04-01

Similar Documents

Publication Publication Date Title
US20070164789A1 (en) High Speed Level Shift Circuit with Reduced Skew and Method for Level Shifting
US7772883B2 (en) Level shifter
US7795946B2 (en) Level shifter capable of improving current drivability
US6853228B2 (en) Flip-flop circuit
US20040085092A1 (en) Level shifter
US7468621B2 (en) Synchronization circuits and methods
US20080001628A1 (en) Level conversion circuit
WO2012165599A1 (en) Level shift circuit
US7675322B2 (en) Level shifting circuits for generating output signals having similar duty cycle ratios
JP2008187525A (en) Inverter circuit
US20100207595A1 (en) Output buffer circuit
US20080024188A1 (en) Junction field effect transistor level shifting circuit
US20060214717A1 (en) Low amplitude differential output circuit and serial transmission interface using the same
US6710638B2 (en) Voltage conversion circuit and semiconductor device
US20050184763A1 (en) Signal transmission circuit
JP4386918B2 (en) Level shift circuit and semiconductor integrated circuit having the same
KR100924354B1 (en) Input buffer
US8547139B2 (en) CMOS logic integrated circuit
US8502559B2 (en) Level translator
JP5326505B2 (en) High-speed level shift circuit
US7215173B2 (en) Low-swing level shifter
JP2006157099A (en) Level shifter circuit
US7224187B2 (en) CMOS buffer circuits and integrated circuits using the same
JP2006287699A (en) Level conversion circuit
JP2008219249A (en) Cmos circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793748

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载